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Three fundamental symmetries

Assume f ∈ L1(R) ∩ L∞(R). Take 1 ≤ p ≤ ∞ and fix
x , x0, ξ, λ ∈ R. We define the following classes of symmetries

Tx0f (x) := f (x − x0) - spatial translation (with x0)

Mξ0f (x) := e2πi(x ·ξ0)f (x) - frequency modulation (with ξ0)

Dp
λ f (x) := 1

λ
1
p
f ( xλ) - Lp normalized dilation.
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Fourier transform - key properties

For f ∈ S(R) we define the Fourier transform of f as

F(f )(ξ) = f̂ (ξ) =

∫
R
f (x) e−2πiξx .

F Tx0 = M−x0 F ;

F Mξ0 = Tξ0 F ;

F Dp
λ = Dp′

λ−1 F , where here p, p′ are Holder conjugates, i.e.
1
p + 1

p′ = 1.

Another two fundamental relations obeyed by the Fourier
transform:
- F ( d

dx f )(ξ) = 2π i ξF(f )(ξ);

- F(2πi x f (x))(ξ) = − d
dξ F(f )(ξ) .
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Fourier transform - properties

Define the adjoint of F by (here g ∈ L1)

F∗g(x) := ǧ =

∫
R
g(ξ) e2π i x ·ξ dξ

Ex.1: Check that both F and F∗ map the Schwartz class into
the Schwartz class.
Since F and F∗ leave unaffected the Gaussian function
e−π |x |

2

- same happens for any linear combination of Gaussians
- but linear combinations of Gaussian are dense in the
Schwartz class
- hence we obtain the inversion formula:

F∗F f = f and F F∗g = g ,

for any f , g ∈ S(R) .
Victor Lie A unified approach to three themes in harmonic analysis
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Fourier transform - properties

As a corollary we get the Parseval formula:

< f , g >=< F∗F f , g >=< F f ,Fg > .

Hence we deduce Plancherel:

‖F f ‖L2
ξ(R) = ‖f ‖L2

x (R) .

Now it is trivial to check that

‖F f ‖L∞ξ (R) ≤ ‖f ‖L1
x (R) .

Apply complex-interpolation to deduce the Hausdorff-Young
ineq

‖F f ‖
Lp
′
ξ (R)

≤ ‖f ‖Lpx (R) for 1 ≤ p ≤ 2 .

Ex. 2 Prove that Hausdorff-Young is sharp in the sense that
it can not be extended in the range 2 < p <∞.
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What is time-frequency?

The field of mathematics which, in order to establish
qualitative and quantitative information about different
categories of objects (functions, operators etc), analyzes both
space and Fourier transform properties of the corresponding
objects; [space/Fourier transform MATH - time/frequency
PHS]
Thus, this field is intimately connected to Fourier analysis and
can be regarded as a development of the theory of
trigonometric series initiated in the 19th cent. by Fourier.
Initial theme of research: understand the relation between

f (x) ∈ L1(R) and f̂ (ξ) =

∫
R
f (x) e−2πi x ξ dx , ξ ∈ R (cont)

f (x) ∈ L1(T) and f̂ (n) =

∫
T
f (x) e−2πi x n dx , n ∈ Z (discrete)
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Leitmotif:

f (x) ⇒decomposition {f̂ (n)}n ⇒reconstruction
∑
n

f̂ (n) e2π i n x .

Two fundamental facts (for “suitable objects”):

Inversion formula: f (x) =
∫
R f̂ (ξ) e2πi x ξ dξ ;

smoothness (decay) f ⇔ decay (smoothness) f̂

modulation in space f ⇔ translation in frequency f̂

Parseval identity:
∫
f (x) ḡ(x) dx =

∫
f̂ (ξ) ¯̂g(ξ) dξ ;

In order to gain intuition about the main steps that one needs
to follow for analyzing more complicated objects we would like
to say a story in pictures...
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Parseval’s story: summary
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Fundamental philosophy: Understand f ↔ information about
localization & oscillation of f ↔ localization of f , localization of f̂
↔ localization of the pair (f , f̂ )
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The Hilbert transform

We start our journey with the simplest fundamental object:
the Hilbert transform

H : S(R) → S ′(R) Hf (x) := p.v.

∫
R
f (x − t)

dt

t
.

A celebrated result of M. Riesz (1928) states that H is a
bounded operator from Lp(R) to Lp(R) for any 1 < p <∞.

Relevance:

H connects the real and imaginary parts of functions on R
which are boundary restrictions of suitable holomorphic
functions in the upper-half plane; this is realized via
Cauchy-Riemann system and (conjugate) Poisson kernel.
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The Hilbert transform

H is characterized (up to a constant multiple), by the
following symmetry behavior:

H commutes with translations and dilations;
H anticommutes with reflections f (x) → f (−x);

These facts are direct consequences of the homogeneity of the
kernel 1

t or, equivalently, of the multiplier π i sgn ξ.

Ex.3 Prove that the Hilbert transform in the unique
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Time-frequency decomposition Hilbert transform

We split the kernel (Ex. 4)

1

y
=
∑
k∈N

ψk(y) ,

where ψ ∈ C∞0 is an odd function supported away from the
origin and ψk(y) = 2kψ(2ky), k ∈ N.

Next, for each scale k we take the collection {Ik,j}j of all
dyadic intervals in [0, 1] of length 2−k and write

Hf (x) =
∑
k,j

Hk,j f (x) =
∑
k,j

(ψk ∗ f ) (x)χIk,j (x) .

Observe that each Hk,j f has time support included in Ik,j
while on the frequency side it is “morally” supported near the
origin, in an interval of length |Ik,j |−1.
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The time-frequency portrait Hilbert transform

Ik,1| |

 

th

0

I
k,j

y

The action of the
symmetries:

k (dilation)

j (translation)

the k level

x

Hk,1

Ik,1
O

−1

Observe that the origin plays here a special role: each rectangle
has its basis on the real axis.
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The Hardy-Littlewood maximal function.

Define the Hardy-Littlewood maximal function (operator)
as

Mf (x) := sup
r>0

1

|B(x , r)|

∫
B(x ,r)

|f (y)| dy .

M is a sublinear operator.

M is trivially of strong type (∞,∞).

M is NOT of strong type (1, 1) as one can show that
(Exercise)

∃ f ∈ L1(R) |Mf (x)| &f
1

1 + |x |
.

Dimensional analysis - dilation symmetry imposes that no
weak or strong type (p, q) estimates are available off the
diagonal case p 6= q . (Ex.5)
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The Hardy-Littlewood maximal function.

Theorem (Hardy-Littlewood) The operator M is of strong
type (p, p) for 1 < p ≤ ∞ .

We would like to apply real interpolation...but we need one
more end point...(1, 1).

Proposition. M is of weak type (1, 1), thus

∃ C > 0 s.t |{x |Mf (x) > λ }| ≤ C
‖f ‖L1

λ
.

Hint: Vitali covering lemma
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The Hardy-Littlewood maximal function.

Thus by real interpolation we conclude that M is of strong
type (p, p) as long as 1 < p ≤ ∞.
A more direct (original) way of proving is:
set fλ(x) := f (x) if |f (x)| > λ

2 and 0 otherwise.

Notice that Mf ≤ M(fλ) + λ
2 and hence

{Mf > λ} ⊂ {M(fλ) >
λ

2
} and thus

|{Mf > λ}| . 1

λ

∫
fλ>

λ
2

|f | .

Then ∫
Mf p = p

∫ ∞
0
|{Mf > λ}|λp−1 dλ

. p

∫
(

∫ 2|f |

0
λp−2 dλ)|f | dx =

p 2p

p − 1

∫
|f |p .
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Lebesgue’s differentiation theorem.

Theorem. If f ∈ L1(R) then

∃ lim
r→0

1

|B(x , r)|

∫
B(x ,r)

f (y) dy = f (x) a.e. x ∈ R .

Proof. Define Tr f (x) := 1
|B(x ,r)|

∫
B(x ,r) |f (y)− f (x)| dy , and

set Tf (x) = lim supr→0 Tr f (x) .
Take h = f − g with g ∈ Cc(R) then

Tf (x) ≤ Th(x) + Tg(x) ≤ Mh(x) + |h(x)| .

Then since {Tf > 2λ} ⊂ {Mh > λ} ∪ {|h| > λ} from the
weak (1, 1) bounds on M and Chebyshev we have

|{Tf > λ}| .d
‖h‖1

λ
.

Now ‖h‖1 can be done as small as we want...e.t.c.
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The Carleson operator

Let Sj for j ∈ N be the partial Fourier sum of order j attached
to a function f ∈ L2(Π), hence

Sj f (x) =

j∑
k=−j

f̂ (k) e2πikx .

We define the Carleson operator by (Ex.6)

Cf (x) := sup
j∈N
|Sj f (x)| ≈ sup

j∈N

∣∣∣∣∫
T

1

x − y
e2π,i j (x−y) f (y) dy

∣∣∣∣ .
On top of the previous symmetries for the Hilbert transform -
dilations and translations - we are now dealing with an
operator that has an extra modulation symmetry.
Thus

CTy = TyC , CDλ = DλC , CMc = C .

Notice that

Cf (x) ≈ sup
c∈ R
|Mc H M∗c f (x)| .
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The Carleson operator

In this case we have to deal with one more symmetry given by
the modulation invariance property.
First task: understand the time-frequency behavior of Mc .

 

 
localization of

O

supp ϕ

x

ϕ

localization of M cϕy=c

y

As a consequence, the time-frequency picture of McHM
∗
c is

then given by a frequency-translation with c units of the
corresponding portrait of H.
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Since Cf (x) = supc∈ R |Mc H M∗c f (x)|, we conclude that the
time-frequency localization of C is given by:

 

O x=1 x

P

y

This suggests that C may be written (after a linearization
procedure) as Cf =

∑
P CP f with each CP a linear operator

localized in a certain (Heisenberg) rectangle P.
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical context

(1913) Luzin conjectures that if f is square integrable then its
Fourier series converges to f almost everywhere.

(1922) Kolmogorov constructs an example of an L1 function
whose Fourier series diverges a.e. suggesting that Luzin’s
conjecture may be false.

(1966) L. Carleson provides the positive answer to this
conjecture, setting the foundation of time-frequency analysis.
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Historical context

Theorem (Carleson, 1966)

The Carleson operator obeys the bound

‖Cf ‖L2(T) ≤ const ‖f ‖L2(T) ,

where here const is a positive absolute constant.
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Carleson’s theorem - story

Discretization of the Carleson operator - an overview

Let C be the Carleson operator

Cf (x) := sup
j∈N
|Sj f (x)| ≈ sup

j∈Z

∣∣∣∣∫
T

1

y
e2π i j y f (x − y) dy

∣∣∣∣ .
Write 1

y =
∑

k∈N ψk(y) for |y | < 1 where ψk(y) = 2k ψ(2k y)
and ψ ∈ C∞0 (R) odd.

Cf (x) =
∑
k≥0

∫
T
e2π i N(x) y ψk(y) f (x − y) dy ,

where N : T → Z is a measurable function (Ex.6).

Choose the canonical dyadic grids on T× R and partition the
time-frequency plane in tiles of the form P = [ω, I ] with
ω ⊂ R, I ⊂ T dyadic intervals such that |ω| = |I |−1.
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Carleson’s theorem - story

For P = [ω, I ] ∈ P define E (P) := {x ∈ I |N(x) ∈ ω} .
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Carleson’s theorem - story

Next, for P = [ω, I ] ∈ P with |I | = 2−k (k ∈ N) we set

CP f (x) := (

∫
T
e2π i N(x) y ψk(y) f (x − y) dy) χE(P)(x) .

With this, conclude that

Cf (x) =
∑
P∈P

CP f (x) .
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Carleson’s theorem - story: tree

Definition

A collection of tiles P ⊂ P is called a tree with top P0 iff
1) ∀ P ∈ P ⇒ P ≤ P0.
2) if P1, P2 ∈ P and P1 ≤ P ≤ P2 then P ∈ P.
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Carleson’s theorem - story: tree

For P family of tiles set CP :=
∑

P∈P CP . Using now the second
criteria - the mass/weight of a tile - A(P), we have

Proposition

Fix n ∈ N. Let P ⊆ P be a tree such that

A(P) ≈ 2−n ∀ P ∈ P .

Then ∥∥CP∥∥
2
. 2−n/2 .
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Carleson’s story: The counting function of order n

Break P into
⋃∞

n=0 Pn where

Pn =
{
P ∈ P | 2−n−1 < A(P) ≤ 2−n

}
.

Fix n ∈ N. We say that P ∈ Pmax
n iff P is maximal relative to

“ ≤ ” and P ∈ Pn.

Define the counting function of order n as

Nn(x) :=
1

2n

∑
P∈Pmax

n

χIP (x) .
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Carleson’s theorem - story: Forest
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Carleson’s theorem - story: Forest

Proposition

Let P be a forest of generation n as above.
Then ∥∥TP f ∥∥

2
. 2−

n
2 ‖f ‖2 .

Key: Almost orthogonality of the trees inside P.
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Proof of the “pointwise convergence”

Recall P =
⋃∞

n=0 Pn =
{
P ∈ P | 2−n−1 < A(P) ≤ 2−n

}
.
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Proof of the “pointwise convergence”

Now roughly

Pn =
⋃
k

Pk
n

and applying again a Cotlar-Stein argument
(almost-orthogonality)∥∥∥CPn

∥∥∥
2
. sup

k

∥∥∥CPk
n

∥∥∥
2
. 2−n/2 .

From this we conclude

‖C ‖2 ≤
∞∑
n=0

∥∥∥CPn

∥∥∥
2
.
∞∑
n=0

2−n/2 . 1 .
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For each point x ∈ R we associate a curve Γx = (t, −γx(t))
in the plane, where here t ∈ R and

γx(·) := γ(x , ·) : R → R ,

is a real function obeying some “suitable” smoothness and
non-zero curvature conditions in the t-parameter.

Define now the variable family of curves in the plane
Γ ≡ {Γx}{x∈R}.
Task: Under minimal regularity (in x) conditions on the curve
family Γ, study the Lp-boundedness, 1 ≤ p ≤ ∞, of the
following operators:
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I. Singular and maximal (sub)linear operators in 2 D

the linear Hilbert transform along Γ

HΓ : S(R2) −→ L∞(R2) ,

HΓ(f )(x , y) := p.v.

∫
R
f (x − t, y + γ(x , t))

dt

t
.

the (sub)linear maximal operator along Γ

MΓ : S(R2) −→ L∞(R2) ,

MΓ(f )(x , y) := sup
h>0

1

2h

∫ h

−h
|f (x − t, y + γ(x , t))| dt .
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II. Carleson type operators

the γ - Carleson operator

Cγ : S(R) −→ L∞(R) ,

Cγf (x) := p.v.

∫
R
f (x − t) e i γ(x ,t) dt

t
.

the γ - maximal operator

Mγ : S(R) −→ L∞(R) ,

Mγf (x) := sup
a>0

∣∣∣∣ 1

2a

∫ a

−a
f (x − t) e i γ(x ,t) dt

∣∣∣∣ ;
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III. Singular and maximal (sub)bilinear operators in 1D

the bilinear Hilbert transform along Γ

HBΓ : S(R)× S(R) −→ L∞(R) ,

HBΓ (f , g)(x) := p.v.

∫
R
f (x − t) g(x + γ(x , t))

dt

t
;

the (sub)bilinear maximal operator along Γ

MBΓ : S(R)× S(R) −→ L∞(R) ,

MBΓ (f , g)(x) := sup
h>0

1

2h

∫ h

−h
|f (x − t) g(x + γ(x , t))| dt .
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I. Hilbert transform along curves

We consider in the previous definitions a generic class of
curves with γ(x , t) =

∑n
j=1 aj(x) t j and {aj(·)}j arbitrary real

measurable functions. Then, one has

the zero-curvature case; prototype: n = 1, with
γ(x , t) = a1(x)t.

In this situation, letting M1,af (x , y) := e iax f (x , y), one has
that

‖HΓM1,af ‖L2(R2) = ‖HΓf ‖L2(R2) .

the nonzero-curvature case ; prototype: n > 1, with
γ(x , t) =

∑n
j=2 ãj(x) t j - no linear term allowed.

In this situation HΓ has no modulation invariance symmetry.
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j=2 ãj(x) t j - no linear term allowed.

In this situation HΓ has no modulation invariance symmetry.

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

I. Hilbert transform along curves

We consider in the previous definitions a generic class of
curves with γ(x , t) =

∑n
j=1 aj(x) t j and {aj(·)}j arbitrary real

measurable functions. Then, one has

the zero-curvature case; prototype: n = 1, with
γ(x , t) = a1(x)t.

In this situation, letting M1,af (x , y) := e iax f (x , y), one has
that

‖HΓM1,af ‖L2(R2) = ‖HΓf ‖L2(R2) .

the nonzero-curvature case ; prototype: n > 1, with
γ(x , t) =

∑n
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In this situation HΓ has no modulation invariance symmetry.
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Cγ is invariant under the modulation symmetry :

CγMaf = Cγf .

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

II. Carleson-type operators

We consider here Polynomial Carleson-type operators, which -
following Kolmogorov’s linearization - can be written in the
form

Cγf (x) :=

∫
R
e i γ(x ,t) f (x − t)

dt

t
,

with n ∈ N, γ(x , t) :=
∑n

j=1 aj(x) t j and {aj(·)}j arbitrary
real measurable functions.

the zero-curvature case; prototype: n = 1, with
γ(x , t) = a1(x)t.

In this situation, in addition to the standard commutation
relations with translation and dilation symmetries the operator
Cγ is invariant under the modulation symmetry :

CγMaf = Cγf .

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

II. Carleson-type operators

We consider here Polynomial Carleson-type operators, which -
following Kolmogorov’s linearization - can be written in the
form

Cγf (x) :=

∫
R
e i γ(x ,t) f (x − t)

dt

t
,

with n ∈ N, γ(x , t) :=
∑n

j=1 aj(x) t j and {aj(·)}j arbitrary
real measurable functions.

the zero-curvature case; prototype: n = 1, with
γ(x , t) = a1(x)t.

In this situation, in addition to the standard commutation
relations with translation and dilation symmetries the operator
Cγ is invariant under the modulation symmetry :

CγMaf = Cγf .

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

II. Carleson-type operators

the nonzero-curvature case ; prototype: n > 1, with
γ(x , t) =

∑n
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III. Bilinear Hilbert transform along curves

Taking the generic case γ(x , t) = γ(t) =
∑n

j=1 aj t
j with

{aj}j real and Γ = (t,−γ(t)), we define

HBΓ (f , g)(x) :=

∫
R
f (x − t) g(x + γ(t))

dt

t
.

the zero-curvature case; prototype: n = 1, γ(t) = a1t with
a1 ∈ R \ {0, 1}.
In this situation, we have

HBΓ (Ma1f , M1g) = M1+a1H
B
Γ (f , g) .

the nonzero-curvature case ; prototype: n > 1, with
γ(t) =

∑n
j=2 aj t

j - no linear term allowed.

In this situation HBΓ has no modulation invariance symmetry.
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Important things to learn - philosophy

In the zero-curvature (flat) case all the above operators obey
suitable invariance under modulation symmetry.

Consequence: any method of proof requires an approach
based on wave-packet analysis and thus in particular a
time-frequency discretization of the corresponding operator.

The proof should involve concepts like mass and/or energy of
wave-packets in the spirit of the known proofs of Carleson’s
Theorem.
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Important things to learn - philosophy

In the nonzero-curvature (non-flat) case there is no
modulation-invariance symmetry.

More standard analysis can be performed on the object under
study: TT ∗ (orthogonality methods), (non)stationary phase
principle, Van der Corput estimates, Littlewood-Paley
techniques, square-function arguments, etc.

While discretization techniques in physical and frequency
space are still relevant, the zero frequency plays a favorite role
in this discretization

Usually, one is able to obtain a suitable scale type decay
where here the concept of “scale” should be properly adapted
to the context.
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Formulation of the problem
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Important things to learn - philosophy

While both situations are interesting and historically
motivated, generically speaking the zero-curvature situation
tends to be more difficult and accordingly most of the
celebrated problems in this area - some of which remain open
- regard precisely this case.

The situation of nonzero curvature can also prove challenging,
but to a lesser extent. In this context, while often regarded as
model problems for the flat case, the corresponding non-flat
case problems usually can only provide limited intuition, since,
they require yet distinct methods of proof.
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Important things to learn - philosophy

Natural Goal: unify the two approaches corresponding to the
zero/non-zero curvature cases, and thus to provide a method
of proof for the situation in which γ is given by a polynomial
in t with the linear term included.

With the notable exception of the Polynomial Carleson
operator, no unified treatment is known for the other two
fundamental objects: the Hilbert and bilinear Hilbert
transform - and their maximal analogues - along curves
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation (I): I.1. PDE

A. Constant coefficient elliptic differential operators
Model: Laplace/Poisson equation in Rd , d ≥ 2:

4u = f .

The fundamental solution U0(x) is given by

U0(x) := − 1

2π
log

1

|x |
if d = 2 ,

U0(x) :=
1

(d − 2)ωd
|x |2−d if d > 2, (ωd = Area(Sd)) .

Taking f ∈ Lp(Rd), 1 < p <∞ and letting

u(x) :=

∫
Rd

U0(x − y) f (y) dy .
one has

4u = f .
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Historical background and motivation (I): I.1. PDE

Indeed, for kij := U0
xixj

, we have that a.e.

uxixj (x) =
1

d
δij f (x) +

∫
Rd

kij(x − y) f (y) dy .

The kernel K := kij has the following properties

K is homogeneous of degree −d , i.e. if
δα(x) = (αx1, . . . , αxd) then K (δα(x)) = α−d K (x) , α > 0 .
K is C∞ away from the origin;∫
|x|=1

K (x) dσ(x) = 0.

Now the map Tf := K ∗ f represents a Calderon-Zygmund
operator and hence

‖uxixj‖Lp(Rd ) .p ‖f ‖Lp(Rd ), 1 < p <∞ .
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Historical background and motivation (I): I.1. PDE

B. Constant coefficient parabolic differential operators
Model: The heat equation in Rd+1

+ = Rd × R+, d ≥ 2

∂tu −4u = f .

For t > 0 and x ∈ Rd the fundamental solution U0(x , t) is

U0(x , t) :=
1

4π
|t|−

d
2 e−

|x|2
t .

Taking f ∈ Lp(Rd+1
+ ), 1 < p <∞ and letting

u(x , t) :=

∫ t

0

∫
Rd

U0(x − y , t − s) f (y , s) dy ds ,

one has
∂tu −4u = f .
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Historical background and motivation (I): I.1. PDE

Indeed, one can check this since for kij = U0
xixj

and k ′ = U0
t

uxixj (x , t) =
∫ t

0

∫
Rd kij(x − y , t − s) f (y , s) dy ds ,

ut(x , t) = f (x , t) +

∫ t

0

∫
Rd

k ′(x − y , t − s) f (y , s) dy ds .

The kernels K := kij or K = k ′ have the following properties
K obeys an un-isotropic dilation sym, i.e. if α > 0, δα(x , t) =
(αx1, . . . , αxd , α

2t) ⇒ K (δα(x , t)) = α−d−2 K (x , t) ;
K (x , t) = 0 for t < 0;
K is C∞ away from the origin;∫
Rd K (x , 1) d x = 0;∫
Rd (1 + |x |) |K (x , 1)| d x <∞.

If Tf (x , t) := K ∗ f (x , t) we have ‖T‖p→p <∞ and hence

‖ut‖Lp(Rd+1
+ ) + ‖uxixj‖Lp(Rd+1

+ ) .p ‖f ‖Lp(Rd+1
+ ), 1 < p <∞ .
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The kernels K := kij or K = k ′ have the following properties
K obeys an un-isotropic dilation sym, i.e. if α > 0, δα(x , t) =
(αx1, . . . , αxd , α

2t) ⇒ K (δα(x , t)) = α−d−2 K (x , t) ;
K (x , t) = 0 for t < 0;
K is C∞ away from the origin;∫
Rd K (x , 1) d x = 0;∫
Rd (1 + |x |) |K (x , 1)| d x <∞.

If Tf (x , t) := K ∗ f (x , t) we have ‖T‖p→p <∞ and hence

‖ut‖Lp(Rd+1
+ ) + ‖uxixj‖Lp(Rd+1

+ ) .p ‖f ‖Lp(Rd+1
+ ), 1 < p <∞ .
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Historical background and motivation (I): I.1. PDE

C. Connections between the theme of constant
coefficient parabolic differential operators and that of
the Hilbert transform along curves.

By Plancherel the L2-boundedness of Tf (x , t) := K ∗ f (x , t)
follows from the L∞ uniform boundedness in 0 < ε < R of

K̂ε,R(ξ, η) =

∫
Rd

K (x , 1)

∫ R

ε

e iξs e ix ·ηs
1
2

s
ds dx .

Based on our hypothesis on K the uniform boundedness of
K̂ε,R(ξ, η) is essentially equivalent with the L2-bdd of HΓ

along a parabola (γ(x , y , t) = t2) since the corresponding

multiplier for HΓ is given by mHΓ
(ξ, η) =

∫
R

e−iξt e iηt
2

t dt .
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Historical background and motivation (I): I.1. PDE

The systematic study of the constant coefficient parabolic
differential operators was initiated by

F. Jones (1963); E. Fabes (1966);
E. Fabes and M. Riviere (1966).

The L2(R2)-boundedness of the Hilbert transform along
Γ = (t, tα) with α > 0 and α 6= 1 (γ(x , y , t) = tα) was
proved by Fabes (1966) via complex integration methods.
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Historical background and motivation (I):
I.2. Singular oscillatory integral operators

Departing from the uniform estimates for the parabola case,
E. Stein and S. Wainger initiated a systematic study of the
singular oscillatory integral expressions/operators.

One of their first results (1970): If {aj}nj=1 ⊂ R+ and
{bj}nj=1 ⊂ R, n ∈ N one has∣∣∣∣∫

R
e i

∑n
j=1 bj t

aj dt

t

∣∣∣∣ < K (a1, . . . , an) ,

with K independent of {bj}nj=1. This result is based on Van
der Corput estimates.

Thus, they obtained the L2(R2)−boundedness of HΓ for
Γ = (t, γ(t)) with γ(t) =

∑n
j=1 bj t

aj .
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Historical background and motivation (I):
I.2. Singular oscillatory integral operators

This result was extended along the ’70 decade in several
stages to more general functions γ(t) obeying suitable
smoothness and non-vanishing curvature conditions (Stein,
Wainger, Nagel, Riviere).

A main breakthrough was the proof of the Lp(Rd) inequalities
(1 < p 6= 2 <∞) for HΓ and later for the associated maximal
operator MΓ.
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation (I):
I.3. Zygmund’s diff. conj.; other curved models

The zero curvature case.

This topic originates in Lebesgue’s theory of integration;
Lebesgue showed that for any (locally) integrable function
over the real line and for almost every point, the value of the
integrable function is the limit of infinitesimal averages taken
about the point.

Natural question: what about similar differentiability results in
higher dimensions, say for functions on R2?

This problem is much more subtle: reason - the existence of
“pathological” objects such as Besicovitch sets.

Indeed, the geometry of the sets over which we take the
averages is critical for the well-posedness of this problem.
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In light of these challenging aspects of higher-dimensional
differentiation problem, an alternative line of inquiry is offered
by studying the problem of differentiation for averages along
(variable) one-dimensional sets (curves) in R2.

The most representative example in this context is given by
Zygmund’s conjecture, which, informally, asks about
differentiability of averages along families of lines whose
directions are described by a Lipschitz vector field.
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Historical background and motivation (I):
I.3. Zygmund’s diff. conj.; other curved models

Conjecture

(Zygmund) If u : R2 → R is a Lipschitz vector field then the
maximal operator

Mu,ε0f (x , y) := sup
0<ε<ε0

1

2ε

∫ ε

−ε
|f (x − t, y − u(x , y)t)| dt ,

is bounded on Lp(R2) for any 1 < p <∞ provided ε0 is small
enough depending on ‖u‖Lip.

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation (I):
I.3. Zygmund’s diff. conj.; other curved models

Conjecture

(Stein) If u : R2 → R is a Lipschitz vector field the Hilbert
transform

Hu,ε0f (x , y) := p.v .

∫ ε0

−ε0

f (x − t, y − u(x , y)t)
dt

t
,

is bounded on Lp(R2) for any 1 < p <∞ provided ε0 is small
enough depending on ‖u‖Lip.

A counterexample based on a construction of the
Besicovitch-Kakeya set shows that one cannot expect any Lp

bounds if u is only assumed to be Hölder continuous with some
exponent < 1.
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Bourgain (1989) proved that for every real analytic function u
there exists ε0 > 0 such that Mu,ε0 is bounded on L2 (Lp).
The analogue for Hu,ε0 was proved by Stein and Street (2012).
In between, Lp bounds were shown for both Mu,ε0 and Hu,ε0

under the assumption of extra-curvature/smoothness (Christ,
Nagel, Stein and Wainger)
A breakthrough in terms of the methods/regularity
assumptions is due to Lacey and Li (2006). They showed - up
to a conditional bound on a Kakeya type maximal operator -
that if u is C 1+ε then Hu is bounded on L2.
If u = u(x) (single variable) and measurable then Hu is Lp

bounded for p > 3
2 (Bateman and Thiele 2013); a similar

result if u is constant along a Lispchitz curve was proved by
Guo (2017).
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I.3. Zygmund’s diff. conj.; other curved models

The non-zero curvature case:
If γ(x , y , t) = x γ̃(t) with γ̃ suitable smooth & convex then
HΓ is Lp(R2)-bdd. for p > 1 (Carbery, Wainger, Wright 1995);
If γ(x , y , t) = P(x) γ̃(t) with P polynomial and γ̃ smooth and
obeying various non-vanishing curv. cond. then HΓ is L2(R2)
bdd. (Bennett, 2002; Chen and Zhu, 2012; Li and Yu, 2018);
If γ(x , y , t) = u(x) tα with u(x) only measurable and
1 6= α > 0, HΓ and MΓ are Lp(R2)-bdd. for p > 1 (Guo,
Hickman, L. and Roos, 2016);
If γ(x , y , t) = u(x) γ̃(t) with u(x) measurable and γ̃(t)
smooth obeying stringent non-vanishing curvature conditions
then HΓ is Lp(R2)-bdd. for p > 1 (Yu and Li, 2018)
The same type result for more general curves γ̃(t) (L., 2016,
unpublished note)
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Historical background and motivation (I):
I.3. Zygmund’s diff. conj.; other curved models

The non-zero curvature case:

If γ(x , y , t) = u(x , y) tα with α > 0, α 6= 1 one has

If one assumes supplementary regularity in x , y (convexity and
doubling hypothesis uniformly in (x , y)) then MΓ, HΓ are
Lp(R2)-bounded for p > 1 (Seeger and Wainger, 2003).
If u measurable then MΓ is Lp(R2)−bounded for p > 2
(Marletta and Ricci, 1998);
If u is Lipschitz then the above holds for 1 < p ≤ 2 (Guo,
Hickman, L. and Roos, 2016);
Same paper, u is Lipschitz then HΓ ◦ P2

k is bounded on Lp;
Using the annulus estimate above and a square function
argument, Di Plinio, Guo, Thiele and Zorin-Kranich, (2017)
completed the global result for HΓ.
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Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation (II):
II.1. Maximal singular oscillatory integral operators

(1913) Luzin conjectures that if f is square integrable then its
Fourier series converges to f almost everywhere.

(1922) Kolmogorov constructs an example of an L1 function
whose Fourier series diverges a.e. suggesting that Luzin’s
conjecture may be false.

(1966) L. Carleson provides the positive answer to this
conjecture, setting the foundation of time-frequency analysis.

Carleson’s proof relied on/equivalent with the L2 boundedness
of the Carleson operator.

R. Hunt (1969) further proved that C : Lp(R) → Lp(R) for
1 < p <∞ while Sjölin (1971) extend this result to higher
dimensions.

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation (II):
II.1. Maximal singular oscillatory integral operators

(1913) Luzin conjectures that if f is square integrable then its
Fourier series converges to f almost everywhere.

(1922) Kolmogorov constructs an example of an L1 function
whose Fourier series diverges a.e. suggesting that Luzin’s
conjecture may be false.

(1966) L. Carleson provides the positive answer to this
conjecture, setting the foundation of time-frequency analysis.

Carleson’s proof relied on/equivalent with the L2 boundedness
of the Carleson operator.

R. Hunt (1969) further proved that C : Lp(R) → Lp(R) for
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Historical background and motivation (II):
II.1. Maximal singular oscillatory integral operators

Motivated by the study of singular integral on the Heisenberg
group as well as on the previously discussed work with Wainger on
the Hilbert transform along curves, E. Stein proposed the following
generalization of Carleson’s result:

Conjecture

(Stein, 1995) Let 1
2d ,n

be the class of all real-coefficient
polynomials in d variables with no constant term and of degree less
than or equal to n, and let K be a suitable CZ kernel on Rd . Then
the Polynomial Carleson operator defined as

Cd ,nf (x) := sup
Q∈ 1

2 d,n

∣∣∣∣ ∫
Rd

e i Q(y) K (y) f (x − y) dy

∣∣∣∣ ,
obeys, for any 1 < p <∞, the bound

‖Cd ,nf ‖Lp(Rd ) . ‖f ‖Lp(Rd ) .
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation (II):
II.1. Maximal singular oscillatory integral operators

In 2001, relying on Van der Corput estimates and TT ∗

method, Stein and Wainger verified the above conjecture for
the case when the supremum in the above expression ranges
only through polynomials having no linear term. Notice thus
that this result does not extend Carleson’s Theorem.

In 2009 (L., PhD thesis) we solved this conjecture in the case
d = 1, n = 2, p = 2.

In 2011 we completely solved the one dimensional case.

In November 2017, based on our methods, Zorin-Kranich
proved the higher dimensional case for p ≥ 2 and more
general CZ kernels (not necessarily translation invariant).

In December 2017 we provided the full range of p for the
original class (tran. inv.) of CZ kernels and one month later
Zorin-Kranich completed his argument for 1 < p < 2.
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A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation (II):
II.2. Connection with the Hilbert transform along curves

Take γ(x , t) :=
∑n

j=1 aj(x) t j with aj(·) being measurable

functions. Take as usual Γx = (t, −γ(x , t)) on R2 and

HΓf (x , y) := p.v .

∫
R
f (x − t, y + γ(x , t))

dt

t
.

Now the L2−boundedness of HΓ is equivalent via Parseval∫
R2

∣∣∣∣∣
∫
R
f (x − t, η)

e i η γ(x ,t)

t
dt

∣∣∣∣∣
2

dx dη . ‖f (x , η)‖2
L2(R2) .

Conclude that the L2−boundedness of HΓ implies (and is in
fact equivalent) with the L2 boundedness of the (Polynomial)
Carleson operator in 1D.
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Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Historical background and motivation: III.1. Bilinear
Hilbert transform and maximal operators along curves

The original formulation of this third theme, as with those of
the previous two, was cast in terms of a single variable
dependence, i.e. for curves γ(x , t) ≡ γ(t).
General Problem Let Γ := (t,−γ(t)) be a plane curve with γ
a suitable (piecewise) smooth real function. Goal: Understand
the conditions on the curve Γ under which one has that

the bilinear Hilbert transform along the curve Γ

HBΓ (f , g)(x) := p.v.

∫
R
f (x − t) g(x + γ(t))

dt

t
,

the (sub)bilinear maximal operator along the curve Γ

MBΓ (f , g)(x) := sup
ε>0

1

2ε

∫ ε

−ε
|f (x − t) g(x + γ(t))| dt ,

each map Lp(R)× Lq(R) → Lp(R) boundedly for some
p, q, r ≥ 1 with 1

p + 1
q = 1

r .
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The original formulation of this third theme, as with those of
the previous two, was cast in terms of a single variable
dependence, i.e. for curves γ(x , t) ≡ γ(t).

The zero-curvature/flat case: γ(t) = a t with a ∈ R \ {−1, 0}.
This theme arose in the study of the Cauchy transform along
Lipschitz curves. Indeed, this study led Calderón to conjecture
the Lp × Lq → Lr boundedness of the Bilinear Hilbert
transform (BHT) HBΓa

with γ(t) = a t and a ∈ R \ {−1, 0} for

Hölder exponents 1
p + 1

q, = 1
r with p, q, r ≥ 1.
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Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Bilinear Hilbert transform - flat case

Definition. For α ∈ R and f , g ∈ S(R) set the BHT

Hα(f , g)(x) := p.v .

∫
R
f (x − t) g(x − α t)

dt

t
.

Origin. The BHT arose from the study of the Cauchy integral
(Hilbert transform) on Lipschitz curves - research initiated by
A. Calderon.
Let γ(x) = x + i A(x) curve in C with A′ = a ∈ L∞(R). The
Hilbert transform on γ is given by

Hγf (x) := p.v .

∫
R

f (y) (1 + i a(y))

x − y + i (A(x)− A(y))
dy .

Theorem. (Calderon (1977)/ Coifman, McIntosh, Meyer (1982))

Hγ is bounded on L2(R) to itself.
Victor Lie A unified approach to three themes in harmonic analysis
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Hα(f , g)(x) := p.v .

∫
R
f (x − t) g(x − α t)

dt

t
.

Origin. The BHT arose from the study of the Cauchy integral
(Hilbert transform) on Lipschitz curves - research initiated by
A. Calderon.
Let γ(x) = x + i A(x) curve in C with A′ = a ∈ L∞(R). The
Hilbert transform on γ is given by

Hγf (x) := p.v .

∫
R

f (y) (1 + i a(y))

x − y + i (A(x)− A(y))
dy .

Theorem. (Calderon (1977)/ Coifman, McIntosh, Meyer (1982))

Hγ is bounded on L2(R) to itself.
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Bilinear Hilbert transform - flat case

Use Taylor series

1

x − y + i(A(x)− A(y))
=

1

x − y

∞∑
k=0

(−i)k
(
A(x)− A(y)

x − y

)k

Naturally led to the study

Ck f (x) = p.v .

∫
R

(A(x)− A(y))k

(x − y)k+1
f (y) dy , k ∈ N

C0 Hilbert transform; C1 - Calderon’s first commutator:

C1f (x) =

∫ ∫ 1

0
a(x + α(y − x))

1

x − y
f (y) dα dy

=

∫ ∫ 1

0
a(x − αy) f (x − y)

1

y
dα dy =

∫ 1

0
Hα(f , a)(x) dα .
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Bilinear Hilbert transform - flat case

Thoerem (Lacey-Thiele (1997,1999)). For α /∈ {0, 1} the
BHT obeys

‖Hα(f , g)‖r ≤ C‖f ‖p ‖g‖q ,
with 1

r = 1
p + 1

q , 2
3 < r <∞ and 1 < p, q ≤ ∞.

Facts. The BHT has the following symmetries

Hα(Ty f ,Tyg) = TyHα(f , g) , Hα(Dλf ,Dλg) = DλHα(f , g)

Hα(Mαaf ,M−ag) = M(α−1)aHα(f , g)

Consequences. The extra modulation symmetry suggests the
use of the wave-packet theory.

Hα(f , g)(x) =

∫ ∫
sgn(ξ + αη) f̂ (ξ) ĝ(η) e i (η+ξ) x dξ dη .
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Bilinear Hilbert transform - nonflat case

By analogy with the study of the boundedness properties of
the Hilbert transform along curves (initiated by Jones/Fabes
and Riviere) one can ask the following

Problem. For what class of curves Γ = (t, γ(t)) ⊂ R2 can
one provide bounds for the BHT along Γ defined by

HΓ(f , g)(x) := p.v.

∫
R
f (x − t)g(x − γ(t))

dt

t
?

Theorem (X. Li, 2008). If Γ = (t, td) with d ∈ N, d ≥ 2 then

HΓ : L2(R)× L2(R) 7→ L1(R) , .

His proof uses a “half” discretization of the symbol of HΓ and
further relies essentially on the σ−uniformity concept inspired
by the work of Gowers.
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Bilinear Hilbert transform - nonflat case

Theorem (L.,2011,2015). If γ is a smooth “non-flat” curve

near zero and infinity then HΓ : Lp(R)× Lq(R) 7→ L(rR) .
with 1

p + 1
q = 1

r .

Observation. The class of curves contains

the real polynomial with no constant and no linear term;

the class of real analytic function near 0 (and ∞) such that
γ(0) = γ′(0) = 0 (γ(∞) = γ′(∞) = 0);

finite lin. combin. of |t|α (log |t|)β with α, β ∈ R, α 6∈ {0, 1};
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The Hilbert transform and maximal operator along variable curves

Bilinear Hilbert transform - nonflat case

About the proof.

Does not involve the notion of σ−uniformity used by Li in the
monomial case;

This discretization realizes the fragile equilibrium between the
two possible extremes:

cut too rough the multiplier ⇒ can not take advantage of the
cancelation offered by the phase

cut too fine ⇒ delicate number theoretical problems involving
Van der Corput lemma and Weyl type sums
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Recall our goal

Main Problem

(General Formulation) Let Γ(x ,y) = (t, γ(x , y , t)) be a variable
curve in the plane, where here t ∈ R and (x , y) ∈ R2 while

γ(x ,y)(·) := γ(x , y , ·) : R → R

is a “suitable” real function. Under what conditions on the curve
Γ(x ,y) - [main target: minimal regularity in x and y] - do we have
that the three groups of operators satisfy the natural boundedness
range?

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Recall our goal

Main Problem

(General Formulation) Let Γ(x ,y) = (t, γ(x , y , t)) be a variable
curve in the plane, where here t ∈ R and (x , y) ∈ R2 while

γ(x ,y)(·) := γ(x , y , ·) : R → R

is a “suitable” real function. Under what conditions on the curve
Γ(x ,y) - [main target: minimal regularity in x and y] - do we have
that the three groups of operators satisfy the natural boundedness
range?

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Recall our goal

Main Problem

(General Formulation) Let Γ(x ,y) = (t, γ(x , y , t)) be a variable
curve in the plane, where here t ∈ R and (x , y) ∈ R2 while

γ(x ,y)(·) := γ(x , y , ·) : R → R

is a “suitable” real function. Under what conditions on the curve
Γ(x ,y) - [main target: minimal regularity in x and y] - do we have
that the three groups of operators satisfy the natural boundedness
range?

Victor Lie A unified approach to three themes in harmonic analysis



Formulation of the problem
A fundamental dichotomy: curvature versus modulation invariance symmetry

Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

In our present study we will focus on the twisted
mutivariable-case γ(x , y , t) = γ(x , t) with
minimal regularity in the variable x : for every t ∈ R the
function γ(·, t) is only measurable;
“non-flatness” and low degree smoothness (minimal - C 2

(piecewise)) in the variable t for a.e. x ∈ R .
Motivation/interest
develop an extensive study that provides a unitary and sharp
method of treating simultaneously both the Hilbert transform
and the maximal operator along curves - as opposed to the
disparate previous ad-hoc techniques
implement an approach that introduces time-frequency
analysis/wave-packet analysis
gather under the same umbrella several themes in harmonic
analysis: maximal singular integral operators in the spirit of
Stein-Wainger, Carleson type-operators, Hilbert
transform/maximal operators along curves
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Historical background and motivation; interrelations
The Hilbert transform and maximal operator along variable curves

Theorem (L.,2019)

Let γ(x , t) : R2 → R be such

γ(·, t) is measurable for every t ∈ R;

γ(x , ·) is “non-flat” in the variable t for a.e. x ∈ R and
piecewise C 2-smooth;

γ satisfy suitable nondegeneracy condition.

Then, for any 1 < p <∞, one has

‖HΓf ‖p, ‖MΓf ‖p, ‖Cγf ‖p .p ‖f ‖p .
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The Hilbert transform and maximal operator along variable curves

Observation

Examples of γ(x , t) for which our results hold:

γ(x , t) = a(x) γ(t) with a(·) real measurable and
γ(·) ∈ C 2(R \ {0}) ”non-doubling and uniformly locally
convex away from the origin”;
(e.g. γ(t) =

∑d
j=1 cj t

αj with d ∈ N, cj ∈ R and
αj ∈ R \ {−1, 1} and even linear combinations of terms of the
form |t|α | log |t||β with α, β ∈ R and α /∈ {−1, 0, 1}).

γ(x , t) =
∑d

j=2 aj(x) t j where here d ∈ N with d ≥ 2 and
{aj}j real measurable functions.

More generally, γ(x , t) =
∑d

j=1 aj(x) tαj with
αj ∈ R \ {−1, 1} and {aj}j as before.

Even large classes of rational functions with measurable
coefficients.
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Corollary (L.,2019)

Let ~α := (αj)
n
j=1 with {αj}nj=1 ⊂ R \ {−1, 1} (distinct) and set

1

2 ~α
:= {

n∑
j=1

bj y
αj | {bj}nj=1 ⊂ R} .

Then the Generalized Polynomial type Carleson operator defined as

C~αf (x) := sup
Q∈ 1

2 ~α

∣∣∣∣ ∫
R
e i Q(y) f (x − y)

dy

y

∣∣∣∣ ,
obeys for 1 < p <∞ the bound

‖C~αf ‖Lp(R) .~α,p ‖f ‖Lp(R) .

In particular, this extends Stein-Wainger result on the Polynomial
Carleson-type operator with the supremum ranging only through
polynomials of degree ≤ n and having no constant and linear term.
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Multiplier analysis

If regarded from the Fourier side, HΓ takes the form

HΓf (x , y) =

∫
R2

e iξx+iηy f̂ (ξ, η)m(ξ, η, x)d(ξ, η),

where the multiplier is given by

m(x , ξ, η) = p.v .

∫
R
e−iξt+iηγx (t) dt

t
.

If ρ smooth, compactly supported function, we decompose

1

t
=
∑
j∈Z

2jρ(2j t) .

We end the first stage decomposition of m, by writing

m =
∑
j∈Z

mj ,

mj(x , ξ, η) =

∫
R
e−iξ2−j t+iηγx (2−j t)ρ(t)dt .
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Multiplier analysis

Since we are dealing with a highly oscillatory integrand, it is
natural to expect an analysis of the phase according to the
principle of non/ stationary phase (PDE - “resonance
method”).

If we set the phase function

ϕγ,x ,ξ,η(t) := − ξ
2j

t + η γx(
t

2j
) ,

d

dt
ϕγ,x ,ξ,η(t) := − ξ

2j
+ η 2−j γ′x(

t

2j
) .

At the heuristic level, based on the properties of γ

d

dt
ϕγ,x ,ξ,η(t) ≈ −ξ 2−j + η 2−j γ′x(2−j) .
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Multiplier analysis

It becomes natural to apply a further decomposition relative
to the size of the terms involved in the phase derivative:

1 =
∑

m,n∈Z
φ(
ξ 2−j

2m
)φ(

η 2−j γ′x(2−j)

2n
) ,

with φ ∈ C∞0 (R), supp {1
2 ≤ |ξ| ≤ 2} and

∑
k∈Z φ(ξ/2k) = 1.

With these done, we write

mj ,n,m(x , ξ, η) := mj(x , ξ, η)φ(
ξ 2−j

2m
)φ(

η 2−j γ′x(2−j)

2n
) ,

Deduce
mj(x , ξ, η) :=

∑
m,n∈Z

mj ,m,n(x , ξ, η) .
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Multiplier analysis

We split our multiplier’s analysis in three regions:
(I) the low frequency case - no oscillation present:

mL
j =

∑
(m,n)∈(Z−)2

mj,m,n ;

(II) the high frequency far from diagonal case - no stationary
points present:

mHF∆
j =

∑
(m,n)∈Z2\((Z−)2∪∆)

mj,m,n ;

(III) the high frequency diagonal case - stationary points
present:

mH∆
j =

∑
(m,n)∈∆

mj,m,n ,

where here ∆ = {(n,m) ∈ Z2 : n,m ≥ 0, |n −m| ≤ C (γ)},
C (γ) > 1 a large constant depending only on γ.
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Proof’s philosophy - a sketch

(I) The low frequency case can be treated globally in the j th

parameter. Is the only case in which one sees the distinction
between the maximal operator and the Hilbert transform.

One gets |ML
Γ (f )| .γ M1M2f and respectively

|HL
Γ (f )| .γ

(∑
k∈Z |M1(f ∗y φ̌k)|2

) 1
2 .

(II) The high frequency far from diagonal case appeals to the
fact we have no stationary points at the phase of the
corresponding multiplier and hence one can first integrate by
parts and then apply a square function argument combined
with vector-valued Calderon-Zygmund theory.

(III) The high frequency diagonal case is of course the main
term and its treatment the most difficult part of our proof.
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Proof’s philosophy - a sketch

Set now

Hj ,m(f )(x , y) :=

∫
R2

f̂ (ξ, η)mj ,m,m(x , ξ, η) e iξx e iηy dξdη .

Then, the main terms for our operators are in this instance

Hmainf :=
∑
j∈Z

∑
m∈N

Hj ,mf

Mmainf := sup
j∈Z
|
∑
m∈N

Hj ,mf | ≤
∑
m∈N

sup
j∈Z
|Hj ,mf | .

An important observation is the following

‖Hmainf ‖p, ‖Mmainf ‖p .p

∑
m∈N
‖(
∑
j∈Z
|Hj ,m(f )|2)

1
2 ‖p .
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Proof’s philosophy - a model
The main L2−estimate

Theorem

With the above notations, ∃ cγ > 0 such that:∥∥∥∥∥∥(
∑
j∈Z
|Hj ,m(f )|2)

1
2

∥∥∥∥∥∥
L2(R2)

.γ 2−mcγ ‖f ‖L2(R2) .

This decay result is sharp.

The proof of this result is based on time-frequency analysis and
involves among others Gabor frame decompositions, TT ∗ method,
(non-)stationary phase principle.
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Proof’s philosophy - a model
The Lp−estimate

Theorem

For any 1 < p <∞ the following holds:∥∥∥∥∥∥(
∑
j∈Z
|Hj ,m(f )|2)

1
2

∥∥∥∥∥∥
Lp(R2)

.γ,p m10 ‖f ‖Lp(R2) .

The proof of this result is based on shifted maximal
operators/square function techniques.
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Open problems

Is there any interesting interpretation that one can provide for
our results in terms of parabolic differential
operators...variable coefficients?

Extend these results such that the curvature in t is not
required; this will treat in a unitary fashion both Stein-Wainger
type results and Polynomial Carleson operators in the L2-case.

What about the more general case of curves of the form
γ(x , y , t) assuming no more than Lipschitz regularity in (x , y)?
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THANK YOU!
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The H-L maximal function and TT ∗−method.

Let us give a direct proof of the L2 bounds

‖Mf ‖L2(Rd ) .d ‖f ‖L2(Rd ) .

By restricting f to positive step functions we have that

r → Mr f (x) =
1

|B(x , r)|

∫
B(x ,r)

f continuous .

Notice that by continuity Mf = supr∈QMr f ; enough to
restrict the sup to a finite collection R of r ′s and prove that
our strong L2 bounds are independent of R and f .

Let D denote the best constant (we know is finite) of

‖ sup
r∈R

Mr f ‖L2 . D ‖f ‖L2 .
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our strong L2 bounds are independent of R and f .

Let D denote the best constant (we know is finite) of

‖ sup
r∈R

Mr f ‖L2 . D ‖f ‖L2 .
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Linearize our operator so that

Mf (x) = Mr f (x) = Mr(x)f (x) with r(·) measurable ,

and hence
D = sup

r meas
r∈R

‖Mr‖L2(Rd )→ L2(Rd ) .

Proposition(Exercise) If T : H → X continuous from a
Hilbert space to a normed vector space and T ∗ : X ∗ → H∗ its
adjoint then

‖T‖H→X = ‖T ∗‖X∗→H = ‖T T ∗‖
1
2
X∗→X .

Thus D2 = supr ‖Mr M
∗
r ‖L2→L2 .
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The H-L maximal function and TT ∗−method.

We now have

Mr f (x) :=

∫
Rd

1

|B(x , r(x))|
χ|x−y |≤r(x)(y) f (y) dy ,

M∗r f (x) :=

∫
Rd

1

|B(y , r(y)|)
χ|x−y |≤r(y)(x) f (y) dy , .

Thus, applying T T ∗ we have

Mr M
∗
r f (x) =∫

Rd×Rd

1

|B(x , r(x))| |B(y , r(y))|
χ|y ′−y |≤r(y)(y ′)χ|x−y ′|≤r(x)(y ′) f (y) dy dy ′.

Now the key observation: Fubini - the integral in y ′ is easy!
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Thus we reduce our problem to

Mr M
∗
r f (x) .d

∫
Rd

χ|x−y |≤r(x)+r(y)(y)
1

max{r(x)d , r(y)d}
f (y) dy

Further, splitting our integral we deduce

Mr M
∗
r f (x) .d

∫
Rd

χ|x−y |≤2 r(x)
1

r(x)d
f (y) dy

+

∫
Rd

χ|x−y |≤2 r(y)
1

r(y)d
f (y) dy

Deduce that

Mr M
∗
r f (x) .d M2r f (x) + M∗2r f (x)

hence D2 .d D ⇒ D .d 1 .
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The main problem

A fundamental and difficult question in the theory of trigonometric
series is what happens between the two extreme situations:

p = 1 divergence of the Fourier series for functions in L1

(Kolmogorov);

p > 1 convergence of the Fourier series for functions in Lp

(Carleson-Hunt).
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Main question

Question (A-Qualitative)

What is the largest rearrangement invariant Banach space of
functions Y ⊆ L1(T) for which the partial Fourier sums
Sn(f )(x) :=

∑n
k=−n f̂ (k) e i k x converge to f (x) almost everywhere

x ∈ T for any f ∈ Y ?

Definition

We say that a r.i. (quasi-) Banach space Y is a C − space iff
∃ C0 = C0(Y ) > 0 such that ‖Cf ‖1,∞ ≤ C0 ‖f ‖Y ∀ f ∈ Y .

Question (A-Quantitative)

Give a satisfactory description of the Lorentz spaces or ( r.i.
(quasi-)Banach spaces Y (Y ⊆ L1(T)) that are also C−spaces.
If it exists, describe the maximal Lorentz C−space Y0.
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Positive results

Let φ : R+ → R+ be a non decreasing convex function with
φ(0) = 0 and φ(∞) =∞.
Denote with φ(L) := {f ∈ L(T) |

∫
T φ(|f (x)|) dx <∞} .

For the following functions φ, φ(L) is a Lorentz C−space:

(Sjölin, 1969) φ(x) = x log2(10 + x) .

(Sjölin, 1969) φ(x) = x log(10 + x) log log(10 + x) .

(Antonov, 1996) φ(x) = x log(10 + x) log log log(10 + x) .

Also in terms of r.i. quasi-Banach C−spaces:

(F. Soria, 1985,1989) ‖Cf ‖1,∞ . ‖f ‖B .
(Arias de Reyna, 2002) ‖Cf ‖1,∞ . ‖f ‖QA .
L(log L)2 ( L log L log log L ( B, L log L log log log L
( QA ( L log L .

All results are based on extrapolation theory.
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(Sjölin, 1969) φ(x) = x log2(10 + x) .
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Negative results

If φ as below, then φ(L) is not a Lorentz C−space:

(Kolomogorov, 1922) φ(u) = u.

(Korner, 1981) φ(u) = o(u log log u) as u 7→ ∞.

(Konyagin, 2000) φ(u) = o(u
√

log u
log log u ) as u 7→ ∞.
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