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I will review recent progress for Carleson’s question for the
Schrödinger equation i∂tu + ∆u = 0 with initial data u0 in the
Sobolev space Hs(Rn). That is, for which s can we be sure that
u(x , t)→ u0(x) as t → 0 for almost every x ∈ Rn. First I will
present examples, due to Bourgain, Lucà and myself, which show
that s ≥ 1

2 −
1

2(n+1) is necessary. We will see that spread out
interference-type behaviour becomes a problem when n ≥ 2. I will
then present maximal estimates, due to Du, Guth, Li and Zhang,
which show that s > 1

2 −
1

2(n+1) is sufficient. Loosely speaking,
these are a consequence of Strichartz-type estimates that improve
for spread out solutions. We will also consider the fractal dimension
version of the problem and the analogous questions for other PDE.
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Part 0:

Basic properties of the Fourier
transform



For Schwartz functions f : Rn → C and g : Rn → C, we write

f̂ (ξ) :=
1

(2π)n/2

ˆ
Rn

e−ix ·ξ f (x) dx , g∨(x) :=
1

(2π)n/2

ˆ
Rn

e ix ·ξ g(ξ) dξ,

so that
f =

(
f̂
)∨
, (Inversion formula)

∆̂f (ξ) = −|ξ|2f̂ (ξ), where ∆ :=
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

,

(
f̂ ĝ
)∨

(x) = f ∗ g(x) :=

ˆ
Rn

f (x − y) g(y) dy ,

ˆ
Rn

f (x) g(x) dx =

ˆ
Rn

f̂ (ξ) ĝ(ξ) dξ, (Plancherel)

and

‖f ‖L2 :=
( ˆ

Rn

|f (x)|2 dx
)1/2

=
(ˆ

Rn

|f̂ (ξ)|2 dξ
)1/2

= ‖f̂ ‖L2 .



For Schwartz functions f : Rn → C and g : Rn → C, we write

f̂ (ξ) :=
1

(2π)n/2

ˆ
Rn

e−ix ·ξ f (x) dx , g∨(x) :=
1

(2π)n/2

ˆ
Rn

e ix ·ξ g(ξ) dξ,

so that
f =

(
f̂
)∨
, (Inversion formula)

∆̂f (ξ) = −|ξ|2f̂ (ξ), we write ϕ(∆)f :=
(
ϕ(−| · |2)f̂

)∨
,

(
f̂ ĝ
)∨

(x) = f ∗ g(x) :=

ˆ
Rn

f (x − y) g(y) dy ,

ˆ
Rn

f (x) g(x) dx =

ˆ
Rn

f̂ (ξ) ĝ(ξ) dξ, (Plancherel)

and

‖f ‖L2 :=
( ˆ

Rn

|f (x)|2 dx
)1/2

=
(ˆ

Rn

|f̂ (ξ)|2 dξ
)1/2

= ‖f̂ ‖L2 .



Part 1:

PDEs to ODEs using the
Fourier transform



The heat equation

{
∂tu = ∆u in Rn × (0,∞)

u(·, 0) = u0 in Rn.

Taking the Fourier transform of the equation we obtain{
∂t û(ξ, t) = −|ξ|2û(ξ, t)
û(ξ, 0) = û0(ξ).

Solving the ODE (with fixed ξ) this yields

û(ξ, t) = e−t|ξ|
2
û0(ξ) .

Inverting the Fourier transform, we write

u(x , t) = et∆u0(x) :=
(
e−t|·|

2
û0

)∨
.



The heat equation

{
∂tu = ∆u in Rn × (0,∞)

u(·, 0) = u0 in Rn.

Taking the Fourier transform of the equation we obtain{
∂t û(ξ, t) = −|ξ|2û(ξ, t)
û(ξ, 0) = û0(ξ).

Solving the ODE (with fixed ξ) this yields

û(ξ, t) = e−t|ξ|
2
û0(ξ) .

Inverting the Fourier transform, we write

u(x , t) = et∆u0(x) :=
1

(2π)n/2

ˆ
Rn

e ix ·ξe−t|ξ|
2
û0(ξ) dξ .



The Schrödinger equation

{
∂tu = i∆u in Rn × R

u(·, 0) = u0 in Rn.

Taking the Fourier transform of the equation we obtain{
∂t û(ξ) = −i |ξ|2û(ξ, t)
û(ξ, 0) = û0(ξ).

Solving the ODE this yields

û(ξ, t) = e−it|ξ|
2
û0(ξ) .

Inverting the Fourier transform, we write

u(x , t) = e it∆u0(x) :=
1

(2π)n/2

ˆ
Rn

e ix ·ξe−it|ξ|
2
û0(ξ) dξ .



The wave equation
∂ttu = ∆u in Rn × R

u(·, 0) = u0 in Rn

∂tu(·, 0) = u1 in Rn.

Taking the Fourier transform of the equation we obtain
∂tt û(ξ, t) = −|ξ|2û(ξ, t)

û(ξ, 0) = û0(ξ)
∂t û(ξ, 0) = û1(ξ).

Solving the ODE this yields

û(ξ, t) = cos(t|ξ|)û0(ξ) + sin(t|ξ|)
|ξ| û1(ξ) .

Inverting the Fourier transform, we write

u(·, t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√
−∆

u1.



The initial data

The Bessel potential Gs is defined via its Fourier transform by

Ĝs(ξ) := (1 + | · |2)−s/2

and satisfies
Gs(x) ≤ cn,s |x |−(n−s).

We take the initial data u0 in the Bessel potential space

Hs(Rn) :=
{
Gs ∗ g : g ∈ L2(Rn)

}
with norm

‖f ‖Hs =

(ˆ
Rn

(1 + |ξ|2)s |f̂ (ξ)|2 dξ
)1/2

= ‖g‖L2 .



Lemma (Pointwise convergence for smooth data)

Let f ∈ Hs(Rn) with s > n/2. Then

lim
t→0

et∆f (x) = f (x) for all x ∈ Rn.

Proof: Taking s < n/2 + 2,

(2π)n/2|et∆f (x)− f (x)| =

∣∣∣∣∣
ˆ

f̂ (ξ)|ξ|s e
ix ·ξ(e−t|ξ|

2 − 1)

|ξ|s
dξ

∣∣∣∣∣
≤
(ˆ
|f̂ (ξ)|2|ξ|2sdξ

)1/2(ˆ |e−t|ξ|2 − 1|2

|ξ|2s
dξ
)1/2

≤ t
s−n/2

2 ‖f ‖Hs

( ˆ |e−|y |2 − 1|2

|y |2s
dy
)1/2

= t
s−n/2

2 ‖f ‖Hs

( ˆ min{|y |2, 1}2

|y |2s
dy
)1/2

≤ Cst
s−n/2

2 ‖f ‖Hs .

A similar calculation works for the Schrödinger equation. �



Hausdorff measure

For A ⊆ Rn a Borel set,

Hαδ (A) := inf
{∑

i

δαi : A ⊂
⋃
i

B(xi , δi ), δi < δ
}
.

Definition

The α-Hausdorff measure of A is

Hα(A) := lim
δ→0
Hαδ (A).



Hausdorff dimension

Remark

There exists a unique α0 ∈ [0, n] such that

Hα(A) =

{
∞ if α < α0

0 if α > α0.

Definition

α0 is the Hausdorff dimension of the set A:

dim(A) := α0.



Definition (Frostman measures)

We say a positive Borel measure µ with supp(µ) ⊂ B(0, 1) is
α-dimensional if

cα(µ) := sup
x∈Rn

r>0

µ(B(x , r))

rα
<∞.

Eα′(µ) :=

ˆ ˆ
dµ(x)dµ(y)

|x − y |α′
=

ˆ ∞∑
j=−1

ˆ
|x−y |∼2−j

dµ(x)

|x − y |α′
dµ(y)

≤
ˆ ∞∑

j=−1

cα(µ)2−jα2jα
′
dµ(y)

. c2
α(µ) <∞ if α > α′.

Lemma (Frostman)

Let A ⊂ Rn be a Borel set. The following are equivalent:

I Hα(A) = 0;

I µ(A) = 0 for all α-dimensional µ.



Definition (Frostman measures)

A positive Borel measure µ with supp(µ) ⊂ B(0, 1) is
α-dimensional if

cα(µ) := sup
x∈Rn

r>0

µ(B(x , r))

rα
<∞.

Eα′(µ) :=

ˆ ˆ
dµ(x)dµ(y)

|x − y |α′
=

ˆ ∞∑
j=−1

ˆ
|x−y |∼2−j

dµ(x)

|x − y |α′
dµ(y)

≤
ˆ ∞∑

j=−1

cα(µ)2−jα2jα
′
dµ(y)

. c2
α(µ) <∞ if α > α′.

Lemma (Frostman) µ(A) ≤
∑

i µ(B(xi , δi) ≤ cα(µ)
∑

i δ
α
i )

Let A ⊂ Rn be a Borel set. The following are equivalent:

I Hα(A) = 0;

I µ(A) = 0 for all α-dimensional µ.



Control of singularities

Lemma

Let 0 < s < n/2 and α > n − 2s. Then, for all α-dimensional µ,

‖f ‖L1(dµ) . cα(µ)‖f ‖Hs .

Thus if f ∈ Hs(Rn), then

µ
{
x ∈ Rn : f (x) =∞

}
= 0 ∀ α-dimensional µ

whenever α > n − 2s, so that by Frostman’s lemma,

Hα
{
x ∈ Rn : f (x) =∞

}
= 0,

whenever α > n − 2s, so that

dim
{
x ∈ Rn : f (x) =∞

}
≤ n − 2s.



Control of singularities

Lemma

Let 0 < s < n/2 and α > n − 2s. Then, for all α-dimensional µ,

‖f ‖L1(dµ) . cα(µ)‖f ‖Hs .

Proof: Writing f = Gs ∗ g =
(
(1 + | · |2)−s/2ĝ

)∨
, it suffices to

prove

‖Gs ∗ g‖L1(dµ) .
√
En−2s(µ) ‖g‖L2(Rn).

By Fubini’s theorem and the Cauchy-Schwarz inequality,

‖Gs ∗ g‖L1(dµ) ≤
ˆ ˆ

Gs(x − y) dµ(x) |g(y)| dy

≤ ‖Gs ∗ µ‖L2(Rn)‖g‖L2(Rn).

Thus it remains to prove that

‖Gs ∗ µ‖2
L2(Rn) . En−2s(µ).



We are required to prove that

‖Gs ∗ µ‖2
L2(Rn) . En−2s(µ).

By two applications of Plancherel’s theorem,

‖Gs ∗ µ‖2
L2(Rn) =

∥∥(1 + | · |2)−s/2µ̂
∥∥2

L2(Rn)

=

ˆ
µ̂(ξ) (1 + |ξ|2)−s µ̂(ξ) dξ

≤
ˆ
µ ∗ G2s(y) dµ(y)

≤ cn,s

ˆ ˆ
dµ(x)dµ(y)

|x − y |n−2s
= cn,sEn−2s(µ),

where we used that
(
(1 + | · |2)−s

)∨
= G2s ≤ cn,s | · |−(n−2s). �



Optimality of the control of singularities lemma

If dim(A) = α with α < n − 2s, then we can take a γ such that

α < γ < n − 2s.

Then
1B(0,1)dist(·,A)−γ ∈ L2(Rn)

but on the other hand

u0 := Gs ∗
[
1B(0,1)dist(·,A)−γ

]
=∞ on A.

So there is initial data u0 ∈ Hs(Rn) which is singular on a set of
dimension α < n − 2s.



Proposition (Maximal estimates imply convergence)

Let α > α0 ≥ n − 2s. Suppose that, for all α-dimensional µ,∥∥∥ sup
0<t<1

|u(·, t)|
∥∥∥
L1(dµ)

≤ Cµ‖u0‖Hs .

Then, for all u0 ∈ Hs ,

dim
{
x ∈ Rn lim

t→0
u(t, x) 6= u0(x)

}
≤ α0.

Proof: We are required to prove that for all α > α0,

Hα
{
x ∈ Rn lim

t→0
u(t, x) 6= u0(x)

}
= 0

whenever u0 ∈ Hs . By Frostman’s lemma, this follows by showing

µ
{
x ∈ Rn lim

t→0
u(t, x) 6= u0(x)

}
= 0

whenever µ is α-dimensional.



Proposition (Maximal estimates imply convergence)

Let α > α0 ≥ n − 2s. Suppose that, for all α-dimensional µ,∥∥∥ sup
0<t<1

|u(·, t)|
∥∥∥
L1(dµ)

≤ Cµ‖u0‖Hs .

Then, for all u0 ∈ Hs ,

dim
{
x ∈ Rn lim

t→0
u(t, x) 6= u0(x)

}
≤ α0.

Proof: We are required to prove that for all α > α0,

Hα
{
x ∈ Rn lim

t→0
u(t, x) 6= u0(x)

}
= 0

whenever u0 ∈ Hs . By Frostman’s lemma, this follows by showing

µ
{
x ∈ Rn lim

t→0
|u(t, x)− u0(x)| > λ

}
= 0, ∀ λ > 0,

whenever µ is α-dimensional.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }

≤ µ{ x : lim sup
t→0

|u(x , t)− uh(x , t)| > λ/3 }

+ µ{ x : lim sup
t→0

|uh(x , t)− h(x)| > λ/3 }

+ µ{ x : lim sup
t→0

|h(x)− u0(x)| > λ/3 }.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }

≤ µ{ x : lim sup
t→0

|uu0−h(x , t)| > λ/3 }

+ µ{ x : lim sup
t→0

|uh(x , t)− h(x)| > λ/3 }

+ µ{ x : lim sup
t→0

|h(x)− u0(x)| > λ/3 }.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }

≤ µ{ x : sup
0<t<1

|uu0−h(x , t)| > λ/3 }

+ µ{ x : lim sup
t→0

|uh(x , t)− h(x)| > λ/3 }

+ µ{ x : lim sup
t→0

|h(x)− u0(x)| > λ/3 }.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }

≤ µ{ x : sup
0<t<1

|uu0−h(x , t)| > λ/3 }

+ µ{ x : lim sup
t→0

|uh(x , t)− h(x)| > λ/3 }

+ µ{ x : |h(x)− u0(x)| > λ/3 }.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }

≤ µ{ x : sup
0<t<1

|uu0−h(x , t)| > λ/3 }

+ 0

+ µ{ x : |h(x)− u0(x)| > λ/3 }.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }λ

≤ µ{ x : sup
0<t<1

|uu0−h(x , t)| > λ/3 }λ

+ 0

+ µ{ x : |h(x)− u0(x)| > λ/3 }λ.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }λ

≤
∥∥ sup

0<t<1
|uu0−h|

∥∥
L1(dµ)

+ 0

+ µ{ x : |h(x)− u0(x)| > λ/3 }λ.



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }λ

≤
∥∥ sup

0<t<1
|uu0−h|

∥∥
L1(dµ)

+ 0

+ ‖h − u0‖L1(dµ).



Take h ∈ Hn/2+1 such that ‖u0 − h‖Hs < ε, and note that

|u(x , t)− u0(x)| ≤ |u(x , t)− uh(x , t)|+ |uh(x , t)− h(x)|+ |h(x)− u0(x)|,

where uh denotes the solution with initial data h. Then

µ{ x : lim sup
t→0

|u(x , t)− u0(x)| > λ }λ

≤
∥∥ sup

0<t<1
|uu0−h|

∥∥
L1(dµ)

+ 0

+ ‖h − u0‖L1(dµ).

We use the maximal estimate for the first term and the third
term can be bounded by the control of singularities lemma so that

µ{ x : lim
t→0
|u(x , t)− u0(x)| > λ }λ ≤ Cµ ‖u0 − h‖Hs(Rn) ≤ Cµ ε.

Letting ε tend to zero, then λ tend to zero, we are done. �



Part 2:

Convergence for the heat
equation



Theorem (Maximal estimate for the heat equation)

Let 0 < s < n/2 and α > n − 2s. Then, for all α-dimensional µ,∥∥∥ sup
0<t<1

|et∆f |
∥∥∥
L1(dµ)

≤ Cµ‖f ‖Hs .

Proof: By linearising the operator, it will suffice to prove∣∣∣∣ˆ ˆ e ix ·ξe−t(x)|ξ|2 f̂ (ξ) dξ w(x) dµ(x)

∣∣∣∣2 . En−2s(µ) ‖f ‖2
Hs ,

whenever t : Rn → (0,∞) and w : Rn → S1 are measurable.
Now, by Fubini and Cauchy-Schwarz, the LHS is bounded by
ˆ
|f̂ (ξ)|2(1+ |ξ|2)sdξ

ˆ ∣∣∣∣ˆ e ix ·ξe−t(x)|ξ|2w(x) dµ(x)

∣∣∣∣2 dξ

(1 + |ξ|2)s
.

Squaring out the integral, it will suffice to show thatˆ ˆ ˆ
e i(x−y)·ξe−(t(x)+t(y))|ξ|2 dξ

(1 + |ξ|2)s
w(x)w(y) dµ(x)dµ(y) . En−2s(µ).



Thus, it remains to prove that, for 0 < s < n/2,∣∣∣∣ˆ e i(x−y)·ξe−(t(x)+t(y))|ξ|2 dξ

(1 + |ξ|2)s

∣∣∣∣ . 1

|x − y |n−2s

uniformly for all choices of t(x), t(y) > 0. Recalling that

(
e−λ|·|

2)∨
=

1

λn/2
e−|·|

2/λ and
(
(1+|·|2)−s

)∨
=: G2s ≤ cn,s |·|−(n−2s),

this would follow from

1

λn/2
e−|·|

2/λ ∗ 1

| · |n−2s
.

1

| · |n−2s
.

uniformly in λ. By changing variables, this is equivalent to

e−|·|
2 ∗ 1

| · |n−2s
.

1

| · |n−2s
,

which can be checked by direct calculation. �



Corollary

Let f ∈ Hs with 0 < s < n/2. Then

dim
{
x ∈ Rn : lim

t→0
et∆f (x) 6= f (x) <∞

}
≤ n − 2s.

As we saw before, f ∈ Hs can be singular on a set of dimension
less than n − 2s and so this is optimal.



Part 3:

Decay for the Fourier transform
of fractal measures



δ̂x1=0(ξ1, ξ) =
´
Rn−1 e

−ix ·ξ dx is independent of ξ1.

Thus, the Fourier transform of certain (n − 1)-dimensional
measures do not decay in every direction.

But perhaps they decay on average......

Let βn(α) denote the supremum of the numbers β for which

1

|Sn−1
r |

ˆ
Sn−1
r

|µ̂(ω)|2dσr (ω) . Cµ (1 + r)−β

whenever r > 0 and µ is α-dimensional and supported in B(0, 1).

Question (Mattila (1987))

What is βn(α) ?

Equivalently βn(α) is the supremum of the numbers β for which∥∥(gdσr)∨∥∥L1(dµ)
. Cµ r

n−1
2 (1 + r)−β/2‖g‖L2(Sn−1

r ).



Best known results

β2(α) =


α, α ∈ (0, 1/2],

Mattila (1987)
1/2, α ∈ [1/2, 1],

α/2, α ∈ [1, 2], Wolff (1999).

β3(α) ≥


α, α ∈ (0, 1],

Mattila (1987)
1, α ∈ [1, 3

2 ],

α− α
3 , α ∈ [ 3

2 , 3], Du-Guth-Ou-Wang-Wilson-Zhang.

βn≥4(α) ≥


α, α ∈ (0, n−1

2 ],
Mattila (1987)

n−1
2 , α ∈ [n−1

2 , n2 ],

α− α
n , α ∈ [n2 , n], Du-Zhang.



The initial data

The Riesz potential Is is defined via its Fourier transform by

Îs(ξ) := | · |−s

and satisfies
Is(x) ≤ cn,s |x |−(n−s).

We now take the initial data in the Riesz potential space

Ḣs(Rn) :=
{
Is ∗ g : g ∈ L2(Rn)

}
with norm

‖f ‖Ḣs =

(ˆ
Rn

|ξ|2s |f̂ (ξ)|2 dξ
)1/2

= ‖g‖L2 .



Lemma (Bridging lemma)

Let f ∈ Ḣs(Rn) with 0 < s < n/2 and βn(α) > n − 2s. Then

dim
{
x ∈ Rn : lim

t→0
e it(−∆)m/2

f (x) 6= f (x)
}
≤ α.

Proof: It will suffice to prove, for all α-dimensional µ,∥∥∥ sup
0<t<1

|e it(−∆)m/2
f |
∥∥∥
L1(dµ)

. Cµ‖f ‖Ḣs(Rn) .

Writing in polar coordinates,

|e it(−∆)m/2
f (x)| =

∣∣∣∣ 1

(2π)n/2

ˆ
Rn

e−it|ξ|
m
e ix ·ξ f̂ (ξ) dξ

∣∣∣∣
=

∣∣∣∣ 1

(2π)n/2

ˆ ∞
0

e−itr
m
ˆ
Sn−1
r

e ix ·ω f̂ (ω) dσr (ω) dr

∣∣∣∣
≤ 1

(2π)n/2

ˆ ∞
0

∣∣∣∣ˆ
Sn−1
r

e ix ·ω f̂ (ω) dσr (ω)

∣∣∣∣ dr .



Lemma (Bridging lemma)

Let f ∈ Ḣs(Rn) with 0 < s < n/2 and βn(α) > n − 2s. Then

dim
{
x ∈ Rn : lim

t→0
e it(−∆)m/2

f (x) 6= f (x)
}
≤ α.

Proof: It will suffice to prove, for all α-dimensional µ,∥∥∥ sup
0<t<1

|e it(−∆)m/2
f |
∥∥∥
L1(dµ)

. Cµ‖f ‖Ḣs(Rn) .

Writing in polar coordinates,

|e it(−∆)m/2
f (x)| =

∣∣∣∣ 1

(2π)n/2

ˆ
Rn

e−it|ξ|
m
e ix ·ξ f̂ (ξ) dξ

∣∣∣∣
=

∣∣∣∣ 1

(2π)n/2

ˆ ∞
0

e−itr
m
ˆ
Sn−1
r

e ix ·ω f̂ (ω) dσr (ω) dr

∣∣∣∣
≤ 1

(2π)n/2

ˆ ∞
0

∣∣∣(f̂ dσr)∨(x)
∣∣∣ dr .



|e it(−∆)m/2
f (x)| .

ˆ ∞
0

∣∣∣(f̂ dσr)∨(x)
∣∣∣ dr ,

so that, by Fubini,∥∥∥ sup
0<t<1

|e it(−∆)m/2
f |
∥∥∥
L1(dµ)

.
ˆ ∞

0

∥∥(f̂ dσr)∨∥∥L1(dµ)
dr .

By the dual version of the Mattila inequality,∥∥(f̂ dσr)∨∥∥L1(dµ)
≤ Cµ r

n−1
2 (1 + r)−β/2‖f̂ ‖L2(Sn−1

r ).

for all β < βn(α), so that∥∥∥ sup
0<t<1

|e it(−∆)m/2
f |
∥∥∥
L1(dµ)

≤ Cµ

ˆ ∞
0

r
n−1

2 (1 + r)−β/2‖f̂ ‖L2(Sn−1
r )dr .

Finally, by Cauchy-Schwarz,

≤ Cµ

(ˆ ∞
0

(1 + r)−βrn−1−2sdr

)1/2(ˆ ∞
0
‖f̂ ‖2

L2(Sn−1
r )

r2sdr

)1/2

≤ Cµ ‖f ‖Ḣs(Rn),

where for the final inequality we must take β > n − 2s. �



Part 4:

Convergence for the wave
equation



Recall that, with initial data u(·, 0) = u0 and ∂tu(·, 0) = u1, the
solution to the wave equation satisfies

û(ξ, t) = cos(t|ξ|)û0(ξ) +
sin(t|ξ|)
|ξ|

û1(ξ)

=
1

2
(e it|ξ| + e−it|ξ|)û0(ξ) +

1

2

(e it|ξ| − e−it|ξ|)

i |ξ|
û1(ξ)

= e it|ξ|
1

2

(
û0(ξ) +

û1(ξ)

i |ξ|

)
+ e−it|ξ|

1

2

(
û0(ξ)− û1(ξ)

i |ξ|

)
=: e it|ξ|f̂+(ξ) + e−it|ξ|f̂−(ξ).

With this notation, we can write

u(·, t) = e it(−∆)1/2
f+ + e−it(−∆)1/2

f−.

If the initial data is in Ḣs × Ḣs−1, both f+ and f− belong to Ḣs .

Thus convergence of e it(−∆)1/2
f to f for all f ∈ Ḣs implies

convergence of u(·, t) to u0 for all (u0, u1) ∈ Ḣs × Ḣs−1.



Now β(α) ≥ n−1
n α, so if α > n

n−1 (n − 2s) then β(α) > n − 2s.
Thus, by the bridging lemma,

Corollary

Let u be a solution to the Schrödinger equation with initial data
in Hs or to the wave equation with initial data in Ḣs × Ḣs−1. Then

dim
{
x ∈ Rn : lim

t→0
u(x , t) 6= u0(x)

}
≤ n

n − 1
(n − 2s).

In particular,

Corollary

Let u be a solution to the Schrödinger equation with initial data
in H1 or to the wave equation with initial data in Ḣ1 × L2. Then

dim
{
x ∈ Rn : lim

t→0
u(x , t) 6= u0(x)

}
< n − 1.



Part 5:

The Schrödinger equation



Lebesgue a.e. convergence for Schrödinger

In 1979, Carleson asked for which s is it true that

lim
t→0

e it∆f (x) = f (x), a.e. x ∈ Rn, ∀ f ∈ Hs(Rn)?

Improvements made by:

Carleson (1979), Dahlberg-Kenig (1982),
Carbery/Cowling (1985/83), Sjölin/Vega (1987/88),
Bourgain (1991/92), Moyua-Vargas-Vega (1996/99),
Tao-Vargas-Vega (1998), Tao-Vargas (2000), Tao (2003),
Lee (2006), Bourgain (2013), Lucà-R. (2015), Bourgain (2016),
Du-Guth-Li (2017), Du-Guth-Li-Zhang (2018), Du-Zhang (2018).



Lebesgue a.e. convergence for Schrödinger

In 1979, Carleson asked for which s is it true that

lim
t→0

e it∆f (x) = f (x), a.e. x ∈ Rn, ∀ f ∈ Hs(Rn)?

Best known sufficient condition for convergence:

I s ≥ 1/4 with n = 1 (Carleson);

I s > 1/3 with n = 2 (Du-Guth-Li);

I s > 1
2 −

1
2(n+1) with n ≥ 3 (Du-Zhang).

Best known necessary condition for convergence:

I s ≥ 1/4 with n = 1 (Dahlberg-Kenig);

I s ≥ 1
2 −

1
2(n+1) with n ≥ 2 (Bourgain).



Part 5(a):

s ≥ 1
2 −

1
2(n+1)

is necessary for

Lebesgue a.e. convergence



Proof

Lemma (Nikǐsin-Stein maximal principle)

lim
t→0

e it∆f (x) = f (x), a.e. x ∈ Rn,

for all f ∈ Hs(Rn) if and only if there is a constant C such that∥∥∥∥ sup
0<t<1

|e it∆f |
∥∥∥∥
L2(B(0,1))

≤ C‖f ‖Hs(Rn)

for all f ∈ Hs(Rn).

So it suffices to show that, if∥∥∥∥ sup
0<t<1

|e it∆f |
∥∥∥∥
L2(B(0,1))

. Rs‖f ‖2,

whenever supp f̂ ⊂ {ξ : |ξ| ≤ R}, then s ≥ 1
2 −

1
2(n+1) = n

2(n+1) .



The concentrated example

Consider initial data f defined by

f̂ (ξ) = 1|ξ|≤ 1
10
R1/2 so that ‖f ‖2 ≤ Rn/4.

Then, if (x , t) ∈ X × T , where

X := B(0,R−1/2) and T := (0,R−1],

there is no cancellation in the integral:

|e it∆f (x)| =
∣∣∣ 1

(2π)n/2

ˆ
|ξ|≤ 1

10
R1/2

e ix ·ξe−it|ξ|
2
dξ
∣∣∣ ≥ cRn/2.



The travelling concentrated example

Instead Dahlberg-Kenig took

fdk(x) = e i
1
2
x ·θf (x),

where θ ∈ Rn, so that

|e it∆fdk(x)| = |e it∆f (x − tθ)| ≥ cRn/4

whenever
x ∈ X + tθ and t ∈ T = (0,R−1).

This yields
sup

0<t<1
|e it∆fdk(x)| ≥ cRn/2

whenever
x ∈

⋃
t∈T

X + tθ.

When n = 1, we can take θ = R, so that

(0, 1) ⊂
⋃
t∈T

X + tθ.



Conclusion that s ≥ 1/4 is necessary when n = 1

Plugging into the maximal estimate,∥∥∥∥ sup
0<t<1

|e it∆fdk |
∥∥∥∥
L2(0,1)

≤ CRs‖fdk‖2,

and recalling that when x ∈ (0, 1),

sup
0<t<1

|e it∆fdk(x)| ≥ cR1/2 and ‖fdk‖2 ≤ R1/4,

we obtain

cR1/4 ≤ CRs .

Letting R →∞, we see that s ≥ 1/4. �





Constructive interference with different frequencies

+

+

+
...

=



The Barceló-Bennett-Carbery-Ruiz-Vilela example

Consider the frequencies

Ω :=
{
ξ ∈ 2πR1−κZn : |ξ| ≤ R

}
+ B(0, 1

10 ),

for 0 < κ < 1,

and initial data defined by

f̂bbcrv = 1Ω,

so that
‖fbbcrv‖2 =

√
|Ω| ≤ R

nκ
2 .

This was originally considered in the context of Mattila’s question
regarding decay of the Fourier transform of measures.



Periodic constructive interference

The interference pattern reappears periodically for a short time:

|e it∆fbbcrv (x)| ≥ c |Ω|,

whenever (x , t) ∈ X × T ,

where
X :=

{
x ∈ Rκ−1Zn : |x | ≤ 1

}
+ B(0,R−1),

and

T :=
{
t ∈ 1

2π
R2(κ−1)Z : 0 < t < R−1

}
.



Periodic constructive interference

In order to avoid cancellation in the integral

|e it∆fbbcrv (x)| =
∣∣∣ 1

(2π)n/2

ˆ
Ω
e ix ·ξe−it|ξ|

2
dξ
∣∣∣ ≥ c |Ω|,

this time X is in some sense the dual-set of Ω:

x · ξ ∈
(
Rκ−1Zn

)
·
(
2πR1−κZn

)
= 2πZ.

and T is some sense the dual-set of Ω · Ω:

tξ · ξ ∈
(

1

2π
R2(κ−1)Z

)(
2πR1−κZn

)
·
(
2πR1−κZn

)
= 2πZ.



Periodic constructive interference

Thus

|e it∆fbbcrv (x)| ≥ c |Ω|

whenever (x , t) ∈ X × T .

But the interference always reappears in the same places so

sup
0<t<1

|e it∆fbbcrv (x)| ≥ c|Ω|

only for x ∈ X .



The travelling interference example
Instead we take

fθ(x) = e i
1
2
x ·θf (x),

where θ ∈ Rn, so that

|e it∆fθ(x)| = |e it∆f (x − tθ)|,

which yields

sup
0<t<1

|e it∆fθ(x)| ≥ c |Ω|

whenever
x ∈

⋃
t∈T

X + tθ.

If n = 1 and κ < 1/3, we can take θ = Rκ so that

(0, 1) ⊂
⋃
t∈T

X + tθ.



Lemma (Lucà-R.)

If 0 < κ < 1
n+2 , then there exists θ ∈ Rn such that

B(0, 1/2) ⊂
⋃
t∈T

X + tθ.

This is optimal in the sense that it is not true for κ > 1
n+2 .

After scaling and quotienting out Zn, this follows from quantitive
ergodic theory on the torus Tn.

Lemma (Lucà-R.)

Let 0 < δ < 1. Then, there exists θ ∈ Sn−1 such that for all
y ∈ Tn there is a t ∈ RδZ ∩ (0,R) such that

‖y − tθ‖ ≤ R−
1−δ
n .



Conclusion that s ≥ n
2(n+2) is necessary

Plugging into the maximal estimate,∥∥∥∥ sup
0<t<1

|e it∆fθ|
∥∥∥∥
L2(B(0,1))

≤ CRs‖fθ‖2,

and recalling that when x ∈ B(0, 1/2),

sup
0<t<1

|e it∆fθ(x)| ≥ c |Ω| and ‖fθ‖2 =
√
|Ω|,

we obtain
c
√
|Ω| ≤ CRs .

Then as |Ω| ≥ Rnκ, this yields

cR
nκ
2 ≤ CRs .

Letting κ→ 1
n+2 and R →∞, we see that s ≥ n

2(n+2) . �



Combining the examples
Writing x = (x1, x) ∈ Rn, we consider

f (x) = fdk(x1)fθ(x)

with κ < 1
2(n+1) and θ ∈ Rn−1.

Note that
e it∆f (x) = e it∆fdk(x1)e it∆fθ(x).

In order to make the first factor large, we must take t near to x1/R.

Thus we do not have as many good times as before.

However, we have taken fewer waves than before (smaller κ).

By the ergodic lemma we can still find a θ ∈ Rn−1 and enough
good t’s (near to x1/R), such that the integral of e it∆fθ(x) has no
cancellation for all x ∈ B(0, 1/2).



Conclusion that s ≥ n
2(n+1) is necessary

Plugging into the maximal estimate,∥∥∥∥ sup
0<t<1

|e it∆fdk e
it∆fθ|

∥∥∥∥
L2
(

(0,1)×B(0,1)
) ≤ CRs‖fdk‖2‖fθ‖2,

and recalling that when (x1, x) ∈ (0, 1)× B(0, 1/2),

sup
0<t<1

|e it∆fdk e
it∆fθ| ≥ cR1/2|Ω| and ‖fdk‖2‖fθ‖2 ≤ R1/4

√
|Ω|

we obtain
cR1/4

√
|Ω| ≤ CRs .

Then as |Ω| ≥ cR(n−1)κ, we see that

s ≥ 1/4 +
(n − 1)κ

2
.

Finally we let κ→ 1
2(n+1) , so that s ≥ n+1

4(n+1) + n−1
4(n+1) = n

2(n+1) .�



Part 5(b):

s > n
2(n+1)

is sufficient for

Lebegue a.e. convergence.



Proof
By summing a geometric series, it suffices to show

ˆ
B(0,1)

sup
0<t<1

|e it∆f (x)|2dx . R
n

n+1 ‖f ‖2
2 .

whenever supp f̂ ⊂ {ξ ∈ Rn : R ≤ |ξ| ≤ 2R}.

By scaling, this can be rewritten
ˆ
B(0,R)

sup
0<t<R2

|e it∆f (x)|2dx . R
n

n+1 ‖f ‖2
2 .

whenever supp f̂ ⊂ {ξ ∈ Rn : 1 ≤ |ξ| ≤ 2}.

By Lee’s temporal localisation lemma, this would follow from
ˆ
B(0,R)

sup
0<t<R

|e it∆f (x)|2dx . R
n

n+1 ‖f ‖2
2 .

whenever supp f̂ ⊂ {ξ ∈ Rn : 1 ≤ |ξ| ≤ 2}.



Covering B(0,R)× [0,R] by disjoint cubes Q × I of sidelength 1,

ˆ
B(0,R)

sup
0<t<R

|e it∆f (x)|2dx .
∑
Q

ˆ
Q

ˆ R

0
|e it∆f (x)|2dtdx

.
∑
Q,I

( ˆ
Q×I
|e it∆f (x)|pndxdt

) 2
pn ,

where pn = 2(n+1)
n−1 .

Summing over all the cubes (. Rn+1) for which
ˆ
Q×I
|e it∆f (x)|pndxdt . R−(n+1)‖f ‖pn2 ,

we get a good enough bound.

On the other hand, as |e it∆f (x)| ≤ ‖f̂ ‖1 ≤ ‖f ‖2, we have
ˆ
Q×I
|e it∆f (x)|pndxdt . ‖f ‖pn2 .



The pigeonhole principle

We can divide the remaining cubes Q × I into (n + 1) logR classes
Qj for which

2−j−1‖f ‖pn2 <

ˆ
Q×I
|e it∆f (x)|pndxdt ≤ 2−j‖f ‖pn2 .

Now, leaving only a single Q × I for each Q, we have

ˆ
B(0,R)

sup
0<t<R

|e it∆f (x)|2dx .
∑
j

∑
Q×I∈Qj

ˆ
Q×I
|e it∆f (x)|2dxdt

so we can find a single j for which

ˆ
B(0,R)

sup
0<t<R

|e it∆f (x)|2dx . logR
∑

Q×I∈Qj

ˆ
Q×I
|e it∆f (x)|2dxdt.



Theorem (Spread-improving Strichartz estimate)

Let pn = 2(n+1)
n−1 . Then ∑

Q×I∈Qj

ˆ
Q×I
|e it∆f (x)|pndxdt

1/pn

. (#Qj)
− 1

n+1 R
n

2(n+1) ‖f ‖2

Using this, the proof is completed by ∑
Q×I∈Qj

ˆ
Q×I
|e it∆f (x)|2dxdt

1/2

≤

∣∣∣∣∣∣
⋃

Q×I∈Qj

Q × I

∣∣∣∣∣∣
1

n+1
 ∑

Q×I∈Qj

ˆ
Q×I
|e it∆f (x)|pndxdt

1/pn

. (#Qj)
1

n+1 (#Qj)
− 1

n+1 R
n

2(n+1) ‖f ‖2

. R
n

2(n+1) ‖f ‖2. �



An ingredient for spread-improving Strichartz: Decoupling

Theorem (Bourgain-Demeter)

Let qd = 2(d+2)
d and write f =

∑
τ fτ , where f̂τ are supported on

pieces of diameter R−1/2. Then

(ˆ
B(0,R)

|e it∆f (x)|qddx

) 1
qd

.

∑
τ

(ˆ
B(0,R)

|e it∆fτ (x)|qddx

) 2
qd


1
2

.

This is used in d = n − 1 dimensions after a dimension reduction.



Part 5(c):

Refined convergence for the
Schrödinger equation



Maximal estimate for the Schrödinger equation

Theorem

Let n/4 ≤ s < n/2 and α > n−2s. Then, for all α-dimensional µ,∥∥∥ sup
0<t<1

|e it∆f |
∥∥∥
L1(dµ)

≤ Cµ‖f ‖Ḣs .

Proof: By the same proof as for the heat equation, one finally
arrives to the inequality∣∣∣∣e−i |·|2 ∗ 1

| · |n−2s

∣∣∣∣ ≤ Cn−2s
1

| · |n−2s
,

This can also be shown to be true by more difficult direct
calculation as long as n/4 ≤ s < n/2. �



Corollary

Let f ∈ Hs with n/4 ≤ s < n/2. Then

dim
{
x ∈ Rn lim

t→0
e it∆f (x) 6= f (x)

}
≤ n − 2s.

Again this is sharp in the range s ≥ n/4.

We cannot go below this regularity in one dimension due to the
necessary condition of Dahlberg-Kenig.

In the next section we will see that neither can we go below this
regularity in higher dimensions using a fractal version of the
Lucà-R.-necessary condition.



αn(s) := sup
f ∈Hs(Rn)

dim
{
x ∈ Rn lim

t→0
e it∆f (x) 6= f (x)

}

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

α
1
(s

)

αn(s) = n − 2s, n/4 ≤ s ≤ n/2.

What about lower regularity (s < n/4) in higher dimensions?



Best known bounds in higher dimensions

αn(s) ≤


n , s ∈ [0, n

2(n+1) )

n + 1− 2(n+1)s
n , s ∈ [ n

2(n+1) ,
n
4 ) (Du-Guth-Li, Du-Zhang )

n − 2s , s ∈ [n4 ,
n
2 ] (Barceló-Bennett-Carbery-R.)

αn(s) ≥


n , s ∈ [0, n

2(n+1) ) (Dahlberg-Kenig, Bourgain)

n + n
n−1 −

2(n+1)s
n−1 , s ∈ [ n

2(n+1) ,
n+1

8 ) (Lucà-R.)

n + 1− 2(n+2)s
n , s ∈ [n+1

8
n
4 ) (Lucà-R.)

n − 2s , s ∈ [n4 ,
n
2 ] (Žubrinić)



αn(s) ≥ n + 1− 2(n+2)s
n when n

2(n+2) ≤ s ≤ n
4

This follows from:

Theorem (Lucà-R.)

Let n/2 ≤ α ≤ n and suppose that

dim
{
x ∈ Rn lim

t→0
e it∆f (x) 6= f (x)

}
< α

whenever f ∈ Hs(Rn). Then

s ≥ n

2(n + 2)

(
n − α + 1

)
.



Proof
The Nikǐsin-Stein maximal principle does not hold in this context,
and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

f :=
∑
j>1

fθj , θj ∈ Sn−1,

where we take R = 2j and normalise in a different way, so that

fθj (x) := e i
1
2
θj ·x fj(x), f̂j = 2−j(nκ−ε)χΩj

,

Ωj :=
{
ξ ∈ 2π2j(1−κ)Zn : |ξ| ≤ 2j

}
+ B(0, 1

10 ).

Note that |Ωj | ' 2jnκ, so that ‖fj‖Hs ' 2−j
nκ
2

+jε+js .

Then if s < nκ
2 − ε we can sum so that f ∈ Hs .

To generalise to the fractal case we will take 1
n+2 ≤ κ <

n−α+1
n+2 .



By the previous calculations, for all x ∈ Ej := ∪t∈Tj
Xj + tθj , where

Xj :=
{
x ∈ 2j(κ−1)Zn : |x | ≤ 2

}
+ B(0, 2−j),

Tj :=
{
t ∈ 1

2π
22j(κ−1)Z : 0 < t < 2−j

}
,

there is a tj(x) ∈ Tj such that |e itj (x)∆fθj (x)| & 2jε.

One can also show (essentially) that |e itj (x)∆
∑

k 6=j fθk (x)| ≤ C .

If κ < 1
n+2 , then B(0, 1/2) ⊂

⋂
j>1 Ej , and we are done.

If κ ≥ 1
n+2 , we consider the limit set

lim sup
j→∞

Ej :=
⋂
j>1

⋃
k>j

Ek

and prove that this is α-dimensional.

For this we use that the limit is ‘α-Hausdorff dense’.



Falconer’s density theorem

Consider the Hausdorff content Hα∞ defined by

Hα∞(E ) := inf
{∑

i

δαi : E ⊂
⋃
i

B(xi , δi )
}
.

Theorem (Falconer (1985))

Suppose that, for all balls Br ⊂ B(0, 1) of radius r ,

lim inf
j→∞

Hα∞(Ej ∩ B(x , r)) ≥ crα. (†)

Then dim
(

lim supj→∞ Ej

)
≥ α.

The proof is completed by checking the density condition (†) with
Ej =

⋃
t∈Tj

Xj + tθj using a variant of the ergodic lemma. �


