Pointwise convergence to initial data

Keith Rogers

INSTITUTO DE CIENCIAS MATEMÁTICAS
Université Paris Pierre et Marie Curie (Paris 6)
Warning: Many arbitrarily small ε have been identified with 0 .

15th of February, 2019

I will review recent progress for Carleson's question for the Schrödinger equation $i \partial_{t} u+\Delta u=0$ with initial data u_{0} in the Sobolev space $H^{s}\left(\mathbb{R}^{n}\right)$. That is, for which s can we be sure that $u(x, t) \rightarrow u_{0}(x)$ as $t \rightarrow 0$ for almost every $x \in \mathbb{R}^{n}$. First I will present examples, due to Bourgain, Lucà and myself, which show that $s \geq \frac{1}{2}-\frac{1}{2(n+1)}$ is necessary. We will see that spread out interference-type behaviour becomes a problem when $n \geq 2$. I will then present maximal estimates, due to Du, Guth, Li and Zhang, which show that $s>\frac{1}{2}-\frac{1}{2(n+1)}$ is sufficient. Loosely speaking, these are a consequence of Strichartz-type estimates that improve for spread out solutions. We will also consider the fractal dimension version of the problem and the analogous questions for other PDE.

Summary

- Part 1: Set-up and introduction to the PDEs.
- Part 2: Convergence for the heat equation.
- Part 3: Decay of the Fourier transform of fractal measures.
- Part 4: Convergence for the wave equation.
- Part 5(a): Counterexample for the Schrödinger equation.
- Part 5(b): Convergence for the Schrödinger equation.

Part 0:
 Basic properties of the Fourier transform

For Schwartz functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$, we write

$$
\widehat{f}(\xi):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x, \quad g^{\vee}(x):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} g(\xi) d \xi
$$

so that

$$
f=(\widehat{f})^{\vee}
$$

(Inversion formula)

$$
\begin{aligned}
& \widehat{\Delta f}(\xi)=-|\xi|^{2} \widehat{f}(\xi), \quad \text { where } \quad \Delta:=\frac{\partial^{2}}{\partial x_{1}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{n}^{2}}, \\
& (\widehat{f} \widehat{g})^{\vee}(x)=f * g(x):=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y \\
& \int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \overline{\hat{g}}(\xi) d \xi, \quad \quad \text { (Plancherel) }
\end{aligned}
$$

and

$$
\|f\|_{L^{2}}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{2} d x\right)^{1 / 2}=\left(\int_{\mathbb{R}^{n}}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|\widehat{f}\|_{L^{2}}
$$

For Schwartz functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{C}$, we write

$$
\widehat{f}(\xi):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x, \quad g^{\vee}(x):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} g(\xi) d \xi
$$

so that

$$
f=(\widehat{f})^{\vee}
$$

(Inversion formula)

$$
\begin{aligned}
& \widehat{\Delta f}(\xi)=-|\xi|^{2} \widehat{f}(\xi), \quad \text { we write } \quad \varphi(\Delta) f:=\left(\varphi\left(-|\cdot|^{2}\right) \widehat{f}\right)^{\vee}, \\
& (\widehat{f} \widehat{g})^{\vee}(x)=f * g(x):=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y \\
& \int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \overline{\hat{g}(\xi)} d \xi, \quad \text { (Plancherel) }
\end{aligned}
$$

and

$$
\|f\|_{L^{2}}:=\left(\int_{\mathbb{R}^{n}}|f(x)|^{2} d x\right)^{1 / 2}=\left(\int_{\mathbb{R}^{n}}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|\widehat{f}\|_{L^{2}}
$$

Part 1:
 PDEs to ODEs using the Fourier transform

The heat equation

$$
\left\{\begin{array}{rlrlr}
\partial_{t} u & =\Delta u & & \text { in } & \\
\mathbb{R}^{n} \times(0, \infty) \\
u(\cdot, 0) & =u_{0} & & \text { in } & \mathbb{R}^{n}
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlc}
\partial_{t} \widehat{u}(\xi, t) & = & -|\xi|^{2} \widehat{u}(\xi, t) \\
\widehat{u}(\xi, 0) & = & \widehat{u}_{0}(\xi)
\end{array}\right.
$$

Solving the ODE (with fixed ξ) this yields

$$
\widehat{u}(\xi, t)=e^{-t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

Inverting the Fourier transform, we write

$$
u(x, t)=e^{t \Delta} u_{0}(x):=\left(e^{-t|\cdot|^{2}} \widehat{u}_{0}\right)^{\vee} .
$$

The heat equation

$$
\left\{\begin{array}{rllll}
\partial_{t} u & =\Delta u & & \text { in } & \\
\mathbb{R}^{n} \times(0, \infty) \\
u(\cdot, 0) & =u_{0} & & \text { in } & \mathbb{R}^{n}
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlc}
\partial_{t} \widehat{u}(\xi, t) & = & -|\xi|^{2} \widehat{u}(\xi, t) \\
\widehat{u}(\xi, 0) & = & \widehat{u}_{0}(\xi) .
\end{array}\right.
$$

Solving the ODE (with fixed ξ) this yields

$$
\widehat{u}(\xi, t)=e^{-t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

Inverting the Fourier transform, we write

$$
u(x, t)=e^{t \Delta} u_{0}(x):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{-t|\xi|^{2}} \widehat{u}_{0}(\xi) d \xi
$$

The Schrödinger equation

$$
\left\{\begin{array}{rlll}
\partial_{t} u & =i \Delta u & & \text { in } \\
& \mathbb{R}^{n} \times \mathbb{R} \\
u(\cdot, 0) & =u_{0} & & \text { in }
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{ccc}
\partial_{t} \widehat{u}(\xi) & = & -i|\xi|^{2} \widehat{u}(\xi, t) \\
\widehat{u}(\xi, 0) & = & \widehat{u}_{0}(\xi)
\end{array}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi, t)=e^{-i t|\xi|^{2}} \widehat{u}_{0}(\xi)
$$

Inverting the Fourier transform, we write

$$
u(x, t)=e^{i t \Delta} u_{0}(x):=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} \widehat{u}_{0}(\xi) d \xi
$$

The wave equation

$$
\left\{\begin{array}{rlrl}
\partial_{t t} u & =\Delta u & & \text { in } \\
& \mathbb{R}^{n} \times \mathbb{R} \\
u(\cdot, 0) & =u_{0} & & \text { in } \\
\mathbb{R}^{n} \\
\partial_{t} u(\cdot, 0) & =u_{1} & & \text { in }
\end{array}\right.
$$

Taking the Fourier transform of the equation we obtain

$$
\left\{\begin{array}{rlc}
\partial_{t t} \widehat{u}(\xi, t) & = & -|\xi|^{2} \widehat{u}(\xi, t) \\
\widehat{u}(\xi, 0) & = & \widehat{u}_{0}(\xi) \\
\partial_{t} \widehat{u}(\xi, 0) & = & \widehat{u}_{1}(\xi)
\end{array}\right.
$$

Solving the ODE this yields

$$
\widehat{u}(\xi, t)=\cos (t|\xi|) \widehat{u}_{0}(\xi)+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi) .
$$

Inverting the Fourier transform, we write

$$
u(\cdot, t)=\cos (t \sqrt{-\Delta}) u_{0}+\frac{\sin (t \sqrt{-\Delta})}{\sqrt{-\Delta}} u_{1}
$$

The initial data

The Bessel potential G_{s} is defined via its Fourier transform by

$$
\widehat{G}_{s}(\xi):=\left(1+|\cdot|^{2}\right)^{-s / 2}
$$

and satisfies

$$
G_{s}(x) \leq c_{n, s}|x|^{-(n-s)}
$$

We take the initial data u_{0} in the Bessel potential space

$$
H^{s}\left(\mathbb{R}^{n}\right):=\left\{G_{s} * g: g \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

with norm

$$
\|f\|_{H^{s}}=\left(\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|g\|_{L^{2}}
$$

Lemma (Pointwise convergence for smooth data)
Let $f \in H^{s}\left(\mathbb{R}^{n}\right)$ with $s>n / 2$. Then

$$
\lim _{t \rightarrow 0} e^{t \Delta} f(x)=f(x) \quad \text { for all } x \in \mathbb{R}^{n}
$$

Proof: Taking $s<n / 2+2$,

$$
\begin{aligned}
(2 \pi)^{n / 2}\left|e^{t \Delta} f(x)-f(x)\right| & \left.=\left.\left|\int \widehat{f}(\xi)\right| \xi\right|^{s} \frac{e^{i x \cdot \xi}\left(e^{-t|\xi|^{2}}-1\right)}{|\xi|^{s}} d \xi \right\rvert\, \\
& \leq\left(\int|\widehat{f}(\xi)|^{2}|\xi|^{2 s} d \xi\right)^{1 / 2}\left(\int \frac{\left|e^{-t|\xi|^{2}}-1\right|^{2}}{|\xi|^{2 s}} d \xi\right)^{1 / 2} \\
& \leq t^{\frac{s-n / 2}{2}}\|f\|_{H^{s}}\left(\int \frac{\left|e^{-|y|^{2}}-1\right|^{2}}{|y|^{2 s}} d y\right)^{1 / 2} \\
& =t^{\frac{s-n / 2}{2}}\|f\|_{H^{s}}\left(\int \frac{\min \left\{|y|^{2}, 1\right\}^{2}}{|y|^{2 s}} d y\right)^{1 / 2} \\
& \leq C_{s} t^{\frac{s-n / 2}{2}}\|f\|_{H^{s}} .
\end{aligned}
$$

A similar calculation works for the Schrödinger equation.

Hausdorff measure

For $A \subseteq \mathbb{R}^{n}$ a Borel set,

$$
\mathcal{H}_{\delta}^{\alpha}(A):=\inf \left\{\sum_{i} \delta_{i}^{\alpha}: A \subset \bigcup_{i} B\left(x_{i}, \delta_{i}\right), \quad \delta_{i}<\delta\right\} .
$$

Definition
The α-Hausdorff measure of A is

$$
\mathcal{H}^{\alpha}(A):=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{\alpha}(A)
$$

Hausdorff dimension

Remark

There exists a unique $\alpha_{0} \in[0, n]$ such that

$$
\mathcal{H}^{\alpha}(A)=\left\{\begin{array}{lll}
\infty & \text { if } & \alpha<\alpha_{0} \\
0 & \text { if } & \alpha>\alpha_{0}
\end{array}\right.
$$

Definition

α_{0} is the Hausdorff dimension of the set A :

$$
\operatorname{dim}(A):=\alpha_{0} .
$$

Definition (Frostman measures)

We say a positive Borel measure μ with $\operatorname{supp}(\mu) \subset B(0,1)$ is α-dimensional if

$$
c_{\alpha}(\mu):=\sup _{\substack{x \in \mathbb{R}^{n} \\ r>0}} \frac{\mu(B(x, r))}{r^{\alpha}}<\infty
$$

$$
\begin{aligned}
E_{\alpha^{\prime}}(\mu):=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha^{\prime}}} & =\int \sum_{j=-1}^{\infty} \int_{|x-y| \sim 2^{-j}} \frac{d \mu(x)}{|x-y|^{\alpha^{\prime}}} d \mu(y) \\
& \leq \int \sum_{j=-1}^{\infty} c_{\alpha}(\mu) 2^{-j \alpha} 2^{j \alpha^{\prime}} d \mu(y) \\
& \lesssim c_{\alpha}^{2}(\mu)<\infty \quad \text { if } \alpha>\alpha^{\prime} .
\end{aligned}
$$

Lemma (Frostman)
Let $A \subset \mathbb{R}^{n}$ be a Borel set. The following are equivalent:

- $\mathcal{H}^{\alpha}(A)=0$;
- $\mu(A)=0$ for all α-dimensional μ.

Definition (Frostman measures)

A positive Borel measure μ with $\operatorname{supp}(\mu) \subset B(0,1)$ is α-dimensional if

$$
c_{\alpha}(\mu):=\sup _{\substack{x \in \mathbb{R}^{n} \\ r>0}} \frac{\mu(B(x, r))}{r^{\alpha}}<\infty
$$

$$
\begin{aligned}
E_{\alpha^{\prime}}(\mu):=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{\alpha^{\prime}}} & =\int \sum_{j=-1}^{\infty} \int_{|x-y| \sim 2^{-j}} \frac{d \mu(x)}{|x-y|^{\alpha^{\prime}}} d \mu(y) \\
& \leq \int \sum_{j=-1}^{\infty} c_{\alpha}(\mu) 2^{-j \alpha} 2^{j \alpha^{\prime}} d \mu(y) \\
& \lesssim c_{\alpha}^{2}(\mu)<\infty \quad \text { if } \alpha>\alpha^{\prime} .
\end{aligned}
$$

Lemma (Frostman) $\quad \mu(A) \leq \sum_{i} \mu\left(B\left(x_{i}, \delta_{i}\right) \leq c_{\alpha}(\mu) \sum_{i} \delta_{i}^{\alpha}\right.$
Let $A \subset \mathbb{R}^{n}$ be a Borel set. The following are equivalent:

- $\mathcal{H}^{\alpha}(A)=0$;
- $\mu(A)=0$ for all α-dimensional μ.

Control of singularities

Lemma

Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\|f\|_{L^{1}(d \mu)} \lesssim c_{\alpha}(\mu)\|f\|_{H^{s}} .
$$

Thus if $f \in H^{s}\left(\mathbb{R}^{n}\right)$, then

$$
\mu\left\{x \in \mathbb{R}^{n}: f(x)=\infty\right\}=0 \quad \forall \alpha \text {-dimensional } \mu
$$

whenever $\alpha>n-2 s$, so that by Frostman's lemma,

$$
\mathcal{H}^{\alpha}\left\{x \in \mathbb{R}^{n}: f(x)=\infty\right\}=0
$$

whenever $\alpha>n-2 s$, so that

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: f(x)=\infty\right\} \leq n-2 s
$$

Control of singularities

Lemma
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\|f\|_{L^{1}(d \mu)} \lesssim c_{\alpha}(\mu)\|f\|_{H^{s}}
$$

Proof: Writing $f=G_{s} * g=\left(\left(1+|\cdot|^{2}\right)^{-s / 2} \widehat{g}\right)^{\vee}$, it suffices to prove

$$
\left\|G_{s} * g\right\|_{L^{1}(d \mu)} \lesssim \sqrt{E_{n-2 s}(\mu)}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

By Fubini's theorem and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left\|G_{s} * g\right\|_{L^{1}(d \mu)} & \leq \iint G_{s}(x-y) d \mu(x)|g(y)| d y \\
& \leq\left\|G_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{2}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

Thus it remains to prove that

$$
\left\|G_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim E_{n-2 s}(\mu)
$$

We are required to prove that

$$
\left\|G_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim E_{n-2 s}(\mu)
$$

By two applications of Plancherel's theorem,

$$
\begin{aligned}
\left\|G_{s} * \mu\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} & =\left\|\left(1+|\cdot|^{2}\right)^{-s / 2} \widehat{\mu}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \\
& =\int \widehat{\mu}(\xi)\left(1+|\xi|^{2}\right)^{-s} \overline{\widehat{\mu}(\xi)} d \xi \\
& \leq \int \mu * G_{2 s}(y) d \mu(y) \\
& \leq c_{n, s} \iint \frac{d \mu(x) d \mu(y)}{|x-y|^{n-2 s}}=c_{n, s} E_{n-2 s}(\mu)
\end{aligned}
$$

where we used that $\left(\left(1+|\cdot|^{2}\right)^{-s}\right)^{\vee}=G_{2 s} \leq c_{n, s}|\cdot|^{-(n-2 s)}$.

Optimality of the control of singularities lemma

If $\operatorname{dim}(A)=\alpha$ with $\alpha<n-2 s$, then we can take a γ such that

$$
\alpha<\gamma<n-2 s
$$

Then

$$
\mathbf{1}_{B(0,1)} \operatorname{dist}(\cdot, A)^{-\gamma} \in L^{2}\left(\mathbb{R}^{n}\right)
$$

but on the other hand

$$
u_{0}:=G_{s} *\left[\mathbf{1}_{B(0,1)} \operatorname{dist}(\cdot, A)^{-\gamma}\right]=\infty \quad \text { on } A
$$

So there is initial data $u_{0} \in H^{s}\left(\mathbb{R}^{n}\right)$ which is singular on a set of dimension $\alpha<n-2 s$.

Proposition (Maximal estimates imply convergence)
Let $\alpha>\alpha_{0} \geq n-2 s$. Suppose that, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}|u(\cdot, t)|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\left\|u_{0}\right\|_{H^{s}}
$$

Then, for all $u_{0} \in H^{s}$,

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq \alpha_{0}
$$

Proof: We are required to prove that for all $\alpha>\alpha_{0}$,

$$
\mathcal{H}^{\alpha}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\}=0
$$

whenever $u_{0} \in H^{s}$. By Frostman's lemma, this follows by showing

$$
\mu\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\}=0
$$

whenever μ is α-dimensional.

Proposition (Maximal estimates imply convergence)
Let $\alpha>\alpha_{0} \geq n-2 s$. Suppose that, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}|u(\cdot, t)|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\left\|u_{0}\right\|_{H^{s}}
$$

Then, for all $u_{0} \in H^{s}$,

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\} \leq \alpha_{0}
$$

Proof: We are required to prove that for all $\alpha>\alpha_{0}$,

$$
\mathcal{H}^{\alpha}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} u(t, x) \neq u_{0}(x)\right\}=0
$$

whenever $u_{0} \in H^{s}$. By Frostman's lemma, this follows by showing

$$
\mu\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0}\left|u(t, x)-u_{0}(x)\right|>\lambda\right\}=0, \quad \forall \lambda>0
$$

whenever μ is α-dimensional.

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that $\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|$, where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h(x)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that $\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|$, where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h(x)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that $\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|$, where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h(x)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that

$$
\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|,
$$ where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x: \limsup _{t \rightarrow 0}\left|u_{h}(x, t)-h(x)\right|>\lambda / 3\right\} \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that
$\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|$, where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \\
+ & 0 \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that
$\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|$, where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \lambda \\
\leq & \mu\left\{x: \sup _{0<t<1}\left|u_{u_{0}-h}(x, t)\right|>\lambda / 3\right\} \lambda \\
+ & 0 \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} \lambda .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that
$\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|$, where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \lambda \\
\leq & \left\|\sup _{0<t<1}\left|u_{u_{0}-h}\right|\right\|_{L^{1}(d \mu)} \\
+ & 0 \\
+ & \mu\left\{x:\left|h(x)-u_{0}(x)\right|>\lambda / 3\right\} \lambda .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that
$\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|$, where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \lambda \\
\leq & \left\|\sup _{0<t<1}\left|u_{L_{0}-h}\right|\right\|_{L^{1}(d \mu)} \\
+ & 0 \\
+ & \left\|h-u_{0}\right\|_{L^{1}(d \mu)} .
\end{aligned}
$$

Take $h \in H^{n / 2+1}$ such that $\left\|u_{0}-h\right\|_{H^{s}}<\varepsilon$, and note that

$$
\left|u(x, t)-u_{0}(x)\right| \leq\left|u(x, t)-u_{h}(x, t)\right|+\left|u_{h}(x, t)-h(x)\right|+\left|h(x)-u_{0}(x)\right|,
$$

where u_{h} denotes the solution with initial data h. Then

$$
\begin{aligned}
& \mu\left\{x: \limsup _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \lambda \\
\leq & \left\|\sup _{0<t<1}\left|u_{u_{0}-h}\right|\right\|_{L^{1}(d \mu)} \\
+ & 0 \\
+ & \left\|h-u_{0}\right\|_{L^{1}(d \mu)} .
\end{aligned}
$$

We use the maximal estimate for the first term and the third term can be bounded by the control of singularities lemma so that

$$
\mu\left\{x: \lim _{t \rightarrow 0}\left|u(x, t)-u_{0}(x)\right|>\lambda\right\} \lambda \leq C_{\mu}\left\|u_{0}-h\right\|_{H^{s}\left(\mathbb{R}^{n}\right)} \leq C_{\mu} \varepsilon .
$$

Letting ε tend to zero, then λ tend to zero, we are done.

Part 2:

Convergence for the heat equation

Theorem (Maximal estimate for the heat equation)
Let $0<s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1}\left|e^{t \Delta} f\right|\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{H^{s}}
$$

Proof: By linearising the operator, it will suffice to prove

$$
\left|\iint e^{i x \cdot \xi} e^{-t(x)|\xi|^{2}} \widehat{f}(\xi) d \xi w(x) d \mu(x)\right|^{2} \lesssim E_{n-2 s}(\mu)\|f\|_{H^{s}}^{2}
$$

whenever $t: \mathbb{R}^{n} \rightarrow(0, \infty)$ and $w: \mathbb{R}^{n} \rightarrow \mathbb{S}^{1}$ are measurable. Now, by Fubini and Cauchy-Schwarz, the LHS is bounded by
$\int|\widehat{f}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi \int\left|\int e^{i x \cdot \xi} e^{-t(x)|\xi|^{2}} w(x) d \mu(x)\right|^{2} \frac{d \xi}{\left(1+|\xi|^{2}\right)^{s}}$.
Squaring out the integral, it will suffice to show that
$\iiint e^{i(x-y) \cdot \xi} e^{-(t(x)+t(y))|\xi|^{2}} \frac{d \xi}{\left(1+|\xi|^{2}\right)^{s}} w(x) w(y) d \mu(x) d \mu(y) \lesssim E_{n-2 s}(\mu)$.

Thus, it remains to prove that, for $0<s<n / 2$,

$$
\left|\int e^{i(x-y) \cdot \xi} e^{-(t(x)+t(y))|\xi|^{2}} \frac{d \xi}{\left(1+|\xi|^{2}\right)^{s}}\right| \lesssim \frac{1}{|x-y|^{n-2 s}}
$$

uniformly for all choices of $t(x), t(y)>0$. Recalling that

$$
\left(e^{-\lambda \cdot|\cdot|^{2}}\right)^{\vee}=\frac{1}{\lambda^{n / 2}} e^{-|\cdot|^{2} / \lambda} \quad \text { and } \quad\left(\left(1+|\cdot|^{2}\right)^{-s}\right)^{\vee}=: G_{2 s} \leq c_{n, s}|\cdot|^{-(n-2 s)}
$$

this would follow from

$$
\frac{1}{\lambda^{n / 2}} e^{-|\cdot|^{2} / \lambda} * \frac{1}{|\cdot|^{n-2 s}} \lesssim \frac{1}{|\cdot|^{n-2 s}} .
$$

uniformly in λ. By changing variables, this is equivalent to

$$
e^{-|\cdot|^{2}} * \frac{1}{|\cdot|^{n-2 s}} \lesssim \frac{1}{|\cdot|^{n-2 s}}
$$

which can be checked by direct calculation.

Corollary
Let $f \in H^{s}$ with $0<s<n / 2$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \quad \lim _{t \rightarrow 0} e^{t \Delta} f(x) \neq f(x)<\infty\right\} \leq n-2 s
$$

As we saw before, $f \in H^{s}$ can be singular on a set of dimension less than $n-2 s$ and so this is optimal.

Part 3:

Decay for the Fourier transform of fractal measures

$\widehat{\delta_{x_{1}=0}}\left(\xi_{1}, \bar{\xi}\right)=\int_{\mathbb{R}^{n-1}} e^{-i \bar{x} \cdot \bar{\xi}} d \bar{x}$ is independent of ξ_{1}.
Thus, the Fourier transform of certain ($n-1$)-dimensional measures do not decay in every direction.

But perhaps they decay on average......

Let $\beta_{n}(\alpha)$ denote the supremum of the numbers β for which

$$
\frac{1}{\left|\mathbb{S}_{r}^{n-1}\right|} \int_{\mathbb{S}_{r}^{n-1}}|\widehat{\mu}(\omega)|^{2} d \sigma_{r}(\omega) \lesssim C_{\mu}(1+r)^{-\beta}
$$

whenever $r>0$ and μ is α-dimensional and supported in $B(0,1)$.

Question (Mattila (1987))
What is $\beta_{n}(\alpha)$?
Equivalently $\beta_{n}(\alpha)$ is the supremum of the numbers β for which

$$
\left\|\left(g d \sigma_{r}\right)^{\vee}\right\|_{L^{1}(d \mu)} \lesssim C_{\mu} r^{\frac{n-1}{2}}(1+r)^{-\beta / 2}\|g\|_{L^{2}\left(\mathbb{S}_{r}^{n-1}\right)}
$$

Best known results

$$
\begin{aligned}
& \beta_{2}(\alpha)=\left\{\begin{array}{lll}
\alpha, & \alpha \in(0,1 / 2], & \text { Mattila (1987) } \\
1 / 2, & \alpha \in[1 / 2,1], & \\
\alpha / 2, & \alpha \in[1,2], & \text { Wolff (1999). }
\end{array}\right. \\
& \left\{\begin{array}{ll}
\alpha, & \alpha \in(0,1],
\end{array} \quad\right. \text { Mattila (1987) } \\
& \beta_{3}(\alpha) \geq\left\{1, \quad \alpha \in\left[1, \frac{3}{2}\right],\right. \\
& \alpha-\frac{\alpha}{3}, \alpha \in\left[\frac{3}{2}, 3\right], \quad \text { Du-Guth-Ou-Wang-Wilson-Zhang. } \\
& \beta_{n \geq 4}(\alpha) \geq\left\{\begin{array}{lll}
\alpha, & \alpha \in\left(0, \frac{n-1}{2}\right], & \\
\frac{n-1}{2}, & \alpha \in\left[\frac{n-1}{2}, \frac{n}{2}\right], & \\
\alpha-\frac{\alpha}{n}, & \alpha \in\left[\frac{n}{2}, n\right], & \text { Duttila (1987) } \\
\end{array}\right.
\end{aligned}
$$

The initial data

The Riesz potential I_{s} is defined via its Fourier transform by

$$
\widehat{I}_{s}(\xi):=|\cdot|^{-s}
$$

and satisfies

$$
I_{s}(x) \leq c_{n, s}|x|^{-(n-s)} .
$$

We now take the initial data in the Riesz potential space

$$
\dot{H}^{s}\left(\mathbb{R}^{n}\right):=\left\{I_{s} * g: g \in L^{2}\left(\mathbb{R}^{n}\right)\right\}
$$

with norm

$$
\|f\|_{\dot{H}^{s}}=\left(\int_{\mathbb{R}^{n}}|\xi|^{2 s}|\widehat{f}(\xi)|^{2} d \xi\right)^{1 / 2}=\|g\|_{L^{2}}
$$

Lemma (Bridging lemma)
Let $f \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $0<s<n / 2$ and $\beta_{n}(\alpha)>n-2 s$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} e^{i t(-\Delta)^{m / 2}} f(x) \neq f(x)\right\} \leq \alpha
$$

Proof: It will suffice to prove, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \lesssim C_{\mu}\|f\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)} .
$$

Writing in polar coordinates,

$$
\begin{aligned}
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| & =\left|\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i t|\xi|^{m}} e^{i x \cdot \xi} \widehat{f}(\xi) d \xi\right| \\
& =\left|\frac{1}{(2 \pi)^{n / 2}} \int_{0}^{\infty} e^{-i t r^{m}} \int_{\mathbb{S}_{r}^{n-1}} e^{i x \cdot \omega} \widehat{f}(\omega) d \sigma_{r}(\omega) d r\right| \\
& \leq \frac{1}{(2 \pi)^{n / 2}} \int_{0}^{\infty}\left|\int_{\mathbb{S}_{r}^{n-1}} e^{i x \cdot \omega} \widehat{f}(\omega) d \sigma_{r}(\omega)\right| d r .
\end{aligned}
$$

Lemma (Bridging lemma)
Let $f \in \dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $0<s<n / 2$ and $\beta_{n}(\alpha)>n-2 s$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} e^{i t(-\Delta)^{m / 2}} f(x) \neq f(x)\right\} \leq \alpha
$$

Proof: It will suffice to prove, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2} f}\right\|_{L^{1}(d \mu)} \lesssim C_{\mu}\|f\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)} .
$$

Writing in polar coordinates,

$$
\begin{aligned}
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| & =\left|\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i t|\xi|^{m}} e^{i x \cdot \xi} \widehat{f}(\xi) d \xi\right| \\
& =\left|\frac{1}{(2 \pi)^{n / 2}} \int_{0}^{\infty} e^{-i t r^{m}} \int_{\mathbb{S}_{r}^{n-1}} e^{i x \cdot \omega} \widehat{f}(\omega) d \sigma_{r}(\omega) d r\right| \\
& \leq \frac{1}{(2 \pi)^{n / 2}} \int_{0}^{\infty}\left|\left(\widehat{f} d \sigma_{r}\right)^{\vee}(x)\right| d r .
\end{aligned}
$$

$$
\left|e^{i t(-\Delta)^{m / 2}} f(x)\right| \lesssim \int_{0}^{\infty}\left|\left(\widehat{f} d \sigma_{r}\right)^{\vee}(x)\right| d r
$$

so that, by Fubini,

$$
\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \lesssim \int_{0}^{\infty}\left\|\left(\widehat{f} d \sigma_{r}\right)^{\vee}\right\|_{L^{1}(d \mu)} d r
$$

By the dual version of the Mattila inequality,

$$
\left\|\left(\widehat{f} d \sigma_{r}\right)^{\vee}\right\|_{L^{1}(d \mu)} \leq C_{\mu} r^{\frac{n-1}{2}}(1+r)^{-\beta / 2}\|\widehat{f}\|_{L^{2}\left(\mathbb{S}_{r}^{n-1}\right)}
$$

for all $\beta<\beta_{n}(\alpha)$, so that
$\left\|\sup _{0<t<1} \mid e^{i t(-\Delta)^{m / 2}} f\right\|_{L^{1}(d \mu)} \leq C_{\mu} \int_{0}^{\infty} r^{\frac{n-1}{2}}(1+r)^{-\beta / 2}\|\widehat{f}\|_{L^{2}\left(\mathbb{S}_{r}^{n-1}\right)} d r$.
Finally, by Cauchy-Schwarz,

$$
\begin{aligned}
& \leq C_{\mu}\left(\int_{0}^{\infty}(1+r)^{-\beta} r^{n-1-2 s} d r\right)^{1 / 2}\left(\int_{0}^{\infty}\|\widehat{f}\|_{L^{2}\left(\mathbb{S}_{r}^{n-1}\right)}^{2} r^{2 s} d r\right)^{1 / 2} \\
& \leq C_{\mu}\|f\|_{\dot{H}^{s}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

where for the final inequality we must take $\beta>n-2 s$,

Part 4:

Convergence for the wave equation

Recall that, with initial data $u(\cdot, 0)=u_{0}$ and $\partial_{t} u(\cdot, 0)=u_{1}$, the solution to the wave equation satisfies

$$
\begin{aligned}
\widehat{u}(\xi, t) & =\cos (t|\xi|) \widehat{u}_{0}(\xi) \quad+\frac{\sin (t|\xi|)}{|\xi|} \widehat{u}_{1}(\xi) \\
& =\frac{1}{2}\left(e^{i t|\xi|}+e^{-i t|\xi|}\right) \widehat{u}_{0}(\xi)+\frac{1}{2} \frac{\left(e^{i t|\xi|}-e^{-i t|\xi|}\right)}{i|\xi|} \widehat{u}_{1}(\xi) \\
& =e^{i t|\xi|} \frac{1}{2}\left(\widehat{u}_{0}(\xi)+\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right)+e^{-i t|\xi|} \frac{1}{2}\left(\widehat{u}_{0}(\xi)-\frac{\widehat{u}_{1}(\xi)}{i|\xi|}\right) \\
& =: e^{i t|\xi|} \widehat{f_{+}}(\xi) \quad+e^{-i t|\xi|} \widehat{f_{-}}(\xi) .
\end{aligned}
$$

With this notation, we can write

$$
u(\cdot, t)=e^{i t(-\Delta)^{1 / 2}} f_{+}+e^{-i t(-\Delta)^{1 / 2}} f_{-} .
$$

If the initial data is in $\dot{H}^{s} \times \dot{H}^{s-1}$, both f_{+}and f_{-}belong to \dot{H}^{s}.
Thus convergence of $e^{i t(-\Delta)^{1 / 2}} f$ to f for all $f \in \dot{H}^{s}$ implies convergence of $u(\cdot, t)$ to u_{0} for all $\left(u_{0}, u_{1}\right) \in \dot{H}^{s} \times \dot{H}^{s-1}=$

Now $\beta(\alpha) \geq \frac{n-1}{n} \alpha$, so if $\alpha>\frac{n}{n-1}(n-2 s)$ then $\beta(\alpha)>n-2 s$. Thus, by the bridging lemma,

Corollary
Let u be a solution to the Schrödinger equation with initial data in H^{s} or to the wave equation with initial data in $\dot{H}^{s} \times \dot{H}^{s-1}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\} \leq \frac{n}{n-1}(n-2 s)
$$

In particular,
Corollary
Let u be a solution to the Schrödinger equation with initial data in H^{1} or to the wave equation with initial data in $\dot{H}^{1} \times L^{2}$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n}: \lim _{t \rightarrow 0} u(x, t) \neq u_{0}(x)\right\}<n-1
$$

Part 5:
 The Schrödinger equation

Lebesgue a.e. convergence for Schrödinger

In 1979, Carleson asked for which s is it true that

$$
\lim _{t \rightarrow 0} e^{i t \Delta} f(x)=f(x), \quad \text { a.e. } x \in \mathbb{R}^{n}, \quad \forall f \in H^{s}\left(\mathbb{R}^{n}\right) ?
$$

Improvements made by:
Carleson (1979), Dahlberg-Kenig (1982),
Carbery/Cowling (1985/83), Sjölin/Vega (1987/88),
Bourgain (1991/92), Moyua-Vargas-Vega (1996/99),
Tao-Vargas-Vega (1998), Tao-Vargas (2000), Tao (2003),
Lee (2006), Bourgain (2013), Lucà-R. (2015), Bourgain (2016),
Du-Guth-Li (2017), Du-Guth-Li-Zhang (2018), Du-Zhang (2018).

Lebesgue a.e. convergence for Schrödinger

In 1979, Carleson asked for which s is it true that

$$
\lim _{t \rightarrow 0} e^{i t \Delta} f(x)=f(x), \quad \text { a.e. } x \in \mathbb{R}^{n}, \quad \forall f \in H^{s}\left(\mathbb{R}^{n}\right) ?
$$

Best known sufficient condition for convergence:

- $s \geq 1 / 4$ with $n=1$ (Carleson);
- $s>1 / 3$ with $n=2$ (Du-Guth-Li);
- $s>\frac{1}{2}-\frac{1}{2(n+1)}$ with $n \geq 3$ (Du-Zhang).

Best known necessary condition for convergence:

- $s \geq 1 / 4$ with $n=1$ (Dahlberg-Kenig);
- $s \geq \frac{1}{2}-\frac{1}{2(n+1)}$ with $n \geq 2$ (Bourgain).

Part 5(a):

$s \geq \frac{1}{2}-\frac{1}{2(n+1)}$ is necessary for Lebesgue a.e. convergence

Proof

Lemma (Nikišin-Stein maximal principle)

$$
\lim _{t \rightarrow 0} e^{i t \Delta} f(x)=f(x), \quad \text { a.e. } x \in \mathbb{R}^{n}
$$

for all $f \in H^{s}\left(\mathbb{R}^{n}\right)$ if and only if there is a constant C such that

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f\right|\right\|_{L^{2}(B(0,1))} \leq C\|f\|_{H^{s}\left(\mathbb{R}^{n}\right)}
$$

for all $f \in H^{s}\left(\mathbb{R}^{n}\right)$.

So it suffices to show that, if

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f\right|\right\|_{L^{2}(B(0,1))} \lesssim R^{s}\|f\|_{2}
$$

whenever $\operatorname{supp} \widehat{f} \subset\{\xi:|\xi| \leq R\}$, then $s \geq \frac{1}{2}-\frac{1}{2(n+1)}=\frac{n}{2(n+1)}$.

The concentrated example

Consider initial data f defined by

$$
\widehat{f}(\xi)=\mathbf{1}_{|\xi| \leq \frac{1}{10} R^{1 / 2}} \quad \text { so that } \quad\|f\|_{2} \leq R^{n / 4}
$$

Then, if $(x, t) \in X \times T$, where

$$
X:=B\left(0, R^{-1 / 2}\right) \quad \text { and } \quad T:=\left(0, R^{-1}\right],
$$

there is no cancellation in the integral:

$$
\left|e^{i t \Delta} f(x)\right|=\left|\frac{1}{(2 \pi)^{n / 2}} \int_{|\xi| \leq \frac{1}{10} R^{1 / 2}} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} d \xi\right| \geq c R^{n / 2}
$$

The travelling concentrated example

Instead Dahlberg-Kenig took

$$
f_{d k}(x)=e^{i \frac{1}{2} x \cdot \theta} f(x)
$$

where $\theta \in \mathbb{R}^{n}$, so that

$$
\left|e^{i t \Delta} f_{d k}(x)\right|=\left|e^{i t \Delta} f(x-t \theta)\right| \geq c R^{n / 4}
$$

whenever

$$
x \in X+t \theta \quad \text { and } \quad t \in T=\left(0, R^{-1}\right)
$$

This yields

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{d k}(x)\right| \geq c R^{n / 2}
$$

whenever

$$
x \in \bigcup_{t \in T} X+t \theta
$$

When $n=1$, we can take $\theta=R$, so that

$$
(0,1) \subset \bigcup_{t \in T} X+t \theta
$$

Conclusion that $s \geq 1 / 4$ is necessary when $n=1$

Plugging into the maximal estimate,

$$
\left\|\sup _{0<t<1}\left|e^{i t \Delta} f_{d k}\right|\right\|_{L^{2}(0,1)} \leq C R^{s}\left\|f_{d k}\right\|_{2},
$$

and recalling that when $x \in(0,1)$,

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{d k}(x)\right| \geq c R^{1 / 2} \quad \text { and } \quad\left\|f_{d k}\right\|_{2} \leq R^{1 / 4}
$$

we obtain

$$
c R^{1 / 4} \leq C R^{s}
$$

Letting $R \rightarrow \infty$, we see that $s \geq 1 / 4$.

Young's Double Slit Experiment

Constructive interference with different frequencies

The Barceló-Bennett-Carbery-Ruiz-Vilela example

Consider the frequencies

$$
\Omega:=\left\{\xi \in 2 \pi R^{1-\kappa} \mathbb{Z}^{n}:|\xi| \leq R\right\}+B\left(0, \frac{1}{10}\right),
$$

for $0<\kappa<1$,
and initial data defined by

$$
\widehat{f_{b b c r v}}=\mathbf{1}_{\Omega},
$$

so that

$$
\left\|f_{b b c r v}\right\|_{2}=\sqrt{|\Omega|} \leq R^{\frac{n \kappa}{2}} .
$$

This was originally considered in the context of Mattila's question regarding decay of the Fourier transform of measures.

Periodic constructive interference

The interference pattern reappears periodically for a short time:

$$
\left|e^{i t \Delta} f_{b b c r v}(x)\right| \geq c|\Omega|
$$

whenever $(x, t) \in X \times T$,
where

$$
X:=\left\{x \in R^{\kappa-1} \mathbb{Z}^{n}:|x| \leq 1\right\}+B\left(0, R^{-1}\right)
$$

and

$$
T:=\left\{t \in \frac{1}{2 \pi} R^{2(\kappa-1)} \mathbb{Z}: 0<t<R^{-1}\right\} .
$$

Periodic constructive interference

In order to avoid cancellation in the integral

$$
\left|e^{i t \Delta} f_{b b c r v}(x)\right|=\left|\frac{1}{(2 \pi)^{n / 2}} \int_{\Omega} e^{i x \cdot \xi} e^{-i t|\xi|^{2}} d \xi\right| \geq c|\Omega|
$$

this time X is in some sense the dual-set of Ω :

$$
x \cdot \xi \in\left(R^{\kappa-1} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

and T is some sense the dual-set of $\Omega \cdot \Omega$:

$$
t \xi \cdot \xi \in\left(\frac{1}{2 \pi} R^{2(\kappa-1)} \mathbb{Z}\right)\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right) \cdot\left(2 \pi R^{1-\kappa} \mathbb{Z}^{n}\right)=2 \pi \mathbb{Z}
$$

Periodic constructive interference

Thus

$$
\left|e^{i t \Delta} f_{b b c r v}(x)\right| \geq c|\Omega|
$$

whenever $(x, t) \in X \times T$.

But the interference always reappears in the same places so

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{b b c r v}(x)\right| \geq c|\Omega|
$$

only for $x \in X$.

The travelling interference example

Instead we take

$$
f_{\theta}(x)=e^{i \frac{1}{2} x \cdot \theta} f(x)
$$

where $\theta \in \mathbb{R}^{n}$, so that

$$
\left|e^{i t \Delta} f_{\theta}(x)\right|=\left|e^{i t \Delta} f(x-t \theta)\right|
$$

which yields

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}(x)\right| \geq c|\Omega|
$$

whenever

$$
x \in \bigcup_{t \in T} X+t \theta
$$

If $n=1$ and $\kappa<1 / 3$, we can take $\theta=R^{\kappa}$ so that

$$
(0,1) \subset \bigcup_{t \in T} X+t \theta
$$

Lemma (Lucà-R.)
If $0<\kappa<\frac{1}{n+2}$, then there exists $\theta \in \mathbb{R}^{n}$ such that

$$
B(0,1 / 2) \subset \bigcup_{t \in T} x+t \theta .
$$

This is optimal in the sense that it is not true for $\kappa>\frac{1}{n+2}$.
After scaling and quotienting out \mathbb{Z}^{n}, this follows from quantitive ergodic theory on the torus \mathbb{T}^{n}.

Lemma (Lucà-R.)
Let $0<\delta<1$. Then, there exists $\theta \in \mathbb{S}^{n-1}$ such that for all $y \in \mathbb{T}^{n}$ there is a $t \in R^{\delta} \mathbb{Z} \cap(0, R)$ such that

$$
\|y-t \theta\| \leq R^{-\frac{1-\delta}{n}}
$$

Conclusion that $s \geq \frac{n}{2(n+2)}$ is necessary

Plugging into the maximal estimate,

$$
\left\|\sup _{0<t<1} \mid e^{i t \Delta} f_{\theta}\right\|_{L^{2}(B(0,1))} \leq C R^{s}\left\|f_{\theta}\right\|_{2},
$$

and recalling that when $x \in B(0,1 / 2)$,

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{\theta}(x)\right| \geq c|\Omega| \quad \text { and } \quad\left\|f_{\theta}\right\|_{2}=\sqrt{|\Omega|},
$$

we obtain

$$
c \sqrt{|\Omega|} \leq C R^{s} .
$$

Then as $|\Omega| \geq R^{n \kappa}$, this yields

$$
c R^{\frac{n \kappa}{2}} \leq C R^{s} .
$$

Letting $\kappa \rightarrow \frac{1}{n+2}$ and $R \rightarrow \infty$, we see that $s \geq \frac{n}{2(n+2)}$;

Combining the examples

Writing $x=\left(x_{1}, \bar{x}\right) \in \mathbb{R}^{n}$, we consider

$$
f(x)=f_{d k}\left(x_{1}\right) f_{\theta}(\bar{x})
$$

with $\kappa<\frac{1}{2(n+1)}$ and $\theta \in \mathbb{R}^{n-1}$.
Note that

$$
e^{i t \Delta} f(x)=e^{i t \Delta} f_{d k}\left(x_{1}\right) e^{i t \Delta} f_{\theta}(\bar{x})
$$

In order to make the first factor large, we must take t near to x_{1} / R.

Thus we do not have as many good times as before.
However, we have taken fewer waves than before (smaller κ).
By the ergodic lemma we can still find a $\theta \in \mathbb{R}^{n-1}$ and enough good t's (near to x_{1} / R), such that the integral of $e^{i t \Delta} f_{\theta}(\bar{x})$ has no cancellation for all $\bar{x} \in B(0,1 / 2)$.

Conclusion that $s \geq \frac{n}{2(n+1)}$ is necessary

Plugging into the maximal estimate,

$$
\left\|\sup _{0<t<1} \mid e^{i t \Delta} f_{d k} e^{i t \Delta} f_{\theta}\right\|_{L^{2}((0,1) \times B(0,1))} \leq C R^{s}\left\|f_{d k}\right\|_{2}\left\|f_{\theta}\right\|_{2}
$$

and recalling that when $\left(x_{1}, \bar{x}\right) \in(0,1) \times B(0,1 / 2)$,

$$
\sup _{0<t<1}\left|e^{i t \Delta} f_{d k} e^{i t \Delta} f_{\theta}\right| \geq c R^{1 / 2}|\Omega| \quad \text { and } \quad\left\|f_{d k}\right\|_{2}\left\|f_{\theta}\right\|_{2} \leq R^{1 / 4} \sqrt{|\Omega|}
$$

we obtain

$$
c R^{1 / 4} \sqrt{|\Omega|} \leq C R^{s}
$$

Then as $|\Omega| \geq c R^{(n-1) \kappa}$, we see that

$$
s \geq 1 / 4+\frac{(n-1) \kappa}{2}
$$

Finally we let $\kappa \rightarrow \frac{1}{2(n+1)}$, so that $s \geq \frac{n+1}{4(n+1)}+\frac{n-1}{4(n+1)}=\frac{n}{2(n+1)}$. \square

Part 5(b):

$s>\frac{n}{2(n+1)}$ is sufficient for Lebegue a.e. convergence.

Proof

By summing a geometric series, it suffices to show

$$
\int_{B(0,1)} \sup _{0<t<1}\left|e^{i t \Delta} f(x)\right|^{2} d x \lesssim R^{\frac{n}{n+1}}\|f\|_{2}^{2}
$$

whenever $\operatorname{supp} \widehat{f} \subset\left\{\xi \in \mathbb{R}^{n}: R \leq|\xi| \leq 2 R\right\}$.
By scaling, this can be rewritten

$$
\int_{B(0, R)} \sup _{0<t<R^{2}}\left|e^{i t \Delta} f(x)\right|^{2} d x \lesssim R^{\frac{n}{n+1}}\|f\|_{2}^{2}
$$

whenever $\operatorname{supp} \widehat{f} \subset\left\{\xi \in \mathbb{R}^{n}: 1 \leq|\xi| \leq 2\right\}$.
By Lee's temporal localisation lemma, this would follow from

$$
\int_{B(0, R)} \sup _{0<t<R}\left|e^{i t \Delta} f(x)\right|^{2} d x \lesssim R^{\frac{n}{n+1}}\|f\|_{2}^{2}
$$

whenever supp $\widehat{f} \subset\left\{\xi \in \mathbb{R}^{n}: 1 \leq|\xi| \leq 2\right\}$.

Covering $B(0, R) \times[0, R]$ by disjoint cubes $Q \times I$ of sidelength 1 ,

$$
\begin{aligned}
\int_{B(0, R)} \sup _{0<t<R}\left|e^{i t \Delta} f(x)\right|^{2} d x & \lesssim \sum_{Q} \int_{Q} \int_{0}^{R}\left|e^{i t \Delta} f(x)\right|^{2} d t d x \\
& \lesssim \sum_{Q, I}\left(\int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{p_{n}} d x d t\right)^{\frac{2}{p_{n}}}
\end{aligned}
$$

where $p_{n}=\frac{2(n+1)}{n-1}$.
Summing over all the cubes ($\lesssim R^{n+1}$) for which

$$
\int_{Q \times 1}\left|e^{i t \Delta} f(x)\right|^{p_{n}} d x d t \lesssim R^{-(n+1)}\|f\|_{2}^{p_{n}}
$$

we get a good enough bound.
On the other hand, as $\left|e^{i t \Delta} f(x)\right| \leq\|\widehat{f}\|_{1} \leq\|f\|_{2}$, we have

$$
\int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{p_{n}} d x d t \lesssim\|f\|_{2}^{p_{n}}
$$

The pigeonhole principle

We can divide the remaining cubes $Q \times I$ into $(n+1) \log R$ classes
\mathcal{Q}_{j} for which

$$
2^{-j-1}\|f\|_{2}^{p_{n}}<\int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{p_{n}} d x d t \leq 2^{-j}\|f\|_{2}^{p_{n}}
$$

Now, leaving only a single $Q \times I$ for each Q, we have

$$
\int_{B(0, R)} \sup _{0<t<R}\left|e^{i t \Delta} f(x)\right|^{2} d x \lesssim \sum_{j} \sum_{Q \times I \in \mathcal{Q}_{j}} \int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{2} d x d t
$$

so we can find a single j for which
$\int_{B(0, R)} \sup _{0<t<R}\left|e^{i t \Delta} f(x)\right|^{2} d x \lesssim \log R \sum_{Q \times I \in \mathcal{Q}_{j}} \int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{2} d x d t$.

Theorem (Spread-improving Strichartz estimate)
Let $p_{n}=\frac{2(n+1)}{n-1}$. Then

$$
\left(\sum_{Q \times I \in \mathcal{Q}_{j}} \int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{p_{n}} d x d t\right)^{1 / p_{n}} \lesssim\left(\# \mathcal{Q}_{j}\right)^{-\frac{1}{n+1}} R^{\frac{n}{2(n+1)}}\|f\|_{2}
$$

Using this, the proof is completed by

$$
\begin{aligned}
& \left(\sum_{Q \times I \in \mathcal{Q}_{j}} \int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{2} d x d t\right)^{1 / 2} \\
\leq & \bigcup_{Q \times I \in \mathcal{Q}_{j}} Q \times\left. I\right|^{\frac{1}{n+1}}\left(\sum_{Q \times I \in \mathcal{Q}_{j}} \int_{Q \times I}\left|e^{i t \Delta} f(x)\right|^{p_{n}} d x d t\right)^{1 / p_{n}} \\
\lesssim & \left(\# \mathcal{Q}_{j}\right)^{\frac{1}{n+1}}\left(\# \mathcal{Q}_{j}\right)^{-\frac{1}{n+1}} R^{\frac{n}{2(n+1)}}\|f\|_{2} \\
\lesssim & R^{\frac{n}{2(n+1)}}\|f\|_{2} .
\end{aligned}
$$

An ingredient for spread-improving Strichartz: Decoupling

Theorem (Bourgain-Demeter)
Let $q_{d}=\frac{2(d+2)}{d}$ and write $f=\sum_{\tau} f_{\tau}$, where \widehat{f}_{τ} are supported on pieces of diameter $R^{-1 / 2}$. Then

$$
\left(\int_{B(0, R)}\left|e^{i t \Delta} f(x)\right|^{q_{d}} d x\right)^{\frac{1}{q_{d}}} \lesssim\left(\sum_{\tau}\left(\int_{B(0, R)}\left|e^{i t \Delta} f_{\tau}(x)\right|^{q_{d}} d x\right)^{\frac{2}{q_{d}}}\right)^{\frac{1}{2}} .
$$

This is used in $d=n-1$ dimensions after a dimension reduction.

Part 5(c):

Refined convergence for the Schrödinger equation

Maximal estimate for the Schrödinger equation

Theorem
Let $n / 4 \leq s<n / 2$ and $\alpha>n-2 s$. Then, for all α-dimensional μ,

$$
\left\|\sup _{0<t<1} \mid e^{i t \Delta} f\right\|_{L^{1}(d \mu)} \leq C_{\mu}\|f\|_{\dot{H}^{s}}
$$

Proof: By the same proof as for the heat equation, one finally arrives to the inequality

$$
\left|e^{-i|\cdot|^{2}} * \frac{1}{|\cdot|^{n-2 s}}\right| \leq C_{n-2 s} \frac{1}{|\cdot|^{n-2 s}},
$$

This can also be shown to be true by more difficult direct calculation as long as $n / 4 \leq s<n / 2$.

Corollary
Let $f \in H^{s}$ with $n / 4 \leq s<n / 2$. Then

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} e^{i t \Delta} f(x) \neq f(x)\right\} \leq n-2 s
$$

Again this is sharp in the range $s \geq n / 4$.
We cannot go below this regularity in one dimension due to the necessary condition of Dahlberg-Kenig.

In the next section we will see that neither can we go below this regularity in higher dimensions using a fractal version of the Lucà-R.-necessary condition.

$$
\alpha_{n}(s):=\sup _{f \in H^{s}\left(\mathbb{R}^{n}\right)} \operatorname{dim}\left\{x \in \mathbb{R}^{n} \lim _{t \rightarrow 0} e^{i t \Delta} f(x) \neq f(x)\right\}
$$

What about lower regularity $(s<n / 4)$ in higher dimensions?

Best known bounds in higher dimensions

$$
\alpha_{n}(s) \leq\left\{\begin{array}{cc}
n & s \in\left[0, \frac{n}{2(n+1)}\right) \\
n+1-\frac{2(n+1) s}{n}, & s \in\left[\frac{n}{2(n+1)}, \frac{n}{4}\right) \\
n-2 s, & s \in\left[\frac{n}{4}, \frac{n}{2}\right]
\end{array}\right.
$$

(Du-Guth-Li, Du-Zhang)
(Barceló-Bennett-Carbery-R.)
$n \quad n \quad, \quad s \in\left[0, \frac{n}{2(n+1)}\right)$ (Dahlberg-Kenig, Bourgain)
$\alpha_{n}(s) \geq \begin{cases}n+\frac{n}{n-1}-\frac{2(n+1) s}{n-1}, & s \in\left[\frac{n}{2(n+1)}, \frac{n+1}{8}\right) \quad \text { (Lucà-R.) } \\ 2(n+2) s\end{cases}$

$$
n+1-\frac{2(n+2) s}{n}, \quad s \in\left[\frac{n+1}{8} \frac{n}{4}\right)
$$

(Lucà-R.)
(Žubrinić)

$$
\alpha_{n}(s) \geq n+1-\frac{2(n+2) s}{n} \text { when } \frac{n}{2(n+2)} \leq s \leq \frac{n}{4}
$$

This follows from:

Theorem (Lucà-R.)
Let $n / 2 \leq \alpha \leq n$ and suppose that

$$
\operatorname{dim}\left\{x \in \mathbb{R}^{n} \quad \lim _{t \rightarrow 0} e^{i t \Delta} f(x) \neq f(x)\right\}<\alpha
$$

whenever $f \in H^{s}\left(\mathbb{R}^{n}\right)$. Then

$$
s \geq \frac{n}{2(n+2)}(n-\alpha+1)
$$

Proof

The Nikišin-Stein maximal principle does not hold in this context, and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

$$
f:=\sum_{j>1} f_{\theta_{j}}, \quad \theta_{j} \in \mathbb{S}^{n-1}
$$

where we take $R=2^{j}$ and normalise in a different way, so that

$$
\begin{gathered}
f_{\theta_{j}}(x):=e^{i \frac{1}{2} \theta_{j} \cdot x} f_{j}(x), \quad \widehat{f}_{j}=2^{-j(n \kappa-\varepsilon)} \chi_{\Omega_{j}}, \\
\Omega_{j}:=\left\{\xi \in 2 \pi 2^{j(1-\kappa)} \mathbb{Z}^{n}:|\xi| \leq 2^{j}\right\}+B\left(0, \frac{1}{10}\right) .
\end{gathered}
$$

Note that $\left|\Omega_{j}\right| \simeq 2^{j n \kappa}$, so that $\left\|f_{j}\right\|_{H^{s}} \simeq 2^{-j \frac{n \kappa}{2}+j \varepsilon+j s}$.
Then if $s<\frac{n \kappa}{2}-\varepsilon$ we can sum so that $f \in H^{s}$.
To generalise to the fractal case we will take $\frac{1}{n+2}<\kappa<\frac{n-\alpha+1}{n+2}$.

By the previous calculations, for all $x \in E_{j}:=\cup_{t \in T_{j}} X_{j}+t \theta_{j}$, where

$$
\begin{gathered}
X_{j}:=\left\{x \in 2^{j(\kappa-1)} \mathbb{Z}^{n}:|x| \leq 2\right\}+B\left(0,2^{-j}\right), \\
T_{j}:=\left\{t \in \frac{1}{2 \pi} 2^{2 j(\kappa-1)} \mathbb{Z}: 0<t<2^{-j}\right\},
\end{gathered}
$$

there is a $t_{j}(x) \in T_{j}$ such that $\left|e^{i t_{j}(x) \Delta} f_{\theta_{j}}(x)\right| \gtrsim 2^{j \varepsilon}$.
One can also show (essentially) that $\left|e^{i t_{j}(x) \Delta} \sum_{k \neq j} f_{\theta_{k}}(x)\right| \leq C$.
If $\kappa<\frac{1}{n+2}$, then $B(0,1 / 2) \subset \bigcap_{j>1} E_{j}$, and we are done.
If $\kappa \geq \frac{1}{n+2}$, we consider the limit set

$$
\limsup _{j \rightarrow \infty} E_{j}:=\bigcap_{j>1} \bigcup_{k>j} E_{k}
$$

and prove that this is α-dimensional.
For this we use that the limit is ' α-Hausdorff dense'.

Falconer's density theorem

Consider the Hausdorff content $\mathcal{H}_{\infty}^{\alpha}$ defined by

$$
\mathcal{H}_{\infty}^{\alpha}(E):=\inf \left\{\sum_{i} \delta_{i}^{\alpha}: E \subset \bigcup_{i} B\left(x_{i}, \delta_{i}\right)\right\} .
$$

Theorem (Falconer (1985))
Suppose that, for all balls $B_{r} \subset B(0,1)$ of radius r,

$$
\liminf _{j \rightarrow \infty} \mathcal{H}_{\infty}^{\alpha}\left(E_{j} \cap B(x, r)\right) \geq c r^{\alpha}
$$

Then $\operatorname{dim}\left(\lim \sup _{j \rightarrow \infty} E_{j}\right) \geq \alpha$.

The proof is completed by checking the density condition (\dagger) with $E_{j}=\bigcup_{t \in T_{j}} X_{j}+t \theta_{j}$ using a variant of the ergodic lemma.

