Pointwise convergence to initial data

Keith Rogers

MAL

NSTITUTO DE CIENCIAS MATEMATICAS

Université Paris Pierre et Marie Curie (Paris 6)

Warning: Many arbitrarily small ¢ have been identified with 0.

15th of February, 2019



| will review recent progress for Carleson’s question for the
Schrodinger equation i0yu + Au = 0 with initial data ug in the
Sobolev space H*(R"). That is, for which s can we be sure that
u(x,t) — up(x) as t — 0 for almost every x € R". First | will
present examples, due to Bourgain, Luca and myself, which show

that s > % — =L is necessary. We will see that spread out

2(n+1)
interference-type behaviour becomes a problem when n > 2. | will
then present maximal estimates, due to Du, Guth, Li and Zhang,
which show that s > % — ﬁ is sufficient. !_oosely spea.king,
these are a consequence of Strichartz-type estimates that improve
for spread out solutions. We will also consider the fractal dimension

version of the problem and the analogous questions for other PDE.



Summary

» Part 1: Set-up and introduction to the PDEs.

P> Part 2: Convergence for the heat equation.

» Part 3: Decay of the Fourier transform of fractal measures.
» Part 4. Convergence for the wave equation.

» Part 5(a): Counterexample for the Schrodinger equation.

» Part 5(b): Convergence for the Schrodinger equation.



Part 0:

Basic properties of the Fourier
transform



For Schwartz functions f : R” — C and g : R" — C, we write

€)= s [ e S0 200 = s [ @)

so that
f= (f)v, (Inversion formula)

— o 82 62
Af(§) = —[€°f(§),  where A:= 2 ot g

n

(78) () = frg()i= | flx-y)el)dy,

/f(x)g(x)dx—/ F(¢)g(€) de, (Plancherel)

and

Il = ([ 1FGoR )™ = ([ 7R de)" = 7 e



For Schwartz functions f : R” — C and g : R" — C, we write

~ 1 . 1 ;

F&) =7 | e™f(x)dx, g'(x):= / xEg(€) de,
€3] 2n)7? /Rn e (x)dx, g"(x) @7 Jon © g(£) d¢

so that
f= (f)v7 (Inversion formula)

AF(E) = —[€PF(),  wewrite o(A)f == (o(—|-[2)F)",
(F2) (0= Frg()i= | flx=nelr)dy,

/ f(x) g(x) dx = / F(€)8(€) de, (Plancherel)
R R

and

I i= ([ 1rGor )" = ([ 7R de)" = 7 e



Part 1:
PDEs to ODEs using the

Fourier transform



The heat equation

Oy = Au in R" x (0, 00)
u(,0) = in  R".

Taking the Fourier transform of the equation we obtain

{8ta\(€at) - _lg‘zﬁ(§7t)

Solving the ODE (with fixed &) this yields

a(e,t) = e tPg(e).
Inverting the Fourier transform, we write

u(x, t) = ePug(x) :== (e_t"Fﬁo)v.



The heat equation

Oy = Au in R" x (0, 00)
u(+,0) = uw in R".

Taking the Fourier transform of the equation we obtain

{ata(gat) = _|§‘2ﬁ(§7t)
u(€,0) = ()

Solving the ODE (with fixed &) this yields
) = e tFa(e).

Inverting the Fourier transform, we write

; / e e Gy ¢) de.

u(x, t) = ePug(x) := 272 Ja



The Schrodinger equation

oy = iAu in R xR
u(,0) = w in R".

Taking the Fourier transform of the equation we obtain

{8tﬁ(§) = —il¢lu 1)
u€,0) = w($)

Solving the ODE this yields

a(g,t) = e M ap(E).

Inverting the Fourier transform, we write

u(x,t) = "B uo(x) = (27r1)n/2 /R e S T £) d



The wave equation

u(-,0) = uo in R”

8ttu = Au in R"x R
Oru(-,0) = in R".

Taking the Fourier transform of the equation we obtain

Outi(&,t) = —[u(s,t)
u(¢,0) = uo (&)
owu(§,0) = w(é).

Solving the ODE this yields

(¢, t) = cos(tl¢))do(¢) + gL (e).

Inverting the Fourier transform, we write

sin(tv/—A)

u(-, t) = cos(tv/—A)ug + A ur.



The initial data

The Bessel potential Gs is defined via its Fourier transform by

Gs(€) = (141"

and satisfies
Gs(x) < c,,7s|x|_(”_5).

We take the initial data ug in the Bessel potential space
HS(R") :={ Gs+g : g€ L*(R")}

with norm

R 1/2
I = ([ 0+ 27RO d) - = Nl



Lemma (Pointwise convergence for smooth data)
Let f € HS(R") with s > n/2. Then

lim e®f(x) = f(x) forall x € R".

t—0

Proof: Taking s < n/2+ 2,

_ bef (-t _ 1
JEGHE (ems e

([1F@Piera)’ / ([l ey
(/ - ry|2: Lay)”
HS(/min{||;/’\225,1}2dy>1/2

s—n/2
Gt [|f] s -

(2m)"2]e B (x) — F(x)| =

| A

IN
~~

IN

A similar calculation works for the Schrodinger. equation. U



Hausdorff measure

For A C R" a Borel set,

HI(A) = inf{Zé,—“ AC|B(xid), bi< 5}.

Definition
The a-Hausdorff measure of A is

H(A) = lim H(A).




Hausdorff dimension

Remark
There exists a unique o € [0, n] such that

oo if a<a

H (A):{ 0 if a>a.

Definition

«g is the Hausdorff dimension of the set A:

dim(A) := ap.




Definition (Frostman measures)

We say a positive Borel measure p with supp(p) € B(0,1) is
a-dimensional if

B
calpt) == sup H(B(x,r) (j’ ) < o0.
x€R" r
r>0 )
du(x
W= [ [ B> P duty)
y j_—]. [x—y|~2=J y
/ Z ca(p)2772% du(y)
j=—1

<A(n) <oo ifa>d.

(67

Lemma (Frostman)

Let A C R" be a Borel set. The following are equivalent:
> H*(A) =0,
» 1(A) =0 for all a-dimensional .




Definition (Frostman measures)

A positive Borel measure p with supp(u) € B(0,1) is
a-dimensional if

B
Ca(pt) := sup M;(,r)) < 0.
x€eR" r
r>0 )
dp(x)
Ew(p) : // ; / ————du(y)
‘X - y’a j_—l [x—y|~2=J ‘X - y‘a
/ Z ca(p)2772% du(y)
j=—1

<A(n) <oo ifa>d.

(67

Lemma (Frostman)  u(A) < >, u(B(xi, ;) < calp) D2, 08
Let A C R" be a Borel set. The following are equivalent:

> HY(A)=0;
» 1(A) =0 for all a-dimensional .




Control of singularities

Lemma
Let 0 <s < n/2 and a > n—2s. Then, for all a-dimensional p,

11l (apy S calp)IF]]hs-

Thus if f € H5(R"), then
,u{x eR": f(x) = oo} =0 V a-dimensional
whenever a > n — 2s, so that by Frostman's lemma,
HO‘{X eR": f(x) = oo} =0,
whenever o« > n — 2s, so that

dim{x eR": f(x) = oo} <n-—2s.



Control of singularities

Lemma
Let 0 < s < n/2 and o > n—2s. Then, for all a-dimensional p,

1 ll2(apy S calp)lIFll s

Proof:  Writing f = G+ g = ((1+ |- |?)7%/28)", it suffices to
prove

1Gs * gl (dny S V En—2s(10) |8l 2(Rn)-
By Fubini’s theorem and the Cauchy-Schwarz inequality,
6ol < [ [ Gelx =) duto) gl o

< ||Gs * pll 2rey |8 1| L2y

Thus it remains to prove that

| Gs * MH%%Rn) S En—as(i).



We are required to prove that

|| Gs * MHB (R") ~ S En—as(i)-

By two applications of Plancherel’s theorem,

1Gs * pllzqeny = (L4 19)7F 2AHB(R"
:/ﬁ(g)(1+\£l )5 () d¢
< / 1% Gos(y) du(y)

// ‘X—y|” 25 = Cn,sEn—2s(,u)7

where we used that (14| -[2)7%)" = Gos < cps| - |72 O



Optimality of the control of singularities lemma
If dim(A) = o with & < n — 2s, then we can take a 7 such that

a<7vy<n-—2s.

Then
13(071)dist(-,A)_7 S L2(Rn)

but on the other hand

up = Gg * 1B(o,1)diSt('aA)_V} =00 onA

So there is initial data up € H*(R") which is singular on a set of
dimension av < n — 2s.



Proposition (Maximal estimates imply convergence)

Let o > ag > n — 2s. Suppose that, for all a-dimensional p,

< Culluol|ps-

| sue w0, , o

0<t<1

Then, for all ug € H®,

' LT < ap.
dlm{x eR tlﬂ u(t, x) # uo(x)} < ap

Proof: We are required to prove that for all & > «p,
H {x eR" lim u(t,x) # uo(x)} =0
t—0
whenever ug € H°. By Frostman's lemma, this follows by showing
u{x eR" lim u(t,x) # uo(x)} =0
t—0

whenever p is a-dimensional.



Proposition (Maximal estimates imply convergence)
Let o > ag > n — 2s. Suppose that, for all a-dimensional p,

< Culluol|ps-

| sue w0, , o

0<t<1

Then, for all ug € H®,

' LT < ap.
dlm{x eR tlﬂ u(t, x) # uo(x)} < ap

Proof: We are required to prove that for all & > «p,

HO‘{XGR" tlLrp(Ju(t,x) # uo(x)} =0

whenever uy € H°. By Frostman’s lemma, this follows by showing

M{XERH tlig})]u(t,x)—uo(x)|>/\}:0, V>0,

whenever p is a-dimensional.



Take h € H"/?+1 such that |lug — h||s < €, and note that

|u(x,t) = uo(x)| < [u(x, t) = unlx, t)] + |un(x, t) = h(x)| + [h(x) = wo(x)],

where up, denotes the solution with initial data h. Then

pix
< pfx:
+ pfx

+ pfx

im sup u(x, ) — uo(x)| > A}
im sup u(x,£) — uy(x, )] > A/3)
im sup us(x, £) = h(x)| > A/3}
limsup |h(x) — uo(x)| > A/3}

t—0



Take h € H"/?+1 such that |lug — h||s < €, and note that

|u(x,t) = uo(x)| < [u(x, t) = unlx, t)] + |un(x, t) = h(x)| + [h(x) = wo(x)],

where up, denotes the solution with initial data h. Then

pi{x:
< pfx:
+ p{x:

+ p{x:

imsup [u(x. £) — to(x)| > A}
lim sup |ug—h(x, £)] > A/3}
imsup Jun(x. £) — h(x)| > A/3)
limsup |h(x) — wo(x)] > A/3}.

t—0



Take h € H"/?+1 such that |lug — h||s < &, and note that
u(x, £) = uo(x)| < [u(x, t) — un(x, 1) + un(x, £) = h(x)| + [h(x) — wo(x)],
where up, denotes the solution with initial data h. Then

pu{x @ limsup|u(x, t) — ug(x)] > A}

t—0
< p{x : sup |uy—n(x,t)] >A/3}
0<t<1
+ p{x : limsup |up(x, t) — h(x)| > /3 }
t—0

+ p{x : limsup |h(x) — uo(x)| > A/3}.

t—0



Take h € H"/?*1 such that ||ug — h||ys < €, and note that
u(x, t) — uo(x)[ < [u(x;, t) = un(x, t)| + [un(x;, t) = h(x)[ + [h(x) — wo(x)],
where uj, denotes the solution with initial data h. Then

u{x : lim s(l)Jp\u(X, t) — up(x)| > A}

t—

< M{X - sup |Uuo—h(X7 t)| > )‘/3}
0<t«1

+ p{x : limsup|up(x, t) — h(x)| > A\/3}

t—0

+ p{x : |h(x) — up(x)| > \/3}.



Take h € H"/?*1 such that ||ug — h||ys < €, and note that
lu(x, t) — uo(x)[ < [u(x, t) = un(x, t)| + [un(x;, t) = h(x)| + [A(x) — wo(x)],
where uj, denotes the solution with initial data h. Then

pu{x : lim S(l),lp lu(x,t) — up(x)| > A}

t—

< pfx: sup [ug (. B)] > A/3}
o<t

+ 0
+ ufx  h(x) = uo(x)] > A/3}.



Take h € H"/?*1 such that ||ug — h||ys < €, and note that
lu(x, t) — uo(x)[ < [u(x, t) = un(x, t)| + [un(x;, t) = h(x)| + [A(x) — wo(x)],
where uj, denotes the solution with initial data h. Then

p{x : lim S(l),lp lu(x,t) — up(x)] > A A

t—

< pufx: sup [ug n(x )] > A/3 1A
o<t«1

+0
+ pf{x 1 |h(x) — uo(x)| > N\/3}A.



Take h € H"/?*1 such that ||ug — h||ys < €, and note that
lu(x, t) — uo(x)[ < [u(x, t) = un(x, t)| + [un(x;, t) = h(x)| + [A(x) — wo(x)],
where uj, denotes the solution with initial data h. Then

pf x : limsup|u(x, t) — ug(x)] > A }A
t—0
< Oiﬂgl‘“uo—hH‘Ll(dﬂ)
+0
+ p{x : |h(x) — uo(x)| > A/3}A.



Take h € H"/2+1 such that ||ug — h||ys < €, and note that
u(x, £) — uo(x)| < lu(x, £) = u(x, £)] + [un(x, £) — AC)| + [A(x) = uo(x)],
where up denotes the solution with initial data h. Then

pf{ x : limsup|u(x, t) — ug(x)] > A }A
t—0
<
< 1 sup Tsu—nlll g
+0
+ llh — uoll 11 (ap)-



Take h € H"/?+1 such that |lug — h||s < €, and note that
u(x, t) — uo(x)[ < [u(x;, £) = un(x, t)| + [un(x, t) = h(x)[ + [h(x) — wo(x)],
where uy, denotes the solution with initial data h. Then

pf x : limsup|u(x, t) — ug(x)] > A }A

t—0

< Hoiligl‘uuo—hH‘/_l(du)

+ 0
+ [[h — woll 1(dp)-

We use the maximal estimate for the first term and the third
term can be bounded by the control of singularities lemma so that

pf x : tlir?) lu(x, t) — uo(x)| > A A < G f|uo — hl|psrry < Cpe.

Letting € tend to zero, then X tend to zero, we are done. O



Part 2:

Convergence for the heat
equation



Theorem (Maximal estimate for the heat equation)

Let 0 <s < n/2and o > n—2s. Then, for all a-dimensional y,

et

| sup < GullFlls-

o<t<1 LY(dp) —

Proof: By linearising the operator, it will suffice to prove

‘/ / et (¢) de w(x) du(x)|

whenever t : R" — (0,00) and w : R” — S! are measurable.
Now, by Fubini and Cauchy-Schwarz, the LHS is bounded by

[ IR +IeR) dé/‘/ e et ) ()|

(1+1€12)
Squaring out the integral, it will suffice to show that

i(x—y t(x)+t(y 2 d§
/// (x=y)€ g~ (tHx)+e())Ie] (ERERT w(x)w(y) du(x)du(y) S En-as(n)-

< En2s(n) If [l




Thus, it remains to prove that, for 0 < s < n/2,

’ / oilc—y)€ (e 46 | o 1
(T 16PF |~ ey

uniformly for all choices of t(x), t(y) > 0. Recalling that

1
() = e T and (HP)7%)" = Gos < sl |72,

this would follow from

]- _'2>\ ]. ].
)\n/2e o * |,’nf2s S |_|nf2s'

uniformly in A. By changing variables, this is equivalent to

e_"|2 1 < 1

* | |n—2s ~ ‘ |n—25’

which can be checked by direct calculation. O



Corollary
Let f € H® with 0 < s < n/2. Then

dim{xER" o lim etAf(x);éf(x)<oo}§n—25.
t—0

As we saw before, f € H® can be singular on a set of dimension
less than n — 2s and so this is optimal.



Part 3:

Decay for the Fourier transform
of fractal measures



(5/X1:\0(§1,E) = [pn e~ *€ dx is independent of &;.

Thus, the Fourier transform of certain (n — 1)-dimensional
measures do not decay in every direction.

But perhaps they decay on average......

Let 5,(«) denote the supremum of the numbers /3 for which

T AP () S G (14

whenever r > 0 and p is a-dimensional and supported in B(0,1).

Question (Mattila (1987))
What is Bn() ?

Equivalently 8,(«) is the supremum of the numbers /3 for which
v n—1 _
| (gdor) HLl(d,u) SCirz (1+7r) B/zHg”B(Sf—l)'



Best known results

a, «ae(0,1/2],
Mattila (1987)
Pa(e) = ¢ 1/2, ac[l/2,1],

a/2, ac[l,2],  Wolff (1999).
a, a € (0,1],
Mattila (1987)

,83(@) Z ]-7 a € [17% )

a—g, ac€ [%,3], Du-Guth-Ou-Wang-Wilson-Zhang.

aQ, a € (0, ”51],

Mattila (1987)

/8n24(04) > n;l, (ORS [nE]-? 317

a—% ac|3,n], Du-Zhang.



The initial data

The Riesz potential /s is defined via its Fourier transform by

and satisfies
Is(x) < cnslx| 7179,

We now take the initial data in the Riesz potential space
HS(R") = {lixg: gel*R")}

with norm

N 1/2
Il = ([ e70R a) " = lilee



Lemma (Bridging lemma)
Let f € H(R") with 0 < s < n/2 and Bp(a) > n—2s. Then

dim{XeR”: lim (-2 (x) £ f(x )}

t—0

Proof: It will suffice to prove, for all a-dimensional g,

sup |et=2)"%F < Cullfll iys gy -
L ] €
Writing in polar coordinates,

-8y = | L[ it gixe 7
) =[5 [ e e e g

1 —/tr ix-w F
‘ %)n . / /S W) do(w) dr
/ / &% F(w) da,(w)‘ dr.
27T n/ sr—1




Lemma (Bridging lemma)

Let f € H(R") with 0 < s < n/2 and Bp(c) > n—2s. Then

dim{xeRn;me( ™2 (x) # F(x )}

Proof: It will suffice to prove, for all a-dimensional r,

_A)m/2f|

H sup e

fll s mny -
JSuP S Cullfll g (meny

Li(du) ™

Writing in polar coordinates,

it(—A)m/ 1 —itle|™ ix-€ F
B = [ [ e e de

_ 1 > —itrm ix-w 7

= ’(2@”/2 /0 e /s:’—1 ™ f(w) doy(w) dr
1 RPN

< )n/2/0 ‘(fda,)v(x)’ dr.

~ (2r




|eit(*A)m/2f(X)| S / ‘(?dgr)v(x)‘ dr,
0
so that, by Fubini,

7A)m/2f"

v = o 1) s

By the dual version of the Mattila inequality,
|(fdar)" <Cur'z(1+4r)" P20l ooy

H sup |e(
0<t<1

HLl(d,u)
for all < fBp(a), so that

<C/
L1 (dp)

Finally, by Cauchy-Schwarz,

N et e e
0 0

< Cullf ey

it( A)"’/2f’

5/2\|fHL2(Sn ndr.

H sup el
0<t<1

where for the final inequality we must take 8 > n —2s. U



Part 4:

Convergence for the wave
equation



Recall that, with initial data u(-,0) = up and J:u(-,0) = vy, the
solution to the wave equation satisfies

sin(tlé]) -
g e

. ' itle| _ a—itlé]
= (el 4 i eae) + ;(e,;)m(@

_ gl n)y | —ite L (oo E(E)
- 2<”°(§)+ e >+e 2<“°(’5) ie] )
=: e"I7 () +e I (€).

a(g,t) = cos(tl¢])do(¢)

With this notation, we can write

u(-,t) = e"t(*A)l/2

fy + e tCA

If the initial data is in HS x /_'/5—1’ both f and f_ belong to Hs.

Thus convergence of et=B)2 £ to f for all f € Hs implies
convergence of u(-,t) to up for all (ug, u1) € H® x HS L.



Now B(ar) > =La, so if @ > —L-(n — 2s) then B(a) > n — 2s.

Thus, by the bridging lemma,
Corollary

Let u be a solution to the Schrodinger equation with initial data
in H® or to the wave equation with initial data in H® x H~1. Then

dim{ x€eR": Iim0 u(x, t) # uo(x) } <

t— -

! [ (n—2s).

In particular,

Corollary

Let u be a solution to the Schrodinger equation with initial data
in H or to the wave equation with initial data in H* x L%. Then

dlm{xeR ; t'L%U(X,t)#UO(X)}<n—1-




Part b5:
The Schrodinger equation



Lebesgue a.e. convergence for Schrodinger

In 1979, Carleson asked for which s is it true that

lim e®™2f(x) = f(x), ae. x€R", VfecH(R")?

t—0

Improvements made by:

Carleson (1979), Dahlberg-Kenig (1982),

Carbery/Cowling (1985/83), Sjolin/Vega (1987/88),

Bourgain (1991/92), Moyua-Vargas-Vega (1996,/99),
Tao-Vargas-Vega (1998), Tao-Vargas (2000), Tao (2003),

Lee (2006), Bourgain (2013), Luca-R. (2015), Bourgain (2016),
Du-Guth-Li (2017), Du-Guth-Li-Zhang (2018), Du-Zhang (2018).



Lebesgue a.e. convergence for Schrodinger

In 1979, Carleson asked for which s is it true that

lim e®2f(x) = f(x), ae. x€R", VY fe H(R")?

t—0

Best known sufficient condition for convergence:
» s >1/4 with n=1 (Carleson);
» s> 1/3 with n=2 (Du-Guth-Li);

> s> 21— ﬁ with n >3 (Du-Zhang).

Best known necessary condition for convergence:
» s> 1/4 with n=1 (Dahlberg-Kenig);

> s>1- 2(n71+1) with n > 2 (Bourgain).



Part 5(a):

1 _ 1
s> 2(ni1) IS necessary for

Lebesgue a.e. convergence



Proof
Lemma (Nikigin-Stein maximal principle)

lim e®2f(x) = f(x), a.e x €R",
t—0

for all f € H*(R") if and only if there is a constant C such that
itA f‘

sup e
0<t<1

< Cl[fll s (mn)
L2(B(0,1))

for all f € H5(R™).

So it suffices to show that, if

A S ReIIfll2,

L2(B(0,1))

sup |e
0<t<1

whenever supp f C {¢ : [¢] < R} then s > 3 - 2(n1+1) = 2AntD)-




The concentrated example

Consider initial data f defined by

F(&)=lgeppn sothat |flz<R™

Then, if (x,t) € X x T, where

X :=B(0,R7Y?) and T:=(0,R7Y],

there is no cancellation in the integral:

’ ltAf-( ’_ ‘ n/2 /|£|< e eix-fefit|§\2d€ > CRn/2.



The travelling concentrated example
Instead Dahlberg-Kenig took
Fa(x) = e/2¥F(x),
where § € R", so that
e e (x)| = |e™AF(x — t0)] > cR"*

whenever
xe€X+th and teT=(0,R™).

This yields .

sup e fy(x)] > cR"?

o<1
whenever

X € U X + 6.
teT

When n =1, we can take § = R, so that

0,1)c |Jx+1o.
teT



Conclusion that s > 1/4 is necessary when n =1

Plugging into the maximal estimate,

sup ]eitA fdk’
o<t<1

< CR?|| gk ||2;
12(0,1)

and recalling that when x € (0,1),

sup [e™fu(x)| > cRY? and ||fyll2 < RY*,
0<t<1
we obtain

cRY* < CR®.

Letting R — oo, we see that s > 1/4.



Young's Double Slit Experiment

If.lg'l"it - Coherent
Propagation . = Laser
Direction Light

v

Barrier with

Destructive Double Slits

Interference

—Constructive
Interference




Constructive interference with different frequencies



The Barcelé-Bennett-Carbery-Ruiz-Vilela example

Consider the frequencies
Q:={¢e2rRVPZ" 1 |€] < R} + B(0, ),

for0< k<1,
and initial data defined by

—_—
foberv = 10,

so that

Hfbbcrv||2 =V |Q‘ < R%

This was originally considered in the context of Mattila's question
regarding decay of the Fourier transform of measures.



Periodic constructive interference

The interference pattern reappears periodically for a short time:

|eitAfbbcrv(X)‘ > C|Q|,
whenever (x,t) € X x T,
where
X :={xeRZ": |x] <1} +B(0,R™),

and 1
T = {t e —RADZ .0 <t < R—l}.
21



Periodic constructive interference

In order to avoid cancellation in the integral

1 / eix~§e—;t|£\2d§‘ > c|Q),
Q

itA _
€= fober (X)| = ‘(27.‘.)n/2

this time X is in some sense the dual-set of Q:
x-&e (R1Z) - (2nRY™FZ") = 2xL.
and T is some sense the dual-set of Q - Q:

tE- € € ( R~ 1)2) (27 R¥™FZ") - (2rRY™"Z") = 27 Z.



Periodic constructive interference

Thus

‘eitA fbbcrv(X)’ > C|Q‘

whenever (x,t) € X x T.

But the interference always reappears in the same places so

sup €2 fuper (%) > ¢|Q|
o<t<1

only for x € X.



The travelling interference example

Instead we take .
fa(x) = e'27%f(x),

where 8 € R”, so that

€25 (x)] = 27 (x — t0)],

which yields
sup A f(x)| > c[Q
0<t<1
whenever
xe [ JXx+10.

teT
If n=1and k < 1/3, we can take § = R" so that

(0,1) c [ J X +t0.
teT



Lemma (Luca-R.)

1

3 then there exists 6 € R" such that

Ifo< k<

B(0,1/2) c | X + to.
teT

1

This is optimal in the sense that it is not true for £k > 5.

After scaling and quotienting out Z", this follows from quantitive
ergodic theory on the torus T".
Lemma (Luca-R.)

Let 0 < § < 1. Then, there exists @ € S"~1 such that for all
y € T" there is a t € R°Z N (0, R) such that

1—

ly — 0] <R~




Conclusion that s > ) IS necessary

(+2

Plugging into the maximal estimate,

sup |e"2f)]
o<t

< CR?|fyl2,
1(B(0.1))

and recalling that when x € B(0,1/2),

sup_[2fy(x)| = ¢ and [fyll2 = /]9,

0<t«1

we obtain
Q] < CR®.

Then as Q2| > R"™, this yields
cRZ < CR".

n
Letting k — T and R — oo, we see that s > 52y



Combining the examples
Writing x = (x1,x) € R", we consider

f(x) = far(x1)fy(x)

with k¥ < and 0 € R 1,

1
2(n+1)

Note that ' ' .
e’tAf(x) = tA fdk(xl)e’tAfg(Y).

In order to make the first factor large, we must take t near to x1/R.
Thus we do not have as many good times as before.

However, we have taken fewer waves than before (smaller ).

By the ergodic lemma we can still find a § € R"~! and enough

good t's (near to x1/R), such that the integral of e*2f(x) has no
cancellation for all X € B(0,1/2).



Conclusion that s > IS necessary

2(n +1)

Plugging into the maximal estimate,

sup |e/tA fdk e’tAfg|
o<t

< CR*||fak 2l fa |2,

£2((0,1)xB(0,1)
and recalling that when (xq,X) € (0,1) x B(0,1/2),

sup |y ™2y > cRV2IQ| and a2l foll2 < RY*V/I€
o<t«1
we obtain

cRY4\/1Q| < CRS.

Then as |Q| > cR(=1)% " \ve see that
(n—1)k
R

n+1 n—1 n
so that s > (n++1) I(nt1) — 2(n+1)'D

s>1/4+

Finally we let Kk — (n+l)



Part 5(b):

s > 2(n<1) +1) Is sufficient for

Lebegue a.e. convergence.



Proof

By summing a geometric series, it suffices to show

/ sup |8 F(x)2dx < R7T ]
B(0,1) 0<t<1

whenever supp f C {¢€ € R" : R < |¢| < 2R}.

By scaling, this can be rewritten

/ sup B F(x)2dx < R7|F 3.
B(0,R) 0O<t<R?

whenever supp f C {€ € R" : 1< [¢] < 2}.

By Lee's temporal localisation lemma, this would follow from

/ sup B F(x)2dx < R7|F3.
B(0,R)

0<t<R

whenever supp f C {¢ € R" : 1< [¢| < 2}.



Covering B(0, R) x [0, R] by disjoint cubes Q x I of sidelength 1,

. R .
/ sup |e®Af(x)[2dx < Z/ / |2 f (x)|>dtdx
B(0,R) o /o

0<t<R
2
SY ([ letrtande)
Qxl

Q7I

2(n+1)
n—1 -

where p, =
Summing over all the cubes (< R"1) for which
[l e < ROV
Qxl
we get a good enough bound.

On the other hand, as [e®™Af(x)| < Hf”l < ||f]|2, we have

/ |t £ ()| Prdxdt < |12
Qxl



The pigeonhole principle

We can divide the remaining cubes Q x [ into (n+ 1)log R classes
Q; for which

277 |F)5 < /Q IleitAf(X)l”"dxdt < 27| f|I5.
X

Now, leaving only a single @ x I for each @, we have

itA ItA
sup |2 f(x)|dx < / f(x)|? dxdt
/B(O R) 0<t<R’ ( ’ Z Z Qxl )

j Qxleg;

so we can find a single j for which

/ sup |2 f(x)2dx < log R Z / |2 (x)[2dxdt.
( QxI

B(0,R) 0<t<R QxIeQ;



Theorem (Spread-improving Strichartz estimate)

Let p, = 2(n"j'11). Then

1/pn

3 / |2 F(x)|Pr dxdt < (#Q) ™1 R [f]

Qxieg;’ Q%!

Using this, the proof is completed by

1/2
/ |2 (x) |2 dxdt
Qxleg;’ Q!
ﬁ 1/Pn
<| U axit Z/ |e"AF (x)|Pr dxdt
QxI€Q; Qxleg; !
1
< (#Q))™ (#Q)) 71 RT ||
< R f]o. M

~



An ingredient for spread-improving Strichartz: Decoupling

Theorem (Bourgain-Demeter)
Let g4 = @ and write f = _f;, where i/r; are supported on

pieces of diameter R~Y/2. Then

2

1

) é ) |’

R e D A A
B(0,R) B(0,R)

T

v

This is used in d = n — 1 dimensions after a dimension reduction.



Part 5(c):

Refined convergence for the
Schrodinger equation



Maximal estimate for the Schrodinger equation
Theorem
Let n/4 < s < n/2and a > n—2s. Then, for all a-dimensional p,

sup |eAf H < Cullfll iys-
H0<t<1‘ | Li(dp) ul HH

Proof: By the same proof as for the heat equation, one finally
arrives to the inequality

1

| . |nf2s’

_,'H2 1

* | . ’nf2s

€ < Ch—os

This can also be shown to be true by more difficult direct
calculation as long as n/4 < s < n/2. O



Corollary
Let f € H® with n/4 < s < n/2. Then

dim{x eR" lim e™Af(x) # f(x)} <n-—2s.

t—0

Again this is sharp in the range s > n/4.

We cannot go below this regularity in one dimension due to the
necessary condition of Dahlberg-Kenig.

In the next section we will see that neither can we go below this
regularity in higher dimensions using a fractal version of the
Luca-R.-necessary condition.



ap(s) = sup dim { x € R" lim e™2f(x) # f(x) }
FEHs(RM) t—0

an(s) =n—2s, n/4 <s<n/2.

What about lower regularity (s < n/4) in higher dimensions?



Best known bounds in higher dimensions

n , S€& [07 m)
an(s) <4 n+1-— 2("7#)5, s € x5y a)  (Du-Guth-Li, Du-Zhang )
n—2s , seli5 (Barcelé-Bennett-Carbery-R.)
n , se]lo, 2(,77’;1)) (Dahlberg-Kenig, Bourgain)
s ] TR sl ) (LeR)
- 2 2 b
n+1—#, se [z (Luca-R.)

n—2s se (4, 5] (Zubrinic)



an(s)2n+1—2("—ﬁ2)swhen¢<s§

n
2(n+2) — 4

This follows from:

Theorem (Luca-R.)
Let n/2 < o < n and suppose that

; n ; it
dlm{xeR l!lrbe f(x)yéf(x)}<a

whenever f € H*(R"). Then

522(n—12)<n_a+1>’




Proof

The NikiSin-Stein maximal principle does not hold in this context,
and so we first give a direct proof of the Lebesgue measure result.

We consider a sum of the previous initial data

Fi=) fo, 0es

J>1
where we take R = 2/ and normalise in a different way, so that

foy(x) = e'2%%f(x),

—j(ns—e)

g"\)

XQ;»

= {¢ e 2n2=Mzn  |g] <27} + B(0, ).
Note that |Q;| ~ 2/™, so that ||f;||ys o~ 27J% Tt
Then if s < 7 — ¢ we can sum so that f € H°.

To generalise to the fractal case we will take 5 < k < ”nj‘jl.



By the previous calculations, for all x € E; := UseT, Xj + t0), where
X; = {x e 20+=V7" . |x| <2} + B(0,27),
L oj(k—1) —j
Ti={te —2¥Vz o<t <27},
27
there is a t;(x) € T such that |12 f (x)| > 2/°.
One can also show (essentially) that |e/5()4 >k o (X)) < C.

If k < then B(0,1/2) C Ej, and we are done.

+2' i>1

1 . . .
If K > o We consider the limit set
limsup E; := m U Ey
J7o0 Jj>1k>j

and prove that this is a-dimensional.

For this we use that the limit is ‘a-Hausdorff dense’.



Falconer's density theorem

Consider the Hausdorff content ‘HS, defined by

HO(E) = inf { Za,.a CEC U B(x,-,a,-)}.

Theorem (Falconer (1985))
Suppose that, for all balls B, C B(0,1) of radius r,

liminf HE(E; N B(x, r)) > cr. (1)

Jj—oo

Then dim (Iim SUPj 00 EJ) > a.

The proof is completed by checking the density condition (f) with
Ei = UteTj Xj + tf); using a variant of the ergodic lemma. O



