A UNIFIED APPROACH TO THREE THEMES
IN HARMONIC ANALYSIS

VICTOR LIE

1. Formulation of the problem - informal.

This course aims to present a new and unified approach to three main
distinct themes in Harmonic Analysis:

e (I) The Linear Hilbert Transform and Maximal Operator along vari-
able curves (see (2) and (3));

e (IT) Carleson Type operators in the presence of curvature (see (4)
and (5));

e (ITI) The bilinear Hilbert transform and maximal operator along
variable curves (see (6) and (7)).

Specifically, we plan to investigate the following

Main Problem.(Informal) For each point x € R we associate a curve I'y =
(t, y(x,t)) in the plane, where here t € R and

(1) Vo) =2, ) - R = R,

is a real function obeying some “suitable” smoothness and non-zero curva-
ture conditions in the t-parameter. Define now the variable family of curves
in the plane I' = {I'z }(zery-

Task: Under minimal conditions on the curve I' (e.g. minimal regularity
in the x-variable), study the LP-boundedness, 1 < p < oo, of the following
operators:

e the linear Hilbert transform along I' defined as
(2)
Hr : S(R?) — S'(R?),

Hr(f)(z,y) = pov. /R f@—t, g+ ()

dt
7 )
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e the (sub)linear maximal operator along I' defined as

(3)
Mr : S(R?) — L>®(R?),
1 h
Mrp(f)(z,y) = sup —— !f(ﬁc =t y+y(x,t))dt;
h>0 2h

e the v - Carleson operator gzven by

(4)
) — L™ (]R) ,
y dt
7 [ Tt

e the v - Hardy-Littlewood operator given by

(5)
M, : S(R) — L= (R),
M, f(z) :=sup |— fla—1t) @D dt|
a>0 2a —a

e the bilinear Hilbert transform along I' defined as

(6)
HE : S(R) x S(R) — S'(R),
dt
HE(G.9)(a) = pv. [ Flo =00l + (@)

e the (sub)bilinear maximal operator along I' defined as

(7)
ME . S(R) x S(]R) —s L=(R),
1
ME(f, g)(x) := sup an | If(:E —t) g(x +(z,1))] di;
h>0

2. Historical context; Motivation.

The above three themes have a very deep and inter-related history!:

- (I) originates in the area of PDE through the study of the constant
coefficient parabolic operators initiated by F. Jones ([18]), E. Fabes ([12])
and E. Fabes and M. Riviere ([11]). Departing from this, E. Stein and S.
Wainger and a bit later Nagel, Riviere, and Wainger initiated a systematic
study of this theme that gradually relied on Van der Corput estimates,
orthogonality methods, Fourier methods, Littlewood-Paley square function
techniques etc. ([38], [30], [32], [31], [35], [36], [39]). Further important
developments appeared after mid eighties - see e.g. [7], [33], [4], [2] and

IThe bibliography below is far from being exhaustive.
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more recently [6] and [22]. In a different context, theme (I) can be related
- as a suitable model case - with the celebrated Zygmund’s differentiation
conjecture along vector fields (see e.g. [1], [16], [10]).

- (IT) can be traced back to the seminal 1910’s conjecture of Luzin (][29])
regarding the almost everywhere convergence of the Fourier series associ-
ated to functions in L?(II). The positive resolution of this conjecture was
delivered by L. Carleson half a century later in [5] by developing fundamen-
tal new tools that are now part of what we call the area of time-frequency
analysis. His result is essentially equivalent with the (weak) L? bounded-
ness of the operator introduced in (4) in the case y(x,t) = a(z)t with a(-)
being an arbitrary measurable function. Several extensions of Carleson’s
result appeared later with two of the best known of them provided by R.
Hunt ([17], LP case for 1 < p < oo) and Sjolin ([34], the higher dimensional
analogue). Closely related with the development of (I) and (II) is the above
mentioned work of E. Stein and S. Wainger on the singular oscillatory inte-
gral expressions/operators in [38] which later led Stein to consider maximal
singular oscillatory integrals on Heisenberg groups and eventually formulate
the so called Polynomial Carleson Operator Conjecture ([37], [40]) whose
main (one dimensional) case was solved by the author in [26]. This latter
result is essentially equivalent with the (weak) L? boundedness of the oper-
ator in (4) in the case y(z,t) = Z;l:l a;j(z)t where here d € N fixed and
a;(-) are arbitrary measurable functions.

- (III) has - for suitable curves vy(x,t) = 7(t) - early correspondences in
ergodic theory specifically with the long-studied problem of understanding
the LP-norm convergence of (non-)conventional bilinear averages. Within
Harmonic Analysis, the plenary manifestation of this theme derives from the
study of Cauchy transform along Lipschitz curves initiated by A. Calderon
([3], [9])- Indeed, in this setting Calderon was naturally led to conjecture the
boundedness? of the Bilinear Hilbert Transform which is the object defined
in (6) for the zero-curvature case y(x,t) = t. This conjecture of Calderon
was solved by M. Lacey and C. Thiele in the celebrated works [19] and [20].
The analogue result for (7) was proved by M. Lacey in [21].

For the nonzero-curvature case, e.g. ~y(x,t) = y(t) = 2?12 ajt!, with
d > 1 and a; € R 3 the first explicit example was studied in [24], in the
special case of pure monomials. There, X. Li proved the L*(R) x L*(R) —
LY(R) boundedness of HE relying on the so-called o-uniformity concept
introduced in [8] and inspired by Gowers’s work in [13]. In [27], [28] the
author proved the maximal possible range up to the end-points for Hllf with
v belonging to a suitable classes of curves N'F that includes in particular
any Laurent polynomial with no term of degree £1. The proof of these last
results combines elements of time-frequency analysis (Gabor frames) with
orthogonality methods.

2For Holder exponents within the “Banach triangle”.
3Essential here is that the term at is excluded from the definition of ~(t).
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3. Main results - informal

Main Theorem. Let I' = {T'; }.cr be a family of (twisted) variable curves
defined by Ty = (t,y(x,t)) with v: R? — R measurable.
Assume now that
~ € M,NF,,

that is, at an informal level one has*

(8)

e v(-) :=~(-, t) is z—measurable for every t € R\ {0};

o v.(+) :==(x, -) is finitely piecewise t—smooth within the class C*(R\
{0}) for almost everywhere x € R;

e v is “non-flat” (that is it obeys a non-zero curvature condition) near
origin and infinity; [In particular, outside of a controlled region,
v can be decomposed in a finite number of pieces on which it has
x—uniform non-vanishing curvature in the t—variable.]

e v obeys a suitable non-degeneracy condition.

Then for any 1 < p < oo we have that

(1) Hr and Mr are bounded operators from LP(R?) to LP(R?);
(2) Cy and M., are bounded operators from LP(R) to LP(R).

Observation 1. Following some of the key ideas introduced in our study -
under suitable conditions imposed on y - one can also obtain the LP bounded-
ness of the Bilinear Hilbert transform and Maximal operator corresponding
to (6) and (7). Thus, we are able to provide a unitary method for all the
operators defined in the statement of our Main Problem, and in particular
to identify and highlight as natural a common approach to both the singu-
lar and the maximal operators within each class of objects belonging to the
itemization (I) - (III) at the beginning of our introduction. Moreover, as
a consequence of these methods, we are able to immediately encompass and
generalize many of the previous results - to only mention here few - [40],
[14], [15], [23], [24], [25], [27], [28] and part of [16].

We end this section by quoting two consequences of our Main Theorem:
Corollary 1. Letd € N and ®

(9) Aat) = ay(a) 9

J=1

where here {ozj};-l:l C R\ {0, 1} and {aj};l:l measurable functions.

4Be10w, the class C?F simply means the standard C**° where here § can be any number
strictly greater than zero.

5Throughout the paper, for convenience, we allow a notational abuse and introduce
the following convention: given a, t € R we let t© stand for either [¢|* or sgn (t) |¢|“.



Then, one has that
(10) v € M,NF, .
Corollary 2. Let 1 < p < 0o, d € N and {aj};l:l C R\ {1}. Then the

following operators are bounded operators from LP(R) to LP(R):
e the generalized Polynomial Carleson-type operator given by

(1) Caafl@)i= swp|po. [ f<x—t>ei2?—1%f‘”ﬂ, [ eS®);

{a;}}_,CR

o the generalized Polynomial Hardy-Littlewood-type operator given by

1 a . s
(12) Myaf(z):= sup fla—t)d T qtl | f e SR);
{a;}4_ CR 2a J_,
715=1
a>0

4. Aim of our course

Our course will revolve around two main components:

e we will start by presenting the historical evolution of our three
themes and discuss the inter-connections among them as described
in Section 2;

e we will outline some of the main ideas in proving our main theorem
and provide a unitary treatment of the above three themes keeping
though our main focus on the first two and only very briefly - if
the time allows - touch the third theme concerning the (sub)bilinear
operators given by (6) and (7).
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