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Notation: Given (X , ‖ · ‖X ) and (Y , ‖ · ‖Y ) two Banach spaces, we denote by L(X ,Y ) the set of
continuous linear maps acting from X to Y . Endowed with the norm

‖T‖L(X ,Y ) := sup
x∈X ,‖x‖X =1

‖Tx‖Y ,

we have that L(X ,Y ) is a Banach space.

N is the set of non-negative integers (be careful 0 ∈ N) and Z is the set of integers.
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We focus on the study of complex Hilbert spaces.

Definition
Given a complex vector space X, a scalar product is a map 〈·, ·〉 : X × X → C such that for all
x , y , z ∈ X and λ ∈ C :

1) 〈x + λy , z〉 = 〈x , z〉+ λ〈y , z〉,
2) 〈z, x + λy〉 = 〈z, x〉+ λ〈z, y〉,

3) 〈x , y〉 = 〈y , x〉
4) 〈x , x〉 = 0 if and only if x = 0.

A vector space X endowed with a scalar product is a pre-Hilbert space.

Note that the third line gives 〈x , x〉 ≥ 0.

Remark
Here we take the convention to be anti-linear with respect to the first variable. It is a choice.
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Proposition

Let (X , 〈·, ·〉) be a pre-Hilbert space. We set ‖x‖ :=
√
〈x , x〉. We have that ‖ · ‖ is a norm, i.e., for

all x , y ∈ X and λ ∈ C
1 ‖x‖ = 0 if and only if x = 0,
2 ‖λx‖ = |λ| · ‖x‖,
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

If (X , ‖ · ‖) is complete, we say that X is a Hilbert space.

Proposition
We say that (en)n∈N is a Hilbert basis for a Hilbert space (H, ‖ · ‖), if

1 〈en, em〉 = δn,m for all n,m ∈ N. In particular, ‖en‖ = 1 for all n ∈ N,
2
∑

n∈N Cen = H.

Remark
Sometimes it is useful to take Z instead of N in this definition.
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Definition
A metric space (X , d) is separable if and only if there is a countable set F ⊂ X such that F is
dense in X.

Proposition
Given a Hilbert space (H, ‖ · ‖). The following statements are equivalent:

1 H is separable,
2 H has a Hilbert basis.

Proof:

2 =⇒ 1: Given (en)n a Hilbert basis, take F := ∪nQen.
1 =⇒ 2: We have F = ∪nfn with fn ∈ H. Use Gram-Schmidt on (fn)n.

Remark
From now on, all the Hilbert space are complex and separable.
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Two main examples:
1) Set H := `2(N;C) := {f : N→ C, such that

∑
n |fn|2 <∞} endowed with

〈f , g〉 :=
∑
n∈N

fngn,

for f , g ∈ `2(N;C).

For all n ∈ N, set en : N→ C given by en(m) := δn,m. We have that (en)n∈N is a Hilbert basis.

2) Set H := L2([−π, π];C), endowed with

1
2π

∫ π

−π
f (x)g(x) dx ,

with f , g ∈ H.

For all n ∈ Z , set en(x) := einx . We have that (en)n∈Z is a Hilbert basis.
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We turn to the polarisation properties.

Proposition

Let X be C-vector space. We take Q : X ×X → C to be a sesquilinear form which is linear on the
right and anti-linear on the left, i.e.,

1) Q(x , y + λz) = Q(x , y) + λQ(y , z),

2) Q(x + λy , z) = Q(x , z) + λQ(y , z),

for all x , y , z ∈ X et λ ∈ C. Set Q(x) := Q(x , x) (because this is not necessarily real!). We have
the following identity of polarisation:

Q(x , y) =
1
4

3∑
k=0

ikQ(ik x + y).

Proof:

Develop the right hand side.
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Remark
In particular we get:

〈x , y〉 =
1
4

3∑
k=0

ik‖ik x + y‖2.

In other words, given a norm that comes from a scalar product, we can recover the scalar product.

Remark
When the vector space is real a bilinear form Q satisfies:

Q(x , y) =
1
4

(Q(x + y)−Q(x − y)) ,

for all x , y ∈ X .
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Corollary

Given H a Hilbert space and S,T two bounded operators. If

〈x ,Sx〉 = 〈x ,Tx〉, pour tout x ∈ X

then S = T .

Proof:

Set Q1(x , y) := 〈x ,Sy〉 and Q2(x , y) := 〈x ,Ty〉 for all x , y ∈ H. There are quadratic forms.

By hypothesis we have Q1(x) = Q2(x) for all x ∈ H. In particular we have:

〈x ,Sy〉 =
1
4

3∑
k=0

ikQ1(ik x + y) =
1
4

3∑
k=0

ikQ2(ik x + y) = 〈x ,Ty〉.

which is the result.
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Proposition (Riesz’s isomorphism)

Set φ ∈ H′, where H′ is the set of anti-linear continuous forms defined on H. Then there exists a
unique xφ ∈ H such that

φ(x) = 〈x , xφ〉,

for all x ∈ H. Moreover ‖xφ‖H = ‖φ‖H′ .

Remark
Here we have chosen the space of anti-linear forms instead of the space of linear forms. It seems
a bit peculiar but this provides that

Φ :

{
H′ →H
φ 7→ xφ

is a (linear) isometry of Hilbert spaces.
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Proposition

Set T ∈ L(H). There is a unique S ∈ L(H) so that

〈x ,Ty〉 = 〈Sx , y〉,

for all x , y ∈ H. We denote it by T∗ := S. Moreover, we have:

‖T‖ = ‖T∗‖.

Remark
We have T∗∗ = T .

Proposition

Given T ∈ L(X), we have:
‖TT∗‖ = ‖T∗T‖ = ‖T‖2.
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Definition
Let T ∈ L(H),

1) T is normal if T∗T = TT∗.

2) T is self-adjoint if T = T∗.

3) T is unitary if T∗T = TT∗ = Id.

Remark
Set T ∈ L(H). Let U ∈ L(H), be unitary. Then, σ(T ) = σ(UTU∗).

Exercise
Set T ∈ L(H). We have that T is unitary if and only T is surjective and is an isometry, i.e.,
‖Tx‖ = ‖x‖, for all x ∈ H.
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Definition
Let T ∈ L(H).

1) The resolvent set of T is:

ρ(T ) := {λ ∈ C, λId− T is invertible}.

2) If λ ∈ ρ(T ), we define the resolvent Rλ(T ) (or simply Rλ) of T at λ by

Rλ(T ) := (λId− T )−1.

3) The spectrum of T is
σ(T ) := C \ ρ(T ).

4) We say that λ ∈ C is an eigenvalue of T if λId− T is not injectif, i.e., ker(λId− T ) 6= {0}. The
point spectrum is given by:

σp(T ) := {λ ∈ C, ker(λId− T ) 6= {0}}.

Remark
If λ ∈ ρ(T ), Rλ(T ) ∈ L(H) (Banach’s Theorem).

Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 14 / 139



Remark
We have:

1) When H is of finite dimension and T ∈ L(H), the rank theorem states that T is surjective if and
only if T is injective if and only if it is bijective. In particular

σp(T ) = σ(T ), when dimX <∞

The situation is very different in infinite dimension.

2) The point spectrum is usually different from the set of eigenvalues.
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Proposition

Let T ∈ L(H).

1) If |λ| > ‖T‖ then λ ∈ ρ(T ). In particular σ(T ) ⊂ D(0, ‖T‖). Moreover,

‖(λ− T )−1‖ ≤
1

|λ| − ‖T‖
.

2) ρ(T ) is open and non-empty in C.

3) σ(T ) is compact and non-empty in C.

4) σp(T ) ⊂ σ(T ).
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Definition
Given T ∈ L(H). We call spectral radius:

rad(T ) := inf{r , σ(T ) ⊂ B(0, r)}.

Proposition
Let H ∈ L(H), we have

rad(H) = lim
n→∞

‖Hn‖1/n.

Moreover, if H is self-adjoint, then rad(H) = ‖H‖. In particular ‖H‖ or ‖H‖ belongs to σ(H).

Remark
For

H :=

(
0 1
0 0

)
we have rad(H) < ‖H‖.
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Proposition (Identities of the resolvent)
Let S,T be bounded operators in H.

1) Suppose that λ ∈ ρ(S) ∩ ρ(T ). We have:

Rλ(T )− Rλ(S) = Rλ(T )(T − S)Rλ(S).

2) Suppose that λ, µ ∈ ρ(T ), then

Rλ(T )− Rµ(T ) = (µ− λ)Rλ(T )Rµ(T ) = (µ− λ)Rµ(T )Rλ(T ).

In particular Rλ and Rµ commute.

3) The map R·(T ) := λ 7→ Rλ(T ) acting from ρ(T ) into GL(H) is analytic with derivative:

dRλ
dλ

= −R2
λ.
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Proposition

Let T ∈ L(H) be self-adjoint. Then

1) σ(T ) ⊂ R.

2) For z ∈ C \ R, we have z /∈ σ(T ) and

‖(zId− T )−1‖ ≤
1
=(z)

.

3) Let λ1 and λ2 two distincts eigenvalues of T , Then ker(λ1Id− T ) ⊥ ker(λ2Id− T ).

4) T has at most a countable number of eigenvalues.
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Proposition
Let T ∈ L(H) be self-adjoint. Then

‖A‖ = sup
‖x‖=‖y‖=1

|〈x ,Ay〉| = sup
‖x‖=1

|〈x ,Ax〉|.

Proposition

Let T ∈ L(H) be self-adjoint. Let

m := inf{〈x ,Tx〉, x ∈ H with ‖x‖ = 1}
M := sup{〈x ,Tx〉, x ∈ H with ‖x‖ = 1}.

Then σ(T ) ⊂ [m,M]. Moreover, m and M belong to σ(T ).
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We can also compute the spectrum with the help of approximate eigenvalues:

Proposition
Let H ∈ L(H) be self-adjoint. Then λ ∈ σ(H) if and only if

∃fn ∈ H, ‖fn‖ = 1 and ‖(H − λ)fn‖ → 0.
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Some examples :

Proposition

Let H := `2(N;C). Let F ∈ `∞(N;C). We denote by F (Q) the operator of multiplication by F, i.e.,
for all f ∈ H,

(F (Q)f )(n) := F (n)f (n), for all n ∈ N.

1 F (Q) is bounded.
2 F (Q) is normal.
3 F (Q) is self-adjoint if and only if F (n) ∈ R, for all n ∈ N.
4 F (Q) is unitary if and only if |F (n)| = 1, for all n ∈ N.
5 ∪n∈N{F (n)} is the set of eigenvalues of F (Q).
6 σ(F (Q)) = ∪n∈N{F (n)}.
7 F (Q) is compact if and only if limn→∞ F (n) = 0.
8 F (Q) is of finite rank if and only if F has finite support.

Exercise
Give F such that σ(F (Q)) = [0, 2].
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Proposition

Let H := L2([0, 1];C). Let F ∈ C0([0, 1];C). We denote by F (Q) the operator of multiplication by
F, i.e., for all f ∈ H,

(F (Q)f )(x) := F (x)f (x), for all x ∈ [0, 1].

1 F (Q) is bounded.
2 F (Q) is normal.
3 F (Q) is self-adjoint if and only if F (x) ∈ R, for all x ∈ [0, 1].
4 F (Q) is unitary if and only if |F (x)| = 1, for all x ∈ [0, 1].
5 {λ,Leb(F−1(λ)) > 0} is the set of eigenvalues of F (Q). The eigenvalues are of infinite

multiplicity.
6 σ(F (Q)) = F ([0, 1]).
7 F (Q) is compact if and only if F ≡ 0

Exercise
State this result for F ∈ L∞([0, 1],C).
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Let H := `2(Z;C). We define the adjacency matrix by:

(Af )(n) := f (n − 1) + f (n + 1), for f ∈ H.

It is a self-adjoint operator. Indeed we have for all g, f ∈ H:

〈f ,Ag〉 =
∑
n∈Z

f (n) (g(n + 1) + g(n − 1)) =
∑
n∈Z

f (n + 1) + f (n − 1)g(n) = 〈Af , g〉

The Fourier transform F : `2(Z)→ L2([−π, π]) is defined by

(F f )(x) :=
1
√

2π

∑
n

f (n)e−ixn, for all f ∈ `2(Z) and x ∈ [−π, π].

It is unitary and its inverse is given by:

(F−1f )(k) =
1
√

2π

∫ π

−π
f (x)eikx dx , for all f ∈ L2([π, π]) and k ∈ Z.

We take advantage of the Fourier Transform to study A and set:

Ã := FAF−1.

Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 24 / 139



Let H := `2(Z;C). We define the adjacency matrix by:

(Af )(n) := f (n − 1) + f (n + 1), for f ∈ H.

It is a self-adjoint operator. Indeed we have for all g, f ∈ H:

〈f ,Ag〉 =
∑
n∈Z

f (n) (g(n + 1) + g(n − 1)) =
∑
n∈Z

f (n + 1) + f (n − 1)g(n) = 〈Af , g〉

The Fourier transform F : `2(Z)→ L2([−π, π]) is defined by

(F f )(x) :=
1
√

2π

∑
n

f (n)e−ixn, for all f ∈ `2(Z) and x ∈ [−π, π].

It is unitary and its inverse is given by:

(F−1f )(k) =
1
√

2π

∫ π

−π
f (x)eikx dx , for all f ∈ L2([π, π]) and k ∈ Z.

We take advantage of the Fourier Transform to study A and set:
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Let f ∈ L2([−π, π]). We have:

(Ãf )(x) = F (AF−1f )(x) =
1
√

2π

∑
n

e−ixn(AF−1f )(n)

=
1
√

2π

∑
n

e−ixn
(

(F−1f )(n + 1) + (F−1f )(n − 1)
)

=
1

2π

∑
n

e−ixn
∫ π

−π

(
ei(n+1)t f (t) + ei(n−1)t f (t)

)
dt

=
1

2π

∑
n

e−ixn
∫ π

−π
eint 2 cos(t)f (t) dt = 2 cos(t)f (t).

Therefore
Ã := FAF−1 = 2 cos(Q).

In particular:
σ(A) = [−2, 2]

and A has no eigenvalue.

Exercise
Compute the spectrum of A using the approximate eigenvalues approach.
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Let H := `2(N;C). For f ∈ `2(N), we define the adjacency matrix by:

(Af )(n) :=

{
f (n − 1) + f (n + 1), if n ≥ 1,
f (1), if n = 0.

The Fourier transform F : `2(N)→ L2
odd([−π, π]) is defined by

(F f )(x) :=
1
√

2π

∑
n∈N

f (n + 1) sin((n + 1)x), for all f ∈ `2(N) and x ∈ [−π, π].

It is unitary.

We take advantage of this Fourier transform and obtain similarly

Ã := FAF−1 = 2 cos(Q).

In particular:
σ(A) = [−2, 2],

and A has no eigenvalue.

Exercise
Compute F−1 and show that Ã = 2 cos(Q).
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Let H := `2(Z;C2), endowed with the scalar product

〈f , g〉 =
∑
n∈Z
〈f (n), g(n)〉C2 =

∑
n∈Z

f1(n)g2(n) + f2(n)g2(n).

where f , g ∈ H, f (n) =

(
f1(n)
f2(n)

)
, and g(n) =

(
g1(n)
g2(n)

)
.

Set m ≥ 0. The Dirac discrete operator, acting on `2(Z,C2), is defined by

Dm :=

(
m d
d∗ −m

)
,

where d := Id− τ and τ is the right shift, defined by

τ f (n) = f (n + 1), for all f ∈ `2(Z,C).

Note that τ∗f (n) = f (n − 1), for all f ∈ `2(Z,C).
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The operator Dm is self-adjoint and we have:

D2
m =

(
∆ + m2 0
0 ∆ + m2

)
,

where ∆ = 2−AZ. Recall that σ(∆) = 2− σ(AZ) = [0, 4].

Since we have a direct sum, we have:

σ(D2
m) = [m2,m2 + 4].
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To remove the square above Dm, we define the symmetry S on `2(Z,C) by

Sf (n) = f (−n)

and the unitary operator on `2(Z,C2)

U :=

(
0 iS
−iS 0

)
.

Clearly U = U∗ = U−1. We have that

UDmU = −Dm.

In particular, we have

σ(Dm) = σ(−Dm) =
[
−
√

m2 + 4,−m
]
∪
[
m,
√

m2 + 4
]
.

Exercise

Show that Dm is unitarily equivalent to

( √
m2 + 2− 2 cos(Q) 0

0 −
√

m2 + 2− 2 cos(Q)

)
,

which acts in L2([π, π],C2). Compute the spectrum in an alternative way.
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Let V be a finite or countable set and let E := V × V → {0, 1} such that

E (x , y) = E (y , x), for all x , y ∈ V .

We say that G := (V , E ) is an non-oriented graph with edges E and vertices V .

We say that x , y ∈ V are neighbours if E (x , y) = 1. We write: x ∼ y and
N (x) := {y ∈ V, x ∼ y}.

The degree of x ∈ V is given by:

degG(x) := |{y ∈ E | x ∼ y}|.

Hypotheses: degG(x) <∞ and E (x , x) = 0 for all x ∈ V .
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Set H := `2(V ;C), endowed with 〈f , g〉 =
∑

x∈V f (x)g(x).

The Laplacian is given by:

∆f (x) =
∑
y∼x

(f (x)− f (y)), for all f ∈ Cc(V ).

The adjacency matrix is given by

Af (x) =
∑
y∼x

f (y), for all f ∈ Cc(V ).

Note that ∆ = degG(Q)−A. They are both symmetric on Cc(V).
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Proposition
We have:

1

∆ bounded ⇐⇒ A bounded⇐⇒ deg(·) bounded.

In particular, is deg(·) is bounded then ∆ and A are self-adjoint.
2

0 ≤ 〈f ,∆f 〉 ≤ 2〈f , deg(Q)f 〉, for all f ∈ Cc(V ).

In particular, σ(∆) ⊂ [0, 2 supx∈V deg(x)].

Proof:

We start with the second point.

〈f ,∆f 〉 =
1
2

∑
x∈V

∑
y∈V

E (x , y)|f (x)− f (y)|2

≤
∑

x∈V

∑
y∼x

(|f (x)|2 + |f (y)|2) = 2〈f , deg(Q)f 〉,

for f ∈ Cc(V ).
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We turn to the first point. For ∆, using 2) and that 〈δx ,∆δx 〉 = deg(x) we have the equivalence
between ∆ and deg.

We focus on A.

|〈f ,Af 〉| =

∣∣∣∣∣∣
∑
x∈V

f (x)
∑
y∼x

f (y)

∣∣∣∣∣∣ ≤ 1
2

∑
x

∑
y∼x

(
|f (x)|2 + |f (y)|2

)
= 〈f , deg(Q)f 〉.

and on the other side, since E(x , y) ∈ {0, 1}, we have:

‖Af‖2 =
∑

x

∣∣∣∣∣∣
∑
y∼x
E(x , y)f (y)

∣∣∣∣∣∣
2

≥
∑

x

∑
y∼x
E(x , y) |f (y)|2 =

∑
x

∑
y∼x
E(x , y) |f (x)|2

= 〈f , deg(Q)f 〉.

which ends the proof.
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Consider a tree G = (E,V), a connected graph with no cycle. Due to its structure, one can take
any point of V to be a root. We denote it by ε.

ε S0

• • S1

• • • • • • S2

We define inductively the spheres Sn by S−1 = ∅, S0 := {ε}, and Sn+1 := N (Sn) \ Sn−1. Given
n ∈ N, x ∈ Sn, and y ∈ N (x), one sees that y ∈ Sn−1 ∪ Sn+1.
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We write x ∼> y and say that x is a son of y , if y ∈ Sn−1, while we write x <∼ y and say that x is
a father of y , if y ∈ Sn+1.

Notice that ε has no father.

Given x 6= ε, note that there is a unique y ∈ V with x ∼> y , i.e., everyone apart from ε has one
and only one father. We denote the father of x by←−x .

Given x ∈ Sn, we set `(x) := n, the length of x . The offspring of an element x is given by

off(x) := |{y ∈ N (x), y ∼> x}|,

i.e., it is the number of sons of x . When `(x) ≥ 1, note that off(x) = deg(x)− 1.
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We consider the tree G = (E,V) with uniform offspring sequence (bn)n∈N, i.e., every x ∈ Sn has
bn sons. We define:

(Uf )(x) := 1{∪n≥1Sn}(x)
1√

b
`
(←−x ) f

(←−x ), for f ∈ `2(V).

Easily, one get ‖Uf‖ = ‖f‖, for all f ∈ `2(V). The adjoint U∗ of U is given by

(U∗f )(x) :=
1√
b`(x)

∑
y∼>x

f (y), for f ∈ `2(V).

Note that one has:

(AGf )(x) =
√

b`(←−x ) (Uf )(x) +
√

b`(x) (U∗f )(x), for f ∈ Cc(V).
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Supposing now that bn ≥ 1 for all n ∈ N, we construct invariant subspaces for AG.

We start by noticing that dim `2(Sn) =
∏

i=0,...,n−1 bn, for n ≥ 1 and dim `2(S0) = 1. Therefore,
as U is an isometry, U`2(Sn) = `2(Sn+1) if and only if bn = 1.

Set Q0,0 := `2(S0) and Q0,k := UkQ0,0, for all k ∈ N. Note that dimQ0,k = dim `2(S0) = 1, for all
k ∈ N. Moreover, given f ∈ `2(Sk ), one has f ∈ Q0,k if and only if f is constant on Sk .

We define recursively Qn,n+k for k , n ∈ N. Given n ∈ N, suppose that Qn,n+k is constructed for all
k ∈ N, and set

Qn+1,n+1 as the orthogonal complement of
⊕

i=0,...,n Qi,n+1 in `2(Sn+1),

Qn+1,n+k+1 := UkQn+1,n+1, for all k ∈ N \ {0}.
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We sum-up the construction in the following diagram:
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We point out that dimQn+1,n+1 = dimQn+1,n+k+1, for all k ∈ N and stress that it is 0 if and only if
bn = 1. Notice that U∗Qn,n = 0, for all n ∈ N.

Set finally Mn :=
⊕

k∈N Qn,n+k and note that `2(G) =
⊕

n∈N Mn. Moreover, one has that
canonically Mn ' `2(N;Qn,n) ' `2(N)⊗ Qn,n. In this representation, the restriction An of A to the
space Mn is given by the following tensor product of Jacobi matrices:

An '



0
√

bn 0 0 · · ·√
bn 0

√
bn+1 0

. . .

0
√

bn+1 0
√

bn+2
. . .

...
. . .

. . .
. . .

. . .


⊗ 1Qn,n .

Now A is given as the direct sum
⊕

n∈NAn in ⊕n∈NMn.
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In particular, for a binary tree, i.e, bn = 2 for all n ∈ N,

An '
√

2



0 1 0 0 · · ·

1 0 1 0
. . .

0 1 0 1
. . .

...
. . .

. . .
. . .

. . .

⊗ 1Qn,n .

Hence, A is the infinite direct sum of copies of
√

2AN.

We obtain that
σ(A) = [−2

√
2, 2
√

2].
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We define the class of antitrees. The sphere of radius n ∈ N around a vertex v ∈ V is the set
Sn(v) := {w ∈ V | dG(v ,w) = n}. A graph is an antitree, if there exists a vertex v ∈ V such that
for all other vertices w ∈ V \ {v}

N (w) = Sn−1(v) ∪ Sn+1(v),

where n = dG(v ,w) ≥ 1. The distinguished vertex v is the root of the antitree. Antitrees are
bipartite and enjoy radial symmetry.

S0 S1

S2 S3

S4
S5

S6

Figure: An antitree with spheres S0, . . . , S6.
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We denote the root by v , the spheres by Sn := Sn(v), and their sizes by sn := |Sn|. Further,
|x | := d(v , x) is the distance of x ∈ V from the root.

The operator P : `2(V)→ `2(V), given by

Pf (x) :=
1

s|x|

∑
y∈S|x|

f (y), for all f ∈ `2(V) and x ∈ V,

averages a function over the spheres. Thereby, P = P2 = P∗ is the orthogonal projection onto the
space of radially symmetric functions in `2(V). A function f : V → C is radially symmetric, if it is
constant on spheres, i.e., for all nodes x , y ∈ V with |x | = |y |, we have f (x) = f (y).

For all radially symmetric f , we define f̃ : N→ C, f̃ (|x |) := f (x), for all x ∈ V. Note that

P`2(V ) = {f : V → C, f radially symmetric,
∑
n∈N

sn |̃f (n)|2 <∞} ' `2(N, (sn)n∈N),

where (sn)n∈N is now a sequence of weights.
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The key observation is that

A = PAP and ÃPf (|x |) = s|x|−1P̃f (|x | − 1) + s|x|+1P̃f (|x |+ 1),

for all f ∈ Cc(V ), with the convention s−1 = 0.

Using the unitary transformation

U : `2(N, (sn)n∈N)→ `2(N), Uf̃ (n) =
√

sn f̃ (n),

we see that A is unitarily equivalent to the direct sum of 0 on (P`2(V ))⊥ and a Jacobi matrix
acting on `2(N) with 0 on the diagonal and the sequence (

√
sn
√

sn+1)n∈N on the off-diagonal.

A ' 0⊕



0
√

s0
√

s1 0 0 · · ·
√

s0
√

s1 0
√

s1
√

s2 0
. . .

0
√

s1
√

s2 0
√

s2
√

s3
. . .

...
. . .

. . .
. . .

. . .

 .

In particular, if sn = 2 for all n ∈ N, σ(A) = [−2, 2] and 0 is the only eigenvalue. It is of infinite
multiplicity.
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Definition
Let H be a bounded self-adjoint operator. We set:

Hp := Hp(H) := {f ∈ ker(λ− H), λ ∈ σp(H)}

the spectral subspace associated to σp(H). We set also:

Hc := Hc(H) := H⊥p

the spectral subspace associated to continuous spectrum of H.
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Theorem (RAGE)
Let H be self-adjoint in H and K be a compact operator in H. Let φ0 ∈ Hc(H). We have:

1
T

∫ T

0
‖KeitHφ0‖2 dt → 0, as T →∞,

where eitHφ is the unique solution to the Schrödinger equation:{
i(∂tφ)(t) = (Hφ)(t)

φ(0) = φ0.

Remark
In the previous examples, by taking K = 1X (Q), where X is a finite set, we see that the if the initial
condition is taken in the spectral subspaces associated to the continuous spectrum of H then it
escapes, in average, every compact set.

Remark
We refer to C. Rojas-Molina’s course for a proof and a different presentation. We also mention that
she uses this theorem to prove the spectrum is purely point almost surely in the setting of random
Schrödinger operators acting on Zd .
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The aim is to localise more precisely in the spectrum a vector. For instance, one would like to
know around which energy a φ is taken in Hc . We shall build the continuous functional calculus.

We take for instance AZ. We have that

AZ = F2 cos(Q)F−1,

where F was a unitary transform.

Given f ∈ C(σ(AZ)), we can define the

f (AZ) := F f (2 cos(Q))F−1

For a general self-adjoint operator H, it is complicate to find such a unitary transformation so we
will build directly f (H) by first considering polynomials and then by proceeding by density.
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We aim at defining the continuous functional calculus for bounded self-adjoint operator. We start
with polynomials. We define the operator P(T ) ∈ L(H) by:

P(T ) :=
n∑

k=0

ak T k , when P(X) :=
n∑

k=0

ak X k , with n ∈ N and ai ∈ C.

Note that, given P,Q ∈ C[X ] and λ, µ ∈ C, we have:

(λP + µQ)(T ) = λ(P(T )) + µ(Q(T ))

(PQ)(T ) = P(T )Q(T ) = Q(T )P(T ).

Proposition (Spectral mapping)
Given T ∈ L(H) and P ∈ C[X ], we have:

P(σ(T )) = σ(P(T ))
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Proof:

We proceed by contraposition. Let λ ∈ C. We have λ root of P(λ)− P. There exists Q ∈ C[X ]
such that P(λ)− P(X) = (λ− X)Q(X), then

P(λ)Id− P(T ) = (λId− T )Q(T ) = Q(T )(λId− T ).

If P(λ) /∈ σ(P(T )), we set S := (P(λ)Id− P(T ))−1. We get:

(λId− T )Q(T )S = Id = SQ(T )(λId− T ).

This implies that λId− T is invertible with inverse Q(T )S = SQ(T ). In particular λ /∈ σ(T ).

We turn to the equality. It is enough to deal with deg P = n ≥ 1. Let µ ∈ σ(P(T )) and λ1, . . . , λn
roots of P − µ. We have:

P(X)− µ = c(X − λ1) . . . (X − λn),

for some c 6= 0. This gives:

P(T )− µId = c(T − λ1Id) . . . (T − λnId).

Since µ ∈ σ(P(T )), P(T )− µId is not invertible, there exist i0 ∈ {1, . . . n} such that (T − λi0 ) is
not invertible, then λi0 ∈ σ(T ). Moreover, P(λi0 ) = µ.
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Let P ∈ C[X ] be given by P =
∑n

k=0 ak X k , we set:

P :=
n∑

k=0

ak X k and |P|2 := PP.

We estimate the norm of P(T ) :=
∑n

k=0 ak T k .

Proposition

Soit P ∈ C[X ]. Alors P(T )∗ = P(T ) et

‖P(T )‖ = max
t∈σ(T )

|P(t)|.

Note that we have a max because σ(T ) is compact and P is continuous.
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Proof:

The fact that P(T )∗ = P(T ) follows from T∗ = T . As seen above

‖P(T )‖2 = ‖P(T )P(T )∗‖ = ‖P(T )P(T )‖ = ‖|P|2(T )‖.

Note then that |P|2(T ) is self-adjoint because

〈x , |P|2(T )y〉 = 〈x ,P(T )P(T )y〉 = 〈P(T )P(T )x , y〉 = 〈|P|2(T )x , y〉,

for all x , y ∈ H. Moreover |P|2(T ) ≥ 0 because

〈x , |P|2(T )x〉 = 〈P(T )x ,P(T )x〉 ≥ 0,

for all x ∈ H. By the spectral radius and by spectral transfert, we see that

‖P(T )‖2 = ‖|P|2(T )‖ = maxσ(|P|2(T )) = max
t∈σ(T )

|P|2(t) =

(
max

t∈σ(T )
|P(t)|

)2
.

which gives the result.

Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 50 / 139



We recall the theorem of Stone-Weierstrass.

Theorem (Stone-Weierstrass)
Let K a Hausdorff compact space. Let A be a sub-algebra of C(K ;C), endowed with the uniform
norm, with the following properties:

1 If f ∈ A then f ∈ A.
2 A separates points, i.e., for all x 6= y in K , there exists f ∈ A such that f (x) 6= f (y).
3 the identity belongs to A.

Then A = C(K ;C).
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We deduce the main theorem.

Theorem (Continuous functional calculus)
Let T ∈ L(H) be a self-adjoint operator. There exists a unique continuous morphism
Φ : C(σ(T ))→ L(H) (of ∗-algebra) satisfying:

1) Φ(P) = P(T ), for all P ∈ C[X ],

2) Φ(f + λg) = Φ(f ) + λΦ(g),

3) Φ(fg) = Φ(f )Φ(g),

4) Φ(f ) = (Φ(f ))∗,

for all f , g ∈ C(σ(T )) and λ ∈ C. Moreover, Φ is an isometry, i.e.,

‖Φ(f )‖ = max
t∈σ(T )

|f (t)|, for all f ∈ C(σ(T )).

Remark
We denote Φ(f ) by f (T ).
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Proof:

We set
Φ0 : A → L(H),Φ0(f ) := f (T )

where
A := {P|σ(T ), with P ∈ C[X ]},

endowed with the sup norm.

First note that if P and Q are two polynomials with the same restriction to σ(T ). Then,

‖P(t)− Q(T )‖ = ‖(P − Q)(T )‖ = max
t∈σ(T )

|(P − Q)(t)| = 0.

This means that P(T ) = Q(T ). Therefore Φ0 is well-defined.

Notice that Φ0 is an isometry. By Stone-Weierstrass’Theorem we see that A is dense in C(σ(T )),
for the sup norm. By density, there exists a unique linear map

Φ : C(σ(T ))→ L(H)

such that Φ|A = Φ0 and such that ‖Φ‖L(C(σ(T )),H) = ‖Φ0‖L(A,H). Moreover, since Φ0 satisfy 2,
3 et 4 and that is an isometry, by density Φ also satisfies the points.
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Remark
We stress that if λ ∈ ρ(T ), we obtain:

‖(λId− T )−1‖ =
1

d(λ, σ(T ))
.

This equality does not hold true in general for bounded operators.

Proposition (Spectral mapping)
Given T ∈ L(H) self-adjoint and f ∈ C(σ(T );C). Then,

σ(f (T )) = f (σ(T )).
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Proof:

Let λ /∈ f (σ(T )). We set g(t) := (λ− f (t))−1. We have g ∈ C(σ(T )). By functional calculus,

g(T )(λId− f (T )) = (λId− f (T ))g(T ) = Id.

Then, λ /∈ σ(f (T )), i.e, σ(f (T )) ⊂ f (σ(T )).

Set now λ ∈ f (σ(T )). For all n ∈ N, we choose gn ∈ Cc(R; [0, 1]) being 1 in λ and 0 away from
[λ− 1/n, λ+ 1/n]. By functional calculus,

‖(λId− f (T ))gn(T )‖ = max
t∈[λ−1/n,λ+1/n]∩σ(T )

|(λ− f (t))gn(t)| → 0,

when n→∞.

Note also that ‖gn(T )‖ = 1. Then, there exists a sequence xn with norm 1 such that
‖gn(T )xn‖ ≥ 1/2. We set

yn :=
gn(T )xn

‖gn(T )xn‖
.

We have ‖yn‖ = 1 and

‖(λId− f (T ))yn‖ ≤ 2‖(λId− f (T ))gn(T )‖ · ‖xn‖ → 0.

In particular λ ∈ σ(f (T )).
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Proposition
Let T ∈ L(H) be self-adjoint, f ∈ C(σ(T )) and g ∈ C(fσ(T )). Then,

g(f (T )) = (g ◦ f )(T ).

Recall that f (σ(T )) = σ(f (T )). Then g(f (T )) has a meaning by applying the functional calculus
for f (T ).
Proof:

Set
A := {g ∈ C(fσ(T )), g(f (T )) = (g ◦ f )T}.

Clearly A is an algebra and A contains the function 1. Moreover, the function g defined by
g(x) = x is in A, because g(f (T )) = f (T ) and g ◦ f = f . Besides, the functions separates points.
Take now g ∈ A. We have:

g(f (T )) = (g(f (T )))∗ = ((g ◦ f )(T ))∗ = g ◦ f (T ),

the A is stable by conjugaison. By Stone-Weirstrass, we get: A = C(fσ(T )).
It remains to show that A is closed. Let gn ∈ C(fσ(T )) that tends to g ∈ (fσ(T )) for the sup norm.
By functional calculus for f (T ), we see that ‖g(f (T ))− gn(f (T ))‖ → 0, when n→∞. Then, by
functional calculus for T , as gn ◦ f tends uniformly to g ◦ f , we have that
‖(g ◦ f )(T ))− (gn ◦ f )(T )‖ → 0, when n→∞. Then g ∈ A and A is closed.
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Exercise
Let H be a self-adjoint operator.

1 Prove that
σ(H) = {λ ∈ R, ϕ(H) 6= 0, for all ϕ ∈ C(R;C) with ϕ(λ) 6= 0}

2 Prove that

eitH =
∞∑

n=0

(itH)n

n!
,

where the left hand side is given by functional calculus.
3 Prove that eitH is unitary.
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Exercise
Let H ∈ L(H) such that 〈f ,Hf 〉 ≥ 0, for all f ∈ H.

1 Prove that H is self-adjoint. (Hint: Use the polarisation identity)
2 Prove that σ(H) ⊂ [0,∞[.
3 Prove that there is (a unique) T self-adjoint with σ(T ) ⊂ [0,∞[, such that T 2 = H. It is the

square root of H.
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We give now more or less explicit ways to deal with the functional calculus of H self-adjoint.

The Fourier approach Let f ∈ L1(R;C). Set

f̂ (ξ) :=
1

2π

∫
R

f (t)e−itξ dt ,

Assume that f̂ ∈ L1(R;C). Then we have:

f (H) =

∫
R

f̂ (ξ)eiξH dξ,

where the integral exists in L(H).

Exercise

Where do we use that f̂ ∈ L1(R;C)? Prove the equality.
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The Holomorphic approach Let f be holomorphic in an open neighbourhood Ω of σ(H), where is H
is bounded

f (H) =

∫
Γ

f (z)(H − z)−1 dz,

where the integral exists in L(H) and Γ is a contour with indice 1 that circumvents σ(T ).
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Helffer-Sjöstrand’s formula

For ρ ∈ R, let Sρ be the class of function ϕ ∈ C∞(R;C) such that

∀k ∈ N, Ck (ϕ) := sup
t∈R
〈t〉−ρ+k |∂k

t ϕ(t)| <∞. (1)

We also write ϕ(k) for ∂k
t ϕ. Equiped with the semi-norms defined by (1), Sρ is a Fréchet space.

Leibniz’ formula implies the continuous embedding:

Sρ · Sρ
′
⊂ Sρ+ρ′ .

Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 61 / 139



Lemma

Let ϕ ∈ Sρ with ρ ∈ R. For all l ∈ N, there is a smooth function ϕC : C→ C, call an almost
analytic extension of ϕ, such that:

ϕC|R = ϕ,
∣∣∂ϕC

∂z
(z)
∣∣ ≤ c1〈<(z)〉ρ−1−l |Im(z)|l

suppϕC ⊂ {x + iy | |y | ≤ c2〈x〉},
ϕC(x + iy) = 0, if x 6∈ suppϕ.

for constants c1, c2 depending on the semi-norms (1) of ϕ in Sρ.

Let ρ < 0 and ϕ ∈ Sρ. The bounded operator ϕ(A) can be recover by Helffer-Sjöstrand’s formula:

ϕ(A) =
i

2π

∫
C

∂ϕC

∂z
(z − A)−1dz ∧ dz,

where the integral exists in the norm topology.

Exercise
Using ‖(z − A)−1‖ ≤ 1/|Im(z)|, show that the integral converges in norm.
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Definition
Let T ∈ L(H) be a self-adjoint operator. We set

σd(T ) := {λ ∈ R, λ is an isolated eigenvalue of finite multiplicity},
σess(T ) := σ(T ) \ σd(T ).

These spectra are called discret and essential, respectively.

Proposition
Let T be self-adjoint in H of infinite dimension, then σess(T ) 6= ∅.

Proof:

Suppose that the spectrum is purely discret. Since it is contained in a compact there is a
sub-sequence of eigenvalues that converges to a point of the spectrum. The later is not isolated.
Contradiction.
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We link this notion to the functional calculus.

Proposition

Let T be a self-adjoint operator acting in H and λ ∈ σ(T ) isolated.

1) λ ∈ σp(T ).

2) Given ϕ ∈ C(σ(T )) defined by 1 on λ and 0 elsewhere, we have that ϕ(T ) is an orthogonal
projection with range ker(λId− T ).
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Proof:

First since ϕ(λ) = 1, ϕ(T ) is a projection. Indeed,

‖ϕ2(T )− ϕ(T )‖ = sup
t∈σ(T )

|ϕ2(t)− ϕ(t)| = |ϕ2(λ)− ϕ(λ)| = 0.

Moreover, the projection is orthogonal because ϕ is with real values and therefore
ϕ(T )∗ = ϕ(T ) = ϕ(T ). Then we show that Imϕ(T ) ⊂ ker(λId− T ). We have:

‖(λId− T )ϕ(T )‖ = sup
t∈σ(T )

|(λ− t)ϕ(t)| = 0.

Take now x ∈ ker(λId− T ). We have:

(Id− ϕ(T ))x = Φ
(

(1− ϕ(·))(λ− ·)−1︸ ︷︷ ︸
∈C(σ(T ))

(λ− ·)
)
x

= Φ
(
(1− ϕ(·))(λ− ·)−1)(λId− T )x = 0

Then Imϕ(T ) = ker(λId− T ). Finally since ϕ(T ) 6= 0 by functional calculus and then
λ ∈ σp(T ).
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Proposition

Let T be self-adjoint in H and λ ∈ σ(T ). Then,

1) λ ∈ σd(T ), if and only if there exists ε > 0 and ϕ ∈ C(σ(T );R) such that
supp(ϕ) ⊂ [λ− ε, λ+ ε] with ϕ(λ) = 1 and such that ϕ(T ) is compact.

2) λ ∈ σess(T ), if and only if for all ε > 0 and for all ϕ ∈ C(σ(T );R) such that
supp(ϕ) ⊂ [λ− ε, λ+ ε] with ϕ(λ) = 1, we have that ϕ(T ) is non-compact.

Note that in both cases that, since λ ∈ σ(T ) and that ϕ(λ) = 1, functional calculus ensures that
ϕ(T ) 6= 0.
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Proof:

Note that 1) and 2) are equivalent (by taking the negation).

We suppose that there exist ε > 0 and ϕ ∈ C(σ(T );R) such that supp(ϕ) ⊂ [λ− ε, λ+ ε] with
ϕ(λ) = 1 and such that ϕ(T ) is compact.

Suppose that λ is not isolated. There exist a sequence λn ∈ σ(T ) (note that λ could belong to an
interval) such that λn → λ. By spectral mapping, the spectrum of ϕ(T ) is contained in ϕ(λn) and
1 = ϕ(λ). By continuity we have ϕ(λn)→ 1. This is a contradiction with the fact that ϕ(T ) is
compact (because 0 is the only possible accumulation point). Contradiction.

We have that λ is isolated. Let ϕ0 ∈ C(σ(T )) with ϕ0(λ) = 1 and 0 elsewhere. We have:

‖ϕ0(H)− ϕ0(H)ϕ(H)‖ = max
t∈σ(T )

|ϕ0(t)− ϕ0(t)ϕ(t)| = |ϕ0(λ)− ϕ0(λ)ϕ(λ)| = 0.

Then ϕ0(T ) = ϕ0(T )ϕ(T ) is compact, because it is a product of a compact operator and a
bounded operator. By the previous proposition ϕ0(T ) is a orthogonal projection with image
ker(λId− T ). Since it is compact we deduce that it is finite (Riesz theorem). In particular
λ ∈ σd(T ).
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Theorem (Weyl)

Let T and V be two self-adjoint operators on H. If V ∈ K(H), i.e., compact, then

σess(T ) = σess(T + V ).
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Proof:

We set
A := {ϕ ∈ C(σ(T ) ∪ σ(T + V )), ϕ(T )− ϕ(T + V ) ∈ K(H)}

First A is an algebra. 1 is in A because Id− Id = 0 is compact. Then by taking ϕ(t) = t , we see
that ϕ(T )− ϕ(T + V ) = −V ∈ K(H). This function separates points. Suppose now that ϕ ∈ A,
we have:

ϕ(T )− ϕ(T + V ) = (ϕ(T ))∗ − (ϕ(T + V ))∗ = (ϕ(T )− ϕ(T + V ))∗ ∈ K(H).

Because the adjoint of a compact operator is compact. By Stone-Weirstrass we deduce that
A = C(σ(T ) ∪ σ(T + V )). It remains to show that A is closed. Let ϕn ∈ A that tends to
ϕ ∈ C(σ(T ) ∪ σ(T + V )) for the uniform norm. We have ‖ϕn(T )− ϕ(T )‖ → 0 and
‖ϕn(T + V )− ϕ(T + V )‖ → 0 when n→∞. In particular,

ϕn(T )− ϕn(T + V )→ ϕ(T )− ϕ(T + V ),

in norm then ϕ(T )− ϕ(T + V ) ∈ K(H), because K(H) is closed.

Finally since ϕ(T )−ϕ(T + V ) is compact for all ϕ ∈ C(σ(T )∪ σ(T + V )) the previous proposition
gives σess(T ) = σess(T + V ).
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We turn to a characterisation of the essential spectrum.

Proposition (Weyl’s criterion)
Let T be self-adjoint on H. Then λ ∈ σess(T ) if and only if there exist fn ∈ H such that :

‖fn‖ = 1, fn ⇀ 0 et ‖(λId− T )fn‖ → 0,

when n→∞ and where ⇀ denotes the weak convergence.
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Proof:

Let λ ∈ σess(T ). Suppose first that λ is isolated. We have that λ is an eigenvalue of infinite
multiplicity. Take (fn)n to be an orthonormal basis of ker(λId− T ).

Suppose now that λ is not isolated. There exist λn ∈ σ(T ), two by two distinct, such that λn → λ,
when n→∞. Up to a sub-sequence or considering −T , we can suppose that λn is strictly
increasing. We then construct ϕn ∈ C(σ(T ); [0, 1]) such that ϕn(λn) = 1 and such that
suppϕn ⊂ [(2λn + λn−1)/3, (2λn + λn+1)/3]. In particular, ϕn has support two by two disjoint and
‖ϕn(T )‖ = 1. Take now xn ∈ H such that ‖ϕn(T )xn‖ ≥ 1/2. We have

fn :=
ϕn(T )xn

‖ϕn(T )xn‖

which is of norm 1. We see that fn tends weakly to 0 because for n 6= m

〈fn, fm〉 = 〈
xn

‖ϕn(T )xn‖
,

=0︷ ︸︸ ︷
ϕn(T )ϕm(T ) xm

‖ϕm(T )xm‖
〉 = 0,

due to the support of ϕn and by functional calculus. Finally we have:

‖(λId− T )fn‖ ≤ 2‖(λId− T )gn(T )‖ · ‖xn‖ → 0,

by functional calculus.
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In all the examples that we have considered earlier we have, by denoting by H the operator
considered and by taking V (Q) with limx→∞ V (x) = 0, we have that

V (Q) is a compact operator

and therefore
σess(H) = σ(H) = σess(H + V ).
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Exercise
Let H := `2(Z;C). Let V : Z→ R such that c± := limn→±∞ V (n) exists and is finite. Using that
Z = N ∪ −N, prove that

σess(AZ + V (Q)) = [−2 + c−, 2 + c−] ∪ [−2 + c+, 2 + c+]

= [−2, 2] + {c−, c+}.

Exercise
Same exercice but use the Weyl’s criterion.
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Theorem
Let G := (E,V) be a binary tree. Let H := `2(V;C). Let V̂ := V ∪ ∂V be the hyperbolic
compactification of V. Suppose that V : V → R is bounded and extends continuously to V̂.

Then we have:
σess(A+ V (Q)) =

[
−2
√

2, 2
√

2
]

+ V (∂V).
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The aim now is to define the spectral measure of an operator. We would like to be able to define
1X (H), where X is a Borelian set.

In a second step we will relate some properties of the measure to the dynamical behaviour of the
Schrödinger equation.
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Let H ∈ L(H) be a self-adjoint operator. Let f ∈ H \ {0}. By functional calculus, we have that

Φ : C(σ(T ); C)→ C, given by Φ(ϕ) := 〈f , ϕ(H)f 〉

is continuous and positive (if ϕ ≥ 0 then Φ(ϕ) ≥ 0).

Therefore by Riesz-Markov’s Theorem there is a unique measure mf such that

〈f , ϕ(H)f 〉 =

∫
σ(H)

ϕ(t) dmf (t).

Definition
The measure mf is called the spectral measure of H associated to f .

Remark
If ‖f‖ = 1, note that mf is a probability measure.
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Given ϕ ∈ B(σ(H)) = B(σ(H);C), i.e, a borelian bounded function, we set:

〈f , ϕ(H)f 〉 :=

∫
σ(H)

ϕ(t) dmf (t).

We now explain why ϕ(H) is a well-defined bounded operator (why does ϕ(H) is linear? Does it
depend on the choice of f?).

Given ϕ ∈ C(σ(H)). For f ∈ H, we set

Bϕ(f , f ) := 〈f , ϕ(H)f 〉 =

∫
σ(H)

ϕ(t) dmf (t)

and stress that mf is a bounded measure. Indeed,

mf (σ(H)) =

∫
σ(H)

1dmf (t) = 〈f , 1(H)f 〉 = ‖f‖2,

because 1(H) = Id. (recall the starting point with polynomials).
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We also set
Bϕ(f , g) := 〈f , ϕ(H)g〉

Recallying the polarisation formula

B(f , g) =
1
4

3∑
k=0

ik B(ik f + g, ik f + g).

We see that there is a complex measure mf ,g such that:

Bϕ(f , g) =

∫
σ(H)

ϕ(t) dmf ,g(t), where mf ,g :=
1
4

3∑
k=0

ik mik f +g .

Notice that:

mλf +g,h = λmf ,h + mg,h and mh,λf +g = λmh,f + mh,g .
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We now take ϕ ∈ B(σ(H)). We extend the definition of Bϕ in the following way:

Bϕ(f , g) :=

∫
σ(H)

ϕ(t) dmf ,g(t).

By the property of the measure we see that:

Bϕ is a sesquilinear form.

We now prove that it is continuous. First we note that:

|Bϕ(f , f )| ≤ ‖ϕ‖∞
∫
σ(H)

1 dmf (t) = ‖ϕ‖∞〈f , 1(H)f 〉 = ‖ϕ‖∞‖f‖2.

We aim at showing:
|Bϕ(f , g)| ≤ ‖ϕ‖∞‖f‖ · ‖g‖, for all f , g ∈ H.
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Set:
α := sup

‖f‖=1
|Bϕ(f , f )|.

It is enough to show that |Bϕ(f , g)| ≤ α for all f et g such that ‖f‖ = ‖g‖ = 1. If Bϕ(f , g) = 0
there is nothing to do. We set

λ :=
Bϕ(f , g)

|Bϕ(f , g)|
.

Note that |λ| = 1. By polarisation, we have:

|Bϕ(f , g)| = Bϕ(f , λg) = <Bϕ(f , λg) = <

1
4

3∑
k=0

ik Bϕ(ik f + λg, ik f + λg)︸ ︷︷ ︸
∈R


=

1
4

(Bϕ(f + λg, f + λg)− Bϕ(−f + λg,−f + λg)〉)

≤
α

4

(
‖f + λg‖2 + ‖ − f + λg‖2

)
≤ α,

where we used in the last line that ‖x‖ = ‖y‖ = |λ| = 1.
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We turn to the existence of ϕ(H).

Note that f 7→ Bϕ(f , g) is a continuous anti-linear from. Therefore there exists T (g) such that

Bϕ(f , g) = 〈f ,T (g)〉, for all f ∈ H .

It is easy to see that T (g1 + λg2) = T (g1) + λT (g2).

Moreover, by Riesz’isomorphism, we get:

‖Tg‖ = ‖f 7→ Bϕ(f , g)‖ ≤ ‖ϕ‖∞‖g‖.

Therefore T is a linear bounded operator. We denote it by ϕ(H).
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The hardest part is done, with few more efforts one can show:

Theorem

Let H be self-adjoint operator acting on H. There is a unique map Φ̂ : B(R)→ L(H) such that:
1 Φ̂(ϕ+ λψ) = Φ̂(ϕ) + λΦ̂(ψ),
2 (Φ̂(ϕ))∗ = Φ̂(ϕ),
3 Φ̂(ϕ× ψ) = Φ̂(ϕ)Φ̂(ψ),
4 Φ̂(x) = H,
5 If φn(x)→ φ(x) for all x ∈ σ(H) and if supn ‖φn‖∞ <∞ then for all f ∈ H, Φ(φn)f → Φ(φ)f ,

as n→∞.

Moreover we have:
1 ‖Φ̂(H)‖ ≤ ‖ϕ‖∞
2 If Hf = λf , then Φ(ϕ)f = ϕ(λ)f ,
3 If ϕ ≥ 0 then σ(Φ(ϕ)) ≥ 0.

Remark
As before we denote Φ(ϕ) by ϕ(H).
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Remark
Given a borel set I ⊂ σ(H), we have that EI(H) := 1I(H) is an orthogonal projector. Moreover,

〈f ,EI(H)f 〉 =

∫
I

dmf (t) = mf (I).

and
〈f ,EI(H)g〉 =

∫
I

dmf ,g(t) = mf ,g(I).

Therefore I → EI(H) is a measure with projector values in L(H).

Using for instance the Bochner integral, we can prove that for ϕ ∈ B(σ(H))

ϕ(H) =

∫
σ(H)

ϕ(t)dEt (H).
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Exercise
Let H be a self-adjoint operator. Recalling that

σ(H) = {λ ∈ R, ϕ(H) 6= 0, for all ϕ ∈ C(R;C) with ϕ(λ) 6= 0},

Prove that
σ(H) = {λ ∈ R,E[λ−ε,λ+ε](H) 6= 0, for all ε > 0}.
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There is a link between the spectrum and nature of the spectral measure.

Exercise
E{λ}(H) 6= 0 if and only if λ is an eigenvalue of H. Moreover E{λ}(H) is an orthogonal projector
with image ker(λ− H).
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Definition
Let µ be a borel sigma-finite measure on R.

1 We say that x ∈ R is an atom for µ if µ({x}) > 0.
2 We say that µ is continuous if µ has no atom.
3 We say that µ is supported by borel set Σ if µ(R \ Σ) = 0.
4 We say that µ is absolutely continuous with respect to the Lebesgue measure if µ(I) = 0

when Leb(I) = 0. We denote it by µ� Leb.
5 We say that µ is singular with respect to the measure ν when there exists a borel set Σ such

that µ(R \ Σ) = 0 and ν(Σ) = 0. We denote it by µ ⊥ ν.
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Theorem (Radon-Nykodim)
Let µ be a borel sigma-finite measure on R which is absolutely continuous with respect to the
Lebesgue measure. Then there exists f ∈ L1

loc(R, dx) such that

µ(A) =

∫
A

f (x) dx ,

for all A borel sets.
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We now turn to the decomposition of the spectral measure.

Theorem (Lebesgue decomposition)
Given µ be a borel sigma-finite measure on R. There are measures µp and µc which are purely
atomic and continuous, respectively, such that:

µ = µp + µc.

We have µp ⊥ µc.
Moreover, there are measures µac and µsc, which are continuous with respect to the Lebesgue
measure and singular with respect to it, respectively, such that:

µc = µac + µsc.

We have µac ⊥ µsc.
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Given f ∈ H and H self-adjoint, we have:

‖f‖2 = 〈f , f 〉 =

∫
R

dmf (x)

=

∫
R

dmp
f (x) +

∫
R

dmac
f (x) +

∫
R

dmsc
f (x)

=

∫
R

1Σp (x)dmf (x) +

∫
R

1Σac (x)dmf (x) +

∫
R

1Σsc (x)dmf (x)

= 〈f ,EΣp (H)f 〉+ 〈f ,EΣac (H)f 〉+ 〈f ,EΣsc (H)f 〉

= ‖EΣp (H)f‖2 + ‖EΣac (H)f‖2 + ‖EΣsc (H)f‖2,

where Σp, Σac, and Σsc are borel sets that are supporting the discrete, ac, sc part, respectively.

Danger: These sets depend a priori on f .
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Using the separability of the space and cyclic vectors, we infer:

Theorem
Let H be self-adjoint in H, there are closed (Hilbert) subspaces Hp, Hac, and Hsc such that

H = Hp ⊕Hac ⊕Hsc︸ ︷︷ ︸
Hc

and, denoting by mf the spectral measure of H associated to f ,
1 if f ∈ Hp then mf is atomic,
2 if f ∈ Hac then mf is absolutely continuous with respect to the Lebesgue measure,
3 if f ∈ Hsc then mf is singularly continuous with respect to the Lebesgue measure.

We denote by Pp, Pac, and Psc the respective projection.

Moreover, ϕ(H)HX ⊂ HX , for X ∈ {p, ac, sc} and ϕ ∈ B(R).

Remark
Note that

Pp = Eσp (H).
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We now decompose the spectrum. Set X ∈ {p, ac, sc} and let

σX (H) := σX (H|HX ).

We have:
σ(H) = σp(H) ∪ σac(H) ∪ σsc(H).

Be careful: We do not have in general that the different spectra are two by two disjoint. We could
have mixed spectrum. For instance, by taking a direct sum, it is easy to construct an example such
that

σ(H) = σp(H) = σac(H) = σsc(H) = [0, 1].
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Proposition
Given f ∈ Hac. Let K be a compact operator. Then

Ke−itH f → 0, as t →∞.

Remark
Recall that given f ∈ Hsc ⊂ Hc and K a compact operator, the RAGE’s theorem ensures a priori
solely:

1
T

∫ T

0
‖Ke−itH f‖2 dt → 0, as T →∞.

Remark
Take K = 1X (Q), where X is a finite set in the examples of graphs, by denoting by H the studied
operator, we see that for f ∈ Hac we have

1X (Q)e−itH f → 0, as t →∞.

The particle escapes to infinity.
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Proof:

Let f ∈ Hac and let g ∈ H. We denote by

mg,f (I) := 〈g,EI(H)f 〉.

This measure is purely absolutely continuous with respect to the Lebesgue measure because, for
I such that Leb(I) = 0, we have:

|mg,f (I)| = |〈g,EI(H)f 〉| ≤ ‖g‖2 · ‖EI(H)f‖2 = 0.

By the Riemann-Lebesgue’s Theorem, we have that

t 7→ m̂g,f (t) :=
1
√

2π

∫
R

e−ixt dmg,f (x) ∈ C0(R),

where C0(R) denotes the continuous functions that tend to 0 at infinity. Using functional calculus,
we infer

〈g, e−itH f 〉 → 0, as t →∞.

Therefore for {gj}j=1,...,N ⊂ H, we get: 〈
∑

j gj , e−itH f 〉 → 0, as t → 0. By density of the finite
rank operator in the set of compact operator, for K ∈ K(H), we obtain:

Ke−itH f → 0, as t →∞.
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We now decompose the spectrum of AZ which acts on H := `2(Z).

First note that the different spectra are stable by unitary equivalence. We recall that AZ is unitarily
equivalent to

ϕ(Q) in L2(−π, π),

where ϕ(x) := 2 cos(x). Note that ϕ(Q)L2(0, π) ⊂ L2(0, π) and ϕ(Q)L2(−π, 0) ⊂ L2(−π, 0).

Take f in L2(0, π). Set I ⊂ (0, π) such that Leb(I) = 0.

‖EI(ϕ(Q))f‖2 = ‖Eϕ−1(I)(Q)f‖2 =

∫
ϕ−1(I)

|f (x)|2 dx =

∫
I
|f (ϕ(x))|2|ϕ′(x)|︸ ︷︷ ︸

∈L1

dx = 0.

Do the same with f in L2(−π, 0). Therefore, that the spectrum of AZ is purely absolutely
continuous with respect to the Lebesgue measure.
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Exercise
Let ϕ ∈ C1([−π, π];R) such that ϕ′(x) = 0 if and only if x ∈ [−1, 1]. Let H := ϕ(Q) in
L2([−π, π]). Show that:

σp(H) = {ϕ(0)}, σac(H) = ϕ([−π, π]), and σsc(H) = ∅.
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Set f : [0, 1]→ [0, 1] given by:

f (x) :=



3x , if x ∈
[

0,
1
3

]
,

0, if x ∈
[

1
3
,

2
3

]
,

3x − 2, if x ∈
[

2
3
, 1
]
.

For n ∈ N∗, set En+1 := f−1(En), where E0 := [0, 1]. This gives

E1 = [0, 1/3] ∪ [2/3, 1],

E2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 9/9]

and so on. We have
C := ∩n∈NEn.

This is the triadic Cantor set. Note that C is compact, C 6= ∅, and Leb(C) = 0.
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Let α ∈ C([0, 1]) be constructed as follows.

α(x) :=


1
2 , for x ∈

(
1
3 ,

2
3

)
,

1
4 , for x ∈

(
1
9 ,

2
9

)
,

3
4 , for x ∈

(
7
9 ,

8
9

)
,

etc...

and extended by continuity on [0, 1].

The function α is strictly increasing and its derivative is 0 almost everywhere. The Cantor measure
is defined by prescribing

µC(a, b) := α(b)− α(a).

and extending it to the Borel sets. We have that µC(C) = 1 and that Leb(C) = 0. Note also that
µC(x) = 0, for all x ∈ C. Therefore µC is singular continuous with respect to the Lebesgue
measure.
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Using the spectral theorem, we establish Stone’s formula:

1
2
〈f , (E[a,b](H) + E(a,b)(H))f 〉 = lim

ε→0+

1
π

∫ b

a
Im(〈f , (H − λ− iε)−1f 〉) dx .

where f ∈ H.

Proposition
Let H be self-adjoint in Hilbert space H. Set a < b. Suppose that there is f ∈ H such that

c(f ) := sup
ε∈(0,1)

sup
λ∈(a,b)

|Im(〈f , (H − λ− iε)−1f 〉)| <∞

Then E(a,b)(H)f ∈ Hac.

Assume that {f , c(f ) <∞} is dense in H, then:

σ(H)|(a,b) = σac(H)|(a,b), σp(H)|(a,b) = σsc(H)|(a,b) = ∅.
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Proof:

Set f ∈ H. By Stone’s formula and the fact that given a set J, ‖EJ (H)f‖ ≤ ‖EJ (H)f‖, we have for
c < d

0 ≤ 〈f ,E(c,d)(H))f 〉 ≤ lim
ε→0+

1
π

∫ d

c
Im(〈f , (H − λ− iε)−1f 〉) dx .

Set S := ∪N
i=1(ai , bi ) is open in (a, b), where the intervals are taken two by two disjoint. Suppose

first that N <∞. We have:

‖ES(H)f‖2 ≤ lim
ε→0+

1
π

∫
S

Im(〈f , (H − λ− iε)−1f 〉) dx .

≤ C
∑

i

∫ bi

ai

dx = C · Leb(S).

Suppose then that N =∞. For m ∈ N, set Sm := ∪m
i=1(ai , bi ).

‖ES(ϕ(Q))f‖2 = lim
m→∞

‖ESm (ϕ(Q))f‖2 ≤ C lim
m→∞

Leb(Sm) = C · Leb(S).

Take finally I ⊂ (a, b) be such that Leb(I) = 0. Since the Lebesgue measure is outer-regular for
all k ∈ N∗ there is an open set S(k) such that I ⊂ S(k) and |S(k)| ≤ 1/k . This implies that
‖EI(H)f‖ = 0. This gives E(a,b)(H)f ∈ Hac.

Assume that {f , c(f ) <∞}. Since Hac is closed we obtain that E(a,b)(H)f ∈ Hac for all f ∈ H.
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Take finally I ⊂ (a, b) be such that Leb(I) = 0. Since the Lebesgue measure is outer-regular for
all k ∈ N∗ there is an open set S(k) such that I ⊂ S(k) and |S(k)| ≤ 1/k . This implies that
‖EI(H)f‖ = 0. This gives E(a,b)(H)f ∈ Hac.

Assume that {f , c(f ) <∞}. Since Hac is closed we obtain that E(a,b)(H)f ∈ Hac for all f ∈ H.
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Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 99 / 139



Proposition (Putnam)
Let H be a a bounded self-adjoint operator acting in a Hilbert space H. Suppose that there is a
bounded self-adjoint operator A, such that:

[H, iA] = C∗C,

where C is a bounded and injective operator. Then,

sup
ε>0

sup
λ∈R

∣∣∣〈f , Im(H − λ− iε))−1f
〉∣∣∣ ≤ 4‖A‖ · ‖(C∗)−1f‖2,

for all f ∈ D((C∗)−1). In particular, the spectrum of H is purely absolutely continuous.

Remark
Note that (C∗)−1 is an unbounded operator with dense domain, since C is injective.
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Proof:

Set R(z) := (z − H)−1. Then

‖CR(λ± iε)‖2 = ‖R(λ∓ iε)C∗CR(λ± iε)‖
= ‖R(λ∓ iε)[H, iA]R(λ± iε)‖
= ‖R(λ∓ iε)[H − λ∓ iε, iA]R(λ± iε)‖
≤ ‖AR(λ± iε)‖+ ‖R(λ∓ iε)A‖+ 2ε‖R(λ∓ iε)AR(λ± iε)‖ ≤ 4‖A‖/ε.

Therefore, we obtain

2‖CImR(λ± iε)C∗‖ = ‖2iεCR(λ+ iε)R(λ− iε)C∗‖ ≤ 8‖A‖.

Therefore,
sup
ε>0

sup
λ∈R

∣∣∣〈f ,=(H − λ− iε))−1f
〉∣∣∣ ≤ 4‖A‖ · ‖(C∗)−1f‖2.

Stone’s formula ensures that the measure given by ‖E(·)(H)f‖2 is purely-absolutely continuous for
all f ∈ D((C∗)−1). Since the domain is dense in H and that Hac is closed, we obtain the
result.
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Here we have proved a stronger result than the absence of singularly continuous spectrum

sup
ε>0

sup
λ∈R

∣∣∣〈f , Im(H − λ− iε))−1f
〉∣∣∣ ≤ 4‖A‖ · ‖(C∗)−1f‖2,

For the a.c. spectrum it would suffice to have on the right hand side a constant that depends on f .
Here we have an explicit dependency of f that is uniform in a certain sense.

The bound that we obtain is in fact equivalent to the global propagation estimate:∫
R
‖C∗e−itH f‖2dt ≤ c‖f‖2,

for some c > 0 and all f ∈ H.

The particle not only escape to infinity but will localise where C∗ is small.
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Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 102 / 139



We now aim at perturbation theory.

Theorem
Let H be a self-adjoint operator. There exists a compact and self-adjoint operator K such that

σpp(H + K ) ∩ σess(H) = σess(H).

Remark
Adding something which is too big compare to H will destroy the a.c. part of H.
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Theorem (Kato-Rosenblum)
Let H be a self-adjoint operator. Let T be self-adjoint and trace class, i.e., T compact such that∑

i |λi (T )| <∞. Then, Hac(H) is unitarily equivalent to Hac(H + T ). In particular,

σac(H) = σac(H + T ).

Remark
Even if Hac(H) = H the theorem does not guarantee that Hac(H + T ) = H. We could have that
Hsc(H + T ) 6= 0.
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We now prove the remark. Given a self-adjoint operator H and f ∈ H. Set mf (·) := 〈f ,E(·)(H)f 〉.
We define the Borel transform of mf by setting:

Fmf (x) :=

∫
R

dmf (ξ)

ξ − x
.

The de la Vallée-Poussin’s result links the boundary value of Fmf with the Lebesgue
decomposition of mf .

Theorem (Vallée-Poussin)
Let

Amf := {x , lim
ε→0+

Fmf (x + iε) =∞}

and
Bmf := {x , lim

ε→0+
Fmf (x + iε) is finite and ImFmf (x + i0+) > 0}.

Then, mf (R \ (Amf ∪ Bmf )) = 0, mac
f (R \ Bmf ) = 0, ms

f (R \ Amf ) = 0.

Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 105 / 139



Let L2([0, 1],Leb|[0,1] + mC). We see that

σ(Q) = [0, 1], σac(Q) = [0, 1], and σsc(Q) = C.

For λ ∈ R, we set
Hλ := Q + λP{1},

where
P{1} := 1〈1, ·〉.

We have that for λ ∈ R \ {0},

σess(Hλ) = [0, 1], σac(Hλ) = [0, 1], and σsc(Hλ) = ∅.
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Proof:

A direct computation gives:

1
π

ImFm(x + i0+) =

 1, x ∈ (0, 1),
1/2, x ∈ {0, 1},
0, x /∈ [0, 1].

and for x ∈ (0, 1):

ReFm(x + i0+) = ln
(

x
1− x

)
,

for x ∈ (0, 1). Since for any measure µ we have

ImFµ(x0 + iε) ≥ µ ({y , |x − y | ≤ ε}) ,

we infer:

FµC (x + i0+) =

{
+∞, x ∈ C,
0, x /∈ C, since the measure is not supported here
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Recall that

Fµλ (z) = 〈1, (Hλ − z)−11〉 =

∫
(x − z)−1dµλ(x),

i.e., µλ is the spectral measure associated to Hλ and to the vector 1.

We now turn to the study of µλ and focus on Fλ(z), for all z ∈ C \ R. The resolvent identity gives

(Hλ − z)−1 = (H0 − z)−1 − λ(Hλ − z)−1P1(H0 − z)−1.

This gives:
Fµλ (z) = Fµ0 (z)− λFµλ (z)Fµ0 (z).

Therefore

Fµλ (z) =
Fµ0 (z)

1 + λFµ0 (z)
.

This yields

Im(Fµλ(z)) =
Im(Fµ0(z))(

1 + λRe(Fµ0(z))
)2

+ λ2Im(Fµ0(z))2
.
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The singular part of the spectrum of Hλ is supported by:

Aλ := {x , lim
ε→0+

Fµλ (x + iε) =∞}.

Given λ 6= 0, we see that [0, 1] ∩ Aλ = ∅. Therefore there is no singular spectrum for Hλ. The
spectrum of Hλ is purely absolutely continuous.
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It is very complicated to apply the Putnam theorem in practice because of the boundedness of A.

We sacrifice the boundedness of A in the Putnam theorem and try to exploit the positivity of a
commutator.
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We start with ϕ(Q) := 2 cos(Q) on H := L2(−π, π). For f ∈ C∞c ((−π, π)) we set:

A0f :=
1
2

(
i∂xϕ

′(Q) + ϕ′(Q)i∂x
)
.

This operator is essentially self-adjoint and we denote by A0 its closure.

Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 111 / 139



For f ∈ C∞c ((−π, π)), we have:

2[ϕ(Q), iA0]f = −[ϕ(Q), ∂xϕ
′(Q) + ϕ′(Q)∂x ]f

= (∂xϕ
′(Q) + ϕ′(Q)∂x )ϕ(Q)f − ϕ(Q)(∂xϕ

′(Q) + ϕ′(Q)∂x )f

= ϕ′′(Q)ϕ(Q)f + (ϕ′(Q))2f + ϕ′(Q)ϕ(Q)f ′ + (ϕ′(Q))2f + ϕ′(Q)ϕ(Q)f ′

−
(
ϕ′′(Q)ϕ(Q)f + ϕ′(Q)ϕ(Q)f ′ + ϕ′(Q)ϕ(Q)f ′

)
= 2ϕ2(Q)f .

In other words, using the density of C∞c in H, we infer:

[ϕ(Q), iA0] = (ϕ′(Q))2.

This gives:
[ϕ(Q), iA0] = 4 sin2(Q) = (2− 2 cos(Q))(2 + 2 cos(Q)).
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1

1

2 cos

4 sin2

Remark

Note that 4 sin2(x) = 0 if and only if cos′(x) = 0.
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The operator 4 sin2(Q) is injective and non-negative. Taking apart that A0 is unbounded, we are in
the setting of Putnam’s theory. We hope to deduce that 2 cos(Q) is purely ac by this method.

Take I be a closed subset included in the interior of [−2, 2] = σ(ϕ(Q)). We have:

EI(ϕ(Q))[ϕ(Q), iA0]EI(ϕ(Q)) = EI(ϕ(Q))(2− ϕ(Q))(2 + ϕ(Q))EI(ϕ(Q))
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σ(ϕ(Q))

x 7→ (2− x)(2 + x)

x 7→ 1I(x)
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σ(ϕ(Q))

x 7→ (2− x)(2 + x)1I(x)

c > 0
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There is c > 0, for all f ∈ H,

〈f ,EI(ϕ(Q))[ϕ(Q), iA0]EI(ϕ(Q))f 〉 = 〈EI(ϕ(Q))(2− ϕ(Q))(2 + ϕ(Q))EI(ϕ(Q))f 〉

=

∫
σ(ϕ(Q))

1I(x)(2− x)(2 + x)1I(x)dmf (ϕ(Q))(x)

≥ c
∫
σ(ϕ(Q))

1I(x)dmf (ϕ(Q))(x)

= c〈EI(ϕ(Q))f ,EI(ϕ(Q))f 〉.

In other words we have that there is c > 0 such that

EI(ϕ(Q))[ϕ(Q), iA0]EI(ϕ(Q)) ≥ cEI(ϕ(Q)),

holds in the form sense, i.e., when applied to any f on both side.
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We now go back to H := `2(Z;C) and will go into perturbation theory. Recall that the Fourier

transform F : `2(Z)→ L2([−π, π]) is defined by

(F f )(x) :=
1
√

2π

∑
n

f (n)e−ixn, for all f ∈ `2(Z) and x ∈ [−π, π].

The adjacency matrix is given by:

(AZf )(n) := f (n − 1) + f (n + 1), for f ∈ H.

and
AZ = F−12 cos(Q)F
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Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 118 / 139



Moreover, for f ∈ Cc(Z), the set of function with compact support, we have:

Af := F−1A0F f = i
(

1
2

(U∗ + U) + Q(U∗ − U)

)
f ,

where
Uf (n) := f (n − 1) and (U∗f )(n) = f (n + 1).

The operator A is essentially self-adjoint on Cc(Z). We denote its closure with the same symbol.
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Af := F−1A0F f = i
(

1
2

(U∗ + U) + Q(U∗ − U)

)
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Uf (n) := f (n − 1) and (U∗f )(n) = f (n + 1).

The operator A is essentially self-adjoint on Cc(Z). We denote its closure with the same symbol.
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Thanks to the previous calculus, we have:

[AZ, iA] = (2−AZ)(2 +AZ)

and, given I closed included in the interior of [−2, 2], the spectrum of AZ, there is a positive
constant c > 0:

EI(AZ)[AZ, iA]EI(AZ) ≥ cEI(AZ),

in the form sense, i.e. when applied to f ∈ H on both side.
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We now add a perturbation. Let V : Z→ R be such that

lim
n→±∞

V (n) = 0 and lim
n→±∞

n(V (n)− V (n + 1)) = 0.

In particular, we have :

V (Q) ∈ K(H) and Q(V (Q)− V (Q + 1)) ∈ K(H).

Take f ∈ Cc . We have:

[U∗,V (Q)]f (n) = (U∗V (Q)f )(n)− (V (Q)U∗f )(n)

= (V (Q)f )(n + 1)− V (n)f (n + 1) = (V (n + 1)− V (n))f (n + 1)

= ((V (Q + 1)− V (Q))U∗f )(n).

We obtain:

[U∗,V ] = (V (Q + 1)− V (Q))U∗ and [U,V ] = (V (Q − 1)− V (Q))U.
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Take f ∈ Cc . We have:

2[V (Q), iA]f = 2
[

V (Q), i · i
(

1
2

(U∗ + U) + Q(U∗ − U)

)]
= [(U∗ + U) + Q(U∗ − U),V (Q)] f

= [U∗,V ]f + [U,V ]f + Q[U∗,V ]f − Q[U,V ]f , since [Q,V (Q)] = 0

= (V (Q + 1)− V (Q))︸ ︷︷ ︸
compact

U∗f + (V (Q − 1)− V (Q))︸ ︷︷ ︸
compact

Uf

+ Q(V (Q + 1)− V (Q))︸ ︷︷ ︸
compact

U∗f − Q(V (Q − 1)− V (Q))︸ ︷︷ ︸
compact

Uf .

Therefore
[V (Q), iA] ∈ K(H).
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We plug this information into the previous estimate. We set H := AZ + V (Q)

[H, iA] = [AZ, iA] + [V (Q), iA] = (2−AZ)(2 +AZ) + compact

= (2−AZ − V (Q))(2 +AZ + V (Q)) + compact

= (2− H)(2 + H) + compact.

Recall that, by the Weyl’s Theorem, σess(H) = [−2, 2], therefore by taking I being closed in the
interior of the essential spectrum of H we get, there are c := infx∈I(2− x)(2 + x) > 0 and a
compact operator K such that

EI(H)[H, iA]EI(H) ≥ cEI(H) + EI(H)KEI(H)︸ ︷︷ ︸
compact

,

in the form sense. This is a Mourre estimate.
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General Theory:
Given a bounded operator H acting in a complex Hilbert space H and k ∈ N, one says that
H ∈ Ck (A) if t 7→ e−itAHeitAf is Ck for all f ∈ H.

Proposition
Let H be a bounded operator and A be a self-adjoint operator The following assertions are
equivalent:

1 H ∈ C1(A).
2 There is a constant c > 0 such that

|〈Hf ,Af 〉 − 〈Af ,Hf 〉| ≤ c‖f‖2, (2)

for all f ∈ D(A).

Note that, by density of D(A), (2) defines a bounded operator that we denote by [H,A]◦, or simply
[H,A] when no confusion can arise.

We can prove that the derivative of t 7→ e−itAHeitAf for t = 0 is equal to [H,A]◦.
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One can show that HD(A) ⊂ D(A) and therefore [H,A] has a meaning, on the operator sense, on
D(A) is equal to [H,A]◦|D(A) = (HA− AH)|D(A).

Remark
In our example, H ∈ C1(A).
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Proposition (“Virial Theorem”)

Let H ∈ C1(A) with H bounded and self-adjoint and A self-adjoint.
1 If the following Mourre estimate holds true

EI(H)[H, iA]◦EI(H) ≥ cEI(H) + K ,

where K ∈ K(H), then H has a finite number of eigenvalue in I, counted with multiplicity.
2 If the following strict Mourre estimate holds true

EI(H)[H, iA]◦EI(H) ≥ cEI(H),

then H has no eigenvalue in I.

Remark
The operator A is the conjugate operator associated to H.

Remark
In our example, the eigenvalues of H that do not belong to {−2, 2} are of finite multiplicity and can
only accumulate to {−2, 2}.
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Proof:

Let f be an eigenfunction of H associated to λ ∈ I. We have

〈f , [H, iA]◦f 〉 = 〈f , [H − λ, iA]◦f 〉
= i〈(H − λ)f︸ ︷︷ ︸

=0

, Af︸︷︷︸
f∈D(A)?

〉 − i〈 Af︸︷︷︸
f∈D(A)?

, (H − λ)f︸ ︷︷ ︸
=0

〉= 0?

We change slightly the approach. Set for τ 6= 0,

Aτ :=
1
iτ

(eiAτ − Id)

Note that for g ∈ D(A),
lim
τ→0

Aτg = Ag.

Moreover, we have for all g ∈ H

[A,H]◦g = lim
τ→0

1
iτ

(
eiτAHe−iτA − H

)
g = lim

τ→0

1
iτ

[eiτA,H]e−iτAg = lim
τ→0

[Aτ ,H]g.
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〈f , [H, iA]◦f 〉 = lim
τ→0
〈f , [H, iAτ ]f 〉

= lim
τ→0
〈f , [H − λ, iAτ ]◦f 〉

= lim
τ→0

i〈(H − λ)f︸ ︷︷ ︸
=0

, Aτ f︸︷︷︸
Aτ f∈H

〉 − i〈 Aτ f︸︷︷︸
Aτ f∈H

, (H − λ)f︸ ︷︷ ︸
=0

〉 = 0.
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We turn to the point 2. We apply the strict Mourre estimate to f , where Hf = λf and λ ∈ I. Note
first that

f = E{λ}(H)f = EI(H)f .

Therefore, we get

‖f‖2 = ‖EI(H)f‖2 ≤
1
c
〈f ,EI(H)[H, iA]◦EI(H)f 〉

=
1
c
〈EI(H)f , [H, iA]◦EI(H)f 〉

=
1
c
〈f , [H, iA]◦f 〉 = 0.

Therefore H has no eigenvalue in I.
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We now prove the point 1. Suppose that, for all n ∈ N, there are λn ∈ I and fn ∈ H such that
‖fn‖ = 1 and Hfn = λfn.

We apply the Mourre estimate to fn. We get:

0 = 〈fn,EI(H)[H, iA]◦EI(H)fn〉 ≥ c〈EI(H)fn,EI(H)fn〉+ 〈EI(H)fn,KEI(H)fn〉
≥ c 〈fn, fn〉︸ ︷︷ ︸

=1

+〈fn,Kfn〉

≥ c − ‖Kfn‖2

Or fn ⇀ 0 and K compact, therefore ‖Kfn‖ → 0. With n large enough we obtain a contradiction
with the fact that c > 0.
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Proposition

Let H ∈ C1(A) with H bounded and self-adjoint and A self-adjoint. Assume that the following
Mourre estimate holds true

EI(H)[H, iA]◦EI(H) ≥ cEI(H) + K ,

where K ∈ K(H).

If H has no eigenvalue in I, then for all λ in the interior of I there is J := [λ− ε, λ+ ε], with ε > 0
small enough, such that

EJ (H)[H, iA]◦EJ (H) ≥
c
2

EJ (H),

holds true.
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Proof:

Set In := [λ− 1/n, λ+ 1/n]. Since there is no eigenvalue in I, we have that for all f ∈ H that

‖EIn (H)f‖2 =

∫
In

dmf (x)→ 0, as n→∞,

by dominated convergence.

Since K is compact, we have that ‖KEIn (H)‖ → 0, as n→∞. Therefore, for n large enough, we
obtain that ‖KEIn (H)‖ ≤ c‖EIn (H)‖/2. Therefore we obtain:

EIn (H)[H, iA]◦EIn (H) ≥
c
2

EIn (H).
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Assume that H ∈ C1(A) and

EI(H)[H, iA]◦EI(H) ≥ cEI(H).

We will deduce some dynamical properties.

Given f ∈ H and ft := e−itH f its evolution at time t ∈ R under the dynamic generated by the
Hamiltonian H, one looks at the Heisenberg picture:

Hf (t) := 〈ft ,Aft 〉. (3)

As A is an unbounded self-adjoint operator, we take f := ϕ(H)g, with g ∈ D(A) and ϕ ∈ C∞c (I).
We can prove that Hf is well-defined as e−itHϕ(H) stabilises the domain of A. This implies also
that Hf ∈ C1(R).

Remark
Note that EI(H)f = EI(H)ϕ(H)g = ϕ(H)g = f .
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that Hf ∈ C1(R).

Remark
Note that EI(H)f = EI(H)ϕ(H)g = ϕ(H)g = f .
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Since H ∈ C1(A), the commutator [H, iA]◦ is a bounded operator. We denote by C its norm.

H′f (t) = 〈ft , [H, iA]◦ft 〉 = 〈ft ,EI(H)[H, iA]◦EI(H)ft 〉.

We now use the Mourre estimate above I and since eitH is unitary, one gets:

c‖f‖2 ≤ H′f (t) ≤ C‖f‖2.

Now integrate the previous inequality and obtain

ct‖f‖2 ≤ Hf (t)−Hf (0) ≤ Ct‖f‖2, for t ≥ 0

The transport of the particle is therefore ballistic with respect to A, we have some transport in the
direction given by A. Purely absolutely continuous spectrum is therefore expected.
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Theorem
Suppose that H is a bounded and self-adjoint operator and that A is self-adjoint. Assume that
H ∈ C2(A) and that

EI(H)[H, iA]◦EI(H) ≥ cEI(H),

holds true for some non-empty and closed interval I. Then:
1 The spectrum of H restricted to I is purely absolutely continuous.
2 Given J a closed interval included in the interior of I, for all s > 1/2 there is a constant

c > 0, such that the following limiting absorption principle holds true:

sup
λ∈J

sup
ε>0
|〈f , (H − λ− iε)−1f 〉| ≤ c‖〈A〉s f‖2,

where 〈x〉 :=
√

1 + x2.
3 There is c > 0 such that for all f ∈ H,∫

R
‖〈A〉−se−itHEJ (H)f‖2 dt ≤ c‖f‖2.
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Theorem
Suppose that H := AZ + V (Q), where

lim
n→±∞

V (n) = 0, lim
n→±∞

n(V (n)− V (n + 1)) = 0, and sup
n

n2|V (n)− V (n + 1)| <∞

Then:
1 The essential spectrum of H is σess(H) = [−2, 2].
2 The eigenvalues of H that do not belong to {−2, 2} are of finite multiplicity and can only

accumulate to {−2, 2}.
3 σsc(H) = ∅.
4 Given J a closed interval included in the interior of I, for all s > 1/2 there is a constant

c > 0, such that the following limiting absorption principle holds true:

sup
λ∈J

sup
ε>0
|〈f , (H − λ− iε)−1f 〉| ≤ c‖〈Q〉s f‖2,

for all f ∈ D(〈Q〉s).
5 There is c > 0 such that for all f ∈ H,∫

R
‖〈A〉−se−itHEJ (H)f‖2 dt ≤ c‖f‖2.
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With more technology, we can prove that
1 Under the hypothesis that there is ε > 0 such that

lim
n→±∞

V (n) = 0, lim
n→±∞

n1+ε(V (n)− V (n + 1)) = 0,

the conclusions of the Theorem remain true.
2 Under the hypothesis that n 7→ V (n + k)− V (n) ∈ `1(Z) holds true for some k ∈ Z, we have

that
σsc(H) = ∅

and that there is no eigenvalue in (−2, 2).
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I thank you very to have followed my course.

I hope that you have learnt something and did enjoy this course.

I hope that you will try to solve the exercices and get a stronger background.

I wish you to be happy and all the best in your future live.
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Sylvain Golénia (Universtité de Bordeaux) Absolute continuous spectrum Kairouan, 7–19 novembre 2016 139 / 139
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