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Just what is a Laplacian, and why 
are Laplacians ubiquitous? 



I.  The simplest and most symmetric 
second-order differential. 

ª  Linear partial differential equations can be converted to 
normal forms with a change of variables.  The leading term is: 

     where we may assume that A is symmetric.  By diagonalizing   
     A and enforcing invariance under symmetries, we find that A is  
     a multiple of the identity. 



What about a surface or manifold? 
What about a surface or manifold?

The essence of a manifold is that it looks locally like Euclidean space. In fact, if
you single out a given point, you can find coordinates, called Fermi coordinates, in
which the metric tensor at that spot becomes the identity, just like for Euclidean
space. Of course, it does this only momentarily. Think, for example of the sphere
with spherical coordinates ✓,� for which
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y = rsin✓ sin�

x = r cos ✓

As we know, fixing r = 1, the arc length and Laplacian look like:
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but on the equator, where sin ✓ = 1 and its derivative is zero, we obtain the
familiar Laplacian as the unweighted sum of the second derivatives with respect
to an orthogonal coordinate system.

One could develop the notion of the Laplace-Beltrami operator by using Fermi
coordinates and then calculating the complications that arrive as soon as one
moves avay from the special point, but there is an easier way to proceed, which
is to think about the weak form of the Laplace operator, which is the quadratic
form on a domain or manifold ⌦ defined by
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or, by polarization,

f ! E(f) :=
Z

|rf |2 dV ol. (1.1)

Again, among all quadratic expressions in the first derivatives of f , the integrand in
(1.3) is uniquely defined, up to a constant multiple, by respecting the symmetries
of Euclidean space. The infamously complicated form of the Laplace-Beltrami
operator in terms of a metric tensor,
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where g := det(g
ij

), is simply what you obtain if you introduce local coordinates
and integrate (1.3) by parts:

Z
|rf |2 dV ol =
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f) dVol + possible boundary contribs. (1.3)

Verification Exercise. Verify (1.2), (1.3).
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The weak, or quadratic form 

ª If you ask what the Laplace-Beltrami 
operator looks like in general 
coordinates, and you work hard 
enough, from this you find 



The weak, or quadratic form 

ª However, there is a simpler way, when 
you define the Laplacian by its weak 
form,  

By partial integration, if allowed, the latter term 
contains the Laplacian 
 
 
but the weak form requires less regularity. 



The weak, or quadratic form 

It suffices to consider  

by polarization: 



The weak, or quadratic form 

ª Verification exercise:  Check by partial 
integration that 

The usual Laplace-Beltrami operator on, for example 
a closed manifold (no boundary), is defined by using 
the Friedrichs extension from a suitable dense set of 
test functions f.  Cf. the lectures by Hatem Najar. 



II. The generator of the simplest 
probabilistic process. 



II. The generator of the simplest 
probabilistic process. 

ª Verification exercise:  Check that P 
satisfies the heat equation and that 
provides the general solution for the 
initial-value problem for the heat 
equation on Euclidean space.  



III.  The Laplacian measures how a 
function differs from its averages. 

ª A basic question of analysis:  How does 
a quantity compare with its average 
value? 

ª Subharmonic functions: f(x) always less 
than its average over balls centered at 
x. Superharmonic refers to the 
opposite inequality.  A harmonic 
function is both sub- and 
superharmonic. 



III.  The Laplacian measures how a 
function differs from its averages. 



III.  The Laplacian measures how a 
function differs from its averages. 



III.  The Laplacian measures how a 
function differs from its averages. 

ª In words:  The Laplacian of a function 
f at x measures the rate at which 
nearby averages of f increase as you 
move away from x. 

ª This point of view makes no reference 
to differentiation! 

ª While we won’t develop the subject 
here, this gives one a way to define 
Laplacians on abstract measure spaces. 



Spectral theory on combinatorial 
and quantum graphs 

Copyright 2016 by Evans M. Harrell II. 

Evans Harrell 
Georgia Tech 

www.math.gatech.edu/~harrell 

Topic 2:  The Ubiquitous Notion of a Graph 

  القيروان
 

Atlanta 



Just what is a graph, and why are 
graphs ubiquitous? 



Combinatorial graphs 

ª Sets of n “vertices” and m edges, with 
m ≤ n(n-1).  (Or n(n-1)/2 if we don’t 
“orient” the edges). 

ª There is a vertex space isomorphic to 
Cn and an edge space isomorphic to Cm. 

ª A matrix can be used to efficiently 
describe which edges connect to which 
vertices. 



Uses of combinatorial graphs 

ª Electrical networks  
ª Social networks (communication, 

internet). 
ª Discrete approximations of physical 

problems modeled by PDEs or 
dynamical systems. 

ª Biochemical pathways. 
ª Molecular structure 

 



From Constance Harrell et al., Psychoneuroendocrinology 62 (2015) 252–264. 



Uses of combinatorial graphs 

ª A “graph of knowledge” 
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Wikigraph – a project of P. Laban 



“Standard” combinatorial graphs 

ª Finite. m, n < ∞.  
ª Connected.  
ª Undirected. 
ª Loop-free. 
ª Unweighted. 



Matrices describing graphs 

ª The n×n adjacency matrix specifies 
which vertices are connected to which 
other vertices. 

ª The n×m incidence matrix specifies 
which vertices attach to a given edge. 

ª The m×n discrete gradient specifies 
how oriented edges attach to the 
vertices. 



Complete graph 



Ring and star 



Tree 



Bipartite 

A classic problem in graph theory is to determine how 
many labels, or “colors,” are necessary for the vertices, 
so that no two vertices with the same label are 
connected.  A bipartite graph is one where only two 
labels are necessary. 



Prof. H’s favorite example 



Prof. H’s favorite example 

Incidence matrix: 



Prof. H’s favorite example 

The diagonal is the 
set of “degrees” (or 
valences, i.e., the 
number of 
neighbors. 



Prof. H’s favorite example 

= Deg + A 



Prof. H’s favorite example 

Gradient: 
 
 
 
(An arbitrary 
orientation has 
been put on the 
edges) 



Prof. H’s favorite example 

= Deg - A 



Prof. H’s favorite example 

Gradient: 
 
 
 
(Both orientations 
are allowed on 
the edges.) 



Prof. H’s favorite example 

(exactly twice the previous caculation, 2 (Deg – A). ) 



The Laplacian on a graph 

ª The operator d*d is what we will define 
(up to a sign) as the graph Laplacian,   

   - Δ = d*d .  The quadratic form of this     
   is: 
         



ª The operator d*d is what we will define 
(up to a sign) as the graph Laplacian,   

 - Δ = d*d .  Notice that 
         - Δ  =  Deg - A 
ª  This means that at a vertex v,  
         [- Δ f](v) = Deg(v)(f(v) - <f>w~v). 
 

The Laplacian on a graph 



ª The renormalized graph Laplacian of 
Fan Chung is defined as 

        Deg-1/2 (- Δ) Deg-1/2 
ª  This is related by a similarity 

transformation to 
         Deg-1 [- Δ f](v) = f(v) - <f>w~v. 
 

The Laplacian on a graph 



ª In the next lecture we will discuss 
quantum graphs, where the edges have 
the metric structure of intervals. 

 

The Laplacian on a graph 


