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CIMPA school on spectral theory, Kairouan, 2016



The setting

We consider a semiclassical Schrödinger operator Ph on the
half-line [0,∞), and Dirichlet (or Neumann) boundary condition at
0 :

Phu = −h2u′′ + V (x)u.

I The potential V is smooth on (0,+∞), continuous on [0,∞)
and V (0) = 0.

I The operator Ph is self-adjoint and we study its spectrum in
an energy window K = [a, b] ⊂ [0,∞).



Assumptions

We make the following assumptions on V and [a, b].

1. ∃δ > 0, lim inf V > b + δ for x → +∞.
2. ∃η > 0, ∀x > 0, V (x) ∈ [a, b] =⇒ V ′(x) > η.

These assumptions have the following consequences :

I (H1) implies that the spectrum in [a, b] is discrete.

I (H2) implies that there is only one well (no tunnel effect here).

Remark : the spectrum is simple (because the problem reduces to a
second-order differential equation).



Results - 1 : non-critical energies

The following results can be extracted from the literature that
starts with Titchmarsch, Olver, Hörmander, Maslov .... and
develops into semiclassical analysis (see e.g. the textbooks by
Helffer-Robert, Dimassi-Sjöstrand, Zworski ....).

Theorem

Under the standing assumptions, if moreover a > 0 then there exists
c > 0 and h0 such that, for h 6 h0 and any two distinct eigenvalues
Eh and E ′h of Ph,

|Eh − E ′h| > ch.



Results - 2 : Bottom of the well

Theorem

Assume there exists γ > 1 and W ∈ C∞([0,∞)) such that V (x) =
xγW (x) for x > 0, and lim inf V > 0. For any M > 0, there exists
c > 0 and h0 such that, for h 6 h0 and any two distincts eigenvalues

Eh and E ′h of Ph, if Eh < Mh
2γ
γ+2 then

|Eh − E ′h| > ch
2γ
γ+2 .

Actually for both results, much more is known. Asymptotic
expansions for Eh are known (see Bohr-Sommerfeld rules, Airy,
harmonic approximation)



Approximate solutions

There are well-known techniques to study the solutions to a second
order differential equation of the form

−h2u′′ + Wu = 0.

We distinguish between

I The classically allowed region where W (x) > 0.

I The classically forbidden region where W (x) < 0.

I Points where W vanishes are called turning points.

Away of the turning points, approximate solutions can be
constructed using WKB, Liouville-Green expansions i.e. by making
the Ansatz

uh(x) = exp(
i

h
S(x))

∑
k>0

hkbk(x).



WKB expansion 1/2

Compute

exp(− i
hS(x))(Ph − E )(exp( i

hS(x))b) =(
(S ′)2 + V − E

)
b

−h · (2iS ′b′ + iS ′′b)
−h2 · (b′′)

By solving successively

1. The eiconal equation : (S ′)2 + V − E = 0,

2. the transport equation : 2S ′b0 + S ′′b0 = 0,

3. the higher order transport equations :
2S ′bk+1 + S ′′bk+1 = ib′′k ,

we find approximate solutions in the classically allowed and in the
classically forbidden region.



WKB expansions 2/2

Fix I a compact interval in the classically allowed region, we find a
real phase S , and sequence (a±k )k>1. We set

φ±(x) = (E − V (x))−
1
4 e±

i
h
S(x)

1 +
∑
k>1

hka±k (x)

 .

in the sense of asymptotic expansions and we obtain

(Ph − E )φ± = O(h∞)‖φ±‖L2(I ).

The latter means that

∀N,∃CN , ‖(Ph − E )φ+‖L2(I ) 6 CN · hN‖φ±‖L2(I ).

A sequence (Eh, φh) satisfying this estimate will be called a O(hN)
quasisolution.



Near the turning point

In the classically forbidden region, the same method applies except
that the phase now is purely imaginary so that φ± exhibit
exponentially growing/decaying behaviour.
There are several ways to deal with the turning point.

I The Cherry-Langer transform whose idea is to seek a change
of coordinates and a change of function so that the equation
becomes equivalent to its first order approximation. The latter
is then solved using Airy functions. Keeping tracks of the error
terms gives an asymptotic expansion near the turning point.

I Another method is to seek the solution using the Maslov
Ansatz :

uh(x) =
1√
2πh

∫
exp(

i

h
(xξ − T (ξ)))

∑
k>0

hkbk(ξ) dξ.

Such an Ansatz is motivated by a phase space analysis : in the

ξ variable, the e
i
h
F (ξ)∑

k>0 h
kbk is the same WKB ansatz.



The Maslov Ansatz

Using the Maslov Ansatz leads to the same steps :

I an eiconal equation for F ,

I a homogenous transport equation for b0
I inhomogenous transport equations giving bk+1 knowing bk .

Semiclassical analysis provides a nice geometric interpretation that
in particular explains this symmetry between the WKB and Maslov
Ansatz : the computation takes places on the lagrangian
submanifold ξ2 + V (x) = E that can be parametrized by x and/or
ξ.

Going back and forth between the x and ξ representation is done
by using the h-Fourier transform and the stationary phase
expansion. This is one of the foundations of semiclassical analysis.



Approximate eigenvalues 1/2

With our assumptions, when V is smooth on [0,∞), the Maslov
Ansatz provides us with a O(h∞) quasisolution on [0,∞).
When the Maslov Ansatz satisfies the boundary condition at 0 we
obtain an approximate eigenfunction (a quasimode) and thus an
estimate on the eigenvalues.
Normalize the phase T so that T = 0 at the turning point. The
stationary phase expansion yields that

uh(0) =C

exp(
i

h
S(E ) +

π

4
)
(
1 +

∑
k>0

hka+k
)

+ exp(− i

h
S(E )− π

4
)
(
1 +

∑
k>0

hka−k
)



Approximate eigenvalues 2/2

We can write

uh(0) = C cos(
i

h
Sh(E ) +

π

4
)

so that that whenever

Sh(Eh) =
π

2
+ khπ, (k ∈ Z)

we have an approximate eigenvalue.
The semiclassical action Sh has a asymptotic expansion and S0 is
linked with the classical action

∫
1{|ξ|2 + V (x) 6 E}dxdξ.

We thus obtain eigenvalues that satisfy the order h spacing.



From approximate to exact

In order to prove that all eigenvalues are obtained by the preceding
method we have to prove that any true eigenfunction is close to
the Maslov Ansatz. This can be done using the following steps.

I Adapt the method of variation of constants replacing solutions
by O(h∞) quasisolutions. Use it to prove that in the classically
allowed region, any true solution has a WKB expansion.

I Prove a non-concentration (or control estimate) saying that
any true solution has mass in the classically allowed region.

I Combine these two facts to prove that there exists c > 0 so
that hu′h(0)/‖uh‖ > c .

I Compute the semiclassical wronskian of the Maslov Ansatz
and of the true solution in the classically forbidden region and
at 0 to conclude.



Scaling in the well

Let (uh,Eh) be a solution to the equation

−h2u′′h + (V (x)− E )uh = 0.

We set vh(y) = uh(hαy) for α = 2
γ+2 we find that

−v ′′h + (yγW (hαy)− eh) vh = 0

where we have set eh = h−
2γ
γ+2Eγ .

Heuristics : the equation on the half-line

−G ′′ + (yγW (0)− e)G = 0.

has a discrete spectrum 0 < e0 < e1.... and the small eigenvalues

in the spectrum of Ph are given, at leading order by h
2γ
γ+2 ej .



More details

We compare the two following operators on the half-line :

Qhv = −v ′′ + (yγW (hαy)v

Ahv = −v ′′ + (yγW (0))v .

Let FA be the vector space that is spanned by the n- first
eigenvalues of Ah.
Any function in F is exponentially decaying for large y so that
there exists M so that

∀v ∈ F , |〈Qv , v〉 − 〈Av , v〉| 6 Mhα‖v‖2

This gives
λN(A) > λN(Q) + Mhα.

To prove the converse, we must get the exponential decay of
eigenfunctions of Qh with bounded energy. This can be done by
convexity type estimate.



Perspectives

1. The intermediate regime Eh → 0, h−
2γ
γ+2Eh →∞.

2. Potentials with singularities.


