Séminaire d'analyse (archives)

Calcul paracontrolé d'ordre supérieur

Nom de l'orateur
Frédéric Bernicot
Etablissement de l'orateur
LMJL
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

On (re)expliquera rapidement le calcul paracontrolé d'ordre 1 (introduit par Gubinelli, Imkeller et Perkowski) et comment il permet de résoudre le modèle parabolique d'Anderson en dimension 2, prototype des EDP singulières. En observant alors les obstacles pour la dimension 3, on expliquera le calcul d'ordre supérieur. En particulier, celui-ci fait intervenir l'introduction de paraproduits espace-temps, que nous détaillerons. C'est un travail en collaboration avec Ismaël Bailleul et Dorothee Frey.

Analyse asymptotique de la transformée de Fourier sur le groupe de Heisenberg lorsque la fréquence verticale tend vers 0

Nom de l'orateur
Hajer Bahouri
Etablissement de l'orateur
Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA)
Université Paris-Est Créteil
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

Dans ce récent travail en collaboration avec Jean-Yves Chemin et Raphael Danchin, nous proposons une nouvelle approche de la transformée de Fourier sur le groupe de Heisenberg. Cette approche permet de voir la transformée de Fourier des fonctions intégrables comme une fonction uniformément continue sur un espace muni d'une distance appropriée (tandis qu'avec le point de vue classique, la transformée de Fourier est une famille d'opérateurs bornés).

Existence presque globale pour l'équation des ondes de gravité-capillarité à données périodiques (en collaboration avec Massimiliano Berti)

Nom de l'orateur
Jean-Marc Delort
Etablissement de l'orateur
Laboratoire Analyse, Géométrie et Applications (LAGA)
Université Paris 13
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

On montre que l'équation des ondes de gravité-capillarité en dimension un d'espace admet, pour des données initiales assez régulières, périodiques, paires, de "masse" nulle et de taille $\epsilon$ petite, une unique solution presque globale, i.e. définie sur un intervalle de temps de longueur $c_N\epsilon^{-N}$, pour $N$ un entier arbitraire. Le résultat est obtenu sous l'hypothèse que le couple de deux paramètres dont dépend l'équation (la gravité et la tension de surface) soit pris hors d'un ensemble exceptionnel de mesure nulle.

De systèmes de particules vers la mécanique des fluides (approfondi)

Nom de l'orateur
Isabelle Gallagher
Etablissement de l'orateur
Université Paris-Diderot, IMJ-PRG
Lieu de l'exposé
Salle Éole
Date et heure de l'exposé

La question d'obtenir des équations de la mécanique des fluides à partir de systèmes déterministes de particules en interaction satisfaisant aux équations de Newton, dans la limite où le nombre de particules tend vers l'infini, est posée par Hilbert dans son sixième problème. Dans cet exposé nous présenterons quelques avancées dans ce programme. Il s'agit de travaux en collaboration avec Thierry Bodineau et Laure Saint Raymond.

Symétrisation basée sur des méthodes d’entropie et des flots non-linéaires

Nom de l'orateur
Jean Dolbeault
Etablissement de l'orateur
CEREMADE
Université Paris Dauphine
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

Certaines inégalités de Gagliardo-Nirenberg sont équivalentes à des inégalités d’entropie - production d’entropie qui peuvent être établies par la méthode de Bakry-Emery, dite aussi méthode du carré du champ, appliquée à des équations de diffusion rapide. En présence de poids, des flots non-linéaires adaptés peuvent aussi être utilisés comme outil pour l’étude des questions de symétrie et de brisure de symétrie dans les inégalités de Caffarelli-Kohn-Nirenberg. Les asymptotiques en temps grand déterminent quel régime de symétrie doit être considéré.

Etude de comportements non linéaires pour un système de Schrödinger cubique couplé

Nom de l'orateur
Victor Vilaça da Rocha
Etablissement de l'orateur
LMJL
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

A travers un système de deux équations de Schrödinger cubiques couplées, nous étudierons différents types de comportements non linéaires que l'on peut obtenir en EDP. A partir de l'étude de deux cas modèles, sur le cercle et sur la droite réelle, nous verrons en quoi le choix d'un espace produit apparaît naturellement, et comment ce choix permet de construire des solutions mettant en évidence un échange d'énergie en temps infini.

Quantifications du tore et transformée de Bargmann

Nom de l'orateur
Ophélie Rouby
Etablissement de l'orateur
Grupo de Física Matemática
Universidade de Lisboa
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

On s'intéresse aux différentes quantifications du tore de dimension un et plus précisément à la quantification de Berezin-Toeplitz, à la quantification de Weyl et à la quantification de Weyl complexe, notion que nous allons définir comme une variante de la quantification de Weyl complexe de R^2 introduite par Johannes Sjöstrand. Le but de cet exposé est d'établir un lien entre ces différentes quantifications du tore notamment grâce à la transformée de Bargmann.

Existence globale et tendance à l'équilibre pour l'équation de Vlasov-Poisson-Fokker-Planck

Nom de l'orateur
Laurent Thomann
Etablissement de l'orateur
Université de Lorraine
Lieu de l'exposé
Salle des séminaires
Date et heure de l'exposé

On s'intéresse au système d'équations de Vlasov-Poisson-Fokker-Planck avec un potentiel confinant en dimension 2 et 3 d'espace. On montre que le problème est globalement bien posé pour des conditions initiales à basse régularité Sobolev, et on montre que la solution tend vers l'équilibre en temps grand. Il s'agit d'un travail en collaboration avec Frédéric Hérau.

KAM for beating solutions of the quintic NLS

Nom de l'orateur
Emanuele Haus
Etablissement de l'orateur
Università degli Studi di Napoli "Federico II"
Dipartimento di Matematica e Applicazioni "Renato Caccioppoli"
Lieu de l'exposé
Date et heure de l'exposé

We consider the nonlinear Schrödinger equation of degree five on the circle. We prove the existence of quasi-periodic solutions which bifurcate from “resonant” solutions (already studied by Benoît Grébert and Laurent Thomann) of the system obtained by truncating the Hamiltonian after one step of Birkhoff normal form, exhibiting recurrent exchange of energy between some Fourier modes. The existence of these quasi-periodic solutions is a purely nonlinear effect. This is a joint work with Michela Procesi.

Commutators, Factorization, BMO and the Hardy Space

Nom de l'orateur
Brett Wick
Etablissement de l'orateur
Department of Mathematics, Washington University - St. Louis
Lieu de l'exposé
Date et heure de l'exposé

In this talk we will revisit an idea of Uchiyama about factorization in Hardy spaces and show how this idea can be implemented in other function spaces. As a result we will obtain factorization theorems for Hardy spaces in multi-parameter settings, multilinear settings, and in the setting of the Bessel operator. Equivalently, we will obtain results about the boundedness of commutators in these settings.

This talk is based on joint work with Ji Li, Xuan Duong, and Donyong Yang.