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La cohomologie de Hochschild est une théorie d’algebre homologique concernant les
algebres associatives. Elle apparait en 1945 dans les travaux de Gerhard Hochschild
et sera étudié durant le XX siecle par de nombreux mathématiciens. Gerstenhaber,
Schack, Loday, on encore Grothendieck contribueront a étendre cette théorie aux schémas
a travers plusieurs définitions. Le but de ce mémoire est d’étudier les travaux de Swan
pour comprendre ces différentes définitions.

Le cadre général est une algebre associative A (non nécessairement unitaire) sur un
anneau commutatif k, et un bimodule M sur A, c¢’est a dire un A-module a droite et a
gauche satisfaisant les relations suivantes

Am = mA
a(mb) = (am)b

pour tout m € M, A\ € k et a,b € A. Lorsque A est unitaire, cela revient a considérer un
module sur 'anneau A = A ® A, ou ® = ®y, a travers la formule

(a ®b)m = amb

pour tout m € M et a,b € A. Etant donné notre motivation a étudier des schémas, A sera
toujours unitaire et méme commutative. On introduit ensuite le complexe de Hochschild

Co(A, M) = M @ A®"

dont la différentielle est définie par les applications k-linéaire suivantes

d=Y(-1)id;: M ® A®" — M ® A®"~}
i=0
do(m®a1®“-®an):ma1®a2®---®an
di(mM®ar®- - ®a,) =m@a1 @+ @ a1 ® -+ ®a, pour 0 <i<n
dy(mM®@a1 ® - ®a,) =a,mRa; @+ @ Ap_y

Lorsque A est commutative, ces applications sont A°-linéaires. On peut alors définir
I’homologie de Hochschild de A a valeurs dans M par

H,(A,M) = H,(Cs(A, M))

Traditionnellement, on note Co(A) = Co(A, M) et HH,(A) = Ho (A, M). Pour mieux
comprendre cette homologie, il est commode d’utiliser le complexe "bar” de A°-module

B,(A)=A® A®"® A

dont la différentielle est donnée par les applications A°-linéaires

d=>(-1)d: A0 A" R A - AR A®" 1A
i=0
d;(a/0®“'®an+1> :a’0®.”®aiaﬂi+l®“'®an+l
La multiplication dans A permet d’obtenir une résolution de A°-module
BJ(A) — A

Si A est projective sur k, alors B,(A) est projectif sur A, et dans ce cas

H,(A, M) =Tori (M, A) = Tor’ (A, M)



Pour définir la cohomologie de Hochschild de A & valeurs dans M, on s’inspire la situation
précédente en posant

H"(A,M) = H"(Home(Bo(A), M))
de sorte que si A est projective sur k alors
H"(A, M) = Ext%.(A, M)

Puisque les schémas que nous considererons seront toujours basés sur un corps, les algebres
que 'ont rencontrera seront toujours projectives. Ainsi, on préferera définir I’homologie et
la cohomologie de Hochschild & travers les foncteurs dérivés Torl (A, —) et Ext%.(A, —).

Dans son article "Hochschild cohomology of quasiprojective schemes”, Swan intro-
duit trois définitions différentes de la cohomologie de Hochschild d'un schéma basé sur un
corps, puis il prouve que ces trois définitions coincident si le schéma est quasi-projectif. La
démonstration fait appel a différents concepts de géométrie algébrique et utilise des tech-
niques standard d’algebre homologique telles que les suites spectrales. Notre objectif est
de comprendre cet article en détaillant les preuves de chacun des résultats intermédiaires
en apportant parfois des preuves alternatives ainsi que la démonstration générale. On
conservera le plan en dix parties de ’article original.
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1 Cohomologie de Hochschild

Rappelons la définition de la cohomologie de Hochschild d'une algebre commutative
A sur un corps k. On considere A° = A ® A avec ® = ®y, ainsi que la multiplication

e A = A

qui permet de regarder un A-module M comme un A°-module que 'on notera M. ou
simplement M si cela ne préte a aucune confusion. La cohomologie de Hochschild de A a
valeur dans un A°-module M est définie par

H*(A, M) = Ext%.(A, M)
On peut calculer cette cohomologie en utilisant la résolution projective de A°-module
B.,(A) 5 A

ol Be(A) est le complexe "bar” de A [2, 1.1.12]. Trés souvent, on souhaite calculer la
cohomologie de Hochschild de A a valeur dans un A°~-module M.. Dans cette configuration,
on a l'identification

Homae(Bo(A), M:) = Homa(A ®ae Bo(A), M)
Combinée avec I'isomorphisme de complexe de A-module
A®pe Bo(A) ~ Co(A)
ou Ce(A) est le complexe de Hochschild de A [2, 1.1.3], ce calcul donne
H"(A, M) = H"(Homs(Cs(A), M))

pour tout A-module M.

Exemple (H® & H') : La différentielle C;(A) — Co(A) est nulle car A est commutative

A° A

SRt——=st —ts

Ceci montre que HY(A, M) = Homu(A, M) = M et H' (A, M) = Z'(Homa(C.(A), M)).
La différentielle Cy(A) — C}(A) donnée par

A® A A°
SREIERXr——=stRQr —sQRQtr+rst

et I'adjonction Homu (A, M) = Homy(A, M) permette d’interpréter les 1-cocycles de
Hom(Co(A), M) comme les dérivations de A dans M : H'(A, M) = Der (A, M).

La premiere maniere d’adapter cette définition a un schéma X sur un corps k est de
considérer avec x = X I'application diagonale

0: X =X xX

pour regarder chaque faisceau F de Ox-module comme un faisceau de Ox« x-module en

prenant J,F mais en notant simplement F a la place de §,F. On peut alors définir la

cohomologie de Hochschild de X a valeur dans un faisceau F de Ox-module par
H*(Ox,F) = Ext?

Oxxx

<0X7f)



Cette définition généralise la cohomologie de Hochschild d’une algebre, au sens ou si
X = Spec A est affine et F = M"™ est quasi-cohérent alors

H*(Ox,F)=H*(A, M)
Ceci provient du fait que X x X = Spec A°, ,0x = A.” et §,F = M.™, ce qui implique
Exty,  (Ox, F) = Exty.(A, M)

Cette définition arrive avec une suite spectrale de Grothendieck. De fait, le foncteur
Homey, (Ox,—) envoie les faisceaux de Oxyx-module injectifs vers les faisceaux de
Ox«x-module I'-acyclique. Plus généralement, si O est un faisceau d’anneau sur un
espace topologique, F un faisceau de O-module et Z un faisceau injectif de O-module
alors le faisceau Homeo(F,Z) est flasque : pour toute inclusion d’ouvert V' C U et tout
morphisme de faisceau de O|y-module

]ﬂv-—%]%v
correspond un morphisme de faisceau de O|y-module
(Flv)v = Zlu

ou (Fly)u désigne le faisceau Fly étendu par 0 sur U [1, Ch.Il, Ex.1.19]. On obtient
alors un triangle commutatif

En ajoutant a cela que les faisceaux flasques sont I'-acycliques [1, Ch.III, Prop.2.5], on
obtient la propriété recherchée. Ainsi, la composition de foncteur

HomOXxX(OX7 _) =To HomOXXX (OXv _)
induit pour tout faisceau F de Ox-module une suite spectrale de Grothendieck

EY = HP(X x X, Exth  (Ox, F)) = Exth? (Ox,F)

OXXX OX><X

Supposons X de type fini et séparé sur k. Les fibres de 0, sont alors données par
((5*.7)5(1) = F, et (5*./—")y =0siy §§ d(X)

pour tout faisceau F de Ox-module. Puisque X x X est noethérien et §,Ox cohérent,
ceci montre que le faisceau Ext%XXX (Ox,F) est a support dans la diagonale §(X) :

(Extg (Ox, F))y = Ext((IDXXxyy(((S*OX)y’ (0.F)y)

Oxxx

[1, Ch.III, Prop.6.8]. En conséquence, l'unité
Exthy, (Ox, F) — 5*5’1€xt%mx((’)x,]—")

est un isomorphisme. Puisque I'od, = I, la cohomologie du faisceau £ xt‘éXXX (Ox, F) sur

X x X coincide avec la cohomologie du faisceau 6 'Extd, ~ (Ox,F) sur X. On préferera

Oxxx
donc écrire la suite spectrale de Grothendieck sous la forme

HP(X, Extl,  (Ox,F)) = H"*(Ox, F)
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en regardant Exty,  (Ox,F) comme un faisceau sur X via 571, Ce dernier hérite d'une
structure de O x-module étant donnée que le morphisme de faisceau de 6~ 'Ox y x-module

§1Exty  (Ox,F) — 6*Exty, (Ox,F)

Oxxx Oxxx

est un isomorphisme. En effet, sur les fibres, on est ramené au morphisme

Extl (OX,x,fx) — OX,z ®OX><X,5(Z) Ext! (OX,mv-Fx>

Ox xx,5(z) Ox xx,5(z)

Pour construire la réciproque, on part de la multiplication

OX@ x Ext?

Ox x x,6(x)

(OX@, ]:33) — Extq

Ox xX,6(z)

(OX,:z:w/—:z)

induite par la structure de Ox ,-module de F,, puis on vérifie la bilinéarité sur Ox x 5(z)
grace au triangle commutatif donné par la co-unité

62@) (5*OX)5(:B)

Ox xX.,5(z)

i
8% OX,x

o1 0’ : Oxxx — 0,0x et 6 : 6 'Oxyx — Ox. Par abus de notation, on parlera donc du
faisceau Extf,  (Ox, F) sur X au lieux d’écrire 6*Exty,  (6.0x,0.F).

On peut préciser cette suite spectrale pour les schémas lisses. Commencons par rap-
peler une propriété élémentaire d’algebre homologique qui nous servira également au para-
graphe 5 : si on se donne un complexe de R-module projectif

P, P, P, 0

tel que les homologies sont des R-modules projectifs, alors on a des isomorphismes
HY(Hompg(P.,N)) ~ Hompg(H,(P,), N)

pour tout R-module N et tout g. Pour le démontrer, on note Z, = Z,(P,) les cycles et
B, = Bq(P.) les bords de P, puis on utilise les suites exactes courtes

0—>Z,—> P,—> B,—>0

0 By Zq H,(P,) —=0
et la projectivité de I’homologie de P, pour obtenir les isomorphismes
Zq ~ Hy(P,) & By
ce qui permet de prouver par récurrence sur g € N
P,~B,® Z,

de sorte que le complexe P, s’identifie au complexe

By®© Zy——>By1© 24

(b, ¢) ———(0,b)

Dans cette configuration, le complexe Hompg(P,, N) s’identifie au complexe

-+« —>Hompg(By,, N) ® Hompg(Z,, N) Hompg(Byy1, N) @ Homgp(Zy41, N) > - -
(fag)l (g|Bq+170)




Les cocycles s’identifient alors a Hompg(B,, N) & Homp(H,(P.), N) car les morphismes
Z, — N nuls sur By, correspondent aux morphismes H,(FP,) — N ; tandis que les
cobords s’identifient a I'image de Hompg(Z,, N) par la restriction sur By, c’est a dire
Hompg(Byt1, N). En effet, la seconde suite exacte courte fournit une fleche Z, — B,y
qui est I'identité sur B,y de sorte que la restriction sur B, est surjective. Ceci prouve
I'isomorphisme annoncé. Ce résultat peut étre utilisé dans la situation suivante. Soient

S—R
un morphisme d’anneau, M un S-module et N un R-module. Les groupes
Extl(M,N) et Tory (R, M)

sont naturellement munit d’une structure de R-module. Si on suppose pour tout ¢ que
T 07‘5 (R, M) est projectif sur R alors on a un isomorphisme de R-module

Exti(M,N) ~ Homg(Tory (R, M), N)

Pour le voir, on prend une résolution projective de S-module
P, — M
Le complexe R ®g P, est alors projectif sur R et son homologie
Hy(R®g P,) =Torf (R, M)
est par hypothese projective sur R. On a alors un isomorphisme
Hi(Homp(R ®s Po,N)) ~ Homg(H,(R ®s P,), N)
et le résultat se déduit alors de I’adjonction
Homp(R ®g Py, N) ~ Homg(P., N)
En particulier, lorsque A est lisse sur k, on peut appliquer ceci au morphisme d’anneau
e:A°— A
car le théoreme de HKR fournit des isomorphismes naturels de A-module
Tor{" (A, A) ~ QY

de sorte que TOT?E(A, A) est projectif sur A. On obtient un isomorphisme de A-module

Extl. (A, N) ~ Homa(Q%, N)

Exemple: Si X = Spec Aet F = N~ alors H"(Ox, F) = Ext’. (A, N) ~ Hom (2%, N).

Supposons X lisse sur k. Pour tout ouvert affine U = Spec A de X, on dispose d’un
isomorphisme de faisceau de Opy-module

Extd

Oxxx

(Ox,0x) |y = Eath. (A, A)~ ~ (QF)Y

[1, Ch.III, Prop.6.2 & Ex.6.7]. Ces isomorphismes naturels se recollent pour former un
isomorphisme de faisceau de Ox-module

SxthXXX(OX, Ox) ~ Q%)Y ~ N"Tx
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ot Tx = (2%)V est le faisceau tangent de X, le deuxiéme isomorphisme étant donné par
le fait que Q% est localement libre. Avant de conclure, énongons une propriété générale
pour un faisceau d’anneau O arbitraire. Pour tout faisceau A, B et G de O-module et
tout ouvert U, application I'(U, O)-bilinéaire

T(U, Homo (A, B)) x T(U,G) —T(U, Homo (A, B® G))
(0, 5) (—®s)ob

induit un morphisme de faisceau de O-module
Homo(A,B) @ G — Home(A,B® G)
Lorsque A est projectif sur O et G est localement libre, ¢’est un isomorphisme :

Home, (Az, By) o, G =~ PHomo, (A, B,)

el

~ Homo, (As, PB.) ~ Home, (Az, B: @0, Gz)

iel
avec G, ~ @O,. Puisque les faisceaux localement libres sont plats, on obtient en partic-
iel
ulier pour tout faisceau localement libre F de Ox-module des isomorphismes
Ea:t?gXXX(OX, Ox)® F ~ E:L’t?gXXX(OX,]:)
On peut aussi appliquer cette propriété au faisceau canonique wy = Q% de X
(A Tx) @ wx ~ Home, (%, Ox) @ wy ~ Home, (2%, wx)
Et la multiplication des formes différentielles
Q4 @ 0T wy
induit par adjonction un isomorphisme

QT ~ Home, (Q%, wx)

ce qui peut se vérifier en utilisant la liberté sur Ox, des fibres Q% = Qf, . Le faisceau
wx ® F étant localement libre, on peut résumer ce qui précede par l'isomorphisme

Extd

Oxxx

(Ox,wx ®F) ~ QL0 F

ou d = dim X. Ainsi la suite spectrale donnée par la cohomologie de Hochschild de X a
valeur dans wx ® F s’écrit

H?(X, Q%90 F) = H(Ox,wx @ F)

On verra au paragraphe 2 que si X est quasi-projectif sur un corps de caractéristique
nulle alors cette suite spectrale dégénere et induit une décomposition

H'Ox,wx @ F)~ @ H!(X, QL% F)

pt+q=n
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2 Définition par ’hyper-ext

La deuxieme définition de la cohomologie de Hochschild d'un schéma X sur un corps
s’'inspire d’avantage du calcul

HP (A, M) = H(Hom(Ca(A), M)
Soit C, le complexe de faisceau de Ox-module associé au préfaisceau
U~ C.(T(U, Ox))
La cohomologie de Hochschild d’un faisceau F de Ox-module sur X peut étre définie par
HH*(X,F) = Eaxty,, (Co, F)
c’est a dire pour toute résolution injective F — Z°* de faisceau de Ox-module
HH"(X,F)= H"(Homo, (Ce,Z*))
L’objectif principal de I'article de Swan est de démontrer le théoreme suivant :

Théoreme 2.1 : Soit X un schéma quasi-projectif sur un corps. Il existe un isomorphisme
de d-foncteur en F

H*(Ox,F)~ HH*(X,F)

On peut donner par exemple I’application suivante.

Corollaire 2.2 : Soit X un schéma projectif sur un corps. Pour tout faisceau cohérent
F de Ox-module, HH™(X, F) est un espace vectoriel de dimension finie.

Preuve : Les faisceaux Ext},  (Ox, F) sont cohérents donc les HP(X, Exty, (Ox, F))
sont des espaces vectoriels de dimension finie [1, Ch.III, Th.5.5]. De plus, X est un espace
topologique noethérien de dimension N finie, donc H?(X,Exty, (Ox,F)) = 0 pour
p > N [1, Ch.III, Th.2.7] et ainsi H"(Ox, F) est une somme directe finie d’espace vecto-
riels de dimension finie. W

Dans l'article original [3], Swan remarque qu’on peut également définir la cohomologie
cyclique de X en considérant le complexe de faisceau D, associé au préfaisceau
U Do(I'(U,Ox))

ou D,(A) désigne le complexe total du double complexe de Connes d'une algebre A sur
un corps [2, 2.1.7] puis en posant

HC*(X,F) = Eaty, (D, F)
La suite exacte courte usuelle [2, 2.2.2]
00— Co(A) —= D¢(A) —= Dy (A)[-2] —=0
induit une suite exacte courte de complexe de faisceau de Ox-module

0—>Cy —= Dy —= Dy[~2] —=0

et par suite une longue suite exacte cohomologique de Connes
oo —=HC" (X, F)—=HC"(X,F)—= HH"(X,F) —= HC" Y(X, F) — - - -

qui permet de généraliser par récurrence le corollaire 2.2 a la cohomologie cyclique de X.

12



La principale difficulté autour de cette définition réside dans le fait que C, n’est pas
quasi-cohérent en général. Néanmoins, tout comme la précédente, elle arrive avec une
suite spectrale.

Lemme 2.3 : Soit O un faisceau d’anneau sur un espace topologique. Pour tout complexe
de faisceau A, de O-module borné en bas et tout faisceau G de O-module, il existe une
suite spectrale

Ey! = Butp(Hy(A),G) = Eatp (A, G)

Preuve : Soit G — Z* une résolution injective de faisceau de O-module. Puisque A, est
borné en bas, la suite spectrale donnée en filtrant selon les colonnes le double complexe

e _>.H0mO(Aq+1,Ip) —>~H0m(’)<Aq+17Ip+1) -

o —— Homo( Ay, I?) Homo (A, P —— - -

converge vers la cohomologie totale Extzgq(A., G). On peut calculer la deuxieme page :
E{* = Home(A,,IP)
EY" = HY(Homo(Ae, IP)) = Homo(H,(Al), )

By = Hy(Hi(Homo(As, 1%))) = Exto(Hy(Al),G) B

Lorsque l'on prend O = Oy, A, = C, et que 'on pose H, = H,(C,), on obtient
Bty (Hy, F) = HHP™(X, F)

Pour comprendre le faisceau H,, on a besoin d’une propriété importante concernant
I’homologie de Hochschild des algebres commutatives. Pour tout morphisme plat d’algebre

A— B
le morphisme d’algebre induit
A¢ — B¢
est également plat et on dispose alors d’une formule de changement de base
Tor2(M,N) ~ Tor8 (B* ® 4« M, N)
pour tout A°-module M et tout B¢-module N. Puisque B ® 4 A ~ B, on obtient
B®a Tord (M, A) ~ TorA (M, B) ~ Tor2(B* ®c M, B)

= B®y Hy(A, M) ~ H,(B, B* ® 4 M)
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En particulier, 'homologie de Hochschild commute avec la localisation :
(ST1A)Y @4 A= (STA) @4 A®y (ST1A) ~ S71A
= (S'A) @, HH,(A) ~ HH,(S7'A)

ou HH,(A) = H.(A, A). On rencontrera les morphismes plats dans d’autres situations.
Par exemple, une immersion ouverte de schéma affine

Spec B — Spec A
induit sur les sections globales un morphisme plat
p:A—B

Pour s’en convaincre, il suffit de prouver que tout monomorphisme de A-module

0—=M-—T>N
est envoyé par le foncteur B ® 4 — vers un monomorphisme

0—=Ba ML Bo,N

Par hypothese, ¢ induit pour tout q € Spec B un isomorphisme d’anneau
Ay ~ By

olt p = »!(q). On a alors un carré commutatif

B,®@sBoaM —2% . B @pBo,sN

Puisque A, est plat sur A, le morphisme du bas est un monomorphisme. Par conséquent,
Vq € Spec B, By ®@p ker(1® f) =0
= ker(l1® f)=0

d’ou le résultat. Donnons a présent un lemme important qui nous accompagnera jusqu’a
la démonstration du théoreme 2.1.

Lemme 2.4 : Soit X un schéma de type fini sur un corps.

(1) H, est un faisceau cohérent pour tout q.

(2) ( H,) = HH,(I'(U, Ox)) pour tout ouvert affine U de X.
(3) Si X est lisse alors H, ~ Q%.

(4) Si X = Spec A est af‘ﬁne alors on a un quasi-isomorphisme

5*B, "5 c,
ou B, est le complexe de faisceau sur X x X associé au complexe de A°-module B,(A).

Preuve : La faisceautification est un foncteur exact, donc H, est associé au préfaisceau

U~— HH,(I'(U,Ox))
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Or, 'homologie de Hochschild commute avec la localisation. Donc si U est un ouvert
affine de X alors le préfaisceau

U>SV e HH/(I(V,Ox))
correspond a la localisation du I'(U, Ox)-module HH,(I'(U, Ox)). En particulier,
I'U,H,) = HH,(I'(U, Ox))

Puisque X est de type fini sur un corps, HH,(I'(U, Ox)) est de type fini sur I'(U, Ox) : si
A est une algebre de type fini sur un corps k alors on a un morphisme d’algebre surjectif

klxy, ...,z — A
qui induit un morphisme d’anneau surjectif
Alxy, ...,z > AR A

ce qui montre que A€ est Noethérien. Ainsi, A admet une résolution projective de A°-
module de type fini et par conséquent T' or(j‘e (A, A) est un A°-module de type fini. Puisque
HH,(A) =Tor/" (A, A) est un A-bimodule symétrique, HH,y(A) est un A-module de type
fini. Tout ceci prouve (1) et (2). Le point (3) découle directement du théoreme de HKR.
Supposons X = Spec A affine. Sur les ouverts principaux de X x X, on a une composition

(A°)f @ac Bo(A) = Ac(p) ®ae Ba(A) 2 Acp) @4 Co(A) = ColAc(y))
qui défini un morphisme de faisceau de Oxy x-module
Be = 0.Ca
On obtient par adjonction un morphisme de complexe de Ox-module
0*Be — C,

C’est un quasi-isomorphisme. Pour le voir, il suffit de calculer I’homologie sur les fibres
en chaque idéal premier p € X :

(6°B.)y = Ay @aey, (A%)g ®ae BalA)) = Ay @4 Ba(A) = A, ©4 Ca(A)

ou q € X x X désigne I'image réciproque de p par la multiplication. Le morphisme de
complexe de Ap,-module

A, @4 Co(A) = Co(4Ay)
est un quasi-isomorphisme :

Hy(Ap @4 Co(A)) = Ay @4 Hy(Co(A)) = HH,y(A) = HH,y(Ay) = Hy(Co(4,)) B

Ce résultat permet de réécrire la suite spectrale précédente lorsque X est lisse :
Bty (%, F) = HHPY(X, F)
On peut calculer Ea:t%x(Qg(, F) en utilisant la suite spectrale de Grothendieck
EY = H(X, Ext], (A%, F)) = Extg? (%, F)
donnée par la composition de foncteur

Home, (Q%,—) =T o Home, (%, —)
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L’idée est que Qf est localement libre de rang fini ce qui implique d'une part que
£ ;m%x (Q%,F) = 0 pour tout j > 0 et par conséquent la page E» de la suite de Grothendieck
ne comporte qu’'une seule ligne ce qui induit un isomorphisme

Bty (5, F) ~ HP(X, Homo, (%, F))

et d’autre part que le morphisme de faisceau de Ox-module
QL)Y @ F = Homo, (Q%, F)
introduit au premier paragraphe est un isomorphisme. En particulier,
Homo, (%, wx @ F) =~ QY @ F

Alinsi la suite spectrale donnée par la cohomologie de Hochschild de wyx ® F sur X s’écrit

HY(X, QY99 F) = HHPM (X, wx @ F)
Ceci nous amene au deuxieme théoreme principal de I'article de Swan.

Théoreme 2.5 : Soit X un schéma quasi-projectif sur un corps. Si H, est localement
libre pour tout g alors les suites spectrales

HP(X, Extz,)xxx((f)x,}—)) = HP*(Ox,F)
Bxty, (Hy, F) = HHPY(X, F)
sont isomorphes. En particulier, si X est lisse alors les suites spectrales
HP(X, Q5 ® F) = H*(Ox,wx ® F)
HP (X, Q% "® F) = HHP (X, wx @ F)
sont isomorphes.

Ce théoreme nous permet de démontrer la décomposition de la cohomologie de Hochschild
annoncée a la fin du paragraphe 1.

Corollaire 2.6 : Soit X un schéma lisse et quasi-projectif sur un corps de caractéristique
nulle. La suite spectrale

H?(X, Q%5 ® F) = H*(Ox,wx ® F)
dégénere et induit un isomorphisme

H"Ox,wx @ F)~ @ H!(X, QL% F)

ptq=n
Preuve : Le théoreme 2.5 nous ramene a la suite spectrale
HY (X, Q% "® F) = HHP" (X, wx @ F)

L’idée est d’utiliser la A-décomposition de ’homologie de Hochschild d’une algebre com-
mutative A sur un anneaux contenant Q [2, 4.5.10] :

Cu(A) = PCI(A)

i>0
ol C@(A) est un sous-complexe de Cy(A) dont I’homologie H Y (A) satisfait
HHy(A) = HH{" (A)
HH,(A) = HH(A), n>1

1<n

o
IN
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Lorsque A est lisse, on a HHT(Li)(A) = 0 pour tout ¢ # n [2, 3.4.4 & 4.5.12]. Ceci induit
une décomposition

>0
de sorte que la suite spectrale
HY(X, QY99 F) = HHPM(X, wx @ F)

se décompose comme somme directe des suites spectrales associées aux doubles complexes
Homo, (CSZ),I') oll wy ® F — Z* est une résolution injective. La deuxieme page

B} = Bty (H,(C),wx © F)

consiste alors en une seule colonne ¢ = 7, ce qui montre la dégénérescence a la deuxieme
page et donne ainsi le résultat. Wl

Exemple : Si A est un anneau Noethérien alors tous les faisceaux quasi-cohérents sur
X = Spec A sont I'-acycliques [1, Ch.III, Th.3.5]. Ainsi, si A est une algebre lisse sur un
corps de caractéristique nulle et si F est quasi-cohérent sur X alors le corollaire 2.6 donne

H"(Ox,wx @ F) ~T(X,Q% " ® F)
Or, le théoreme de HKR nous avait permis de démontrer au paragraphe 1 l'identité
H"(Ox,wx @ F) = Homa(2%,Q4 ®4 M)
ou F = M~. L’isomorphisme de A-module
Homa(0%, Q%4 @4 M) ~ Q4" @4 M

nous permet alors d’interpréter le corollaire 2.6 comme une généralisation du théoreme
de HKR aux schémas lisses et quasi-projectifs sur un corps de caractéristique nulle.
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3 Définition de Gerstenhaber-Schack

Introduisons a présent la troisieme définition de la cohomologie de Hochschild d’un
schéma X sur un corps. Dans ce paragraphe, tous les préfaisceaux sont définis sur la
sous-catégorie A C Top(X) des ouverts affines de X. Pour distinguer les faisceaux des
préfaisceaux, on notera O le faisceau d’anneau Ox vu comme un préfaisceau d’anneau et

D, : U — C,(I'(U,Oyx))

le complexe de préfaisceau de O-module auquel C, est associé.

Considérons le préfaisceau d’anneau
O°:U—T(UOx)T(U,0Ox)
La multiplication induit un morphisme de préfaisceau d’anneau
0°—=0

qui permet de regarder tous les faisceaux de Ox-module comme des préfaisceaux de O°-
module. Gerstenhaber et Schack définissent la cohomologie de Hochschild de X a valeur
dans un faisceau F de Ox-module par

Extt. (O, F)
Nalvement, on voudrait considérer le complexe de préfaisceau de O°-module
B, : U — Bo(I'(U,Ox))
comme une résolution de préfaisceau de O°-module
Be — O
et utiliser I'identification suivante
Home, (Ce, F) = Homo(De, F) = Home (O Qoe Be, F) = Homoe (Ba, F)

Le probleme est que B, n’est en général pas projectif sur O°. Par contre, chaque B, (U)
est projectif sur O¢(U), et cette propriété va nous permettre de construire une résolution
projective de préfaisceau de O°-module convenable et de démontrer le théoreme suivant.

Théoréme 3.1 : Exty. (O, F) ~ HH*(X,F).

Le but est de construire une résolution projective de préfaisceau de O°-module a partir
de B,, mais on peut la définir dans un cadre plus général. Soient A un préfaisceau d’anneau
et A — mod la catégorie des préfaisceaux de A-module. On dispose d’une adjonction

R: A—mod— [[ A(U)—mod
Ueh

M——— (M(U))vea

L: [[AU)—mod A — mod

UeA
M (U s @ AU) @aw) My)
VoU
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dont on peut expliciter I'unité 7 et la co-unité ¢ :

(mv)v : My — @ A(U) @) My
VoU

. 1l@m siV=U

mn 0 siV£U

mU) = @ AU) @awy M(V) —— M(U)

VouU

(ay @ my)ysy ——— > ay -mylu
VouU

On note P = LR et on définit un foncteur
Q: A—mod—— A — mod
Mi———ker(epm)

Ceci nous fournit pour tout préfaisceau M de A-module et tout ouvert U € A une suite
exacte scindée de A(U)-module

0 em(U)

QM(U)

PM(U)

M(U)

s

ot s:m1@me A\U) @) MU) C PM(U). En particulier, pour tout n € N, on
pose P, M = PQ"M et on a une suite exacte scindée de A(U)-module

0— > Q"M M(U) —> P,M(U) —> Q" M(U) —=0

On a ainsi construit une résolution de préfaisceau de A-module

PzM P1M P(),/\/l M 0

Supposons que M(U) est projectif sur A(U) pour tout U € A. Dans ce cas l'objet

RM = (M(U))yea est projectif dans [[ A(U)—mod. Puisque R est exact, L préserve les
UeA
projectifs et donc PM est projectif sur A. Les suites exactes scindées précédentes nous

permettent de démontrer par récurrence que chaque Q" M(U) est projectif sur A(U),
de sorte que P, M est également projectif sur A. On a ainsi construit une résolution
projective de préfaisceau de A-module

PM — M

Au besoin, on notera plutot PAM si 'on doit préciser le préfaisceau d’anneau A.
Avant de démontrer le théoreme 3.1, on a besoin du lemme suivant.

Lemme 3.2 : Si A — B est un morphisme de préfaisceau d’anneau alors pour tout n € N

B@AP;‘M ZPE(B(X)AM)

Preuve : Pour tout U € A, on a

(B@a PAM)(U) = B(U) @4w) (D AU) @) M(V))

VouU

~ @ BU) @) AU) @0y M(V)

VoU

~ @ B(U) @puy B(V) @40y M(V) = PP(B@4 M)(U)

VoU
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Puis on conclue par récurrence en utilisant le diagramme a lignes exactes
0——=B®4Q"M B®yPAM——=Bo4 M—=0
0—=Q(BIuM)—=PE(BIyg M) —= B4 M—0

et le lemme des cing. L’exactitude de la premiere ligne est donnée par la présence d’une
section lorsque 1’'on évalue en chaque ouvert U € A. W

Preuve du théoreme 3.1 : On considere la résolution de préfaisceau de O°-module
Be — O
et les résolutions projectives de préfaisceau de O°-module
P,B, — B,

Si on filtre selon les colonnes le double complexe

B Py g ——---

g—1Bp — Py1Bp 1 — -

on obtient la suite spectrale convergente suivante :

B, sigq=0
1 _ P
qu—{O siq#0

g = O st(pg)=(0,0)
P 0 si(pq)#(0,0)
Le complexe total fournit ainsi une résolution projective de préfaisceau de O°-module
P,B, — O

ce qui donne Eztp. (O, F) = H"(Homee(PB,, F)). Soit F — I* une résolution injective
de faisceau de Ox-module. Si on regarde F comme un complexe concentré en 0, on a
alors un quasi-isomorphisme

Homoe(P.B,, F) 8 Homoe (P.B.,Z°*)

Pour le voir, on filtre selon les colonnes le double complexe

oo —— Homoe ((PJBa)p, T0HY) —— Homoe ((PuBa) pi1, Z8) — - -

e Homow (PuBu)y T9) ——= Homow (PuBy) o1, I) — -
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et on obtient par projectivité
EY = HY(Homoe((PoBs)yp, L)) = Homoe ((PaBBa),, HI(Z*))
d’ou I'isomorphisme a la page F;. En utilisant ’adjonction et le lemme 3.2, on a
Hompe (PP B,,I%) = Homo (O ®0- PP B,,I*)
~ Homo (P2 (O ®@pe B.),Z°) ~ Homo(PPD,.,I*)

Comme précédemment, on peut regarder D, comme un double complexe centré en la ligne
0 et obtenir un quasi-isomorphisme avec le complexe total

P.D, % D,

car lorsque 'on filtre selon les colonnes le double complexe

on obtient I'isomorphisme a la page E' :
ol D, sig=0
pa 0 sig#0
Puis l'injectivité donne un quasi-isomorphisme

q.18.

Homo(PyDy,ZI*%) = Homep(D,s,Z*)

ce qui se voit en filtrant selon les colonnes le double complexe

+oo——> Homo(Dyi1,27) —> Homo(Dyy1, IPH) —— - - -

-« ——> Homop(D,, I?) Homo(Dy, IPt!) —— -+

B = H9(Homo(Da, I¥)) = Homeo(H,(D.), 7%)

Notons que ZP est injectif comme préfaisceau de O-module car 'inclusion des faisceaux
de Ox-module dans les préfaisceaux de O-module admet comme adjoint a gauche la
faisceautification, qui est exacte. Cette inclusion préserve donc les injectifs. On peut a
présent terminer la démonstration :

Bty (0, F) = H'(Homo: (P.B., F))
~ H"(Homepe(P:Bs,Z°*))
~ H"(Homo(PyDs,Z*))
~ H"(Homo(D.,I*%))
~ H"(Homoy (Co,1°)) = HH"(X, F) W
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4 Résolutions localement libres

Pour démontrer les théoremes 2.1 et 2.5, il nous faut établir un lien entre la coho-
mologie de Hochschild d'un schéma X et 1'hyper-ext du complexe C,. Pour palier aux
difficultés concernant le complexe C,, on va se ramener dans un premier temps a con-
sidérer ’hyper-ext d’une résolution localement libre de 0,Ox. Dans ce paragraphe, on
va mettre en avant des propriétés de complexe de faisceau qui nous serviront jusqu’a la
démonstration du théoreme général.

On commence par énoncer un résultat fondamental pour notre étude, que I'on peut
énoncer sous la généralité suivante. On considere O un faisceau d’anneau sur un espace
topologique X. Pour ne pas se soucier de la convergence des suites spectrales, tous les
complexes de faisceau seront, dans ce paragraphe, supposés bornés en bas.

Lemme 4.1 : Un quasi-isomorphisme de complexe de faisceau de O-module
A B,
induit un isomorphisme entre les suites spectrales
Exth(H,(AL),G) = Exth (A, G)
Extty(H,(B.),G) = Exth (B, Q)
pour tout faisceau G de O-module. Deux morphismes de complexe homotopes
A = B,

induisent le méme morphisme de suite spectrale.

Preuve : Soit G — Z° une résolution injective. La premiere suite spectrale est donnée
en filtrant selon les colonnes le double complexe

e HOT)’L@(Aq_A,_l,Ip) I H0m0<-’4q+171.p+1) -

..—)HOmo(Aq,Ip> HOmo(Aq,Ierl)—)...

E{* = Home(A,,IP)
EY = HY(Home(A.,I7)) = Home(Hy(A.),I7)
E3" = Hy(H{(Homo(As, I*))) = Exty(Hy(A), G)
Tout morphisme de complexe A, — B, induit un morphisme de double complexe
Homo(B.,I*) — Home(A., I*)

puis un morphisme entre les suites spectrales associées. On voit qu'un quasi-isomorphisme
induit un isomorphisme entre les pages F; et par conséquent entre les suites spectrales
(E,)r>2. De méme, deux applications homotopes induisent le méme morphisme sur la
page E; et donc le méme morphisme de suite spectrale (E,),>2. B
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Lemme 4.2 : Soient £, un complexe de faisceau localement libre de O-module et
A B
un quasi-isomorphisme de complexe de faisceau de O-module. On a un quasi-isomorphisme

Homo (L, A®) v Homeo (L, B*)

Preuve : On dispose d'un morphisme de double complexe de faisceau de O-module
Home(Le, A*) — Homo (L, B*)

En filtrant selon les colonnes le double complexe de faisceau

s Homo (L, AT = Homo (L1, ATH) — -

-+ ——=Homo(L,, A?) ——— Homo(Ly11, AT) —— -~

on obtient un isomorphisme a la page E :
EYY = HY(Homo(Ly, A%)) = Home(L,, HI(A*))
Cette égalité de faisceau découle d’une identification des fibres
(H*(Homo(Ly, A%)))s = H(Homo, (Lya, A))
= Homo, (Lpq, HI(A3)) = (Homo(Ly, HI(A*)))a

en utilisant que £, , est un O,-module libre. Puisque les suites spectrales convergent, ceci
entraine un isomorphisme des cohomologies totales. B

Lemme 4.3 : Si F est un faisceau plat de O-module et G un faisceau injectif de O-module
alors le faisceau Home(F,G) est injectif.

Preuve : Homo(—, Homo(F,G)) ~ Homo(—,G) o (F @0 —)

Lemme 4.4 : Un quasi-isomorphisme de complexe de faisceau flasque de O-module
A 18 B
induit un quasi-isomorphisme de complexe de I'O-module

T A 25 T

Preuve : Soit M* le cone de A* — B*. Par hypothese, M*® est exacte. On a donc une
résolution flasque du faisceau nul

0— M*

et ainsi 0 = HY(I'M?*®) pour tout ¢q. Puisque I'’M* est le cone de I'A* — I'B®, c’est le
résultat. W
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Concentrons nous a présent sur le cas des schémas.

Lemme 4.5 : Sii:Y — X est un morphisme de schéma, A un faisceau de Ox-module
et B un faisceau de Oy-module alors on a un isomorphisme de faisceau de Ox-module

Homo, (A, i,.B8) ~ i, Homo, (i* A, B)

Preuve : On commence par construire pour tout faisceau F de Ox-module un isomor-
phisme naturel de faisceau de Oy-module

i"(F ®oy A) > i*F Qo i A
Pour ce faire, on part de 'unité 1 — 7,4* qui fournit un morphisme
F ®oy A= i, 0°F Qo i1 A
puis le morphisme Ox — i,Oy donne
18 F oy 148" A = 1,0°F @;,0, 124" A
que 'on compose par le morphisme
10 F Q.04 11" A = 1,(I* F ®o, i*A)

et on obtient par adjonction le morphisme voulu. C’est un isomorphisme, comme on peut
le constater sur les fibres :

(i*(F ®ox A))y = Ovy R0y, (Fity) Doy, Aitw))
~ (Ovy ®0y i) Fitw) @0xi) (Oviy R0y ) Aity)) = (0" F Qo, i"A)y
On démontre alors le lemme grace au plongement de Yoneda :
Homo (F, Home, (A,i.B)) ~ Home, (F ®o, A, i.B)
~ Homoe, (i*(F Qo A),B) ~ Home, (i*F Qo, i* A, B)

~ Home, (i*F, Home, (i* A, B)) ~ Homo, (F,isHomo, (1*A,B)) R

On arrive au dernier résultat du paragraphe, dont le corollaire est le premier pas vers
la démonstration du théoreme général.

Proposition 4.6 : Soient 7 : Y < X une immersion fermée, £, un complexe de faisceau
localement libre de Ox-module et S un faisceau de Oy-module. On a un isomorphisme
de d-foncteur en S

Extt, (L, 1.S) ~ Extp, (i*L,,S)

Preuve : Soient S — 7Z° et i,§ — J°* deux résolutions injectives. Le fait que ¢ soit une
immersion fermée entraine que le foncteur 7, est exact :

(06 F )iy = Fy et (inF ), =0siz ¢ i(Y)
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En particulier, 7,5 — i,Z° est une résolution et on a un triangle commutatif

(A

1S q.is.

T°

D’apres le lemme 4.2, on obtient un quasi-isomorphisme
Homoy (Lo, 1.L°) o Homoy (Lo, T*)
Or, d’apres le lemme 4.5, on a un isomorphisme
Homo, (Lo, 1.L°) ~ i, Homo, (i*Le, I°*)

et d’apres le lemme 4.3, les faisceaux Homo, (Le, T*) et Homo, (i*L4, Z*) sont injectifs et
donc flasques. Par suite le faisceau i, Homoe, (i*Le,Z°) est flasque et le lemme 4.4 donne
un quasi-isomorphisme

q.1Ss.

['(X,i.Home, (i* Lo, I°)) = T'(X, Homo, (Le, T*))
c’est a dire
Homo, (i*L4,2°) 5 Homo, (L, T*)

ce qui donne l'isomorphisme recherché. Pour la naturalité, on choisit pour toute suite
exacte de faisceau de Oy-module

0 S’ S S’ 0

des suites exactes de résolutions injectives

O _’Z/. IO I//. O

O jl. j. j”. 0

rendant le diagramme a ligne exacte suivant commutatif

0 L' 1.L° i.I" ——=0

R

0 jlo j. j//. 0

Ceci induit un diagramme a ligne exacte commutatif

e HY 0T HY(1.27) —— (0. T7) — H .27 —

l | | |

- 5 Hn(j/o) Hn(j.) Hn<j”.) H'rz—l—l(j/o) L
En reprenant le quasi-isomorphisme initial

Homoy (Lo, 1.L°) LN Homoy (Lo, T*)
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la naturalité est donnée a la page F,

T HOTTL@X (£p7 i*Iq+1) B ,HO?TLOX <£p+17 i*Iq+1) _—

o ——=Home, (L, i.L7) Homoy (Lpt1, 1. L7) — -+ -

EY = Hi(Home, (Ly,1.Z%)) = Homo, (L,, H1(i,.Z*)) B

Corollaire 4.7 : Soient X un schéma séparé et £, un complexe de faisceau localement
libre de Oy« x-module tel que Hy(Ls) = 0,.O0x et H,(Ls) = 0 pour tout p # 0. Pour tout
faisceau F de Ox-module, on a un isomorphisme de d-foncteur en F

H™"(Ox,F) ~ Eaty, (6*Ls, F)

Preuve : On part de I'isomorphisme donné par la proposition 4.6 appliquée a I'immersion
fermée 6 : X — X x X

Ext™

Oxxx

(Lo, 0.F) = Eatfy (6*La, F)

puis on applique le lemme 4.1 au quasi-isomorphisme

q.is.

Le = 0.0x
ce qui fournit un isomorphisme naturel en F

HH(OX,.F) = Ext?

Oxxx

(0.0x, 0. F) ~ Ext:

Oxxx

(Le,6,F) B
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5 Suites spectrales

Le corollaire 4.7 établie un lien entre la cohomologie de Hochschild d'un schéma X
séparé et de type fini sur un corps avec I’hyper-ext d'une résolution localement libre de
0,Ox. On souhaite aller plus loin en comparant les suites suites spectrales associées
précédemment. Pour ce faire, on va utiliser les résolutions de Cartan-Eilenberg et les
techniques de convergence des suites spectrales. La référence original de Swan est

H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press,
Princeton, NJ, 1956).

Rappelons ici le vocabulaire introduit dans I'article [3]. On se place dans une catégorie
abélienne ayant assez d’injectif, et on suppose tous les complexes bornés en bas.

Un CE-monomorphisme i : A* — B*® est un monomorphisme de complexe tel que
iv : H*(A®) — H*(B®) est un monomorphisme. Une suite CE-exacte est une suite exacte

0 o Lo 9o 0

telle que im(f) — C*® est un CE-monomorphisme. Un complexe I* est CE-injectif si pour
tout CE-monomorphisme A®* — B® et tout morphisme A®* — I°, il existe une factorisation

A —— B°

N

I.
Enfin, une CE-résolution d’un complexe A® est une suite CE-exacte

0 Ao CO- Clo C«Qo

ou CP* est CE-injectif pour tout p > 0. Les CE-résolutions existent toujours dans les
catégories ayant assez d’injectif. Une propriété importante pour la suite est que si C**
est une CE-résolution de A® et F' un foncteur additif alors

HI(F(C®)) = F(HJ(C*))

pour tout ¢ > 0. On va s’intéresser au cas des faisceaux avec F' = I'. On pourra alors
calculer I'hypercohomologie d'un complexe de faisceau en utilisant les CE-résolutions.

Lemme 5.1 : Soit M, un complexe de faisceau localement libre sur un schéma Y tel que
H,(M,) est localement libre pour tout ¢. Pour tout faisceau S de Oy-module, on a un
isomorphisme naturel

HY(Home, (Ma.,S)) ~ Homo, (H,(M.,),S)

Preuve : Pour un foncteur contravariant F' exact a gauche et un complexe C, arbitraires,
on peut construire un morphisme naturel

HI(F(Ca)) = F(H,y(CW))

Notons Z; le conoyau de la différentielle Cy1 — C,. Par hypothese, F'(Z;) est le noyau
de F(C,) = F(Cy41) et par conséquent,

HY(F(C,)) = coker(F(Cy—1) — F(Z[’]))
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On dispose d'une suite exacte

0— H,(C,) —> 72! —

q—1
qui induit une composition nulle
F(Cy1) = F(Zy) — F(Hy(Ch))
d’ou la factorisation naturelle
F(Cqr) —> F(Zy) — H(F(CL))
[
\ [
y
F(H,y(C,))

Revenons au cas ou F' = Home, (—,S) et Co = M,. Pour vérifier que 'on a un isomor-
phisme sur les fibres, on est ramené au cas ou 'on applique Hompg(—, N) & un complexe
de R-module projectif

P, P P 0

tel que les homologies sont des R-modules projectifs. Comme il a été remarqué au premier
paragraphe, cette configuration implique 'isomorphisme voulu

Hi(Hompg(P.,N)) ~ Homgr(H,(F.),N) R

Il faut remarquer 'utilisation de 'hypothese ”localement libre” sur le complexe M,
et 'homologie Ho(M,). En fait, lemme 5.1 reste vrai si ’on suppose seulement que les fi-
bres M, et H,(M,), = H,(Ma.,) sont des Oy ,-modules projectifs. Cette démonstration
nous montre la grande maniabilité, liée au passage aux fibres, des faisceaux pour les ques-
tions homologiques.

Corollaire 5.2 : Sous les mémes hypotheses, si

L F e F 0

est une suite exacte de faisceau de Oy-module, alors la suite

0—>F

0 —— Home, (M., F') L Homo, (M., F) —Z>Home, (M, F") —=0
est CE-exacte.
Preuve : La suite est exacte sur les fibres, car M, est projective sur Oy,,. Puisque f

est un monomorphisme, on a H1(im(f,)) ~ Hi(Home, (M., F')) et le lemme 5.1 donne
un diagramme commutatif

Hi(im(f.)) Hi(Homo, (M., F))

\2 |

0 ——Homo, (Hy(M.), F') ——Homo, (Hy(M.), F)

Par hypothese, les fibres de H,(M,) sont projectives Oy, donc la ligne inférieure est
exacte et notre suite est CE-exacte.

On arrive ici a 1’étude des suites spectrales annoncée en introduction. Rappelons ici
qu’une suite spectrale associée a un double complexe nul hors d'un quart de plan (par
exemple une CE-résolution) converge toujours vers la cohomologie totale. Cela justifie
que les complexes que 1’'on considere dans ce paragraphe sont supposés bornés en bas.
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Lemme 5.3 : Sous les hypotheses du lemme 5.1, les suites spectrales
Exty, (Hy(M.),S) = Exty) 1(M.,S)
H?(Y, H1(Home, (M,,S))) = HT(Y, Home, (M.,,S))

sont isomorphes.

Preuve : Soit § — Z°* une résolution injective. Le corollaire 5.2 montre que la suite
0 ——= Homo, (M,,S) —= Home, (M., I°) —= Home, (M, T') — - -

est CE-exacte, donc si on choisit une résolution CE-injective Home, (M,,S) — J** alors
il existe un morphisme f unique a homotopie pres rendant le triangle suivant commutatif

Homo, (M" I.)

/

Home, (Ma,,S) f

T

j..
En appliquant I', on obtient un morphisme de double complexe
L'f:Homo, (M, I%) — T'(T*)

Lorsque ’on filtre selon les colonnes le double complexe

.. ._>H0moy(_/\/lq+1,l'p) —>H0mOY(Mq+17Ip+1) -

-+« ——> Home, (M,, I?) Homeo, (Mg, IPT) —— - -

on obtient la premiere suite spectrale :
EY = Hi(Homo, (M, IP)) = Homo, (Hy,(Ma,),ZP)
BT = Euxto, (Hy(M,),S)

Et lorsque 'on filtre selon les colonnes le double complexe

e s F(jp,qul) S I‘(ijrl,qH) e — ...

= T(JP) —— F(jp+1,q) ...
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on obtient la deuxieme suite spectrale :
EYT = HUI(J™)) = T(HY(T™))
Ey" = Hy(D(HY(T**))) = HP(Y, HY(Homo, (M., S)))

Cette derniere égalité découle du fait que la CE-résolution Home,, (M., S) — J** induit
des résolutions injectives HY(Homo, (M., S)) — HI(J**) pour tout p. Ainsi, il nous
reste a vérifier que notre morphisme I'f induit un isomorphisme sur la page Fs. Sur la
page Fp, I'f est donné en appliquant I' au morphisme

Homo, (Hy(M,),Z*%) — HI(T**)
Or par hypothese, le lemme 4.3 nous dis que
Homoy (H,(M.). S) = Homo, (H,(M.),Z°)
est une résolution injective, tout comme
Hi(Homo, (M., S)) = HI(T**)

Puisque les deux faisceaux Homo, (H,(Ma,),S) et HY(Home, (M., S)) sont isomorphes
d’apres le lemme 5.1, ils ont donc la méme cohomologie sur Y ce qui signifie que I'f est
un isomorphisme sur la page E£>. B

Avant d’aboutir au résultat final de ce paragraphe, on a besoin d’un dernier lemme
que l'on peut énoncer sous une forme générale.

Lemme 5.4 : Soient ¢ : Y < X une immersion fermée et A® un complexe de faisceau de
Oy-module. Les suites spectrales

HP(Y,H1(A®)) = HP(Y, A®)
HP(X, H1(i,A%)) = HPT(X, i, .A®)
sont isomorphes.

Preuve : Soient A* — Z°*® et i, A* — J°** deux CE-résolutions. Les double-complexes
F(K Ioo) ’ F(X, joo)

induisent alors les deux suites spectrales voulues. On construit un morphisme comme
suit. i, est exact donc i, A4° — 7,Z°° est une résolution. Il existe ainsi un morphisme f
unique a homotopie pres rendant le triangle suivant commutatif

i T
i A° f
\joo
En appliquant I'( X, —), on obtient un morphisme de double complexe
DX, f):T(Y,Z**) - ['(X,T*°)
qui correspond sur la page Fs a l'isomorphisme

HP(Y, H(A®)) = HP(X, i, H1(A*)) ~ H(X, H1(i, A*)) B
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Proposition 5.5 : Soient ¢ : ¥ — X une immersion fermée et £, un complexe de
faisceau localement libre de Ox-module tel que Hy(L.) = T, H,(Ls) = 0 pour tout ¢ # 0
et H,(i*L,) est localement libre pour tout g. Pour tout faisceau S de Oy-module, les
suites spectrales

Eath, (Hy(i"L,),S) = Eatly!(i* L., S)
H? (X, Exth (T,i.S)) = Extl) {(T,i.S)
sont isomorphes.

Preuve : Soit i,S — J°* une résolution injective. La deuxieme suite spectrale est donné
par I’hypercohomologie sur X du complexe de faisceau Homo, (T, T*) [4, Th.5.8.3]. Si
on regarde 7 comme un complexe de faisceau concentré en 0, on dispose par hypothese
d’un quasi-isomorphisme

LS T
Par injectivité, on obtient un quasi-isomorphisme
HOmoX (T, j') qii' HOTTLOX (ﬁ., j.)

de sorte que la deuxieme suite spectrale est donnée par I'hypercohomologie sur X du
complexe total de Home, (Le, J*). Soit S — Z* une résolution injective. Le foncteur i,
est exact, donc i,S§ — 7,Z°® est une résolution et on a un triangle commutatif

(A
1,S q.is.
\ e
En particulier, puisque les fibres de £, sont libres, on obtient un quasi-isomorphisme
Homo, (Le,1.L°) a5 Homoy (Lo, T*)
Or le lemme 4.5 donne un isomorphisme

Homo, (Le,1,.L°%) ~ i, Homo, (1* L4, I°*)

En conséquence, la deuxieme suite spectrale est donnée par I’hypercohomologie sur X du
complexe total de i, Home, (i*Le,Z*), qui est d’apres le lemme 5.4 donnée par I'hypercoho-
mologie sur Y du complexe total de Home, (i*Ls,Z°). Mais si on regarde S comme un
complexe concentré en 0, on dispose d'un quasi-isomorphisme

S
et puisque les fibres de i*L, sont libres, on obtient un quasi-isomorphisme
Homeo, (i"La,S) 5 Home, (i* Lo, T*)
Ainsi la deuxieme suite spectrale est isomorphe a la suite spectrale
HP(Y, Hi(Homo, (i* L., S))) = HPT(Y, Home, (i*Le, S))

Cette derniere est, par le lemme 5.3, isomorphe a la premiere suite spectrale. Bl
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Une conséquence immédiate de cette proposition est le cas ou 'immersion fermée est
Iapplication diagonale ¢ d’un schéma séparé X et ou 7 = 0,Oyx :

Corollaire 5.6 : Soient X un schéma séparé et de type fini sur un corps et £, un complexe
de faisceau localement libre de Oxx x-module tel que Hy(L,) ~ 0.O0x, Hy(Ls) = 0 pour
tout ¢ # 0 et H,(i*L,) est localement libre pour tout ¢. Pour tout faisceau F de Ox-
module, les suites spectrales

Extyy (Hy(0"L.),F) = Eatl) (6" La, F)
H? (X, Exth  (Ox,F)) = H"*(Ox, F)

sont isomorphes.
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6 Résolutions plates

Apres avoir établi un lien entre la cohomologie de Hochschild d’un schéma X séparé
et de type fini sur un corps avec 'hyper-ext d’une résolution localement libre de 6,Ox,
on va se ramener a considérer des résolutions plates et quasi-cohérentes de 6,Ox. Ceci
nous permettra en particulier de démontrer les théoremes 2.1 et 2.5 dans le cas ou X est
affine en utilisant la résolution

B. — 5*0)(

introduite au lemme 2.4 (4).

Dans ce paragraphe, tous les complexes de chaines sont supposés bornés en bas et X
désigne un schéma quasi-projectif sur un corps. Le résultat suivant justifie la présence de
cette derniere hypothese.

Lemme 6.1 : Soit F — G un épimorphisme de faisceau quasi-cohérent sur X. Si ¢
est cohérent alors il existe un faisceau localement libre £ de Ox-module ainsi qu'un
morphisme de faisceau £ — F tel que la composition

L—F—=G

est un épimorphisme.

Preuve : Supposons X projectif sur un anneau Noethérien et F cohérent. Dans ce cas
il existe un faisceau localement libre £ de Ox-module ainsi qu’un épimorphisme

L—F

[1, Ch.II, Cor.5.18]. Si X est seulement supposé quasi-projectif sur un corps, alors F se
prolonge sur l'adhérence de X dans P" [1, Ch.II, Ex.5.15] qui est un schéma projectif
sur un anneau Noethérien. On est alors ramené a la situation précédente. Enfin, si F
est seulement supposé quasi-cohérent, alors F est I'union de ses sous-faisceaux cohérents
[1, Ch.Il, Ex.5.15.¢] et 'un d’entre eux est envoyé sur G. En effet, la restriction de
I’épimorphisme F — G sur un ouvert affine de X est déterminée par une application
linéaire surjective M — N avec N est de type fini et se restreint donc sur un sous module
de type fini M’ C M en une surjection. Puisque X est quasi-compact, on peut construire
le faisceau cohérent F' C F voulu. D’apres ce qui précede, il existe un faisceau localement
libre £ de Ox-module ainsi qu’un épimorphisme

L—F
On obtient ainsi une composition

L—F CF—=G

qui est un épimorphisme. W

Lemme 6.2 : Soit K, un complexe de faisceau quasi-cohérent sur X tel que chaque
H;(KC,) est cohérent. Il existe un complexe de faisceau localement libre £, de O x-module
et un quasi-isomorphisme

£, K,
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Preuve : On construit £, par récurrence sur p € N. On initialise avec le lemme 6.1 qui
fournit un faisceau localement libre £y de Ox-module et un morphisme de faisceau

Eo — IC()
tels que la composition
ﬁ() — ’Co — HO(]C.)

est un épimorphisme. Supposons a présent que 'on dispose d'un complexe de faisceau
localement libre £, de Ox-module

0—=L,—= L, Ly Ly 0
et d’'un morphisme de complexe de faisceau de Ox-module
fiLe— Ko
tel que le morphisme induit sur I’homologie
fet Hi(La) — H;(K,)

est un isomorphisme pour tout ¢ < p et un épimorphisme pour 7 = p. Soit P le tiré-en-
arriere suivant

P—2Z,(L)

/| |

Kpi1 —3= Zp(Ks)
On dispose d'un diagramme commutatif a lignes exactes

p—=4 Zy(Ly) —> coker(d') —=0
|
T
Y
Kpt1 4 Zp(Ke) —> Hyp(Ko) —0
ot ¢ est donné par la propriété universelle du conoyau de d’ :
(vof)od =vodo f'=0

Notre hypothese de récurrence implique que p o u = v o f = f, est un épimorphisme.
Donc ¢ est un épimorphisme. De plus, une chasse au diagramme sur les fibres permet de
montrer que ¢ est un monomorphisme : si ¢(x) = 0 alors on choisit y tel que u(y) = =

7

) v

I
—

puis on choisit z tel que dz = f(y)

(2,9) >yt
f’I fI Iw
2= dzr——=>0



et on obtient x = pod'(z,y) = 0. Ceci prouve que coker(d') ~ H,(K,) est un faisceau
cohérent. Par conséquent, im(d’) = ker(u) est un faisceau cohérent [1, Ch.II, Prop.5.7].
Utilisons a nouveau le lemme 6.1 : d’une part, on peut trouver un faisceau localement

libre £,,, sur X et un morphisme
a: L, —P

tels que im(d' o o) = im(d') ; et d’autre part un faisceau localement libre £7,, sur X et
un morphisme

B Z+1 — Zp+1(’C-)

dont la composition par la projection Z,1(Ks) — Hp41(Ko) est un épimorphisme. On
pose alors L, = L, ® L7, puis on définit une différentielle

(doa)®0: Ly — Z,(Ls)
et un morphisme
(ffoa)®B: Lpr1 = Kpir

Par construction, on obtient un morphisme de complexe

0 £p+§d/ooc)@0£p . El EO 0
(f’oa)éBBl lf lf lf
S G P G o —

Puisque im(d' o a) = im(d') = ker(u) = ker(p o u) = ker(v o f), ce morphisme induit en
homologie un isomorphisme

Hy(La) ~ Hy(K,)
Enfin, la construction de § implique que ce morphisme induit en homologie un épimorphisme

Hy(Le) — Hypia(K)

car L, C Zp1(Ls) = Hpy1(L,). On peut donc répéter cette construction a l'infini. W

Lemme 6.3 : Sous les mémes hypotheses, supposons L'y et L£”, deux complexes de
faisceau localement libre de O x-module quasi-isomorphes a K, :

q.1S. q.is.
L'e = Ko L' = Ko

Il existe un complexe de faisceau localement libre £, de Ox-module et un diagramme
commutatif a homotopie pres

,C. q.1S. ,C/.

q.isl lq.is.

£”. — IC.
q.is.

Preuve : Soit M, le cone de l'identité de Cq[1]. 1l arrive avec un épimorphisme
M, — K,
Soit G, le noyau du morphisme

L'eBL'sBMe— K,
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La suite exacte courte
0—>go—>£/o @ACH. @MQ—>’CO—>0

induit une longue suite exacte homologique

s Hy(Go) — Ho(L'0) @ Hy (L)) — Hy(Ka) —2> H, 1(Go) — -
Par hypothese, le morphisme
H,(L's)® H,(L"y) — H,(K,)

est surjectif et son noyau est canoniquement isomorphe a H,(L's) de telle sorte que le
morphisme connectant 0 est nul et que la composition par la projection canonique

Ge > Le® L s DMe— Ly

est un quasi-isomorphisme. Le lemme 6.2 permet de trouver un complexe de faisceau
localement libre £, de Ox-module et un quasi-isomorphisme

L. "% 6.
En utilisant les projections canoniques
LeyDL'sOMe =L LoD L yDMe — Ly DM,

on construit un carré commutatif

Lo—2 .,
q.is q.is.
E//. b M. q.is. IC.

Enfin, en utilisant I'inclusion composée a la projection
L'y ®Me— L = LTe DM,

on obtient le carré commutatif a homotopie pres recherché

Lo,

q.z‘sl lq.is.

ﬁ”. —Y IC.
q.18.

Pour le voir, il suffit de vérifier que le morphisme de complexe
Lo—=Ge—=LBL OMe—=LeDL s — K,

est homotope a I’application nulle. Pour ce faire, on utilise la contractibilité du cone M,
qui fournit une homotopie s

o My M, My — -
/ 1l /ll / ll /
My M, My_y —- -

et on obtient une homotopie S

Ly L, Ly —> -
PRy aveyd
1 1 1
. - K, Kpq—>---

en prenant S : £, — M, = M, — Kppq. B
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Lemme 6.4 : Soient A — B un morphisme de faisceau d’anneau sur un espace topologique
et f: Fe — G, un morphisme de complexe de faisceau plat de A-module. Si f est un
quasi-isomorphisme alors

1@ f:BRsFe = BR4Ge

est un quasi-isomorphisme.

Preuve : Soit M, le cone de f. Par hypothese, M, est exact et se décompose en suites
exactes courtes

O Zl Ml MO 0

0—>Z,—> M,—>Z, | —>0

pour tout p > 1. Aussi, M, est plat sur A, donc Z, est plat sur A pour tout p > 0 [4,
Ex.3.2.2]. Ainsi, Tor{(B, Z,) pour tout p > 0 et on a des suites exactes courtes

0—BR4 21— B4 M| —=B 4 My——=0
0—=BR42,—BIsM,—B®R4 2,1 —0
pour tout p > 1, de sorte que B ®4 M,, le cone de (1 ® f), est exact. B

On arrive au résultat le plus important de ce paragraphe. En corollaire, on obtiendra
les théoremes 2.1 et 2.5 dans le cas affine, mais on utilisera également ce résultat pour le
cas général.

Proposition 6.5 : (1) Soit G, un complexe de faisceau plat et quasi-cohérent de Ox x-
module tel que Hy(G,) = 0,O0x et Hy(G,) = 0 pour tout ¢ # 0. Pour tout faisceau F de
Ox-module, on a un isomorphisme de J-foncteur en F

H™"(Ox, F) ~ Eat, (0.G,, F)
(2) Si de plus H,(0,.G,) est localement libre pour tout g, alors les suites spectrales
Exty (Hy(6%G.), F) = Eath) 1(6G., F)
HP(X, Sl'thXXX (Ox, ./T")) = Hp-l-q(OX’ I)

sont isomorphes.

Preuve : (1) Le lemme 6.2 donne un complexe de faisceau localement libre £, de Ox-
module et un quasi-isomorphisme

LG,

Le foncteur 6! est exact et 6* = (Ox ®s-10y,y —) 00 . D’apreés le lemme 6.4, on a un
quasi-isomorphisme

5Ly 5 5%,
En utilisant le corollaire 4.7 et le lemme 4.1, on obtient un isomorphisme naturel en F
H™(Ox,F) = Eaty (0.Lq, F) ~ Eaty (0,.Gs, F)

qui, d’apres le lemme 6.3, ne dépend pas du choix de

LG,
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(2) Plus précisément, le lemme 4.1 donne un isomorphisme entre les suites spectrales
Exty (Hy(0%G.), F) = Eath,) 1(6G., F)
Exty, (Hy(0"La), F) = Bty (6" La, F)

Cette derniere est, par le corollaire 5.6, isomorphe a la suite spectrale

Hp<X7 gxt%Xxx(OX’f)) = Hp-&-q(OX’f') |

On peut a présent démontrer les théoremes 2.1 et 2.5 dans le cas ou X = Spec A
est un schéma affine sur une algebre de type fini sur un corps. La résolution plate (car
projective) de A®-module

B.(A) — A
induit une résolution de faisceau plat quasi-cohérent de Oy x-module
B. — (5*0 X

On peut lui appliquer la proposition 6.5. Pour conclure, il suffit de constater par le lemme
2.4 (4) et le lemme 4.1 que les suites spectrales

Exty (Hy(0"Bs), F) = Eatpy (6" Ba, F)
Bty (Hy, F) = HHP™(X, F)

sont isomorphes.
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7 Lemmes théoriques sur les faisceaux

Pour pouvoir aborder le théoreme dans sa généralité, il nous faut aller plus loin dans
les considérations géométriques. Dans ce paragraphe, on va mettre a profit la propriété de
séparation des schémas, satisfaite en particulier par les schémas quasi-projectifs. L’idée
principale est la suivante. Dans un schéma X séparé sur un schéma affine, I'intersection
de deux ouverts affines est encore un ouvert affine [1, Ch.Il, Ex.4.3]. Une conséquence
importante est que pour tout ouvert affine U de X, I'inclusion U < X est un morphisme
affine. Ce que l'on va constater, c’est que les morphismes affines ont les bonnes propriétés
concernant les faisceaux quasi-cohérents et, s’ils sont plats, envoient par poussé-en-avant
les faisceaux plats quasi-cohérents vers des faisceaux plats quasi-cohérents.

Commencons par une propriété des faisceaux associés aux préfaisceaux de module :

Lemme 7.1 : Soient R un préfaisceau d’anneau sur un espace topologique X, R son
faisceau associé, M un préfaisceau de R-module et M son faisceau associé. Si pour tout
ouvert U de X, M(U) est plat sur R(U), alors M est plat sur R.

Preuve : Puisque M®x— est toujours exact a droite, on doit s’assurer que si f : F — G
est un monomorphisme de faisceau de R-module alors 1 ® f: M®rF — M®RrG est un
monomorphisme de faisceau de R-module. Par hypothese, le morphisme de préfaisceau
1® f: M®pF — M®rG est un monomorphisme. On a donc des monomorphismes sur
les fibres. Le fait est que M®@gF et M®%rF ont les mémes fibres quelque soit F. Ainsi,
le morphisme 1 ® f : M@rF — M®rG est un monomorphisme sur les fibres et par
conséquent un monomorphisme de faisceau de R-module. B

Intéressons-nous a présent aux morphismes affines de schéma :

Lemme 7.2 : Soit f : X — Y un morphisme plat et affine de schéma. Si F est un
faisceau plat et quasi-cohérent sur X alors f.F est plat et quasi-cohérent sur Y.

Preuve : La question étant locale en Y, on est ramené a traiter le cas ou Y = Spec A
est affine, et par hypothese sur f, ou X = Spec B est affine. f est alors donné par un
morphisme plat d’anneau ¢ : A — B, et F est associé a un B-module plat M. Dans ce
cas, f.«F est associé au A-module M (dont la loi externe est donnée par @), ce dernier
étant plat sur A étant donné les isomorphismes de foncteur

MRs— ~ (M@BB)®A— ~ (M®B_) o (B®A—) [ |

Lemme 7.3 : Soit f: X — Y un morphisme affine de schéma. Le foncteur
fe:q—Coh(X) — q— Coh(Y)

est bien défini et exact.

Preuve : La question étant locale en Y, on est ramené une nouvelle fois au cas ou

Y = Spec A est affine puis par hypothese sur f, ou X = Spec B est affine. Dans cette

configuration, les catégories ¢ — Coh(X) et ¢ — Coh(Y") sont respectivement équivalentes
aux catégories B — mod et A — mod, et f, correspond alors au foncteur

B —mod = A — mod

qui envoie un B-module M vers le A-module M induit, lequel est exact. B
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Lemme 7.4 : Pour tout carré cartésien de schéma

X2 x

Y

S/ _g> S
tel que f est affine, il existe un isomorphisme de foncteur

g fe= 9" q— Coh(X) — q — Coh(S')

Preuve : La transformation naturelle g*f, — f’.¢'" existe dés que l'on a un tel carré
commutatif. Pour la construire, on part de la co-unité puis on utilise I’adjonction :

1—=4.9"

*

fi = [d.9" =a9.f.9

*

gfe— .9

Pour prouver 'isomorphisme, on commence par le cas ou S = Spec A et S’ = Spec A’
sont des schémas affines. Alors par hypothese sur f, X = Spec B est un schéma affine
et puisque le carré est cartésien, X' = Spec A’ ® 4 B est également un schéma affine.
Dans cette configuration, les catégories ¢ — Coh(X) et ¢ — Coh(S") sont respectivement
équivalentes aux catégories B — mod et A’ — mod et la transformation naturelle

g fe— 9"
correspond a l'isomorphisme de foncteur
A®Ry—~(A®sB)®pg—: B—mod— A" —mod

Pour le cas général, on remarque que pour tout faisceau F de Ox-module, tout ouvert U
de S et tout ouvert U’ de S tel que g(U') C U, on a ¢ (f " (U")) C f~1(U) et les deux
identifications suivantes

(" F)lor = (glo)* (fly-1 )« (Fl 1))
(f/*gl*]:)’U/ = (f/’f’_l(U’))*(gl‘f"l(U’))*<‘F’f_1(U))

La premiere identification découle du fait que (¢~ f.F)|vr et (glvr) " (f] =) «(Flp-1w))
sont deux faisceaux associés au méme préfaisceau

U DV coimT(f~Y(W),F)=_colim T(f~(W),F|an)

Wog(V) USWg(V)
La deuxieme identification provient du méme raisonnement : pour tout ouvert V' de U’,
LV, (f'ug" F)lo) =T(F (V). g" F)
LV (f 2 on)o (0 L prron) (Flpr@)) = DU V) (0 s o) (Flr0))
et les deux faisceaux ¢’ ' F et (¢| p=1wn)”(Flg-1(0y) sont associés au méme préfaisceau
fHU) DV = colim T(W,F) = colim  T'(W, Fl|r1w))

Wog'(V) f=HU)DWDg' (V)
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Ceci étant dit, si on fixe un ouvert affine U de S, alors pour tout ouvert affine U’ de S’
tel que g(U’) C U, on a un carré cartésien de schéma

_ gl'f’fl(U’) -
) f7HU)
fllf’_l(U’) f|f*1(U>
U U
9y

On se retrouve alors dans la premiere situation considérée et on obtient ’isomorphisme
des faisceaux restreints sur U’ :

(9" fF)lor = (f'og" F)lor

Pour conclure, on choisit un recouvrement U de S par des ouverts affines, puis on recouvre
g 1(U) par des ouverts affines de S” pour tout U € U. On obtient alors un recouvrement
U' de S’ par des ouverts affines tels que 'image de chaque U’ € U’ par g est contenu dans
un U € Y. On a ainsi I'isomorphisme sur un recouvrement de S" et donc sur S’. W

On termine ce paragraphe par un résultat élémentaire qu’on pourrait aussi énoncer
dans la catégorie des espaces topologiques :

Lemme 7.5 : Soient f : X — S un morphisme de schéma et U un ouvert de X. On
considere le carré cartésien

) ——X
gl f
U - S

ot ¢ et j sont les inclusions et g = f|;-1(). Pour tout faisceau F de Ox-module,

i foF = 99" F

Preuve : Puisque 7 et j sont des inclusions, les foncteurs i* et j* correspondent aux
restrictions. En fait, la restriction sur U coincide avec le foncteur i~! et on a

i* - (OU ®i_1(9x —) O i_l
OU = OX|U = i_lox
Ainsi, pour tout ouvert V' de U, on a

PVt fuF) =T(f71(V), F) =T(g~'(V), F) =LV, g5*F) B
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8 Préfaisceau de faisceau

L’objectif de ce paragraphe est d’introduire le complexe de Cech associé & un préfais-
ceau de faisceau. Dans certaines configurations topologiques et algébriques, la cohomolo-
gie de Cech coincide avec la cohomologie des faisceaux [1, Ch.III, Th.4.5]. Nous allons lui
trouver un intéret dans ce qu’il nous permettra de recoller, a quasi-isomorphisme pres,
une famille de complexe de faisceau indexée sur les ouverts affines de notre schéma en un
double complexe de faisceau. Pour pouvoir utiliser les propriétés du complexe de Cech &
plusieurs reprises et dans des situations différentes, on préferera dans un premier temps
travailler avec un préfaisceau a valeurs dans une catégorie abélienne arbitraire.

Soient X un espace topologique, A une catégorie abélienne (compleéte) et () un préfais-
ceau sur X a valeurs dans A dont les restrictions seront toutes notées par p. A tout
recouvrement ouvert U = (U;);e; de X, on associe un complexe de cochaine de A, noté
C*(U, Q) comme suit. On choisit un bon ordre < sur I, et on considere pour tout entier
naturel n le produit

Cn(“?@) = H Q(Uzozn)

o< <in

ou U; Uy, N---NU,;, . Considérons les projections canoniques
Pig-in - C"(U, Q) = Q(Usy...i,

et définissons pour tout entier v compris entre 0 et n + 1 les applications

6, C"U,Q) — C™ U, Q)

0 tn

Par Pig..inq © 0y = po Digeoiyin 1 On peut alors définir les différentielles
n+1
d= > (=1)%5,:C"(U,Q) — C" (U, Q)
v=0
On dispose aussi d'une application définie a partir des restrictions

e:Q(X) = C'(U. Q)

c’est a dire p; o€ = p. On peut vérifier que I'on obtient bien un complexe dans A
0—Q(X) —>CU, Q) —~ C' (U, Q) — > C*(U, Q) *— - --

On voudrait s’assurer que ce complexe est indépendant du choix de l'ordre sur /. Pour
ce faire, on étend les projections en posant

piO"'in = 0
si pour deux indices p1 # v on a i, = 1, et
Potio)-olin) = SIN(0)Dig--iy,

pour toute permutation o de {4, - - ,%,}. Alors sion se donne un raffinement V = (V});e,
de U, on peut choisir une application a : J — I telle que V; C Uy,;) pour ensuite définir
un morphisme de complexe qui commute avec e

a*:C*'(U,Q) — C*(V,Q)

Par Pjy..j, © & = P O Pa(jo)a(j.) LoOrsque V = U avec un autre ordre, on peut prendre
a = idy et a* est alors un isomorphisme.
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On énonce a présent un résultat qui justifiera plus tard la généralité choisie pour notre
construction du complexe de Cech.

Lemme 8.1 : Si X € U alors le complexe
0—>Q(X) —>C'U, Q) —C'U, Q) —~C*U,Q) “—
est exact.

Preuve : On choisit sur I un ordre tel que min I = 0 et X = Uy. On peut alors expliciter
une homotopie S entre l'identité et I’application nulle

0 QX)—==C'U,Q)—=C'U, Q)—>02(u Q)
0 Q(X) ——C°U, Q) —=C'(U, Q)_>c2(u Q) —

0 sl =

définie par p;,..;, 0 S = ..
P Piy-in Poiy-i,, Sl 01 >

0

0 pour tout n > 1 et S =pypourn=0. A
Ce lemme va s’avérer tres utile lorsque A sera la catégorie des faisceaux ou des com-

plexes de faisceau sur un schéma. Le fait que I'exactitude d’une suite de faisceau peut

s’étudier localement va nous permettre de s’y ramener en permanence. Quittons les

généralités et concentrons-nous a présent sur les faisceaux.

Soit F un faisceau sur X. On construit un préfaisceau PxF sur X a valeurs dans les
faisceaux sur X en posant pour tout ouvert U de X, PxF(U) = i.(Fl|y) oui: U — X
désigne l'inclusion. Les restrictions sont données pour toute inclusion V' C U et tout
ouvert W par

D(W,PxF(U)) =T(W NU,F) = T(WNV,F) =T(W, PxF(V))

Lemme 8.2 : Pour tout ouvert U et V de X, PxF(U)|y = PhF(UNV).

Preuve : On applique le lemme 7.5 au carré cartésien d’inclusion
ppiq

Unv -2 -u
|
v X

et on obtient Px F(U)|y = i* fuf*F = g3 f* F =Py F(UNV). B

Supposons & présent que U est fini. Avec cette hypothese, le complexe de Cech
C*(U, Q) est toujours borné en haut, car C"™(U, Q) est un produit vide pour tout n > |U|.

Corollaire 8.3 : Pour tout ouvert V de X, C*(U, PxF)|y = C*UNV, PyF).

Preuve : On a vu au lemme 7.5 que la restriction sur V' est donnée par le foncteur adjoint
a gauche ¢* ou i : V < X désigne 'inclusion. Cette opération commute donc avec toutes
les colimites et en particulier avec les produits finis d’une catégorie abélienne. Ainsi,

C"U,PxF)lv= ]I PxFUg-i)lv= 1] PvFUy.c, NV)=C"UNV,P,F) R

10<-<in 10<-++<in
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Lemme 8.4 : Le complexe de faisceau
0—=F —=C'U,PxF)—=CYU,PxF)—=C?*(U,Px F) —- -
est exact.
Preuve : L’exactitude d’un complexe de faisceau est équivalente a I’exactitude locale sur

un recouvrement. Puisque U recouvre X, on peut vérifier I'exactitude seulement sur les
ouverts V € U. Le fait est que V € U NV, donc le lemme 8.1 nous dis que le complexe

0 Py F C'UNV, Py F)—=C'UNV, Py F)—=C*UNV, Py F) —---
est exact. Mais Py F = F|y donc le résultat découle du corollaire 8.3. B
Corollaire 8.5 : Si F* est un complexe de faisceau sur X alors
e: F*— C*(U, PxF*)
est un quasi-isomorphisme.

Preuve : En regardant /* comme un double complexe concentrée dans la ligne indicée
par 0, les morphismes ¢ : F? — C*(U, Px FP) induisent un morphisme de double complexe

e: F* — C*(U, PxF*)

Puisque U est fini, le double complexe C*(U, PxF*) est borné (i.e. ses diagonales n’ont
qu’un certain nombre d’objet non nul) et on peut calculer sa cohomologie & partir de suite
spectrale. Lorsque 'on filtre le double complexe

e (qurl(z/[7 Px FP) —— C‘]H(L{, pX]:pH) _— ..

o —— CYU, Px FP) — C1(U, pX}“pH) - =

selon les colonnes, on obtient un isomorphisme a la page E' d’apres le lemme 8.4, car la
cohomologie verticale est celle du complexe de Cech C*(U, PxF?). B

On termine ce paragraphe par un résultat que 1’'on utilisera lors de la démonstration
du théoreme générale :

Lemme 8.6 : Soit M* — N*® un morphisme de complexe de préfaisceau sur X. Si pour

tout ouvert U de X, c¢’est un quasi-isomorphisme sur les sections M*(U) 9N *(U) alors
le morphisme de double complexe induit est un quasi-isomorphisme :

C* (U, M*) 5 C*(U, N*)
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Preuve : Lorsqu’on filtre selon les colonnes le double complexe

- ——=CP(U, Mq+1) - (jzvﬂ(u7 Mq+1) ...

oo ——=CPU, M) —— Cp+1(u7 M) ——— -

on obtient un isomorphisme a la page E' : puisque U est fini, les produits sont finis et
commutent avec la cohomologie, et ainsi la cohomologie verticale est

HUCPU,M* = T[ HYM*(Uy..)) = CP(U, HY(M*) B

10<-<ip
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9 Technique de recollement de Cech

Soit X un schéma quasi-compact et séparé sur un corps. Pour chaque ouvert affine
U de X, on se donne un complexe S,y de faisceau de Opy-module. Supposons que pour
chaque inclusion V' C U d’ouverts affines de X, on dispose d’'un morphisme de complexe
de faisceau de Oy -module

puv : Sevlv — Sev
satisfaisant pour tout ouvert affine W C V' C U de X les relations suivantes :
pUU = idSoU
puw = pvw © (puv)|w

Concretement, c¢’est une donnée de recollement de faisceau, au fait pres que les pyy ne
sont a priori pas des isomorphismes. Si chaque pyy est un isomorphisme, alors il existe
un complexe S, de faisceau de Ox-module et des isomorphismes de complexe

oy S.‘U — S.U

tels que pyunv ooy = pyunv ooy sur UNV pour tout ouvert affine U et V' de X [1, Ch.II,
Ex.1.22]. Plus généralement, en supposant que chaque pyy est un quasi-isomorphisme,
on va construire des préfaisceaux PyS, de complexe de faisceau tel que pour tout re-
couvrement fini U/ de X par des ouverts affines et tout ouvert affine V' de X, on a des
quasi-isomorphismes

Su O UNV, PyS,) (U, PxS.) |y

Le faisceau C*(U, PxS,) jouera alors le role de recollement a quasi-isomorphisme pres.
Cette construction, appliquée au cas particulier Sqy = Co(I'(U, Oy))™, nous permettra de
démontrer le théoreme général.

Pour tout ouvert affine U de X, soit PxSe(U) = j.Sey ou j : U — X désigne
I'inclusion. Si on a deux ouverts affines V' C U, on peut définir une restriction
PxSe(U) = PxS.(V)
donnée pour tout ouvert W de X par
(W, PxS.(U)) = LW NU,Sor) = DIWNV, Surlv) "D T(W NV, Sav) = T(W, PxS.(V))

Ceci fait de PxS, un préfaisceau sur X de complexe de faisceau de Ox-module. En fait,
si les complexes Sqy proviennent d’un méme complexe S,, c’est-a-dire si Soy = S|y, €t si
les pyy correspondent aux restrictions de S,, alors cette construction correspond a celle
du paragraphe précédent. On va pouvoir adapter les énoncés a cette situation.

Lemme 9.1 : Si chaque S,y est quasi-cohérent et si chaque pyy est un quasi-isomorphisme
alors on a des quasi-isomorphismes naturels

PxSo(U)|y S Py S (UNV)

Preuve : Le lemme 7.5 appliqué au carré cartésien d’inclusion

Unv-i-u
j’l l]
v X




permet d’obtenir fonctoriellement le morphisme suivant

PeSu(U)ly = *uSetr = 10" Setr = §'(Susrloow) 2257 PeS (U NV

L’hypothese de séparation sur X montre que 7' est un morphisme affine de schéma. Ainsi,
d’apres le lemme 7.3, j', est exact et j', pyuny est un quasi-isomorphisme. W

Soit U un recouvrement fini de X par des ouverts affines. Cette propriété de fini-

tude permet d’utiliser les suites spectrales pour calculer I’homologie du double complexe
C*(U, PxS.,) :

Corollaire 9.2 : Sous les mémes hypotheses, on a un quasi-isomorphisme naturel

C*(U, PxS.)|v 5 C*(UNV, PyS,)

Preuve : Le morphisme est donné par le lemme 9.1 :

C"U, PxS)ly = I PxSe(Uioi)lv ™S I PrSelUiy.c, NV)=C™UNV, PyS,)

10<-<in 1< <ip

Si on filtre le double complexe

.. ._>Cp(u, PX‘Sq)‘V —>Cp+1(u7PX$q>|V—> .

e — CP(U, PXSq71)|V s C’p+1(Z/{, PXSqfl)lV - . ...

selon les colonnes, on obtient un isomorphisme a la page E7, car ’homologie verticale est

Hi(CP(U, PxSa)lv) =TI Hy(PxSe(Ui-.i,)|v) ®

i<+ <in
Pour chaque ouvert affine V' de X, on dispose d’une augmentation
E: va.(V) = S.V — C‘(Ll N V, va.)

introduite au paragraphe précédent. On se retrouve alors dans une situation analogue a
celle du lemme 8.4, ou 'on avait construit une résolution de faisceau.

Lemme 9.3 : Sous les mémes hypotheses, on a une résolution de complexe de faisceau

0 S.V CO(L{HV,PVS.)—>01(L{HV,PVS.)—>---

Preuve : Puisque 'on travail avec des faisceaux, on peut vérifier ’exactitude seulement
sur un recouvrement, typiquement sur chaque W € «YNV. On a alors un carré commutatif

SOV‘W_>C.(U N ‘/7 PVS.)‘W

q.is.l lq.is.

Sa ——= C*(UNW, PyS.)
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de sorte que 'exactitude du complexe
0 —=8uw|w —=C'UNV. PyS.)|lw —=C'UNV, PyS,)|w —= -
est équivalente a ’exactitude du complexe
0 Sew C'UNW, PyS,) —=CHUNW, PySy) —---
Ce dernier est exact d’apres le lemme 8.1, car W e U N W et PySe(W) = Se. M

Considérons a présent le cas ot Soy est le faisceau quasi-cohérent sur U associé au
complexe de I'(U, Oy )-module Co(I'(U, Oy)). Les pyy sont donnés par les applications

F(V, OV) ®I‘(U,OU) C.(F(U, OU)) - C‘(F(V7 OV))

Ce sont des quasi-isomorphismes, comme cela a pu étre remarqué au paragraphe 2 : une
immersion ouverte de schéma affine V < U induit un morphisme plat

(U, 0p) — T'(V,0y)
Grace aux propriétés de I’homologie de Hochschild, on obtient
H,(D(V, Ov) ®rw.op) Co(T(U, Ov))) = T(V, Ov) @rw.oy) Ha(Co(P(U, Op)))
=TV, Ov) @rw.oy) HHa(I'(U, Op)) = HH,(T(V, Ov)) = Hu(Co(T(V, Ov)))

On peut donc utiliser les résultats précédents a ce cas particulier. En fait, ces faisceaux
Sey ressemblent aux faisceaux restreins Ce|y. Plus précisément, on a un morphisme

S.U — C.’U
donné sur les ouverts principaux par les applications canoniques
LU, 0v)s @rw,oy) Co(I'(U, Ov)) = Co(T'(U, Op)s)

pour tout s € T'(U, Op). C’est un quasi-isomorphisme, comme le montre le lemme 2.4 (4)
appliqué a U, en constatant que I'isomorphisme de complexe de I'(U, Oy )-module

F(U, OU) r(U,0p)e B.(F(U, OU)) ~ C.(F(U, OU))
induit un isomorphisme de faisceau quasi-cohérent
5U*(B.(F(U, OU))N) ~ S.U

Tout ceci nous amene au dernier résultat de ce paragraphe.
Lemme 9.4 : C*(U, PxS,) L C*(U, PxC,)

Preuve : Puisqu’il s’agit d’un morphisme de faisceau, on peut démontrer 1’énoncé sur un
recouvrement, a savoir sur chaque V' € Y. On a alors le diagramme commutatif suivant

C"(L[, sz.)lv D C"(Z/I, PXc.)lv

ql l:

C.(Z/{, PXs.)lv I C.(Z/{, PXc.)lv

q.is.T Tq.is.

S.V - Co |V

q.1s.

L’égalité et les quasi-isomorphismes verticaux se justifient respectivement (de gauche a
droite puis de haut en bas) par le corollaire 9.2, le lemme 8.2, le lemme 9.3 et le corollaire
8.5. On obtient le résultat voulu. W
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10 Preuve du théoreme

Soit X un schéma quasi-projectif sur un corps. Pour chaque ouvert affine U = Spec A
de X, on peut considérer Boy le faisceau quasi-cohérent sur U x U = Spec A€ associé au
complexe de A°-module B,(A). On peut aussi considérer Sy le faisceau quasi-cohérent
sur U associé au complexe de A-module Cy(A). Comme il a été remarqué précédemment,
ces deux objets sont liés par un isomorphisme de complexe de faisceau de Op-module

Setv = 0y Bars

On va définir un préfaisceau &, sur les ouverts affines de X a valeurs dans les faisceaux
quasi-cohérents de Oy x-module.

Pour tout ouvert affine U de X, on note &(U) = i, Bey ot i : U x U — X x X désigne
Iinclusion. Pour tout ouvert affine V' € U, on dispose d’une restriction

(U, Op) — T'(V,0y)
qui induit canoniquement un morphisme de complexe de I'(U, Oy )-module
Bo(I'(U, Ov)) = Bo(I'(V, Ov))
et qui par suite induit un morphisme de faisceau de Oy «y-module
By — i'Bay
ouni :V xV — U x U désigne I'inclusion. En appliquant i, on obtient une restriction
Eo(U) = i Bey — 141 Bay = Eo(V)

qui fait de &, un préfaisceau.

Choisissons un recouvrement fini & de X par des ouverts affines. Considérons ensuite
F: = C*(U,E,) et F, son complexe total, qui est borné en bas. Chaque Byy est un
complexe de faisceau quasi-cohérent et plat de Opyypy-module. D’apres le lemme 7.2,
chaque &,(U) = i,.B.y, et par suite F,, est un complexe de faisceau quasi-cohérent et plat
de Oxyx-module. Enfin, la résolution de A°-module

Be(A) — A
induit une résolution de faisceau quasi-cohérent de Oy «y-module
Bey — 0u+Ov
et en appliquant i,, le lemme 7.3 montre que I'on obtient un quasi-isomorphisme
E(U) B 1,60.00 = 6.5,0y = 6. PxOx(U)

ou j : U — X désigne l'inclusion et ou l'on regarde §,PxOx(U) comme un complexe
concentré en 0. D’apres le lemme 8.6,

Fo=C(U,E) S C*(U,5,PxOx)

En appliquant le foncteur exact J, a la résolution fournie par le lemme 8.4, on obtient
une résolution de faisceau de Oy x-module

(5*0)( — 5*C.<Z/{,ch)x> = C'(U,é*PXOX)
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Ceci permet d’obtenir les isomorphismes
Ho(Fe) = Ho(C*(U, 0.PxOx)) ~ 0.0x
Hy(F,) =~ Hy(C*(U,0.PxOx)) =0

pour tout ¢ # 0. On peut ainsi appliquer la proposition 6.5 (1) qui fournit pour tout
faisceau M de Ox-module I'isomorphisme de d-foncteur en M

H"(Ox, M) ~ Eaty (6" F,, M)

Pour utiliser ce résultat, on va comparer 0*F, et C,. Si on applique le lemme 7.4 au
carré cartésien

UL UxU

|

X—5>X><X

alors on obtient un isomorphisme de faisceau de Ox-module
PxSe(U) = juSer = jubu  Bey = "1 Bey = 64 (U)

En remarquant que 0* commute avec les sommes et les produits finis, le lemme 9.4 nous
fournit un quasi-isomorphisme

§*Fe = C*(U, 5E) =~ C*(U, PxS.) 5 C*(U, PxC.)
Or, d’apres le corollaire 8.5, on dispose également d'un quasi-isomorphisme
. g
ou G, désigne le complexe total de C*(U, PxC,). Ainsi, d’apres le lemme 4.1,
Exty, (0 Fo, M) =~ Extgy (Go, M) ~ Extp, (Co, M)

ce qui prouve l'isomorphisme naturel en M

H"(Ox, M) ~ HH"(X, M)

Supposons a présent que chaque H, est localement libre. D’apres ce qui précede,
H,(6"Fa) ~ Hy(Go) ~ Hy(Co) = H,
D’apres la proposition 6.5 (2), les suites spectrales suivantes sont isomorphes
Exty, (H (6" F,), M) = Ext)) (6" Fy, M)
HY (X, Exty,  (Ox, M)) = H'*(Ox, M)
Par le lemme 4.1, la premiere suite spectrale est isomorphe a la suite spectrale
Eatly (Hy, M) = HHP1(X, M)

C’est le résultat annoncé.
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On peut vérifier que I'isomorphisme ne dépend pas du recouvrement U choisi. Si U’
est un recouvrement fini de X par des ouverts affines alors

V={UNU :UelU,U U}

est un recouvrement fini de X par des ouverts affines qui raffine 4. Les restrictions
induisent alors un morphisme de complexe

cU,-)—C(V,—)

rendant le diagramme suivant commutatif

5 Co(U, £.) Co(U, PxC.) <= c.
| | 5
5oV, E) C*(V, PyC.) ~— C.

On obtient ainsi le diagramme commutatif suivant

Extt, (6*Fo, M) e Eatdy (Go, M)
~ | |

—
Extg, (0% F., M) o~ Extp, (G,, M)

—
T HHM(X, M)
—

H"(Ox, M)

ou F, et G. désignent respectivement les complexes totaux de C*(V,&,) et C*(V, PxC,).
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XXSY

/s
MY
v
(U, F)
HY(C.)

HMC,,)

S—1A

Lexique des notations

produit des schémas X et Y fibré sur un schéma S

application diagonale d’un schéma X sur un schéma de base
pushforward d’un faisceau F par une application continue f : X — Y
pullback d’un faisceau G par une application continue f : X — Y
faisceau Oy ®-10, f7'G si f: X — Y est un morphisme de schéma
faisceau quasi-cohérent sur Spec A associé a un A-module M
faisceau U — Homoy, (Fluv, Glv)

foncteur dérivé du foncteur Home (F, —)

fibre d'un faisceau F en un point x

module des g-formes différentielles de Kahler sur une algebre A
faisceau des g-formes différentielles relatives sur un S-schéma X
module dual Homu (M, A) d'un A-module M

faisceau dual Home(F, O) d'un faisceau de O-module F

sections F(U) d’un faisceau F sur un ouvert U

homologie en la premiere variable du double complexe C,,
homologie en la seconde variable du double complexe C,,

anneaux des fractions a numérateur dans A et a dénominateur dans .S
anneaux des fractions pour s € A et S = {s" : n € N}

anneaux des fractions pour p € Spec Aet S =A\p

quasi-isomorphisme
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