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Université de Nantes - 2020

Sous la direction de

Hossein Abbaspour

Friedrich Wagemann

2



pageblanche

3



La cohomologie de Hochschild est une théorie d’algèbre homologique concernant les
algèbres associatives. Elle apparait en 1945 dans les travaux de Gerhard Hochschild
et sera étudié durant le XXeme siècle par de nombreux mathématiciens. Gerstenhaber,
Schack, Loday, on encore Grothendieck contribueront à étendre cette théorie aux schémas
à travers plusieurs définitions. Le but de ce mémoire est d’étudier les travaux de Swan
pour comprendre ces différentes définitions.

Le cadre général est une algèbre associative A (non nécessairement unitaire) sur un
anneau commutatif k, et un bimodule M sur A, c’est à dire un A-module à droite et à
gauche satisfaisant les relations suivantes

λm = mλ

a(mb) = (am)b

pour tout m ∈M , λ ∈ k et a, b ∈ A. Lorsque A est unitaire, cela revient à considérer un
module sur l’anneau Ae = A⊗ Aop, où ⊗ = ⊗k, à travers la formule

(a⊗ b)m = amb

pour tout m ∈M et a, b ∈ A. Étant donné notre motivation à étudier des schémas, A sera
toujours unitaire et même commutative. On introduit ensuite le complexe de Hochschild

Cn(A,M) = M ⊗ A⊗n

dont la différentielle est définie par les applications k-linéaire suivantes

d =
n∑
i=0

(−1)idi : M ⊗ A⊗n →M ⊗ A⊗n−1

d0(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

di(m⊗ a1 ⊗ · · · ⊗ an) = m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an pour 0 < i < n

dn(m⊗ a1 ⊗ · · · ⊗ an) = anm⊗ a1 ⊗ · · · ⊗ an−1

Lorsque A est commutative, ces applications sont Ae-linéaires. On peut alors définir
l’homologie de Hochschild de A à valeurs dans M par

Hn(A,M) = Hn(C•(A,M))

Traditionnellement, on note C•(A) = C•(A,M) et HH•(A) = H•(A,M). Pour mieux
comprendre cette homologie, il est commode d’utiliser le complexe ”bar” de Ae-module

Bn(A) = A⊗ A⊗n ⊗ A

dont la différentielle est donnée par les applications Ae-linéaires

d′ =
n∑
i=0

(−1)id′i : A⊗ A⊗n ⊗ A→ A⊗ A⊗n−1 ⊗ A

d′i(a0 ⊗ · · · ⊗ an+1) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

La multiplication dans A permet d’obtenir une résolution de Ae-module

B•(A)→ A

Si A est projective sur k, alors B•(A) est projectif sur Ae, et dans ce cas

Hn(A,M) = TorA
e

n (M,A) = TorA
e

n (A,M)
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Pour définir la cohomologie de Hochschild de A à valeurs dans M , on s’inspire la situation
précédente en posant

Hn(A,M) = Hn(HomAe(B•(A),M))

de sorte que si A est projective sur k alors

Hn(A,M) = ExtnAe(A,M)

Puisque les schémas que nous considèrerons seront toujours basés sur un corps, les algèbres
que l’ont rencontrera seront toujours projectives. Ainsi, on préfèrera définir l’homologie et
la cohomologie de Hochschild à travers les foncteurs dérivés TorA

e

• (A,−) et Ext•Ae(A,−).

Dans son article ”Hochschild cohomology of quasiprojective schemes”, Swan intro-
duit trois définitions différentes de la cohomologie de Hochschild d’un schéma basé sur un
corps, puis il prouve que ces trois définitions cöıncident si le schéma est quasi-projectif. La
démonstration fait appel à différents concepts de géométrie algébrique et utilise des tech-
niques standard d’algèbre homologique telles que les suites spectrales. Notre objectif est
de comprendre cet article en détaillant les preuves de chacun des résultats intermédiaires
en apportant parfois des preuves alternatives ainsi que la démonstration générale. On
conservera le plan en dix parties de l’article original.
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7 Lemmes théoriques sur les faisceaux 39
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1 Cohomologie de Hochschild

Rappelons la définition de la cohomologie de Hochschild d’une algèbre commutative
A sur un corps k. On considère Ae = A⊗ A avec ⊗ = ⊗k ainsi que la multiplication

ε : Ae → A

qui permet de regarder un A-module M comme un Ae-module que l’on notera Mε ou
simplement M si cela ne prête à aucune confusion. La cohomologie de Hochschild de A à
valeur dans un Ae-module M est définie par

H•(A,M) = Ext•Ae(A,M)

On peut calculer cette cohomologie en utilisant la résolution projective de Ae-module

B•(A)
ε→ A

où B•(A) est le complexe ”bar” de A [2, 1.1.12]. Très souvent, on souhaite calculer la
cohomologie de Hochschild deA à valeur dans unAe-moduleMε. Dans cette configuration,
on a l’identification

HomAe(B•(A),Mε) = HomA(A⊗Ae B•(A),M)

Combinée avec l’isomorphisme de complexe de A-module

A⊗Ae B•(A) ' C•(A)

où C•(A) est le complexe de Hochschild de A [2, 1.1.3], ce calcul donne

Hn(A,M) = Hn(HomA(C•(A),M))

pour tout A-module M .

Exemple (H0 & H1) : La différentielle C1(A)→ C0(A) est nulle car A est commutative

Ae // A

s⊗ t � // st− ts

Ceci montre que H0(A,M) = HomA(A,M) = M et H1(A,M) = Z1(HomA(C•(A),M)).
La différentielle C2(A)→ C1(A) donnée par

A⊗ Ae // Ae

s⊗ t⊗ r � // st⊗ r − s⊗ tr + rs⊗ t

et l’adjonction HomA(Ae,M) = Homk(A,M) permette d’interpréter les 1-cocycles de
HomA(C•(A),M) comme les dérivations de A dans M : H1(A,M) = Derk(A,M).

La première manière d’adapter cette définition à un schéma X sur un corps k est de
considérer avec × = ×k l’application diagonale

δ : X → X ×X

pour regarder chaque faisceau F de OX-module comme un faisceau de OX×X-module en
prenant δ∗F mais en notant simplement F à la place de δ∗F . On peut alors définir la
cohomologie de Hochschild de X à valeur dans un faisceau F de OX-module par

H•(OX ,F) = Ext•OX×X (OX ,F)
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Cette définition généralise la cohomologie de Hochschild d’une algèbre, au sens où si
X = Spec A est affine et F = M∼ est quasi-cohérent alors

H•(OX ,F) = H•(A,M)

Ceci provient du fait que X ×X = Spec Ae, δ∗OX = Aε
∼ et δ∗F = Mε

∼, ce qui implique

Ext•OX×X (OX ,F) = Ext•Ae(A,M)

Cette définition arrive avec une suite spectrale de Grothendieck. De fait, le foncteur
HomOX×X (OX ,−) envoie les faisceaux de OX×X-module injectifs vers les faisceaux de
OX×X-module Γ-acyclique. Plus généralement, si O est un faisceau d’anneau sur un
espace topologique, F un faisceau de O-module et I un faisceau injectif de O-module
alors le faisceau HomO(F , I) est flasque : pour toute inclusion d’ouvert V ⊂ U et tout
morphisme de faisceau de O|V -module

F|V → I|V

correspond un morphisme de faisceau de O|U -module

(F|V )U → I|U

où (F|V )U désigne le faisceau F|V étendu par 0 sur U [1, Ch.II, Ex.1.19]. On obtient
alors un triangle commutatif

I|U

0 // (F|V )U //

::

F|U

OO

En ajoutant à cela que les faisceaux flasques sont Γ-acycliques [1, Ch.III, Prop.2.5], on
obtient la propriété recherchée. Ainsi, la composition de foncteur

HomOX×X (OX ,−) = Γ ◦ HomOX×X (OX ,−)

induit pour tout faisceau F de OX-module une suite spectrale de Grothendieck

Epq
2 = Hp(X ×X, ExtqOX×X (OX ,F))⇒ Extp+qOX×X (OX ,F)

Supposons X de type fini et séparé sur k. Les fibres de δ∗F sont alors données par

(δ∗F)δ(x) = Fx et (δ∗F)y = 0 si y /∈ δ(X)

pour tout faisceau F de OX-module. Puisque X × X est noethérien et δ∗OX cohérent,
ceci montre que le faisceau ExtqOX×X (OX ,F) est à support dans la diagonale δ(X) :

(ExtqOX×X (OX ,F))y = ExtqOX×X,y((δ∗OX)y, (δ∗F)y)

[1, Ch.III, Prop.6.8]. En conséquence, l’unité

ExtqOX×X (OX ,F)→ δ∗δ
−1ExtqOX×X (OX ,F)

est un isomorphisme. Puisque Γ◦δ∗ = Γ, la cohomologie du faisceau ExtqOX×X (OX ,F) sur

X×X cöıncide avec la cohomologie du faisceau δ−1ExtqOX×X (OX ,F) sur X. On préfèrera
donc écrire la suite spectrale de Grothendieck sous la forme

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)
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en regardant ExtqOX×X (OX ,F) comme un faisceau sur X via δ−1. Ce dernier hérite d’une

structure de OX-module étant donnée que le morphisme de faisceau de δ−1OX×X-module

δ−1ExtqOX×X (OX ,F)→ δ∗ExtqOX×X (OX ,F)

est un isomorphisme. En effet, sur les fibres, on est ramené au morphisme

ExtqOX×X,δ(x)(OX,x,Fx)→ OX,x ⊗OX×X,δ(x) Ext
q
OX×X,δ(x)(OX,x,Fx)

Pour construire la réciproque, on part de la multiplication

OX,x × ExtqOX×X,δ(x)(OX,x,Fx)→ ExtqOX×X,δ(x)(OX,x,Fx)

induite par la structure de OX,x-module de Fx, puis on vérifie la bilinéarité sur OX×X,δ(x)

grâce au triangle commutatif donné par la co-unité

(δ∗OX)δ(x)

OX×X,δ(x)

δ[
δ(x) 33

δ]x
++ OX,x

où δ[ : OX×X → δ∗OX et δ] : δ−1OX×X → OX . Par abus de notation, on parlera donc du
faisceau ExtqOX×X (OX ,F) sur X au lieux d’écrire δ∗ExtqOX×X (δ∗OX , δ∗F).

On peut préciser cette suite spectrale pour les schémas lisses. Commençons par rap-
peler une propriété élémentaire d’algèbre homologique qui nous servira également au para-
graphe 5 : si on se donne un complexe de R-module projectif

· · · // P2
// P1

// P0
// 0

tel que les homologies sont des R-modules projectifs, alors on a des isomorphismes

Hq(HomR(P•, N)) ' HomR(Hq(P•), N)

pour tout R-module N et tout q. Pour le démontrer, on note Zq = Zq(P•) les cycles et
Bq = Bq(P•) les bords de P• puis on utilise les suites exactes courtes

0 // Zq // Pq // Bq
// 0

0 // Bq+1
// Zq // Hq(P•) // 0

et la projectivité de l’homologie de P• pour obtenir les isomorphismes

Zq ' Hq(P•)⊕Bq+1

ce qui permet de prouver par récurrence sur q ∈ N

Pq ' Bq ⊕ Zq

de sorte que le complexe P• s’identifie au complexe

· · · // Bq ⊕ Zq // Bq−1 ⊕ Zq−1
// · · ·

(b, c) � // (0, b)

Dans cette configuration, le complexe HomR(P•, N) s’identifie au complexe

· · · // HomR(Bq, N)⊕HomR(Zq, N) // HomR(Bq+1, N)⊕HomR(Zq+1, N) // · · ·

(f, g) � // (g|Bq+1 , 0)
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Les cocycles s’identifient alors à HomR(Bq, N) ⊕ HomR(Hq(P•), N) car les morphismes
Zp → N nuls sur Bq+1 correspondent aux morphismes Hq(P•) → N ; tandis que les
cobords s’identifient à l’image de HomR(Zq, N) par la restriction sur Bq+1, c’est à dire
HomR(Bq+1, N). En effet, la seconde suite exacte courte fournit une flèche Zq → Bq+1

qui est l’identité sur Bq+1 de sorte que la restriction sur Bq+1 est surjective. Ceci prouve
l’isomorphisme annoncé. Ce résultat peut être utilisé dans la situation suivante. Soient

S → R

un morphisme d’anneau, M un S-module et N un R-module. Les groupes

ExtqS(M,N) et TorSq (R,M)

sont naturellement munit d’une structure de R-module. Si on suppose pour tout q que
TorSq (R,M) est projectif sur R alors on a un isomorphisme de R-module

ExtqS(M,N) ' HomR(TorSq (R,M), N)

Pour le voir, on prend une résolution projective de S-module

P• →M

Le complexe R⊗S P• est alors projectif sur R et son homologie

Hq(R⊗S P•) = TorSq (R,M)

est par hypothèse projective sur R. On a alors un isomorphisme

Hq(HomR(R⊗S P•, N)) ' HomR(Hq(R⊗S P•), N)

et le résultat se déduit alors de l’adjonction

HomR(R⊗S P•, N) ' HomS(P•, N)

En particulier, lorsque A est lisse sur k, on peut appliquer ceci au morphisme d’anneau

ε : Ae → A

car le théorème de HKR fournit des isomorphismes naturels de A-module

TorA
e

q (A,A) ' Ωq
A

de sorte que TorA
e

q (A,A) est projectif sur A. On obtient un isomorphisme de A-module

ExtqAe(A,N) ' HomA(Ωq
A, N)

Exemple : SiX = Spec A et F = N∼ alorsHn(OX ,F) = ExtnAe(A,N) ' HomA(Ωn
A, N).

Supposons X lisse sur k. Pour tout ouvert affine U = Spec A de X, on dispose d’un
isomorphisme de faisceau de OU -module

ExtqOX×X (OX ,OX)|U = ExtqAe(A,A)∼ ' (Ωq
U)∨

[1, Ch.III, Prop.6.2 & Ex.6.7]. Ces isomorphismes naturels se recollent pour former un
isomorphisme de faisceau de OX-module

ExtqOX×X (OX ,OX) ' (Ωq
X)∨ '

∧q TX
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où TX = (Ω1
X)∨ est le faisceau tangent de X, le deuxième isomorphisme étant donné par

le fait que Ω1
X est localement libre. Avant de conclure, énonçons une propriété générale

pour un faisceau d’anneau O arbitraire. Pour tout faisceau A, B et G de O-module et
tout ouvert U , l’application Γ(U,O)-bilinéaire

Γ(U,HomO(A,B))× Γ(U,G) // Γ(U,HomO(A,B ⊗ G))

(θ, s) � // (−⊗ s) ◦ θ

induit un morphisme de faisceau de O-module

HomO(A,B)⊗ G → HomO(A,B ⊗ G)

Lorsque A est projectif sur O et G est localement libre, c’est un isomorphisme :

HomOx(Ax,Bx)⊗Ox Gx '
⊕
i∈I
HomOx(Ax,Bx)

' HomOx(Ax,
⊕
i∈I
Bx) ' HomOx(Ax,Bx ⊗Ox Gx)

avec Gx '
⊕
i∈I
Ox. Puisque les faisceaux localement libres sont plats, on obtient en partic-

ulier pour tout faisceau localement libre F de OX-module des isomorphismes

ExtqOX×X (OX ,OX)⊗F ' ExtqOX×X (OX ,F)

On peut aussi appliquer cette propriété au faisceau canonique ωX = Ωd
X de X

(
∧q TX)⊗ ωX ' HomOX (Ωq

X ,OX)⊗ ωX ' HomOX (Ωq
X , ωX)

Et la multiplication des formes différentielles

Ωq
X ⊗ Ωd−q

X → ωX

induit par adjonction un isomorphisme

Ωd−q
X ' HomOX (Ωq

X , ωX)

ce qui peut se vérifier en utilisant la liberté sur OX,x des fibres Ωq
X,x = Ωq

OX,x . Le faisceau
ωX ⊗F étant localement libre, on peut résumer ce qui précède par l’isomorphisme

ExtqOX×X (OX , ωX ⊗F) ' Ωd−q
X ⊗F

où d = dim X. Ainsi la suite spectrale donnée par la cohomologie de Hochschild de X à
valeur dans ωX ⊗F s’écrit

Hp(X,Ωd−q
X ⊗F)⇒ Hp+q(OX , ωX ⊗F)

On verra au paragraphe 2 que si X est quasi-projectif sur un corps de caractéristique
nulle alors cette suite spectrale dégénère et induit une décomposition

Hn(OX , ωX ⊗F) '
⊕

p+q=n

Hp(X,Ωd−q
X ⊗F)
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2 Définition par l’hyper-ext

La deuxième définition de la cohomologie de Hochschild d’un schéma X sur un corps
s’inspire d’avantage du calcul

Hn(A,M) = Hn(HomA(C•(A),M))

Soit C• le complexe de faisceau de OX-module associé au préfaisceau

U 7→ C•(Γ(U,OX))

La cohomologie de Hochschild d’un faisceau F de OX-module sur X peut être définie par

HH•(X,F) = Ext•OX (C•,F)

c’est à dire pour toute résolution injective F → I• de faisceau de OX-module

HHn(X,F) = Hn(HomOX (C•, I•))

L’objectif principal de l’article de Swan est de démontrer le théorème suivant :

Théorème 2.1 : Soit X un schéma quasi-projectif sur un corps. Il existe un isomorphisme
de δ-foncteur en F

H•(OX ,F) ' HH•(X,F)

On peut donner par exemple l’application suivante.

Corollaire 2.2 : Soit X un schéma projectif sur un corps. Pour tout faisceau cohérent
F de OX-module, HHn(X,F) est un espace vectoriel de dimension finie.

Preuve : Les faisceaux ExtqOX×X (OX ,F) sont cohérents donc les Hp(X, ExtqOX×X (OX ,F))
sont des espaces vectoriels de dimension finie [1, Ch.III, Th.5.5]. De plus, X est un espace
topologique noethérien de dimension N finie, donc Hp(X, ExtqOX×X (OX ,F)) = 0 pour
p > N [1, Ch.III, Th.2.7] et ainsi Hn(OX ,F) est une somme directe finie d’espace vecto-
riels de dimension finie. �

Dans l’article original [3], Swan remarque qu’on peut également définir la cohomologie
cyclique de X en considérant le complexe de faisceau D• associé au préfaisceau

U 7→ D•(Γ(U,OX))

où D•(A) désigne le complexe total du double complexe de Connes d’une algèbre A sur
un corps [2, 2.1.7] puis en posant

HC•(X,F) = Ext•OX (D•,F)

La suite exacte courte usuelle [2, 2.2.2]

0 // C•(A) // D•(A) // D•(A)[−2] // 0

induit une suite exacte courte de complexe de faisceau de OX-module

0 // C• // D• // D•[−2] // 0

et par suite une longue suite exacte cohomologique de Connes

· · · // HCn−2(X,F) // HCn(X,F) // HHn(X,F) // HCn−1(X,F) // · · ·

qui permet de généraliser par récurrence le corollaire 2.2 à la cohomologie cyclique de X.
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La principale difficulté autour de cette définition réside dans le fait que C• n’est pas
quasi-cohérent en général. Néanmoins, tout comme la précédente, elle arrive avec une
suite spectrale.

Lemme 2.3 : Soit O un faisceau d’anneau sur un espace topologique. Pour tout complexe
de faisceau A• de O-module borné en bas et tout faisceau G de O-module, il existe une
suite spectrale

Epq
2 = ExtpO(Hq(A•),G)⇒ Extp+qO (A•,G)

Preuve : Soit G → I• une résolution injective de faisceau de O-module. Puisque A• est
borné en bas, la suite spectrale donnée en filtrant selon les colonnes le double complexe

...
...

· · · // HomO(Aq+1, Ip) //

OO

HomO(Aq+1, Ip+1) //

OO

· · ·

· · · // HomO(Aq, Ip) //

OO

HomO(Aq, Ip+1) //

OO

· · ·

...

OO

...

OO

converge vers la cohomologie totale Extp+qO (A•,G). On peut calculer la deuxième page :

Epq
0 = HomO(Aq, Ip)

Epq
1 = Hq(HomO(A•, Ip)) = HomO(Hq(A•), Ip)

Epq
2 = Hp

h(Hq
v(HomO(A•, I•))) = ExtpO(Hq(A•),G) �

Lorsque l’on prend O = OX , A• = C• et que l’on pose Hq = Hq(C•), on obtient

ExtpOX (Hq,F)⇒ HHp+q(X,F)

Pour comprendre le faisceau Hq, on a besoin d’une propriété importante concernant
l’homologie de Hochschild des algèbres commutatives. Pour tout morphisme plat d’algèbre

A→ B

le morphisme d’algèbre induit

Ae → Be

est également plat et on dispose alors d’une formule de changement de base

TorA
e

n (M,N) ' TorB
e

n (Be ⊗Ae M,N)

pour tout Ae-module M et tout Be-module N . Puisque B ⊗A A ' B, on obtient

B ⊗A TorA
e

n (M,A) ' TorA
e

n (M,B) ' TorB
e

n (Be ⊗Ae M,B)

⇒ B ⊗A Hn(A,M) ' Hn(B,Be ⊗Ae M)
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En particulier, l’homologie de Hochschild commute avec la localisation :

(S−1A)e ⊗Ae A ' (S−1A)⊗A A⊗A (S−1A) ' S−1A

⇒ (S−1A)⊗A HHn(A) ' HHn(S−1A)

où HH•(A) = H•(A,A). On rencontrera les morphismes plats dans d’autres situations.
Par exemple, une immersion ouverte de schéma affine

Spec B ↪→ Spec A

induit sur les sections globales un morphisme plat

ϕ : A→ B

Pour s’en convaincre, il suffit de prouver que tout monomorphisme de A-module

0 //M
f // N

est envoyé par le foncteur B ⊗A − vers un monomorphisme

0 // B ⊗AM
1⊗f // B ⊗A N

Par hypothèse, ϕ induit pour tout q ∈ Spec B un isomorphisme d’anneau

Ap ' Bq

où p = ϕ−1(q). On a alors un carré commutatif

Bq ⊗B B ⊗AM
1⊗1⊗f // Bq ⊗B B ⊗A N

Ap ⊗AM 1⊗f
// Ap ⊗A N

Puisque Ap est plat sur A, le morphisme du bas est un monomorphisme. Par conséquent,

∀q ∈ Spec B, Bq ⊗B ker(1⊗ f) = 0

⇒ ker(1⊗ f) = 0

d’où le résultat. Donnons à présent un lemme important qui nous accompagnera jusqu’à
la démonstration du théorème 2.1.

Lemme 2.4 : Soit X un schéma de type fini sur un corps.
(1) Hq est un faisceau cohérent pour tout q.
(2) Γ(U,Hq) = HHq(Γ(U,OX)) pour tout ouvert affine U de X.
(3) Si X est lisse alors Hq ' Ωq

X .
(4) Si X = Spec A est affine alors on a un quasi-isomorphisme

δ∗B•
q.is.→ C•

où B• est le complexe de faisceau sur X ×X associé au complexe de Ae-module B•(A).

Preuve : La faisceautification est un foncteur exact, donc Hq est associé au préfaisceau

U 7→ HHq(Γ(U,OX))
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Or, l’homologie de Hochschild commute avec la localisation. Donc si U est un ouvert
affine de X alors le préfaisceau

U ⊃ V 7→ HHq(Γ(V,OX))

correspond à la localisation du Γ(U,OX)-module HHq(Γ(U,OX)). En particulier,

Γ(U,Hq) = HHq(Γ(U,OX))

Puisque X est de type fini sur un corps, HHq(Γ(U,OX)) est de type fini sur Γ(U,OX) : si
A est une algèbre de type fini sur un corps k alors on a un morphisme d’algèbre surjectif

k[x1, . . . , xn]→ A

qui induit un morphisme d’anneau surjectif

A[x1, . . . , xn]→ A⊗ A

ce qui montre que Ae est Noethérien. Ainsi, A admet une résolution projective de Ae-
module de type fini et par conséquent TorA

e

q (A,A) est un Ae-module de type fini. Puisque
HHq(A) = TorA

e

q (A,A) est un A-bimodule symétrique, HHq(A) est un A-module de type
fini. Tout ceci prouve (1) et (2). Le point (3) découle directement du théorème de HKR.
Supposons X = Spec A affine. Sur les ouverts principaux de X×X, on a une composition

(Ae)f ⊗Ae B•(A)→ Aε(f) ⊗Ae B•(A) ' Aε(f) ⊗A C•(A)→ C•(Aε(f))

qui défini un morphisme de faisceau de OX×X-module

B• → δ∗C•

On obtient par adjonction un morphisme de complexe de OX-module

δ∗B• → C•

C’est un quasi-isomorphisme. Pour le voir, il suffit de calculer l’homologie sur les fibres
en chaque idéal premier p ∈ X :

(δ∗B•)p = Ap ⊗(Ae)q ((Ae)q ⊗Ae B•(A)) = Ap ⊗Ae B•(A) = Ap ⊗A C•(A)

où q ∈ X × X désigne l’image réciproque de p par la multiplication. Le morphisme de
complexe de Ap-module

Ap ⊗A C•(A)→ C•(Ap)

est un quasi-isomorphisme :

Hq(Ap ⊗A C•(A)) ' Ap ⊗A Hq(C•(A)) = HHq(A)p ' HHq(Ap) = Hq(C•(Ap)) �

Ce résultat permet de réécrire la suite spectrale précédente lorsque X est lisse :

ExtpOX (Ωq
X ,F)⇒ HHp+q(X,F)

On peut calculer ExtpOX (Ωq
X ,F) en utilisant la suite spectrale de Grothendieck

Eij
2 = H i(X, ExtjOX (Ωq

X ,F))⇒ Exti+jOX (Ωq
X ,F)

donnée par la composition de foncteur

HomOX (Ωq
X ,−) = Γ ◦ HomOX (Ωq

X ,−)

15



L’idée est que Ωq
X est localement libre de rang fini ce qui implique d’une part que

ExtjOX (Ωq
X ,F) = 0 pour tout j > 0 et par conséquent la pageE2 de la suite de Grothendieck

ne comporte qu’une seule ligne ce qui induit un isomorphisme

ExtpOX (Ωq
X ,F) ' Hp(X,HomOX (Ωq

X ,F))

et d’autre part que le morphisme de faisceau de OX-module

(Ωq
X)∨ ⊗F → HomOX (Ωq

X ,F)

introduit au premier paragraphe est un isomorphisme. En particulier,

HomOX (Ωq
X , ωX ⊗F) ' Ωd−q

X ⊗F

Ainsi la suite spectrale donnée par la cohomologie de Hochschild de ωX ⊗F sur X s’écrit

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

Ceci nous amène au deuxième théorème principal de l’article de Swan.

Théorème 2.5 : Soit X un schéma quasi-projectif sur un corps. Si Hq est localement
libre pour tout q alors les suites spectrales

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)

ExtpOX (Hq,F)⇒ HHp+q(X,F)

sont isomorphes. En particulier, si X est lisse alors les suites spectrales

Hp(X,Ωd−q
X ⊗F)⇒ Hp+q(OX , ωX ⊗F)

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

sont isomorphes.

Ce théorème nous permet de démontrer la décomposition de la cohomologie de Hochschild
annoncée à la fin du paragraphe 1.

Corollaire 2.6 : Soit X un schéma lisse et quasi-projectif sur un corps de caractéristique
nulle. La suite spectrale

Hp(X,Ωd−q
X ⊗F)⇒ Hp+q(OX , ωX ⊗F)

dégénère et induit un isomorphisme

Hn(OX , ωX ⊗F) '
⊕

p+q=n

Hp(X,Ωd−q
X ⊗F)

Preuve : Le théorème 2.5 nous ramène à la suite spectrale

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

L’idée est d’utiliser la λ-décomposition de l’homologie de Hochschild d’une algèbre com-
mutative A sur un anneaux contenant Q [2, 4.5.10] :

C•(A) =
⊕
i≥0

C
(i)
• (A)

où C
(i)
• (A) est un sous-complexe de C•(A) dont l’homologie HH

(i)
n (A) satisfait

HH0(A) = HH
(0)
0 (A)

HHn(A) =
⊕

0≤i≤n
HH

(i)
n (A), n ≥ 1
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Lorsque A est lisse, on a HH
(i)
n (A) = 0 pour tout i 6= n [2, 3.4.4 & 4.5.12]. Ceci induit

une décomposition

C• =
⊕
i≥0

C(i)
•

de sorte que la suite spectrale

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

se décompose comme somme directe des suites spectrales associées aux doubles complexes
HomOX (C(i)

• , I•) où ωX ⊗F → I• est une résolution injective. La deuxième page

Epq
2 = ExtpOX (Hq(C(i)

• ), ωX ⊗F)

consiste alors en une seule colonne q = i, ce qui montre la dégénérescence à la deuxième
page et donne ainsi le résultat. �

Exemple : Si A est un anneau Noethérien alors tous les faisceaux quasi-cohérents sur
X = Spec A sont Γ-acycliques [1, Ch.III, Th.3.5]. Ainsi, si A est une algèbre lisse sur un
corps de caractéristique nulle et si F est quasi-cohérent sur X alors le corollaire 2.6 donne

Hn(OX , ωX ⊗F) ' Γ(X,Ωd−n
X ⊗F)

Or, le théorème de HKR nous avait permis de démontrer au paragraphe 1 l’identité

Hn(OX , ωX ⊗F) ' HomA(Ωn
A,Ω

d
A ⊗AM)

où F = M∼. L’isomorphisme de A-module

HomA(Ωn
A,Ω

d
A ⊗AM) ' Ωd−n

A ⊗AM

nous permet alors d’interpréter le corollaire 2.6 comme une généralisation du théorème
de HKR aux schémas lisses et quasi-projectifs sur un corps de caractéristique nulle.
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3 Définition de Gerstenhaber-Schack

Introduisons à présent la troisième définition de la cohomologie de Hochschild d’un
schéma X sur un corps. Dans ce paragraphe, tous les préfaisceaux sont définis sur la
sous-catégorie A ⊂ Top(X) des ouverts affines de X. Pour distinguer les faisceaux des
préfaisceaux, on notera O le faisceau d’anneau OX vu comme un préfaisceau d’anneau et

D• : U 7→ C•(Γ(U,OX))

le complexe de préfaisceau de O-module auquel C• est associé.

Considérons le préfaisceau d’anneau

Oe : U 7→ Γ(U,OX)⊗ Γ(U,OX)

La multiplication induit un morphisme de préfaisceau d’anneau

Oe → O

qui permet de regarder tous les faisceaux de OX-module comme des préfaisceaux de Oe-
module. Gerstenhaber et Schack définissent la cohomologie de Hochschild de X à valeur
dans un faisceau F de OX-module par

Ext•Oe(O,F)

Näıvement, on voudrait considérer le complexe de préfaisceau de Oe-module

B• : U 7→ B•(Γ(U,OX))

comme une résolution de préfaisceau de Oe-module

B• → O

et utiliser l’identification suivante

HomOX (C•,F) = HomO(D•,F) = HomO(O ⊗Oe B•,F) = HomOe(B•,F)

Le problème est que B• n’est en général pas projectif sur Oe. Par contre, chaque B•(U)
est projectif sur Oe(U), et cette propriété va nous permettre de construire une résolution
projective de préfaisceau de Oe-module convenable et de démontrer le théorème suivant.

Théorème 3.1 : Ext•Oe(O,F) ' HH•(X,F).

Le but est de construire une résolution projective de préfaisceau de Oe-module à partir
de B•, mais on peut la définir dans un cadre plus général. SoientA un préfaisceau d’anneau
et A−mod la catégorie des préfaisceaux de A-module. On dispose d’une adjonction

R : A−mod //
∏
U∈A
A(U)−mod

M � // (M(U))U∈A

L :
∏
U∈A
A(U)−mod // A−mod

M � // (U 7→
⊕
V⊃U
A(U)⊗A(V ) MV )
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dont on peut expliciter l’unité η et la co-unité ε :

(ηM)U : MU
//
⊕
V⊃U
A(U)⊗A(V ) MV

m � //

{
1⊗m si V = U
0 si V 6= U

εM(U) :
⊕
V⊃U
A(U)⊗A(V )M(V ) //M(U)

(aV ⊗mV )V⊃U
� //

∑
V⊃U

aV ·mV |U

On note P = LR et on définit un foncteur

Q : A−mod // A−mod

M � // ker(εM)

Ceci nous fournit pour tout préfaisceau M de A-module et tout ouvert U ∈ A une suite
exacte scindée de A(U)-module

0 // QM(U)
⊂ // PM(U)

εM(U) //M(U) //

s
kk

0

où s : m 7→ 1⊗m ∈ A(U)⊗A(V )M(U) ⊂ PM(U). En particulier, pour tout n ∈ N, on
pose PnM = PQnM et on a une suite exacte scindée de A(U)-module

0 // Qn+1M(U) // PnM(U) // QnM(U) //
jj

0

On a ainsi construit une résolution de préfaisceau de A-module

· · · // P2M // P1M // P0M //M // 0

Supposons que M(U) est projectif sur A(U) pour tout U ∈ A. Dans ce cas l’objet
RM = (M(U))U∈A est projectif dans

∏
U∈A
A(U)−mod. Puisque R est exact, L préserve les

projectifs et donc PM est projectif sur A. Les suites exactes scindées précédentes nous
permettent de démontrer par récurrence que chaque QnM(U) est projectif sur A(U),
de sorte que PnM est également projectif sur A. On a ainsi construit une résolution
projective de préfaisceau de A-module

P•M→M

Au besoin, on notera plutôt PAnM si l’on doit préciser le préfaisceau d’anneau A.
Avant de démontrer le théorème 3.1, on a besoin du lemme suivant.

Lemme 3.2 : Si A → B est un morphisme de préfaisceau d’anneau alors pour tout n ∈ N

B ⊗A PAnM' PBn (B ⊗AM)

Preuve : Pour tout U ∈ A, on a

(B ⊗A PAM)(U) = B(U)⊗A(U) (
⊕
V⊃U
A(U)⊗A(V )M(V ))

'
⊕
V⊃U
B(U)⊗A(U) A(U)⊗A(V )M(V )

'
⊕
V⊃U
B(U)⊗B(V ) B(V )⊗A(V )M(V ) = PB(B ⊗AM)(U)
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Puis on conclue par récurrence en utilisant le diagramme à lignes exactes

0 // B ⊗A QAM //

��

B ⊗A PAM // B ⊗AM //

=

��

0

0 // QB(B ⊗AM) // PB(B ⊗AM) // B ⊗AM // 0

et le lemme des cinq. L’exactitude de la première ligne est donnée par la présence d’une
section lorsque l’on évalue en chaque ouvert U ∈ A. �

Preuve du théorème 3.1 : On considère la résolution de préfaisceau de Oe-module

B• → O

et les résolutions projectives de préfaisceau de Oe-module

P•Bp → Bp
Si on filtre selon les colonnes le double complexe

...

��

...

��
· · · // PqBp //

��

PqBp−1
//

��

· · ·

· · · // Pq−1Bp //

��

Pq−1Bp−1
//

��

· · ·

...
...

on obtient la suite spectrale convergente suivante :

E1
pq =

{
Bp si q = 0
0 si q 6= 0

E2
pq =

{
O si (p, q) = (0, 0)
0 si (p, q) 6= (0, 0)

Le complexe total fournit ainsi une résolution projective de préfaisceau de Oe-module

P•B• → O

ce qui donne ExtnOe(O,F) = Hn(HomOe(P•B•,F)). Soit F → I• une résolution injective
de faisceau de OX-module. Si on regarde F comme un complexe concentré en 0, on a
alors un quasi-isomorphisme

HomOe(P•B•,F)
q.is.→ HomOe(P•B•, I•)

Pour le voir, on filtre selon les colonnes le double complexe

...
...

· · · // HomOe((P•B•)p, Iq+1) //

OO

HomOe((P•B•)p+1, Iq+1) //

OO

· · ·

· · · // HomOe((P•B•)p, Iq) //

OO

HomOe((P•B•)p+1, Iq) //

OO

· · ·

...

OO

...

OO
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et on obtient par projectivité

Epq
1 = Hq(HomOe((P•B•)p, I•)) = HomOe((P•B•)p, Hq(I•))

d’où l’isomorphisme à la page E1. En utilisant l’adjonction et le lemme 3.2, on a

HomOe(P
Oe
• B•, I•) = HomO(O ⊗Oe PO

e

• B•, I•)
' HomO(PO• (O ⊗Oe B•), I•) ' HomO(PO• D•, I•)

Comme précédemment, on peut regarder D• comme un double complexe centré en la ligne
0 et obtenir un quasi-isomorphisme avec le complexe total

P•D•
q.is.→ D•

car lorsque l’on filtre selon les colonnes le double complexe

...

��

...

��
· · · // PqDp //

��

PqDp−1
//

��

· · ·

· · · // Pq−1Dp //

��

Pq−1Dp−1
//

��

· · ·

...
...

on obtient l’isomorphisme à la page E1 :

E1
pq =

{
Dp si q = 0
0 si q 6= 0

Puis l’injectivité donne un quasi-isomorphisme

HomO(P•D•, I•)
q.is.→ HomO(D•, I•)

ce qui se voit en filtrant selon les colonnes le double complexe

...
...

· · · // HomO(Dq+1, Ip) //

OO

HomO(Dq+1, Ip+1) //

OO

· · ·

· · · // HomO(Dq, Ip) //

OO

HomO(Dq, Ip+1) //

OO

· · ·

...

OO

...

OO

Epq
1 = Hq(HomO(D•, Ip)) = HomO(Hq(D•), Ip)

Notons que Ip est injectif comme préfaisceau de O-module car l’inclusion des faisceaux
de OX-module dans les préfaisceaux de O-module admet comme adjoint à gauche la
faisceautification, qui est exacte. Cette inclusion préserve donc les injectifs. On peut à
présent terminer la démonstration :

ExtnOe(O,F) = Hn(HomOe(P•B•,F))

' Hn(HomOe(P•B•, I•))
' Hn(HomO(P•D•, I•))
' Hn(HomO(D•, I•))

' Hn(HomOX (C•, I•)) = HHn(X,F) �
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4 Résolutions localement libres

Pour démontrer les théorèmes 2.1 et 2.5, il nous faut établir un lien entre la coho-
mologie de Hochschild d’un schéma X et l’hyper-ext du complexe C•. Pour palier aux
difficultés concernant le complexe C•, on va se ramener dans un premier temps à con-
sidérer l’hyper-ext d’une résolution localement libre de δ∗OX . Dans ce paragraphe, on
va mettre en avant des propriétés de complexe de faisceau qui nous serviront jusqu’à la
démonstration du théorème général.

On commence par énoncer un résultat fondamental pour notre étude, que l’on peut
énoncer sous la généralité suivante. On considère O un faisceau d’anneau sur un espace
topologique X. Pour ne pas se soucier de la convergence des suites spectrales, tous les
complexes de faisceau seront, dans ce paragraphe, supposés bornés en bas.

Lemme 4.1 : Un quasi-isomorphisme de complexe de faisceau de O-module

A•
q.is→ B•

induit un isomorphisme entre les suites spectrales

ExtpO(Hq(A•),G)⇒ Extp+qO (A•,G)

ExtpO(Hq(B•),G)⇒ Extp+qO (B•,G)

pour tout faisceau G de O-module. Deux morphismes de complexe homotopes

A• ⇒ B•
induisent le même morphisme de suite spectrale.

Preuve : Soit G → I• une résolution injective. La première suite spectrale est donnée
en filtrant selon les colonnes le double complexe

...
...

· · · // HomO(Aq+1, Ip) //

OO

HomO(Aq+1, Ip+1) //

OO

· · ·

· · · // HomO(Aq, Ip) //

OO

HomO(Aq, Ip+1) //

OO

· · ·

...

OO

...

OO

Epq
0 = HomO(Aq, Ip)

Epq
1 = Hq(HomO(A•, Ip)) = HomO(Hq(A•), Ip)

Epq
2 = Hp

h(Hq
v(HomO(A•, I•))) = ExtpO(Hq(A•),G)

Tout morphisme de complexe A• → B• induit un morphisme de double complexe

HomO(B•, I•)→ HomO(A•, I•)
puis un morphisme entre les suites spectrales associées. On voit qu’un quasi-isomorphisme
induit un isomorphisme entre les pages E1 et par conséquent entre les suites spectrales
(Er)r≥2. De même, deux applications homotopes induisent le même morphisme sur la
page E1 et donc le même morphisme de suite spectrale (Er)r≥2. �
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Lemme 4.2 : Soient L• un complexe de faisceau localement libre de O-module et

A•
q.is→ B•

un quasi-isomorphisme de complexe de faisceau deO-module. On a un quasi-isomorphisme

HomO(L•,A•)
q.is→ HomO(L•,B•)

Preuve : On dispose d’un morphisme de double complexe de faisceau de O-module

HomO(L•,A•)→ HomO(L•,B•)

En filtrant selon les colonnes le double complexe de faisceau

...
...

· · · //HomO(Lp,Aq+1) //

OO

HomO(Lp+1,Aq+1) //

OO

· · ·

· · · //HomO(Lp,Aq) //

OO

HomO(Lp+1,Aq) //

OO

· · ·

...

OO

...

OO

on obtient un isomorphisme à la page E1 :

Epq
1 = Hq(HomO(Lp,A•)) = HomO(Lp, Hq(A•))

Cette égalité de faisceau découle d’une identification des fibres

(Hq(HomO(Lp,A•)))x = Hq(HomOx(Lp,x,A•x))

= HomOx(Lp,x, Hq(A•x)) = (HomO(Lp, Hq(A•)))x

en utilisant que Lp,x est un Ox-module libre. Puisque les suites spectrales convergent, ceci
entraine un isomorphisme des cohomologies totales. �

Lemme 4.3 : Si F est un faisceau plat de O-module et G un faisceau injectif de O-module
alors le faisceau HomO(F ,G) est injectif.

Preuve : HomO(−,HomO(F ,G)) ' HomO(−,G) ◦ (F ⊗O −) �

Lemme 4.4 : Un quasi-isomorphisme de complexe de faisceau flasque de O-module

A• q.is→ B•

induit un quasi-isomorphisme de complexe de ΓO-module

ΓA• q.is→ ΓB•

Preuve : Soit M• le cône de A• → B•. Par hypothèse, M• est exacte. On a donc une
résolution flasque du faisceau nul

0→M•

et ainsi 0 = Hq(ΓM•) pour tout q. Puisque ΓM• est le cône de ΓA• → ΓB•, c’est le
résultat. �
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Concentrons nous à présent sur le cas des schémas.

Lemme 4.5 : Si i : Y → X est un morphisme de schéma, A un faisceau de OX-module
et B un faisceau de OY -module alors on a un isomorphisme de faisceau de OX-module

HomOX (A, i∗B) ' i∗HomOY (i∗A,B)

Preuve : On commence par construire pour tout faisceau F de OX-module un isomor-
phisme naturel de faisceau de OY -module

i∗(F ⊗OX A) ' i∗F ⊗OY i∗A

Pour ce faire, on part de l’unité 1→ i∗i
∗ qui fournit un morphisme

F ⊗OX A → i∗i
∗F ⊗OX i∗i∗A

puis le morphisme OX → i∗OY donne

i∗i
∗F ⊗OX i∗i∗A → i∗i

∗F ⊗i∗OY i∗i∗A

que l’on compose par le morphisme

i∗i
∗F ⊗i∗OY i∗i∗A → i∗(i

∗F ⊗OY i∗A)

et on obtient par adjonction le morphisme voulu. C’est un isomorphisme, comme on peut
le constater sur les fibres :

(i∗(F ⊗OX A))y = OY,y ⊗OX,i(y) (Fi(y) ⊗OX,i(y) Ai(y))

' (OY,y ⊗OX,i(y) Fi(y))⊗OX,i(y) (OY,y ⊗OX,i(y) Ai(y)) = (i∗F ⊗OY i∗A)y

On démontre alors le lemme grâce au plongement de Yoneda :

HomOX (F ,HomOX (A, i∗B)) ' HomOX (F ⊗OX A, i∗B)

' HomOY (i∗(F ⊗OX A),B) ' HomOY (i∗F ⊗OY i∗A,B)

' HomOY (i∗F ,HomOY (i∗A,B)) ' HomOX (F , i∗HomOY (i∗A,B)) �

On arrive au dernier résultat du paragraphe, dont le corollaire est le premier pas vers
la démonstration du théorème général.

Proposition 4.6 : Soient i : Y ↪→ X une immersion fermée, L• un complexe de faisceau
localement libre de OX-module et S un faisceau de OY -module. On a un isomorphisme
de δ-foncteur en S

ExtnOX (L•, i∗S) ' ExtnOY (i∗L•,S)

Preuve : Soient S → I• et i∗S → J • deux résolutions injectives. Le fait que i soit une
immersion fermée entraine que le foncteur i∗ est exact :

(i∗F)i(y) = Fy et (i∗F)x = 0 si x /∈ i(Y )
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En particulier, i∗S → i∗I• est une résolution et on a un triangle commutatif

i∗I•

q.is.

��
i∗S

55

)) J •

D’après le lemme 4.2, on obtient un quasi-isomorphisme

HomOX (L•, i∗I•)
q.is→ HomOX (L•,J •)

Or, d’après le lemme 4.5, on a un isomorphisme

HomOX (L•, i∗I•) ' i∗HomOY (i∗L•, I•)

et d’après le lemme 4.3, les faisceaux HomOX (L•,J •) et HomOY (i∗L•, I•) sont injectifs et
donc flasques. Par suite le faisceau i∗HomOY (i∗L•, I•) est flasque et le lemme 4.4 donne
un quasi-isomorphisme

Γ(X, i∗HomOY (i∗L•, I•))
q.is.→ Γ(X,HomOX (L•,J •))

c’est à dire

HomOY (i∗L•, I•)
q.is.→ HomOX (L•,J •)

ce qui donne l’isomorphisme recherché. Pour la naturalité, on choisit pour toute suite
exacte de faisceau de OY -module

0 // S ′ // S // S ′′ // 0

des suites exactes de résolutions injectives

0 // I ′• // I• // I ′′• // 0

0 // J ′• // J • // J ′′• // 0

rendant le diagramme à ligne exacte suivant commutatif

0 // i∗I ′• //

��

i∗I• //

��

i∗I ′′• //

��

0

0 // J ′• // J • // J ′′• // 0

Ceci induit un diagramme à ligne exacte commutatif

· · · // Hn(i∗I ′•) //

��

Hn(i∗I•) //

��

Hn(i∗I ′′•) //

��

Hn+1(i∗I ′•) //

��

· · ·

· · · // Hn(J ′•) // Hn(J •) // Hn(J ′′•) // Hn+1(J ′•) // · · ·

En reprenant le quasi-isomorphisme initial

HomOX (L•, i∗I•)
q.is→ HomOX (L•,J •)
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la naturalité est donnée à la page E1

...
...

· · · //HomOX (Lp, i∗Iq+1) //

OO

HomOX (Lp+1, i∗Iq+1) //

OO

· · ·

· · · //HomOX (Lp, i∗Iq) //

OO

HomOX (Lp+1, i∗Iq) //

OO

· · ·

...

OO

...

OO

Epq
1 = Hq(HomOX (Lp, i∗I•)) = HomOX (Lp, Hq(i∗I•)) �

Corollaire 4.7 : Soient X un schéma séparé et L• un complexe de faisceau localement
libre de OX×X-module tel que H0(L•) = δ∗OX et Hp(L•) = 0 pour tout p 6= 0. Pour tout
faisceau F de OX-module, on a un isomorphisme de δ-foncteur en F

Hn(OX ,F) ' ExtnOX (δ∗L•,F)

Preuve : On part de l’isomorphisme donné par la proposition 4.6 appliquée à l’immersion
fermée δ : X ↪→ X ×X

ExtnOX×X (L•, δ∗F) ' ExtnOX (δ∗L•,F)

puis on applique le lemme 4.1 au quasi-isomorphisme

L•
q.is.→ δ∗OX

ce qui fournit un isomorphisme naturel en F

Hn(OX ,F) = ExtnOX×X (δ∗OX , δ∗F) ' ExtnOX×X (L•, δ∗F) �
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5 Suites spectrales

Le corollaire 4.7 établie un lien entre la cohomologie de Hochschild d’un schéma X
séparé et de type fini sur un corps avec l’hyper-ext d’une résolution localement libre de
δ∗OX . On souhaite aller plus loin en comparant les suites suites spectrales associées
précédemment. Pour ce faire, on va utiliser les résolutions de Cartan-Eilenberg et les
techniques de convergence des suites spectrales. La référence original de Swan est

H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press,
Princeton, NJ, 1956).

Rappelons ici le vocabulaire introduit dans l’article [3]. On se place dans une catégorie
abélienne ayant assez d’injectif, et on suppose tous les complexes bornés en bas.

Un CE-monomorphisme i : A• → B• est un monomorphisme de complexe tel que
i∗ : H•(A•)→ H•(B•) est un monomorphisme. Une suite CE-exacte est une suite exacte

0 // C ′•
f // C•

g // C ′′• // 0

telle que im(f)→ C• est un CE-monomorphisme. Un complexe I• est CE-injectif si pour
tout CE-monomorphisme A• → B• et tout morphisme A• → I•, il existe une factorisation

A• //

!!

B•

��
I•

Enfin, une CE-résolution d’un complexe A• est une suite CE-exacte

0 // A• // C0• // C1• // C2• // · · ·

où Cp• est CE-injectif pour tout p ≥ 0. Les CE-résolutions existent toujours dans les
catégories ayant assez d’injectif. Une propriété importante pour la suite est que si C••

est une CE-résolution de A• et F un foncteur additif alors

Hq
v(F (C••)) = F (Hq

v(C••))

pour tout q ≥ 0. On va s’intéresser au cas des faisceaux avec F = Γ. On pourra alors
calculer l’hypercohomologie d’un complexe de faisceau en utilisant les CE-résolutions.

Lemme 5.1 : SoitM• un complexe de faisceau localement libre sur un schéma Y tel que
Hq(M•) est localement libre pour tout q. Pour tout faisceau S de OY -module, on a un
isomorphisme naturel

Hq(HomOY (M•,S)) ' HomOY (Hq(M•),S)

Preuve : Pour un foncteur contravariant F exact à gauche et un complexe C• arbitraires,
on peut construire un morphisme naturel

Hq(F (C•))→ F (Hq(C•))

Notons Z ′q le conoyau de la différentielle Cq+1 → Cq. Par hypothèse, F (Z ′q) est le noyau
de F (Cq)→ F (Cq+1) et par conséquent,

Hq(F (C•)) = coker(F (Cq−1)→ F (Z ′q))

27



On dispose d’une suite exacte

0 // Hq(C•) // Z ′q // Cq−1

qui induit une composition nulle

F (Cq−1)→ F (Z ′q)→ F (Hq(C•))

d’où la factorisation naturelle

F (Cq−1) // F (Z ′q) //

&&

Hq(F (C•))

��
F (Hq(C•))

Revenons au cas où F = HomOY (−,S) et C• =M•. Pour vérifier que l’on a un isomor-
phisme sur les fibres, on est ramené au cas où l’on applique HomR(−, N) à un complexe
de R-module projectif

· · · // P2
// P1

// P0
// 0

tel que les homologies sont des R-modules projectifs. Comme il a été remarqué au premier
paragraphe, cette configuration implique l’isomorphisme voulu

Hq(HomR(P•, N)) ' HomR(Hq(P•), N) �

Il faut remarquer l’utilisation de l’hypothèse ”localement libre” sur le complexe M•
et l’homologie H•(M•). En fait, lemme 5.1 reste vrai si l’on suppose seulement que les fi-
bresMq,y et Hq(M•)y = Hq(M•,y) sont desOY,y-modules projectifs. Cette démonstration
nous montre la grande maniabilité, liée au passage aux fibres, des faisceaux pour les ques-
tions homologiques.

Corollaire 5.2 : Sous les mêmes hypothèses, si

0 // F ′ f // F g // F ′′ // 0

est une suite exacte de faisceau de OY -module, alors la suite

0 //HomOY (M•,F ′)
f∗ //HomOY (M•,F)

g∗ //HomOY (M•,F ′′) // 0

est CE-exacte.

Preuve : La suite est exacte sur les fibres, car Mq,y est projective sur OY,y. Puisque f
est un monomorphisme, on a Hq(im(f∗)) ' Hq(HomOY (M•,F ′)) et le lemme 5.1 donne
un diagramme commutatif

Hq(im(f∗)) // Hq(HomOY (M•,F))

0 //HomOY (Hq(M•),F ′) f∗
//HomOY (Hq(M•),F)

Par hypothèse, les fibres de Hq(M•) sont projectives OY,y, donc la ligne inférieure est
exacte et notre suite est CE-exacte. �

On arrive ici à l’étude des suites spectrales annoncée en introduction. Rappelons ici
qu’une suite spectrale associée à un double complexe nul hors d’un quart de plan (par
exemple une CE-résolution) converge toujours vers la cohomologie totale. Cela justifie
que les complexes que l’on considère dans ce paragraphe sont supposés bornés en bas.
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Lemme 5.3 : Sous les hypothèses du lemme 5.1, les suites spectrales

ExtpOY (Hq(M•),S)⇒ Extp+qOY (M•,S)

Hp(Y,Hq(HomOY (M•,S)))⇒ Hp+q(Y,HomOY (M•,S))

sont isomorphes.

Preuve : Soit S → I• une résolution injective. Le corollaire 5.2 montre que la suite

0 //HomOY (M•,S) //HomOY (M•, I0) //HomOY (M•, I1) // · · ·

est CE-exacte, donc si on choisit une résolution CE-injective HomOY (M•,S)→ J •• alors
il existe un morphisme f unique à homotopie près rendant le triangle suivant commutatif

HomOY (M•, I•)

f

��

HomOY (M•,S)

55

)) J ••

En appliquant Γ, on obtient un morphisme de double complexe

Γf : HomOY (M•, I•)→ Γ(J ••)

Lorsque l’on filtre selon les colonnes le double complexe

...
...

· · · // HomOY (Mq+1, Ip) //

OO

HomOY (Mq+1, Ip+1) //

OO

· · ·

· · · // HomOY (Mq, Ip) //

OO

HomOY (Mq, Ip+1) //

OO

· · ·

...

OO

...

OO

on obtient la première suite spectrale :

Epq
1 = Hq(HomOY (M•, Ip)) = HomOY (Hq(M•), Ip)

Epq
2 = ExtOY (Hq(M•),S)

Et lorsque l’on filtre selon les colonnes le double complexe

...
...

· · · // Γ(J p,q+1) //

OO

Γ(J p+1,q+1) //

OO

· · ·

· · · // Γ(J p,q) //

OO

Γ(J p+1,q) //

OO

· · ·

...

OO

...

OO
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on obtient la deuxième suite spectrale :

Epq
1 = Hq(Γ(J p•)) = Γ(Hq(J p•))

Epq
2 = Hp

h(Γ(Hq
v(J ••))) = Hp(Y,Hq(HomOY (M•,S)))

Cette dernière égalité découle du fait que la CE-résolution HomOY (M•,S)→ J •• induit
des résolutions injectives Hq(HomOY (M•,S)) → Hq

v(J ••) pour tout p. Ainsi, il nous
reste à vérifier que notre morphisme Γf induit un isomorphisme sur la page E2. Sur la
page E1, Γf est donné en appliquant Γ au morphisme

HomOY (Hq(M•), I•)→ Hq
v(J ••)

Or par hypothèse, le lemme 4.3 nous dis que

HomOY (Hq(M•),S)→ HomOY (Hq(M•), I•)

est une résolution injective, tout comme

Hq(HomOY (M•,S))→ Hq
v(J ••)

Puisque les deux faisceaux HomOY (Hq(M•),S) et Hq(HomOY (M•,S)) sont isomorphes
d’après le lemme 5.1, ils ont donc la même cohomologie sur Y ce qui signifie que Γf est
un isomorphisme sur la page E2. �

Avant d’aboutir au résultat final de ce paragraphe, on a besoin d’un dernier lemme
que l’on peut énoncer sous une forme générale.

Lemme 5.4 : Soient i : Y ↪→ X une immersion fermée et A• un complexe de faisceau de
OY -module. Les suites spectrales

Hp(Y,Hq(A•))⇒ Hp+q(Y,A•)

Hp(X,Hq(i∗A•))⇒ Hp+q(X, i∗A•)

sont isomorphes.

Preuve : Soient A• → I•• et i∗A• → J •• deux CE-résolutions. Les double-complexes

Γ(Y, I••) ; Γ(X,J ••)

induisent alors les deux suites spectrales voulues. On construit un morphisme comme
suit. i∗ est exact donc i∗A• → i∗I•• est une résolution. Il existe ainsi un morphisme f
unique à homotopie près rendant le triangle suivant commutatif

i∗I••

f

��
i∗A•
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)) J ••

En appliquant Γ(X,−), on obtient un morphisme de double complexe

Γ(X, f) : Γ(Y, I••)→ Γ(X,J ••)

qui correspond sur la page E2 à l’isomorphisme

Hp(Y,Hq(A•)) = Hp(X, i∗H
q(A•)) ' Hp(X,Hq(i∗A•)) �
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Proposition 5.5 : Soient i : Y ↪→ X une immersion fermée et L• un complexe de
faisceau localement libre de OX-module tel que H0(L•) = T , Hq(L•) = 0 pour tout q 6= 0
et Hq(i

∗L•) est localement libre pour tout q. Pour tout faisceau S de OY -module, les
suites spectrales

ExtpOY (Hq(i
∗L•),S)⇒ Extp+qOY (i∗L•,S)

Hp(X, ExtqOX (T , i∗S))⇒ Extp+qOX (T , i∗S)

sont isomorphes.

Preuve : Soit i∗S → J • une résolution injective. La deuxième suite spectrale est donné
par l’hypercohomologie sur X du complexe de faisceau HomOX (T ,J •) [4, Th.5.8.3]. Si
on regarde T comme un complexe de faisceau concentré en 0, on dispose par hypothèse
d’un quasi-isomorphisme

L•
q.is.→ T

Par injectivité, on obtient un quasi-isomorphisme

HomOX (T ,J •) q.is.→ HomOX (L•,J •)

de sorte que la deuxième suite spectrale est donnée par l’hypercohomologie sur X du
complexe total de HomOX (L•,J •). Soit S → I• une résolution injective. Le foncteur i∗
est exact, donc i∗S → i∗I• est une résolution et on a un triangle commutatif

i∗I•

q.is.

��
i∗S

55

)) J •

En particulier, puisque les fibres de L• sont libres, on obtient un quasi-isomorphisme

HomOX (L•, i∗I•)
q.is.→ HomOX (L•,J •)

Or le lemme 4.5 donne un isomorphisme

HomOX (L•, i∗I•) ' i∗HomOY (i∗L•, I•)

En conséquence, la deuxième suite spectrale est donnée par l’hypercohomologie sur X du
complexe total de i∗HomOY (i∗L•, I•), qui est d’après le lemme 5.4 donnée par l’hypercoho-
mologie sur Y du complexe total de HomOY (i∗L•, I•). Mais si on regarde S comme un
complexe concentré en 0, on dispose d’un quasi-isomorphisme

S q.is.→ I•

et puisque les fibres de i∗L• sont libres, on obtient un quasi-isomorphisme

HomOY (i∗L•,S)
q.is.→ HomOY (i∗L•, I•)

Ainsi la deuxième suite spectrale est isomorphe à la suite spectrale

Hp(Y,Hq(HomOY (i∗L•,S)))⇒ Hp+q(Y,HomOY (i∗L•,S))

Cette dernière est, par le lemme 5.3, isomorphe à la première suite spectrale. �

31



Une conséquence immédiate de cette proposition est le cas où l’immersion fermée est
l’application diagonale δ d’un schéma séparé X et où T = δ∗OX :

Corollaire 5.6 : Soient X un schéma séparé et de type fini sur un corps et L• un complexe
de faisceau localement libre de OX×X-module tel que H0(L•) ' δ∗OX , Hq(L•) = 0 pour
tout q 6= 0 et Hq(i

∗L•) est localement libre pour tout q. Pour tout faisceau F de OX-
module, les suites spectrales

ExtpOX (Hq(δ
∗L•),F)⇒ Extp+qOX (δ∗L•,F)

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)

sont isomorphes.
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6 Résolutions plates

Après avoir établi un lien entre la cohomologie de Hochschild d’un schéma X séparé
et de type fini sur un corps avec l’hyper-ext d’une résolution localement libre de δ∗OX ,
on va se ramener à considérer des résolutions plates et quasi-cohérentes de δ∗OX . Ceci
nous permettra en particulier de démontrer les théorèmes 2.1 et 2.5 dans le cas où X est
affine en utilisant la résolution

B• → δ∗OX

introduite au lemme 2.4 (4).

Dans ce paragraphe, tous les complexes de châınes sont supposés bornés en bas et X
désigne un schéma quasi-projectif sur un corps. Le résultat suivant justifie la présence de
cette dernière hypothèse.

Lemme 6.1 : Soit F → G un épimorphisme de faisceau quasi-cohérent sur X. Si G
est cohérent alors il existe un faisceau localement libre L de OX-module ainsi qu’un
morphisme de faisceau L → F tel que la composition

L → F → G

est un épimorphisme.

Preuve : Supposons X projectif sur un anneau Noethérien et F cohérent. Dans ce cas
il existe un faisceau localement libre L de OX-module ainsi qu’un épimorphisme

L → F

[1, Ch.II, Cor.5.18]. Si X est seulement supposé quasi-projectif sur un corps, alors F se
prolonge sur l’adhérence de X dans Pn [1, Ch.II, Ex.5.15] qui est un schéma projectif
sur un anneau Noethérien. On est alors ramené à la situation précédente. Enfin, si F
est seulement supposé quasi-cohérent, alors F est l’union de ses sous-faisceaux cohérents
[1, Ch.II, Ex.5.15.e] et l’un d’entre eux est envoyé sur G. En effet, la restriction de
l’épimorphisme F → G sur un ouvert affine de X est déterminée par une application
linéaire surjective M → N avec N est de type fini et se restreint donc sur un sous module
de type fini M ′ ⊂M en une surjection. Puisque X est quasi-compact, on peut construire
le faisceau cohérent F ′ ⊂ F voulu. D’après ce qui précède, il existe un faisceau localement
libre L de OX-module ainsi qu’un épimorphisme

L → F ′

On obtient ainsi une composition

L → F ′ ⊂ F → G

qui est un épimorphisme. �

Lemme 6.2 : Soit K• un complexe de faisceau quasi-cohérent sur X tel que chaque
Hi(K•) est cohérent. Il existe un complexe de faisceau localement libre L• de OX-module
et un quasi-isomorphisme

L•
q.is.→ K•
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Preuve : On construit L• par récurrence sur p ∈ N. On initialise avec le lemme 6.1 qui
fournit un faisceau localement libre L0 de OX-module et un morphisme de faisceau

L0 → K0

tels que la composition

L0 → K0 → H0(K•)

est un épimorphisme. Supposons à présent que l’on dispose d’un complexe de faisceau
localement libre L• de OX-module

0 // Lp // Lp−1
// · · · // L1

// L0
// 0

et d’un morphisme de complexe de faisceau de OX-module

f : L• → K•

tel que le morphisme induit sur l’homologie

f∗ : Hi(L•)→ Hi(K•)

est un isomorphisme pour tout i < p et un épimorphisme pour i = p. Soit P le tiré-en-
arrière suivant

P d′ //

f ′

��

Zp(L•)
f

��
Kp+1 d

// Zp(K•)

On dispose d’un diagramme commutatif à lignes exactes

P d′ //

f ′

��

Zp(L•)
µ //

f

��

coker(d′) //

ϕ

��

0

Kp+1 d
// Zp(K•) ν

// Hp(K•) // 0

où ϕ est donné par la propriété universelle du conoyau de d′ :

(ν ◦ f) ◦ d′ = ν ◦ d ◦ f ′ = 0

Notre hypothèse de récurrence implique que ϕ ◦ µ = ν ◦ f = f∗ est un épimorphisme.
Donc ϕ est un épimorphisme. De plus, une chasse au diagramme sur les fibres permet de
montrer que ϕ est un monomorphisme : si ϕ(x) = 0 alors on choisit y tel que µ(y) = x

y � µ //
_

f

��

x
_

ϕ

��
· � ν

// 0

puis on choisit z tel que dz = f(y)

(z, y) � d′ //
_

f ′

��

y � µ //
_

f
��

x
_

ϕ

��
z �

d
// dz �

ν
// 0
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et on obtient x = µ ◦ d′(z, y) = 0. Ceci prouve que coker(d′) ' Hp(K•) est un faisceau
cohérent. Par conséquent, im(d′) = ker(µ) est un faisceau cohérent [1, Ch.II, Prop.5.7].
Utilisons à nouveau le lemme 6.1 : d’une part, on peut trouver un faisceau localement
libre L′p+1 sur X et un morphisme

α : L′p+1 → P

tels que im(d′ ◦ α) = im(d′) ; et d’autre part un faisceau localement libre L′′p+1 sur X et
un morphisme

β : L′′p+1 → Zp+1(K•)

dont la composition par la projection Zp+1(K•) → Hp+1(K•) est un épimorphisme. On
pose alors Lp+1 = L′p+1 ⊕ L′′p+1, puis on définit une différentielle

(d′ ◦ α)⊕ 0 : Lp+1 → Zp(L•)

et un morphisme

(f ′ ◦ α)⊕ β : Lp+1 → Kp+1

Par construction, on obtient un morphisme de complexe

0 // Lp+1
(d′◦α)⊕0//

(f ′◦α)⊕β
��

Lp //

f

��

· · · // L1
//

f

��

L0
//

f

��

0

· · · // Kp+1
// Kp // · · · // K1

// K0
// 0

Puisque im(d′ ◦ α) = im(d′) = ker(µ) = ker(ϕ ◦ µ) = ker(ν ◦ f), ce morphisme induit en
homologie un isomorphisme

Hp(L•) ' Hp(K•)

Enfin, la construction de β implique que ce morphisme induit en homologie un épimorphisme

Hp+1(L•)→ Hp+1(K•)

car L′′p+1 ⊂ Zp+1(L•) = Hp+1(L•). On peut donc répéter cette construction à l’infini. �

Lemme 6.3 : Sous les mêmes hypothèses, supposons L′• et L′′• deux complexes de
faisceau localement libre de OX-module quasi-isomorphes à K• :

L′•
q.is.→ K• ; L′′•

q.is.→ K•

Il existe un complexe de faisceau localement libre L• de OX-module et un diagramme
commutatif à homotopie près

L•
q.is. //

q.is
��

L′•
q.is.

��
L′′• q.is.

// K•

Preuve : Soit M• le cône de l’identité de K•[1]. Il arrive avec un épimorphisme

M• → K•

Soit G• le noyau du morphisme

L′• ⊕ L′′• ⊕M• → K•
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La suite exacte courte

0 // G• // L′• ⊕ L′′• ⊕M• // K• // 0

induit une longue suite exacte homologique

· · · // Hn(G•) // Hn(L′•)⊕Hn(L′′•) // Hn(K•) ∂ // Hn−1(G•) // · · ·
Par hypothèse, le morphisme

Hn(L′•)⊕Hn(L′′•) // Hn(K•)

est surjectif et son noyau est canoniquement isomorphe à Hn(L′•) de telle sorte que le
morphisme connectant ∂ est nul et que la composition par la projection canonique

G• → L′• ⊕ L′′• ⊕M• → L′•
est un quasi-isomorphisme. Le lemme 6.2 permet de trouver un complexe de faisceau
localement libre L• de OX-module et un quasi-isomorphisme

L•
q.is.→ G•

En utilisant les projections canoniques

L′• ⊕ L′′• ⊕M• → L′• ; L′• ⊕ L′′• ⊕M• → L′′• ⊕M•

on construit un carré commutatif

L•
q.is. //

q.is

��

L′•

q.is.

��
L′′• ⊕M• q.is.

// K•

Enfin, en utilisant l’inclusion composée à la projection

L′′• ⊕M• → L′′• → L′′• ⊕M•

on obtient le carré commutatif à homotopie près recherché

L•
q.is. //

q.is
��

L′•
q.is.

��
L′′• q.is.

// K•

Pour le voir, il suffit de vérifier que le morphisme de complexe

L• → G• → L′• ⊕ L′′• ⊕M• → L′• ⊕ L′′• → K•
est homotope à l’application nulle. Pour ce faire, on utilise la contractibilité du côneM•
qui fournit une homotopie s

· · · //Mp+1
//

1
��

s

zz

Mp
//

1
��

s

zz

Mp−1
//

1
��

s

zz

· · ·
s

zz
· · · //Mp+1

//Mp
//Mp−1

// · · ·

et on obtient une homotopie S

· · · // Lp+1
//

1

��

S

{{

Lp //

1

��

S

{{

Lp−1
//

1

��

S

{{

· · ·
S

{{
· · · // Kp+1

// Kp // Kp−1
// · · ·

en prenant S : Lp →Mp
s→Mp+1 → Kp+1. �
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Lemme 6.4 : SoientA → B un morphisme de faisceau d’anneau sur un espace topologique
et f : F• → G• un morphisme de complexe de faisceau plat de A-module. Si f est un
quasi-isomorphisme alors

1⊗ f : B ⊗A F• → B ⊗A G•

est un quasi-isomorphisme.

Preuve : Soit M• le cône de f . Par hypothèse, M• est exact et se décompose en suites
exactes courtes

0 // Z1
//M1

//M0
// 0

0 // Zp //Mp
// Zp−1

// 0

pour tout p > 1. Aussi, M• est plat sur A, donc Zp est plat sur A pour tout p > 0 [4,
Ex.3.2.2]. Ainsi, TorA1 (B,Zp) pour tout p > 0 et on a des suites exactes courtes

0 // B ⊗A Z1
// B ⊗AM1

// B ⊗AM0
// 0

0 // B ⊗A Zp // B ⊗AMp
// B ⊗A Zp−1

// 0

pour tout p > 1, de sorte que B ⊗AM•, le cône de (1⊗ f), est exact. �

On arrive au résultat le plus important de ce paragraphe. En corollaire, on obtiendra
les théorèmes 2.1 et 2.5 dans le cas affine, mais on utilisera également ce résultat pour le
cas général.

Proposition 6.5 : (1) Soit G• un complexe de faisceau plat et quasi-cohérent de OX×X-
module tel que H0(G•) = δ∗OX et Hq(G•) = 0 pour tout q 6= 0. Pour tout faisceau F de
OX-module, on a un isomorphisme de δ-foncteur en F

Hn(OX ,F) ' ExtnOX (δ∗G•,F)

(2) Si de plus Hq(δ∗G•) est localement libre pour tout q, alors les suites spectrales

ExtpOX (Hq(δ
∗G•),F)⇒ Extp+qOX (δ∗G•,F)

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)

sont isomorphes.

Preuve : (1) Le lemme 6.2 donne un complexe de faisceau localement libre L• de OX-
module et un quasi-isomorphisme

L•
q.is.→ G•

Le foncteur δ−1 est exact et δ∗ = (OX ⊗δ−1OX×X −) ◦ δ−1. D’après le lemme 6.4, on a un
quasi-isomorphisme

δ∗L•
q.is.→ δ∗G•

En utilisant le corollaire 4.7 et le lemme 4.1, on obtient un isomorphisme naturel en F

Hn(OX ,F) = ExtnOX (δ∗L•,F) ' ExtnOX (δ∗G•,F)

qui, d’après le lemme 6.3, ne dépend pas du choix de

L•
q.is.→ G•
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(2) Plus précisément, le lemme 4.1 donne un isomorphisme entre les suites spectrales

ExtpOX (Hq(δ
∗G•),F)⇒ Extp+qOX (δ∗G•,F)

ExtpOX (Hq(δ
∗L•),F)⇒ Extp+qOX (δ∗L•,F)

Cette dernière est, par le corollaire 5.6, isomorphe à la suite spectrale

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F) �

On peut à présent démontrer les théorèmes 2.1 et 2.5 dans le cas où X = Spec A
est un schéma affine sur une algèbre de type fini sur un corps. La résolution plate (car
projective) de Ae-module

B•(A)→ A

induit une résolution de faisceau plat quasi-cohérent de OX×X-module

B• → δ∗OX

On peut lui appliquer la proposition 6.5. Pour conclure, il suffit de constater par le lemme
2.4 (4) et le lemme 4.1 que les suites spectrales

ExtpOX (Hq(δ
∗B•),F)⇒ Extp+qOX (δ∗B•,F)

ExtpOX (Hq,F)⇒ HHp+q(X,F)

sont isomorphes.
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7 Lemmes théoriques sur les faisceaux

Pour pouvoir aborder le théorème dans sa généralité, il nous faut aller plus loin dans
les considérations géométriques. Dans ce paragraphe, on va mettre à profit la propriété de
séparation des schémas, satisfaite en particulier par les schémas quasi-projectifs. L’idée
principale est la suivante. Dans un schéma X séparé sur un schéma affine, l’intersection
de deux ouverts affines est encore un ouvert affine [1, Ch.II, Ex.4.3]. Une conséquence
importante est que pour tout ouvert affine U de X, l’inclusion U ↪→ X est un morphisme
affine. Ce que l’on va constater, c’est que les morphismes affines ont les bonnes propriétés
concernant les faisceaux quasi-cohérents et, s’ils sont plats, envoient par poussé-en-avant
les faisceaux plats quasi-cohérents vers des faisceaux plats quasi-cohérents.

Commençons par une propriété des faisceaux associés aux préfaisceaux de module :

Lemme 7.1 : Soient R un préfaisceau d’anneau sur un espace topologique X, R son
faisceau associé, M un préfaisceau de R-module et M son faisceau associé. Si pour tout
ouvert U de X, M(U) est plat sur R(U), alors M est plat sur R.

Preuve : PuisqueM⊗R− est toujours exact à droite, on doit s’assurer que si f : F → G
est un monomorphisme de faisceau de R-module alors 1⊗ f :M⊗RF →M⊗RG est un
monomorphisme de faisceau de R-module. Par hypothèse, le morphisme de préfaisceau
1 ⊗ f : M⊗RF → M⊗RG est un monomorphisme. On a donc des monomorphismes sur
les fibres. Le fait est que M⊗RF et M⊗RF ont les mêmes fibres quelque soit F . Ainsi,
le morphisme 1 ⊗ f : M⊗RF → M⊗RG est un monomorphisme sur les fibres et par
conséquent un monomorphisme de faisceau de R-module. �

Intéressons-nous à présent aux morphismes affines de schéma :

Lemme 7.2 : Soit f : X → Y un morphisme plat et affine de schéma. Si F est un
faisceau plat et quasi-cohérent sur X alors f∗F est plat et quasi-cohérent sur Y .

Preuve : La question étant locale en Y , on est ramené à traiter le cas où Y = Spec A
est affine, et par hypothèse sur f , où X = Spec B est affine. f est alors donné par un
morphisme plat d’anneau ϕ : A → B, et F est associé à un B-module plat M . Dans ce
cas, f∗F est associé au A-module M (dont la loi externe est donnée par ϕ), ce dernier
étant plat sur A étant donné les isomorphismes de foncteur

M⊗A− ' (M⊗BB)⊗A− ' (M⊗B−) ◦ (B⊗A−) �

Lemme 7.3 : Soit f : X → Y un morphisme affine de schéma. Le foncteur

f∗ : q − Coh(X)→ q − Coh(Y )

est bien défini et exact.

Preuve : La question étant locale en Y , on est ramené une nouvelle fois au cas où
Y = Spec A est affine puis par hypothèse sur f , où X = Spec B est affine. Dans cette
configuration, les catégories q −Coh(X) et q −Coh(Y ) sont respectivement équivalentes
aux catégories B −mod et A−mod, et f∗ correspond alors au foncteur

B −mod→ A−mod

qui envoie un B-module M vers le A-module M induit, lequel est exact. �
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Lemme 7.4 : Pour tout carré cartésien de schéma

X ′
g′ //

f ′

��

X

f
��

S ′ g
// S

tel que f est affine, il existe un isomorphisme de foncteur

g∗f∗ ' f ′∗g
′∗ : q − Coh(X)→ q − Coh(S ′)

Preuve : La transformation naturelle g∗f∗ → f ′∗g
′∗ existe dès que l’on a un tel carré

commutatif. Pour la construire, on part de la co-unité puis on utilise l’adjonction :

1→ g′∗g
′∗

f∗ → f∗g
′
∗g
′∗ = g∗f

′
∗g
′∗

g∗f∗ → f ′∗g
′∗

Pour prouver l’isomorphisme, on commence par le cas où S = Spec A et S ′ = Spec A′

sont des schémas affines. Alors par hypothèse sur f , X = Spec B est un schéma affine
et puisque le carré est cartésien, X ′ = Spec A′ ⊗A B est également un schéma affine.
Dans cette configuration, les catégories q − Coh(X) et q − Coh(S ′) sont respectivement
équivalentes aux catégories B −mod et A′ −mod et la transformation naturelle

g∗f∗ → f ′∗g
′∗

correspond à l’isomorphisme de foncteur

A′ ⊗A − ' (A′ ⊗A B)⊗B − : B −mod→ A′ −mod

Pour le cas général, on remarque que pour tout faisceau F de OX-module, tout ouvert U
de S et tout ouvert U ′ de S ′ tel que g(U ′) ⊂ U , on a g′(f ′−1(U ′)) ⊂ f−1(U) et les deux
identifications suivantes

(g∗f∗F)|U ′ = (g|U ′)∗(f |f−1(U))∗(F|f−1(U))

(f ′∗g
′∗F)|U ′ = (f ′|f ′−1(U ′))∗(g

′|f ′−1(U ′))
∗(F|f−1(U))

La première identification découle du fait que (g−1f∗F)|U ′ et (g|U ′)−1(f |f−1(U))∗(F|f−1(U))
sont deux faisceaux associés au même préfaisceau

U ′ ⊃ V 7→ colim
W⊃g(V )

Γ(f−1(W ),F) = colim
U⊃W⊃g(V )

Γ(f−1(W ),F|f−1(U))

La deuxième identification provient du même raisonnement : pour tout ouvert V de U ′,

Γ(V, (f ′∗g
′∗F)|U ′) = Γ(f ′−1(V ), g′∗F)

Γ(V, (f ′|f ′−1(U ′))∗(g
′|f ′−1(U ′))

∗(F|f−1(U))) = Γ(f ′−1(V ), (g′|f ′−1(U ′))
∗(F|f−1(U)))

et les deux faisceaux g′−1F et (g′|f ′−1(U ′))
−1(F|f−1(U)) sont associés au même préfaisceau

f ′−1(U ′) ⊃ V 7→ colim
W⊃g′(V )

Γ(W,F) = colim
f−1(U)⊃W⊃g′(V )

Γ(W,F|f−1(U))
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Ceci étant dit, si on fixe un ouvert affine U de S, alors pour tout ouvert affine U ′ de S ′

tel que g(U ′) ⊂ U , on a un carré cartésien de schéma

f ′−1(U ′)
g′|
f ′−1(U′) //

f ′|
f ′−1(U′)

��

f−1(U)

f |f−1(U)

��
U ′

g|U′
// U

On se retrouve alors dans la première situation considérée et on obtient l’isomorphisme
des faisceaux restreints sur U ′ :

(g∗f∗F)|U ′ ' (f ′∗g
′∗F)|U ′

Pour conclure, on choisit un recouvrement U de S par des ouverts affines, puis on recouvre
g−1(U) par des ouverts affines de S ′ pour tout U ∈ U . On obtient alors un recouvrement
U ′ de S ′ par des ouverts affines tels que l’image de chaque U ′ ∈ U ′ par g est contenu dans
un U ∈ U . On a ainsi l’isomorphisme sur un recouvrement de S ′ et donc sur S ′. �

On termine ce paragraphe par un résultat élémentaire qu’on pourrait aussi énoncer
dans la catégorie des espaces topologiques :

Lemme 7.5 : Soient f : X → S un morphisme de schéma et U un ouvert de X. On
considère le carré cartésien

f−1(U)
j //

g

��

X

f
��

U
i

// S

où i et j sont les inclusions et g = f |f−1(U). Pour tout faisceau F de OX-module,

i∗f∗F = g∗j
∗F

Preuve : Puisque i et j sont des inclusions, les foncteurs i∗ et j∗ correspondent aux
restrictions. En fait, la restriction sur U cöıncide avec le foncteur i−1 et on a

i∗ = (OU ⊗i−1OX −) ◦ i−1

OU = OX |U = i−1OX

Ainsi, pour tout ouvert V de U , on a

Γ(V, i∗f∗F) = Γ(f−1(V ),F) = Γ(g−1(V ),F) = Γ(V, g∗j
∗F) �
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8 Préfaisceau de faisceau

L’objectif de ce paragraphe est d’introduire le complexe de Čech associé à un préfais-
ceau de faisceau. Dans certaines configurations topologiques et algébriques, la cohomolo-
gie de Čech cöıncide avec la cohomologie des faisceaux [1, Ch.III, Th.4.5]. Nous allons lui
trouver un intérêt dans ce qu’il nous permettra de recoller, à quasi-isomorphisme près,
une famille de complexe de faisceau indexée sur les ouverts affines de notre schéma en un
double complexe de faisceau. Pour pouvoir utiliser les propriétés du complexe de Čech à
plusieurs reprises et dans des situations différentes, on préfèrera dans un premier temps
travailler avec un préfaisceau à valeurs dans une catégorie abélienne arbitraire.

Soient X un espace topologique, A une catégorie abélienne (complète) et Q un préfais-
ceau sur X à valeurs dans A dont les restrictions seront toutes notées par ρ. A tout
recouvrement ouvert U = (Ui)i∈I de X, on associe un complexe de cochaine de A, noté
C•(U , Q) comme suit. On choisit un bon ordre ≤ sur I, et on considère pour tout entier
naturel n le produit

Cn(U , Q) =
∏

i0<···<in
Q(Ui0···in)

où Ui0···in = Ui0 ∩ · · · ∩ Uin . Considérons les projections canoniques

pi0···in : Cn(U , Q)→ Q(Ui0···in

et définissons pour tout entier ν compris entre 0 et n+ 1 les applications

δν : Cn(U , Q)→ Cn+1(U , Q)

par pi0···in+1 ◦ δν = ρ ◦ pi0···îν ···in+1
. On peut alors définir les différentielles

d =
n+1∑
ν=0

(−1)νδν : Cn(U , Q)→ Cn+1(U , Q)

On dispose aussi d’une application définie à partir des restrictions

ε : Q(X)→ C0(U , Q)

c’est à dire pi ◦ ε = ρ. On peut vérifier que l’on obtient bien un complexe dans A

0 // Q(X) ε // C0(U , Q) d // C1(U , Q) d // C2(U , Q) d // · · ·

On voudrait s’assurer que ce complexe est indépendant du choix de l’ordre sur I. Pour
ce faire, on étend les projections en posant

pi0···in = 0

si pour deux indices µ 6= ν on a iµ = iν et

pσ(i0)···σ(in) = sgn(σ)pi0···in

pour toute permutation σ de {i0, · · · , in}. Alors si on se donne un raffinement V = (Vj)j∈J
de U , on peut choisir une application α : J → I telle que Vj ⊂ Uα(j) pour ensuite définir
un morphisme de complexe qui commute avec ε

α∗ : C•(U , Q)→ C•(V , Q)

par pj0···jn ◦ α = ρ ◦ pα(j0)···α(jn) Lorsque V = U avec un autre ordre, on peut prendre
α = idI et α∗ est alors un isomorphisme.
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On énonce à présent un résultat qui justifiera plus tard la généralité choisie pour notre
construction du complexe de Čech.

Lemme 8.1 : Si X ∈ U alors le complexe

0 // Q(X) ε // C0(U , Q) d // C1(U , Q) d // C2(U , Q) d // · · ·

est exact.

Preuve : On choisit sur I un ordre tel que min I = 0 et X = U0. On peut alors expliciter
une homotopie S entre l’identité et l’application nulle

0 // Q(X) ε //

1
��

C0(U , Q) d //

1
��

S

xx

C1(U , Q) d //

1
��

S

xx

C2(U , Q) d //

1
��

S

xx

· · ·
S

xx
0 // Q(X) ε

// C0(U , Q)
d
// C1(U , Q)

d
// C2(U , Q)

d
// · · ·

définie par pi1···in ◦ S =

{
0 si i1 = 0
p0i1···in si i1 > 0

pour tout n ≥ 1 et S = p0 pour n = 0. �

Ce lemme va s’avérer très utile lorsque A sera la catégorie des faisceaux ou des com-
plexes de faisceau sur un schéma. Le fait que l’exactitude d’une suite de faisceau peut
s’étudier localement va nous permettre de s’y ramener en permanence. Quittons les
généralités et concentrons-nous à présent sur les faisceaux.

Soit F un faisceau sur X. On construit un préfaisceau PXF sur X à valeurs dans les
faisceaux sur X en posant pour tout ouvert U de X, PXF(U) = i∗(F|U) où i : U ↪→ X
désigne l’inclusion. Les restrictions sont données pour toute inclusion V ⊂ U et tout
ouvert W par

Γ(W,PXF(U)) = Γ(W ∩ U,F)→ Γ(W ∩ V,F) = Γ(W,PXF(V ))

Lemme 8.2 : Pour tout ouvert U et V de X, PXF(U)|V = PVF(U ∩ V ).

Preuve : On applique le lemme 7.5 au carré cartésien d’inclusion

U ∩ V j //

g
��

U

f
��

V
i
// X

et on obtient PXF(U)|V = i∗f∗f
∗F = g∗j

∗f ∗F = PVF(U ∩ V ). �

Supposons à présent que U est fini. Avec cette hypothèse, le complexe de Čech
C•(U , Q) est toujours borné en haut, car Cn(U , Q) est un produit vide pour tout n ≥ |U|.

Corollaire 8.3 : Pour tout ouvert V de X, C•(U , PXF)|V = C•(U ∩ V, PVF).

Preuve : On a vu au lemme 7.5 que la restriction sur V est donnée par le foncteur adjoint
à gauche i∗ où i : V ↪→ X désigne l’inclusion. Cette opération commute donc avec toutes
les colimites et en particulier avec les produits finis d’une catégorie abélienne. Ainsi,

Cn(U , PXF)|V =
∏

i0<···<in
PXF(Ui0···in)|V =

∏
i0<···<in

PVF(Ui0···in ∩ V ) = Cn(U ∩ V, PVF) �
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Lemme 8.4 : Le complexe de faisceau

0 // F // C0(U , PXF) // C1(U , PXF) // C2(U , PXF) // · · ·

est exact.

Preuve : L’exactitude d’un complexe de faisceau est équivalente à l’exactitude locale sur
un recouvrement. Puisque U recouvre X, on peut vérifier l’exactitude seulement sur les
ouverts V ∈ U . Le fait est que V ∈ U ∩ V , donc le lemme 8.1 nous dis que le complexe

0 // PVF // C0(U ∩ V, PVF) // C1(U ∩ V, PVF) // C2(U ∩ V, PVF) // · · ·

est exact. Mais PVF = F|V donc le résultat découle du corollaire 8.3. �

Corollaire 8.5 : Si F• est un complexe de faisceau sur X alors

ε : F• → C•(U , PXF•)

est un quasi-isomorphisme.

Preuve : En regardant F• comme un double complexe concentrée dans la ligne indicée
par 0, les morphismes ε : Fp → C•(U , PXFp) induisent un morphisme de double complexe

ε : F• → C•(U , PXF•)

Puisque U est fini, le double complexe C•(U , PXF•) est borné (i.e. ses diagonales n’ont
qu’un certain nombre d’objet non nul) et on peut calculer sa cohomologie à partir de suite
spectrale. Lorsque l’on filtre le double complexe

...
...

· · · // Cq+1(U , PXFp) //

OO

Cq+1(U , PXFp+1) //

OO

· · ·

· · · // Cq(U , PXFp) //

OO

Cq(U , PXFp+1) //

OO

· · ·

...

OO

...

OO

selon les colonnes, on obtient un isomorphisme à la page E1 d’après le lemme 8.4, car la
cohomologie verticale est celle du complexe de Čech C•(U , PXFp). �

On termine ce paragraphe par un résultat que l’on utilisera lors de la démonstration
du théorème générale :

Lemme 8.6 : Soit M• → N• un morphisme de complexe de préfaisceau sur X. Si pour

tout ouvert U de X, c’est un quasi-isomorphisme sur les sections M•(U)
q.is.→ N•(U) alors

le morphisme de double complexe induit est un quasi-isomorphisme :

C•(U ,M•)
q.is.→ C•(U , N•)
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Preuve : Lorsqu’on filtre selon les colonnes le double complexe

...
...

· · · // Cp(U ,M q+1) //

OO

Cp+1(U ,M q+1) //

OO

· · ·

· · · // Cp(U ,M q) //

OO

Cp+1(U ,M q) //

OO

· · ·

...

OO

...

OO

on obtient un isomorphisme à la page E1 : puisque U est fini, les produits sont finis et
commutent avec la cohomologie, et ainsi la cohomologie verticale est

Hq
v(Cp(U ,M•) =

∏
i0<···<in

Hq(M•(Ui0···ip)) = Cp(U , Hq(M•) �
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9 Technique de recollement de Čech

Soit X un schéma quasi-compact et séparé sur un corps. Pour chaque ouvert affine
U de X, on se donne un complexe S•U de faisceau de OU -module. Supposons que pour
chaque inclusion V ⊂ U d’ouverts affines de X, on dispose d’un morphisme de complexe
de faisceau de OV -module

ρUV : S•U |V → S•V

satisfaisant pour tout ouvert affine W ⊂ V ⊂ U de X les relations suivantes :

ρUU = idS•U
ρUW = ρVW ◦ (ρUV )|W

Concrètement, c’est une donnée de recollement de faisceau, au fait près que les ρUV ne
sont à priori pas des isomorphismes. Si chaque ρUV est un isomorphisme, alors il existe
un complexe S• de faisceau de OX-module et des isomorphismes de complexe

σU : S•|U → S•U

tels que ρU,U∩V ◦σU = ρV,U∩V ◦σV sur U ∩V pour tout ouvert affine U et V de X [1, Ch.II,
Ex.1.22]. Plus généralement, en supposant que chaque ρUV est un quasi-isomorphisme,
on va construire des préfaisceaux PUS• de complexe de faisceau tel que pour tout re-
couvrement fini U de X par des ouverts affines et tout ouvert affine V de X, on a des
quasi-isomorphismes

S•V
q.is.→ C•(U ∩ V, PV S•)

q.is.← C•(U , PXS•)|V

Le faisceau C•(U , PXS•) jouera alors le rôle de recollement à quasi-isomorphisme près.
Cette construction, appliquée au cas particulier S•U = C•(Γ(U,OU))∼, nous permettra de
démontrer le théorème général.

Pour tout ouvert affine U de X, soit PXS•(U) = j∗S•U où j : U ↪→ X désigne
l’inclusion. Si on a deux ouverts affines V ⊂ U , on peut définir une restriction

PXS•(U)→ PXS•(V )

donnée pour tout ouvert W de X par

Γ(W,PXS•(U)) = Γ(W ∩U,S•U)→ Γ(W ∩V,S•U |V )
ρUV→ Γ(W ∩V,S•V ) = Γ(W,PXS•(V ))

Ceci fait de PXS• un préfaisceau sur X de complexe de faisceau de OX-module. En fait,
si les complexes S•U proviennent d’un même complexe S•, c’est-à-dire si S•U = S•|U , et si
les ρUV correspondent aux restrictions de S•, alors cette construction correspond à celle
du paragraphe précédent. On va pouvoir adapter les énoncés à cette situation.

Lemme 9.1 : Si chaque S•U est quasi-cohérent et si chaque ρUV est un quasi-isomorphisme
alors on a des quasi-isomorphismes naturels

PXS•(U)|V
q.is.→ PV S•(U ∩ V )

Preuve : Le lemme 7.5 appliqué au carré cartésien d’inclusion

U ∩ V i′ //

j′

��

U

j
��

V
i
// X
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permet d’obtenir fonctoriellement le morphisme suivant

PXS•(U)|V = i∗j∗S•U = j′∗i
′∗S•U = j′∗(S•U |U∩V )

j′∗ρU,U∩V−→ PV S•(U ∩ V )

L’hypothèse de séparation sur X montre que j′ est un morphisme affine de schéma. Ainsi,
d’après le lemme 7.3, j′∗ est exact et j′∗ρU,U∩V est un quasi-isomorphisme. �

Soit U un recouvrement fini de X par des ouverts affines. Cette propriété de fini-
tude permet d’utiliser les suites spectrales pour calculer l’homologie du double complexe
C•(U , PXS•) :

Corollaire 9.2 : Sous les mêmes hypothèses, on a un quasi-isomorphisme naturel

C•(U , PXS•)|V
q.is.→ C•(U ∩ V, PV S•)

Preuve : Le morphisme est donné par le lemme 9.1 :

Cn(U , PXS•)|V =
∏

i0<···<in
PXS•(Ui0···in)|V

q.is.→
∏

i0<···<in
PV S•(Ui0···in ∩ V ) = Cn(U ∩ V, PV S•)

Si on filtre le double complexe

...

��

...

��
· · · // Cp(U , PXSq)|V //

��

Cp+1(U , PXSq)|V //

��

· · ·

· · · // Cp(U , PXSq−1)|V //

��

Cp+1(U , PXSq−1)|V //

��

· · ·

...
...

selon les colonnes, on obtient un isomorphisme à la page E1, car l’homologie verticale est

Hv
q (Cp(U , PXS•)|V ) =

∏
i0<···<in

Hq(PXS•(Ui0···in)|V ) �

Pour chaque ouvert affine V de X, on dispose d’une augmentation

ε : PV S•(V ) = S•V → C•(U ∩ V, PV S•)

introduite au paragraphe précédent. On se retrouve alors dans une situation analogue à
celle du lemme 8.4, où l’on avait construit une résolution de faisceau.

Lemme 9.3 : Sous les mêmes hypothèses, on a une résolution de complexe de faisceau

0 // S•V // C0(U ∩ V, PV S•) // C1(U ∩ V, PV S•) // · · ·

Preuve : Puisque l’on travail avec des faisceaux, on peut vérifier l’exactitude seulement
sur un recouvrement, typiquement sur chaque W ∈ U∩V . On a alors un carré commutatif

S•V |W //

q.is.

��

C•(U ∩ V, PV S•)|W
q.is.

��
S•W // C•(U ∩W,PWS•)
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de sorte que l’exactitude du complexe

0 // S•V |W // C0(U ∩ V, PV S•)|W // C1(U ∩ V, PV S•)|W // · · ·

est équivalente à l’exactitude du complexe

0 // S•W // C0(U ∩W,PWS•) // C1(U ∩W,PWS•) // · · ·

Ce dernier est exact d’après le lemme 8.1, car W ∈ U ∩W et PWS•(W ) = S•W . �

Considérons à présent le cas où S•U est le faisceau quasi-cohérent sur U associé au
complexe de Γ(U,OU)-module C•(Γ(U,OU)). Les ρUV sont donnés par les applications

Γ(V,OV )⊗Γ(U,OU ) C•(Γ(U,OU))→ C•(Γ(V,OV ))

Ce sont des quasi-isomorphismes, comme cela a pu être remarqué au paragraphe 2 : une
immersion ouverte de schéma affine V ↪→ U induit un morphisme plat

Γ(U,OU)→ Γ(V,OV )

Grâce aux propriétés de l’homologie de Hochschild, on obtient

Hn(Γ(V,OV )⊗Γ(U,OU ) C•(Γ(U,OU))) ' Γ(V,OV )⊗Γ(U,OU ) Hn(C•(Γ(U,OU)))

= Γ(V,OV )⊗Γ(U,OU ) HHn(Γ(U,OU)) ' HHn(Γ(V,OV )) = Hn(C•(Γ(V,OV )))

On peut donc utiliser les résultats précédents à ce cas particulier. En fait, ces faisceaux
S•U ressemblent aux faisceaux restreins C•|U . Plus précisément, on a un morphisme

S•U → C•|U
donné sur les ouverts principaux par les applications canoniques

Γ(U,OU)s ⊗Γ(U,OU ) C•(Γ(U,OU))→ C•(Γ(U,OU)s)

pour tout s ∈ Γ(U,OU). C’est un quasi-isomorphisme, comme le montre le lemme 2.4 (4)
appliqué à U , en constatant que l’isomorphisme de complexe de Γ(U,OU)-module

Γ(U,OU)⊗Γ(U,OU )e B•(Γ(U,OU)) ' C•(Γ(U,OU))

induit un isomorphisme de faisceau quasi-cohérent

δU
∗(B•(Γ(U,OU))∼) ' S•U

Tout ceci nous amène au dernier résultat de ce paragraphe.

Lemme 9.4 : C•(U , PXS•)
q.is.→ C•(U , PXC•)

Preuve : Puisqu’il s’agit d’un morphisme de faisceau, on peut démontrer l’énoncé sur un
recouvrement, à savoir sur chaque V ∈ U . On a alors le diagramme commutatif suivant

C•(U , PXS•)|V //

q.is.

��

C•(U , PXC•)|V
=

��
C•(U , PXS•)|V // C•(U , PXC•)|V

S•V q.is.
//

q.is.

OO

C•|V

q.is.

OO

L’égalité et les quasi-isomorphismes verticaux se justifient respectivement (de gauche à
droite puis de haut en bas) par le corollaire 9.2, le lemme 8.2, le lemme 9.3 et le corollaire
8.5. On obtient le résultat voulu. �
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10 Preuve du théorème

Soit X un schéma quasi-projectif sur un corps. Pour chaque ouvert affine U = Spec A
de X, on peut considérer B•U le faisceau quasi-cohérent sur U × U = Spec Ae associé au
complexe de Ae-module B•(A). On peut aussi considérer S•U le faisceau quasi-cohérent
sur U associé au complexe de A-module C•(A). Comme il a été remarqué précédemment,
ces deux objets sont liés par un isomorphisme de complexe de faisceau de OU -module

S•U ' δU
∗B•U

On va définir un préfaisceau E• sur les ouverts affines de X à valeurs dans les faisceaux
quasi-cohérents de OX×X-module.

Pour tout ouvert affine U de X, on note E•(U) = i∗B•U où i : U×U ↪→ X×X désigne
l’inclusion. Pour tout ouvert affine V ∈ U , on dispose d’une restriction

Γ(U,OU)→ Γ(V,OV )

qui induit canoniquement un morphisme de complexe de Γ(U,OU)-module

B•(Γ(U,OU))→ B•(Γ(V,OV ))

et qui par suite induit un morphisme de faisceau de OU×U -module

B•U → i′∗B•V

où i′ : V × V ↪→ U × U désigne l’inclusion. En appliquant i∗ on obtient une restriction

E•(U) = i∗B•U → i∗i
′
∗B•V = E•(V )

qui fait de E• un préfaisceau.

Choisissons un recouvrement fini U de X par des ouverts affines. Considérons ensuite
F•• = C•(U , E•) et F• son complexe total, qui est borné en bas. Chaque B•U est un
complexe de faisceau quasi-cohérent et plat de OU×U -module. D’après le lemme 7.2,
chaque E•(U) = i∗B•U , et par suite F•, est un complexe de faisceau quasi-cohérent et plat
de OX×X-module. Enfin, la résolution de Ae-module

B•(A)→ A

induit une résolution de faisceau quasi-cohérent de OU×U -module

B•U → δU∗OU

et en appliquant i∗, le lemme 7.3 montre que l’on obtient un quasi-isomorphisme

E•(U)
q.is.→ i∗δU∗OU = δ∗j∗OU = δ∗PXOX(U)

où j : U ↪→ X désigne l’inclusion et où l’on regarde δ∗PXOX(U) comme un complexe
concentré en 0. D’après le lemme 8.6,

F•• = C•(U , E•)
q.is.→ C•(U , δ∗PXOX)

En appliquant le foncteur exact δ∗ à la résolution fournie par le lemme 8.4, on obtient
une résolution de faisceau de OX×X-module

δ∗OX → δ∗C
•(U , PXOX) = C•(U , δ∗PXOX)
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Ceci permet d’obtenir les isomorphismes

H0(F•) ' H0(C•(U , δ∗PXOX)) ' δ∗OX

Hq(F•) ' Hq(C
•(U , δ∗PXOX)) = 0

pour tout q 6= 0. On peut ainsi appliquer la proposition 6.5 (1) qui fournit pour tout
faisceau M de OX-module l’isomorphisme de δ-foncteur en M

Hn(OX ,M) ' ExtnOX (δ∗F•,M)

Pour utiliser ce résultat, on va comparer δ∗F• et C•. Si on applique le lemme 7.4 au
carré cartésien

U
δU //

j
��

U × U
i
��

X
δ
// X ×X

alors on obtient un isomorphisme de faisceau de OX-module

PXS•(U) = j∗S•U ' j∗δU
∗B•U ' δ∗i∗B•U = δ∗E•(U)

En remarquant que δ∗ commute avec les sommes et les produits finis, le lemme 9.4 nous
fournit un quasi-isomorphisme

δ∗F•• = C•(U , δ∗E•) ' C•(U , PXS•)
q.is.→ C•(U , PXC•)

Or, d’après le corollaire 8.5, on dispose également d’un quasi-isomorphisme

C•
q.is.→ G•

où G• désigne le complexe total de C•(U , PXC•). Ainsi, d’après le lemme 4.1,

ExtnOX (δ∗F•,M) ' ExtnOX (G•,M) ' ExtnOX (C•,M)

ce qui prouve l’isomorphisme naturel en M

Hn(OX ,M) ' HHn(X,M)

Supposons à présent que chaque Hq est localement libre. D’après ce qui précède,

Hq(δ
∗F•) ' Hq(G•) ' Hq(C•) = Hq

D’après la proposition 6.5 (2), les suites spectrales suivantes sont isomorphes

ExtpOX (Hq(δ
∗F•),M)⇒ Extp+qOX (δ∗F•,M)

Hp(X, ExtqOX×X (OX ,M))⇒ Hp+q(OX ,M)

Par le lemme 4.1, la première suite spectrale est isomorphe à la suite spectrale

ExtpOX (Hq,M)⇒ HHp+q(X,M)

C’est le résultat annoncé.
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On peut vérifier que l’isomorphisme ne dépend pas du recouvrement U choisi. Si U ′
est un recouvrement fini de X par des ouverts affines alors

V = {U ∩ U ′ : U ∈ U , U ′ ∈ U ′}

est un recouvrement fini de X par des ouverts affines qui raffine U . Les restrictions
induisent alors un morphisme de complexe

C•(U ,−)→ C•(V ,−)

rendant le diagramme suivant commutatif

δ∗C•(U , E•) //

��

C•(U , PXC•)

��

C•εoo

=

��
δ∗C•(V , E•) // C•(V , PXC•) C•ε

oo

On obtient ainsi le diagramme commutatif suivant

ExtnOX (δ∗F•,M)

��

ExtnOX (G•,M)

��
Hn(OX ,M) HHn(X,M)

ExtnOX (δ∗F ′•,M) ExtnOX (G ′•,M)

où F ′• et G ′• désignent respectivement les complexes totaux de C•(V , E•) et C•(V , PXC•).
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Lexique des notations

X ×S Y iii i produit des schémas X et Y fibré sur un schéma S

δX iiiiii i application diagonale d’un schéma X sur un schéma de base

f∗F i ii i pushforward d’un faisceau F par une application continue f : X → Y

f−1G ii i pullback d’un faisceau G par une application continue f : X → Y

f ∗G i ii i faisceau OY ⊗f−1OX f
−1G si f : X → Y est un morphisme de schéma

M∼ i ii i faisceau quasi-cohérent sur Spec A associé à un A-module M

HomO(F ,G) i i faisceau U 7→ HomO|U (F|U ,G|U)

Ext•O(F ,−) iii i foncteur dérivé du foncteur HomO(F ,−)

Fx i i fibre d’un faisceau F en un point x

Ωq
A i i module des q-formes différentielles de Kähler sur une algèbre A

Ωq
X/S i i i faisceau des q-formes différentielles relatives sur un S-schéma X

M∨ i i i i module dual HomA(M,A) d’un A-module M

F∨ ii i i i faisceau dual HomO(F ,O) d’un faisceau de O-module F

Γ(U,F) i i i i i i sections F(U) d’un faisceau F sur un ouvert U

Hv
• (C••) iiiiiii i i homologie en la première variable du double complexe C••

Hh
• (C••) iiiiiii i i homologie en la seconde variable du double complexe C••

S−1A ii i i anneaux des fractions à numérateur dans A et à dénominateur dans S

As ii i anneaux des fractions pour s ∈ A et S = {sn : n ∈ N}

Ap ii i anneaux des fractions pour p ∈ Spec A et S = A \ p

q.is.→ iiiiiquasi-isomorphisme
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