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Abstract

The goal of this memoir is to expose and manipulate some modern concepts and tools in the
Data Science domain.
In the central part of the work, some basic notions and results of the emerging field of Topological
Data Analysis (TDA) are explored, notably persistent homology and persistence diagrams, together
with some stability results. Several effective algorithms to compute the homology groups and the
persistent homology of a (filtration of a) simplicial complex are also given.
Together with that, following a more general approach, a brief survey of the Machine learning pa-
radigm and some clustering algorithms are exposed in the first two chapters.
In the last chapter, the recently developed clustering method ToMATo is studied. This algorithm re-
lies heavily on some of the concepts explained in the previous chapters. The theoretical study of this
method is then followed by a more practical section in which programming takes the leading role :
a (rather visual) exploration (in Python) of the implementation of this algorithm in the GUDHI
library is carried out, as well as a little guide to understand its parameters and functionalities.

I
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0. Introduction

L’importance des domaines de la science des données (Data Science) et ’apprentissage auto-
matique (Machine Learning) continue a croitre dans le monde avec 1’évolution technologique de
notre époque. Dans ce contexte, de nouvelles idées et méthodes sont constamment développées
pour traiter, analyser et exploiter la grande quantité de données qui nous entourent. Seule une
bonne formulation mathématique peut justifier la pertinence des nouveaux algorithmes et son im-
plémentation.

Parmi le grand nombre de méthodes existantes dans la science des données, nous trouvons les
méthodes de clustering, ou segmentation des données. L’objectif de ces derniéres est de trouver
des sous-groupes "naturels" dans notre information de départ. Dans chaque groupe, les données
seraient, sous une définition & préciser, plus "similaires" entre elles. Les problémes de clustering sont
particuliérement difficiles & traiter en raison de leur nature exploratoire et non-supervisée. Ainsi,
la convenance d’un algorithme de clustering ou d’un autre dépend en grande partie des caractéris-
tiques des données d’entrée.

En paralléle a 'apparition de nouvelles techniques pour réaliser des taches spécifiques, diffé-
rentes approches générales a la science des données sont aussi développées. Le domaine émergent
de I’Analyse topologique des données (TDA en anglais) étudie les ensembles de données en utilisant
des idées de la topologie et de la géométrie. Ce domaine illustre pleinement ce phénoméne. L’intérét
pour ce champ d’étude, avec plein de nouveaux concepts et résultats, augmente de plus en plus, et
actuellement de nombreux algorithmes trés efficaces s’appuient sur la base théorique de la TDA.

Le récemment développé algorithme de clustering ToMATo (Topological Mode Analysis Tool)
fait partie de ces nouvelles méthodes. Au coeur de son fonctionnement apparaissent les notions
d’homologie persistante et les diagrammes de persistance, trés habituels dans la TDA. De plus, une
implémentation de cet algorithme a été récemment ajouté dans la librairie GUDHI, I'un des outils
de programmation de référence dans ce nouveau domaine. Il semble donc raisonnable de faire une
exploration théorique mais aussi pratique / informatique de cette technique qui vient d’étre congue.

Structure de la mémoire

Tout d’abord, dans le premier chapitre, nous verrons une exposition générale du domaine de
I’apprentissage automatique ; plusieurs concepts de base récurrents sont introduits dans cette par-
tie. Nous essaierons aussi de répondre & trois questions significatives : qu’est-ce que le Machine
Learning, pourquoi est-il utile, et comment les ordinateurs arrivent & "apprendre" et & améliorer
sa performance. Les références principales de cette partie sont [3], [7] et [9].

Puis, au chapitre 2, nous développerons qu’est-ce que le clustering, ainsi que des notions clés
dans I’étude de cette technique. Le contenu de ce chapitre est important afin de mieux comprendre
I’algorithme ToMATo, ses innovations et ses particularités. Une partie des algorithmes les plus
communs seront expliqués, et nous verrons aussi comment traiter les données pour appliquer au
mieux ces méthodes. Les références les plus importantes de cette section sont principalement [9] et
la documentation en ligne de la librairie Scikit-Learn [11], |12].

Le troisiéme chapitre constitue la partie la plus dense et mathématique du mémoire. Certains
des concepts les plus fondamentaux de 1’Analyse topologique des données y sont exposés. Nous
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verrons d’abord comment construire un complexe simplicial sur un nuage de points, et pourquoi
cette construction est intéressante. Ensuite, nous ferons l'inférence homologique de ces complexes
simpliciaux. Cela implique une connaissance des notions d’homologie persistante ainsi que des dia-
grammes de persistance. Plusieurs algorithmes sont détaillés pour étudier ces informations dans
la pratique. Nous terminerons le chapitre en étudiant la stabilité persistante des fonctions, qui est
fondamentale pour justifier de fagon théorique la performance de ’algorithme ToMATo. Plusieurs
références ont été utilisés dans cette partie, dont : 2], [3], [6], [10] et [5].

Finalement, au chapitre 4 nous explorerons 'algorithme ToMATo. Nous nous appuierons sur

les idées exposées aux chapitres précédents. D’un point de vue théorique, il convient d’expliquer
certaines constructions de graphes sur des nuages de points, et comment estimer une hypothétique
fonction de densité f & partir d’un échantillonnage. Les sources d’informations les plus importantes
dans cette section sont [4] et sa version simplifié, ainsi que [1] et [9].
Pour la pratique, nous avons produit un notebook de référence (en anglais) de 'implémentation de
I’algorithme, qui vient d’étre ajouté a la librairie GUDHI. L’objectif de cette partie était de tester
la performance de cette implémentation, ainsi que mieux connaitre le langage de programmation
Python et certains outils habituels pour réaliser ’analyse de données.

iii
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1. Introduction & ’apprentissage automatique

1.1. Machine Learning : idée générale et premiers exemples

Meéme si le concept de Machine Learning (en frangais, apprentissage statistique, ou apprentissage
automatique) a explosé en popularité ces derniéres années, souvent on pergoit un peu de confusion
en ce qui concerne la signification authentique de ce terme. Cette confusion est davantage aggravée
lorsque d’autres expressions comme data science, artificial intelligence ou data mining, étroitement
liées & la premiére, apparaissent sur la table. Inévitablement, avec le développement intensif de tous
ces nouveaux domaines, un nouveau jargon est apparu, et il est indispensable de bien connaitre les
subtiles différences entre les mots pour encadrer convenablement les problémes et les explications .

En termes généraux, le Machine Learning (ML) est le domaine d’étude qui cherche a donner
aux ordinateurs la capacité d’apprendre sans étre explicitement programmés, en utilisant des don-
nées (d’ici son interaction avec la data science) et/ ou des expériences antérieures. En voyant cette
définition, qui d’ailleurs n’est pas trés concréte, deux questions émergent naturellement par rapport
au terme "apprendre" : qu’est-ce que cela veut dire, exactement, et comment obtient-on cet ap-
prentissage 7 De plus, il est naturel de se demander dans quelles situations ou pourquoi le Machine
Learning peut étre la meilleure option a considérer. Ce sont précisément ces trois questions que
nous nous proposons de répondre tout de suite.

La premiére des trois est possiblement la plus générale : en effet, cette apprentissage peut prendre
plusieurs formes, qui peuvent varier énormément en fonction du probléme de départ. Ainsi, la ma-
niére la plus rapide de se faire une idée de quoi "apprendre" signifie véritablement est de regarder
quelques exemples de situations o le Machine Learning s’est avéré étre trés efficace. Ces exemples
vont apparaitre plusieurs fois toute au long du chapitre :

— La classification du mail dans spam et no-spam. Dans ce cas, I'idée est de développer un algo-
rithme pour choisir, en considérant plusieurs aspects (fréquence de quelques mots spécifiques,
longueur, structure générale,...), si un courriel contient des informations qui nous intéressent
ou pas. Donc, en somme, nous voulons que 'ordinateur apprenne a classer une série d’élé-
ments.

— La prédiction de la valeur d’une maison, en sachant quelques aspects comme sa taille, empla-
cement et d’autres caractéristiques, ainsi comme celles des immeubles & proximité, y compris
leur valeur. Dans cet exemple, on assume que tous ces facteurs peuvent étre utilisés pour
construire un modéle "réaliste" qui donne notre prix approximatif. Le résultat final du pro-
cessus est une quantité, qui peut donc varier continuellement. Nous avons ici un probléme
typique de régression.

— Dans un magasin, on peut essayer de détecter des groupes de clients similaires selon leurs
achats, ou selon leur genre, par exemple. En sachant cela, on peut élaborer des offres ou poli-
tiques commerciales plus dirigées vers ces groupes pour augmenter les ventes. Ici, nous avons
de nouveau un probléme de classification, mais d’une nature assez différente, car les groupes
ne sont pas connus a priori, et ils pourraient méme ne pas exister d’une fagon évidente. Nous
parlerons plus de ce type de procédure, appelé clustering, en peu plus tard.

— Le développement d’une application digitale de reconnaissance vocale. Par exemple, un pro-
gramme de smartphone capable d’écrire et chercher sur Internet toute combinaison de mots
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qu’on lui dicte. Dans ce cas, il y a aussi de quelque sorte un probléme de classification (aprés
tout, Uobjectif du programme est de bien identifier chaque mot prononcé), mais les nuances
du langage et la complexité de la prononciation humaine situent le défi beaucoup plus loin que
d’autres problémes de classification standards. Ce type de programmes qui cherchent & imiter
(et dépasser) le comportement humain et réaliser des taches plus complexes font partie de ce
qu’on appelle intelligence artificielle. Ce domaine, de plus en plus actif et prometteur, a ses
propres algorithmes et mécanismes, comme par exemple l'utilisation de réseaux neuronaux
(neural networks) ou apprentissage par renforcement (reinforcement learning).

Donc, nous voyons que la variété de ce qu’on a appelé "apprentissage" est riche et considérable
et, en fait, il y a beaucoup plus de situations et applications possibles : diagnostic médical guidé
par ordinateur, séquencgage d’ADN, vision par ordinateur,...

En tout cas, la plupart des méthodes et algorithmes ont pour objectif de classer des éléments, de
prévoir ou d’estimer des résultats ou des valeurs pour prendre des décisions, trouver des relations
entre variables, ou une combinaison de ces options.

1.2. Motivations

Mais pourquoi appeler tout cela apprentissage ? Aprés tout, tous les programmes informatiques
visent la simplification des taches et aider avec les calculs et la prise de décisions...
La différence essentielle avec le Machine Learning est la maniére dans laquelle ces programmes
arrivent & effectuer ces taches : rappelons qu’un élément clé de notre bréve définition est "sans
étre explicitement programmeés, en utilisant des données et/ ou expériences antérieures". Avant
d’expliquer, dans la section suivant, les idées générales qui présentent comment nous pouvons ar-
river & faire cela, il est naturel de se demander en premier lieu quelles sont les motivations de le faire.

Prenons-nous le premier exemple du mail. Si nous devions programmer nous-mémes un détec-
teur de mail spam (pour bien le distinguer et séparer du mail "bon"), la maniére la plus naturel
d’agir serait, d’abord, d’étudier un peu ses caractéristiques générales : quels types de mots ou d’ex-
pressions apparaissent le plus souvent dans ce type de courriels et ses fréquences en comparaison
avec le mail ordinaire, sa longueur approximative, des régularités dans le nom ou dans ’adresse de
I’émetteur, etc. Finalement, avec toute cette information, il faudrait programmer une par une les
conditions ou les seuils & dépasser pour le considérer comme un courrier indésirable.

Ce n’est pas une chose facile ni rapide a faire! Méme si nous réussissons a trouver de bonnes
conditions pour distinguer les deux types de mail, nous obtiendrions une liste énorme de régles a
considérer. Ainsi, le résultat final serait un code trés long et complexe : pas pratique a programmer
ni facile & maintenir, modifier ou mettre a jour. Un algorithme plus "machine learning" chercherait
lui-méme les caractéristiques clés en comparant des exemples des deux types de courrier et associe-
rait les poids convenables pour bien les classer.

Dans le dernier exemple de la reconnaissance vocale, la complexité d’un hypothétique pro-
gramme codé & la main devient encore plus évidente : la quantité d’information et la variabilité
dans un fichier audio est tellement énorme qu’il est simplement impossible d’analyser explicitement
tous les cas ot il sonne une "s" ou une "u". Seulement aprés avoir exposé & un bon algorithme
milliers d’enregistrements des différents mots, nous pouvons espérer qu’il arrivera a les distinguer

correctement.
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Un autre avantage des algorithmes de Machine Learning est que souvent on peut les concevoir
pour qu’ils soient adaptables & de possibles actualisations ou accroissements des données. Cette
caractéristique peut étre trés utile dans toutes les situations, y comprises celles des exemples anté-
rieurs.

Finalement, nous pouvons nous servir de toutes ces techniques et procédures pour améliorer
I’apprentissage humaine méme. En effet, quelques algorithmes ML peuvent étre inspectés pour voir
ce qu'’ils ont appris, et ainsi mieux comprendre des corrélations et tendances non reconnues précé-
demment. Utiliser les techniques ML avec cet objectif s’appelle data mining.

1.3. Meéthodologie et différents types de systémes d’apprentissage

Alors, comment obtenir cet apprentissage ? Le principe de tous les systémes de Machine Lear-
ning consiste dans le fait que la majorité des paramétres sont trouvés en utilisant des données et
des exemples déja existants, qu’on appelle "données d’entrainement" (training data). En tout cas,
c’est pratique de classer ces systémes de plusieurs maniéres en considérant quelques-unes de ses
différences méthodologiques fondamentales.

Possiblement la distinction la plus important au niveau méthodologique, car il affecte notam-
ment les possibles algorithmes a appliquer, est celle d’apprentissage supervisé et non-supervisé (et
quelques types "intermédiaires"). Cette classification prend en compte dans quelle mesure les don-
nées sur lesquelles on construit I’algorithme contiennent déja des informations certaines, i.e. on a
une connaissance préalable des types de solutions qu’on devrait obtenir.

Dans 'apprentissage supervisé, possiblement le plus naturel et intuitif, les données d’entrai-
nement incluent les solutions souhaitées; elles sont "étiquetées" (labelled). Par exemple, dans les
deux premiéres situations expliquées précédemment, nous construirions le classificateur de mail a
partir d’exemples de courriels "bons" et "spam" ; pareillement, on estimerait le prix de la maison en
utilisant un modéle qui prend en compte les caractéristiques, mais aussi les prix (i.e. la "solution",
ils sont donc étiquetées) des différentes maisons & proximité. Ces caractéristiques utilisées pour
construire le modéle s’appellent features, ou predictors.

En résumé, les systémes d’apprentissage supervisé sont congus pour donner les résultats attendus
sur les données d’entrainement, que nous connaissons. Les problémes de régression et de classifica-
tion en groupes spécifiques sont des exemples de ce type d’apprentissage.

Dans 'apprentissage non-supervisé, les données sur lesquelles nous travaillons ne sont pas éti-
quetées, et il n’y a pas une facon directe de vérifier ou mesurer la performance du systéme. Ce
type d’apprentissage est plutdt lié & la visualisation des données et son exploration : corrélations
inattendues, groupes avec des similitudes, détection des données mauvaises ou bizarres (outliers),...
Par exemple, les méthodes de clustering sont de nature non-supervisée, y compris notre algorithme
ToMATo, dont nous parlerons plus tard. Dans ce type d’apprentissage il y aurait aussi ces al-
gorithmes de visualisation qui essaient de représenter les donnés en 2D et 3D en préservant au
maximum sa structure. Finalement, nous y ajouterions aussi toutes les procédures de réduction de
la dimensionnalité, qui ont pour objectif simplifier les données sans perdre trop d’information, par
exemple en combinant plusieurs features corrélées entre elles.

D’autres types d’apprentissage sous ce critére seraient I’apprentissage semisupervisé, qui com-
bine les deux types antérieurs, ou 'apprentissage par renforcement. Dans ce dernier, assez lié au
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domaine de l'intelligence artificielle, ’algorithme observe continuellement les données et ’environ-
nement, et sélectionne et réalise des actions qui peuvent étre récompensées ou pénalisées; au fil
du temps, il apprend lui-méme les stratégies le plus efficaces pour obtenir les meilleures récompenses.

Une autre maniére de classer les systémes ML est selon sa capacité d’adaptation aux nouvelles
données. Les algorithmes qui ont besoin de tout I’ensemble de données pour étre construits cor-
rectement font partie de ce qu’on appelle apprentissage offline ; ceux qui peuvent incorporer de
nouvelles données et apprendre progressivement, une propriété en général désirable pour sa flexibi-
lité et réduction du cotit de calcul, sont de type online.

Finalement, une autre classification décisive au niveau méthodologique est celle qui prend en
compte comment le systéme ML se généralise aux nouveaux cas; c’est-d-dire de quelle fagon on
mesure sa performance en tant que prédicteur, avec de nouvelles observations.

Dans l'apprentissage basé sur des instances, I’algorithme apprend les exemples par coeur et étudie
les nouveaux cas en utilisant une "mesure de similitude". Cette derniére compare quantitative-
ment les nouveaux cas avec les données d’entrainement, afin de les étudier. En revanche, dans
I’apprentissage basé€ sur des modéles, on essaie de construire un bon modéle ou formule & partir des
exemples pour faire des prédictions. Normalement, dans le design de ce modéle, on utilise une fonc-
tion d’"aptitude" (fitness function, ou cost function) pour étudier quantitativement sa convenance
sur les données d’entrainement.

Dans les deux cas, il faut toujours garder a ’esprit que tout ensemble de données d’entrée contient
inévitablement du bruit : elles sont partiellement aléatoires, et I'information n’est jamais transpa-
rent. Donc, ajuster la flexibilité du modéle en fonction de chaque cas est toujours essentiel.

1.4. Problémes et challenges du Machine Learning

En somme, dans tout processus d’apprentissage statistique nous trouvons deux étapes : la sé-
lection d’un algorithme convenable et ’entrainement postérieur avec des données. Naturellement,
il faut faire attention a ces deux choses si nous voulons obtenir un apprentissage effectif. Certains
défis ou aspects a prendre en compte en ce qui concerne cela seraient :

o Quantité insuffisante de données : Dans la majorité des algorithmes, il faut disposer de beau-
coup de données pour entrainer correctement le modéle et le faire fonctionner. En général, on
a besoin de milliers d’exemples, ou des millions dans les problémes les plus complexes. Dans
certaines situations, il est possible de combiner ou extraire des nouvelles données a partir
de celles déja existantes, pour en avoir plus. Plusieurs études montrent que des algorithmes
trés différents peuvent accomplir des niveaux de succés similaires en utilisant suffisamment
de données.

e Données d’entrainement non représentatives : Afin d’obtenir de bonnes généralisations, les
données d’entrainement doivent étre représentatives des nouveaux cas qu’on cherche a gé-
néraliser ; sinon, les prédictions du modéle difficilement s’ajusteront aux valeurs réelles. Par
exemple, le caractére d’'un modéle pour calculer quelque spécificité d’un pays peut changer
largement en fonction de la richesse des pays utilisés pour le concevoir; il faudrait se servir
des pays avec un niveau économique similaire. Le méme principe s’applique pour prédire les
résultats d’une élection a partir des sondages.

Quand les données utilisées ne sont pas représentatives, méme si nous en avons une grande
quantité, il s’agirait ici d’un "biais d’échantillonnage" (sampling bias).
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e Données de mauvaise qualité : Naturellement, si les données d’entrainement contiennent beau-
coup d’erreurs, outliers et bruit, les algorithmes auront plus de problémes pour trouver des
"patterns" et atteindre ses objectifs. Donc, en général, c’est recommandable d’investir du
temps a détecter et écarter les outliers et traiter les valeurs manquantes ou incomplétes (data
cleaning).

e Features non pertinents : Indépendamment de I’algorithme, celui-ci seulement apprendra si les
données utilisées pendant ’étape d’entrainement ont un véritable lien avec ce que nous voulons
estimer. Le complexe processus d’obtenir un ensemble de features pertinents s’appelle feature
engineering. Il comprend, entre autres : sélectionner les features les plus utiles et écarter les
autres, les combiner pour en obtenir des nouvelles d’une fagon plus compacte (étroitement lié
a la réduction de la dimensionnalité), en créer d’autres a partir de nouvelles données,...

o Ouverfitting et underfitting : Ces deux phénomeénes, plus liés a l'algorithme lui-méme qu’a la
nature des données, se produisent quand le modéle obtenu se base trop ou respectivement
trop peu sur les données d’entrainement.

Tout algorithme de Machine Learning essaie de trouver des régularités dans les données, mais
celles-ci possédent aussi de maniére naturelle une variabilité qui peut empécher I’algorithme
de bien se généraliser & de nouveaux cas si nous nous y basons trop. Par exemple, il est presque
toujours possible de trouver une fonction polynomiale qui passe pour n’importe quelle quantité
de points dans R? si son dégrée est suffisamment élevé (i.e. si nous augmentons suffisamment
les dégrées de liberté), mais un modeéle si "courbé" ne sera possiblement pas le meilleur a
prédire de futures observations. En somme, 'overfitting se produit quand le modéle est trop
complexe par rapport au bruit et & la quantité de données d’entrainement.

Quelques possibles solutions dans ce cas seraient : recueillir plus de données, réduire le bruit
des données (i.e. réparer les erreurs dans les données et écarter les outliers) ou simplifier le mo-
déle, chose que nous pouvons faire en utilisant moins de paramétres, en considérant moins de
features ou en "contraignant" le modéle. Ce dernier approche, appelé regularization, contient
plein de méthodes et techniques : I’idée de base est d’utiliser des paramétres supplémentaires
dans lalgorithme (les hyperparamétres), indépendants du modéle, fixés d’abord et constants
pendant 'entrainement, qui "limitent" en quelque sorte la liberté des paramétres du modéle.
Trouver de bons hyperparamétres est I'une des parties importantes de construire un bon sys-
téme de Machine Learning.

Le underfitting est le probléme contraire : il se produit quand le modéle est trop simple
pour bien apprendre la structure sous-jacente des données. Trois stratégies pour améliorer
rapidement cette situation sont : admettre plus de paramétres dans le modéle, réduire les
contraintes s’il y en a, ou augmenter la pertinence des features.

e FEssai et validation : Pour étudier 'efficacité du modéle, une bonne pratique consiste & diviser
les données disponibles en plusieurs sous-groupes complémentaires et les entrainer, mesurer
et vérifier les uns contre les autres. En somme, nous trouvons trois types de ces groupes : les
données d’entrainement (training set), a partir duquel on construit le modéle ou mesure de
similitude ; les données de validation (wvalidation set), qui servent pour modifier le modéle ou
les hyperparameétres jusqu’a obtenir une performance désirable ; et les données de vérification
(test set), pour se faire une idée de 'erreur de généralisation (i.e. sa performance avec de
nouveaux cas).

On appelle cross-validation la méthode, trés commune a pratiquer, qui consiste a faire cette
procédure plusieurs fois avec tout I’ensemble des données pour mieux choisir le modeéle et les
hyperparamétres.
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2. Plus en détail : algorithmes de clustering habituels

2.1. Considérations générales

Le cluster analysis, ou segmentation des données, a pour objectif le regroupement d’un ensemble
d’éléments en sous-groups ou clusters. Ainsi, dans chaque cluster, les éléments sont plus "proches"
entre eux a la différence des éléments classés dans des clusters différents. Dans cette branche du
Machine Learning, & caractére non supervisé et exploratoire, les algorithmes cherchent a établir
si les données peuvent étre divisées dans des groupes différents avec des propriétés suffisamment
distinctes. L’algorithme ToMATo, récemment développé, fait aussi partie de ces méthodes. Nous
aborderons plus en détail cet algorithme dans le chapitre quatre.

La question fondamentale dans le cluster analysis est comment nous mesurons ce "degrée de

similarité" (ou dissimilarité) entre les données, donc c’est la définition sur laquelle les algorithmes
se basent.
Un approche assez flexible consiste a utiliser ce qu’on appelle une matrice de proximité. Avec un en-
semble de N éléments (ordonnées), {z1,..., 2}, on construit une matrice D de dimension N x N,
ot le coeflicient d;; mesure quantitativement la proximité ou similarité de 1'élément 4 & I’élément j.
En général, plus le numéro est faible, plus des similitudes sont remarqués. De ce fait, la plupart des
algorithmes assument d;; = 0, Vi € [1, N]. De plus, certains algorithmes imposent notamment que
la matrice soit symétrique ; sinon, D peut toujours étre remplacée par (D + DT)/2. Pour travailler
avec "dissimilitudes", on peut toujours convertir tous les valeurs avec une fonction monotone dé-
croissante convenable.

Une des situations le plus habituelles est celle ot chaque élément z; consiste en p attributs de
nature quantitative. Si ces attributs sont de nature qualitative (ou catégorique), on peut parfois les
convertir facilement en numéros : par exemple, si nous avons une variable qualitative ordonnée avec

M options, nous pouvons utiliser les valeurs 2 i=1,...,M, toutes entre 0 et 1. Si la variable

n’est pas ordonnée et peut prendre M différentes valeurs, il faut préciser le "niveau de différence"
entre les paires de valeurs en utilisant une matrice (comme évoqué dans le paragraphe précédent) :
ses entrées, normalement 1s sauf Os & la diagonale, jouent le role des d; que nous expliquerons tout
de suite.

Supposons que nous disposons de plusieurs données numériques z;;, ¢ € [1,N],5 € [1,p] (les
cas catégoriques ont déja été traités). En s’appuyant sur ces données, on construit une notion de
"dissimilarité" entre les valeurs du j-éme attribut de deux éléments différents, d;(x;;, ;). Le choix
le plus commun pour d; est la distance au carré,

dj(wij, wiry) = (w5 — warj)*.

D’autres options existent aussi, comme par exemple la différence absolue |z;; — x|, qui pénalise
moins les grandes différences. Les résultats peuvent varier considérablement en fonction de la dis-
tance choisie.

Puis, nous définissons la "mesure de dissimilarité totale" d(z;, z;/) entre deux éléments en combi-
nant ces p dissimilarités individuelles. Bien que la somme est 'option la plus naturelle & considérer,
nous gagnons en flexibilité en travaillant avec une moyenne pondéré
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P P

d(mi,xir) = ij . dj(l'ij,xi/j) 5 ij =1.
Jj=1 Jj=1
Cette derniére permet d’ajuster un poids convenable a chaque attribut (ces poids dépendent né-
cessairement de la nature du probléme et des données concrétes). Pour bien adapter ces poids, il
est important de remarquer que 'influence du j-éme attribut sur la dissimilarité totale D(x;, x;)
dépend de sa contribution relative a la moyenne des dissimilarités totales entre toutes les paires
d’éléments de I’ensemble,

1 N N

p
D = ﬁz Z d(wi,xi/) = ZU}]' . Jj7
j=1

i=14'=1

) 1 NN
dj = ﬁz > dj(wig, wirg)
i=14'=1
est la dissimilarité moyenne du j-éme attribut. Ainsi, I'influence relative de la j-éme variable est
wj - dj, et fixer w; ~ 1/d; (ou directement w; = 1/d;, standardisé plus tard) donne & chaque
attribut la méme influence sur la dissimilarité totale.

Bien que cette derniére option semble appropriée, elle peut aussi étre contre-productive. En ef-

fet, souvent les attributs ne contribuent pas de la méme maniére a la notion de similitude : certaines
différences entre les valeurs peuvent refléter plus de dissimilarité que d’autres dans le contexte du
probléme, et devraient donc avoir plus de poids. Pour cela, il est important de préciser correctement
toutes ces variables, ainsi que la fonction de similitude, chose qui dépend dans une large mesure du
probléme spécifique. En fait, tous ces paramétres peuvent avoir plus d’importance que ’algorithme
lui-méme pour réussir avec le clustering.
Finalement, il est aussi important de préter attention a bien traiter les données manquantes (missing
values en anglais) dans un ou plus des attributs. On peut faire cela en utilisant une moyenne (ou
quelque autre valeur, processus appelé "imputation statistique"), en utilisant une nouvelle catégorie
qualitative "missing", en omettant quelques dissimilarités concrétes ou en écartant directement ces
éléments.

2.2. Algorithmes de clustering combinatoires

Pour résumer, nous trouvons trois types d’algorithmes de clustering :

e Les algorithmes combinatoires travaillent directement sur les données, sans avoir aucun type
de modéle probabiliste sous-jacent, et assignent directement chaque élément & un group.

e Les modéles de mélange supposent que les données constituent un échantillon i.e.d d’une
population décrite par une fonction de densité. Cette fonction de densité est caractérisée par
un modéle paramétrique formé par un mélange/ somme de plusieurs fonctions de densité
(habituellement gaussiennes) : chacune de ses fonctions décrirait un cluster.

e Les algorithmes mode-seeking ("chercheurs de modes"), aussi appelés bump hunters, ont une
approche non paramétrique et tentent d’estimer directement les différentes modes (i.e. maxi-
mums locaux) d’une hypothétique fonction de densité de base. Les éléments les plus proches
de chaque mode définissent ainsi les clusters individuels.
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Ceux du premier type sont spécialement employés pour leur simplicité. Avec les données {z1,...,zn},
un numéro préspécifié de clusters K < N est choisi, chacun étiqueté par un numéro k € {1,...,K}.
On assigne aprés a chaque élément ¢ de l'ensemble un cluster C' : {1,...,N} — {1,... k},

i+ C(i) = Cy, en essayant de minimiser une fonction "de perte" qui prend en compte les dissimi-
larités d(x;, z; ) entre les données. Une fonction de perte naturelle & considérer serait

K
W(EC) =Y Y di,zw), (1)

k=11,i’€Cy

qui quantifie de quelle maniére les observations mises dans le méme cluster sont proches entre elles.
Il est facile de voir que minimiser W (C) est équivalent a maximiser

K
B(C) = Z Z Z d(xi,aji/),

k=1i€Cy i'¢C),

car T = vaw d(x;, zi) = W(C) + B(C) est constant.

Nous pourrions penser que cela réduit le probléme au calcul de la valeur de la fonction de perte
sur toutes les possibles combinaisons, mais dans la pratique le nombre d’allocations possibles pour
tous les éléments augmente trés rapidement avec N et k. De ce fait, tout algorithme de clustering
efficace étudie seulement une fraction trés petite des attributions k& = C(i) possibles, avec 'objectif
d’identifier un sous-ensemble susceptible de contenir I'optimale, ou au moins une correspondance
assez bonne.

La stratégie se base généralement sur ce qu’on appelle un "greedy descent" itérative : une
partition initiale est choisie et, & chaque pas, les attributions sont changées de sorte que la valeur
du critére est améliorée par rapport a 'antérieure. L’algorithme se termine par une partition lorsque
aucune amélioration est possible.

Ces algorithmes, travaillant avec un sous-ensemble trés petit des combinaisons possibles, convergent
toujours & un maximum local, qui peut étre trés sub-optimal en comparaison avec le maximum

global.
2.2.1. K-means clustering
Il est un des algorithmes les plus populaires en raison de sa vitesse et sa simplicité. Il a aussi

des applications importantes dans la compression des images et signaux (vector quantization).

Cet algorithme suppose que toutes les variables sont de type quantitative, et il prend la distance
euclidienne habituelle au carré, d(z;,zy) = >30_ (zij — xj)* = ||zi — z¢||*, pour mesurer la
dissimilarité entre les observations. Avec ces conditions, nous remarquons que (1) est égal a

K
W(C) =Y Ni Y e — &l (2)
k=1 1€Cy,

ou Ty = (T1k, ..., Tpk) st le vecteur moyen associé aux observations du cluster k, et Nj est son
nombre d’éléments.

Du fait que la moyenne des {yi,...,¥n} minimise la fonction f(y) = >, (y; — y)?, nous
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pouvons obtenir une méthode itérative descendant pour résoudre
—manNkZHa:Z—ka (3)
1€Cl
notre probléme original, en considérant le probléme d’optimisation plus général
C* = mmKZNkZ l|2z: — | (4)
T AT ieon

L’algorithme est le suivant :

Algorithm 1: K-means clustering

Input: {z1,...,2x} observations quantitatives (p features chacune)
K numéro de clusters souhaité
Output: Pour chaque observation, une étiquette k € [1, K] (cluster assigné)

1 On fait une premiére attribution C(i) pour chaque observation, aléatoire ou avec unes
moyennes déja établies.

2 Avec notre partition C, on minimise la variance totale du clustering (4), obtenant ainsi les
moyennes {my,...,,my} associées & chaque cluster.

3 Avec ces valeurs {myq,...,, my}, on minimise davantage (4) en assignant a chaque
observation le cluster avec la moyenne la plus proche : C(i) = arg min, << ||; — mg||?

4 On répéte 2 et 3 jusqu’a ce que les attributions C' ne changent plus.

Etant donné que a les étapes 2 et 3 la quantité (4) diminue, la convergence de la méthode est
assurée. Néanmoins, normalement on atteint un maximum local sub-optimal. De ce fait, c’est une
bonne idée de courir 'algorithme avec différentes partitions initiales et prendre le meilleur résultat
final.

Nous pouvons généraliser 'idée du clustering K-means a distances différentes a 1’euclidienne
et features pas nécessairement quantitatives si nous travaillons directement avec les dissimilarités
d(z;, ;). Pour cela, nous pouvons utiliser I’algorithme décrit avant en changeant le my, : au lieu de
la moyenne des éléments du cluster k, nous prenons un de ces éléments ; en particulier, I’élément xy,
qui minimise ) ;. d(zk, ;). Cette nouvelle méthode, qui s’appelle clustering K-medoids, a aussi
un cout informatique considérable, et n’est souvent pas réalisable exhaustivement.

2.2.2. Clustering hiérarchique

Contrairement au clustering K-means/ K-medoids, qui part d’'un nombre de clusters K préréglé
et les cherchent, les méthodes de clustering hiérarchiques produisent une représentation "en échelle"
qui passe pour tous les nombres possibles, et ou les clusters & chaque niveau sont crées en unifiant
ou divisant ceux du niveau inférieur. De cette facon, il est possible de voir plus facilement quel
est le "bon" numéro de clusters de I’ensemble. Naturellement, il est encore nécessaire d’établir une
"mesure de similitude" entre groupes, basée sur les dissimilarités entre paires d’éléments.

Il y a deux stratégies principales pour ce type de clustering : agglomérative (bottom-up), ou
nous commengons avec un cluster pour chaque observation et nous les unifions par paires & mesure
que lalgorithme court ; et la divisive (up-bottomn), qui part par un seul cluster et ensuite les divise
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en deux peu & peu. Dans le deux cas, chaque niveau de la hiérarchie représente un regroupement
spécifique des données en clusters disjoints, et la hiérarchie entiére les différents "seuils" ou ils ap-
paraissent.

Ces agglomérations/ divisions binaires récursives peuvent étre représentées sous forme d’arbre,
qui commence avec une seule racine (le cluster avec toutes les données) et, a la fin, a une feuille pour
chaque élément. De plus, une partie important de ces méthodes ont la propriété de la "monotonie",
c’est & dire, la dissimilarité entre clusters (qui se mesure quantitativement) augmente de maniére
monotone & mesure qu’on les unifie. Ainsi, I'arbre peut étre dessiné de sorte que les bifurcations
entre les branches se produisent & des hauteurs qui reflétent la durée de tous les clusters de maniére
proportionnelle. Ce type de représentation graphique, assez compléte et informative sur les données,
s’appelle dendrogram.

Néanmoins, ces dendrograms sont assez sensibles aux données et & les particularités de la mé-
thode choisie, et ils imposent sur les données une structure hiérarchique qui pourrait ne pas exister.
Donc, plus qu'une "carte" infaillible de la structure des données elles-mémes, le dendrogram devrait
étre vu plutét comme une carte de la structure du clustering des ces données, obtenues avec un
algorithme et une métrique spécifiques.
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FIGURE 1 — Exemple de dendrogram (oil on regroupe les états des Etats-Unis, critére inconnu)

Stratégies agglomératives

Ces méthodes commencent avec un singleton cluster pour chaque élément. Puis, & chacun des
N —1 pas, les deux groupes les plus "proches" sont fusionnés, et on perd un cluster au niveau suivant.

Naturellement, la notion de "proximité" entre les groupes doit étre définie en considérant les
dissimilarités entre les paires d’observations. Soient G et H deux de ces groupes. Nous remarquons
plusieurs options pour définir la dissimilarité d(G, H) :

— Le saut minimum (single linkage en anglais) est défini pour dsr(G, H) = mineg e div-
— Le saut mazimum (complete linkage en anglais) se définie comme der, (G, H) = max;eq,ie i dii -

1
— Le lien moyen (group average en anglais) est défini pour dga (G, H) = NoNy Yoica 2ien diir-

10
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En général, si les données montrent une structure claire, avec des clusters bien séparés les uns
des autres et suffisamment compacts (i.e. ses éléments sont proches entre eux en comparaison avec
ceux de clusters différents), les trois méthodes produisent des résultats similaires. Développons
maintenant les particularités de chaque méthode :

Le type saut minimum a seulement besoin que deux éléments de groupes différents soient proches

pour les fusionner, indépendemment des autres éléments ; cela résulte souvent en clusters peu com-
pacts.
Le type saut mazimum est le pole opposé ; deux groupes G et H sont proches seulement si tous les
éléments dans son union sont relativement similaires, et les clusters sont plus compactes. Pourtant,
cela peut causer aussi une relaxation du "principe de proximité" : un élément assigné dans un clus-
ter peut étre beaucoup plus proche des éléments d’autres clusters que ceux de son propre groupe.
Le type lien moyen permet un compromis entre ces deux extrémes, mais il est aussi plus dépendant
des valeurs spécifiques des d;;r, a la différence des deux autres, qui dépendent uniquement de son
ordre.

Stratégies divisives

Ces méthodes commencent avec toutes les données dans un unique groupe, et divisent a chaque
itération un cluster existant en deux clusters plus petits.

Meéme si elles sont moins étudiées que les méthodes agglomératives, on peut toujours diviser
n’importe quel cluster en appliquant une méthode combinatoire, comme K-means avec K = 2, a
chaque itération. Cependant, en général ce processus ne produit pas une séquence de clusters avec
la propriété de la monotonie nécessaire pour la représenter correctement en forme de dendrogram.

Un algorithme qui satisfait cela serait celui-ci :

Algorithm 2: Clustering hiérarchique divisive monotone

Input: {z1,...,zy} observations quantitatives
Les dissimilarités d;;; entre toutes les paires d’observations
Output: Une séquence hiérarchique de clusters

1 On met toutes les observations dans un unique cluster, G.

2 On trouve ’élément ¢ dans G avec la dissimilarité moyenne avec les autres éléments de G,
1
Ng JjEG

3 On prend I’élément de G qui a la distance moyenne avec les éléments de G moins la
distance moyenne avec les éléments de H la plus grande et le transféere a H.

4 On continue a faire cela jusqu’a ce que cette différence devienne négative. En ce moment, il
n’y a plus d’observations dans G qui sont, en moyenne, plus proches a celles du H qu’a
celles de son groupe GG. Nous avons alors deux nouveaux clusters.

5 Nous continuons de répéter 2, 3 et 4 avec un cluster présent, nouveau ou pas, jusqu’a
obtenir IV singleton clusters. Pour choisir le groupe suivant a diviser, deux critéres utiles
seraient :

d;;, la plus élevée. Cet élément sera le premier membre d’un deuxiéme cluster H.

— Le cluster C avec le diametre D¢ = max; i ec diiv le plus grand.

— Celui avec la dissimilarité entre éléments moyenne, dgo = N—lz i cc @iz, 1a plus grande.
2 L,

11
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3. Introduction a I’Analyse topologique des données

3.1. Idée générale et motivation

L’Analyse topologique des données (Topological Data Analysis en anglais, souvent nommeée
TDA), commence a se développer dans les années 2000 a partir de quelques travails dans la topo-
logie appliquée et la géométrie algorithmique. Ce champ d’étude cherche a explorer et étudier les
bases de données en utilisant des techniques et idées typiques du domaine de la topologie. Cette
nouvelle approche de la science de données, qui s’est déja avérée trés utile dans plusieurs contextes,
a pour objectif mieux comprendre la "forme" d’un ensemble de données. Cette question peut étre
spécialement compliquée quand on travaille en dimensions élevées, et avec des donnés incomplétes
ou avec une forte présence de bruit.

En résumé, la TDA essaie de fournir des méthodes mathématiques, statistiques et algorith-
miques pour révéler, analyser et utiliser des structures géométriques et topologiques non évidents
dans un ensemble des données. Notamment, un de ses outils principales est celui de 1’homologie
persistante, une adaptation de I’homologie pour nuages de points, qui a besoin d’une solide formu-
lation théorique et mathématique.

Le schéma de déroulement habituel en TDA est :

1. L’input est généralement un ensemble fini de points avec quelque type de similarité ou distance
définie entre eux. Cette distance peut venir induite pour un hypothétique espace ambiant (par
exemple, R?) ou étre définie intrinséquement entre paires de points, en fonction du cas.

2. Quelque type de structure géométrique de nature traitable et algorithmique est construite sur
ces points, avec I'objectif de faire plus évidents quelques de ses caractéristiques. Souvent, nous
faisons cela en utilisant un ou plusieurs complezes simplicials, qui peuvent étre vus comme
une généralisation des graphes en dimensions plus élevées.

3. Nous extrayons cette information géométrique et topologique en utilisant différents méthodes,
et nous étudions sa pertinence et stabilité par rapport & possibles perturbations des données
ou présence de bruit. Cette information est aprés souvent visualisée et combinée avec d’autres
descripteurs pour guider les prochaines étapes de ’analyse des données ou taches de ML.

Notre algorithme ToMATo fait usage de certains des concepts de ce nouveau champ d’étude,
notamment de I’homologie persistante et les diagrammes de persistance. Donc, 1'objectif de cette
partie du travail est d’introduire avec rigueur et généralité les fondements de la TDA et les bases
mathématiques de I’homologie persistante.

3.2. Complexes simpliciales, recouvrements et le Théoréme du Nerf

Etant donné que la plupart des concepts de la topologie et la géométrie sont associés a des
espaces continus, une pratique habituelle dans le TDA est de "connecter" de quelque sorte les
données (représentées comme points) qui sont proches les unes des autres. On formalise souvent
cette notion de proximité en utilisant une distance entre points, qui peut étre définie entre paires
directement (espace métrique discréte) ou en plongeant les données dans un espace métrique plus
grand (typiquement, R?).

En tout cas, aprés avoir connecté les données proches, nous obtenons un graphe de voisinage,
qui permet déja appliquer plusieurs méthodes d’analyse. Pour aller au-dela de la connectivité,

12
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nous pouvons associer pas seulement paires mais aussi (k + 1)-tuples de points proches entre eux.
Nous obtenons ainsi un complexe simplicial, qui permet identifier de nouvelles caractéristiques
topologiques, comme cycles, "trous" et leurs généralisations en haute dimension.

Définition 3.1. Soit X = {zq,...,21} C R? (k + 1) points affines linéairement indépendants. Le
simplexe k-dimensionnel o = [xo,...,x;] généré pour X est l’enveloppe convere de X. Les points
originales sont ses sommets, et les simplexes générés pour les sous-ensembles de ces points sont les
faces de o.

Remarque 3.2. Formellement, les sous-ensembles d’un simplexe sont appelés ses n-faces, ot n est
sa cardinalité moins 1. Cependant, pour les cas 0 et 1 normalement on utilise les mots sommets et
arétes respectivement, et le mot face pour le cas 2 et en général.

Définition 3.3. Un complexe simplicial géométrique K C R? est une collection de simplexes telle
que :

1. Toute face d’un simplexe de K est aussi un simplexe de K.
2. Toute intersection de deux simplexes de K est vide ou une face commune aux deux.

FEncore plus généralement, un complexe simplicial abstrait avec des sommets V' est une collection
K de sous-ensembles finis de V' telle que que les éléments de V appartient a K et, pour tout élément
o de K, tout sous-ensemble de o appartient aussi a K.

Clairement, on peut utiliser la derniére définition, de nature plus combinatoire, pour étudier un
complexe simplicial géométrique, mais la direction inverse fonctionne aussi : on peut mettre tout
complexe simplicial abstrait dans R? pour quelque d, et le considérer comme un subespace avec la
topologie induite. C’est cette structure, appelée réalisation géométrigue de K, qui permet utiliser
sans problémes plein de notions géométriques et topologiques sur K.

0,® ) m

n() n

n n;

FIGURE 2 — Simplexes de dimension 0,1,2 et 3, et exemple d'un complexe simplicial géométrique

Définition 3.4. La dimension d’un simplexe est simplement sa cardinalité moins 1. La dimension
d’un complexe simplicial est la dimension plus grande parmi les simplexes qui le constituent.

Remarque 3.5. Un graphe est un complexe simplicial de dimension 1.

Etant donnée un ensemble de points X (imaginons que dans un espace métrique (M, d)), nous
pouvons construire des complexes simplicials au-dessus de plusieurs maniéres. Deux des construc-
tions les plus habituelles seraient :

1. Complexe de Vietoris-Rips, Rips,(X) : La généralisation immédiate de la notion de graphe de
voisinage. C’est le complexe simplicial qui a pour ensemble de faces les simplexes [z, . . ., z]
qui satisfont d(z;, ;) < o pour tout 0 <,j < k.

13



Introduction a la TDA et étude de I'algorithme ToMATo Nil Garcés de Marcilla

2. Compleze de éech, Cechq(X) : Etroitement lié au Vietoris-Rips complexe, c’est le complexe
simplicial formé pour les simplexes [z, . . ., 2] qui satisfont que l'intersection des k+ 1 boules
B(z;,a) nest pas vide.

Remarque 3.6. Méme si X est un ensemble fini de points dans R%, Rips,(X) et Cechq(X)
n’admettent pas toujours une réalisation géométrique dans R?, donc ses dimensions peuvent étre
plus élevées.

Remarque 3.7. C’est facile de voir qu’on a toujours Rips,(X) C Cecho(X) C Ripsasn(X), ou
les inclusions peuvent étre strictes. Si X C RY, Cecha(X) et Ripssq(X) ont le méme squelette
1-dimensionnel, i.e. le méme ensemble de sommets et arétes.

FIGURE 3 — Construction des complexes de Cechs (en bas & gauche) et de Rips. (en bas a droite).
La troisiéme image montre comme les deux complexes ont le méme squelette 1-dimensionnel.

En fait, le complexe de Cech est un cas particulier d’une construction de complexes plus générale
en utilisant des recouvrements :

Définition 3.8. Soit M un espace topologique (ou un ensemble, en général). Un recouvrement U
de M est une famille de sous-ensembles de M, U = (U;);er, qui satisfont U;erU; = M. Le nerf
d’un recouvrement U de M est le complexe simplicial abstrait C(U) qui a U; comme sommets et
les faces

0 =[Ui,..., U] €CU) = Ni_oUs; # 0

De cette fagon, Cech,(X) est le nerf du recouvrement U = (B(z;,«))s,ex de Pensemble
M = Ug,exB(x;,a), qui contient évidemment ensemble de points original. Mais un recouvre-
ment d’un ensemble de données ne doit pas forcement étre basé sur des boules centrées sur elles;
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par exemple, nous pourrions aussi en avoir un en faisant une subdivision des données en groupes
de points (non nécessairement disjoints) avec des propriétés similaires.

En tout cas, le nerf d’un recouvrement offre une description de nature combinatoire assez globale
et compacte de la relation entre les sous-ensembles du recouvrement en considérant ses plusieurs
intersections. Le Théoréme du Nerf (Nerve Theorem) est un résultat de topologie algébrique qui
lie, avec quelques assomptions, la topologie du nerf d’un recouvrement avec la topologie du recou-
vrement lui-méme. Ses implications dans 1’Analyse topologique des données sont remarquables, et
méme si nous ne le démontrerons pas, le but de la derniére partie de cette section est introduire les
notions nécessaires pour bien comprendre ce qu’il dit.

Dans la topologie, normalement nous considérons deux espaces topologiques X et Y comme
égales quand ils sont homéomorphes, i.e. nous pouvons trouver deux applications continues et
bijectives f : X — Y et g : Y — X qui satisfont go f = idx et f o g = idy. Cependant, dans
plusieurs situations, aussi dans la TDA, la notion d’homémorphisme est trop rigide, et souvent il
est convenable d’étudier des similitudes entre espaces topologiques un peu plus faibles. C’est ici ol
I’idée de I’homotopie apparait :

Définition 3.9. Soit X etY deux espaces topologiques. Deux applications continues fo, f1 : X =Y
sont homotopiques s’il existe une application continue H : X x [0,1] — Y telle que, Vz € X,
H(z,0) = fo(x) et H(x,1) = f1(z). Dans ce cas, on écrit fo ~ fi1.

On dit que X et'Y sont des espaces topologiques homotopiquement équivalents si on peut trouver
deux applications f: X — Y et g: Y — X tels que go f ~ idx et fog ~idy. Dans ce cas, on
éerit X ~Y.

La notion d’équivalence homotopique est plus faible que celle d’homéomorphisme, donc deux
espaces homéomorphes sont toujours homotopiquement équivalents, mais le réciproque n’est pas
vrai. En tout cas, I'intérét principal derriére ’homotopie est que nous pouvons définir des objets
(souvent de nature algébrique) sur les espaces topologiques qui sont effectivement des invariants
homotopiques, c’est-a-dire qui sont conservés entre des espaces topologiques homotopiquement équi-
valents. Les exemples les plus notables seraient les groupes d’homotopie et les groupes d’homologie
(singulaire, simpliciale). On parlera plus en détail de I'homologie dans la section suivante.

Définition 3.10. Un espace X est contractile s’il est homotopiquement équivalent & un point.

Exemple 3.11. Tout boule dans R%, ouverte ou fermée, est contractile. Plus généralement, tout
sous-ensemble convexe X dans R est contractile. En effet, si on suppose 0 € X, il y a les applications
f:X = {0}, 2+ 0,et g:{0} = X, 0 0. Clairement f og =~ idg (en fait, f og = idy), et
go f ~idx, avec 'application continue H : X x [0,1] — X, H(x,t) =t - x.

Un recouvrement ouvert est celui ol tous les éléments de la famille sont ouverts. Un recouvre-
ment ouvert fini ou tous les éléments et intersections entre éléments sont contractiles satisfait le
résultat suivant, souvent nommé le Théoréme du Nerf :

Théoréme 3.12. (Théoréme du Nerf) Soit U = (U;);ecs un recouvrement ouvert fini d’un sous-
ensemble X C R? tel que toute intersection des U;’s est vide ou contractile. Alors X et C(U) sont
homotopiquement équivalents.

Ainsi, on a que le nerf défini par un "bon" recouvrement de X est homotopiquement équivalent
a4 X, ce qui est remarquable pour des applications; en effet, normalement un complexe simplicial
posséde une nature beaucoup plus traitable algoritmiquement qu’un espace topologique général.
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En tout cas, le complexe de Cech se construit avec des boules fermés centrées sur chaque donnée,
donc le recouvrement n’est pas ouvert dans ce cas. Heureusement, la version suivante du théoréme
est, aussi vraie :

Théoréme 3.13. (Théoréme du Nerf pour un recouvrement convexe) Soit X C R? une
union finie d’ensembles fermés convexes F' = (F});c; dans R?. Alors X et C(F) sont homotopique-
ment équivalents.

De ce fait, on obtient que, en effet, si X est un nuage de points dans R, alors Cechq(X) est

homotopiquement équivalent a I'union des boules | J, . x B(z, ).

FIGURE 4 — Représentation de comment 'union des boules et le nerf associé (i.e. le complexe de
Cech des données) sont homotopiquement équivalents.

3.3. Inférence homologique

Résumons la situation jusqu’a ici : pour aller plus loin dans notre étude de nos ensembles de
données/ nuages de points, nous avons vu comment construire quelques structures géométriques au-
dessus, appelées complexes simplicials, de nature plus algorithmique. Aprés, nous avons exposé le
Théoréme du Nerf, donc nous avons vu que, quand X est un ensemble de points dans R¢, Cech,, (X)
est homotopiquement équivalent & 'union de boules U,exB(z, o).

Dans toute situation avec des données numériques (supposons dans R?), et d'un point de vue sta-
tistique, il y a fondamentalement deux questions qui nous intéressent : d’une part, il y a 1’"espace
d’échantillonnage" de nos données, i.e. dans quelle région M C R? toutes les possibles données
"vivent" ; de 'autre part, il y a la mesure de probabilité p sur cette région M, qui encode quelles
zones de M sont plus probables d’avoir plus de points, et de quelle maniére les données se re-
groupent. Normalement, nous supposons que M, le support de u, est compact, et que nos données
X ={z1,...,2,} ont été échantillonnées i.i.d. en suivant p.

Evidemment, pour mieux comprendre nos données, faire des prédictions, etc., nous sommes inté-
ressés a connaitre p et la "forme" de son support M. Le processus qui essaie de mieux caractériser
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M s’appelle "reconstruction géométrique", et un schéma habituel pour inférer cette information
géométrique et topologique est :

1. Nous recouvrons X avec des boules B(z, «); sous certaines conditions de régularité sur M,
nous pouvons lier la topologie de cette union avec celle de M.

2. Certaines propriétés topologiques de M sont inférées & partir du nerf de 'union de ces boules,
en utilisant le Théoréme du Nerf.

Des résultats mathématiquement rigoureux et importants existent avec cette approche de re-
construction. Néanmoins, ce n’est pas toujours possible, ni souhaitable, d’essayer de reconstruire
complétement la forme de base & partir de nos données. De plus, dans le schéma que nous venons
d’exposer, nous voyons que le choix du rayon des boules, qui souvent n’est pas du tout évident,
joue un role clé dans les résultats obtenus.

Une autre maniére de travailler les données est d’essayer de trouver des invariants topologiques
plus faibles, mais plus faciles d’inférer. C’est ici que le concept d’homologie, un outil déja clas-
sique dans la topologie algébrique, entre en scéne. Plus notamment, nous pouvons faire usage de
I’homologie simplicial sur nos complexes simplicials pour mieux les comprendre et, finalement,
élaborer davantage cette information homologique pour développer ce qu’on appelle homologie per-
sistante, qui garde une trace de comme 1’homologie des complexes simplicials obtenues évolue en
variant le rayon. Une maniére de représenter visuellement une bonne partie de toute cette informa-
tion est avec ce qu’on appelle un diagramme de persistance.

3.3.1. Homologie simpliciale et nombres de Betti

L’idée intuitive derriére de I’homologie en général est de traiter et formaliser algébriquement
la notion de "trou", ou "boucle", dans de différentes contextes mathématiques, notamment dans
les espaces topologiques. Pour toute dimension n, les "trous" n-dimensionnels sont représentés par
un espace vectoriel H,, et sa dimension serait le numéro de trous "indépendants" de ce type. Par
exemple, Hy représente les composantes connexes de notre espace, Hy les "boucles unidimension-
nelles", Hy les "cavités 2-dimensionnelles", etc.

Le premier type de théorie d’homologie qui a été développé, il y a environ un siécle, est I’ho-
mologie simpliciale, qui se construit sur les complexes simplicials. Sur ces objets, c’est relativement
simple d’imaginer la notion de trou k-dimensionnel. Méme si les concepts que nous exposerons en-
suite sont sensés avec tout corps k, nous travaillerons désormais avec k = Z/27Z = Zs, plus intuitif
A niveau géométrique, et qui simplifie les arguments ; sinon, il faudrait considérer une orientation
sur les sommets,/ faces de notre complexe, et les formules deviendraient plus compliquées.

Soit K un complexe simplicial de dimension d :

Définition 3.14. Une n-chaine est une somme formelle de simpleres n-dimensionnelles de K ;
c’est a dire, st {o1,...,0p} sont les n-faces de K, une n-chaine c est une expression du type

p
c= Z)\iai, avec \; € Zo
i=0

Pour chaque n, Pensemble des n-chaines C),(K) a une structure évidente de Zsy-espace vectoriel,
ot l'ensemble des n-faces de K est une base de C,,(K). Les chaines avec des coefficients dans Zo
ont une interprétation géométrique simple : du fait que toute n-chaine peut étre uniquement écrite
comme ¢ = 0y, + -+ 0y,,, ¢ représente simplement I'union des n-simplexes o, .
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Définition 3.15. Le bord d(c) d’un n-simplexe o est la somme de ses (n — 1)-faces. Donc, pour
le n-simplexe o = [vg, . ..,vy], on obtient la (n — 1)-chaine

n

0(0) = [0+, iy .., ]

i=0
ot [vg, ..., Ui,...,0,] estle (n— 1)-simplexe formé pour les sommets originels sauf v;.

Le bord d’un n-simplexe nous donne les (n — 1)-faces qui le constituent. Le bord ainsi défini
sur les simplexes de K peut étre étendue de maniére naturelle & une (plusieurs) fonction entre les
C;(K). Méme si on devrait les distinguer 9;, souvent on écrit simplement 9 pour éclaircir le texte :

Définition 3.16. La fonction bord est l'application linéaire définie par
0:Ch(K) — Cp_1(K)
¢ —0(c)= 28(0)

oEc

La propriété plus fondamentale de 0 est celle-ci :

Proposition 3.17. 00 =000 =0

Démonstration. Puisque la fonction bord est linéaire, il suffit de le vérifier simplement pour un seul
simplexe o = [vg, ..., v,], de dimension n :

680:3<§:[U0,...,ﬁi,...,0n]> :ia[vo,...,ﬁi,...,vn] =
0 =0

n

= [vo,...,vj,...,v,;,...,vn]+g (V0,3 Diyevy Ujyeo oy Un] = E 2Mvo, ..., Uiy oy Uy, 00] =0
j<i j>i 4,i=0
J#i

La fonction bord définit une séquence d’applications linéaires entre les C;(K) :

Définition 3.18. Le complexe de chaines associé au complexe simplicial K est la séquence d’espaces
vectoriels et applications linéaires :

(0} 2 (k) & Cor () L .. 5 1K) S Co(K) 2 {0}
Pour k € {0,...,d}, Uensemble Zy(K) de k-cycles de K est le noyau de 0 : Cx(K) — Cr—1(K) :
Zy(K) = {c € Cx(K)[ 0(c) = 0},
et l’ensemble By (K) de k-bords de K sont les chaines qui appartient a l’image de lapplication O :
Bi(K) ={ce Cr(K)|3b e Cri1(K) tel que d(b) = c},

De quelque sorte, Z;, encode quelles k-chaines sont "fermées" (d’ici le nom "cycles"), et By, quels
ensembles de k-faces sont le bord d’une (k + 1)-chaine.
Z et By sont évidemment des sous-espaces de Cy, et en vue de la Proposition 3.17, on a toujours
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By C Zj, ot la inclusion peut étre stricte. Ce dernier fait motive la définition des groups d’homo-
logie, qui essaient de trouver des "trous" dans notre complexe simplicial, i.e. des k-chaines fermées
qui ne sont la frontiére d’aucune (k + 1)-chaine du complexe :

Définition 3.19. Le k-éme groupe d’homologie de K est [’espace vectoriel quotient
Hy(K) = Z,(K)/Bi(K);

ses éléments s’appellent les classes d’homologie de K. Deux cycles qui appartient a la méme classe
d’homologie sont appelés homologues.
La dimension B (K) de Hi(K) s’appelle le k-éme nombre de Betti de K.

}'1-—1 >'-|_l =1 -:||_]
ho=10 =1 h=10

3
=0 B =10 h =10 pr=1

FIGURE 5 — Les nombres de Betti associés & quelques complexes simplicials simples : une aréte
(avec ses sommets), le périmétre d’un triangle, un triangle, et un tétraédre.

On peut démontrer (ce qui n’est pas immédiat) que les groupes d’homologie et les nombres de
Betti sont des invariants topologiques : si Ky et K; sont deux complexes simplicials avec des réali-
sations géométriques homéomorphes, alors ses groups d’homologie sont isomorphes et ses nombres
de Betti sont égales. De plus, ces résultats sont aussi vraies si les réalisations géométriques sont
seulement homotopiquement équivalents.

Ces résultats sont une conséquence de 1’étroite relation entre ’homologie simpliciale et une
autre type d’homologie, I’homologie singuliére, beaucoup plus générale et qui peut étre définie pour
tout espace topologique. En fait, on peut démontrer que les groupes d’homologie simpliciales et
singuliéres d’un complexe simplicial sont toujours isomorphes, et le résultat est une conséquence de
I'invariance homotopique de ’homologie singuliére. Bien que notre intention dans ce mémoire n’est
pas d’introduire I’homologie singuliére, le résultat suivant, pas difficile mais sans démonstration,
nous sera utile dans les pages qui viennent :

Proposition 3.20. Soit X un espace topologique (resp. un complexe simplicial). Alors, la dimen-
sion du premier groupe d’homologie singuiliere Ho(X) (resp. homologie simpliciale) est égale au
nombre de composantes connexes (par arcs) de X.

3.3.2. Filtrations

Définition 3.21. Une filtration d’un complexze simplicial K est une suite de subcomplexes (K, )rer,
ot T C R fini ou infini, telle que Vro,r1 € T, 7o < 1r1 = K,, C K,,, et K = Uper K,. La
définition peut étre généralisée de la maniére évidente & tout espace topologique.

Dans des situations pratiques, les valeurs r € T souvent jouent le role de "paramétres d’échelle",
qui ajustent la résolution du complexe. Deux filtrations habituelles dans le TDA seraient :
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— Filtrations construites sur des nuages de points : Etant donné un sous-ensemble fini X d’un
espace métrique compact (M, d), les familles de complexes (Rips,.(X))rer et (Cech,.(X))rer
sont des filtrations. Dans ces derniéres, r peut étre vu comme le paramétre de résolution, o,
pour r < 0, nous considérons seulement les points. Par exemple, quand X est un nuage de
points a RY, grace au Théoréme du Nerf, (Cech,(X)),cr encode la topologie de la famille
d’unions de boules X, = Uyex B(x,r) lorsque r varie de zéro & infini.

— Filtrations associées aux ensembles de niveau : Etant donné un espace topologique M et une

fonction f: M — R, la famille M, = f~1((—oo,7]), r € R définit une filtration. On appelle
les ensembles M, C M les ensembles de sous-niveau de f. On peut définir également les
ensembles de super-niveau de f et sa filtration associé.
Dans les cas ol nous travaillons avec un complexe simplicial K, normalement la fonction est
définie seulement sur son ensemble de sommets V. Nous pouvons étendre f a tout simplexe
de K en prenant f([vg,...,vx]) = maxo<;<k f(v;) pour tout o = [vg,...,v;] € K. Ainsi, la
famille de sous-complexes K, = {o € K|f(c) < r} définit la filtration associée aux ensembles
de sous-niveau de f.

Avec ces deux filtrations, dans des cas réels, méme si T est infini, toutes les filtrations sont
construites sur des nuages de points, qui sont des ensembles finis, donc elles sont aussi finies. Par
conséquent, le complexe obtenu change seulement un numéro fini de fois, ce qui facilite son étude
d’un point de vue algorithmique.

Nous exposons finalement un autre type de filtration sur les complexes simpliciales, facile de
calculer et trés pratique au niveau algorithmique, comme nous verrons toute de suite :

Définition 3.22. Une filtration de décomposition d’un complexe simplicial K est une suite de
subcomplezes
@:K()CKlCKQC"'CKm_lCKmZK

qui satisfait K; = K;_1 U oy, ol o; est un simplex.

Intuitivement, dans une filtration de décomposition, nous ajoutons seulement un simplexe a
chaque fois, et il faut que toutes ses faces appartiennent déja au sous-complexe quand il est introduit.

Exemple 3.23. Avec le complexe simplicial de I'image suivant, une filtration de décomposition
pourrait étre a, b, ¢, ab, ac, d, be, abe, cd.

Remarque 3.24. C’est facile de voir que toute filtration d’un complexe simplicial (y comprises les
deux filtrations précédentes) peut étre affinée a une filtration de décomposition : il faut seulement
décomposer les nouveaux simplexes de K; respect & K;_; en sommets, arétes, 2-faces,... et les
ajouter un par un a chaque fois.

Cette derniére remarque ouvre tous les algorithmes typiques des filtrations de décomposition,
comme ceux dans les sections suivants, & toute filtration. C’est a cause de ce fait que désormais
nous travaillerons plutot avec ce type de filtrations.
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3.3.3. Un algorithme pour calculer les nombres de Betti

Supposons un complexe simplicial K avec une filtration de décomposition. Dans cette situation,
il existe un algorithme assez simple pour calculer les nombres de Betti associés & K, seulement en
gardant une trace des nombres de Betti tout au long de la filtration ; en fait, ’algorithme calcule les
nombres de Betti de chaque sous-complexe de la filtration, ce qui sera important dans ’homologie
persistante.

Pour bien effectuer cette méthode, c’est indispensable de détecter quand le nouveau simplexe o;
ajouté, de dimension k, appartient & quelque k-cycle ou non, ce qui motive la définition suivante :

Définition 3.25. Si o; appartient a quelque k-cycle, on dit qu’il est un simplexe positif; dans le
cas contraire, c’est un simplere négatif.

Dans les sections suivantes, ot plus d’algorithmes seront détaillés, nous expliquerons comment
savoir si nous ajoutons un simplexe positif ou négatif. Pour 'instant, et pour expliquer 1’algorithme,
nous pouvons supposer que nous savons détecter quand o; est positif ou négatif :

Proposition 3.26. (Algorithme) : Les nombres de Betti de K peuvent étre calculés de maniére
inductive en faisant usage d’une filtration de décomposition.

Démonstration. Evidemment, tous les nombres de Betti de Ky = () sont zéro.

Pour calculer les nombres de Betti de K;, supposons que les nombres de Betti de K;_; sont déja
calculés, et ajoutons le simplexe o;, de dimension k, pour obtenir K;. Observons que, par définition
de filtration de décomposition, o; ne peut pas faire partie du bord d’aucun (k + 1)-simplexe de Kj;.
Par conséquent, si o; est contenu dans un k-cycle de K; (i.e. positif), ce cycle n’est pas le bord
d’une (k + 1)-chaine de K;.

Il y a deux situations possibles :

Cas 1 : Si o; est positif et appartient a un k-cycle ¢ de K;, alors ¢ ne peut pas étre homologue
a un cycle ¢’ de K;_;. En effet, dans ce cas ¢ + ¢ serait le bord d’une (k + 1)-chaine d de K, et
comme o; ne peut pas appartenir a ¢’ (donc nous venons d’introduire cet nouveau simplexe a K;),
o; appartient & ¢ + ¢/ = dd, ce qui n’est pas possible comme nous avons déja remarqué au début
de la démonstration. Par conséquent, ¢ crée une nouvelle classe d’homologie, qui est linéairement
indépendant des classes générées par les cycles de K;_1, donc S (K;) > Br(K;—1) + 1.
Nous pouvons voir aussi que la dimension du k-éme groupe d’homologie ne peut pas augmenter plus
que 1 :si c et ¢’ sont deux k-cycles qui contient o;, ¢ + ¢’ est un k-cycle de K;_1, donc ¢’ est inclus
au sous-espace linéaire généré pour Z;(K;_1) et c. D’ici on a que dim Zi(K;) < dim Z;(K,;—1) + 1
et, comme Bk(Ki—l) = Bk(Ki), on a ﬁk(Kz) < Bk(Ki—l) + 1.
Il reste seulement pour montrer que By_1(K;) = Bg_1(K;_1), donc Hy_1(K;) est le seul autre
group d’homologie de K; qui peut changer en ajoutant o;, et clairement Zp_1(K;) = Zp_1(K;—1).
Le résultat est une conséquence directe du fait que o; est positif, et il appartient donc & un k-cycle
cde K; : en effet, 0 = dc = Jo; + Y, O(autres k-simplexes de K déja ajoutés), et do; peut étre écrit
comme une combinaison linéaire de bords de k-chaines de K;_1.

Cas 2 : Si o; est négatif et n’appartient a aucun k-cycle de K, alors le (k — 1)-cycle do; n’est
pas un bord a K;_;. En effet, dans ce cas nous pourrions trouver une k-chaine ¢’ a K;_; tel que
Oc = Jo;, ou de fagon équivalente, d(c + ;) = 0, ce qui implique que ¢ + o; est un k-cycle de Kj;
qui contient o; : contradiction. Par conséquent, comme le (k — 1)-cycle do;, qui n’était pas un bord
a K;_1, dévient un bord a K;, nous avons fSj_1(K;) < Br—1(K;-1) — 1. Avec un argument similaire
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a celui de la fin du Cas 1, nous pouvons démontrer 1’égalité.
Du fait que o; est négatif, c’est aussi évident que le groupe d’homologie Hy(K;) reste inaltéré. [

Nous voyons donc que, de quelque sorte, le processus se limite a trouver la différence entre les
simplexes positifs et négatifs de la filtration ; les positifs créent de nouvelles k-classes d’homologie
tandis que les négatifs effacent des (k — 1)-classes. Voici un résumé de l’algorithme :

Algorithm 3: Calcul des nombres de Betti d’un complexe simplicial K

Input: Une filtration de décomposition de K, complexe simplicial d-dimensionnel avec m
simplexes

50761a" '7Bd =0
Output: Les nombres de Betti fg, 81, ...,8q de K

1 for i =1 jusqu’'a m :
k= dim ag;
Si o; est positif :
Br =Bk +1
Si o; est négatif :

Br—1=Br—1—1

3.3.4. Homologie persistante : définitions et algorithmes

Nous avons vu que 'algorithme précédant ne compute pas seulement les nombres de Betti d’un
complexe simplicial, mais de tous les sous-complexes de la filtration (de décomposition). Intuiti-
vement, I’objectif de 'homologie persistante est de garder une trace de toute cette information et
enregistrer & quels moments chaque classe d’homologie est crée et détruite pendant le processus.

Avant d’expliquer les formalismes, montrons un petit exemple, en utilisant I’homologie singuliére
et la Proposition 3.20 :

Exemple 3.27. Soit f: (0,1) — R la fonction représentée dans I"image suivant :

e 3

R

e

a 7] d

FIGURE 6 — Diagramme de persistance d’une fonction réelle, ot seulement les composantes connexes
(i.e. Hp) sont enregistrées.

Nous sommes intéressés & étudier I’évolution de la topologie de la filtration associé aux ensembles

de sous-niveau de f, f~!((—o0,t]), & mesure que ¢ augmente. La topologie de ces sous-ensembles
change quand ¢ atteint les valeurs critiques a, b, c,d et e :
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Quand t = a, une nouvelle composante connexe apparait, et pour a < t < b, f~1((—o0,t))
est un intervalle. Quand ¢ atteint la valeur b, une deuxiéme composante connexe apparait, et pour
b<t<c f1((—00,t)) a deux composantes connexes. Pour t = ¢, ces deux composantes connexes
sont fusionnées : celle qui a été crée plus récemment, quand ¢t = b, est unifiée & la premiére. Ainsi,
on enregistre la paire (b,c¢) comme les temps de création et destruction de la composante; cette
paire est aprés représentée avec les cordonnées (b, ¢) au plan a droite. Intuitivement, le plus éloignée
un point est de la diagonale, le plus relevant est la composante.

Si nous continuons & augmenter ¢, encore une nouvelle composante est crée & ¢t = d, qui est fina-
lement unifiée & la premiére quand ¢ atteint la valeur e; ainsi, un deuxiéme point est enregistré
a droite, avec cordonnées (d,e). La premiére valeur a ne peut pas étre associée & aucune autre
valeur finie, donc la composante connexe crée pour cette ¢t ne meurt jamais; par conséquent, elle
est associée a +oo.

A la fin, toutes ces paires peuvent étre représentées comme une famille d’intervalles (barcode) ou
comme un diagramme au plan, appelé diagramme de persistance. Pour des raisons qui deviendront
claires plus tard, c’est aussi naturel d’ajouter la diagonale {y = 2} au diagramme.

Quand nous considérons des fonctions définies dans des espaces topologiques générales, atteindre
certaines valeurs critiques peut changer ne pas seulement les composantes connexes des ensembles
de sous-niveau, mais d’autres propriétés topologiques encodées dans les autres groups d’homologie
(i-e. les "trous" n-dimensionnels). De ce fait, il est aussi raisonnable de créer des paires de création/
destruction pour chaque dimension.

Finalement, supposons une fonction g "proche" & f comme celle de 'image d’en bas. Nous
pouvons observer que, méme si g a plus de paires dans son diagramme de persistance, la majorité
sont trés proches a la diagonale, donc une durée de vie assez courte. En revanche, les paires associées
a un intervalle plus long sont proches a celles de f. En d’autres termes, les propriétés topologiques
qui ont une persistance élevée sont préservées, tandis que celles qui son crées a cause de perturbations
sur la fonction ont une persistance plus petite. Nous verrons que, en effet, deux fonctions "proches"
ont toujours des diagrammes de persistance "proches". Cette notion de proximité est essentielle
pour bien distinguer et traiter le bruit topologique dans nos données.

FIGURE 7 — Une approximation g de f, et les diagrammes de persistance respectifs.
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Homologie persistante d’une filtration

Nous définissons d’abord la notion de persistance pour la filtration d’'un complexe simplicial,
qui a pour objectif étudier ’évolution de I’homologie des sous-complexes de la filtration.

Soit K un complexe simplicial d-dimensionnel avec une filtration de décomposition
p=K°cK'c---C K™ =K.

Pour tout 0 < n < m, on dénote C}' ensemble de k-chaines de K™ (avec des coefficients a
Zs). Notons que, puisque 9> = 0 et nous avons une filtration de décomposition, la restriction de
la. fonction bord sur C}' a toujours sa image contenue dans C,?__ll. Dénotons Z}} et B les cycles
et bords k-dimensionnels de K™ respectivement, donc le k-éme groupe d’homologie de K™ est
H}! = Z}'/B}}. Avec ces notations nous avons aussi

Zycztc.--cZr=27i(K), BYcCBiC---CB"=DB(K).

Définition 3.28. (Nombres de Betti persistants) : Pourp € {0,...,m} etl € {0,...,m—p}, le
k-éme nombre de Betti persistant de K! est la dimension de l’espace vectoriel H,lc’p = Z,lc/(B,lj'pﬂZ,i).

Intuitivement, le k-éme nombre de Betti persistant de K! représente le numéro de classes d’ho-

mologie indépendantes de k-cycles dans K qui ne sont pas de bords dans K'*P; par conséquente,
de maniére informelle, sa durée de vie est supérieure a p.
Nous avons vu, dans la section précédente, qu’une classe d’homologie est crée quand un simplexe
positif est ajouté a la filtration, et qu’une classe d’homologie est détruite quand le simplexe est
négatif. L’homologie persistante offre un cadre théorique pour associer des simplexes positifs et
négatifs : quand un simplexe positif est ajouté a la filtration, il crée une classe d’homologie, qui
disparait quand on ajoute son simplexe négatif associé (s’il existe).

Nous sommes intéressés a trouver un algorithme pour calculer ces nombres de Betti persistantes.
Pour I'obtenir, il faut mieux caractériser les classes d’homologie crées & chaque fois que nous ajoutons
un simplexe positif a la filtration. Rappelons que, dans la définition 3.25 de simplexe positif et
négatif, il faut seulement que o; appartient a un k-cycle, mais en général ce k-cycle n’est pas
unique. Heureusement, pour chaque k-simplexe positif o; que nous ajoutons ajoute & la filtration, il
y a un k-cycle associé "minimal", qui facilitera, & la fois, le calcul des nombres de Betti persistantes :

Lemme 3.29. Soit o; un k-simplexe positif ajouté a la filtration de K au pas i. Or, il n’y a
qu’un seul k-cycle ¢ qui n’est pas un bord dans K*, qui contient o; et qui ne contient aucun autre
k-simplexe positif.

Démonstration. Nous travaillons par induction sur I'ordre avec lequel les k-simplexes positifs sont
ajoutés a la filtration. Pour le premier k-simplexe positif o ajouté, ce k-cycle c existe par définition,
est il est nécessairement unique parce que s’il y en avait un autre ¢’ de différent, ¢ + ¢’ # 0, qui ne
contient pas o, serait aussi un k-cycle et ses éléments seraient des k-simplexes positifs, contradiction.

Supposons maintenant que le résultat est vrai pour tous les k-simplexes positifs déja ajoutés,

et ajoutons ¢;. Comme o; est positif, il existe un k-cycle d qui n’est pas un bord dans K; et qui
contient o;. Soit o;,, j =1,...,p les k-simplexes positifs différents de o; contenus dans d, et ¢;; ses
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k-cycles respectifs associés, qui existent par hypothése d’induction. Alors
c=d+cy +-+c, (5)

est un k-cycle ou o; est le seul k-simplexe positif. Du fait que o; est le dernier simplexe ajouté a
K;, il n’existe aucun (k + 1)-simplexe dans K; ol o; est une face. Par conséquent, ¢ n’est pas un
bord, et I'existence est démontrée.

Pour démontrer I'unicité de ¢, supposons deux k-cycles dy et do qui ne sont pas un bord dans K;
et qui contient o;, et répétons la construction précédente pour obtenir ¢ # éo. Alors é; — ¢ # 0 est
un k-cycle qui ne contient aucun k-simplexe positif, et nous pourrions toujours le combiner avec un
¢; antérieur pour obtenir un k-cycle avec les mémes propriétés du lemme, ce qui contredit sa unicité
et I'hypothése d’induction. Donc, nous concluons que ¢; — é; = 0, et I'unicité est démontrée. O

Bases des groupes d’homologie persistante et paires de persistance

Proposition 3.30. Les k-cycles associés aux k-simplexes positifs décrits au Lemme 3.29 peuvent
étre utilisés pour calculer une base des différents groupes d’homologie k-dimensionnels de tous les
sous-complexes de la filtration.

Démonstration. Evidemment, au début toutes les bases de HY(K) = Hj(Ko) sont vides pour
k=0,...,d. Les bases des successives H, }€ sont construites de maniére inductive :

- Supposons que nous avons déja une base de H};l et que o; est positif et de dimension k. Si
nous ajoutons a notre base la classe d’homologie définie par le cycle ¢; associé & o;, nous obte-
nons une base de H} grace au Lemme précédent. En effet, du fait que ¢; est une somme de o; et
k-simplexes négatifs, il n’est homologue a aucune combinaison linéaire des cycles qui définissent la
base de H,ifl. Du fait que dim H}C = dim H,?l + 1, vu dans la Proposition 3.26, nous obtenons une

base de Hj.

- Supposons maintenant qu'une base de H ,j;l est déja construite et que le simplexe o; est négatif
et de dimension k + 1. Soient ¢;,, ..., ¢;, les k-cycles associés aux simplexes positifs déja ajoutés,
qui définissent les classes d’homologie qui forment notre base de H f;l. Comme nous I'avons déja
expliqué, le bord do; est un k-cycle de K;_; qui n’est pas un bord dans K;_1, mais qui devient un
bord dans K;. Par conséquent, il peut étre écrit de maniére unique comme

p
aO'j = ngcik + b, (6)
k=1

ol g, € {0,1} et b est un bord. Soit I(j) = max{ix| e = 1}.

Claim : Si on enléve la classe d’homologie associé a ¢;(;) de la base de H,z_l, on obtient une
base de H'k.

En effet, comme dim Hf;l = dim H,Jc + 1 par la Propositon 3.26, il suffit de montrer que ¢,
est une combinaison linéaire d’un bord avec les autres cycles ¢;;, dans Zj. L’équation (6) antérieure
montre une telle décomposition, ce qui finis la démonstration. O

Définition 3.31. (Paires de persistance) Les paires de simplezes (T105 ;) s’appellent les paires
de persistance de la filtration de K.

25



Introduction a la TDA et étude de I'algorithme ToMATo Nil Garcés de Marcilla

Intuitivement, la classe d’homologie crée pour o;(;) dans Kj(jy est détruite pour o; dans K. La
persistance de cette paire est j — I(j).

Le probléme avec l'algorithme antérieur est de déterminer I(j). N’oublions pas non plus qu’il
faut aussi encore expliquer, en vue de 'algorithme du calcul des nombres de Betti de la Proposi-
tion 3.26, comment détecter si un nouveau k-simplexe est positif ou négatif. Toutes ces questions
peuvent étre répondues a la fois en étudiant la filtration sous une forme matricielle. D’idée derriére
cette matrice est d’encoder le résultat de la fonction bord sur tous les simplexes de la filtration,
ordonnés. Avec cette matrice, nous pouvons réélaborer la proposition antérieur pour obtenir un
algorithme effectif pour calculer les paires de persistance, ce qui permet trouver les nombres de
Betti persistantes. Elle proportionne aussi une maniére de détecter quand le k-simplexe ajouté est
positif ou négatif.

Soit K un complexe simplicial avec une filtration de décomposition. Soit M = (m;;)i j=1,..m la
matrice associé au pas m de la filtration, o

m; ; = 1 si 0; est une face de o;, et m; ; = 0 autrefois.

Cette matrice augmente "a droite et en bas" & mesure que la filtration avance, et elle est toujours
triangulaire supérieure puisqu’on a une filtration de décomposition.

Pour une colonne Cj, soit {(j) = max{i| m;; = 1}, et non-assigné si la colonne contient
seulement des zéros. Nous pouvons alors considérer ’algorithme suivant :

Algorithm 4: Calcul des paires de persistance, version matricielle

Input: Une filtration de décomposition de K, le sous-complexe K" (qui contient m
simplexes) et la matrice M associé au pas m
1 for 57 =0 jusqu'a m :
while qu'il existe j' < j avec I(j') == 1(j)
Cj = Cj —l—Cj/ ( mod 2)

Output: Les paires (1(5),7)

Proposition 3.32. L’algorithme antérieur calcule les paires de persistance de la filtration de dé-
composition de K jusqu’au pas m, ainsi comme quels simplexes sont positifs et quels sont négatifs.

Démonstration. Remarquons que, & chaque pas de I’algorithme, la colonne C}; représente une chaine
de la forme 8(@ +2 i €iai), oueg; € {0,1}.

- Si & la fin de 'algorithme j satisfait que I(j) est assigné, alors o;(;) est un simplexe positif. En
effet, on a 8(0]- + i eiai) = 01(j) + X p<i(j) WwIps 00 Ap € {0,1}. Du fait que 0% =0, on a que
o1(;) appartient a un cycle et il est donc positif.

- Si a la fin de l'algorithme C; contient seulement des zéros, o; est positif. Effectivement,
6<Uj + Ei<j 5iai) = 0, et o; appartient donc & un cycle.

-Finalement, si & la fin de I’algorithme la colonne C; contient des termes non nuls, (0y;,0;) est
une paire de persistance, et o; est donc négatif. En effet, le bord de o; peut alors étre écrit de la
forme oy +Zp<l(j) )\pap+8( ZKj eiai). Or, 0y(; est positif, donc il a crée une classe d’homologie

au moment [(5), et il reste non associé. Du fait que le dernier index non nul d’une colonne est unique
et par la Proposition 3.30, on peut déduire que (0y(;),0;) est une paire de persistance. O
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3.3.5. Diagrammes de persistance et stabilité

Rappelons que, d’aprés le Remarque 3.24, tous les algorithmes que nous venons d’expliquer
sont aussi applicables & des filtrations pas nécessairement de décomposition. En effet, nous pouvons
toujours faire une affinage, et aprés prendre les coefficients de la filtration original. Egalement, avec
des algorithmes qui facilitent les calculs ou pas, les notions de I’homologie persistante introduites
jusqu’a ici, notamment les paires de persistance, peuvent aussi étre appliquées avec des filtrations
d’espaces topologiques plus générales, en prenant 'homologie singuliére. Nous avons déja observé
ce fait informellement dans 'exemple 3.26, et nous en verrons aussi dans cette section.

Dans tous les cas, beaucoup des informations de ’homologie persistante, notamment la durée de
vie des différentes classes d’homologie, peuvent étre facilement représentées en forme de diagramme :

Avec k fixée, soient (0(;), o) les paires de persistance (calculées avec les algorithmes précédentes,
par exemple), oil 0y(;) et 0; ont dimension k et &+ 1 respectivement. Nous représentons chacune de
ces paires dans R? avec le point de coordonnés (I(3), ) ; pour les simplexes positifs o; qui restent
non associés, nous créons les points (i, +00).

Définition 3.33. Nous appellons la représentation de cet ensemble de points dans R? avec la
diagonale A = {x = y} le diagramme de persistance k-dimensionnel de la filtration.

Plus généralement, si la filtration est indexée par une suite croissante de numéros réels, comme
par exemple avec les filtrations introduites dans la section 3.3.2,

=Ko CKo C-CK,,_, CKay, =K,

n—1
une paire de persistance de simplexes (0;,0;) est représentée par le point (;, o;), avec les indices
d’apparition et mort ; si le simplexe o; reste non associé, nous ajoutons ajoute le point (a;, +00).

Le méme type de points peuvent étre crées pour toute filtration d’'un espace topologique et
avec 'homologie singuliére, ou la coordonné x enregistre 'apparition d’une classe d’homologie et
la coordonné y sa mort. En tout cas, dans ces cas plus générales, il faut faire attention au fait que
plusieurs paires peuvent étre associées au méme point dans le plan. Donc, dans ces diagrammes de
persistance il faut aussi considérer une multiplicité pour chaque point. Par convention, les points
de la diagonale ont tous multiplicité infinie. Désormais, nous considérerons aussi une multiplicité
pour chaque point dans la définition de diagramme de persistance.

Nous pouvons définir une distance entre diagrammes de persistance pour mieux les comparer :
Définition 3.34. (Distance "bottleneck") Soient Dy et Dy deuz diagrammes de persistance.

La distance goulot ("bottleneck” en anglais) entre Dy et Dy est définie comme

dp(Dy, Dy) = inf sup |[p —v(p)|locs
7 peD;

ol y est ’ensemble de bijections entre les points de Dy et Do ; on prend m copies disjointes si un
point a multiplicité m > 1. Par convention, sip = (zp,+00), ¢ = (x4, +0), ||P — qlloc = |Tp — 24

Remarque 3.35. C’est précisément cette distance qui motive ajouter la diagonale aux diagrammes
de persistance : elle permet de comparer des diagrammes qui n’ont pas le méme nombre de points
dehors la diagonale en les associant avec des points de la diagonale.

Nous omettrons la démonstration qu’il s’agit vraiment d’une distance. Dans 'image suivante il
apparait une représentation de la distance bottleneck entre deux diagrammes de persistance :
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L

Stabilité persistante des fonctions

Dans cette derniére partie de la section, inévitablement plus avancée et sans toutes les démons-
trations, nous allons lier la proximité de deux fonctions f et g a la proximité de ses diagrammes
de persistance. Cette relation est fondamentale pour justifier la convenance des diagrammes de
persistance associées a une fonction, ainsi comme pour identifier ses propriétés "proéminentes" et
les distinguer du "bruit topologique", i.e. des caractéristiques topologiques de courte durée crées
pour de petites perturbations. Ces résultats deviennent aussi importants pour justifier la procédure
de T'algorithme ToMATo du prochain chapitre, ot nous travaillons avec une estimation f d’une
densité f, et nous regardons son diagramme de persistance (0-dimensionnel).

Expliquons briévement la situation : soit f : X — R une fonction réelle continue définie sur un

espace topologique X. Nous voulons étudier le diagramme de persistance k-dimensionnel associé a
ses ensembles de sous-niveau {Fy, }oer, oit Fyy = f~1((—00, a]), avec ’homologie singuliére.
Une propriété fondamentale de ’homologie singuliére est que toute application continue entre es-
paces topologiques h : X — Y induit un morphisme entre les respectives (k-émes) groupes d’ho-
mologie, h, : H,(X) — H.(Y). Plus concrétement, la (k-éme) homologie singuliére est un foncteur
(covariant) de la catégorie des espaces topologiques & la catégorie des groupes. Donc, il est toujours
vrai que (idx )« = idp, (x) et (hog)s = hy o g..

Dans notre cas, on peut étudier les applications induites par les inclusions F, C F} quand a < b,
fb: H.(F,) — H.(F). Ces groupes et morphismes encodent toute l'information de 1’homologie
persistante : quelques références appellent groupes d’homologie persistante aux groupes Im f°, qui
suivent la méme idée que les groupes qui apparaissent dans la Définition 3.28, dans le cas simplicial.
Intuitivement, avec deux fonctions "proches" (avec la distance || f —g||oc = sup,cx |f(x)—g(x)]), les
moments de création et de mort de certaines caractéristiques topologiques (gardés dans les groupes
d’homologie, et représentés graphiquement dans les diagrammes de persistance respectifs D(f) et
D(g)) devraient étre similaires. Cette idée est formalisée dans le théoréme suivant :

Théoréme 3.36. (Théoréme de la stabilité bottleneck des diagrammes de persistance) :
Soit X un espace topologique triangulable avec des fonctions tame f,g : X — R. Alors, les dia-
grammes de persistance satisfont dg(D(f), D(g)) < ||f — 9]co-
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Nous démontrerons le théoréme & la fin de la section, mais sans tous les pas intermédiaires.
Avant, plusieurs définitions et résultats sont nécessaires :

Définition 3.37. Soit X un espace topologique, f : X — R. Une valeur critique homologique
de [ est un numéro réel a pour lequel il existe un entier k tel que, Ve > 0, Uapplication induite
“te . Hy(Fy_.) — Hy(F,..) nest pas un isomorphisme.

a—e °
Lemme 3.38. (Lemme de la valeur critique) : Si [a,b] ne contient aucune valeur critique
homologique de f, f° est un isomorphisme pour tout k € Z.

Démonstration. Soit m = %, or fo = f2 o f™. Si f° n’est pas un isomorphisme, au moins une des
deux fonctions antérieures ne ’est pas non plus. Ainsi, on peut construire de maniére inductive une
suite d’intervalles fermés décroissants, I'intersection desquels est une valeur critique homologique
dans [x,y], ce qui est une contradiction. O

Le lemme antérieur formalise I'idée que c’est seulement quand on atteint des valeurs critiques
homologiques que nouvelles caractéristiques topologiques sont crées ou destruites. Notre résultat
requiert une condition de finitude sur notre fonction, qui se satisfait dans la plupart des cas d’étude :

Définition 3.39. Une fonction f : X — R s’appelle tame si elle a un numéro fini de valeurs
critiques homologiques et tous les groupes d’homologie Hy(F,) ont dimension finie Vk € Z, a € R.

Rappelons maintenant la définition de la distance de Hausdorff, trés habituelle dans la TDA,
pour des nuages de points :

Définition 3.40. Soient X et Y des ensembles de points (avec multiplicité). Alors la distance
Hausdorff est dy(X,Y) = max{sup, inf, ||z — y||o,sup, inf, |y — 2[|~}

Un résultat important, mais sans démonstration, que nous utiliserons plus tard est celui-ci :

Proposition 3.41. Soit X un espace topologique triangulable avec des fonctions tame f,g: X — R.
Alors dp (D(f), D(g)) <IIf = gllsc-

Remarque 3.42. La distance Hausdorff entre deux diagrammes de persistance n’excéde jamais la
distance bottleneck, car elle ne fait pas attention aux multiplicités, ou regroupements de points. Le
résultat pour la distance bottleneck est plus fort, et clé, pour quelques applications.

Voyons avant le résultat du Théoréme 3.36 pour un cas spécial, et plus simple. Nous nous en
servirons plus tard pour prouver le cas général.
Etant donnée une fonction tame f : X — R, soit & ¢ la distance minimale entre deux points dehors
la diagonal, ou entre un point dehors la diagonale et un autre dedans :

6f = min{[|p — ql|eo| D(/)\A 3 p # q € D(f)}.

Si on dessine des carrés de rayon € = 07 /2 centrés sur les points de D(f), on obtient une diagonale
plus "grosse", et une collection finie de carrés disjoints entre eux et avec la diagonale.

Définition 3.43. Une autre fonction tame g : X — R est appelée trés proche a f si||f—g|lco < %f.

Ici un autre lemme nécessaire mais sans démonstration, de nature plus technique :

Lemme 3.44. Soient f,g : X — R des fonctions tames, g trés proche a f. Soient p € D(f)\A,
myp sa multiplicité et O, le carré centré en p de rayon € = ||f — gl|oo. Alors |D(g) NOe| = myp,.
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Lemme 3.45. (Lemme de la bijection) : Soit X un espace topologique triangulable, f,g: X — R
des fonctions tames, g trés proche & f. Alors dg(D(f),D(9)) < I|f — 9l|oo-

Démonstration. Soient p € D(f)\A et [J; le carré centré en p de rayon € = || f — g|| 0, cOmme avant.
Du lemme précédant, tous les points de D(g) N . peuvent étre associés a p. Nous pouvons suivre
cette procédure pour tous les points dehors la diagonal de D(f). Aprés, les seuls points de D(g)
qui restent sans image ont une distance supérieure a € de D(f)\A. Du fait que dg(D(f),D(g)) <e
(Proposition 3.41), ces points de D(g) sont au plus a distance € de la diagonale. Si nous leur
associons respectivement les points les plus proches de la diagonale, nous obtenons une bijection
entre D(f) et D(g) (rappelons que les points de la diagonale ont multiplicité infinie). Cette bijection
déplace les points au plus €, ce qui finit la démonstration. O

Rappelons qu’un espace topologique est appelé triangulable s’il existe un complexe simplicial
fini avec une réalisation géométrique homéomorphe. Nous pouvons montrer notre théoréme dans
toute sa généralité en faisant des approximations successives de notre fonction originelle f : X — R
par des fonctions linéaires par morceaux définies sur un complexe simplicial :

Définition 3.46. Soit K un complexe simplicial avec des valeurs réels spécifiées sur chaque sommet
i, f(x:). Sa fonction linéaire par morceauz (LPM) associée est f : K — R, & = Yo bi(x) fx:), ou
bi(x) sont les coordonnés barycentriques de x. On obtient une fonction linéaire sur chaque simplexe
du complexe.

Remarquons que, & cause de sa nature finie et linéaire, une fonction LPM sur un complexe
simpliciale fini est toujours tame. Ce fait permet de démontrer le Théoréme 3.36 pour deux fonctions
LPM f, g définies sur un complexe simplicial K fini. Avant, une derniére définition :

Définition 3.47. Une combinaison convexe de f et § est une fonction du type hy = (1 — )\)f+ Ag,
avec A € [0,1]. Cette famille de combinaisons convexes entre les deux fonctions, ot hg = f et
h1 = g, s’appelle interpolation linéaire de f a §.

Lemme 3.48. (Lemme d’interpolation) : Soient f, 4 deuz fonctions LPM définies sur un com-
plexe simplicial K fini. Alors dg(D(f),D(9)) < |If — §lloo

Démonstration. L’idée de base de la démonstration est de décomposer I'interpolation linéaire de f
4 g en petites sections pour utiliser le Lemme de la bijection, et ainsi obtenir une bijection dans
chaque section.

Soit & = ||f — §|oe, et observons que, pour tout A € [0,1], hy est tame (car elle est aussi une
fonction LPM) et 6(A) = dp,, est strictement positif quand au moins f ou § ont un point dehors la
diagonale (sinon, l'inégalité du lemme est triviale).

Donc, la famille C' = {Jx} xeqn[o,1] d'intervalles ouverts Jy = (A — 5512) JA+ %ﬁ)) forme un recouvre-
ment ouvert de lintervalle [0, 1]. Prenons un sous-recouvrement fini C’ de C, qui existe pour étre
[0,1] compact, et minimal. Soient A\; < --- < A, les points médians des intervalles de C’. Du fait
ont toujours intersection non-vide, et

que C’ est minimale, deux intervalles consécutifs Jy, et Jy,,,

6(Ai) +0(Nig1) - max{d(A;), 6(Ni1)}
4e - 2e

Aig1 — N <

Par définition de €, on a aussi ||k, — ha, 1]l = |[(Nig1 — Ai)(§ — Dlloe = e(Xig1 — ;). Par

conséquent,

max{d(A;), 0(Niy1)}
||hA7 - h)\z:+1||00 < 2 3
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ce qui implique que hy, est trés proche & hy
Lemme de la bijection, qui dit que dg(D(hy

.11, ou a l'inverse. Nous pouvons alors appliquer le
'i+1)7D(h’)\i)) < Hh)\i+1 - h/\zHoo pour 1 <:¢<n-—1
Observons que, si nous ajoutons A\g = 0 et A\,,+1 = 1 (donc hg = f et hy = §), ces derniers raisonne-
ments sont encore vraies, car 0 et 1 font aussi partie du recouvrement, et h) varie continuellement
avec A. Donc f est trés proche a hy, (ou a l'inverse), et § est trés proche & hy, (ou a l'inverse).

Maintenant, I'inégalité triangulaire donne

n

dB(D(f)7D(g)) < ZdB(D(h/\z)7D(h/\1+1)) < Z ||h)\1 - h)\i+1||00'
i=0 =0

Du fait que les hy, forment une interpolation linéaire de f a g et leurs valeurs changent linéairement
entre les deux, la derniére somme est égale & ||f — §||o0, ce qui finit la démonstration. O

Avec ce dernier résultat, nous pouvons démontrer le Théoréme 3.36 :

Théoréme de la stabilité bottleneck des diagrammes de persistance : Soit X un espace
topologique triangulable avec des fonctions tame f,g : X — R. Alors, les diagrammes de persistance

satisfont dp(D(f), D(9)) < |[f = 9lloo-

Démonstration. (du Théoréme 3.36 :) Par définition de triangulabilité, il existe un complexe sim-
plicial fini L et un homéomorphisme ¢ : L. — X. Notons que, du fait que ¢ est un homéomorphisme,
¢ fH((—~00,a])) =2 f71((—00,a]) Va € R, et les groupes d’homologie singuliére sont aussi tous
isomorphes a cause de sa fonctorialité. Par conséquent, le diagramme de persistance reste non al-
téré par ce changement de variables : f o ¢ : L — R est aussi tame et a le méme diagramme de
persistance que f.

Soit § > 0 suffisamment petit. Du fait que f et g sont continues et L est compact, il existe une
sous-division K de L telle que

[fod(x) = fod(y) <6, [god(x)—goo(y) <o (7)

pour z,y dans le méme simplexe de K.

Soient f ,g : SAdK — R les fonctions linéaires par morceaux qu’on obtient & partir de fo ¢ et go ¢
sur les sommets de SAK, ou SAK dénote la sous-division barycentrique de K. Par construction de
K, ces fonctions satisfont |[f — f o @|lsc < 6 et ||§ — g 0 ¢||oc < 6. En faisant usage du Lemme
d’Interpolation, le fait que f et ¢ different au maximum ¢ de f o ¢ et g o ¢ respectivement, et

[Ilf — 3glloc = ||f © ¢ — g © d||oo, On obtient
d5(D(F). D@) < |f — dlloo <1 06— g0 6l + 26 = |If — glloc + 20 (®)

Si nous supposons de plus que § < %, nous obtenons une bijection du Lemme de la Bijection. Du
fait que le changement de variables n’affecte pas le diagramme de persistance, on a

dp(D(f), D(f)) = dg(D(f o $), D(f)) < 6. 9)

Si nous supposons pareillement que ¢ < %9, I'inégalité triangulaire appliqué plusieurs fois avec (8)
et (9) donne
dB(D(f)7D(g)) < ||f - g”oo + 457

ce qui montre le résultat, donc § peut étre arbitrairement petit. O
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4. L’algorithme ToMATo

4.1. Introduction

L’exposition et exploration que nous ferons maintenant de l’algorithme ToMATo (Topological
Mode Analysis Tool) et son implementation dans la librairie GUDHI constituent la partie la plus
innovante de notre travail. Cette méthode, récemment congue, se situe dans les techniques de cluste-
ring, donc dans ’apprentissage non supervisé. Bien que le fonctionnement ne soit pas spécialement
complexe, il se base sur des idées de I'analyse topologique de données exposées antérieurement
qu’il faut bien comprendre, notamment les complexes simpliciales ("graphes" désormais) et les dia-
grammes de persistance.

Un autre principe important de notre algorithme est qu’il est sensé fonctionner avec des sous-
variétés de R? (ou variétés riemanniennes en général), indépendemment de sa "forme". Cela est
remarquable puisqu’une bonne partie des algorithmes de clustering existants (par exemple, la mé-
thode K-means, déja exposée) ne parviennent pas & identifier les clusters lorsque ces derniers
s’éloignent d’une structure convexe. Par exemple, certains algorithmes sont incapables de bien re-
grouper un ensemble de données échantillonnées & partir de deux anneaux concentriques dans R2.
Du ce fait, dans la section 4.1.1., nous exposerons les constructions et les arguments en prenant
une variété riemannienne X, le cas le plus général. Cependant, dans la pratique nos données sont
presque toujours dans R%, et seulement dans certains cas particuliers ils présentent une forme clai-
rement semblable a une sous-variété de R%.

En nous appuyant sur la classification des techniques de clustering faite au début de la section
"Algorithmes de clustering combinatoires", au deuxiéme chapitre, on pourrait affirmer que I'algo-
rithme ToMATo combine une partie "mode-seeking" et une partie de nature plus combinatoire. En
plus de cela, son innovation principale est que, pour guider la fusion des différents mini-clusters
tout au long de la méthode, il utilise la notion de "persistance topologique", introduite au chapitre
précédent. En plus d’étiqueter les données dans de différents groups, 'algorithme produit aussi un
diagramme de persistance, qui permet de choisir des parameétres précis afin d’obtenir le nombre de
clusters souhaité.

4.1.1. L’intuition derriére 1’algorithme : le cas continu

L’idée de base de la méthode est que, si les données sont obtenues en suivant une fonction de
densité f, les clusters le plus logiques sont ces régions ou la fonction fait des "bosses significatives".
C’est dans ces derniéres ou les points seront plus probablement situés et regroupés.

Soit X une variété riemanniene de dimension m et f une fonction f : X — R C?-continue

sans points critiques dégénérés. Supposons aussi que f a un nombre fini de points critiques. La
région ascendante d’un point critique m est le sous-ensemble de points A(m) C X qui parviennent
finalement a m en suivant le flux induit pour le champ de vecteurs gradient de f. On appelle m la
racine de x € A(m).
On peut démontrer que les régions ascendantes des pics de f forment des sous-ensembles de X
disjoints et homéomorphes & R™. De plus, si f est bornée et propre, les régions ascendantes de ces
pics couvrent X sauf un sous-ensemble de mesure de Lebesgue zéro. Il est donc logique d’utiliser
ces régions pour découper X p.p. en régions d’influence.

Considérons maintenant la famille de sous-espaces {Fy, }aer, ot F, = f~1([a, +00)) et a varie
de 400 & —oco (i.e. la filtration de X associée aux ensembles de super-niveau de f). Pour @ € R
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et x € F,, appelons C(z,a) C F, la composante connexe par arcs de F, contenant x. Selon la
Théorie de Morse, lorsqu’un maximum local m, de f entre dans la filtration au moment o = b(m,,)
(b de "birth"), une nouvelle composante connexe par arcs C(m,, @) apparait dans F,. Puis, cette
derniére cesse d’étre indépendante quand elle se connecte avec une autre composante générée pour
un pic my plus haut, pour quelque autre o = d(m,,) (d de "death"). Dans ce cas, on nomem m,
la racine de my, et on écrit m, = r(m,). Dans le diagramme de persistance 0-dimensionnel de f,
la durée de vie de m, comme racine est encodée pour le point p = (b(my), d(my)), et on appelle la
différence dp = p, — p, la proéminence de m,, ou que m,, est dp-proéminent.

My ,’

'ﬁ"JI,

@ = bi{my,) —
e ;
/ 7= proéminence de my,
\

o = d(my)

Ty

Afmy) Afmy) Afm,)

FI1GURE 8 — Représentation graphique, avec f une fonction réelle d’une variable, de toutes les idées
exposées jusqu’a ici : pics de f (points critiques/ maximums locaux), régions ascendantes de ces
pics et proéminence du pic m,.

En nous appuyant sur un "parameétre de fusion" 7 > 0, on peut seulement considérer les pics de
f de proéminence au moins 7. Pour tout pic m, de f, on itére I'"application racine" m, — r(my)
jusqu’a ce qu’un pic de proéminence 7 soit obtenu. Ce processus finit toujours, donc f a un nombre
fini de points critiques, et on a toujours f(mg,) < f(r(m,)). Appelons cette fonction itérée rx.
Observons que tout pic de proéminence au moins 7 est un point fixe de 7.
L’union des régions ascendantes de tous les pics qui arrivent finalement & m,, avec 7 est appelée le
bassin d’attraction de m, (de paramétre 7), Br(m,) :

Vm,, tel que p, —py > 7, Br(my) = U A(m).

rr(m)=mp

Clairement, B.(m,) contient A(m,), donc m, est un point fixe de 7. De plus, Ces bassins
d’attraction forment une partition de I'union de toutes les régions ascendantes. Ce sont précisément
ces bassins d’attraction qui constituent nos candidats a clusters.
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4.2. Les données d’entrée (input data)

Dans tous les cas, pour fonctionner, la méthode ToMATo a besoin de deux informations sur nos
données. Tout d’abord, 'algorithme requiert un poids pour chaque point, c’est a dire, une valeur f (1)
associée a chaque donnée ¢, qui représente une estimation d’une hypothétique fonction de densité
f, sur laquelle les données ont été obtenues. Puis, il est aussi nécessaire d’avoir un graphe de voi-
sinage, qui "connecte" de quelque sorte ces données entre elles, et qui encode la proximité des points.

De plus, une autre information clé dois étre aussi transmise a l’algorithme pour guider la fu-
sion des clusters intermédiaires : un paramétre de fusion 7. En somme, ce paramétre détermine
a partir de quelle persistance un point ou région de points se mélange avec d’autres ou pas. Sa
valeur "idéale" change selon le cas, donc elle dépend de f et le numéro de clusters que ’on souhaite
obtenir. Le fonctionnement et la détermination de ce paramétre, trés important dans la méthode,
deviendront beaucoup plus claires aprés avoir étudié la procédure de ’algorithme et le diagramme
qu’il produit.

Développons a présent les deux premiéres informations nécessaires pour ’algorithme. Nous re-
marquons que, dans la pratique, nous ne les avons presque jamais directement. En effet, dans le
cas le plus simple, nous avons seulement un nuage de points dans R? avec n observations, ou, dans
des cas plus élaborés et "théoriques", un ensemble de points dans une variété riemmanienne, qui
permet également de définir des distances entre eux. Avec une base de données réelle, nous avons
généralement une quantité n de données avec p attributs quantitatives et/ou catégoriques, ot nous
pouvons définir distances entre paires, ou les plonger dans R? "convenablement" avec un métrique
(voir l'introduction de la Section 2).

Indépendemment de la fagon dont les calculs sont réalisés ou si on utilise un espace métrique
ambiant (normalement R?), utiliser des distances entre paires de données est trés pratique : elles
permettent de construire assez rapidement les graphes de voisinage les plus naturels, et notre al-
gorithme a besoin d’un graphe entre les données pour bien fonctionner. De plus, elles sont aussi
pratiques pour calculer certaines estimations de la fonction de densité de base f.

4.2.1. Quelques constructions de graphes habituelles

Développons a présent certaines constructions de graphes habituelles sur des nuages de points,
qui peuvent naturellement étre utilisées dans notre situation. Nous assumons qu’il n’y a jamais la
méme distance entre toutes les paires de points. Si ce n’est pas le cas, nous pouvons adapter notre
démarche en fonction de la situation :

e Graphe a-Rips : 1l unit toutes les paires de points z,y qui satisfont d(z,y) < a. Il est donc
le squelette 1-dimensionnel de Rips,(X), ou Cechg (X).
Il constitue, en quelque sorte, le graphe le plus naturel pour connecter les points proches entre
eux, et il est aussi trés facile a construire. Néanmoins, le nombre d’arétes peut beaucoup varier
entre sommets différents, et le paramétre a n’est pas toujours évident pour obtenir les résultats
souhaités : si c’est trop petit, il peut y avoir un numéro excessif de composantes connexes ;
cependant, s’il est trop grand, la structure de proximité se dilue aussi.

e Graphe des k plus proches voisins (k-NN) : Il connecte chaque sommet avec ses k autres
sommets les plus proches. De cette fagon, chaque sommet est I'extrémité d’au moins & arétes.
C’est & priori un graphe orienté, donc cette relation de proximité n’est pas symétrique : par
exemple, avec k = 1, un sommet 1 peut avoir le sommet 2 comme le sommet le plus proche,

34



Introduction & la TDA et étude de ’algorithme ToMATo

Nil Garcés de Marcilla

10

08

0.6

0.4 4

02

0.0

10

0.8 4

06 o

044

0z 4

0.0

Ci

mais ce dernier avoir un sommet 3 plus proche que le sommet 1. Parfois, dans la pratique, on
ignore cette directionnalité et on accepte que quelques sommets aient plus d’arétes incidentes.
Ce graphe est intéressant et utile puisque, en général, le numéro d’arétes incidentes a chaque
sommet reste assez similaire, et il n’y a jamais des points isolés. Il est aussi un peu plus
exigeant a niveau de calcul, donc il faut ordonner & chaque pas les distances d’un sommet aux
autres, mais certains algorithmes pour trouver des approximations du graphe k-NN existent
qui sont beaucoup plus rapides. Son désavantage principal est que parfois il connecte de points
qui ne sont pas spécialement proches.

Graphe de Delaunay : C’est le graphe qu’on obtient si on triangule les points de facon a ce
qu’aucun des points reste a I'intérieur du circumcercle d’aucun des triangles. Normalement,
on obtient ainsi une triangulation sans beaucoup d’angles pointus. Il y a des algorithmes assez
rapides pour le calculer, et il est aussi généralisable aux dimensions supérieures.

Son principal avantage est que, a la différence des deux algorithmes précédents, ce dernier n’a
pas besoin d’un paramétre pour étre défini. Pareillement au graphe k-NN, le numéro d’arétes
incidentes a chaque sommet est souvent similaire, mais parfois il unit des points qui ne sont
pas spécialement proches entre eux.

-dessous, un exemple de chacun de ces trois graphes.

10

08

06

04

02

00

00

02 0.4 0.6 0.8 10 0.0

10
08
06
04

02

/

0.0

0.2 0.4 0.6 0.5 10 0.0 02 0.5 10

FIGURE 9 — Représentation des trois constructions exposés antérieurement avec un ensemble de
20 points échantillonnés dans le carré 1x1 (distribution uniforme). En haut a droite, le graph de
Delaunay. En bas a gauche : le graphe k-NN avec k = 4 (chaque point est aussi son propre voisin le
plus proche) ; nous observons qu’une partie importante des sommets a plus de trois arétes incidentes.
En bas a droite; le graphe a-rayon avec a = 0.3.
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4.2.2. Quelques estimateurs classiques de la fonction de densité

Exposons a présent deux maniéres (non-paramétriques) d’estimer la fonction de densité f sur
laquelle on suppose que les données ont été obtenues. L’idée est toujours de construire une fonction
f , estimation de la "véritable" fonction de densité f, en utilisant la disposition des points, qui nous
donne des informations sur f. Nous ne détaillerons pas les arguments théoriques qui justifient la
justesse (asymptotique) vers f de ces méthodes, et nous ignorerons aussi les possibles généralisa-
tions sur des sous-variétés : nous supposerons que [ est simplement définie sur R? (et souvent,
seulement R).

e FEstimation par les k plus proches voisins : Rappelons avant que, par définition de fonction
de densité, un vecteur aléatoire X dans R? satisfait, pour tout borélien A C R? P(X € A) =
/ 4 J- Donc, si A est une boule petite centrée sur z, la probabilité que X tombe dans A est
approximativement f(x) multiplié par le volume de A. En fait, avec des hypothéses assez
faibles sur f continue, on a

. fB(xO,a) f(x)dz
‘}‘I—%W: f (o), (10)

otl | - | dénote le volume dans R?. Rappelons aussi que le volume de la boule unité dans R?
satisfait la formule
v, r
d= =g o
L(g+1)

ou T est la fonction Gamma T'(m) = f0+oo 2™ le=%dx, et si on varie le rayon 7 de la boule,
le volume change en suivant la formule Vj - 79,

En vue de I’équation (10), avec les données {1, ...,2,}, on peut estimer f(z) de la maniére
"naturelle" suivante : soit k un entier avec 1 < k < n, Ry)(z) = ||z (2) — || la distance de
x a son k plus proche voisin, et pu,, la fonction de répartition empirique, ot pour tout borélien

1
ACRY 1, (A) = >, 1{z,eay- Alors, I'estimateur par les £ plus proches voisins est défini
comme "
_ pa(B(z, Rxy)) k

d
@) = B R~ Vil @) —at &€ F" ()

e [Estimation par noyau (Kernel density estimation) : C’est possiblement la méthode d’estima-
tion la plus habituelle et étudiée. En résumé, c’est une généralisation de la notion d’histo-
gramme, mais facilement réalisable en dimensions plus élevées, et (souvent) aussi continue et
différenciable.

L’idée est de construire f en additionnant plusieurs petites fonctions centrées chacune sur
une donnée. On appelle ces petites fonctions noyauz, qui sont toujours réelles, non-négatives
et intégrables. De plus, en général on assume aussi, pour notre fonction noyau K(x), que
Jpa K(x)dz =1 (i.e. K(x) est une fonction de densité) et que K est radiale (K(—z) = K(x)
quand d = 1, K constant sur S, = {x € RY| ||z|| = r} en général).

Prenons maintenant nos données (z1,...,z,) (indépendantes et identiquement distribuées,
obtenues a partir de f). Nous supposerons désormais que d = 1 pour simplifier les notations,
bien que pour d général les constructions suivants sont aussi valides avec quelques 1égéres mo-
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difications. En choisissant une fonction noyau K (z), nous construisons la fonction f comme :
Fu@) = 3 Kyla =) = 3 (20 (12)
T)=— T—x) = — —).
" i " nh i=1 h

Ici, h est un paramétre d’échelle & déterminer, mais qui a une grand influence sur ’estima-
tion finale. Ce paramétre détermine de quelque sorte la largeur de la fonction noyau au-
tour de chaque donnée. C’est aussi immédiat de vérifier que quand fRK (z)dr = 1, on a
Jg fu(z)dz = 1.

Dans la pratique, la meilleure valeur de ce paramétre est difficile & déterminer, donc il
y a toujours un compromis entre biais et variance. Différents travaux essaient d’étudier
les meilleures valeurs de h en fonction de chaque situation. En tout cas, bien que cer-
taines indications existent (par exemple, avec un noyau gaussienne, il est habituel de prendre
h ~ 1.06 - min (&, %) -n*%, ou & est 'estimateur de ’écart-type habituel et EIQ est ’écart
interquartile), normalement I’estimation est faite avec plusieurs valeurs de h et on prend celle
qui donne le meilleur résultat.

En ce qui concerne les fonctions noyau, nous remarquons différentes options. Nous montrons,
pour d = 1 (mais facilement généralisables & d supérieure en prenant ||z|| au lieu de z, et en
changeant légérement quelques coefficients en fonction de la dimension), certaines des plus
utilisées, mais sans entrer dans les détails et particularités de chacune :

1
1. Noyau gaussienne : K(x) = La

1
2. Noyau uniforme : K(z) = 3 1(2){—1< = <1}-
3. Noyau triangulaire : K(z) = (1 — |z|) 1(2);_1< » <1}-

3
4. Noyau de Epanechnikov (parabolique) : K(z) = 1(1 —2?) L(2){—1< 2 <1}

70
5. Noyau tricubique : K(z) = —1(1 — |2*) L(@){—1< & <1}-

4.3.

F1GURE 10 — Toutes les fonctions noyaux mentionnées, dans le méme ordre.

La procédure de ’algorithme

Expliquons maintenant comment ’algorithme obtient les différents clusters. Supposons que nous
avons un graphe de voisinage G entre les points, des valeurs f(i) pour chaque sommet i, et le pa-
ramétre de fusion 7. L’algorithme de base se compose de deux parties :

1.

(Recherche de modes) Pour calculer les clusters de départ, TOMATo ordonne d’abord tous
les sommets de maniére décroissante en fonction de sa valeur f. Avec cet ordre, il passe par
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chaque sommet 7 et il simule un effet de gradient de la fonction de densité de base : il connecte
i avec son voisin dans G avec la f—valeur la plus haute. Si tous ses voisins ont des valeurs
inférieures, 4 est étiqueté comme un "pic" (ou mode) de f .

En regardant les arétes "de gradient" a la fin de ce processus, on obtient ce qu’on appelle
une "forét couvrante" du graphe G, une notion similaire & celle de "arbre couvrant" (i.e. un
sub-graphe de G connexe et acyclique qui passe pour tous les sommets de G); cependant,
dans ce cas, la connectivité n’est pas exigée. Chaque composante connexe dans une forét est
un arbre avec la définition usuelle dans la théorie de graphes; d’ici provient le nom.

Chaque arbre dans cette forét couvrant peut étre vu comme 1’équivalent discret d’une région
ascendante de f dans le cas continu, expliqué en 4.1.1, donc un cluster initial de notre nuage
de points. Pour conserver toute cette information, on peut numéroter les ¢ arbres obtenus et
étiqueter chaque sommet avec son arbre correspondant. Dans un arbre i, on appelle (i) (r de
"racine") son sommet avec la f—valeur la plus haute, et on appelle aussi a(j) 'arbre associé
& un sommet j.

2. (Fusion des arbres) Bien que 'idée de la premiére étape soit logique, donc elle regroupe des
données dans des "bosses" de f , elle est aussi un peu aléatoire et inévitablement insuffisant.
Dans cette deuxiéme étape, I’objectif es de fusionner les arbres "similaires", en adaptant la
notion de persistance topologique introduite a 4.1.1.

Pour cela, ToMATo passe plusieurs fois sur les sommets de G dans le méme ordre. Ici, tous
les sommets sont déja étiquetés dans un arbre. Dans cette itération, étant donné un sommet
1, deux cas sont possibles :

(a) 7 est déja un pic d’un arbre, et donc aussi sa racine, et tous les voisins de ¢ ont des
f-valeurs inférieures. Dans ce cas, les correspondances entre arbres et sommets restent
inaltérées.

(b) 4 n’est pas le pic de a(i), et on cherche des fusions potentielles entre a(i) et d’autres
arbres "a coté".
Pour cela, on prend les voisins k de i dans G (aussi de maniére ordonnée) qui satisfont
f(k) > f(i), et on regarde si f(r(a(k)) < min{f(r(a(i)), f(i) + 7} ; ainsi, on étude si le
pic de a(k) est inférieur a celui de a(i) et si sa proéminence est inférieure & 7. Si c’est le
cas, toutes les sommets appartenant a a(k) sont réétiquetés a a(i). De la méme maniére,
nous pouvons vérifier si f(r(a(i)) < min{f(r(a(k)), f(k)+7}, et réétiqueter les sommets
de a(i) a a(k) si c’est le cas.

A la fin de cette deuxiéme étape, tous les arbres (mini-clusters) de départ avec des pics de

proéminence moins de T et avec des sommets "connectés" a d’autres arbres ont été unifiés les

uns avec les autres pour créer des arbres plus grands, et avec une proéminence d’au moins

7 (nos clusters finaux). De plus, on a enregistré dans quel arbre/ cluster chaque donnée

appartient.

4.4. Information finale obtenue

Avec le processus expliqué précédemment, l'information finale obtenue semble claire : pour
chaque donnée i, une étiquette a(i), son cluster final associé. Néanmoins, la méthode précédente
n’est pas la plus utile pour travailler avec le type de problémes que 1’on retrouve avec des données
réelles. On peut donc utiliser les notions expliquées au troisiéme chapitre pour obtenir un algo-
rithme plus flexible et informatif.

En effet, en reprenant la deuxiéme étape exposée précédemment, il est évident que la valeur 7
joue un role essentiel dans 'algorithme ; c’est ce numéro qui décide quelle doit étre la proéminence
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minimale d’un pic-cluster pour ne pas étre fusionné avec d’autres pics-clusters "proches". Cepen-
dant, dans la pratique, normalement nous n’avons pas connaissance de la valeur 7 "idéale" pour
obtenir le meilleur résultat de clustering. Par exemple, nous vons déja remarqué que les valeurs f
associées a chaque donnée dépendent de l’estimation choisie et, par conséquence, un "bon" para-
métre 7, 8’il existe, possiblement aussi.

C’est au moment de choisir une valeur de 7 convenable que les diagrammes de persistance in-
troduits au troisiéme chapitre deviennent utiles. L’idée est de créer une représentation graphique
de la proéminence de tous les différents clusters pour mieux détecter quels sont spécialement pro-
éminents. Avec cette information, nous pouvons ajuster 7 pour obtenir un nombre de clusters plus
naturel, avec les étiquettes correspondantes.

Notre diagramme de persistance peut étre obtenu de la maniére suivant :

— Au début, on crée un point (x,y) pour chaque arbre-cluster initial, qui a toujours un pic
associé : son sommet avec l'estimation de f la plus élevée, un mode de f. La cordonné x
stocke cette valeur, tandis que la cordonné y reste non-assignée.

— Puis, on commence a fusionner ces clusters initiaux, en suivant la deuxiéme étape expliquée
dans la section précédente et en gardant une trace de ces fusions. Intuitivement, on peut
imaginer le paramétre de fusion 7 qui vaut 0 au début, et qui augmente progressivement.
Chaque fois que deux clusters sont fusionnés, on enregistre la mort du plus "petit" (i.e. moins
proéminent, i.e. avec un pic associé moins haut) dans la cordonnée y, qui prend la valeur
y =z — 7, tandis que le plus "grand" continue d’exister.

— Ce processus continue jusqu’a ce que toutes les fusions possibles aient lieu. A ce moment,
seulement les clusters associés aux composantes connexes du graphe de voisinage restent en
vie, et on leur assigne la cordonnée y = —oo.

Enfin, on obtient un ensemble de points qui encode d’une maniére assez compléte les proéminences
relatives de tous les clusters/basins de f, ou les distances (verticales) entre les (x,y) et la diagonale
sont leur proéminence. Il est recommandable de dessiner les points avec y = —oo avec une couleur
différente, pour mieux identifier dans le diagramme le nombre de composantes connexes existantes.
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FIGURE 11 — Exemple de diagramme de persistance du type que nous venons d’exposer.

On voit rapidement que le diagramme de persistance obtenu n’est qu’une variation du dia-
gramme de persistance 0-dimensionnel associé aux ensembles de super-niveau d’une fonction f,
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comme celui décrit a exemple 3.26 (ou on prenait les ensembles de sous-niveau). Cependant, la
"connectivité" est encodée dans un graphe de voisinage, et les points habitent la moitié inférieure
de la diagonal. Néanmoins, les différents résultats sur les diagrammes de persistance, notamment
ceux liés & sa stabilité (section 3.5), peuvent étre appliqués avec de petites variations dans notre
cas discret.

Nous remarquons que, méme si nous avons exposé la méthode en imaginant que la valeur 7
augmente progressivement, au niveau algorithmique tous les points du diagramme de persistance
peuvent étre calculés d’une fagon directe : au début, et aussi aprés chaque fusion, on parcourt tous
les sommets ordonnés en fonction de f en cherchant, pour un sommet ¢ avec son pic correspon-
dant p;, un voisin k dans un cluster différent qui satisfait f(k:) > f(z) et f(pk) < f(pz) (resp.
F(pr) < f(ps)). Dans ce cas, on assigne la valeur y = f(p) — f(i) au cluster du sommet k, et tous
ses sommets sont étiqt}etés avec le cluster du sommet 4, et p; devient son nouveau pic (resp. on

assigne la valeur y = f(p;) — f (7) au cluster du sommet ¢, et tous ses sommets sont étiquetés au
cluster du sommet k, et pi devient son nouveau pic).

Dans tous les cas, ce diagramme de persistance devient trés utile pour choisir une bonne valeur de
7 pour lalgorithme original, exposé a la section précédant : il convient de regarder quels points sont
de maniére naturel plus éloignés de la diagonale (et combien il y en a); puis, nous choisissons une
valeur 7 inférieure a sa proéminence, les laissant intacts & la fin. En fait, aprés avoir calculé toutes
les proéminences relatives pour dessiner le diagramme de persistance, on peut coder l'algorithme
d’une maniére encore plus intuitive : au lieu de donner une valeur 7 d’entrée, on donne le numéro
de clusters final souhaité m, et les fusions continuent de se produire jusqu’a ce que seulement les
m clusters les plus proéminents restent. Cependant, il faut prendre en compte que 'algorithme ne
peut pas fusionner des composantes connexes différentes (qui ont une proéminence "infinie").

4.5. Mise en ceuvre de ’algorithme et exploration

L’algorithme ToMATo exposé & ce chapitre vient d’étre implémenté & Python/ C++ et ajouté
a la libraire GUDHI |[8|, une des librairies de référence de la TDA. Cette librairie open-source,
codée en C++ mais avec une interface Python, offre des méthodes et ressources pour construire
des complexes simpliciales et d’autres structures sur des nuages de points, et calculer les différents
types d’homologie persistante.

La partie la plus pratique de ce travail a été de bien comprendre cette implémentation, réalisée
par le chercheur Marc Glisse. Puis, nous avons essayé de tester ses limites et possibles erreurs.
Cela a été fait par correspondance virtuelle avec plusieurs Jupyter notebooks. Cela a impliqué un
apprentissage continue de Python et d’autres outils de programmation qui sont trés pratiques et
habituels dans le monde de la science des données et sur le marché du travail en général.

Finalement, avec le code déja définitif, il paraissait approprié de préparer aussi un tutoriel de
référence (en anglais) montrant toutes les options du code. Dans ce dernier, plusieurs exemples
illustratifs aideraient et guideraient les utilisateurs potentiels. Le tutoriel final est annexé en PDF
a la fin de ce travail. Il peut aussi étre consulté en version HTML (de fagon temporaire) avec le lien
nilgarces.com/tomato.html.
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A handy guide to using the ToMATo algorithm

Introduction

This code is an implemention of the ToMATo algorithm exposed in [1], a clustering method based on the idea of
topological persistance. In short, the algorithm needs a density estimation (so to each point x we associate a value

f (;c)) and a neighborhood graph. First, it starts with a mode-seeking phase (naive hill-climbing) to build the initial
clusters (each with its own mode), following the connected points in the neighborhood graph. Finally, it merges these
initial clusters based on their prominence. This merging has a hierarchical nature, i.e. we always obtain the successive
new clusters by merging two existing ones.

The merging phase depends on a parameter, which is the minimum prominence a cluster needs to avoid getting merged
into another, adjacent, bigger cluster (i.e. with a higher associated mode); thus, it determines to a great extent the
obtained number of clusters. In practice, the convenience of this parameter depends on the input graph and the density
estimation, and it can be hard to choose it properly. This is why, in our implemention, we allow instead the option to
choose the "desired" final number of clusters n, and the algorithm itself, after computing the initial clusters as well as their
prominences, keeps merging them "parameterless-ly" until only the n clusters with highest prominence remain (if
possible).

Along with the clustering itself, the algorithm also produces the persistence diagram of the merge tree of the initial
clusters. This is a really convenient graphical tool to help decide the "natural" number of clusters in our input data. We
explain its interpretation briefly in the section "Output information”.



Input data format

As mentioned, the algorithm needs a neighborhood graph of the data and a value associated each entry (an estimation of
f over it). Given that, in many situations, the input data is a point cloud (i.e. a set of n observations each with p numerical
features), the code provides a few density estimators and graph constructions over them for convenience, but advanced
users may provide their own graph and density estimates instead of point coordinates.

Since the algorithm essentially computes basins of attraction, it is also encouraged to use it on functions that do not
represent densities at all.

For an input point cloud, the density estimation and graph construction methods that have been implemented are:

« For density estimation, the ubiquitous Kernel Density Estimation (KDE for short) can be used (using the scikit-learn
library), and also the Distance-to-a-Measure method (DTM), a bit more experimental and recently developed to face
more efficiently the potential presence of outliers; more information about it can be found in the tutorial [2] and the
paper [3]. The logarithmic versions of both estimation methods are also implemented.

 Regarding the building of the graph, there is the option to construct the k-NN graph (where, for each vertex, an edge
is created between it and its k nearest neighbors), and the r-radius graph (where an edge is created whenever two
vertices lay in a distance less than 7). Obviously, both parameters can (and should) be properly chosen. In the
following image we can see both constructions over a point cloud in the square 1x1 (first image); in the second one,
we have the k-NN graph (with k=4), while in the third we have the r-radius graph (with =0.3):
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Output information

At the end, the algorithm outputs basically two informations of interest:

In all cases, it produces the (0-dimensional) persistance diagram of the merging process of the initial clusters. In short,
this is a graphical representation of the lifespan of the different clusters as we keep diminishing the prominence threshold.

At the beginning, we have a point for each initial cluster, which also has an associated peak (the vertex with the highest
estimate of f, a "mode" of f). Then, we start looking for merges of these clusters, by melding them with neighboring
clusters with higher associated peaks. To do so, we basically keep checking, for the different vertices ¢ (in decreasing
order), which "neighboring” peaks p; lower than p; satisfy f (pj) < f(z) + 7, where T is our prominence value. When
this happens, we merge the whole cluster associated to that peak p; to the one in which 1 belongs, forming a new, bigger
cluster, still with peak p;. The higher T needs to be before this happens, the more prominent is p; and its associated
cluster.

In a persistance diagram, all this information is encoded in the following way: there is a point (x, y) for each initial cluster.
The x coordinate is the value of its associated peak p. The y coordinate is the value f (p) — 7 from which we can find a

"neighboring point" of that peak, but belonging to a different cluster, with equal or greater f; equivalently, it is the highest
neighbor of p not belonging to the cluster it defines. Thus, the length of vertical line connecting (3:, y) with the diagonal,
or equivalently x — v, is the prominence of the peak. In consequence, to get an idea of the real number of clusters, it is
natural to look for the number of points in the persistance diagram further away from the diagonal. The points associated
to a peak of a cluster which never dies (i.e. it never gets merged, so it forms a connected component at the end) are
colored in green.
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In view of the persistance diagram obtained, it is then natural to ask for a specific number of clusters at the end, or to
specify a certain persistance threshold. After this has been stipulated, the algorithm also outputs a numerical "label" for
each entry in the input data (in the same order they have been introduced, whatever the format): the cluster it has been
assigned to. This labelling is saved in the attribute "labels_" as an ordered vector, so it can be easily used to plot the data
in different colors or formats depending on their assigned cluster.

THE TOMATO CLASS

The code now

This is the current version of the code in the Gudhi Library:



In [63]:

This file 1is part of the Gudhi Library - https://qudhi.inria.fr/ - which is release
under MIT.
See file LICENSE or go to https://gudhi.inria.fr/Llicensing/ for full Llicense detail

Author(s): Marc Glisse
Copyright (C) 2020 Inria

#
d
#
s
#
#
#
#
# Modification(s):

# - YYYY/MM Author: Description of the modification
import numpy

from ..point_cloud.knn import KNearestNeighbors

from ..point_cloud.dtm import DTMDensity

from ._tomato import *

# The fit/predict interface 1s not so well suited...

class Tomato:

This clustering algorithm needs a neighborhood graph on the points, and an estima
tion of the density at each point.

A few possible graph constructions and density estimators are provided for conven
ience, but it is perfectly natural

to provide your own.

:Requires: "SciPy <installation.html#scipy>" , “Scikit-learn <installation.html#s
cikit-Learn>"_ or others
(see :class: ~gudhi.point_cloud.knn.KNearestNeighbors™) in function of the op
tions.

Attributes
n_clusters_: int
The number of clusters. Writing to it automatically adjusts " labels_".
merge_threshold_: float
minimum prominence of a cluster so it doesn't get merged. Writing to it autom
atically adjusts “labels_ .
n_Lleaves_: int
number of leaves (unstable clusters) in the hierarchical tree
Leaf_Labels_: ndarray of shape (n_samples, )
cluster Llabels for each point, at the very bottom of the hierarchy
Labels_: ndarray of shape (n_samples,)
cluster Llabels for each point, after merging
diagram_: ndarray of shape ("n_leaves ~, 2)
persistence diagram (only the finite points)
max_weight_per_cc_: ndarray of shape (n_connected_components, )
maximum of the density function on each connected component. This corresponds
to the abscissa of infinite
points in the diagram
children_: ndarray of shape (" n_leaves_"-n_connected_components, 2)
The children of each non-leaf node. Values less than "n_Lleaves "~ correspond t
o leaves of the tree.
A node i greater than or equal to "n_leaves_" 1is a non-leaf node and has chil
dren children [1 - "n_leaves "].
Alternatively at the i-th iteration, children[i][@] and children[i][1] are me
rged to form node "n_leaves_ "~ + 1
weights_: ndarray of shape (n_samples, )
weights of the points, as computed by the density estimator or provided by th
e user
params_: dict



Parameters Like metric, etc

def init_ (
self,
graph_type="knn",
density type="1logDTM",
n_clusters=None,
merge_threshold=None,

# eliminate_threshold=None,
# eliminate_threshold (float): minimum max weight of a cluster so i
t doesn't get eliminated
**params
):
Args:

graph_type (str): 'manual’', 'knn' or 'radius'. Default is 'knn'.
density type (str): 'manual’', 'DTM', 'LogDTM', 'KDE' or 'lLogKDE'. When yo
u have many points,
'"KDE' and 'LogkDE' tend to be slower. Default is 'LogDTM'.
metric (str[Callable): metric used when calculating the distance between
instances 1in a feature array.
Defaults to Minkowski of parameter p.
kde_params (dict): 1if density type is 'KDE' or 'lLogKDE', additional param
eters passed directly to
Sklearn.neighbors.KernelDensity.
kR (int): number of neighbors for a knn graph (including the vertex itsel
f). Defaults to 16.
R_DTM (int): number of neighbors for the DTM density estimation (includin
g the vertex itself).
Defaults to k.
r (float): size of a neighborhood if graph_type is 'radius’'. Also used as
default bandwidth in kde_params.
eps (float): (1+eps) approximation factor when computing distances (ignor
ed in many cases).
n_clusters (int): number of clusters requested. Defaults to None, i.e. no
merging occurs and we get
the maximal number of clusters.
merge_threshold (float): minimum prominence of a cluster so it doesn't ge
t merged.
symmetrize_graph (bool): whether we should add edges to make the neighbor
hood graph symmetric.
This can be useful with kR-NN for small k. Defaults to false.
p (float): norm L”p on input points. Defaults to 2.
g (float): order used to compute the distance to measure. Defaults to di
m.
Beware that when the dimension is large, this can easily cause overfl
ows.
dim (float): final exponent in DTM density estimation, representing the d
imension. Defaults to the
dimension, or 2 when the dimension cannot be read from the input (met
ric is "precomputed").
n_jobs (int): Number of jobs to schedule for parallel processing on the C
PU.
If -1 is given all processors are used. Default: 1.
params: extra parameters are passed to :class: ~gudhi.point_cloud.knn.KNe
arestNeighbors™ and
:class: ~gudhi.point _cloud.dtm.DTMDensity " .
# Should metric='precomputed' mean 1input_type='distance matrix'?
# Should we be able to pass metric='minkowski' (what None does currently)?
self.graph_type_ = graph_type
self.density_type = density_type



self.params_ = params
self._n_clusters = n_clusters
self. merge_threshold = merge_ threshold
# self.eliminate_threshold = eliminate_threshold
if n_clusters and merge_threshold:
raise ValueError("Cannot specify both a merge threshold and a number of c
lusters")

def fit(self, X, y=None, weights=None):
Args:
X ((n,d)-array of float|(n,n)-array of float|Sequence[Iterable[int]]): co
ordinates of the points,
or distance matrix (full, not just a triangle) if metric is "precompu
ted"”, or List of neighbors
for each point (points are represented by their index, starting from
) if graph type 1is "manual".
weights (ndarray of shape (n_samples)): if density type is 'manual', a de
nsity estimate at each point
y: Not used, present here for API consistency with scikit-learn by conven
tion.

# TODO: First detect if this is a new call with the same data (only threshold
changed?)

# TODO: Lless code duplication (subroutines?), less spaghetti, but don't compu
te neighbors twice if not needed. Clear error message for missing or contradictory pa
rameters.

if weights is not None:

density type = "manual"
else:
density type = self.density type
if density type == "manual":
raise ValueError("If density_type is 'manual', you must provide weigh
ts to fit()")

if self.graph_type_ == "manual":
self.neighbors_ = X
# FIXME: uniformize "message 'option''

1

vs 'message "option"'

assert density_type == "manual", 'If graph_type is "manual", density_type
must be as well’
else:
metric = self.params_.get("metric", "minkowski™)
if metric != "precomputed”:

self.points_ = X

# Slight complication to avoid computing knn twice.
need_knn = @
need_knn_ngb = False
need_knn_dist = False
if self.graph_type_ == "knn":
k_graph = self.params_.get("k", 10)
# If X has fewer than kR points...
if k_graph > len(X):
k_graph = len(X)
need_knn = k_graph
need_knn_ngb = True
if self.density type in ["DTM", "logDTM"]:
k = self.params_.get("k", 10)
k DTM = self.params_.get("k _DTM", k)
# If X has fewer than kR points...
if k_DTM > len(X):
k_DTM = len(X)
need_knn = max(need_knn, k_DTM)



need_knn_dist = True
# 1f we ask for more neighbors for the graph than the DTM, getting the di
stances 1s a slight waste,
# but 1t Looks negligible
if need _knn > @:
knn_args = dict(self.params_)
knn_args["k"] = need_knn
knn = KNearestNeighbors(return_index=need_knn_ngb, return_distance=need k
nn_dist, **knn_args).fit_transform(
X
)
if need_knn_ngb:
if need _knn_dist:
self.neighbors_ = knn[@][:, @:k_graph]
knn_dist = knn[1]
else:
self.neighbors_ = knn
elif need knn_dist:
knn_dist = knn
if self.density_type_ in ["DTM", "logDTM"]:
dim = self.params_.get("dim")
if dim is None:
dim = len(X[@]) if metric != "precomputed" else 2
q = self.params_.get("q", dim)
weights = DTMDensity(k=k DTM, metric="neighbors", dim=dim, g=q).fit_trans
form(knn_dist)
if self.density_type == "logDTM":
weights = numpy.log(weights)

if self.graph_type == "radius":
if metric in ["minkowski", "euclidean™, "manhattan", "chebyshev"]:
from scipy.spatial import cKDTree

tree = cKDTree(X)
# TODO: handle "L1" and "L2" aliases?
p = self.params_.get("p")

if metric == "euclidean":
assert p is None or p == 2, "p=" + str(p) + " is not consistent w
ith metric='euclidean'"
p =2
elif metric == "manhattan":
assert p is None or p == 1, "p=" + str(p) + " is not consistent w
ith metric="'manhattan'"
p =1
elif metric == "chebyshev":
assert p is None or p == numpy.inf, "p=" + str(p) + " is not cons
istent with metric='chebyshev'"
p = numpy.inf

elif p is None:

p = 2 # the default
eps = self.params_.get("eps", @)
self.neighbors_ = tree.query ball tree(tree, r=self.params_["r"], p=p

» eps=eps)

# TODO: sklearn's NearestNeighbors.radius_neighbors can handle more metri
cs efficiently via its BallTree
# (don't bother with the _graph variant, it just calls radius_neighbors).
elif metric != "precomputed":
from sklearn.metrics import pairwise distances

X = pairwise_distances(X, metric=metric, n_jobs=self.params_.get("n_j
obs"))
metric = "precomputed”



if metric == "precomputed”:
# TODO: parallelize? May not be worth it.
X = numpy.asarray(X)

r = self.params_["r"]
self.neighbors_ = [numpy.flatnonzero(l <= r) for 1 in X]

if self.density type in {"KDE", "logKDE"}:

f.points_)

# Slow. ..
assert (

self.graph_type_ != "manual" and metric != "precomputed"
), "Scikit-learn's KernelDensity requires point coordinates"”
kde_params = dict(self.params_.get("kde_params", dict()))
kde_params.setdefault("metric", metric)
r = self.params_.get("r")
if r is not None:

kde_params.setdefault("bandwidth", r)
# Should we default rtol to eps?
from sklearn.neighbors import KernelDensity

weights = KernelDensity(**kde_params).fit(self.points_).score_samples(sel

if self.density type_ == "KDE":
weights = numpy.exp(weights)

# TODO: do it at the C++ Level and/or in parallel if this is too slow?
if self.params_.get("symmetrize_graph"):

self.neighbors_ = [set(line) for line in self.neighbors_]
for i, line in enumerate(self.neighbors_):
line.discard(i)
for j in line:
self.neighbors_[j].add(i)

self.weights_ = weights
# This 1is where the main computation happens

self.leaf labels , self.children_, self.diagram , self.max_weight per cc_ = h
ierarchy(self.neighbors_, weights)

self.n_leaves_ = len(self.max_weight_per_cc_) + len(self.children_)

assert self.leaf _labels_.max() + 1 == len(self.max_weight_per_cc_) + len(self
.children_)

# TODO: deduplicate this code with the setters below
if self._ merge_ threshold:

assert not self. n_clusters
self. n_clusters = numpy.count_nonzero(

self.diagram_[:, @] - self.diagram_[:, 1] > self.__merge_threshold
) + len(self.max_weight_per_cc_)

if self._n_clusters:

# TODO: set corresponding merge_threshold?

renaming = merge(self.children_, self.n_leaves_, self.__n_clusters)
self.labels_ = renaming[self.leaf_labels_]

# In case the user asked for something impossible.

# TODO: check for impossible situations before calling merge.
self. n clusters = self.labels .max() + 1

else:

self.labels = self.leaf labels_
self._n_clusters = self.n_leaves_

return self

def fit_predict(self, X, y=None, weights=None):

mnon

Equivalent to fit(), and returns the ~labels_".

URINT

return self.fit(X, y, weights).labels_



# TODO: add argument kR or threshold? Have a version where you can click and it sh
ows the Lline and the corresponding R?
def plot_diagram(self):

mwnon

mnon

import matplotlib.pyplot as plt

1 = self.max_weight_per_cc_.min()

r = self.max_weight per cc_.max()

if self.diagram_.size > 0:
plt.plot(self.diagram_[:, @], self.diagram_[:, 1], "ro")
1 = min(1l, self.diagram_[:, 1].min())
r = max(r, self.diagram_[:, ©].max())

if 1 == r:
if 1> 0:
1, r=0.9*1, 1.1 * r
elif 1 < o:
1, r=1.1 %1, 0.9 * r
else:

1, r = -1.0, 1.0
plt.plot([1, r], [1, r])
plt.plot(
self.max_weight per cc_, numpy.full(self.max_weight per_cc_.shape, 1.1 *
1-0.1*r), "ro", color="green"
)
plt.show()

# Use set_params instead?

@property

def n_clusters (self):
return self. n clusters

@n_clusters_.setter
def n_clusters_(self, n_clusters):
if n_clusters == self. n_clusters:
return
self. n _clusters = n_clusters
self.__merge_threshold = None
if hasattr(self, "leaf_labels "):
renaming = merge(self.children_, self.n_leaves_, self._ n_clusters)
self.labels = renaming[self.leaf labels ]
# In case the user asked for something impossible
self._n_clusters = self.labels_.max() + 1

@property
def merge_threshold (self):
return self._ merge_threshold

@merge_threshold_.setter
def merge threshold (self, merge_threshold):
if merge_threshold == self.__merge_threshold:

return
if hasattr(self, "leaf_labels "):
self.n_clusters_ = numpy.count_nonzero(self.diagram [:, 0] - self.diagram

_[:, 1] > merge_threshold) + len(
self.max_weight_per_cc_
)
else:
self. n_clusters = None
self. merge_threshold = merge_threshold



Description

Parameters

By "parameters" we mean the information we (must) provide to construct a specific instance of the class. They are given
as arguments in the constructor function "__init__":

graph_type (str): 'manual’, 'knn' (default) or 'radius'.

density_type (str): 'manual’, 'DTM', 'logDTM' (default), 'KDE' or 'logkKDE'. With many points, 'KDE' and 'logKDE' tend
to be slower.

n_clusters (int): number of clusters requested. Defaults to None, i.e. no merging occurs and we get the maximal
number of clusters.

merge_threshold (float): minimum prominence of a cluster so it doesn't get merged.

(Naturally, both n_clusters and merge_threshold cannot be provided simultaneously, as it can be deduced from the
explanation of the algorithm)

metric (str|Callable): metric used to compute the pairwase distances between points (if we don't input them). If
None, use Minkowski of parameter p.

kde_params (dict): if density_type is 'KDE' or 'logKDE', additional parameters passed directly to
sklearn.neighbors.KernelDensity.

k (int): number of neighbors for a k-NN graph (including the vertex itself). Defaults to 10.

k_DTM (int): number of neighbors for the DTM density estimation (including the vertex itself). Defaults to k.

r (float): size of a neighborhood if graph_type is 'radius'. Also used as default bandwidth in kde_params.

eps (float): approximation factor when computing nearest neighbors (ignored in many cases).

symmetrize_graph (bool): whether we should add edges to make the neighborhood graph symmetric. This can be
useful with k-NN for small k. Defaults to false.

p (float): norm L*p on input points (numpy.inf is supported without gpu). Defaults to 2.

dim (float): final exponent in DTM density estimation, representing the dimension. Defaults to the dimension, or 2
when the dimension cannot be read from the input (metric is "precomputed"”).

q (float): order used to compute the distance to measure. Defaults to dim. Beware that when the dimension is large,
this can easily cause overflows.

n_jobs (int): Number of jobs to schedule for parallel processing on the CPU. If -1 is given all processors are used.
Default: 1.

params: extra parameters are passed to the classes gudhi.point_cloud.knn.KNearestNeighbors and
gudhi.point_cloud.dtm.DTMDensity , for example 'implementation="keops™ for the first one.



Attributes

By "attributes" we mean the properties, or variables, created within a class: they store its information, allow it to run some
of its methods and functionalities, etc... We recall also that, as a common practice, the attributes of a class (those defined
with self.) usually have some "_" in its name to make them more distinguishable within the code.

Naturally, the values of most of the attributes depend on the instance itself, and, depending on it, some of them will be
present or not. Actually, many of the previous parameters have their corresponding attribute, as for example n_clusters_
and merge_threshold_ (which, when modified, can alter the values of other attributes, as the .setter propery shows), or
they are stored inside the "params_" dictionary; input_type, metric,...

Other important attributes which are created specifically to run the desired methods and are not given as parameters are:

n_leaves_ (int): Number of leaves (unstable clusters) in the hierarchical tree. Basically, the number of "temporary"

clusters (or mini-clusters) we have along the way.

 leaf_labels_ (ndarray of shape (n_samples)): Cluster labels for each point, at the very bottom of the hierarchy.

« labels_ (ndarray of shape (n_samples)): Cluster labels for each point, after merging. Writing to n_clusters_ and
merge_threshold_ automatically adjusts it.

« diagram_ (ndarray of shape (n_leaves_, 2)): Persistence diagram (only the finite points).

« weights_: (ndarray of shape (n_samples,)): Weights of the points, as computed by the density estimator or provided
by the user.

» max_weight_per_cc_: (ndarray of shape (n_connected_components,)): Maximum of the density function on each

connected component. This corresponds to the abscissa of infinite points in the diagram.

Methods

The Tomato class contains, in essence, two methods:

« The first one is the .fit method, which does basically everything: it processes the input data taking into account its
format and the given arguments, it does the merging process depending on them, does the labelling of the entries
and stores the points that will eventually form the persistance diagram. The method .fit_predict is identical, but it
returns the labels vector. Both of them take as the input the coordinates of the points/ distance matrix/ neighborhood
matrix, and possibly a "weights" vector, the estimate of f on each entry.

« The second one is the .plot_diagram method, without arguments, that plots the persistance diagram (after the fit
method).

EXAMPLES AND TESTS

Example 1

We start with a really simple example with a few hundreds points to get used to manipulating the Tomato class.



In [32]: dimport matplotlib.pyplot as plt

cmap = plt.cm.Spectral;
fig, ax = plt.subplots();

import random as rd
import numpy as np

# Simple function to get random values for x uniformly but within intervals (0,a) U
(b, 1)
def x_var(x):
if x > 0.5:
return rd.uniform(0.6, 1)
else:
return rd.uniform(e, 0.4)

pl = np.zeros((200,2))

for i in range(200):
pl[i,0] = x_var(rd.uniform(0,1))
pl[i,1] = rd.uniform(©,1)

ax.cla()
ax.scatter(*zip(*pl1));
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There are "clearly" two main groups of points.

Let's suppose we don't know that, so we run the Tomato algorithm blindly. We use the KDE (without specifying extra
parameters, thus using the default parameters in Scikit-Learn) and the radius graph with 7= 0.1. We want to take a look
at the persistance diagram:



In [57]: dimport gudhi
from gudhi.clustering.tomato import Tomato

exl = Tomato(
input_type="points",
metric="euclidean",
graph_type="radius",
density type="KDE",
#n_clusters=2,

r=0.1,
)
labels = ex1l.fit predict(pl)
print(labels)

print("\nThere are " + str(exl.n_clusters_) +
ex1l.plot_diagram()

initial clusters")

[1416310©02313030041414120314314121331680
3200061022601827426111445210016234322
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1000610100231124020432142202162024402
©13524411124113306510143142114131612220
2010223010410 6 4]

There are 9 initial clusters
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Even if n_clusters_ gives us 9 initial clusters (when we don't specify the parameter n_clusters in Tomato no merging
occurs), we can see from the bottom-right that there are clearly two more prominent groups, but four connected
components. Indeed, let's output the graph built on top of our data:



In [58]: from gudhi.point_cloud.knn import KNearestNeighbors
X = np.array(pl)
nbrs = KNearestNeighbors(k=30, return_distance= True)
indices, distances = nbrs.fit_transform(X)
plt.plot(X[:,0], X[:,1], '0o")
for i in indices:
Y = np.zeros((2,2))
for j in range(len(i)):
if distances[int(i[@]), j] < ©.1:
v[e][e]= X[int(i[e])][e]
Y[1][e]= X[int(i[e])][1]
v[e][1]= X[int(i[]])][e]
Y[1][1]= X[int(i[j])][1]
plt.plot(Y[@], Y[1], 'ro-")

plt.show()
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Even if we know that "there are" two main clusters, we cannot force the algorithm to output them, because there is no
way the algorithm can merge disconnected components. We don't have problems if we ask for a bigger number of
clusters:

In [61]: exl.n_clusters_ = 6
print(exl.n_clusters_)
print(exl.labels_ )

exl.n_clusters_ = 2
print(exl.n_clusters_)
print(exl.labels_ )

6
[111131©2313030011111120©3113111213311090
3200011022101524121111111210011231322
311210121103 2113201323033011003031311
10001101002 31121020132112202112021102
©1312111112111330©1101131121111311122090
201022301011011]

4
[111101000100000111111000110111010011090
0000011000101 302101111111010011001000
90110101011000110001000000011000001011
1000110100001 101000100110000110001100
©101011111011100011011011011110111000
00100000 1011011]



Unsurprisingly, if we plot the points with different colors according to their labels, we don't get a very satisfying result:

In [62]: n = exl.n_clusters_
labels = ex1.labels_

norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()
ax.scatter(*zip(*pl), c=cmap(norm(labels)))
fig
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This is the reason why running the algorithm for different values of the parameters is a good idea, specially if the
algorithm produces persistance diagrams with several green dots (i.e. connected components) near the bottom-left part
(i.e. low, isolated peaks).

Here is the situation when we increase r to 0.15:



In [63]: ex1l = Tomato(
input_type="points",
metric="euclidean",
graph_type="radius",
density type="KDE",
n_clusters=2,
r=0.13,

)

n = exl.n_clusters_

print("We obtain " + str(n) +
labels = ex1l.fit predict(pl)
print(exl.labels_)

clusters.™)

print("\nThe persistance diagram looks better, with just two connected components, an
d two prominent regions:")
ex1l.plot_diagram()

print("\nThe graph over which the algorithm runs is:")

plt.plot(X[:,0], X[:,1], 'o")
for i in indices:
Y = np.zeros((2,2))
for j in range(len(i)):
if distances[i[@]][]j] < ©.15:
v[e][e]= X[i[e]][e]
Y[1][e]= X[i[e]][1]
Y[o][1]= X[i[j]][e]
Y[1][1]= X[i[3]][1]
plt.plot(Y[@], Y[1], 'ro-")

plt.show()

print("\nAnd the plot of the points according to their label is:")
norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()

ax.scatter(*zip(*pl), c=cmap(norm(labels)))
fig
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The graph over which the algorithm runs is:
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And the plot of the points according to their 1label is:
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Example 2

We use now a rather typical example to test clustering algorithms: a point cloud sampled from two concentric circles:

In [97]: from sklearn import manifold, datasets
p2, y = datasets.make_circles(n_samples=1000, factor=.5, noise=.05)

ax.cla()
ax.scatter(*zip(*p2))
fig
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It is well known that many clustering methods perform poorly with non-convex groupings of data, as the one above. This
is not the case with the Tomato algorithm, which relies just on looking for "nearby" modes. We use now the k-NN graph
construction, with k=7, and the KDE again, specifying some of it parameters now (for more information, check the Scikit-
learn documentation):



In [98]: ex2 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="KDE",

kde params = {"bandwidth": 1.3, "kernel": "epanechnikov"},
#n_clusters=2,

k=7,

eps=0.05,

)

ex2.fit_predict(p2)
ex2.plot_diagram()
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The diagram is not specially obvious; if this happens, it is in general a good idea tu run the algorithm with different values
in the parameters.

We also see that there are several connected components, more specifically 9; a quick way to know how many of them
we have is check the size of the attribute "max_weight_per_cc_":

In [99]: n = len(ex2.max_weight _per cc )
print("There are " + str(n) +

connected components™)

There are 9 connected components

Let's plot these components:



In [103]: ex2.n_clusters_ = n
labels = ex2.labels_

norm = plt.Normalize(vmin=0, vmax=n-1)
ax.cla()

ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig
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A bit frustrating; this is "natural" consequence of the the k-NN graph being directed. We can "solve" this by symmetrizing
the graph, although its effectiveness is uncertain. In this case it also makes sense to reduce k, as we add more edges:



In [102]: ex2 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="KDE",

kde _params = {"bandwidth": 1.3, "kernel": "epanechnikov"},
#n_clusters=2,

k=5,

symmetrize_graph = True,

eps=0.05,

)

ex2.fit_predict(p2)
ex2.plot_diagram()

n = len(ex2.max_weight_per_cc_ )
print("There are " + str(n) +

connected components™)

ex2.n_clusters_ = n
labels = ex2.labels

norm = plt.Normalize(vmin=0, vmax=n-1)
ax.cla()

ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig
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In general, and intelligent way to proceed would be to run the algorithm for different values of k and the bandwidth A, and
see for which values we obtain "good" persistance diagrams, with "clearly prominent clusters". This is what we do below,
where, for a fixed k and different values of A, we compute the prominence of each point of the persistance diagram (

T — y), and we plot the information, as well as the number of connected components (number under every vertical bar)

in each case:



In [148]: for n_neigh in range(6,12):

n_diagram = []
x_diagram = []
y_diagram = []
cc =[]

y_cc =[]

bandwidth _values = [0.1, 2, 0.1]
bandwidth = bandwidth values[9]

while bandwidth < bandwidth_values[1]:
ex2 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="KDE",
kde_params = {"bandwidth": bandwidth, "kernel": "epanechnikov"},
#n_clusters=2,
k=n_neigh,
eps=0.05,

ex2.fit(p2)
cc.append(str(len(ex2.max_weight_per_cc_)))
init_clusters = len(ex2.diagram_ )
prominences = np.zeros(init_clusters)
for i in range(init_clusters):
prominences[i] = ex2.diagram_[i,0] - ex2.diagram_[i,1]

##"Normalizing" prominences

max_prom = np.max(prominences)

for i in range(init_clusters):
prominences[i] /= max_prom

n_diagram.append(prominences)
bandwidth += bandwidth_values[2]

for i in range(len(n_diagram)):
for j in range(len(n_diagram[i])):
x_diagram.append(bandwidth_values[0] + i*bandwidth_values[2])
y_diagram.append(n_diagram[i][j])
y_cc.append(-0.08)

plt.title('Looking for clusters')

plt.axis('tight")

plt.ylabel('K =" + str(n_neigh-1))

plt.ylim((-0.15, 1.1))

plt.xlabel('bandwidth")

plt.xticks(np.arange(bandwidth_values[0], bandwidth_values[1], bandwidth_values[2
1))

plt.subplot(6, 1, n_neigh-5)

n = int((bandwidth_values[1]-bandwidth_values[©])/bandwidth_values[2]) + 1

for i in range(n):

plt.text(-0.02 + bandwidth_values[@] + i*bandwidth_values[2], y_cc[i], cc[i],

fontdict={"'weight': 'bold', 'size': 10})

plt.scatter(x_diagram, y_diagram)
fig = plt.gcf()

fig.set_size _inches(8, 32)
plt.show()



Laoking for clusters
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0.3, two more prominent clusters appear consistently, for all

One can see, for example, that when the bandwidth is A

the last values of k, and we always get two connected components. If we run Tomato with these parameters, we obtain

the "desired" result:



In [185]: ex2 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="KDE",
kde _params = {"bandwidth": 0.3, "kernel": "epanechnikov"},
n_clusters=2,
k=9,
eps=0.05,
)

labels = ex2.fit_predict(p2)
ex2.plot_diagram()

norm = plt.Normalize(vmin=0, vmax=1)
fig, ax = plt.subplots()

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)));
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Example 3

We do now a rather spectacular example in 3D just to show the effectiveness of the algorithm to separate clusters with
different shapes. We will generate, using points, a cube, a sphere, and a "swiss roll", together with some noise:



In [157]:

import mpl_toolkits.mplot3d.axes3d as plt3
from sklearn.datasets import make swiss roll

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70)

points cube = 1000
points_sphere = 800
#points_Line = 700
points_sr = 8000

points_noise = 2000

X1 = np.zeros((points_cube, 3))
for i in range(points_cube):
Xi[i,e], X1[i,1], X1[i,2] = rd.uniform(-2,2), rd.uniform(-2,2), rd.uniform(-2,2)

X2 = np.zeros((points_sphere, 3))
for i in range(points_sphere):
X2[i,0], X2[i,1], X2[i,2] rd.uniform(-1,1), rd.uniform(-1,1), rd.uniform(-1,1)
X2[1,0], X2[i,1], X2[1,2] = 12 + 3*X2[1,0]/np.sqrt(X2[i,0]**2 + X2[i,1]**2 + X2[i
,2]**%2), 15 + 3*X2[1,1]/np.sqrt(X2[i,0]**2 + X2[1i,1]**2 + X2[i,2]**2), -4 + 3*X2[i,2]
/np.sqrt(X2[i,0]**2 + X2[1i,1]**2 + X2[i,2]**2)

mn

X3 = np.zeros((points_Line, 3))
for i 1in range(points_Line):
param = rd.uniform(-15, 15)
x3[i,0], X3[1,1], X3[1,2] = 2 - param*@.7, 4 + param*@.7, 2 - param*0.6
X3[:,0] += 0.02*np.random.randn(points_Line)
X3[:,1] += 0.02*np.random.randn(points_Line)
X3[:,2] += 0.02*np.random.randn(points_L1ine)

mmon

X4, = make_swiss roll(n_samples=points sr, noise=.05)

X5 = np.zeros((points_noise, 3))
for i in range(points_noise):

X5[1i,0], X5[i,1], X5[i,2] = rd.uniform(-10,15), rd.uniform(-5,20), rd.uniform(-10
»15)

X
X

np.concatenate((X1,X2,X4,X5))
np.array(X)

ax.scatter(X[:, 9], X[:, 1], X[:, 2], color="red", s=4);



In [158]: ax.view_init(50, -150)
fig3

Out[158]:

Let's run the algorithm with £-NN and the logDTM estimation. We also use the parameter n_jobs=-1, which becomes
useful to increase the computational power when the size of our dataset becomes large, even though in our case we
don't have an specially high number of points:



In [159]: ex3 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="1logDTM",
#n_clusters=2,
#symmetrize_graph= True,

k=9,
n_jobs=-1,
)
ex3.fit(X)

ex3.plot_diagram()
print(ex3.labels )

[158 88 158 ... 436 382 174]

We see 2-3 prominent clusters in the persistance diagram. We can "identify" the noise by checking which points have a
low estimate, and creating a new label. We plot the result at the end:



In [180]: ex3.n_clusters = 3
label = ex3.labels

for i in range(len(X)):
if ex3.weights_[i] < ©.5:
label[i] = 3

print(label)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70)

for 1 in np.unique(label):
ax.scatter(X[label == 1, 0], X[label == 1, 1], X[label == 1, 2],
color=plt.cm.inferno(np.float(l) / np.max(label + 1)),
s=3)

[0600 ... 33 3]

In [181]: ax.view_init(50, -150)
fig3

out[181]:




The swiss roll is not completely clustered and it gets separated into two regions due to the presence of the sphere; we
cannot expect our algorithm to distinguish them properly with an intersection so noticeable. The result with two clusters is
also quite satisfactory and more realistic, with the whole spiral and the sphere clustered together. We also see that, in
both cases, the noise is quite properly identified:

In [182]: ex3.n_clusters_ = 2
label = ex3.labels_

for i in range(len(X)):
if ex3.weights_[i] < ©.5:
label[i] = 2

print(label)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view init(7, -79)

for 1 in np.unique(label):
ax.scatter(X[label == 1, 0], X[label == 1, 1], X[label == 1, 2],
color=plt.cm.inferno(np.float(l) / np.max(label + 1)),
s=3)

[0600 ... 22 2]




In [183]: ax.view_init(50, -150)
fig3

Out[183]:

Example 4

In this example we explore the case in which we don't give the coordinates of the points directly, but the distances
between them.

To do so, we sample a set of points over the unit sphere, but not uniformly: we sample them first in the cube 1x1x1 using
a sigmoid function in each variable to concentrate them near the vertices and edges of the cube, and then we normalize
them. This creates naturally regions of the sphere with more points, more specifically the directions pointing towards the
vertices and edges of the cube:



In [188]: def sample_spherical(npoints):
vec = []
vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
vec /= np.linalg.norm(vec, axis=0)
return vec

npoints = 6000
points = sample_spherical(npoints)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view init(7, -790)

ax.scatter(points[9,:], points[1,:], points[2,:], s=3);
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We compute now the pairwise distances between all the points, using the "spherical" distance dg: the distance between
two points on the surface of a unit sphere with coordinates a = (a1, as, as) and b = (by, by, bs) is given by the

formula:
dg(a,b) = arccos(aib; + asb2 + azbs)

As we don't have many points, we can compute all pairwise distances without much problem:



In [189]: distance_matrix = np.zeros((npoints, npoints))

for i in range(npoints):
distance_matrix[i,i]= ©
for j in range(i+1, npoints):
distance_matrix[i,j] = np.arccos(points[0,i]*points[@,j] + points[1,i]*points
[1,j] + points[2,i]*points[2,]])
distance_matrix[j,i] = distance_matrix[i,]j]

print(distance_matrix)

[[e. 1.1558255 1.47491536 ... 2.68105662 0.94665096 0.8865952 ]
[1.1558255 @. 1.83518165 ... 1.77024725 1.71115835 1.14674659]
[1.47491536 1.83518165 @. 2.12567266 2.05734047 0.7744797 ]
[2.68105662 1.77024725 2.12567266 ... O. 1.88764992 2.57444621]
[0.94665096 1.71115835 2.05734047 ... 1.88764992 0. 1.80283258]
[0.8865952 1.14674659 ©.7744797 ... 2.57444621 1.80283258 0. 1]

KDE and logKDE use the already-built Scikit-learn library and we cannot use them for a precomputed distance matrix.
We use logDTM insted of DTM to make the persistance diagram look more clear:

In [190]: ex4 = Tomato(
input_type="points",
metric="precomputed"”,
graph_type="knn",
density type="1logDTM",
#n_clusters=2,
k=10,

)

ex4.fit(distance_matrix)
ex4.plot_diagram()
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There are 8 clear clusters, a quite expected result:



In [191]: ex4.n_clusters_ = 8
label = ex4.labels

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(25, -160)

for 1 in np.unique(label):
ax.scatter(points[0, label == 1], points[1l, label == 1], points[2, label == 1],
color=plt.cm.jet(np.float(l) / np.max(label + 1)),
s=3)
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Example 5

We do another easy example just to get used to other input formats to our algorithm. In this one we will input ourselves
the weights of the points as well as a neighboring graph, which will just be a rectangular mesh in the square 10x10. For
the weights, we will be using the function:

f(z,y) :sin(m—;y> +cos(x;y>,

plotted below. In this setting, our algorithm will be just looking for basins of attraction of our function.




In [208]: def f(x, y):
return 2+ np.sin(0.5*(x+y)) + np.cos(0.5*%(x-y))

X = np.linspace(-10, 10, 30)
y = np.linspace(-10, 10, 30)
X, Y = np.meshgrid(x, y)

Z = f(X, Y)

fig = plt.figure()

ax = plt.axes(projection='3d")
ax.contour3D(X, Y, Z, 50, cmap='binary")
ax.set_xlabel('x")

ax.set_ylabel('y")

ax.set_zlabel('z");

In [198]: ax.view_init(70, -50)
fig

Out[198]:

And now the points, with the neighboring graph:



In [200]: size_mesh = 30
points = np.zeros((2, size mesh**2))
arange = np.linspace(-10., 10., size_mesh)

#Coordinates of the points
for i in range(size_mesh):
for j in range(size_mesh):
points[@][i*size_mesh + j]
points[1][i*size_mesh + j]

arange[i]
arange[j]

#Neighboring graph
neigh_graph = []
for i in range(size_mesh):
for j in range(size_mesh):
neigh = []
if i > 0:
neigh.append((i-1)*size_mesh + j)
if i < size_mesh -1:
neigh.append((i+1)*size_mesh + j)
if j > o:
neigh.append(i*size_mesh + j-1)
if j < size_mesh -1:
neigh.append(i*size_mesh + j+1)
neigh_graph.append(neigh)

In [201]: #Drawing the graph
plt.plot(points[@,:], points[1,:], 'o', markersize=2)

for i in range(len(neigh_graph)):

Y = np.zeros((2,2))

for j in neigh_graph[i]:
Y[0][@]= points[©][i]
Y[1][@]= points[1][i]
v[@][1]= points[@][]]
Y[1][1]= points[1][]]
plt.plot(Y[@], Y[1], 'ro-', linewidth=2)

plt.show()
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We now associate the weights to the different points according to f, and run the Tomato algorithm to compute the basins
of attraction:



In [202]:

#iWe associate the weights
weights = np.zeros(size_mesh**2)
for i in range(size_mesh**2):
weights[i] = f(points[0][i], points[1][i])

#We run Tomato

ex5 = Tomato(
graph_type = "manual",
density type = "manual”

)

ex5.fit(neigh_graph, weights= weights)
ex5.plot_diagram()
print(ex5.diagram_)
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[3.98535762 1.98244992]
[3.98535762 1.98244992]
[3.9737506 1.9824371 ]
[3.54402111 1.97677169]
[3.9882662 1.94776161]]



In [206]:

ex5.n_clusters = 7
labels = ex5.fit_predict(neigh_graph, weights= weights)

norm = plt.Normalize(vmin=0, vmax=6)
fig, ax = plt.subplots();

ax.cla()
ax.scatter(points[9,:], points[1,:], c=cmap(norm(labels)));
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In [209]: fig = plt.figure()
ax = plt.axes(projection='3d")
ax.contour3D(X, Y, Z, 50, cmap='binary', linewidths=0.5);
ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('z");

points3d = np.zeros((3, size_mesh**2))

for i in range(size_mesh**2):
points3d[@, i] points[0,1i]
points3d[1, 1i] points[1,i]

z_coord = np.zeros(size mesh**2)
for 1 in np.unique(labels):

ax.scatter(points3d[0, labels == 1], points3d[1l, labels == 1], points3d[2, labels
== 1], s=10)

ax.view_init (80, -50)

fig = plt.gcf()
fig.set_size inches(12,7)
plt.show()

Example 6

In this last example, closer to the kind of datasets we could find in real life, we will work with the famous "Digits dataset",
containing 1797 observations each with 64 features: each entry represents a (highly compressed) hand-written digit in a
8x8 grid, where each cell can vary from 0 to 16, representing its opacity. Naturally, the dataset also contains the correct

labels of each instance: a number from 0 to 9, the one written in the grid.



In [987]: #Load the digits dataset
digits = datasets.load_digits()

#Display the 25th digit
plt.figure(l, figsize=(3, 3))
plt.imshow(digits.images[25], cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()
o
1
2 4
3
4
5
6
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It is well known the difficulty of performing data science algorithms in high dimension, and clustering is not an exception;
in fact, it is a process particularly sensitive to numerical data being sparse. Thus, even with dimensionality reduction
techniques, it's not a good idea to expect a brilliant performance of our algorithm in this setting. In any case, it is
interesting to see what kind of results we get. The results of other clustering methods over this dataset can be found in
[41.

In [1056]: digits, real label = datasets.load digits(return_X y=True)

print(digits)

print(real_label)

[[@. ©. 5. ... 0. 0. 0.]
[0. ©. 0. ... 10. 0. 0.]
[0. ©. ©. ... 16. 9. 0.]
[0. ©. 1. ... 6. 0. 0.]
[0. ©. 2. ...12. o. 0.]
[ 0. ©.10. ... 12. 1. 0.]]
[012...89 8]

We can embed the dataset in the plane by using PCA dimensionality reduction. We observe that, with that reduction
level, the different clusters of numbers are somewhat distinguishable, but there is also considerable overlapping:



In [1009]: from sklearn.decomposition import PCA

pca = PCA(n_components=2)
digits _red = pca.fit_transform(digits)

def plot_clustering(X_red, labels, title=None):
x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
X _red = (X_red - x_min) / (x_max - x_min)

plt.figure(figsize=(6, 4))
for i in range(X_ red.shape[0]):
plt.text(X_red[i, @], X red[i, 1], str(y[i]),
color=plt.cm.nipy_spectral(labels[i] / 10.),
fontdict={"'weight': 'bold', 'size': 8})

plt.xticks([])

plt.yticks([])

if title is not None:
plt.title(title, size=15)

plt.axis('off")

fig = plt.gcf()

fig.set_size_inches(12,7)

plot_clustering(digits_red, real_label, title = "2d embedding of the digits dataset,
colors= real labels")

2d embedding of the digitg dataset, colors= real labels

@ o 0 ®

It's useless to try to run the algorithm without doing any kind of dimensionality reduction first: accurate density estimation
is almost always unsucessful with highly sparse data. We can try to use our algorithm after killing some dimensions first.
Wit our dataset, after some experimentation, when there are 11 dimensions left DTM density estimation looks quite well:



In [1110]: pca = PCA(n_components=11)
digits_red = pca.fit_transform(digits)

ex6 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="1logDTM",
n_clusters=10,
k=9,

)

ex6.fit(digits_red)
ex6.plot_diagram()
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It looks like the algorithm found "naturally" 9-10 clusters, let's plot these 10 groups in 2D:



In [1100]: labels = ex6.fit_predict(digits_red)

pca = PCA(n_components=2)
digits_red = pca.fit_transform(digits_red)

plot clustering(digits_red, labels, title = "2d embedding of the digits dataset, colo
rs= clusters")

2d embedding of the digifs dataset, colors= clusters
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The result looks suprisingly good, actually.

A way to measure the matching degree consists in computing the vector 10 - real_labels + clustering_labels, which
takes values ¢ {O, ey 99}, and then counting the number of times each number appears. In a perfect classification,
only 10 values would appear, more specifically 10 - ¢ 4 label;, with i € {0, el 10}; in a decent clustering, we should
at least see some clearly more prominent values, which is indeed what happens in our case!



In [1111]: vect_count = 10*real_label + labels
print(vect_count)

count = np.zeros((2,100))

for i in range(100):
count[0,i]= 1

for i in vect_count:
count[1,i] += 1

fig, ax = plt.subplots();
ax.cla()
ax.scatter(count[9,:], count[1,:], s=16);
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From this graph it looks like most of the values have been properly grouped. Only the value 8 looks more mismatched.
We can also get an idea about how the numbers have been grouped or labeled using a table, and checking the columns
and rows: each of them should only contain one "big" value:



In [1102]: import pandas as pd
data = [[1) 2]: [31 4]]
pd.DataFrame(data, columns=["Foo", "Bar"])

table = []
for i in range(10):
row = []
#row.append(i)
for i in range(i*10, i*10 +10):
row.append(count[1, i])
table.append(row)

pd.DataFrame(table, columns=[ 'Label @', 'Label 1', 'Label 2', 'Label 3', 'Label 4',
"Label 5', 'Label 6', 'Label 7', 'Label 8', 'Label 9'])

Out[1102]:

Label 0 Label1 Label2 Label3 Label4 Label5 Label6 Label7 Label8 Label9
0 177.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 1.0 154.0 0.0 0.0 1.0 0.0 0.0 26.0 0.0
2 1.0 0.0 2.0 0.0 164.0 0.0 1.0 9.0 0.0 0.0
3 0.0 0.0 7.0 0.0 0.0 3.0 3.0 170.0 0.0 0.0
4 0.0 0.0 20 177.0 0.0 0.0 2.0 0.0 0.0 0.0
5 0.0 1.0 0.0 1.0 0.0 178.0 0.0 2.0 0.0 0.0
6 1.0 179.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 11.0
8 0.0 2.0 82.0 0.0 2.0 4.0 2.0 82.0 0.0 0.0
9 0.0 0.0 20.0 0.0 0.0 5.0 2.0 144.0 0.0 9.0

The clustering has been quite successful. In any case, the numbers 3's and 9's have been almost completely clustered
together (which is not that suprising, given the low resolution of the dataset), and the number 8 is almost evenly divided
between labels 2 (with the 1's) and 7 (with the 3's and 9's), again not very surprising.

References

[1]. Frédéric CHAZAL et al., Persistence-Based Clustering in Riemannian Manifolds . In :Journal of the ACM 60 (juin
2011).doi:10.1145/1998196.1998212 : URL: https://hal.inria.fr/inria-00389390/document (https://hal.inria.fr/inria-
00389390/document)

[2]. Tutorial for DTM: https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-DTM-filtrations.ipynb
(https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-DTM-filtrations.ipynb)

[3]. Gérard BIAU, Frédéric CHAZAL, David COHEN-STEINER, Luc DEVROYE, Carlos RODRIGUEZ. A Weighted k-
Nearest Neighbor Density Estimate for Geometric Inference . 2011. ffinria-00560623v1 : URL:
http://luc.devroye.org/BiauChazalCohenDevroyeRodriguez-kNN-2EJS-2011. pdf
(http://luc.devroye.org/BiauChazalCohenDevroyeRodriguez-kNN-2EJS-2011.pdf)

[4] Various Agglomerative Clustering on a 2D embedding of digits: https://scikit-
learn.org/stable/auto_examples/cluster/plot_digits_linkage.html#sphx-glr-auto-examples-cluster-plot-digits-linkage-py.
(https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html#sphx-glr-auto-examples-cluster-plot-digits-
linkage-py)



https://hal.inria.fr/inria-00389390/document
https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-DTM-filtrations.ipynb
http://luc.devroye.org/BiauChazalCohenDevroyeRodriguez-kNN-2EJS-2011.pdf
https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html#sphx-glr-auto-examples-cluster-plot-digits-linkage-py

	Introduction
	Introduction à l'apprentissage automatique
	Machine Learning: idée générale et premiers exemples
	Motivations
	Méthodologie et différents types de systèmes d'apprentissage
	Problèmes et challenges du Machine Learning

	Plus en détail: algorithmes de clustering habituels
	Considérations générales
	Algorithmes de clustering combinatoires
	K-means clustering
	Clustering hiérarchique


	Introduction à l'Analyse topologique des données
	Idée générale et motivation
	Complexes simpliciales, recouvrements et le Théorème du Nerf
	Inférence homologique
	Homologie simpliciale et nombres de Betti
	Filtrations
	Un algorithme pour calculer les nombres de Betti
	Homologie persistante: définitions et algorithmes
	Diagrammes de persistance et stabilité


	L'algorithme ToMATo
	Introduction
	L'intuition derrière l'algorithme: le cas continu

	Les données d'entrée (input data)
	Quelques constructions de graphes habituelles
	Quelques estimateurs classiques de la fonction de densité

	La procédure de l'algorithme
	Information finale obtenue
	Mise en œuvre de l'algorithme et exploration

	Références
	Annexe: A handy guide to using the ToMATo algorithm

