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Abstract

The goal of this memoir is to expose and manipulate some modern concepts and tools in the
Data Science domain.
In the central part of the work, some basic notions and results of the emerging field of Topological
Data Analysis (TDA) are explored, notably persistent homology and persistence diagrams, together
with some stability results. Several effective algorithms to compute the homology groups and the
persistent homology of a (filtration of a) simplicial complex are also given.
Together with that, following a more general approach, a brief survey of the Machine learning pa-
radigm and some clustering algorithms are exposed in the first two chapters.
In the last chapter, the recently developed clustering method ToMATo is studied. This algorithm re-
lies heavily on some of the concepts explained in the previous chapters. The theoretical study of this
method is then followed by a more practical section in which programming takes the leading role :
a (rather visual) exploration (in Python) of the implementation of this algorithm in the GUDHI
library is carried out, as well as a little guide to understand its parameters and functionalities.
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0. Introduction

L’importance des domaines de la science des données (Data Science) et l’apprentissage auto-
matique (Machine Learning) continue à croître dans le monde avec l’évolution technologique de
notre époque. Dans ce contexte, de nouvelles idées et méthodes sont constamment développées
pour traiter, analyser et exploiter la grande quantité de données qui nous entourent. Seule une
bonne formulation mathématique peut justifier la pertinence des nouveaux algorithmes et son im-
plémentation.

Parmi le grand nombre de méthodes existantes dans la science des données, nous trouvons les
méthodes de clustering, ou segmentation des données. L’objectif de ces dernières est de trouver
des sous-groupes "naturels" dans notre information de départ. Dans chaque groupe, les données
seraient, sous une définition à préciser, plus "similaires" entre elles. Les problèmes de clustering sont
particulièrement difficiles à traiter en raison de leur nature exploratoire et non-supervisée. Ainsi,
la convenance d’un algorithme de clustering ou d’un autre dépend en grande partie des caractéris-
tiques des données d’entrée.

En parallèle à l’apparition de nouvelles techniques pour réaliser des tâches spécifiques, diffé-
rentes approches générales à la science des données sont aussi développées. Le domaine émergent
de l’Analyse topologique des données (TDA en anglais) étudie les ensembles de données en utilisant
des idées de la topologie et de la géométrie. Ce domaine illustre pleinement ce phénomène. L’intérêt
pour ce champ d’étude, avec plein de nouveaux concepts et résultats, augmente de plus en plus, et
actuellement de nombreux algorithmes très efficaces s’appuient sur la base théorique de la TDA.

Le récemment développé algorithme de clustering ToMATo (Topological Mode Analysis Tool)
fait partie de ces nouvelles méthodes. Au coeur de son fonctionnement apparaissent les notions
d’homologie persistante et les diagrammes de persistance, très habituels dans la TDA. De plus, une
implémentation de cet algorithme a été récemment ajouté dans la librairie GUDHI, l’un des outils
de programmation de référence dans ce nouveau domaine. Il semble donc raisonnable de faire une
exploration théorique mais aussi pratique / informatique de cette technique qui vient d’être conçue.

Structure de la mémoire

Tout d’abord, dans le premier chapitre, nous verrons une exposition générale du domaine de
l’apprentissage automatique ; plusieurs concepts de base récurrents sont introduits dans cette par-
tie. Nous essaierons aussi de répondre à trois questions significatives : qu’est-ce que le Machine
Learning, pourquoi est-il utile, et comment les ordinateurs arrivent à "apprendre" et à améliorer
sa performance. Les références principales de cette partie sont [3], [7] et [9].

Puis, au chapitre 2, nous développerons qu’est-ce que le clustering, ainsi que des notions clés
dans l’étude de cette technique. Le contenu de ce chapitre est important afin de mieux comprendre
l’algorithme ToMATo, ses innovations et ses particularités. Une partie des algorithmes les plus
communs seront expliqués, et nous verrons aussi comment traiter les données pour appliquer au
mieux ces méthodes. Les références les plus importantes de cette section sont principalement [9] et
la documentation en ligne de la librairie Scikit-Learn [11], [12].

Le troisième chapitre constitue la partie la plus dense et mathématique du mémoire. Certains
des concepts les plus fondamentaux de l’Analyse topologique des données y sont exposés. Nous
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verrons d’abord comment construire un complexe simplicial sur un nuage de points, et pourquoi
cette construction est intéressante. Ensuite, nous ferons l’inférence homologique de ces complexes
simpliciaux. Cela implique une connaissance des notions d’homologie persistante ainsi que des dia-
grammes de persistance. Plusieurs algorithmes sont détaillés pour étudier ces informations dans
la pratique. Nous terminerons le chapitre en étudiant la stabilité persistante des fonctions, qui est
fondamentale pour justifier de façon théorique la performance de l’algorithme ToMATo. Plusieurs
références ont été utilisés dans cette partie, dont : [2], [3], [6], [10] et [5].

Finalement, au chapitre 4 nous explorerons l’algorithme ToMATo. Nous nous appuierons sur
les idées exposées aux chapitres précédents. D’un point de vue théorique, il convient d’expliquer
certaines constructions de graphes sur des nuages de points, et comment estimer une hypothétique
fonction de densité f à partir d’un échantillonnage. Les sources d’informations les plus importantes
dans cette section sont [4] et sa version simplifié, ainsi que [1] et [9].
Pour la pratique, nous avons produit un notebook de référence (en anglais) de l’implémentation de
l’algorithme, qui vient d’être ajouté à la librairie GUDHI. L’objectif de cette partie était de tester
la performance de cette implémentation, ainsi que mieux connaître le langage de programmation
Python et certains outils habituels pour réaliser l’analyse de données.
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1. Introduction à l’apprentissage automatique

1.1. Machine Learning : idée générale et premiers exemples

Même si le concept deMachine Learning (en français, apprentissage statistique, ou apprentissage
automatique) a explosé en popularité ces dernières années, souvent on perçoit un peu de confusion
en ce qui concerne la signification authentique de ce terme. Cette confusion est davantage aggravée
lorsque d’autres expressions comme data science, artificial intelligence ou data mining, étroitement
liées à la première, apparaissent sur la table. Inévitablement, avec le développement intensif de tous
ces nouveaux domaines, un nouveau jargon est apparu, et il est indispensable de bien connaître les
subtiles différences entre les mots pour encadrer convenablement les problèmes et les explications .

En termes généraux, le Machine Learning (ML) est le domaine d’étude qui cherche à donner
aux ordinateurs la capacité d’apprendre sans être explicitement programmés, en utilisant des don-
nées (d’ici son interaction avec la data science) et/ ou des expériences antérieures. En voyant cette
définition, qui d’ailleurs n’est pas très concrète, deux questions émergent naturellement par rapport
au terme "apprendre" : qu’est-ce que cela veut dire, exactement, et comment obtient-on cet ap-
prentissage ? De plus, il est naturel de se demander dans quelles situations ou pourquoi le Machine
Learning peut être la meilleure option à considérer. Ce sont précisément ces trois questions que
nous nous proposons de répondre tout de suite.

La première des trois est possiblement la plus générale : en effet, cette apprentissage peut prendre
plusieurs formes, qui peuvent varier énormément en fonction du problème de départ. Ainsi, la ma-
nière la plus rapide de se faire une idée de quoi "apprendre" signifie véritablement est de regarder
quelques exemples de situations où le Machine Learning s’est avéré être très efficace. Ces exemples
vont apparaître plusieurs fois toute au long du chapitre :

— La classification du mail dans spam et no-spam. Dans ce cas, l’idée est de développer un algo-
rithme pour choisir, en considérant plusieurs aspects (fréquence de quelques mots spécifiques,
longueur, structure générale,...), si un courriel contient des informations qui nous intéressent
ou pas. Donc, en somme, nous voulons que l’ordinateur apprenne à classer une série d’élé-
ments.

— La prédiction de la valeur d’une maison, en sachant quelques aspects comme sa taille, empla-
cement et d’autres caractéristiques, ainsi comme celles des immeubles à proximité, y compris
leur valeur. Dans cet exemple, on assume que tous ces facteurs peuvent être utilisés pour
construire un modèle "réaliste" qui donne notre prix approximatif. Le résultat final du pro-
cessus est une quantité, qui peut donc varier continuellement. Nous avons ici un problème
typique de régression.

— Dans un magasin, on peut essayer de détecter des groupes de clients similaires selon leurs
achats, ou selon leur genre, par exemple. En sachant cela, on peut élaborer des offres ou poli-
tiques commerciales plus dirigées vers ces groupes pour augmenter les ventes. Ici, nous avons
de nouveau un problème de classification, mais d’une nature assez différente, car les groupes
ne sont pas connus à priori, et ils pourraient même ne pas exister d’une façon évidente. Nous
parlerons plus de ce type de procédure, appelé clustering, en peu plus tard.

— Le développement d’une application digitale de reconnaissance vocale. Par exemple, un pro-
gramme de smartphone capable d’écrire et chercher sur Internet toute combinaison de mots
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qu’on lui dicte. Dans ce cas, il y a aussi de quelque sorte un problème de classification (après
tout, l’objectif du programme est de bien identifier chaque mot prononcé), mais les nuances
du langage et la complexité de la prononciation humaine situent le défi beaucoup plus loin que
d’autres problèmes de classification standards. Ce type de programmes qui cherchent à imiter
(et dépasser) le comportement humain et réaliser des tâches plus complexes font partie de ce
qu’on appelle intelligence artificielle. Ce domaine, de plus en plus actif et prometteur, a ses
propres algorithmes et mécanismes, comme par exemple l’utilisation de réseaux neuronaux
(neural networks) ou l’apprentissage par renforcement (reinforcement learning).

Donc, nous voyons que la variété de ce qu’on a appelé "apprentissage" est riche et considérable
et, en fait, il y a beaucoup plus de situations et applications possibles : diagnostic médical guidé
par ordinateur, séquençage d’ADN, vision par ordinateur,...
En tout cas, la plupart des méthodes et algorithmes ont pour objectif de classer des éléments, de
prévoir ou d’estimer des résultats ou des valeurs pour prendre des décisions, trouver des relations
entre variables, ou une combinaison de ces options.

1.2. Motivations

Mais pourquoi appeler tout cela apprentissage ? Après tout, tous les programmes informatiques
visent la simplification des tâches et aider avec les calculs et la prise de décisions...
La différence essentielle avec le Machine Learning est la manière dans laquelle ces programmes
arrivent à effectuer ces tâches : rappelons qu’un élément clé de notre brève définition est "sans
être explicitement programmés, en utilisant des données et/ ou expériences antérieures". Avant
d’expliquer, dans la section suivant, les idées générales qui présentent comment nous pouvons ar-
river à faire cela, il est naturel de se demander en premier lieu quelles sont les motivations de le faire.

Prenons-nous le premier exemple du mail. Si nous devions programmer nous-mêmes un détec-
teur de mail spam (pour bien le distinguer et séparer du mail "bon"), la manière la plus naturel
d’agir serait, d’abord, d’étudier un peu ses caractéristiques générales : quels types de mots ou d’ex-
pressions apparaissent le plus souvent dans ce type de courriels et ses fréquences en comparaison
avec le mail ordinaire, sa longueur approximative, des régularités dans le nom ou dans l’adresse de
l’émetteur, etc. Finalement, avec toute cette information, il faudrait programmer une par une les
conditions ou les seuils à dépasser pour le considérer comme un courrier indésirable.

Ce n’est pas une chose facile ni rapide à faire ! Même si nous réussissons à trouver de bonnes
conditions pour distinguer les deux types de mail, nous obtiendrions une liste énorme de règles à
considérer. Ainsi, le résultat final serait un code très long et complexe : pas pratique à programmer
ni facile à maintenir, modifier ou mettre à jour. Un algorithme plus "machine learning" chercherait
lui-même les caractéristiques clés en comparant des exemples des deux types de courrier et associe-
rait les poids convenables pour bien les classer.

Dans le dernier exemple de la reconnaissance vocale, la complexité d’un hypothétique pro-
gramme codé à la main devient encore plus évidente : la quantité d’information et la variabilité
dans un fichier audio est tellement énorme qu’il est simplement impossible d’analyser explicitement
tous les cas où il sonne une "s" ou une "u". Seulement après avoir exposé à un bon algorithme
milliers d’enregistrements des différents mots, nous pouvons espérer qu’il arrivera à les distinguer
correctement.
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Un autre avantage des algorithmes de Machine Learning est que souvent on peut les concevoir
pour qu’ils soient adaptables à de possibles actualisations ou accroissements des données. Cette
caractéristique peut être très utile dans toutes les situations, y comprises celles des exemples anté-
rieurs.

Finalement, nous pouvons nous servir de toutes ces techniques et procédures pour améliorer
l’apprentissage humaine même. En effet, quelques algorithmes ML peuvent être inspectés pour voir
ce qu’ils ont appris, et ainsi mieux comprendre des corrélations et tendances non reconnues précé-
demment. Utiliser les techniques ML avec cet objectif s’appelle data mining.

1.3. Méthodologie et différents types de systèmes d’apprentissage

Alors, comment obtenir cet apprentissage ? Le principe de tous les systèmes de Machine Lear-
ning consiste dans le fait que la majorité des paramètres sont trouvés en utilisant des données et
des exemples déjà existants, qu’on appelle "données d’entraînement" (training data). En tout cas,
c’est pratique de classer ces systèmes de plusieurs manières en considérant quelques-unes de ses
différences méthodologiques fondamentales.

Possiblement la distinction la plus important au niveau méthodologique, car il affecte notam-
ment les possibles algorithmes à appliquer, est celle d’apprentissage supervisé et non-supervisé (et
quelques types "intermédiaires"). Cette classification prend en compte dans quelle mesure les don-
nées sur lesquelles on construit l’algorithme contiennent déjà des informations certaines, i.e. on a
une connaissance préalable des types de solutions qu’on devrait obtenir.

Dans l’apprentissage supervisé, possiblement le plus naturel et intuitif, les données d’entraî-
nement incluent les solutions souhaitées ; elles sont "étiquetées" (labelled). Par exemple, dans les
deux premières situations expliquées précédemment, nous construirions le classificateur de mail à
partir d’exemples de courriels "bons" et "spam" ; pareillement, on estimerait le prix de la maison en
utilisant un modèle qui prend en compte les caractéristiques, mais aussi les prix (i.e. la "solution",
ils sont donc étiquetées) des différentes maisons à proximité. Ces caractéristiques utilisées pour
construire le modèle s’appellent features, ou predictors.
En résumé, les systèmes d’apprentissage supervisé sont conçus pour donner les résultats attendus
sur les données d’entraînement, que nous connaissons. Les problèmes de régression et de classifica-
tion en groupes spécifiques sont des exemples de ce type d’apprentissage.

Dans l’apprentissage non-supervisé, les données sur lesquelles nous travaillons ne sont pas éti-
quetées, et il n’y a pas une façon directe de vérifier ou mesurer la performance du système. Ce
type d’apprentissage est plutôt lié à la visualisation des données et son exploration : corrélations
inattendues, groupes avec des similitudes, détection des données mauvaises ou bizarres (outliers),...
Par exemple, les méthodes de clustering sont de nature non-supervisée, y compris notre algorithme
ToMATo, dont nous parlerons plus tard. Dans ce type d’apprentissage il y aurait aussi ces al-
gorithmes de visualisation qui essaient de représenter les donnés en 2D et 3D en préservant au
maximum sa structure. Finalement, nous y ajouterions aussi toutes les procédures de réduction de
la dimensionnalité, qui ont pour objectif simplifier les données sans perdre trop d’information, par
exemple en combinant plusieurs features corrélées entre elles.

D’autres types d’apprentissage sous ce critère seraient l’apprentissage semisupervisé, qui com-
bine les deux types antérieurs, ou l’apprentissage par renforcement. Dans ce dernier, assez lié au
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domaine de l’intelligence artificielle, l’algorithme observe continuellement les données et l’environ-
nement, et sélectionne et réalise des actions qui peuvent être récompensées ou pénalisées ; au fil
du temps, il apprend lui-même les stratégies le plus efficaces pour obtenir les meilleures récompenses.

Une autre manière de classer les systèmes ML est selon sa capacité d’adaptation aux nouvelles
données. Les algorithmes qui ont besoin de tout l’ensemble de données pour être construits cor-
rectement font partie de ce qu’on appelle apprentissage offline ; ceux qui peuvent incorporer de
nouvelles données et apprendre progressivement, une propriété en général désirable pour sa flexibi-
lité et réduction du coût de calcul, sont de type online.

Finalement, une autre classification décisive au niveau méthodologique est celle qui prend en
compte comment le système ML se généralise aux nouveaux cas ; c’est-à-dire de quelle façon on
mesure sa performance en tant que prédicteur, avec de nouvelles observations.
Dans l’apprentissage basé sur des instances, l’algorithme apprend les exemples par coeur et étudie
les nouveaux cas en utilisant une "mesure de similitude". Cette dernière compare quantitative-
ment les nouveaux cas avec les données d’entraînement, afin de les étudier. En revanche, dans
l’apprentissage basé sur des modèles, on essaie de construire un bon modèle ou formule à partir des
exemples pour faire des prédictions. Normalement, dans le design de ce modèle, on utilise une fonc-
tion d’"aptitude" (fitness function, ou cost function) pour étudier quantitativement sa convenance
sur les données d’entraînement.
Dans les deux cas, il faut toujours garder à l’esprit que tout ensemble de données d’entrée contient
inévitablement du bruit : elles sont partiellement aléatoires, et l’information n’est jamais transpa-
rent. Donc, ajuster la flexibilité du modèle en fonction de chaque cas est toujours essentiel.

1.4. Problèmes et challenges du Machine Learning

En somme, dans tout processus d’apprentissage statistique nous trouvons deux étapes : la sé-
lection d’un algorithme convenable et l’entraînement postérieur avec des données. Naturellement,
il faut faire attention à ces deux choses si nous voulons obtenir un apprentissage effectif. Certains
défis ou aspects à prendre en compte en ce qui concerne cela seraient :

• Quantité insuffisante de données : Dans la majorité des algorithmes, il faut disposer de beau-
coup de données pour entraîner correctement le modèle et le faire fonctionner. En général, on
a besoin de milliers d’exemples, ou des millions dans les problèmes les plus complexes. Dans
certaines situations, il est possible de combiner ou extraire des nouvelles données à partir
de celles déjà existantes, pour en avoir plus. Plusieurs études montrent que des algorithmes
très différents peuvent accomplir des niveaux de succès similaires en utilisant suffisamment
de données.

• Données d’entraînement non représentatives : Afin d’obtenir de bonnes généralisations, les
données d’entraînement doivent être représentatives des nouveaux cas qu’on cherche à gé-
néraliser ; sinon, les prédictions du modèle difficilement s’ajusteront aux valeurs réelles. Par
exemple, le caractère d’un modèle pour calculer quelque spécificité d’un pays peut changer
largement en fonction de la richesse des pays utilisés pour le concevoir ; il faudrait se servir
des pays avec un niveau économique similaire. Le même principe s’applique pour prédire les
résultats d’une élection à partir des sondages.
Quand les données utilisées ne sont pas représentatives, même si nous en avons une grande
quantité, il s’agirait ici d’un "biais d’échantillonnage" (sampling bias).
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• Données de mauvaise qualité : Naturellement, si les données d’entraînement contiennent beau-
coup d’erreurs, outliers et bruit, les algorithmes auront plus de problèmes pour trouver des
"patterns" et atteindre ses objectifs. Donc, en général, c’est recommandable d’investir du
temps à détecter et écarter les outliers et traiter les valeurs manquantes ou incomplètes (data
cleaning).

• Features non pertinents : Indépendamment de l’algorithme, celui-ci seulement apprendra si les
données utilisées pendant l’étape d’entraînement ont un véritable lien avec ce que nous voulons
estimer. Le complexe processus d’obtenir un ensemble de features pertinents s’appelle feature
engineering. Il comprend, entre autres : sélectionner les features les plus utiles et écarter les
autres, les combiner pour en obtenir des nouvelles d’une façon plus compacte (étroitement lié
à la réduction de la dimensionnalité), en créer d’autres à partir de nouvelles données,...

• Overfitting et underfitting : Ces deux phénomènes, plus liés à l’algorithme lui-même qu’à la
nature des données, se produisent quand le modèle obtenu se base trop ou respectivement
trop peu sur les données d’entraînement.
Tout algorithme de Machine Learning essaie de trouver des régularités dans les données, mais
celles-ci possèdent aussi de manière naturelle une variabilité qui peut empêcher l’algorithme
de bien se généraliser à de nouveaux cas si nous nous y basons trop. Par exemple, il est presque
toujours possible de trouver une fonction polynomiale qui passe pour n’importe quelle quantité
de points dans R2 si son dégrée est suffisamment élevé (i.e. si nous augmentons suffisamment
les dégrées de liberté), mais un modèle si "courbé" ne sera possiblement pas le meilleur à
prédire de futures observations. En somme, l’overfitting se produit quand le modèle est trop
complexe par rapport au bruit et à la quantité de données d’entraînement.
Quelques possibles solutions dans ce cas seraient : recueillir plus de données, réduire le bruit
des données (i.e. réparer les erreurs dans les données et écarter les outliers) ou simplifier le mo-
dèle, chose que nous pouvons faire en utilisant moins de paramètres, en considérant moins de
features ou en "contraignant" le modèle. Ce dernier approche, appelé regularization, contient
plein de méthodes et techniques : l’idée de base est d’utiliser des paramètres supplémentaires
dans l’algorithme (les hyperparamètres), indépendants du modèle, fixés d’abord et constants
pendant l’entraînement, qui "limitent" en quelque sorte la liberté des paramètres du modèle.
Trouver de bons hyperparamètres est l’une des parties importantes de construire un bon sys-
tème de Machine Learning.

Le underfitting est le problème contraire : il se produit quand le modèle est trop simple
pour bien apprendre la structure sous-jacente des données. Trois stratégies pour améliorer
rapidement cette situation sont : admettre plus de paramètres dans le modèle, réduire les
contraintes s’il y en a, ou augmenter la pertinence des features.

• Essai et validation : Pour étudier l’efficacité du modèle, une bonne pratique consiste à diviser
les données disponibles en plusieurs sous-groupes complémentaires et les entraîner, mesurer
et vérifier les uns contre les autres. En somme, nous trouvons trois types de ces groupes : les
données d’entraînement (training set), à partir duquel on construit le modèle ou mesure de
similitude ; les données de validation (validation set), qui servent pour modifier le modèle ou
les hyperparamètres jusqu’à obtenir une performance désirable ; et les données de vérification
(test set), pour se faire une idée de l’erreur de généralisation (i.e. sa performance avec de
nouveaux cas).
On appelle cross-validation la méthode, très commune à pratiquer, qui consiste à faire cette
procédure plusieurs fois avec tout l’ensemble des données pour mieux choisir le modèle et les
hyperparamètres.
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2. Plus en détail : algorithmes de clustering habituels

2.1. Considérations générales

Le cluster analysis, ou segmentation des données, a pour objectif le regroupement d’un ensemble
d’éléments en sous-groups ou clusters. Ainsi, dans chaque cluster, les éléments sont plus "proches"
entre eux à la différence des éléments classés dans des clusters différents. Dans cette branche du
Machine Learning, à caractère non supervisé et exploratoire, les algorithmes cherchent à établir
si les données peuvent être divisées dans des groupes différents avec des propriétés suffisamment
distinctes. L’algorithme ToMATo, récemment développé, fait aussi partie de ces méthodes. Nous
aborderons plus en détail cet algorithme dans le chapitre quatre.

La question fondamentale dans le cluster analysis est comment nous mesurons ce "degrée de
similarité" (ou dissimilarité) entre les données, donc c’est la définition sur laquelle les algorithmes
se basent.
Un approche assez flexible consiste à utiliser ce qu’on appelle une matrice de proximité. Avec un en-
semble de N éléments (ordonnées), {x1, . . . , xN}, on construit une matrice D de dimension N ×N ,
où le coefficient dij mesure quantitativement la proximité ou similarité de l’élément i à l’élément j.
En général, plus le numéro est faible, plus des similitudes sont remarqués. De ce fait, la plupart des
algorithmes assument dii = 0, ∀i ∈ [1, N ]. De plus, certains algorithmes imposent notamment que
la matrice soit symétrique ; sinon, D peut toujours être remplacée par (D+DT )/2. Pour travailler
avec "dissimilitudes", on peut toujours convertir tous les valeurs avec une fonction monotone dé-
croissante convenable.

Une des situations le plus habituelles est celle où chaque élément xi consiste en p attributs de
nature quantitative. Si ces attributs sont de nature qualitative (ou catégorique), on peut parfois les
convertir facilement en numéros : par exemple, si nous avons une variable qualitative ordonnée avec

M options, nous pouvons utiliser les valeurs
i− 1

2

M
, i = 1, . . . ,M , toutes entre 0 et 1. Si la variable

n’est pas ordonnée et peut prendre M différentes valeurs, il faut préciser le "niveau de différence"
entre les paires de valeurs en utilisant une matrice (comme évoqué dans le paragraphe précédent) :
ses entrées, normalement 1s sauf 0s à la diagonale, jouent le rôle des dj que nous expliquerons tout
de suite.

Supposons que nous disposons de plusieurs données numériques xij , i ∈ [1, N ] , j ∈ [1, p] (les
cas catégoriques ont déjà été traités). En s’appuyant sur ces données, on construit une notion de
"dissimilarité" entre les valeurs du j-ème attribut de deux éléments différents, dj(xij , xi′j). Le choix
le plus commun pour dj est la distance au carré,

dj(xij , xi′j) = (xij − xi′j)2.

D’autres options existent aussi, comme par exemple la différence absolue |xij − xi′j |, qui pénalise
moins les grandes différences. Les résultats peuvent varier considérablement en fonction de la dis-
tance choisie.

Puis, nous définissons la "mesure de dissimilarité totale" d(xi, xi′) entre deux éléments en combi-
nant ces p dissimilarités individuelles. Bien que la somme est l’option la plus naturelle à considérer,
nous gagnons en flexibilité en travaillant avec une moyenne pondéré
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d(xi, xi′) =

p∑
j=1

wj · dj(xij , xi′j) ,
p∑
j=1

wj = 1.

Cette dernière permet d’ajuster un poids convenable à chaque attribut (ces poids dépendent né-
cessairement de la nature du problème et des données concrètes). Pour bien adapter ces poids, il
est important de remarquer que l’influence du j-ème attribut sur la dissimilarité totale D(xi, xi′)

dépend de sa contribution relative à la moyenne des dissimilarités totales entre toutes les paires
d’éléments de l’ensemble,

D̄ =
1

N2

N∑
i=1

N∑
i′=1

d(xi, xi′) =

p∑
j=1

wj · d̄j ,

où

d̄j =
1

N2

N∑
i=1

N∑
i′=1

dj(xij , xi′j)

est la dissimilarité moyenne du j-ème attribut. Ainsi, l’influence relative de la j-ème variable est
wj · d̄j , et fixer wj ∼ 1/d̄j (ou directement wj = 1/d̄j , standardisé plus tard) donne à chaque
attribut la même influence sur la dissimilarité totale.

Bien que cette dernière option semble appropriée, elle peut aussi être contre-productive. En ef-
fet, souvent les attributs ne contribuent pas de la même manière à la notion de similitude : certaines
différences entre les valeurs peuvent refléter plus de dissimilarité que d’autres dans le contexte du
problème, et devraient donc avoir plus de poids. Pour cela, il est important de préciser correctement
toutes ces variables, ainsi que la fonction de similitude, chose qui dépend dans une large mesure du
problème spécifique. En fait, tous ces paramètres peuvent avoir plus d’importance que l’algorithme
lui-même pour réussir avec le clustering.
Finalement, il est aussi important de prêter attention à bien traiter les données manquantes (missing
values en anglais) dans un ou plus des attributs. On peut faire cela en utilisant une moyenne (ou
quelque autre valeur, processus appelé "imputation statistique"), en utilisant une nouvelle catégorie
qualitative "missing", en omettant quelques dissimilarités concrètes ou en écartant directement ces
éléments.

2.2. Algorithmes de clustering combinatoires

Pour résumer, nous trouvons trois types d’algorithmes de clustering :

• Les algorithmes combinatoires travaillent directement sur les données, sans avoir aucun type
de modèle probabiliste sous-jacent, et assignent directement chaque élément à un group.

• Les modèles de mélange supposent que les données constituent un échantillon i.i.d d’une
population décrite par une fonction de densité. Cette fonction de densité est caractérisée par
un modèle paramétrique formé par un mélange/ somme de plusieurs fonctions de densité
(habituellement gaussiennes) : chacune de ses fonctions décrirait un cluster.

• Les algorithmes mode-seeking ("chercheurs de modes"), aussi appelés bump hunters, ont une
approche non paramétrique et tentent d’estimer directement les différentes modes (i.e. maxi-
mums locaux) d’une hypothétique fonction de densité de base. Les éléments les plus proches
de chaque mode définissent ainsi les clusters individuels.
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Ceux du premier type sont spécialement employés pour leur simplicité. Avec les données {x1, . . . , xN},
un numéro préspécifié de clusters K < N est choisi, chacun étiqueté par un numéro k ∈ {1, . . . ,K}.
On assigne après à chaque élément i de l’ensemble un cluster C : {1, . . . , N} → {1, . . . , k},
i 7→ C(i) = Ck, en essayant de minimiser une fonction "de perte" qui prend en compte les dissimi-
larités d(xi, xi′) entre les données. Une fonction de perte naturelle à considérer serait

W (C) =

K∑
k=1

∑
i,i′∈Ck

d(xi, xi′), (1)

qui quantifie de quelle manière les observations mises dans le même cluster sont proches entre elles.
Il est facile de voir que minimiser W (C) est équivalent a maximiser

B(C) =

K∑
k=1

∑
i∈Ck

∑
i′ /∈Ck

d(xi, xi′),

car T =
∑N
i,i′ d(xi, xi′) = W (C) +B(C) est constant.

Nous pourrions penser que cela réduit le problème au calcul de la valeur de la fonction de perte
sur toutes les possibles combinaisons, mais dans la pratique le nombre d’allocations possibles pour
tous les éléments augmente très rapidement avec N et k. De ce fait, tout algorithme de clustering
efficace étudie seulement une fraction très petite des attributions k = C(i) possibles, avec l’objectif
d’identifier un sous-ensemble susceptible de contenir l’optimale, ou au moins une correspondance
assez bonne.

La stratégie se base généralement sur ce qu’on appelle un "greedy descent" itérative : une
partition initiale est choisie et, à chaque pas, les attributions sont changées de sorte que la valeur
du critère est améliorée par rapport à l’antérieure. L’algorithme se termine par une partition lorsque
aucune amélioration est possible.
Ces algorithmes, travaillant avec un sous-ensemble très petit des combinaisons possibles, convergent
toujours à un maximum local, qui peut être très sub-optimal en comparaison avec le maximum
global.

2.2.1. K-means clustering

Il est un des algorithmes les plus populaires en raison de sa vitesse et sa simplicité. Il a aussi
des applications importantes dans la compression des images et signaux (vector quantization).

Cet algorithme suppose que toutes les variables sont de type quantitative, et il prend la distance
euclidienne habituelle au carré, d(xi, xi′) =

∑p
j=1(xij − xi′j)

2 = ||xi − xi′ ||2, pour mesurer la
dissimilarité entre les observations. Avec ces conditions, nous remarquons que (1) est égal à

W (C) =

K∑
k=1

Nk
∑
i∈Ck

||xi − x̄k||2, (2)

où x̄k = (x̄1k, . . . , x̄pk) est le vecteur moyen associé aux observations du cluster k, et Nk est son
nombre d’éléments.

Du fait que la moyenne des {y1, . . . , ym} minimise la fonction f(y) =
∑m
i=1(yi − y)2, nous
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pouvons obtenir une méthode itérative descendant pour résoudre

C∗ = min
C

K∑
k=1

Nk
∑
i∈Ck

||xi − x̄k||2, (3)

notre problème original, en considérant le problème d’optimisation plus général

C∗ = min
C,{mk}K1

K∑
k=1

Nk
∑
i∈Ck

||xi −mk||2. (4)

L’algorithme est le suivant :

Algorithm 1: K-means clustering
Input: {x1, . . . , xN} observations quantitatives (p features chacune)

K numéro de clusters souhaité
Output: Pour chaque observation, une étiquette k ∈ [1,K] (cluster assigné)

1 On fait une première attribution C(i) pour chaque observation, aléatoire ou avec unes
moyennes déjà établies.

2 Avec notre partition C, on minimise la variance totale du clustering (4), obtenant ainsi les
moyennes {m1, . . . , ,mk} associées à chaque cluster.

3 Avec ces valeurs {m1, . . . , ,mk}, on minimise davantage (4) en assignant à chaque
observation le cluster avec la moyenne la plus proche : C(i) = arg min1≤k≤K ||xi −mk||2

4 On répète 2 et 3 jusqu’à ce que les attributions C ne changent plus.

Étant donné que à les étapes 2 et 3 la quantité (4) diminue, la convergence de la méthode est
assurée. Néanmoins, normalement on atteint un maximum local sub-optimal. De ce fait, c’est une
bonne idée de courir l’algorithme avec différentes partitions initiales et prendre le meilleur résultat
final.

Nous pouvons généraliser l’idée du clustering K-means à distances différentes à l’euclidienne
et features pas nécessairement quantitatives si nous travaillons directement avec les dissimilarités
d(xi, xi′). Pour cela, nous pouvons utiliser l’algorithme décrit avant en changeant le mk : au lieu de
la moyenne des éléments du cluster k, nous prenons un de ces éléments ; en particulier, l’élément xk
qui minimise

∑
i∈Ck d(xk, xi). Cette nouvelle méthode, qui s’appelle clustering K-medoids, a aussi

un coût informatique considérable, et n’est souvent pas réalisable exhaustivement.

2.2.2. Clustering hiérarchique

Contrairement au clustering K-means/ K-medoids, qui part d’un nombre de clusters K préréglé
et les cherchent, les méthodes de clustering hiérarchiques produisent une représentation "en échelle"
qui passe pour tous les nombres possibles, et où les clusters à chaque niveau sont crées en unifiant
ou divisant ceux du niveau inférieur. De cette façon, il est possible de voir plus facilement quel
est le "bon" numéro de clusters de l’ensemble. Naturellement, il est encore nécessaire d’établir une
"mesure de similitude" entre groupes, basée sur les dissimilarités entre paires d’éléments.

Il y a deux stratégies principales pour ce type de clustering : l’agglomérative (bottom-up), où
nous commençons avec un cluster pour chaque observation et nous les unifions par paires à mesure
que l’algorithme court ; et la divisive (up-bottom), qui part par un seul cluster et ensuite les divise
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en deux peu à peu. Dans le deux cas, chaque niveau de la hiérarchie représente un regroupement
spécifique des données en clusters disjoints, et la hiérarchie entière les différents "seuils" où ils ap-
paraissent.

Ces agglomérations/ divisions binaires récursives peuvent être représentées sous forme d’arbre,
qui commence avec une seule racine (le cluster avec toutes les données) et, à la fin, a une feuille pour
chaque élément. De plus, une partie important de ces méthodes ont la propriété de la "monotonie",
c’est à dire, la dissimilarité entre clusters (qui se mesure quantitativement) augmente de manière
monotone à mesure qu’on les unifie. Ainsi, l’arbre peut être dessiné de sorte que les bifurcations
entre les branches se produisent à des hauteurs qui reflètent la durée de tous les clusters de manière
proportionnelle. Ce type de représentation graphique, assez complète et informative sur les données,
s’appelle dendrogram.

Néanmoins, ces dendrograms sont assez sensibles aux données et à les particularités de la mé-
thode choisie, et ils imposent sur les données une structure hiérarchique qui pourrait ne pas exister.
Donc, plus qu’une "carte" infaillible de la structure des données elles-mêmes, le dendrogram devrait
être vu plutôt comme une carte de la structure du clustering des ces données, obtenues avec un
algorithme et une métrique spécifiques.

Figure 1 – Exemple de dendrogram (où on regroupe les états des États-Unis, critère inconnu)

Stratégies agglomératives
Ces méthodes commencent avec un singleton cluster pour chaque élément. Puis, à chacun des

N−1 pas, les deux groupes les plus "proches" sont fusionnés, et on perd un cluster au niveau suivant.

Naturellement, la notion de "proximité" entre les groupes doit être définie en considérant les
dissimilarités entre les paires d’observations. Soient G et H deux de ces groupes. Nous remarquons
plusieurs options pour définir la dissimilarité d(G,H) :

— Le saut minimum (single linkage en anglais) est défini pour dSL(G,H) = mini∈G,i′∈H dii′ .

— Le saut maximum (complete linkage en anglais) se définie comme dCL(G,H) = maxi∈G,i′∈H dii′ .

— Le lien moyen (group average en anglais) est défini pour dGA(G,H) =
1

NGNH

∑
i∈G

∑
i′∈H dii′ .
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En général, si les données montrent une structure claire, avec des clusters bien séparés les uns
des autres et suffisamment compacts (i.e. ses éléments sont proches entre eux en comparaison avec
ceux de clusters différents), les trois méthodes produisent des résultats similaires. Développons
maintenant les particularités de chaque méthode :

Le type saut minimum a seulement besoin que deux éléments de groupes différents soient proches
pour les fusionner, indépendemment des autres éléments ; cela résulte souvent en clusters peu com-
pacts.
Le type saut maximum est le pôle opposé ; deux groupes G et H sont proches seulement si tous les
éléments dans son union sont relativement similaires, et les clusters sont plus compactes. Pourtant,
cela peut causer aussi une relaxation du "principe de proximité" : un élément assigné dans un clus-
ter peut être beaucoup plus proche des éléments d’autres clusters que ceux de son propre groupe.
Le type lien moyen permet un compromis entre ces deux extrêmes, mais il est aussi plus dépendant
des valeurs spécifiques des dii′ , à la différence des deux autres, qui dépendent uniquement de son
ordre.

Stratégies divisives
Ces méthodes commencent avec toutes les données dans un unique groupe, et divisent à chaque

itération un cluster existant en deux clusters plus petits.

Même si elles sont moins étudiées que les méthodes agglomératives, on peut toujours diviser
n’importe quel cluster en appliquant une méthode combinatoire, comme K-means avec K = 2, à
chaque itération. Cependant, en général ce processus ne produit pas une séquence de clusters avec
la propriété de la monotonie nécessaire pour la représenter correctement en forme de dendrogram.

Un algorithme qui satisfait cela serait celui-ci :

Algorithm 2: Clustering hiérarchique divisive monotone
Input: {x1, . . . , xN} observations quantitatives

Les dissimilarités dii′ entre toutes les paires d’observations
Output: Une séquence hiérarchique de clusters

1 On met toutes les observations dans un unique cluster, G.
2 On trouve l’élément i dans G avec la dissimilarité moyenne avec les autres éléments de G,

1
NG

∑
j∈G dij , la plus élevée. Cet élément sera le premier membre d’un deuxième cluster H.

3 On prend l’élément de G qui a la distance moyenne avec les éléments de G moins la
distance moyenne avec les éléments de H la plus grande et le transfère à H.

4 On continue à faire cela jusqu’à ce que cette différence devienne négative. En ce moment, il
n’y a plus d’observations dans G qui sont, en moyenne, plus proches à celles du H qu’à
celles de son groupe G. Nous avons alors deux nouveaux clusters.

5 Nous continuons de répéter 2, 3 et 4 avec un cluster présent, nouveau ou pas, jusqu’à
obtenir N singleton clusters. Pour choisir le groupe suivant a diviser, deux critères utiles
seraient :
— Le cluster C avec le diametre DC = maxi,i′∈C dii′ le plus grand.
— Celui avec la dissimilarité entre éléments moyenne, d̄C = 1

N2
C

∑
i,i′∈C dii′ , la plus grande.

11



Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

3. Introduction à l’Analyse topologique des données

3.1. Idée générale et motivation

L’Analyse topologique des données (Topological Data Analysis en anglais, souvent nommée
TDA), commence à se développer dans les années 2000 à partir de quelques travails dans la topo-
logie appliquée et la géométrie algorithmique. Ce champ d’étude cherche à explorer et étudier les
bases de données en utilisant des techniques et idées typiques du domaine de la topologie. Cette
nouvelle approche de la science de données, qui s’est déjà avérée très utile dans plusieurs contextes,
a pour objectif mieux comprendre la "forme" d’un ensemble de données. Cette question peut être
spécialement compliquée quand on travaille en dimensions élevées, et avec des donnés incomplètes
ou avec une forte présence de bruit.

En résumé, la TDA essaie de fournir des méthodes mathématiques, statistiques et algorith-
miques pour révéler, analyser et utiliser des structures géométriques et topologiques non évidents
dans un ensemble des données. Notamment, un de ses outils principales est celui de l’homologie
persistante, une adaptation de l’homologie pour nuages de points, qui a besoin d’une solide formu-
lation théorique et mathématique.

Le schéma de déroulement habituel en TDA est :
1. L’input est généralement un ensemble fini de points avec quelque type de similarité ou distance

définie entre eux. Cette distance peut venir induite pour un hypothétique espace ambiant (par
exemple, Rd) ou être définie intrinsèquement entre paires de points, en fonction du cas.

2. Quelque type de structure géométrique de nature traitable et algorithmique est construite sur
ces points, avec l’objectif de faire plus évidents quelques de ses caractéristiques. Souvent, nous
faisons cela en utilisant un ou plusieurs complexes simplicials, qui peuvent être vus comme
une généralisation des graphes en dimensions plus élevées.

3. Nous extrayons cette information géométrique et topologique en utilisant différents méthodes,
et nous étudions sa pertinence et stabilité par rapport à possibles perturbations des données
ou présence de bruit. Cette information est après souvent visualisée et combinée avec d’autres
descripteurs pour guider les prochaines étapes de l’analyse des données ou tâches de ML.

Notre algorithme ToMATo fait usage de certains des concepts de ce nouveau champ d’étude,
notamment de l’homologie persistante et les diagrammes de persistance. Donc, l’objectif de cette
partie du travail est d’introduire avec rigueur et généralité les fondements de la TDA et les bases
mathématiques de l’homologie persistante.

3.2. Complexes simpliciales, recouvrements et le Théorème du Nerf

Étant donné que la plupart des concepts de la topologie et la géométrie sont associés à des
espaces continus, une pratique habituelle dans le TDA est de "connecter" de quelque sorte les
données (représentées comme points) qui sont proches les unes des autres. On formalise souvent
cette notion de proximité en utilisant une distance entre points, qui peut être définie entre paires
directement (espace métrique discrète) ou en plongeant les données dans un espace métrique plus
grand (typiquement, Rd).

En tout cas, après avoir connecté les données proches, nous obtenons un graphe de voisinage,
qui permet déjà appliquer plusieurs méthodes d’analyse. Pour aller au-delà de la connectivité,
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nous pouvons associer pas seulement paires mais aussi (k + 1)-tuples de points proches entre eux.
Nous obtenons ainsi un complexe simplicial, qui permet identifier de nouvelles caractéristiques
topologiques, comme cycles, "trous" et leurs généralisations en haute dimension.

Définition 3.1. Soit X = {x0, . . . , xk} ⊂ Rd (k + 1) points affines linéairement indépendants. Le
simplexe k-dimensionnel σ = [x0, . . . , xk] généré pour X est l’enveloppe convexe de X. Les points
originales sont ses sommets, et les simplexes générés pour les sous-ensembles de ces points sont les
faces de σ.

Remarque 3.2. Formellement, les sous-ensembles d’un simplexe sont appelés ses n-faces, où n est
sa cardinalité moins 1. Cependant, pour les cas 0 et 1 normalement on utilise les mots sommets et
arêtes respectivement, et le mot face pour le cas 2 et en général.

Définition 3.3. Un complexe simplicial géométrique K ⊂ Rd est une collection de simplexes telle
que :

1. Toute face d’un simplexe de K est aussi un simplexe de K.

2. Toute intersection de deux simplexes de K est vide ou une face commune aux deux.

Encore plus généralement, un complexe simplicial abstrait avec des sommets V est une collection
K de sous-ensembles finis de V telle que que les éléments de V appartient à K et, pour tout élément
σ de K, tout sous-ensemble de σ appartient aussi à K.

Clairement, on peut utiliser la dernière définition, de nature plus combinatoire, pour étudier un
complexe simplicial géométrique, mais la direction inverse fonctionne aussi : on peut mettre tout
complexe simplicial abstrait dans Rd pour quelque d, et le considérer comme un subespace avec la
topologie induite. C’est cette structure, appelée réalisation géométrique de K, qui permet utiliser
sans problèmes plein de notions géométriques et topologiques sur K.

Figure 2 – Simplexes de dimension 0,1,2 et 3, et exemple d’un complexe simplicial géométrique

Définition 3.4. La dimension d’un simplexe est simplement sa cardinalité moins 1. La dimension
d’un complexe simplicial est la dimension plus grande parmi les simplexes qui le constituent.

Remarque 3.5. Un graphe est un complexe simplicial de dimension 1.

Étant donnée un ensemble de points X (imaginons que dans un espace métrique (M,d)), nous
pouvons construire des complexes simplicials au-dessus de plusieurs manières. Deux des construc-
tions les plus habituelles seraient :

1. Complexe de Vietoris-Rips, Ripsα(X) : La généralisation immédiate de la notion de graphe de
voisinage. C’est le complexe simplicial qui a pour ensemble de faces les simplexes [x0, . . . , xk]

qui satisfont d(xi, xj) ≤ α pour tout 0 ≤ i, j ≤ k.
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2. Complexe de Čech, Cechα(X) : Étroitement lié au Vietoris-Rips complexe, c’est le complexe
simplicial formé pour les simplexes [x0, . . . , xk] qui satisfont que l’intersection des k+1 boules
B(xi, α) n’est pas vide.

Remarque 3.6. Même si X est un ensemble fini de points dans Rd, Ripsα(X) et Cechα(X)

n’admettent pas toujours une réalisation géométrique dans Rd, donc ses dimensions peuvent être
plus élevées.

Remarque 3.7. C’est facile de voir qu’on a toujours Ripsα(X) ⊆ Cechα(X) ⊆ Rips2α(X), où
les inclusions peuvent être strictes. Si X ⊂ Rd, Cechα(X) et Rips2α(X) ont le même squelette
1-dimensionnel, i.e. le même ensemble de sommets et arêtes.

Figure 3 – Construction des complexes de Cech e
2
(en bas à gauche) et de Ripse (en bas à droite).

La troisième image montre comme les deux complexes ont le même squelette 1-dimensionnel.

En fait, le complexe de Čech est un cas particulier d’une construction de complexes plus générale
en utilisant des recouvrements :

Définition 3.8. Soit M un espace topologique (ou un ensemble, en général). Un recouvrement U
de M est une famille de sous-ensembles de M , U = (Ui)i∈I , qui satisfont ∪i∈IUi = M . Le nerf
d’un recouvrement U de M est le complexe simplicial abstrait C(U) qui a Ui comme sommets et
les faces

σ = [Ui0 , . . . , Uik ] ∈ C(U) ⇐⇒ ∩kj=0Uij 6= ∅

De cette façon, Cechα(X) est le nerf du recouvrement U = (B(xi, α))xi∈X de l’ensemble
M = ∪xi∈XB(xi, α), qui contient évidemment l’ensemble de points original. Mais un recouvre-
ment d’un ensemble de données ne doit pas forcement être basé sur des boules centrées sur elles ;
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par exemple, nous pourrions aussi en avoir un en faisant une subdivision des données en groupes
de points (non nécessairement disjoints) avec des propriétés similaires.

En tout cas, le nerf d’un recouvrement offre une description de nature combinatoire assez globale
et compacte de la relation entre les sous-ensembles du recouvrement en considérant ses plusieurs
intersections. Le Théorème du Nerf (Nerve Theorem) est un résultat de topologie algébrique qui
lie, avec quelques assomptions, la topologie du nerf d’un recouvrement avec la topologie du recou-
vrement lui-même. Ses implications dans l’Analyse topologique des données sont remarquables, et
même si nous ne le démontrerons pas, le but de la dernière partie de cette section est introduire les
notions nécessaires pour bien comprendre ce qu’il dit.

Dans la topologie, normalement nous considèrons deux espaces topologiques X et Y comme
égales quand ils sont homéomorphes, i.e. nous pouvons trouver deux applications continues et
bijectives f : X → Y et g : Y → X qui satisfont g ◦ f = idX et f ◦ g = idY . Cependant, dans
plusieurs situations, aussi dans la TDA, la notion d’homémorphisme est trop rigide, et souvent il
est convenable d’étudier des similitudes entre espaces topologiques un peu plus faibles. C’est ici où
l’idée de l’homotopie apparaît :

Définition 3.9. Soit X et Y deux espaces topologiques. Deux applications continues f0, f1 : X → Y

sont homotopiques s’il existe une application continue H : X × [0, 1] −→ Y telle que, ∀x ∈ X,
H(x, 0) = f0(x) et H(x, 1) = f1(x). Dans ce cas, on écrit f0 ' f1.
On dit que X et Y sont des espaces topologiques homotopiquement équivalents si on peut trouver
deux applications f : X → Y et g : Y → X tels que g ◦ f ' idX et f ◦ g ' idY . Dans ce cas, on
écrit X ' Y .

La notion d’équivalence homotopique est plus faible que celle d’homéomorphisme, donc deux
espaces homéomorphes sont toujours homotopiquement équivalents, mais le réciproque n’est pas
vrai. En tout cas, l’intérêt principal derrière l’homotopie est que nous pouvons définir des objets
(souvent de nature algébrique) sur les espaces topologiques qui sont effectivement des invariants
homotopiques, c’est-à-dire qui sont conservés entre des espaces topologiques homotopiquement équi-
valents. Les exemples les plus notables seraient les groupes d’homotopie et les groupes d’homologie
(singulaire, simpliciale). On parlera plus en détail de l’homologie dans la section suivante.

Définition 3.10. Un espace X est contractile s’il est homotopiquement équivalent à un point.

Exemple 3.11. Tout boule dans Rd, ouverte ou fermée, est contractile. Plus généralement, tout
sous-ensemble convexeX dans Rd est contractile. En effet, si on suppose 0 ∈ X, il y a les applications
f : X → {0}, x 7→ 0, et g : {0} → X, 0 7→ 0. Clairement f ◦ g ' id{0} (en fait, f ◦ g = id{0}), et
g ◦ f ' idX , avec l’application continue H : X × [0, 1] −→ X, H(x, t) = t · x.

Un recouvrement ouvert est celui où tous les éléments de la famille sont ouverts. Un recouvre-
ment ouvert fini où tous les éléments et intersections entre éléments sont contractiles satisfait le
résultat suivant, souvent nommé le Théorème du Nerf :

Théorème 3.12. (Théorème du Nerf) Soit U = (Ui)i∈I un recouvrement ouvert fini d’un sous-
ensemble X ⊆ Rd tel que toute intersection des Ui’s est vide ou contractile. Alors X et C(U) sont
homotopiquement équivalents.

Ainsi, on a que le nerf défini par un "bon" recouvrement de X est homotopiquement équivalent
à X, ce qui est remarquable pour des applications ; en effet, normalement un complexe simplicial
possède une nature beaucoup plus traitable algoritmiquement qu’un espace topologique général.
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En tout cas, le complexe de Čech se construit avec des boules fermés centrées sur chaque donnée,
donc le recouvrement n’est pas ouvert dans ce cas. Heureusement, la version suivante du théorème
est aussi vraie :

Théorème 3.13. (Théorème du Nerf pour un recouvrement convexe) Soit X ⊆ Rd une
union finie d’ensembles fermés convexes F = (Fi)i∈I dans Rd. Alors X et C(F ) sont homotopique-
ment équivalents.

De ce fait, on obtient que, en effet, si X est un nuage de points dans Rd, alors Cechα(X) est
homotopiquement équivalent à l’union des boules

⋃
x∈X B(x, α).

Figure 4 – Représentation de comment l’union des boules et le nerf associé (i.e. le complexe de
Čech des données) sont homotopiquement équivalents.

3.3. Inférence homologique

Résumons la situation jusqu’à ici : pour aller plus loin dans notre étude de nos ensembles de
données/ nuages de points, nous avons vu comment construire quelques structures géométriques au-
dessus, appelées complexes simplicials, de nature plus algorithmique. Après, nous avons exposé le
Théorème du Nerf, donc nous avons vu que, quand X est un ensemble de points dans Rd, Cechα(X)

est homotopiquement équivalent à l’union de boules ∪x∈XB(x, α).

Dans toute situation avec des données numériques (supposons dans Rd), et d’un point de vue sta-
tistique, il y a fondamentalement deux questions qui nous intéressent : d’une part, il y a l’"espace
d’échantillonnage" de nos données, i.e. dans quelle région M ⊆ Rd toutes les possibles données
"vivent" ; de l’autre part, il y a la mesure de probabilité µ sur cette région M , qui encode quelles
zones de M sont plus probables d’avoir plus de points, et de quelle manière les données se re-
groupent. Normalement, nous supposons que M , le support de µ, est compact, et que nos données
X = {x1, . . . , xn} ont été échantillonnées i.i.d. en suivant µ.

Évidemment, pour mieux comprendre nos données, faire des prédictions, etc., nous sommes inté-
ressés à connaître µ et la "forme" de son support M . Le processus qui essaie de mieux caractériser
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M s’appelle "reconstruction géométrique", et un schéma habituel pour inférer cette information
géométrique et topologique est :

1. Nous recouvrons X avec des boules B(x, α) ; sous certaines conditions de régularité sur M ,
nous pouvons lier la topologie de cette union avec celle de M .

2. Certaines propriétés topologiques deM sont inférées à partir du nerf de l’union de ces boules,
en utilisant le Théorème du Nerf.

Des résultats mathématiquement rigoureux et importants existent avec cette approche de re-
construction. Néanmoins, ce n’est pas toujours possible, ni souhaitable, d’essayer de reconstruire
complètement la forme de base à partir de nos données. De plus, dans le schéma que nous venons
d’exposer, nous voyons que le choix du rayon des boules, qui souvent n’est pas du tout évident,
joue un rôle clé dans les résultats obtenus.

Une autre manière de travailler les données est d’essayer de trouver des invariants topologiques
plus faibles, mais plus faciles d’inférer. C’est ici que le concept d’homologie, un outil déjà clas-
sique dans la topologie algébrique, entre en scène. Plus notamment, nous pouvons faire usage de
l’homologie simplicial sur nos complexes simplicials pour mieux les comprendre et, finalement,
élaborer davantage cette information homologique pour développer ce qu’on appelle homologie per-
sistante, qui garde une trace de comme l’homologie des complexes simplicials obtenues évolue en
variant le rayon. Une manière de représenter visuellement une bonne partie de toute cette informa-
tion est avec ce qu’on appelle un diagramme de persistance.

3.3.1. Homologie simpliciale et nombres de Betti

L’idée intuitive derrière de l’homologie en général est de traiter et formaliser algébriquement
la notion de "trou", ou "boucle", dans de différentes contextes mathématiques, notamment dans
les espaces topologiques. Pour toute dimension n, les "trous" n-dimensionnels sont représentés par
un espace vectoriel Hn, et sa dimension serait le numéro de trous "indépendants" de ce type. Par
exemple, H0 représente les composantes connexes de notre espace, H1 les "boucles unidimension-
nelles", H2 les "cavités 2-dimensionnelles", etc.

Le premier type de théorie d’homologie qui a été développé, il y a environ un siècle, est l’ho-
mologie simpliciale, qui se construit sur les complexes simplicials. Sur ces objets, c’est relativement
simple d’imaginer la notion de trou k-dimensionnel. Même si les concepts que nous exposerons en-
suite sont sensés avec tout corps k, nous travaillerons désormais avec k = Z/2Z = Z2, plus intuitif
à niveau géométrique, et qui simplifie les arguments ; sinon, il faudrait considérer une orientation
sur les sommets/ faces de notre complexe, et les formules deviendraient plus compliquées.

Soit K un complexe simplicial de dimension d :

Définition 3.14. Une n-chaîne est une somme formelle de simplexes n-dimensionnelles de K ;
c’est à dire, si {σ1, . . . , σp} sont les n-faces de K, une n-chaîne c est une expression du type

c =

p∑
i=0

λiσi, avec λi ∈ Z2

Pour chaque n, l’ensemble des n-chaînes Cn(K) a une structure évidente de Z2-espace vectoriel,
où l’ensemble des n-faces de K est une base de Cn(K). Les chaînes avec des coefficients dans Z2

ont une interprétation géométrique simple : du fait que toute n-chaîne peut être uniquement écrite
comme c = σi1 + · · ·+ σim , c représente simplement l’union des n-simplexes σij .
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Définition 3.15. Le bord ∂(σ) d’un n-simplexe σ est la somme de ses (n− 1)-faces. Donc, pour
le n-simplexe σ = [v0, . . . , vn], on obtient la (n− 1)-chaîne

∂(σ) =

n∑
i=0

[v0, . . . , v̂i, . . . , vn]

où [v0, . . . , v̂i, . . . , vn] est le (n− 1)-simplexe formé pour les sommets originels sauf vi.

Le bord d’un n-simplexe nous donne les (n − 1)-faces qui le constituent. Le bord ainsi défini
sur les simplexes de K peut être étendue de manière naturelle à une (plusieurs) fonction entre les
Ci(K). Même si on devrait les distinguer ∂i, souvent on écrit simplement ∂ pour éclaircir le texte :

Définition 3.16. La fonction bord est l’application linéaire définie par

∂ : Cn(K) −→ Cn−1(K)

c 7→ ∂(c) =
∑
σ∈c

∂(σ)

La propriété plus fondamentale de ∂ est celle-ci :

Proposition 3.17. ∂∂ = ∂ ◦ ∂ = 0

Démonstration. Puisque la fonction bord est linéaire, il suffit de le vérifier simplement pour un seul
simplexe σ = [v0, . . . , vn], de dimension n :

∂∂σ = ∂
( n∑
i=0

[v0, . . . , v̂i, . . . , vn]
)

=

n∑
i=0

∂[v0, . . . , v̂i, . . . , vn] =

=
∑
j<i

[v0, . . . , v̂j , . . . , v̂i, . . . , vn]+
∑
j>i

[v0, . . . , v̂i, . . . , v̂j , . . . , vn] =

n∑
j,i=0
j 6=i

2[v0, . . . , v̂i, . . . , v̂j , . . . , vn] = 0

La fonction bord définit une séquence d’applications linéaires entre les Ci(K) :

Définition 3.18. Le complexe de chaînes associé au complexe simplicial K est la séquence d’espaces
vectoriels et applications linéaires :

{0} ∂−→ Cd(K)
∂−→ Cd−1(K)

∂−→ . . .
∂−→ C1(K)

∂−→ C0(K)
∂−→ {0}

Pour k ∈ {0, . . . , d}, l’ensemble Zk(K) de k-cycles de K est le noyau de ∂ : Ck(K)→ Ck−1(K) :

Zk(K) = {c ∈ Ck(K)| ∂(c) = 0},

et l’ensemble Bk(K) de k-bords de K sont les chaînes qui appartient a l’image de l’application ∂ :

Bk(K) = {c ∈ Ck(K)| ∃ b ∈ Ck+1(K) tel que ∂(b) = c},

De quelque sorte, Zk encode quelles k-chaînes sont "fermées" (d’ici le nom "cycles"), et Bk quels
ensembles de k-faces sont le bord d’une (k + 1)-chaîne.
Zk et Bk sont évidemment des sous-espaces de Ck, et en vue de la Proposition 3.17, on a toujours
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Bk ⊆ Zk, où la inclusion peut être stricte. Ce dernier fait motive la définition des groups d’homo-
logie, qui essaient de trouver des "trous" dans notre complexe simplicial, i.e. des k-chaines fermées
qui ne sont la frontière d’aucune (k + 1)-chaîne du complexe :

Définition 3.19. Le k-ème groupe d’homologie de K est l’espace vectoriel quotient

Hk(K) = Zk(K)/Bk(K);

ses éléments s’appellent les classes d’homologie de K. Deux cycles qui appartient à la même classe
d’homologie sont appelés homologues.
La dimension βk(K) de Hk(K) s’appelle le k-ème nombre de Betti de K.

Figure 5 – Les nombres de Betti associés à quelques complexes simplicials simples : une arête
(avec ses sommets), le périmètre d’un triangle, un triangle, et un tétraèdre.

On peut démontrer (ce qui n’est pas immédiat) que les groupes d’homologie et les nombres de
Betti sont des invariants topologiques : si K0 et K1 sont deux complexes simplicials avec des réali-
sations géométriques homéomorphes, alors ses groups d’homologie sont isomorphes et ses nombres
de Betti sont égales. De plus, ces résultats sont aussi vraies si les réalisations géométriques sont
seulement homotopiquement équivalents.

Ces résultats sont une conséquence de l’étroite relation entre l’homologie simpliciale et une
autre type d’homologie, l’homologie singulière, beaucoup plus générale et qui peut être définie pour
tout espace topologique. En fait, on peut démontrer que les groupes d’homologie simpliciales et
singulières d’un complexe simplicial sont toujours isomorphes, et le résultat est une conséquence de
l’invariance homotopique de l’homologie singulière. Bien que notre intention dans ce mémoire n’est
pas d’introduire l’homologie singulière, le résultat suivant, pas difficile mais sans démonstration,
nous sera utile dans les pages qui viennent :

Proposition 3.20. Soit X un espace topologique (resp. un complexe simplicial). Alors, la dimen-
sion du premier groupe d’homologie singuilière H0(X) (resp. homologie simpliciale) est égale au
nombre de composantes connexes (par arcs) de X.

3.3.2. Filtrations

Définition 3.21. Une filtration d’un complexe simplicial K est une suite de subcomplexes (Kr)r∈T ,
où T ⊆ R fini ou infini, telle que ∀r0, r1 ∈ T , r0 ≤ r1 =⇒ Kr0 ⊆ Kr1 , et K = ∪r∈TKr. La
définition peut être généralisée de la manière évidente à tout espace topologique.

Dans des situations pratiques, les valeurs r ∈ T souvent jouent le rôle de "paramètres d’échelle",
qui ajustent la résolution du complexe. Deux filtrations habituelles dans le TDA seraient :
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— Filtrations construites sur des nuages de points : Étant donné un sous-ensemble fini X d’un
espace métrique compact (M,d), les familles de complexes (Ripsr(X))r∈R et (Cechr(X))r∈R
sont des filtrations. Dans ces dernières, r peut être vu comme le paramètre de résolution, où,
pour r ≤ 0, nous considérons seulement les points. Par exemple, quand X est un nuage de
points à Rd, grâce au Théorème du Nerf, (Cechr(X))r∈R encode la topologie de la famille
d’unions de boules Xr = ∪x∈XB(x, r) lorsque r varie de zéro à infini.

— Filtrations associées aux ensembles de niveau : Étant donné un espace topologique M et une
fonction f : M → R, la famille Mr = f−1((−∞, r]), r ∈ R définit une filtration. On appelle
les ensembles Mr ⊆ M les ensembles de sous-niveau de f . On peut définir également les
ensembles de super-niveau de f et sa filtration associé.
Dans les cas où nous travaillons avec un complexe simplicial K, normalement la fonction est
définie seulement sur son ensemble de sommets V . Nous pouvons étendre f à tout simplexe
de K en prenant f([v0, . . . , vk]) = max0≤i≤k f(vi) pour tout σ = [v0, . . . , vk] ∈ K. Ainsi, la
famille de sous-complexes Kr = {σ ∈ K|f(σ) ≤ r} définit la filtration associée aux ensembles
de sous-niveau de f .

Avec ces deux filtrations, dans des cas réels, même si T est infini, toutes les filtrations sont
construites sur des nuages de points, qui sont des ensembles finis, donc elles sont aussi finies. Par
conséquent, le complexe obtenu change seulement un numéro fini de fois, ce qui facilite son étude
d’un point de vue algorithmique.

Nous exposons finalement un autre type de filtration sur les complexes simpliciales, facile de
calculer et très pratique au niveau algorithmique, comme nous verrons toute de suite :

Définition 3.22. Une filtration de décomposition d’un complexe simplicial K est une suite de
subcomplexes

∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = K

qui satisfait Ki = Ki−1 ∪ σi, où σi est un simplex.

Intuitivement, dans une filtration de décomposition, nous ajoutons seulement un simplexe à
chaque fois, et il faut que toutes ses faces appartiennent déjà au sous-complexe quand il est introduit.

Exemple 3.23. Avec le complexe simplicial de l’image suivant, une filtration de décomposition
pourrait être a, b, c, ab, ac, d, bc, abc, cd.

Remarque 3.24. C’est facile de voir que toute filtration d’un complexe simplicial (y comprises les
deux filtrations précédentes) peut être affinée à une filtration de décomposition : il faut seulement
décomposer les nouveaux simplexes de Ki respect à Ki−1 en sommets, arêtes, 2-faces,... et les
ajouter un par un à chaque fois.

Cette dernière remarque ouvre tous les algorithmes typiques des filtrations de décomposition,
comme ceux dans les sections suivants, à toute filtration. C’est à cause de ce fait que désormais
nous travaillerons plutôt avec ce type de filtrations.

20



Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

3.3.3. Un algorithme pour calculer les nombres de Betti

Supposons un complexe simplicial K avec une filtration de décomposition. Dans cette situation,
il existe un algorithme assez simple pour calculer les nombres de Betti associés à K, seulement en
gardant une trace des nombres de Betti tout au long de la filtration ; en fait, l’algorithme calcule les
nombres de Betti de chaque sous-complexe de la filtration, ce qui sera important dans l’homologie
persistante.

Pour bien effectuer cette méthode, c’est indispensable de détecter quand le nouveau simplexe σi
ajouté, de dimension k, appartient à quelque k-cycle ou non, ce qui motive la définition suivante :

Définition 3.25. Si σi appartient à quelque k-cycle, on dit qu’il est un simplexe positif ; dans le
cas contraire, c’est un simplexe négatif.

Dans les sections suivantes, où plus d’algorithmes seront détaillés, nous expliquerons comment
savoir si nous ajoutons un simplexe positif ou négatif. Pour l’instant, et pour expliquer l’algorithme,
nous pouvons supposer que nous savons détecter quand σi est positif ou négatif :

Proposition 3.26. (Algorithme) : Les nombres de Betti de K peuvent être calculés de manière
inductive en faisant usage d’une filtration de décomposition.

Démonstration. Évidemment, tous les nombres de Betti de K0 = ∅ sont zéro.
Pour calculer les nombres de Betti de Ki, supposons que les nombres de Betti de Ki−1 sont déjà
calculés, et ajoutons le simplexe σi, de dimension k, pour obtenir Ki. Observons que, par définition
de filtration de décomposition, σi ne peut pas faire partie du bord d’aucun (k+ 1)-simplexe de Ki.
Par conséquent, si σi est contenu dans un k-cycle de Ki (i.e. positif), ce cycle n’est pas le bord
d’une (k + 1)-chaîne de Ki.

Il y a deux situations possibles :

Cas 1 : Si σi est positif et appartient à un k-cycle c de Ki, alors c ne peut pas être homologue
à un cycle c′ de Ki−1. En effet, dans ce cas c + c′ serait le bord d’une (k + 1)-chaîne d de Ki, et
comme σi ne peut pas appartenir à c′ (donc nous venons d’introduire cet nouveau simplexe à Ki),
σi appartient à c + c′ = ∂d, ce qui n’est pas possible comme nous avons déjà remarqué au début
de la démonstration. Par conséquent, c crée une nouvelle classe d’homologie, qui est linéairement
indépendant des classes générées par les cycles de Ki−1, donc βk(Ki) ≥ βk(Ki−1) + 1.
Nous pouvons voir aussi que la dimension du k-ème groupe d’homologie ne peut pas augmenter plus
que 1 : si c et c′ sont deux k-cycles qui contient σi, c+ c′ est un k-cycle de Ki−1, donc c′ est inclus
au sous-espace linéaire généré pour Zk(Ki−1) et c. D’ici on a que dimZk(Ki) ≤ dimZk(Ki−1) + 1

et, comme Bk(Ki−1) = Bk(Ki), on a βk(Ki) ≤ βk(Ki−1) + 1.
Il reste seulement pour montrer que Bk−1(Ki) = Bk−1(Ki−1), donc Hk−1(Ki) est le seul autre
group d’homologie de Ki qui peut changer en ajoutant σi, et clairement Zk−1(Ki) = Zk−1(Ki−1).
Le résultat est une conséquence directe du fait que σi est positif, et il appartient donc à un k-cycle
c de Ki : en effet, 0 = ∂c = ∂σi+

∑
∂(autres k-simplexes de K déjà ajoutés), et ∂σi peut être écrit

comme une combinaison linéaire de bords de k-chaînes de Ki−1.

Cas 2 : Si σi est négatif et n’appartient à aucun k-cycle de Ki, alors le (k − 1)-cycle ∂σi n’est
pas un bord à Ki−1. En effet, dans ce cas nous pourrions trouver une k-chaîne c′ à Ki−1 tel que
∂c = ∂σi, ou de façon équivalente, ∂(c + σi) = 0, ce qui implique que c + σi est un k-cycle de Ki

qui contient σi : contradiction. Par conséquent, comme le (k− 1)-cycle ∂σi, qui n’était pas un bord
à Ki−1, dévient un bord à Ki, nous avons βk−1(Ki) ≤ βk−1(Ki−1)− 1. Avec un argument similaire
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à celui de la fin du Cas 1, nous pouvons démontrer l’égalité.
Du fait que σi est négatif, c’est aussi évident que le groupe d’homologie Hk(Ki) reste inaltéré.

Nous voyons donc que, de quelque sorte, le processus se limite à trouver la différence entre les
simplexes positifs et négatifs de la filtration ; les positifs créent de nouvelles k-classes d’homologie
tandis que les négatifs effacent des (k − 1)-classes. Voici un résumé de l’algorithme :

Algorithm 3: Calcul des nombres de Betti d’un complexe simplicial K
Input: Une filtration de décomposition de K, complexe simplicial d-dimensionnel avec m

simplexes
β0, β1, . . . , βd = 0

Output: Les nombres de Betti β0, β1, . . . , βd de K

1 for i = 1 jusqu’à m :
k= dimσi
Si σi est positif :

βk = βk + 1
Si σi est négatif :

βk−1 = βk−1 − 1

3.3.4. Homologie persistante : définitions et algorithmes

Nous avons vu que l’algorithme précédant ne compute pas seulement les nombres de Betti d’un
complexe simplicial, mais de tous les sous-complexes de la filtration (de décomposition). Intuiti-
vement, l’objectif de l’homologie persistante est de garder une trace de toute cette information et
enregistrer à quels moments chaque classe d’homologie est crée et détruite pendant le processus.

Avant d’expliquer les formalismes, montrons un petit exemple, en utilisant l’homologie singulière
et la Proposition 3.20 :

Exemple 3.27. Soit f : (0, 1)→ R la fonction représentée dans l’image suivant :

Figure 6 – Diagramme de persistance d’une fonction réelle, où seulement les composantes connexes
(i.e. H0) sont enregistrées.

Nous sommes intéressés à étudier l’évolution de la topologie de la filtration associé aux ensembles
de sous-niveau de f , f−1((−∞, t]), à mesure que t augmente. La topologie de ces sous-ensembles
change quand t atteint les valeurs critiques a, b, c, d et e :
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Quand t = a, une nouvelle composante connexe apparaît, et pour a ≤ t ≤ b, f−1((−∞, t))
est un intervalle. Quand t atteint la valeur b, une deuxième composante connexe apparaît, et pour
b ≤ t ≤ c, f−1((−∞, t)) a deux composantes connexes. Pour t = c, ces deux composantes connexes
sont fusionnées : celle qui a été crée plus récemment, quand t = b, est unifiée à la première. Ainsi,
on enregistre la paire (b, c) comme les temps de création et destruction de la composante ; cette
paire est après représentée avec les cordonnées (b, c) au plan à droite. Intuitivement, le plus éloignée
un point est de la diagonale, le plus relevant est la composante.
Si nous continuons à augmenter t, encore une nouvelle composante est crée à t = d, qui est fina-
lement unifiée à la première quand t atteint la valeur e ; ainsi, un deuxième point est enregistré
à droite, avec cordonnées (d, e). La première valeur a ne peut pas être associée à aucune autre
valeur finie, donc la composante connexe crée pour cette t ne meurt jamais ; par conséquent, elle
est associée à +∞.
À la fin, toutes ces paires peuvent être représentées comme une famille d’intervalles (barcode) ou
comme un diagramme au plan, appelé diagramme de persistance. Pour des raisons qui deviendront
claires plus tard, c’est aussi naturel d’ajouter la diagonale {y = x} au diagramme.

Quand nous considérons des fonctions définies dans des espaces topologiques générales, atteindre
certaines valeurs critiques peut changer ne pas seulement les composantes connexes des ensembles
de sous-niveau, mais d’autres propriétés topologiques encodées dans les autres groups d’homologie
(i.e. les "trous" n-dimensionnels). De ce fait, il est aussi raisonnable de créer des paires de création/
destruction pour chaque dimension.

Finalement, supposons une fonction g "proche" à f comme celle de l’image d’en bas. Nous
pouvons observer que, même si g a plus de paires dans son diagramme de persistance, la majorité
sont très proches à la diagonale, donc une durée de vie assez courte. En revanche, les paires associées
à un intervalle plus long sont proches à celles de f . En d’autres termes, les propriétés topologiques
qui ont une persistance élevée sont préservées, tandis que celles qui son crées à cause de perturbations
sur la fonction ont une persistance plus petite. Nous verrons que, en effet, deux fonctions "proches"
ont toujours des diagrammes de persistance "proches". Cette notion de proximité est essentielle
pour bien distinguer et traiter le bruit topologique dans nos données.

Figure 7 – Une approximation g de f , et les diagrammes de persistance respectifs.
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Homologie persistante d’une filtration

Nous définissons d’abord la notion de persistance pour la filtration d’un complexe simplicial,
qui a pour objectif étudier l’évolution de l’homologie des sous-complexes de la filtration.

Soit K un complexe simplicial d-dimensionnel avec une filtration de décomposition

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K.

Pour tout 0 ≤ n ≤ m, on dénote Cnk l’ensemble de k-chaînes de Kn (avec des coefficients à
Z2). Notons que, puisque ∂2 = 0 et nous avons une filtration de décomposition, la restriction de
la fonction bord sur Cnk a toujours sa image contenue dans Cn−1k−1 . Dénotons Znk et Bnk les cycles
et bords k-dimensionnels de Kn respectivement, donc le k-ème groupe d’homologie de Kn est
Hn
k = Znk /B

n
k . Avec ces notations nous avons aussi

Z0
k ⊂ Z1

k ⊂ · · · ⊂ Zmk = Zk(K), B0
k ⊂ B1

k ⊂ · · · ⊂ Bmk = Bk(K).

Définition 3.28. (Nombres de Betti persistants) : Pour p ∈ {0, . . . ,m} et l ∈ {0, . . . ,m−p}, le
k-ème nombre de Betti persistant deKl est la dimension de l’espace vectoriel H l,p

k = Zlk/(B
l+p
k ∩Zlk).

Intuitivement, le k-ème nombre de Betti persistant de Kl représente le numéro de classes d’ho-
mologie indépendantes de k-cycles dans Kl qui ne sont pas de bords dans Kl+p ; par conséquente,
de manière informelle, sa durée de vie est supérieure à p.
Nous avons vu, dans la section précédente, qu’une classe d’homologie est crée quand un simplexe
positif est ajouté à la filtration, et qu’une classe d’homologie est détruite quand le simplexe est
négatif. L’homologie persistante offre un cadre théorique pour associer des simplexes positifs et
négatifs : quand un simplexe positif est ajouté à la filtration, il crée une classe d’homologie, qui
disparaît quand on ajoute son simplexe négatif associé (s’il existe).

Nous sommes intéressés à trouver un algorithme pour calculer ces nombres de Betti persistantes.
Pour l’obtenir, il faut mieux caractériser les classes d’homologie crées à chaque fois que nous ajoutons
un simplexe positif à la filtration. Rappelons que, dans la définition 3.25 de simplexe positif et
négatif, il faut seulement que σi appartient à un k-cycle, mais en général ce k-cycle n’est pas
unique. Heureusement, pour chaque k-simplexe positif σi que nous ajoutons ajoute à la filtration, il
y a un k-cycle associé "minimal", qui facilitera, à la fois, le calcul des nombres de Betti persistantes :

Lemme 3.29. Soit σi un k-simplexe positif ajouté à la filtration de K au pas i. Or, il n’y a
qu’un seul k-cycle c qui n’est pas un bord dans Ki, qui contient σi et qui ne contient aucun autre
k-simplexe positif.

Démonstration. Nous travaillons par induction sur l’ordre avec lequel les k-simplexes positifs sont
ajoutés à la filtration. Pour le premier k-simplexe positif σ ajouté, ce k-cycle c existe par définition,
est il est nécessairement unique parce que s’il y en avait un autre c′ de différent, c+ c′ 6= 0, qui ne
contient pas σ, serait aussi un k-cycle et ses éléments seraient des k-simplexes positifs, contradiction.

Supposons maintenant que le résultat est vrai pour tous les k-simplexes positifs déjà ajoutés,
et ajoutons σi. Comme σi est positif, il existe un k-cycle d qui n’est pas un bord dans Ki et qui
contient σi. Soit σij , j = 1, . . . , p les k-simplexes positifs différents de σi contenus dans d, et cij ses

24



Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

k-cycles respectifs associés, qui existent par hypothèse d’induction. Alors

c = d+ ci1 + · · ·+ cip (5)

est un k-cycle où σi est le seul k-simplexe positif. Du fait que σi est le dernier simplexe ajouté à
Ki, il n’existe aucun (k + 1)-simplexe dans Ki où σi est une face. Par conséquent, c n’est pas un
bord, et l’existence est démontrée.

Pour démontrer l’unicité de c, supposons deux k-cycles d̂1 et d̂2 qui ne sont pas un bord dans Ki

et qui contient σi, et répétons la construction précédente pour obtenir ĉ1 6= ĉ2. Alors ĉ1− ĉ2 6= 0 est
un k-cycle qui ne contient aucun k-simplexe positif, et nous pourrions toujours le combiner avec un
ci antérieur pour obtenir un k-cycle avec les mêmes propriétés du lemme, ce qui contredit sa unicité
et l’hypothèse d’induction. Donc, nous concluons que ĉ1 − ĉ2 = 0, et l’unicité est démontrée.

Bases des groupes d’homologie persistante et paires de persistance

Proposition 3.30. Les k-cycles associés aux k-simplexes positifs décrits au Lemme 3.29 peuvent
être utilisés pour calculer une base des différents groupes d’homologie k-dimensionnels de tous les
sous-complexes de la filtration.

Démonstration. Évidemment, au début toutes les bases de H0
n(K) = Hk(K0) sont vides pour

k = 0, . . . , d. Les bases des successives Hi
k sont construites de manière inductive :

- Supposons que nous avons déjà une base de Hi−1
k et que σi est positif et de dimension k. Si

nous ajoutons à notre base la classe d’homologie définie par le cycle ci associé à σi, nous obte-
nons une base de Hi

k grâce au Lemme précédent. En effet, du fait que ci est une somme de σi et
k-simplexes négatifs, il n’est homologue à aucune combinaison linéaire des cycles qui définissent la
base de Hi−1

k . Du fait que dimHi
k = dimHi−1

k + 1, vu dans la Proposition 3.26, nous obtenons une
base de Hi

k.

- Supposons maintenant qu’une base de Hj−1
k est déjà construite et que le simplexe σj est négatif

et de dimension k + 1. Soient ci1 , . . . , cip les k-cycles associés aux simplexes positifs déjà ajoutés,
qui définissent les classes d’homologie qui forment notre base de Hj−1

k . Comme nous l’avons déjà
expliqué, le bord ∂σj est un k-cycle de Kj−1 qui n’est pas un bord dans Kj−1, mais qui devient un
bord dans Kj . Par conséquent, il peut être écrit de manière unique comme

∂σj =

p∑
k=1

εkcik + b, (6)

où εk ∈ {0, 1} et b est un bord. Soit l(j) = max{ik| εk = 1}.

Claim : Si on enlève la classe d’homologie associé à cl(j) de la base de Hj−1
k , on obtient une

base de Hjk.

En effet, comme dimHj−1
k = dimHj

k + 1 par la Propositon 3.26, il suffit de montrer que cl(j)
est une combinaison linéaire d’un bord avec les autres cycles cik dans Zjk. L’équation (6) antérieure
montre une telle décomposition, ce qui finis la démonstration.

Définition 3.31. (Paires de persistance) Les paires de simplexes (σl(j), σj) s’appellent les paires
de persistance de la filtration de K.
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Intuitivement, la classe d’homologie crée pour σl(j) dans Kl(j) est détruite pour σj dans Kj . La
persistance de cette paire est j − l(j).

Le problème avec l’algorithme antérieur est de déterminer l(j). N’oublions pas non plus qu’il
faut aussi encore expliquer, en vue de l’algorithme du calcul des nombres de Betti de la Proposi-
tion 3.26, comment détecter si un nouveau k-simplexe est positif ou négatif. Toutes ces questions
peuvent être répondues à la fois en étudiant la filtration sous une forme matricielle. D’idée derrière
cette matrice est d’encoder le résultat de la fonction bord sur tous les simplexes de la filtration,
ordonnés. Avec cette matrice, nous pouvons réélaborer la proposition antérieur pour obtenir un
algorithme effectif pour calculer les paires de persistance, ce qui permet trouver les nombres de
Betti persistantes. Elle proportionne aussi une manière de détecter quand le k-simplexe ajouté est
positif ou négatif.

Soit K un complexe simplicial avec une filtration de décomposition. Soit M = (mij)i,j=1,...,m la
matrice associé au pas m de la filtration, où

mi,j = 1 si σi est une face de σj , et mi,j = 0 autrefois.

Cette matrice augmente "à droite et en bas" à mesure que la filtration avance, et elle est toujours
triangulaire supérieure puisqu’on a une filtration de décomposition.

Pour une colonne Cj , soit l(j) = max{i| mi,j = 1}, et non-assigné si la colonne contient
seulement des zéros. Nous pouvons alors considérer l’algorithme suivant :

Algorithm 4: Calcul des paires de persistance, version matricielle
Input: Une filtration de décomposition de K, le sous-complexe Km (qui contient m

simplexes) et la matrice M associé au pas m

1 for j = 0 jusqu’à m :
while qu’il existe j′ < j avec l(j′) == l(j)

Cj = Cj + Cj′ ( mod 2)

Output: Les paires (l(j), j)

Proposition 3.32. L’algorithme antérieur calcule les paires de persistance de la filtration de dé-
composition de K jusqu’au pas m, ainsi comme quels simplexes sont positifs et quels sont négatifs.

Démonstration. Remarquons que, à chaque pas de l’algorithme, la colonne Cj représente une chaîne
de la forme ∂

(
σj +

∑
i<j εiσi

)
, où εi ∈ {0, 1}.

- Si à la fin de l’algorithme j satisfait que l(j) est assigné, alors σl(j) est un simplexe positif. En

effet, on a ∂
(
σj +

∑
i<j εiσi

)
= σl(j) +

∑
p<l(j) λpσp, où λp ∈ {0, 1}. Du fait que ∂2 = 0, on a que

σl(j) appartient à un cycle et il est donc positif.

- Si à la fin de l’algorithme Cj contient seulement des zéros, σj est positif. Effectivement,
∂
(
σj +

∑
i<j εiσi

)
= 0, et σj appartient donc à un cycle.

-Finalement, si à la fin de l’algorithme la colonne Cj contient des termes non nuls, (σl(j), σj) est
une paire de persistance, et σj est donc négatif. En effet, le bord de σj peut alors être écrit de la
forme σl(j)+

∑
p<l(j) λpσp+∂

(∑
i<j εiσi

)
. Or, σl(j) est positif, donc il a crée une classe d’homologie

au moment l(j), et il reste non associé. Du fait que le dernier index non nul d’une colonne est unique
et par la Proposition 3.30, on peut déduire que (σl(j), σj) est une paire de persistance.
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3.3.5. Diagrammes de persistance et stabilité

Rappelons que, d’après le Remarque 3.24, tous les algorithmes que nous venons d’expliquer
sont aussi applicables à des filtrations pas nécessairement de décomposition. En effet, nous pouvons
toujours faire une affinage, et après prendre les coefficients de la filtration original. Également, avec
des algorithmes qui facilitent les calculs ou pas, les notions de l’homologie persistante introduites
jusqu’à ici, notamment les paires de persistance, peuvent aussi être appliquées avec des filtrations
d’espaces topologiques plus générales, en prenant l’homologie singulière. Nous avons déjà observé
ce fait informellement dans l’exemple 3.26, et nous en verrons aussi dans cette section.

Dans tous les cas, beaucoup des informations de l’homologie persistante, notamment la durée de
vie des différentes classes d’homologie, peuvent être facilement représentées en forme de diagramme :

Avec k fixée, soient (σl(j), σj) les paires de persistance (calculées avec les algorithmes précédentes,
par exemple), où σl(j) et σj ont dimension k et k+1 respectivement. Nous représentons chacune de
ces paires dans R2 avec le point de coordonnés (l(j), j) ; pour les simplexes positifs σi qui restent
non associés, nous créons les points (i,+∞).

Définition 3.33. Nous appellons la représentation de cet ensemble de points dans R2 avec la
diagonale ∆ = {x = y} le diagramme de persistance k-dimensionnel de la filtration.

Plus généralement, si la filtration est indexée par une suite croissante de numéros réels, comme
par exemple avec les filtrations introduites dans la section 3.3.2,

∅ = Kα0
⊂ Kα1

⊂ · · · ⊂ Kαn−1
⊂ Kαn = K,

une paire de persistance de simplexes (σi, σj) est représentée par le point (αi, αj), avec les indices
d’apparition et mort ; si le simplexe σi reste non associé, nous ajoutons ajoute le point (αi,+∞).

Le même type de points peuvent être crées pour toute filtration d’un espace topologique et
avec l’homologie singulière, où la coordonné x enregistre l’apparition d’une classe d’homologie et
la coordonné y sa mort. En tout cas, dans ces cas plus générales, il faut faire attention au fait que
plusieurs paires peuvent être associées au même point dans le plan. Donc, dans ces diagrammes de
persistance il faut aussi considérer une multiplicité pour chaque point. Par convention, les points
de la diagonale ont tous multiplicité infinie. Désormais, nous considérerons aussi une multiplicité
pour chaque point dans la définition de diagramme de persistance.

Nous pouvons définir une distance entre diagrammes de persistance pour mieux les comparer :

Définition 3.34. (Distance "bottleneck") Soient D1 et D2 deux diagrammes de persistance.
La distance goulot ("bottleneck" en anglais) entre D1 et D2 est définie comme

dB(D1, D2) = inf
γ

sup
p∈D1

||p− γ(p)||∞,

où γ est l’ensemble de bijections entre les points de D1 et D2 ; on prend m copies disjointes si un
point a multiplicité m > 1. Par convention, si p = (xp,+∞), q = (xq,+∞), ||p− q||∞ = |xp − xq|.

Remarque 3.35. C’est précisément cette distance qui motive ajouter la diagonale aux diagrammes
de persistance : elle permet de comparer des diagrammes qui n’ont pas le même nombre de points
dehors la diagonale en les associant avec des points de la diagonale.

Nous omettrons la démonstration qu’il s’agit vraiment d’une distance. Dans l’image suivante il
apparaît une représentation de la distance bottleneck entre deux diagrammes de persistance :
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Stabilité persistante des fonctions

Dans cette dernière partie de la section, inévitablement plus avancée et sans toutes les démons-
trations, nous allons lier la proximité de deux fonctions f et g à la proximité de ses diagrammes
de persistance. Cette relation est fondamentale pour justifier la convenance des diagrammes de
persistance associées à une fonction, ainsi comme pour identifier ses propriétés "proéminentes" et
les distinguer du "bruit topologique", i.e. des caractéristiques topologiques de courte durée crées
pour de petites perturbations. Ces résultats deviennent aussi importants pour justifier la procédure
de l’algorithme ToMATo du prochain chapitre, où nous travaillons avec une estimation f̂ d’une
densité f , et nous regardons son diagramme de persistance (0-dimensionnel).

Expliquons brièvement la situation : soit f : X → R une fonction réelle continue définie sur un
espace topologique X. Nous voulons étudier le diagramme de persistance k-dimensionnel associé à
ses ensembles de sous-niveau {Fα}α∈R, où Fα = f−1((−∞, α]), avec l’homologie singulière.
Une propriété fondamentale de l’homologie singulière est que toute application continue entre es-
paces topologiques h : X → Y induit un morphisme entre les respectives (k-èmes) groupes d’ho-
mologie, h∗ : H∗(X)→ H∗(Y ). Plus concrètement, la (k-ème) homologie singulière est un foncteur
(covariant) de la catégorie des espaces topologiques à la catégorie des groupes. Donc, il est toujours
vrai que (idX)∗ = idH∗(X) et (h ◦ g)∗ = h∗ ◦ g∗.

Dans notre cas, on peut étudier les applications induites par les inclusions Fa ⊂ Fb quand a < b,
f ba : H∗(Fa) → H∗(Fb). Ces groupes et morphismes encodent toute l’information de l’homologie
persistante : quelques références appellent groupes d’homologie persistante aux groupes Im f ba, qui
suivent la même idée que les groupes qui apparaissent dans la Définition 3.28, dans le cas simplicial.
Intuitivement, avec deux fonctions "proches" (avec la distance ||f−g||∞ = supx∈X |f(x)−g(x)|), les
moments de création et de mort de certaines caractéristiques topologiques (gardés dans les groupes
d’homologie, et représentés graphiquement dans les diagrammes de persistance respectifs D(f) et
D(g)) devraient être similaires. Cette idée est formalisée dans le théorème suivant :

Théorème 3.36. (Théorème de la stabilité bottleneck des diagrammes de persistance) :
Soit X un espace topologique triangulable avec des fonctions tame f, g : X → R. Alors, les dia-
grammes de persistance satisfont dB(D(f), D(g)) < ||f − g||∞.
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Nous démontrerons le théorème à la fin de la section, mais sans tous les pas intermédiaires.
Avant, plusieurs définitions et résultats sont nécessaires :

Définition 3.37. Soit X un espace topologique, f : X → R. Une valeur critique homologique
de f est un numéro réel a pour lequel il existe un entier k tel que, ∀ε > 0, l’application induite
fa+εa−ε : Hk(Fa−ε)→ Hk(Fa+ε) n’est pas un isomorphisme.

Lemme 3.38. (Lemme de la valeur critique) : Si [a, b] ne contient aucune valeur critique
homologique de f , f ba est un isomorphisme pour tout k ∈ Z.

Démonstration. Soit m = x+y
2 , or f ba = f bm ◦fma . Si f ba n’est pas un isomorphisme, au moins une des

deux fonctions antérieures ne l’est pas non plus. Ainsi, on peut construire de manière inductive une
suite d’intervalles fermés décroissants, l’intersection desquels est une valeur critique homologique
dans [x, y], ce qui est une contradiction.

Le lemme antérieur formalise l’idée que c’est seulement quand on atteint des valeurs critiques
homologiques que nouvelles caractéristiques topologiques sont crées ou destruites. Notre résultat
requiert une condition de finitude sur notre fonction, qui se satisfait dans la plupart des cas d’étude :

Définition 3.39. Une fonction f : X → R s’appelle tame si elle a un numéro fini de valeurs
critiques homologiques et tous les groupes d’homologie Hk(Fa) ont dimension finie ∀k ∈ Z, a ∈ R.

Rappelons maintenant la définition de la distance de Hausdorff, très habituelle dans la TDA,
pour des nuages de points :

Définition 3.40. Soient X et Y des ensembles de points (avec multiplicité). Alors la distance
Hausdorff est dH(X,Y ) = max{supx infy ||x− y||∞, supy infx ||y − x||∞}.

Un résultat important, mais sans démonstration, que nous utiliserons plus tard est celui-ci :

Proposition 3.41. Soit X un espace topologique triangulable avec des fonctions tame f, g : X → R.
Alors dH(D(f), D(g)) < ||f − g||∞.

Remarque 3.42. La distance Hausdorff entre deux diagrammes de persistance n’excède jamais la
distance bottleneck, car elle ne fait pas attention aux multiplicités, ou regroupements de points. Le
résultat pour la distance bottleneck est plus fort, et clé, pour quelques applications.

Voyons avant le résultat du Théorème 3.36 pour un cas spécial, et plus simple. Nous nous en
servirons plus tard pour prouver le cas général.
Étant donnée une fonction tame f : X → R, soit δf la distance minimale entre deux points dehors
la diagonal, ou entre un point dehors la diagonale et un autre dedans :

δf = min{||p− q||∞| D(f)\∆ 3 p 6= q ∈ D(f)}.

Si on dessine des carrés de rayon ε = δf/2 centrés sur les points de D(f), on obtient une diagonale
plus "grosse", et une collection finie de carrés disjoints entre eux et avec la diagonale.

Définition 3.43. Une autre fonction tame g : X → R est appelée très proche à f si ||f−g||∞ <
δf
2 .

Ici un autre lemme nécessaire mais sans démonstration, de nature plus technique :

Lemme 3.44. Soient f, g : X → R des fonctions tames, g très proche à f . Soient p ∈ D(f)\∆,
mp sa multiplicité et �ε le carré centré en p de rayon ε = ||f − g||∞. Alors |D(g) ∩�ε| = mp.
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Lemme 3.45. (Lemme de la bijection) : Soit X un espace topologique triangulable, f, g : X → R
des fonctions tames, g très proche à f . Alors dB(D(f), D(g)) ≤ ||f − g||∞.

Démonstration. Soient p ∈ D(f)\∆ et �ε le carré centré en p de rayon ε = ||f−g||∞, comme avant.
Du lemme précédant, tous les points de D(g) ∩�ε peuvent être associés à p. Nous pouvons suivre
cette procédure pour tous les points dehors la diagonal de D(f). Après, les seuls points de D(g)

qui restent sans image ont une distance supérieure à ε de D(f)\∆. Du fait que dH(D(f), D(g)) ≤ ε
(Proposition 3.41), ces points de D(g) sont au plus à distance ε de la diagonale. Si nous leur
associons respectivement les points les plus proches de la diagonale, nous obtenons une bijection
entre D(f) et D(g) (rappelons que les points de la diagonale ont multiplicité infinie). Cette bijection
déplace les points au plus ε, ce qui finit la démonstration.

Rappelons qu’un espace topologique est appelé triangulable s’il existe un complexe simplicial
fini avec une réalisation géométrique homéomorphe. Nous pouvons montrer notre théorème dans
toute sa généralité en faisant des approximations successives de notre fonction originelle f : X → R
par des fonctions linéaires par morceaux définies sur un complexe simplicial :

Définition 3.46. Soit K un complexe simplicial avec des valeurs réels spécifiées sur chaque sommet
xi, f(xi). Sa fonction linéaire par morceaux (LPM) associée est f̂ : K → R, x̂ =

∑
i bi(x)f(xi), où

bi(x) sont les coordonnés barycentriques de x. On obtient une fonction linéaire sur chaque simplexe
du complexe.

Remarquons que, à cause de sa nature finie et linéaire, une fonction LPM sur un complexe
simpliciale fini est toujours tame. Ce fait permet de démontrer le Théorème 3.36 pour deux fonctions
LPM f̂ , ĝ définies sur un complexe simplicial K fini. Avant, une dernière définition :

Définition 3.47. Une combinaison convexe de f̂ et ĝ est une fonction du type hλ = (1−λ)f̂ +λĝ,
avec λ ∈ [0, 1]. Cette famille de combinaisons convexes entre les deux fonctions, où h0 = f̂ et
h1 = ĝ, s’appelle interpolation linéaire de f̂ à ĝ.

Lemme 3.48. (Lemme d’interpolation) : Soient f̂ , ĝ deux fonctions LPM définies sur un com-
plexe simplicial K fini. Alors dB(D(f̂), D(ĝ)) ≤ ||f̂ − ĝ||∞

Démonstration. L’idée de base de la démonstration est de décomposer l’interpolation linéaire de f̂
à ĝ en petites sections pour utiliser le Lemme de la bijection, et ainsi obtenir une bijection dans
chaque section.

Soit ε = ||f̂ − ĝ||∞, et observons que, pour tout λ ∈ [0, 1], hλ est tame (car elle est aussi une
fonction LPM) et δ(λ) = δhλ est strictement positif quand au moins f̂ ou ĝ ont un point dehors la
diagonale (sinon, l’inégalité du lemme est triviale).
Donc, la famille C = {Jλ}λ∈Q∩[0,1] d’intervalles ouverts Jλ = (λ− δ(λ)

4ε , λ+ δ(λ)
4ε ) forme un recouvre-

ment ouvert de l’intervalle [0, 1]. Prenons un sous-recouvrement fini C ′ de C, qui existe pour être
[0, 1] compact, et minimal. Soient λ1 < · · · < λn les points médians des intervalles de C ′. Du fait
que C ′ est minimale, deux intervalles consécutifs Jλi et Jλi+1 ont toujours intersection non-vide, et

λi+1 − λi ≤
δ(λi) + δ(λi+1)

4ε
≤

max{δ(λi), δ(λi+1)}
2ε

Par définition de ε, on a aussi ||hλi − hλi+1
||∞ = ||(λi+1 − λi)(ĝ − f̂)||∞ = ε(λi+1 − λi). Par

conséquent,

||hλi − hλi+1
||∞ ≤

max{δ(λi), δ(λi+1)}
2

,
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ce qui implique que hλi est très proche à hλi+1
, ou à l’inverse. Nous pouvons alors appliquer le

Lemme de la bijection, qui dit que dB(D(hλi+1
), D(hλi)) ≤ ||hλi+1

− hλi ||∞ pour 1 ≤ i ≤ n − 1.
Observons que, si nous ajoutons λ0 = 0 et λn+1 = 1 (donc h0 = f̂ et h1 = ĝ), ces derniers raisonne-
ments sont encore vraies, car 0 et 1 font aussi partie du recouvrement, et hλ varie continuellement
avec λ. Donc f̂ est très proche à hλ1 (ou à l’inverse), et ĝ est très proche à hλn (ou à l’inverse).

Maintenant, l’inégalité triangulaire donne

dB(D(f̂), D(ĝ)) ≤
n∑
i=0

dB(D(hλi), D(hλi+1)) ≤
n∑
i=0

||hλi − hλi+1 ||∞.

Du fait que les hλi forment une interpolation linéaire de f̂ à ĝ et leurs valeurs changent linéairement
entre les deux, la dernière somme est égale à ||f̂ − ĝ||∞, ce qui finit la démonstration.

Avec ce dernier résultat, nous pouvons démontrer le Théorème 3.36 :

Théorème de la stabilité bottleneck des diagrammes de persistance : Soit X un espace
topologique triangulable avec des fonctions tame f, g : X → R. Alors, les diagrammes de persistance
satisfont dB(D(f), D(g)) < ||f − g||∞.

Démonstration. (du Théorème 3.36 :) Par définition de triangulabilité, il existe un complexe sim-
plicial fini L et un homéomorphisme φ : L→ X. Notons que, du fait que φ est un homéomorphisme,
φ−1(f−1((−∞, a])) ∼= f−1((−∞, a]) ∀a ∈ R, et les groupes d’homologie singulière sont aussi tous
isomorphes à cause de sa fonctorialité. Par conséquent, le diagramme de persistance reste non al-
téré par ce changement de variables : f ◦ φ : L → R est aussi tame et a le même diagramme de
persistance que f .

Soit δ > 0 suffisamment petit. Du fait que f et g sont continues et L est compact, il existe une
sous-division K de L telle que

|f ◦ φ(x)− f ◦ φ(y)| ≤ δ, |g ◦ φ(x)− g ◦ φ(y)| ≤ δ (7)

pour x, y dans le même simplexe de K.
Soient f̂ , ĝ : SdK → R les fonctions linéaires par morceaux qu’on obtient à partir de f ◦ φ et g ◦ φ
sur les sommets de SdK, où SdK dénote la sous-division barycentrique de K. Par construction de
K, ces fonctions satisfont ||f̂ − f ◦ φ||∞ ≤ δ et ||ĝ − g ◦ φ||∞ ≤ δ. En faisant usage du Lemme
d’Interpolation, le fait que f̂ et ĝ diffèrent au maximum δ de f ◦ φ et g ◦ φ respectivement, et
||f − g||∞ = ||f ◦ φ− g ◦ φ||∞, on obtient

dB(D(f̂), D(ĝ)) ≤ ||f̂ − ĝ||∞ ≤ ||f ◦ φ− g ◦ φ||∞ + 2δ = ||f − g||∞ + 2δ. (8)

Si nous supposons de plus que δ < δf
2 , nous obtenons une bijection du Lemme de la Bijection. Du

fait que le changement de variables n’affecte pas le diagramme de persistance, on a

dB(D(f), D(f̂)) = dB(D(f ◦ φ), D(f̂)) ≤ δ. (9)

Si nous supposons pareillement que δ < δg
2 , l’inégalité triangulaire appliqué plusieurs fois avec (8)

et (9) donne
dB(D(f), D(g)) ≤ ||f − g||∞ + 4δ,

ce qui montre le résultat, donc δ peut être arbitrairement petit.
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4. L’algorithme ToMATo

4.1. Introduction

L’exposition et exploration que nous ferons maintenant de l’algorithme ToMATo (Topological
Mode Analysis Tool) et son implementation dans la librairie GUDHI constituent la partie la plus
innovante de notre travail. Cette méthode, récemment conçue, se situe dans les techniques de cluste-
ring, donc dans l’apprentissage non supervisé. Bien que le fonctionnement ne soit pas spécialement
complexe, il se base sur des idées de l’analyse topologique de données exposées antérieurement
qu’il faut bien comprendre, notamment les complexes simpliciales ("graphes" désormais) et les dia-
grammes de persistance.

Un autre principe important de notre algorithme est qu’il est sensé fonctionner avec des sous-
variétés de Rd (ou variétés riemanniennes en général), indépendemment de sa "forme". Cela est
remarquable puisqu’une bonne partie des algorithmes de clustering existants (par exemple, la mé-
thode K-means, déjà exposée) ne parviennent pas à identifier les clusters lorsque ces derniers
s’éloignent d’une structure convexe. Par exemple, certains algorithmes sont incapables de bien re-
grouper un ensemble de données échantillonnées à partir de deux anneaux concentriques dans R2.
Du ce fait, dans la section 4.1.1., nous exposerons les constructions et les arguments en prenant
une variété riemannienne X, le cas le plus général. Cependant, dans la pratique nos données sont
presque toujours dans Rd, et seulement dans certains cas particuliers ils présentent une forme clai-
rement semblable a une sous-variété de Rd.

En nous appuyant sur la classification des techniques de clustering faite au début de la section
"Algorithmes de clustering combinatoires", au deuxième chapitre, on pourrait affirmer que l’algo-
rithme ToMATo combine une partie "mode-seeking" et une partie de nature plus combinatoire. En
plus de cela, son innovation principale est que, pour guider la fusion des différents mini-clusters
tout au long de la méthode, il utilise la notion de "persistance topologique", introduite au chapitre
précèdent. En plus d’étiqueter les données dans de différents groups, l’algorithme produit aussi un
diagramme de persistance, qui permet de choisir des paramètres précis afin d’obtenir le nombre de
clusters souhaité.

4.1.1. L’intuition derrière l’algorithme : le cas continu

L’idée de base de la méthode est que, si les données sont obtenues en suivant une fonction de
densité f , les clusters le plus logiques sont ces régions où la fonction fait des "bosses significatives".
C’est dans ces dernières où les points seront plus probablement situés et regroupés.

Soit X une variété riemanniene de dimension m et f une fonction f : X → R C2-continue
sans points critiques dégénérés. Supposons aussi que f a un nombre fini de points critiques. La
région ascendante d’un point critique m est le sous-ensemble de points A(m) ⊆ X qui parviennent
finalement à m en suivant le flux induit pour le champ de vecteurs gradient de f . On appelle m la
racine de x ∈ A(m).
On peut démontrer que les régions ascendantes des pics de f forment des sous-ensembles de X
disjoints et homéomorphes à Rm. De plus, si f est bornée et propre, les régions ascendantes de ces
pics couvrent X sauf un sous-ensemble de mesure de Lebesgue zéro. Il est donc logique d’utiliser
ces régions pour découper X p.p. en régions d’influence.

Considérons maintenant la famille de sous-espaces {Fα}α∈R, où Fα = f−1([α,+∞)) et α varie
de +∞ à −∞ (i.e. la filtration de X associée aux ensembles de super-niveau de f). Pour α ∈ R
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et x ∈ Fα, appelons C(x, α) ⊆ Fα la composante connexe par arcs de Fα contenant x. Selon la
Théorie de Morse, lorsqu’un maximum local mp de f entre dans la filtration au moment α = b(mp)

(b de "birth"), une nouvelle composante connexe par arcs C(mp, α) apparaît dans Fα. Puis, cette
dernière cesse d’être indépendante quand elle se connecte avec une autre composante générée pour
un pic mq plus haut, pour quelque autre α = d(mp) (d de "death"). Dans ce cas, on nomem mq

la racine de mp, et on écrit mq = r(mp). Dans le diagramme de persistance 0-dimensionnel de f ,
la durée de vie de mp comme racine est encodée pour le point p = (b(mp), d(mp)), et on appelle la
différence dp = px − py la proéminence de mp, ou que mp est dp-proéminent.

Figure 8 – Représentation graphique, avec f une fonction réelle d’une variable, de toutes les idées
exposées jusqu’à ici : pics de f (points critiques/ maximums locaux), régions ascendantes de ces
pics et proéminence du pic mp.

En nous appuyant sur un "paramètre de fusion" τ ≥ 0, on peut seulement considérer les pics de
f de proéminence au moins τ . Pour tout pic mq de f , on itère l’"application racine" mq 7→ r(mq)

jusqu’à ce qu’un pic de proéminence τ soit obtenu. Ce processus finit toujours, donc f a un nombre
fini de points critiques, et on a toujours f(mq) ≤ f(r(mq)). Appelons cette fonction itérée r∗τ .
Observons que tout pic de proéminence au moins τ est un point fixe de r∗τ .
L’union des régions ascendantes de tous les pics qui arrivent finalement à mp avec r∗τ est appelée le
bassin d’attraction de mp (de paramètre τ), Bτ (mp) :

∀mp tel que px − py ≥ τ, Bτ (mp) =
⋃

r∗τ (m)=mp

A(m).

Clairement, Bτ (mp) contient A(mp), donc mp est un point fixe de r∗τ . De plus, Ces bassins
d’attraction forment une partition de l’union de toutes les régions ascendantes. Ce sont précisément
ces bassins d’attraction qui constituent nos candidats à clusters.
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4.2. Les données d’entrée (input data)

Dans tous les cas, pour fonctionner, la méthode ToMATo a besoin de deux informations sur nos
données. Tout d’abord, l’algorithme requiert un poids pour chaque point, c’est à dire, une valeur f̂(i)

associée à chaque donnée i, qui représente une estimation d’une hypothétique fonction de densité
f , sur laquelle les données ont été obtenues. Puis, il est aussi nécessaire d’avoir un graphe de voi-
sinage, qui "connecte" de quelque sorte ces données entre elles, et qui encode la proximité des points.

De plus, une autre information clé dois être aussi transmise à l’algorithme pour guider la fu-
sion des clusters intermédiaires : un paramètre de fusion τ . En somme, ce paramètre détermine
à partir de quelle persistance un point ou région de points se mélange avec d’autres ou pas. Sa
valeur "idéale" change selon le cas, donc elle dépend de f̂ et le numéro de clusters que l’on souhaite
obtenir. Le fonctionnement et la détermination de ce paramètre, très important dans la méthode,
deviendront beaucoup plus claires après avoir étudié la procédure de l’algorithme et le diagramme
qu’il produit.

Développons à présent les deux premières informations nécessaires pour l’algorithme. Nous re-
marquons que, dans la pratique, nous ne les avons presque jamais directement. En effet, dans le
cas le plus simple, nous avons seulement un nuage de points dans Rd avec n observations, ou, dans
des cas plus élaborés et "théoriques", un ensemble de points dans une variété riemmanienne, qui
permet également de définir des distances entre eux. Avec une base de données réelle, nous avons
généralement une quantité n de données avec p attributs quantitatives et/ou catégoriques, où nous
pouvons définir distances entre paires, ou les plonger dans Rp "convenablement" avec un métrique
(voir l’introduction de la Section 2).

Indépendemment de la façon dont les calculs sont réalisés ou si on utilise un espace métrique
ambiant (normalement Rd), utiliser des distances entre paires de données est très pratique : elles
permettent de construire assez rapidement les graphes de voisinage les plus naturels, et notre al-
gorithme a besoin d’un graphe entre les données pour bien fonctionner. De plus, elles sont aussi
pratiques pour calculer certaines estimations de la fonction de densité de base f .

4.2.1. Quelques constructions de graphes habituelles

Développons à présent certaines constructions de graphes habituelles sur des nuages de points,
qui peuvent naturellement être utilisées dans notre situation. Nous assumons qu’il n’y a jamais la
même distance entre toutes les paires de points. Si ce n’est pas le cas, nous pouvons adapter notre
démarche en fonction de la situation :

• Graphe α-Rips : Il unit toutes les paires de points x, y qui satisfont d(x, y) ≤ α. Il est donc
le squelette 1-dimensionnel de Ripsα(X), ou Cechα

2
(X).

Il constitue, en quelque sorte, le graphe le plus naturel pour connecter les points proches entre
eux, et il est aussi très facile à construire. Néanmoins, le nombre d’arêtes peut beaucoup varier
entre sommets différents, et le paramètre α n’est pas toujours évident pour obtenir les résultats
souhaités : si c’est trop petit, il peut y avoir un numéro excessif de composantes connexes ;
cependant, s’il est trop grand, la structure de proximité se dilue aussi.

• Graphe des k plus proches voisins (k-NN) : Il connecte chaque sommet avec ses k autres
sommets les plus proches. De cette façon, chaque sommet est l’extrémité d’au moins k arêtes.
C’est à priori un graphe orienté, donc cette relation de proximité n’est pas symétrique : par
exemple, avec k = 1, un sommet 1 peut avoir le sommet 2 comme le sommet le plus proche,
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mais ce dernier avoir un sommet 3 plus proche que le sommet 1. Parfois, dans la pratique, on
ignore cette directionnalité et on accepte que quelques sommets aient plus d’arêtes incidentes.
Ce graphe est intéressant et utile puisque, en général, le numéro d’arêtes incidentes à chaque
sommet reste assez similaire, et il n’y a jamais des points isolés. Il est aussi un peu plus
exigeant a niveau de calcul, donc il faut ordonner à chaque pas les distances d’un sommet aux
autres, mais certains algorithmes pour trouver des approximations du graphe k-NN existent
qui sont beaucoup plus rapides. Son désavantage principal est que parfois il connecte de points
qui ne sont pas spécialement proches.

• Graphe de Delaunay : C’est le graphe qu’on obtient si on triangule les points de façon à ce
qu’aucun des points reste a l’intérieur du circumcercle d’aucun des triangles. Normalement,
on obtient ainsi une triangulation sans beaucoup d’angles pointus. Il y a des algorithmes assez
rapides pour le calculer, et il est aussi généralisable aux dimensions supérieures.
Son principal avantage est que, à la différence des deux algorithmes précédents, ce dernier n’a
pas besoin d’un paramètre pour être défini. Pareillement au graphe k-NN, le numéro d’arêtes
incidentes à chaque sommet est souvent similaire, mais parfois il unit des points qui ne sont
pas spécialement proches entre eux.

Ci-dessous, un exemple de chacun de ces trois graphes.

Figure 9 – Représentation des trois constructions exposés antérieurement avec un ensemble de
20 points échantillonnés dans le carré 1x1 (distribution uniforme). En haut à droite, le graph de
Delaunay. En bas à gauche : le graphe k-NN avec k = 4 (chaque point est aussi son propre voisin le
plus proche) ; nous observons qu’une partie importante des sommets a plus de trois arêtes incidentes.
En bas à droite ; le graphe α-rayon avec α = 0.3.
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4.2.2. Quelques estimateurs classiques de la fonction de densité

Exposons à présent deux manières (non-paramétriques) d’estimer la fonction de densité f sur
laquelle on suppose que les données ont été obtenues. L’idée est toujours de construire une fonction
f̂ , estimation de la "véritable" fonction de densité f , en utilisant la disposition des points, qui nous
donne des informations sur f . Nous ne détaillerons pas les arguments théoriques qui justifient la
justesse (asymptotique) vers f de ces méthodes, et nous ignorerons aussi les possibles généralisa-
tions sur des sous-variétés : nous supposerons que f est simplement définie sur Rd (et souvent,
seulement R).

• Estimation par les k plus proches voisins : Rappelons avant que, par définition de fonction
de densité, un vecteur aléatoire X dans Rd satisfait, pour tout borélien A ⊆ Rd, P(X ∈ A) =∫
A
f . Donc, si A est une boule petite centrée sur x, la probabilité que X tombe dans A est

approximativement f(x) multiplié par le volume de A. En fait, avec des hypothèses assez
faibles sur f continue, on a

lim
α→0

∫
B(x0,α)

f(x)dx

|B(x0, α)|
= f(x0), (10)

où | · | dénote le volume dans Rd. Rappelons aussi que le volume de la boule unité dans Rd
satisfait la formule

Vd =
π
d
2

Γ(d2 + 1)
,

où Γ est la fonction Gamma Γ(m) =
∫ +∞
0

xm−1e−xdx, et si on varie le rayon r de la boule,
le volume change en suivant la formule Vd · rd.

En vue de l’équation (10), avec les données {x1, . . . , xn}, on peut estimer f(x) de la manière
"naturelle" suivante : soit k un entier avec 1 ≤ k ≤ n, R(k)(x) = ||x(k)(x)− x|| la distance de
x à son k plus proche voisin, et µn la fonction de répartition empirique, où pour tout borélien

A ⊆ Rd, µn(A) =
1

n

∑n
i=1 1{xi∈A}. Alors, l’estimateur par les k plus proches voisins est défini

comme

fn(x) =
µn(B(x,R(k)))

|B(x,R(k))|
=

k

nVd||x(k)(x)− x||d
, x ∈ Rd. (11)

• Estimation par noyau (Kernel density estimation) : C’est possiblement la méthode d’estima-
tion la plus habituelle et étudiée. En résumé, c’est une généralisation de la notion d’histo-
gramme, mais facilement réalisable en dimensions plus élevées, et (souvent) aussi continue et
différenciable.
L’idée est de construire f̂ en additionnant plusieurs petites fonctions centrées chacune sur
une donnée. On appelle ces petites fonctions noyaux, qui sont toujours réelles, non-négatives
et intégrables. De plus, en général on assume aussi, pour notre fonction noyau K(x), que∫
Rd K(x)dx = 1 (i.e. K(x) est une fonction de densité) et que K est radiale (K(−x) = K(x)

quand d = 1, K constant sur Sr = {x ∈ Rd| ||x|| = r} en général).
Prenons maintenant nos données (x1, . . . , xn) (indépendantes et identiquement distribuées,
obtenues à partir de f). Nous supposerons désormais que d = 1 pour simplifier les notations,
bien que pour d général les constructions suivants sont aussi valides avec quelques légères mo-
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difications. En choisissant une fonction noyau K(x), nous construisons la fonction f̂ comme :

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
. (12)

Ici, h est un paramètre d’échelle à déterminer, mais qui a une grand influence sur l’estima-
tion finale. Ce paramètre détermine de quelque sorte la largeur de la fonction noyau au-
tour de chaque donnée. C’est aussi immédiat de vérifier que quand

∫
RK(x)dx = 1, on a∫

R fh(x)dx = 1.
Dans la pratique, la meilleure valeur de ce paramètre est difficile à déterminer, donc il
y a toujours un compromis entre biais et variance. Différents travaux essaient d’étudier
les meilleures valeurs de h en fonction de chaque situation. En tout cas, bien que cer-
taines indications existent (par exemple, avec un noyau gaussienne, il est habituel de prendre
h ≈ 1.06 ·min

(
σ̂, EIQ1.34

)
· n− 1

5 , où σ̂ est l’estimateur de l’écart-type habituel et EIQ est l’écart
interquartile), normalement l’estimation est faite avec plusieurs valeurs de h et on prend celle
qui donne le meilleur résultat.

En ce qui concerne les fonctions noyau, nous remarquons différentes options. Nous montrons,
pour d = 1 (mais facilement généralisables à d supérieure en prenant ||x|| au lieu de x, et en
changeant légèrement quelques coefficients en fonction de la dimension), certaines des plus
utilisées, mais sans entrer dans les détails et particularités de chacune :

1. Noyau gaussienne : K(x) =
1
√

2π
e−

1
2x

2

.

2. Noyau uniforme : K(x) =
1

2
1(x){−1≤ x ≤1}.

3. Noyau triangulaire : K(x) = (1− |x|) 1(x){−1≤ x ≤1}.

4. Noyau de Epanechnikov (parabolique) : K(x) =
3

4
(1− x2) 1(x){−1≤ x ≤1}.

5. Noyau tricubique : K(x) =
70

81
(1− |x|3)3 1(x){−1≤ x ≤1}.

Figure 10 – Toutes les fonctions noyaux mentionnées, dans le même ordre.

4.3. La procédure de l’algorithme

Expliquons maintenant comment l’algorithme obtient les différents clusters. Supposons que nous
avons un graphe de voisinage G entre les points, des valeurs f̂(i) pour chaque sommet i, et le pa-
ramètre de fusion τ . L’algorithme de base se compose de deux parties :

1. (Recherche de modes) Pour calculer les clusters de départ, ToMATo ordonne d’abord tous
les sommets de manière décroissante en fonction de sa valeur f̂ . Avec cet ordre, il passe par
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chaque sommet i et il simule un effet de gradient de la fonction de densité de base : il connecte
i avec son voisin dans G avec la f̂ -valeur la plus haute. Si tous ses voisins ont des valeurs
inférieures, i est étiqueté comme un "pic" (ou mode) de f̂ .
En regardant les arêtes "de gradient" à la fin de ce processus, on obtient ce qu’on appelle
une "forêt couvrante" du graphe G, une notion similaire à celle de "arbre couvrant" (i.e. un
sub-graphe de G connexe et acyclique qui passe pour tous les sommets de G) ; cependant,
dans ce cas, la connectivité n’est pas exigée. Chaque composante connexe dans une forêt est
un arbre avec la définition usuelle dans la théorie de graphes ; d’ici provient le nom.
Chaque arbre dans cette forêt couvrant peut être vu comme l’équivalent discret d’une région
ascendante de f dans le cas continu, expliqué en 4.1.1, donc un cluster initial de notre nuage
de points. Pour conserver toute cette information, on peut numéroter les q arbres obtenus et
étiqueter chaque sommet avec son arbre correspondant. Dans un arbre i, on appelle r(i) (r de
"racine") son sommet avec la f̂ -valeur la plus haute, et on appelle aussi a(j) l’arbre associé
à un sommet j.

2. (Fusion des arbres) Bien que l’idée de la première étape soit logique, donc elle regroupe des
données dans des "bosses" de f̂ , elle est aussi un peu aléatoire et inévitablement insuffisant.
Dans cette deuxième étape, l’objectif es de fusionner les arbres "similaires", en adaptant la
notion de persistance topologique introduite à 4.1.1.
Pour cela, ToMATo passe plusieurs fois sur les sommets de G dans le même ordre. Ici, tous
les sommets sont déjà étiquetés dans un arbre. Dans cette itération, étant donné un sommet
i, deux cas sont possibles :

(a) i est déjà un pic d’un arbre, et donc aussi sa racine, et tous les voisins de i ont des
f̂ -valeurs inférieures. Dans ce cas, les correspondances entre arbres et sommets restent
inaltérées.

(b) i n’est pas le pic de a(i), et on cherche des fusions potentielles entre a(i) et d’autres
arbres "à côté".
Pour cela, on prend les voisins k de i dans G (aussi de manière ordonnée) qui satisfont
f̂(k) ≥ f̂(i), et on regarde si f̂(r(a(k)) ≤ min{f̂(r(a(i)), f̂(i) + τ} ; ainsi, on étude si le
pic de a(k) est inférieur à celui de a(i) et si sa proéminence est inférieure à τ . Si c’est le
cas, toutes les sommets appartenant à a(k) sont réétiquetés à a(i). De la même manière,
nous pouvons vérifier si f̂(r(a(i)) ≤ min{f̂(r(a(k)), f̂(k)+τ}, et réétiqueter les sommets
de a(i) à a(k) si c’est le cas.

À la fin de cette deuxième étape, tous les arbres (mini-clusters) de départ avec des pics de
proéminence moins de τ et avec des sommets "connectés" à d’autres arbres ont été unifiés les
uns avec les autres pour créer des arbres plus grands, et avec une proéminence d’au moins
τ (nos clusters finaux). De plus, on a enregistré dans quel arbre/ cluster chaque donnée
appartient.

4.4. Information finale obtenue

Avec le processus expliqué précédemment, l’information finale obtenue semble claire : pour
chaque donnée i, une étiquette a(i), son cluster final associé. Néanmoins, la méthode précédente
n’est pas la plus utile pour travailler avec le type de problèmes que l’on retrouve avec des données
réelles. On peut donc utiliser les notions expliquées au troisième chapitre pour obtenir un algo-
rithme plus flexible et informatif.

En effet, en reprenant la deuxième étape exposée précédemment, il est évident que la valeur τ
joue un rôle essentiel dans l’algorithme ; c’est ce numéro qui décide quelle doit être la proéminence
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minimale d’un pic-cluster pour ne pas être fusionné avec d’autres pics-clusters "proches". Cepen-
dant, dans la pratique, normalement nous n’avons pas connaissance de la valeur τ "idéale" pour
obtenir le meilleur résultat de clustering. Par exemple, nous vons déjà remarqué que les valeurs f̂
associées à chaque donnée dépendent de l’estimation choisie et, par conséquence, un "bon" para-
mètre τ , s’il existe, possiblement aussi.

C’est au moment de choisir une valeur de τ convenable que les diagrammes de persistance in-
troduits au troisième chapitre deviennent utiles. L’idée est de créer une représentation graphique
de la proéminence de tous les différents clusters pour mieux détecter quels sont spécialement pro-
éminents. Avec cette information, nous pouvons ajuster τ pour obtenir un nombre de clusters plus
naturel, avec les étiquettes correspondantes.

Notre diagramme de persistance peut être obtenu de la manière suivant :

— Au début, on crée un point (x, y) pour chaque arbre-cluster initial, qui a toujours un pic
associé : son sommet avec l’estimation de f la plus élevée, un mode de f . La cordonné x
stocke cette valeur, tandis que la cordonné y reste non-assignée.

— Puis, on commence à fusionner ces clusters initiaux, en suivant la deuxième étape expliquée
dans la section précédente et en gardant une trace de ces fusions. Intuitivement, on peut
imaginer le paramètre de fusion τ qui vaut 0 au début, et qui augmente progressivement.
Chaque fois que deux clusters sont fusionnés, on enregistre la mort du plus "petit" (i.e. moins
proéminent, i.e. avec un pic associé moins haut) dans la cordonnée y, qui prend la valeur
y = x− τ , tandis que le plus "grand" continue d’exister.

— Ce processus continue jusqu’à ce que toutes les fusions possibles aient lieu. À ce moment,
seulement les clusters associés aux composantes connexes du graphe de voisinage restent en
vie, et on leur assigne la cordonnée y = −∞.

Enfin, on obtient un ensemble de points qui encode d’une manière assez complète les proéminences
relatives de tous les clusters/basins de f , où les distances (verticales) entre les (x, y) et la diagonale
sont leur proéminence. Il est recommandable de dessiner les points avec y = −∞ avec une couleur
différente, pour mieux identifier dans le diagramme le nombre de composantes connexes existantes.

Figure 11 – Exemple de diagramme de persistance du type que nous venons d’exposer.

On voit rapidement que le diagramme de persistance obtenu n’est qu’une variation du dia-
gramme de persistance 0-dimensionnel associé aux ensembles de super-niveau d’une fonction f ,
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comme celui décrit à l’exemple 3.26 (où on prenait les ensembles de sous-niveau). Cependant, la
"connectivité" est encodée dans un graphe de voisinage, et les points habitent la moitié inférieure
de la diagonal. Néanmoins, les différents résultats sur les diagrammes de persistance, notamment
ceux liés à sa stabilité (section 3.5), peuvent être appliqués avec de petites variations dans notre
cas discret.

Nous remarquons que, même si nous avons exposé la méthode en imaginant que la valeur τ
augmente progressivement, au niveau algorithmique tous les points du diagramme de persistance
peuvent être calculés d’une façon directe : au début, et aussi après chaque fusion, on parcourt tous
les sommets ordonnés en fonction de f̂ en cherchant, pour un sommet i avec son pic correspon-
dant pi, un voisin k dans un cluster différent qui satisfait f̂(k) ≥ f̂(i) et f̂(pk) ≤ f̂(pi) (resp.
f̂(pk) ≤ f̂(pi)). Dans ce cas, on assigne la valeur y = f̂(pk)− f̂(i) au cluster du sommet k, et tous
ses sommets sont étiquetés avec le cluster du sommet i, et pi devient son nouveau pic (resp. on
assigne la valeur y = f̂(pi) − f̂(i) au cluster du sommet i, et tous ses sommets sont étiquetés au
cluster du sommet k, et pk devient son nouveau pic).

Dans tous les cas, ce diagramme de persistance devient très utile pour choisir une bonne valeur de
τ pour l’algorithme original, exposé à la section précédant : il convient de regarder quels points sont
de manière naturel plus éloignés de la diagonale (et combien il y en a) ; puis, nous choisissons une
valeur τ inférieure a sa proéminence, les laissant intacts à la fin. En fait, après avoir calculé toutes
les proéminences relatives pour dessiner le diagramme de persistance, on peut coder l’algorithme
d’une manière encore plus intuitive : au lieu de donner une valeur τ d’entrée, on donne le numéro
de clusters final souhaité m, et les fusions continuent de se produire jusqu’à ce que seulement les
m clusters les plus proéminents restent. Cependant, il faut prendre en compte que l’algorithme ne
peut pas fusionner des composantes connexes différentes (qui ont une proéminence "infinie").

4.5. Mise en œuvre de l’algorithme et exploration

L’algorithme ToMATo exposé à ce chapitre vient d’être implémenté à Python/ C++ et ajouté
à la libraire GUDHI [8], une des librairies de référence de la TDA. Cette librairie open-source,
codée en C++ mais avec une interface Python, offre des méthodes et ressources pour construire
des complexes simpliciales et d’autres structures sur des nuages de points, et calculer les différents
types d’homologie persistante.

La partie la plus pratique de ce travail a été de bien comprendre cette implémentation, réalisée
par le chercheur Marc Glisse. Puis, nous avons essayé de tester ses limites et possibles erreurs.
Cela a été fait par correspondance virtuelle avec plusieurs Jupyter notebooks. Cela a impliqué un
apprentissage continue de Python et d’autres outils de programmation qui sont très pratiques et
habituels dans le monde de la science des données et sur le marché du travail en général.

Finalement, avec le code déjà définitif, il paraissait approprié de préparer aussi un tutoriel de
référence (en anglais) montrant toutes les options du code. Dans ce dernier, plusieurs exemples
illustratifs aideraient et guideraient les utilisateurs potentiels. Le tutoriel final est annexé en PDF
à la fin de ce travail. Il peut aussi être consulté en version HTML (de façon temporaire) avec le lien
nilgarces.com/tomato.html.
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A handy guide to using the ToMATo algorithm

Introduction
This code is an implemention of the ToMATo algorithm exposed in [1], a clustering method based on the idea of
topological persistance. In short, the algorithm needs a density estimation (so to each point  we associate a value 

) and a neighborhood graph. First, it starts with a mode-seeking phase (naive hill-climbing) to build the initial
clusters (each with its own mode), following the connected points in the neighborhood graph. Finally, it merges these
initial clusters based on their prominence. This merging has a hierarchical nature, i.e. we always obtain the successive
new clusters by merging two existing ones.

The merging phase depends on a parameter, which is the minimum prominence a cluster needs to avoid getting merged
into another, adjacent, bigger cluster (i.e. with a higher associated mode); thus, it determines to a great extent the
obtained number of clusters. In practice, the convenience of this parameter depends on the input graph and the density
estimation, and it can be hard to choose it properly. This is why, in our implemention, we allow instead the option to
choose the "desired" final number of clusters , and the algorithm itself, after computing the initial clusters as well as their
prominences, keeps merging them "parameterless-ly" until only the  clusters with highest prominence remain (if
possible).

Along with the clustering itself, the algorithm also produces the persistence diagram of the merge tree of the initial
clusters. This is a really convenient graphical tool to help decide the "natural" number of clusters in our input data. We
explain its interpretation briefly in the section "Output information".
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n
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Input data format

As mentioned, the algorithm needs a neighborhood graph of the data and a value associated each entry (an estimation of
 over it). Given that, in many situations, the input data is a point cloud (i.e. a set of  observations each with  numerical

features), the code provides a few density estimators and graph constructions over them for convenience, but advanced
users may provide their own graph and density estimates instead of point coordinates.

Since the algorithm essentially computes basins of attraction, it is also encouraged to use it on functions that do not
represent densities at all.

For an input point cloud, the density estimation and graph construction methods that have been implemented are:

For density estimation, the ubiquitous Kernel Density Estimation (KDE for short) can be used (using the scikit-learn
library), and also the Distance-to-a-Measure method (DTM), a bit more experimental and recently developed to face
more efficiently the potential presence of outliers; more information about it can be found in the tutorial [2] and the
paper [3]. The logarithmic versions of both estimation methods are also implemented.

Regarding the building of the graph, there is the option to construct the -NN graph (where, for each vertex, an edge
is created between it and its  nearest neighbors), and the -radius graph (where an edge is created whenever two
vertices lay in a distance less than ). Obviously, both parameters can (and should) be properly chosen. In the
following image we can see both constructions over a point cloud in the square 1x1 (first image); in the second one,
we have the -NN graph (with =4), while in the third we have the -radius graph (with =0.3):
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Output information
At the end, the algorithm outputs basically two informations of interest:

In all cases, it produces the (0-dimensional) persistance diagram of the merging process of the initial clusters. In short,
this is a graphical representation of the lifespan of the different clusters as we keep diminishing the prominence threshold.

At the beginning, we have a point for each initial cluster, which also has an associated peak (the vertex with the highest
estimate of , a "mode" of ). Then, we start looking for merges of these clusters, by melding them with neighboring
clusters with higher associated peaks. To do so, we basically keep checking, for the different vertices  (in decreasing
order), which "neighboring" peaks  lower than  satisfy , where  is our prominence value. When
this happens, we merge the whole cluster associated to that peak  to the one in which  belongs, forming a new, bigger
cluster, still with peak . The higher  needs to be before this happens, the more prominent is  and its associated
cluster.

In a persistance diagram, all this information is encoded in the following way: there is a point  for each initial cluster.
The  coordinate is the value of its associated peak . The  coordinate is the value  from which we can find a

"neighboring point" of that peak, but belonging to a different cluster, with equal or greater ; equivalently, it is the highest
neighbor of  not belonging to the cluster it defines. Thus, the length of vertical line connecting  with the diagonal,
or equivalently , is the prominence of the peak. In consequence, to get an idea of the real number of clusters, it is
natural to look for the number of points in the persistance diagram further away from the diagonal. The points associated
to a peak of a cluster which never dies (i.e. it never gets merged, so it forms a connected component at the end) are
colored in green.

In view of the persistance diagram obtained, it is then natural to ask for a specific number of clusters at the end, or to
specify a certain persistance threshold. After this has been stipulated, the algorithm also outputs a numerical "label" for
each entry in the input data (in the same order they have been introduced, whatever the format): the cluster it has been
assigned to. This labelling is saved in the attribute "labels_" as an ordered vector, so it can be easily used to plot the data
in different colors or formats depending on their assigned cluster.

f f
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THE TOMATO CLASS

The code now
This is the current version of the code in the Gudhi Library:
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In [63]: # This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is release
d under MIT.
# See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license detail
s.
# Author(s):       Marc Glisse
#
# Copyright (C) 2020 Inria
#
# Modification(s):
#   - YYYY/MM Author: Description of the modification 

import numpy
from ..point_cloud.knn import KNearestNeighbors
from ..point_cloud.dtm import DTMDensity
from ._tomato import * 

# The fit/predict interface is not so well suited... 

class Tomato: 
   """
   This clustering algorithm needs a neighborhood graph on the points, and an estima
tion of the density at each point.
   A few possible graph constructions and density estimators are provided for conven
ience, but it is perfectly natural
   to provide your own. 

   :Requires: `SciPy <installation.html#scipy>`_, `Scikit-learn <installation.html#s
cikit-learn>`_ or others
       (see :class:`~gudhi.point_cloud.knn.KNearestNeighbors`) in function of the op
tions. 

   Attributes
   ----------
   n_clusters_: int
       The number of clusters. Writing to it automatically adjusts `labels_`.
   merge_threshold_: float
       minimum prominence of a cluster so it doesn't get merged. Writing to it autom
atically adjusts `labels_`.
   n_leaves_: int
       number of leaves (unstable clusters) in the hierarchical tree
   leaf_labels_: ndarray of shape (n_samples,)
       cluster labels for each point, at the very bottom of the hierarchy
   labels_: ndarray of shape (n_samples,)
       cluster labels for each point, after merging
   diagram_: ndarray of shape (`n_leaves_`, 2)
       persistence diagram (only the finite points)
   max_weight_per_cc_: ndarray of shape (n_connected_components,)
       maximum of the density function on each connected component. This corresponds 
to the abscissa of infinite
       points in the diagram
   children_: ndarray of shape (`n_leaves_`-n_connected_components, 2)
       The children of each non-leaf node. Values less than `n_leaves_` correspond t
o leaves of the tree.
       A node i greater than or equal to `n_leaves_` is a non-leaf node and has chil
dren children_[i - `n_leaves_`].
       Alternatively at the i-th iteration, children[i][0] and children[i][1] are me
rged to form node `n_leaves_` + i
   weights_: ndarray of shape (n_samples,)
       weights of the points, as computed by the density estimator or provided by th
e user
   params_: dict
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       Parameters like metric, etc
   """ 

   def __init__( 
       self, 
       graph_type="knn", 
       density_type="logDTM", 
       n_clusters=None, 
       merge_threshold=None, 
       #       eliminate_threshold=None, 
       #           eliminate_threshold (float): minimum max weight of a cluster so i
t doesn't get eliminated 
       **params 
   ): 
       """
       Args:
           graph_type (str): 'manual', 'knn' or 'radius'. Default is 'knn'.
           density_type (str): 'manual', 'DTM', 'logDTM', 'KDE' or 'logKDE'. When yo
u have many points,
               'KDE' and 'logKDE' tend to be slower. Default is 'logDTM'.
           metric (str|Callable): metric used when calculating the distance between
instances in a feature array.
               Defaults to Minkowski of parameter p.
           kde_params (dict): if density_type is 'KDE' or 'logKDE', additional param
eters passed directly to
               sklearn.neighbors.KernelDensity.
           k (int): number of neighbors for a knn graph (including the vertex itsel
f). Defaults to 10.
           k_DTM (int): number of neighbors for the DTM density estimation (includin
g the vertex itself).
               Defaults to k.
           r (float): size of a neighborhood if graph_type is 'radius'. Also used as 
default bandwidth in kde_params.
           eps (float): (1+eps) approximation factor when computing distances (ignor
ed in many cases).
           n_clusters (int): number of clusters requested. Defaults to None, i.e. no 
merging occurs and we get
               the maximal number of clusters.
           merge_threshold (float): minimum prominence of a cluster so it doesn't ge
t merged.
           symmetrize_graph (bool): whether we should add edges to make the neighbor
hood graph symmetric.
               This can be useful with k-NN for small k. Defaults to false.
           p (float): norm L^p on input points. Defaults to 2.
           q (float): order used to compute the distance to measure. Defaults to di
m.
               Beware that when the dimension is large, this can easily cause overfl
ows.
           dim (float): final exponent in DTM density estimation, representing the d
imension. Defaults to the
               dimension, or 2 when the dimension cannot be read from the input (met
ric is "precomputed").
           n_jobs (int): Number of jobs to schedule for parallel processing on the C
PU.
               If -1 is given all processors are used. Default: 1.
           params: extra parameters are passed to :class:`~gudhi.point_cloud.knn.KNe
arestNeighbors` and
               :class:`~gudhi.point_cloud.dtm.DTMDensity`.
       """ 
       # Should metric='precomputed' mean input_type='distance_matrix'? 
       # Should we be able to pass metric='minkowski' (what None does currently)? 
       self.graph_type_ = graph_type 
       self.density_type_ = density_type 
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       self.params_ = params 
       self.__n_clusters = n_clusters 
       self.__merge_threshold = merge_threshold 
       # self.eliminate_threshold_ = eliminate_threshold 
       if n_clusters and merge_threshold: 
           raise ValueError("Cannot specify both a merge threshold and a number of c
lusters") 

   def fit(self, X, y=None, weights=None): 
       """
       Args:
           X ((n,d)-array of float|(n,n)-array of float|Sequence[Iterable[int]]): co
ordinates of the points,
               or distance matrix (full, not just a triangle) if metric is "precompu
ted", or list of neighbors
               for each point (points are represented by their index, starting from
0) if graph_type is "manual".
           weights (ndarray of shape (n_samples)): if density_type is 'manual', a de
nsity estimate at each point
           y: Not used, present here for API consistency with scikit-learn by conven
tion.
       """ 
       # TODO: First detect if this is a new call with the same data (only threshold 
changed?) 
       # TODO: less code duplication (subroutines?), less spaghetti, but don't compu
te neighbors twice if not needed. Clear error message for missing or contradictory pa
rameters. 
       if weights is not None: 
           density_type = "manual" 
       else: 
           density_type = self.density_type_ 
           if density_type == "manual": 
               raise ValueError("If density_type is 'manual', you must provide weigh
ts to fit()") 

       if self.graph_type_ == "manual": 
           self.neighbors_ = X 
           # FIXME: uniformize "message 'option'" vs 'message "option"' 
           assert density_type == "manual", 'If graph_type is "manual", density_type 
must be as well' 
       else: 
           metric = self.params_.get("metric", "minkowski") 
           if metric != "precomputed": 
               self.points_ = X 

       # Slight complication to avoid computing knn twice. 
       need_knn = 0 
       need_knn_ngb = False 
       need_knn_dist = False 
       if self.graph_type_ == "knn": 
           k_graph = self.params_.get("k", 10) 
           # If X has fewer than k points... 
           if k_graph > len(X): 
               k_graph = len(X) 
           need_knn = k_graph 
           need_knn_ngb = True 
       if self.density_type_ in ["DTM", "logDTM"]: 
           k = self.params_.get("k", 10) 
           k_DTM = self.params_.get("k_DTM", k) 
           # If X has fewer than k points... 
           if k_DTM > len(X): 
               k_DTM = len(X) 
           need_knn = max(need_knn, k_DTM) 
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           need_knn_dist = True 
           # if we ask for more neighbors for the graph than the DTM, getting the di
stances is a slight waste, 
           # but it looks negligible 
       if need_knn > 0: 
           knn_args = dict(self.params_) 
           knn_args["k"] = need_knn 
           knn = KNearestNeighbors(return_index=need_knn_ngb, return_distance=need_k
nn_dist, **knn_args).fit_transform( 
               X 
           ) 
           if need_knn_ngb: 
               if need_knn_dist: 
                   self.neighbors_ = knn[0][:, 0:k_graph] 
                   knn_dist = knn[1] 
               else: 
                   self.neighbors_ = knn 
           elif need_knn_dist: 
               knn_dist = knn 
       if self.density_type_ in ["DTM", "logDTM"]: 
           dim = self.params_.get("dim") 
           if dim is None: 
               dim = len(X[0]) if metric != "precomputed" else 2 
           q = self.params_.get("q", dim) 
           weights = DTMDensity(k=k_DTM, metric="neighbors", dim=dim, q=q).fit_trans
form(knn_dist) 
           if self.density_type_ == "logDTM": 
               weights = numpy.log(weights) 

       if self.graph_type_ == "radius": 
           if metric in ["minkowski", "euclidean", "manhattan", "chebyshev"]: 
               from scipy.spatial import cKDTree 

               tree = cKDTree(X) 
               # TODO: handle "l1" and "l2" aliases? 
               p = self.params_.get("p") 
               if metric == "euclidean": 
                   assert p is None or p == 2, "p=" + str(p) + " is not consistent w
ith metric='euclidean'" 
                   p = 2 
               elif metric == "manhattan": 
                   assert p is None or p == 1, "p=" + str(p) + " is not consistent w
ith metric='manhattan'" 
                   p = 1 
               elif metric == "chebyshev": 
                   assert p is None or p == numpy.inf, "p=" + str(p) + " is not cons
istent with metric='chebyshev'" 
                   p = numpy.inf 
               elif p is None: 
                   p = 2  # the default 
               eps = self.params_.get("eps", 0) 
               self.neighbors_ = tree.query_ball_tree(tree, r=self.params_["r"], p=p
, eps=eps) 

           # TODO: sklearn's NearestNeighbors.radius_neighbors can handle more metri
cs efficiently via its BallTree 
           # (don't bother with the _graph variant, it just calls radius_neighbors). 
           elif metric != "precomputed": 
               from sklearn.metrics import pairwise_distances 

               X = pairwise_distances(X, metric=metric, n_jobs=self.params_.get("n_j
obs")) 
               metric = "precomputed" 
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           if metric == "precomputed": 
               # TODO: parallelize? May not be worth it. 
               X = numpy.asarray(X) 
               r = self.params_["r"] 
               self.neighbors_ = [numpy.flatnonzero(l <= r) for l in X] 

       if self.density_type_ in {"KDE", "logKDE"}: 
           # Slow... 
           assert ( 
               self.graph_type_ != "manual" and metric != "precomputed" 
           ), "Scikit-learn's KernelDensity requires point coordinates" 
           kde_params = dict(self.params_.get("kde_params", dict())) 
           kde_params.setdefault("metric", metric) 
           r = self.params_.get("r") 
           if r is not None: 
               kde_params.setdefault("bandwidth", r) 
           # Should we default rtol to eps? 
           from sklearn.neighbors import KernelDensity 

           weights = KernelDensity(**kde_params).fit(self.points_).score_samples(sel
f.points_) 
           if self.density_type_ == "KDE": 
               weights = numpy.exp(weights) 

       # TODO: do it at the C++ level and/or in parallel if this is too slow? 
       if self.params_.get("symmetrize_graph"): 
           self.neighbors_ = [set(line) for line in self.neighbors_] 
           for i, line in enumerate(self.neighbors_): 
               line.discard(i) 
               for j in line: 
                   self.neighbors_[j].add(i) 

       self.weights_ = weights 
       # This is where the main computation happens 
       self.leaf_labels_, self.children_, self.diagram_, self.max_weight_per_cc_ = h
ierarchy(self.neighbors_, weights) 
       self.n_leaves_ = len(self.max_weight_per_cc_) + len(self.children_) 
       assert self.leaf_labels_.max() + 1 == len(self.max_weight_per_cc_) + len(self
.children_) 
       # TODO: deduplicate this code with the setters below 
       if self.__merge_threshold: 
           assert not self.__n_clusters 
           self.__n_clusters = numpy.count_nonzero( 
               self.diagram_[:, 0] - self.diagram_[:, 1] > self.__merge_threshold 
           ) + len(self.max_weight_per_cc_) 
       if self.__n_clusters: 
           # TODO: set corresponding merge_threshold? 
           renaming = merge(self.children_, self.n_leaves_, self.__n_clusters) 
           self.labels_ = renaming[self.leaf_labels_] 
           # In case the user asked for something impossible. 
           # TODO: check for impossible situations before calling merge. 
           self.__n_clusters = self.labels_.max() + 1 
       else: 
           self.labels_ = self.leaf_labels_ 
           self.__n_clusters = self.n_leaves_ 
       return self 

   def fit_predict(self, X, y=None, weights=None): 
       """
       Equivalent to fit(), and returns the `labels_`.
       """ 
       return self.fit(X, y, weights).labels_ 
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   # TODO: add argument k or threshold? Have a version where you can click and it sh
ows the line and the corresponding k? 
   def plot_diagram(self): 
       """
       """ 
       import matplotlib.pyplot as plt 

       l = self.max_weight_per_cc_.min() 
       r = self.max_weight_per_cc_.max() 
       if self.diagram_.size > 0: 
           plt.plot(self.diagram_[:, 0], self.diagram_[:, 1], "ro") 
           l = min(l, self.diagram_[:, 1].min()) 
           r = max(r, self.diagram_[:, 0].max()) 
       if l == r: 
           if l > 0: 
               l, r = 0.9 * l, 1.1 * r 
           elif l < 0: 
               l, r = 1.1 * l, 0.9 * r 
           else: 
               l, r = -1.0, 1.0 
       plt.plot([l, r], [l, r]) 
       plt.plot( 
           self.max_weight_per_cc_, numpy.full(self.max_weight_per_cc_.shape, 1.1 * 
l - 0.1 * r), "ro", color="green" 
       ) 
       plt.show() 

   # Use set_params instead? 
   @property 
   def n_clusters_(self): 
       return self.__n_clusters 

   @n_clusters_.setter 
   def n_clusters_(self, n_clusters): 
       if n_clusters == self.__n_clusters: 
           return 
       self.__n_clusters = n_clusters 
       self.__merge_threshold = None 
       if hasattr(self, "leaf_labels_"): 
           renaming = merge(self.children_, self.n_leaves_, self.__n_clusters) 
           self.labels_ = renaming[self.leaf_labels_] 
           # In case the user asked for something impossible 
           self.__n_clusters = self.labels_.max() + 1 

   @property 
   def merge_threshold_(self): 
       return self.__merge_threshold 

   @merge_threshold_.setter 
   def merge_threshold_(self, merge_threshold): 
       if merge_threshold == self.__merge_threshold: 
           return 
       if hasattr(self, "leaf_labels_"): 
           self.n_clusters_ = numpy.count_nonzero(self.diagram_[:, 0] - self.diagram
_[:, 1] > merge_threshold) + len( 
               self.max_weight_per_cc_ 
           ) 
       else: 
           self.__n_clusters = None 
       self.__merge_threshold = merge_threshold
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Description

Parameters

By "parameters" we mean the information we (must) provide to construct a specific instance of the class. They are given
as arguments in the constructor function "__init__":

graph_type (str): 'manual', 'knn' (default) or 'radius'.
density_type (str): 'manual', 'DTM', 'logDTM' (default), 'KDE' or 'logKDE'. With many points, 'KDE' and 'logKDE' tend
to be slower.
n_clusters (int): number of clusters requested. Defaults to None, i.e. no merging occurs and we get the maximal
number of clusters.
merge_threshold (float): minimum prominence of a cluster so it doesn't get merged.

(Naturally, both n_clusters and merge_threshold cannot be provided simultaneously, as it can be deduced from the
explanation of the algorithm)

metric (str|Callable): metric used to compute the pairwase distances between points (if we don't input them). If
None, use Minkowski of parameter p.
kde_params (dict): if density_type is 'KDE' or 'logKDE', additional parameters passed directly to
sklearn.neighbors.KernelDensity.
k (int): number of neighbors for a k-NN graph (including the vertex itself). Defaults to 10.
k_DTM (int): number of neighbors for the DTM density estimation (including the vertex itself). Defaults to k.
r (float): size of a neighborhood if graph_type is 'radius'. Also used as default bandwidth in kde_params.
eps (float): approximation factor when computing nearest neighbors (ignored in many cases).
symmetrize_graph (bool): whether we should add edges to make the neighborhood graph symmetric. This can be
useful with k-NN for small k. Defaults to false.
p (float): norm L^p on input points (numpy.inf is supported without gpu). Defaults to 2.
dim (float): final exponent in DTM density estimation, representing the dimension. Defaults to the dimension, or 2
when the dimension cannot be read from the input (metric is "precomputed").
q (float): order used to compute the distance to measure. Defaults to dim. Beware that when the dimension is large,
this can easily cause overflows.
n_jobs (int): Number of jobs to schedule for parallel processing on the CPU. If -1 is given all processors are used.
Default: 1.
params: extra parameters are passed to the classes gudhi.point_cloud.knn.KNearestNeighbors  and 
gudhi.point_cloud.dtm.DTMDensity , for example 'implementation="keops"' for the first one.



/

Attributes

By "attributes" we mean the properties, or variables, created within a class: they store its information, allow it to run some
of its methods and functionalities, etc... We recall also that, as a common practice, the attributes of a class (those defined
with self.) usually have some "_" in its name to make them more distinguishable within the code.

Naturally, the values of most of the attributes depend on the instance itself, and, depending on it, some of them will be
present or not. Actually, many of the previous parameters have their corresponding attribute, as for example n_clusters_
and merge_threshold_ (which, when modified, can alter the values of other attributes, as the .setter propery shows), or
they are stored inside the "params_" dictionary; input_type, metric,...

Other important attributes which are created specifically to run the desired methods and are not given as parameters are:

n_leaves_ (int): Number of leaves (unstable clusters) in the hierarchical tree. Basically, the number of "temporary"
clusters (or mini-clusters) we have along the way.
leaf_labels_ (ndarray of shape (n_samples)): Cluster labels for each point, at the very bottom of the hierarchy.
labels_ (ndarray of shape (n_samples)): Cluster labels for each point, after merging. Writing to n_clusters_ and
merge_threshold_ automatically adjusts it.
diagram_ (ndarray of shape (n_leaves_, 2)): Persistence diagram (only the finite points).
weights_: (ndarray of shape (n_samples,)): Weights of the points, as computed by the density estimator or provided
by the user.
max_weight_per_cc_: (ndarray of shape (n_connected_components,)): Maximum of the density function on each
connected component. This corresponds to the abscissa of infinite points in the diagram.

Methods

The Tomato class contains, in essence, two methods:

The first one is the .fit method, which does basically everything: it processes the input data taking into account its
format and the given arguments, it does the merging process depending on them, does the labelling of the entries
and stores the points that will eventually form the persistance diagram. The method .fit_predict is identical, but it
returns the labels vector. Both of them take as the input the coordinates of the points/ distance matrix/ neighborhood
matrix, and possibly a "weights" vector, the estimate of  on each entry.

The second one is the .plot_diagram method, without arguments, that plots the persistance diagram (after the fit
method).

f

EXAMPLES AND TESTS

Example 1
We start with a really simple example with a few hundreds points to get used to manipulating the Tomato class.



/

In [32]: import matplotlib.pyplot as plt 

cmap = plt.cm.Spectral;
fig, ax = plt.subplots(); 

import random as rd
import numpy as np 

# Simple function to get random values for x uniformly but within intervals (0,a) U
(b, 1)
def x_var(x): 
   if x > 0.5: 
       return rd.uniform(0.6, 1) 
   else: 
       return rd.uniform(0, 0.4) 

    
p1 = np.zeros((200,2))
for i in range(200): 
   p1[i,0] = x_var(rd.uniform(0,1)) 
   p1[i,1] = rd.uniform(0,1) 
    
ax.cla()
ax.scatter(*zip(*p1));

There are "clearly" two main groups of points.

Let's suppose we don't know that, so we run the Tomato algorithm blindly. We use the KDE (without specifying extra
parameters, thus using the default parameters in Scikit-Learn) and the radius graph with = 0.1. We want to take a look
at the persistance diagram:

r
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In [57]: import gudhi 

from gudhi.clustering.tomato import Tomato 

ex1 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="radius", 
       density_type="KDE", 
       #n_clusters=2, 
       r=0.1, 
   ) 

labels = ex1.fit_predict(p1)
print(labels) 

print("\nThere are " + str(ex1.n_clusters_) + " initial clusters")
ex1.plot_diagram()

Even if n_clusters_ gives us 9 initial clusters (when we don't specify the parameter n_clusters in Tomato no merging
occurs), we can see from the bottom-right that there are clearly two more prominent groups, but four connected
components. Indeed, let's output the graph built on top of our data:

[1 4 1 6 3 1 0 2 3 1 3 0 3 0 0 4 1 4 1 4 1 2 0 3 1 4 3 1 4 1 2 1 3 3 1 6 0 
 3 2 0 0 0 6 1 0 2 2 6 0 1 8 2 7 4 2 6 1 1 1 4 4 5 2 1 0 0 1 6 2 3 4 3 2 2 
 3 1 1 2 1 0 6 2 4 1 0 3 2 1 1 3 2 0 4 3 2 3 0 3 3 0 1 4 0 0 3 0 3 6 3 4 5 
 1 0 0 0 6 1 0 1 0 0 2 3 1 1 2 4 0 2 0 4 3 2 1 4 2 2 0 2 1 6 2 0 2 4 4 0 2 
 0 1 3 5 2 4 4 1 1 1 2 4 1 1 3 3 0 5 1 0 1 4 3 1 4 2 1 1 4 1 3 1 6 1 2 2 0 
 2 0 1 0 2 2 3 0 1 0 4 1 0 6 4] 
 
There are 9 initial clusters 
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In [58]: from gudhi.point_cloud.knn import KNearestNeighbors
X = np.array(p1)
nbrs = KNearestNeighbors(k=30, return_distance= True)
indices, distances = nbrs.fit_transform(X)
plt.plot(X[:,0], X[:,1], 'o')
for i in indices: 
   Y = np.zeros((2,2)) 
   for j in range(len(i)): 
       if distances[int(i[0]), j] < 0.1: 
           Y[0][0]= X[int(i[0])][0] 
           Y[1][0]= X[int(i[0])][1] 
           Y[0][1]= X[int(i[j])][0] 
           Y[1][1]= X[int(i[j])][1] 
           plt.plot(Y[0], Y[1], 'ro-') 

plt.show()

Even if we know that "there are" two main clusters, we cannot force the algorithm to output them, because there is no
way the algorithm can merge disconnected components. We don't have problems if we ask for a bigger number of
clusters:

In [61]: ex1.n_clusters_ = 6
print(ex1.n_clusters_)
print(ex1.labels_) 

ex1.n_clusters_ = 2
print(ex1.n_clusters_)
print(ex1.labels_)

6 
[1 1 1 1 3 1 0 2 3 1 3 0 3 0 0 1 1 1 1 1 1 2 0 3 1 1 3 1 1 1 2 1 3 3 1 1 0 
 3 2 0 0 0 1 1 0 2 2 1 0 1 5 2 4 1 2 1 1 1 1 1 1 1 2 1 0 0 1 1 2 3 1 3 2 2 
 3 1 1 2 1 0 1 2 1 1 0 3 2 1 1 3 2 0 1 3 2 3 0 3 3 0 1 1 0 0 3 0 3 1 3 1 1 
 1 0 0 0 1 1 0 1 0 0 2 3 1 1 2 1 0 2 0 1 3 2 1 1 2 2 0 2 1 1 2 0 2 1 1 0 2 
 0 1 3 1 2 1 1 1 1 1 2 1 1 1 3 3 0 1 1 0 1 1 3 1 1 2 1 1 1 1 3 1 1 1 2 2 0 
 2 0 1 0 2 2 3 0 1 0 1 1 0 1 1] 
4 
[1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 
 0 0 0 0 0 1 1 0 0 0 1 0 1 3 0 2 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 
 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 
 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 
 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 
 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1] 
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Unsurprisingly, if we plot the points with different colors according to their labels, we don't get a very satisfying result:

In [62]: n = ex1.n_clusters_
labels = ex1.labels_ 

norm = plt.Normalize(vmin=0, vmax=n-1) 

ax.cla()
ax.scatter(*zip(*p1), c=cmap(norm(labels)))
fig

This is the reason why running the algorithm for different values of the parameters is a good idea, specially if the
algorithm produces persistance diagrams with several green dots (i.e. connected components) near the bottom-left part
(i.e. low, isolated peaks).

Here is the situation when we increase  to 0.15:r

Out[62]:
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In [63]: ex1 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="radius", 
       density_type="KDE", 
       n_clusters=2, 
       r=0.13, 
   ) 

n = ex1.n_clusters_
print("We obtain " + str(n) + " clusters.")
labels = ex1.fit_predict(p1)
print(ex1.labels_) 

print("\nThe persistance diagram looks better, with just two connected components, an
d two prominent regions:")
ex1.plot_diagram() 

print("\nThe graph over which the algorithm runs is:") 

plt.plot(X[:,0], X[:,1], 'o')
for i in indices: 
   Y = np.zeros((2,2)) 
   for j in range(len(i)): 
       if distances[i[0]][j] < 0.15: 
           Y[0][0]= X[i[0]][0] 
           Y[1][0]= X[i[0]][1] 
           Y[0][1]= X[i[j]][0] 
           Y[1][1]= X[i[j]][1] 
           plt.plot(Y[0], Y[1], 'ro-') 

plt.show() 

print("\nAnd the plot of the points according to their label is:") 

norm = plt.Normalize(vmin=0, vmax=n-1) 

ax.cla()
ax.scatter(*zip(*p1), c=cmap(norm(labels)))
fig
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We obtain 2 clusters. 
[1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 
0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 
0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 
1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 
0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 
0 0 1 0 0 0 0 0 1 0 1 1 0 1 1] 

The persistance diagram looks better, with just two connected components, and two pr
ominent regions: 

The graph over which the algorithm runs is: 

And the plot of the points according to their label is: 

Out[63]:
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Example 2
We use now a rather typical example to test clustering algorithms: a point cloud sampled from two concentric circles:

In [97]: from sklearn import manifold, datasets
p2, y = datasets.make_circles(n_samples=1000, factor=.5, noise=.05) 

ax.cla()
ax.scatter(*zip(*p2))
fig

It is well known that many clustering methods perform poorly with non-convex groupings of data, as the one above. This
is not the case with the Tomato algorithm, which relies just on looking for "nearby" modes. We use now the -NN graph
construction, with =7, and the KDE again, specifying some of it parameters now (for more information, check the Scikit-
learn documentation):

k

k

Out[97]:
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In [98]: ex2 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="knn", 
       density_type="KDE", 
       kde_params = {"bandwidth": 1.3, "kernel": "epanechnikov"}, 
       #n_clusters=2, 
       k=7, 
       eps=0.05, 
   ) 

ex2.fit_predict(p2)
ex2.plot_diagram()

The diagram is not specially obvious; if this happens, it is in general a good idea tu run the algorithm with different values
in the parameters.

We also see that there are several connected components, more specifically 9; a quick way to know how many of them
we have is check the size of the attribute "max_weight_per_cc_":

In [99]: n = len(ex2.max_weight_per_cc_)
print("There are " + str(n) + " connected components")

Let's plot these components:

There are 9 connected components 
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In [103]: ex2.n_clusters_ = n
labels = ex2.labels_ 

norm = plt.Normalize(vmin=0, vmax=n-1) 

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig

A bit frustrating; this is "natural" consequence of the the -NN graph being directed. We can "solve" this by symmetrizing
the graph, although its effectiveness is uncertain. In this case it also makes sense to reduce , as we add more edges:

k

k

Out[103]:
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In [102]: ex2 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="knn", 
       density_type="KDE", 
       kde_params = {"bandwidth": 1.3, "kernel": "epanechnikov"}, 
       #n_clusters=2, 
       k=5, 
       symmetrize_graph = True, 
       eps=0.05, 
   ) 

ex2.fit_predict(p2)
ex2.plot_diagram() 

n = len(ex2.max_weight_per_cc_)
print("There are " + str(n) + " connected components") 

ex2.n_clusters_ = n
labels = ex2.labels_ 

norm = plt.Normalize(vmin=0, vmax=n-1) 

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig

There are 3 connected components 

Out[102]:
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In general, and intelligent way to proceed would be to run the algorithm for different values of  and the bandwidth , and
see for which values we obtain "good" persistance diagrams, with "clearly prominent clusters". This is what we do below,
where, for a fixed  and different values of , we compute the prominence of each point of the persistance diagram (

), and we plot the information, as well as the number of connected components (number under every vertical bar)
in each case:

k λ

k λ

x − y
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In [148]: for n_neigh in range(6,12): 
   n_diagram = [] 
   x_diagram = [] 
   y_diagram = [] 
   cc = [] 
   y_cc = [] 
   bandwidth_values = [0.1, 2, 0.1] 
   bandwidth = bandwidth_values[0] 
    
   while bandwidth < bandwidth_values[1]: 
       ex2 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="knn", 
       density_type="KDE", 
       kde_params = {"bandwidth": bandwidth, "kernel": "epanechnikov"}, 
       #n_clusters=2, 
       k=n_neigh, 
       eps=0.05, 
   ) 
       ex2.fit(p2) 
       cc.append(str(len(ex2.max_weight_per_cc_))) 
       init_clusters = len(ex2.diagram_) 
       prominences = np.zeros(init_clusters) 
       for i in range(init_clusters): 
           prominences[i] = ex2.diagram_[i,0] - ex2.diagram_[i,1] 
        
       ##"Normalizing" prominences 
       max_prom = np.max(prominences) 
       for i in range(init_clusters): 
           prominences[i] /= max_prom 

       n_diagram.append(prominences) 
       bandwidth += bandwidth_values[2] 
        
    
   for i in range(len(n_diagram)): 
       for j in range(len(n_diagram[i])): 
           x_diagram.append(bandwidth_values[0] + i*bandwidth_values[2]) 
           y_diagram.append(n_diagram[i][j]) 
           y_cc.append(-0.08) 

    
   plt.title('Looking for clusters') 
   plt.axis('tight') 
   plt.ylabel('K =' + str(n_neigh-1)) 
   plt.ylim((-0.15, 1.1)) 
   plt.xlabel('bandwidth') 
   plt.xticks(np.arange(bandwidth_values[0], bandwidth_values[1], bandwidth_values[2
])) 
   plt.subplot(6, 1, n_neigh-5) 
   n = int((bandwidth_values[1]-bandwidth_values[0])/bandwidth_values[2]) + 1 
   for i in range(n): 
       plt.text(-0.02 + bandwidth_values[0] + i*bandwidth_values[2], y_cc[i], cc[i], 
fontdict={'weight': 'bold', 'size': 10}) 
    
   plt.scatter(x_diagram, y_diagram) 
        
fig = plt.gcf()
fig.set_size_inches(8, 32)
plt.show()



/



/

One can see, for example, that when the bandwidth is  = 0.3, two more prominent clusters appear consistently, for all
the last values of , and we always get two connected components. If we run Tomato with these parameters, we obtain
the "desired" result:

λ

k
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In [185]: ex2 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="knn", 
       density_type="KDE", 
       kde_params = {"bandwidth": 0.3, "kernel": "epanechnikov"}, 
       n_clusters=2, 
       k=9, 
       eps=0.05, 
   ) 

labels = ex2.fit_predict(p2)
ex2.plot_diagram() 

norm = plt.Normalize(vmin=0, vmax=1) 

fig, ax = plt.subplots() 

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)));

Example 3
We do now a rather spectacular example in 3D just to show the effectiveness of the algorithm to separate clusters with
different shapes. We will generate, using points, a cube, a sphere, and a "swiss roll", together with some noise:
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In [157]: import mpl_toolkits.mplot3d.axes3d as plt3
from sklearn.datasets import make_swiss_roll 

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70) 

points_cube = 1000
points_sphere = 800
#points_line = 700
points_sr = 8000
points_noise = 2000 

X1 = np.zeros((points_cube, 3))
for i in range(points_cube): 
   X1[i,0], X1[i,1], X1[i,2] = rd.uniform(-2,2), rd.uniform(-2,2), rd.uniform(-2,2) 
    
X2 = np.zeros((points_sphere, 3))
for i in range(points_sphere): 
   X2[i,0], X2[i,1], X2[i,2] = rd.uniform(-1,1), rd.uniform(-1,1), rd.uniform(-1,1) 
   X2[i,0], X2[i,1], X2[i,2] = 12 + 3*X2[i,0]/np.sqrt(X2[i,0]**2 + X2[i,1]**2 + X2[i
,2]**2), 15 + 3*X2[i,1]/np.sqrt(X2[i,0]**2 + X2[i,1]**2 + X2[i,2]**2), -4 + 3*X2[i,2]
/np.sqrt(X2[i,0]**2 + X2[i,1]**2 + X2[i,2]**2) 

"""
X3 = np.zeros((points_line, 3))
for i in range(points_line):
   param = rd.uniform(-15, 15)
   X3[i,0], X3[i,1], X3[i,2] = 2 - param*0.7, 4 + param*0.7, 2 - param*0.6
   X3[:,0] += 0.02*np.random.randn(points_line)
   X3[:,1] += 0.02*np.random.randn(points_line)
   X3[:,2] += 0.02*np.random.randn(points_line)
""" 
    
X4, _ = make_swiss_roll(n_samples=points_sr, noise=.05) 

X5 = np.zeros((points_noise, 3))
for i in range(points_noise): 
   X5[i,0], X5[i,1], X5[i,2] = rd.uniform(-10,15), rd.uniform(-5,20), rd.uniform(-10
,15) 

X = np.concatenate((X1,X2,X4,X5))
X = np.array(X) 

ax.scatter(X[:, 0], X[:, 1], X[:, 2], color="red", s=4);
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In [158]: ax.view_init(50, -150)
fig3

Let's run the algorithm with -NN and the logDTM estimation. We also use the parameter n_jobs=-1, which becomes
useful to increase the computational power when the size of our dataset becomes large, even though in our case we
don't have an specially high number of points:

k

Out[158]:
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In [159]: ex3 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="knn", 
       density_type="logDTM", 
       #n_clusters=2, 
       #symmetrize_graph= True, 
       k=9, 
       n_jobs=-1, 
   ) 

ex3.fit(X)
ex3.plot_diagram()
print(ex3.labels_)

We see 2-3 prominent clusters in the persistance diagram. We can "identify" the noise by checking which points have a
low estimate, and creating a new label. We plot the result at the end:

[158  88 158 ... 436 382 174] 
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In [180]: ex3.n_clusters_ = 3
label = ex3.labels_ 

for i in range(len(X)): 
   if ex3.weights_[i] < 0.5: 
       label[i] = 3 
    
print(label) 

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70) 

for l in np.unique(label): 
   ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2], 
              color=plt.cm.inferno(np.float(l) / np.max(label + 1)), 
              s=3)

In [181]: ax.view_init(50, -150)
fig3

[0 0 0 ... 3 3 3] 

Out[181]:
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The swiss roll is not completely clustered and it gets separated into two regions due to the presence of the sphere; we
cannot expect our algorithm to distinguish them properly with an intersection so noticeable. The result with two clusters is
also quite satisfactory and more realistic, with the whole spiral and the sphere clustered together. We also see that, in
both cases, the noise is quite properly identified:

In [182]: ex3.n_clusters_ = 2
label = ex3.labels_ 

for i in range(len(X)): 
   if ex3.weights_[i] < 0.5: 
       label[i] = 2 
    
print(label) 

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70) 

for l in np.unique(label): 
   ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2], 
              color=plt.cm.inferno(np.float(l) / np.max(label + 1)), 
              s=3)

[0 0 0 ... 2 2 2] 
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In [183]: ax.view_init(50, -150)
fig3

Example 4
In this example we explore the case in which we don't give the coordinates of the points directly, but the distances
between them.

To do so, we sample a set of points over the unit sphere, but not uniformly: we sample them first in the cube 1x1x1 using
a sigmoid function in each variable to concentrate them near the vertices and edges of the cube, and then we normalize
them. This creates naturally regions of the sphere with more points, more specifically the directions pointing towards the
vertices and edges of the cube:

Out[183]:
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In [188]: def sample_spherical(npoints): 
   vec = [] 
   vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints)))) 
   vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints)))) 
   vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints)))) 
   vec /= np.linalg.norm(vec, axis=0) 
   return vec 

npoints = 6000
points = sample_spherical(npoints) 

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70) 

ax.scatter(points[0,:], points[1,:], points[2,:], s=3);

We compute now the pairwise distances between all the points, using the "spherical" distance : the distance between
two points on the surface of a unit sphere with coordinates  and  is given by the
formula:

As we don't have many points, we can compute all pairwise distances without much problem:

dS

a = ( , , )a1 a2 a3 b = ( , , )b1 b2 b3

(a, b) = arccos( + b2 + )dS a1b1 a2 a3b3
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In [189]: distance_matrix = np.zeros((npoints, npoints)) 

for i in range(npoints): 
   distance_matrix[i,i]= 0 
   for j in range(i+1, npoints): 
       distance_matrix[i,j] = np.arccos(points[0,i]*points[0,j] + points[1,i]*points
[1,j] + points[2,i]*points[2,j]) 
       distance_matrix[j,i] = distance_matrix[i,j] 
    
print(distance_matrix)

KDE and logKDE use the already-built Scikit-learn library and we cannot use them for a precomputed distance matrix.
We use logDTM insted of DTM to make the persistance diagram look more clear:

In [190]: ex4 = Tomato( 
       input_type="points", 
       metric="precomputed", 
       graph_type="knn", 
       density_type="logDTM", 
       #n_clusters=2, 
       k=10, 
   ) 

ex4.fit(distance_matrix)
ex4.plot_diagram()

There are 8 clear clusters, a quite expected result:

[[0.         1.1558255  1.47491536 ... 2.68105662 0.94665096 0.8865952 ] 
 [1.1558255  0.         1.83518165 ... 1.77024725 1.71115835 1.14674659] 
 [1.47491536 1.83518165 0.         ... 2.12567266 2.05734047 0.7744797 ] 
 ... 
 [2.68105662 1.77024725 2.12567266 ... 0.         1.88764992 2.57444621] 
 [0.94665096 1.71115835 2.05734047 ... 1.88764992 0.         1.80283258] 
 [0.8865952  1.14674659 0.7744797  ... 2.57444621 1.80283258 0.        ]] 
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In [191]: ex4.n_clusters_ = 8
label = ex4.labels_ 

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(25, -160) 

for l in np.unique(label): 
   ax.scatter(points[0, label == l], points[1, label == l], points[2, label == l], 
              color=plt.cm.jet(np.float(l) / np.max(label + 1)), 
              s=3)

Example 5
We do another easy example just to get used to other input formats to our algorithm. In this one we will input ourselves
the weights of the points as well as a neighboring graph, which will just be a rectangular mesh in the square 10x10. For
the weights, we will be using the function:

plotted below. In this setting, our algorithm will be just looking for basins of attraction of our function.

f(x, y) = sin( ) + cos( ),
x + y

2

x − y

2
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In [208]: def f(x, y): 
   return 2+ np.sin(0.5*(x+y)) + np.cos(0.5*(x-y)) 

x = np.linspace(-10, 10, 30)
y = np.linspace(-10, 10, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y) 

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');

In [198]: ax.view_init(70, -50)
fig

And now the points, with the neighboring graph:

Out[198]:
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In [200]: size_mesh = 30
points = np.zeros((2, size_mesh**2))
arange = np.linspace(-10., 10., size_mesh) 

#Coordinates of the points
for i in range(size_mesh): 
   for j in range(size_mesh): 
       points[0][i*size_mesh + j] = arange[i] 
       points[1][i*size_mesh + j] = arange[j] 

#Neighboring graph
neigh_graph = []
for i in range(size_mesh): 
   for j in range(size_mesh): 
       neigh = [] 
       if i > 0: 
           neigh.append((i-1)*size_mesh + j) 
       if i < size_mesh -1: 
           neigh.append((i+1)*size_mesh + j) 
       if j > 0: 
           neigh.append(i*size_mesh + j-1) 
       if j < size_mesh -1: 
           neigh.append(i*size_mesh + j+1) 
       neigh_graph.append(neigh)

In [201]: #Drawing the graph
plt.plot(points[0,:], points[1,:], 'o', markersize=2) 

for i in range(len(neigh_graph)): 
   Y = np.zeros((2,2)) 
   for j in neigh_graph[i]: 
       Y[0][0]= points[0][i] 
       Y[1][0]= points[1][i] 
       Y[0][1]= points[0][j] 
       Y[1][1]= points[1][j] 
       plt.plot(Y[0], Y[1], 'ro-', linewidth=2) 

plt.show()

We now associate the weights to the different points according to f, and run the Tomato algorithm to compute the basins
of attraction:
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In [202]: #We associate the weights
weights = np.zeros(size_mesh**2)
for i in range(size_mesh**2): 
   weights[i] = f(points[0][i], points[1][i]) 
    
#We run Tomato
ex5 = Tomato( 
       graph_type = "manual", 
       density_type = "manual" 
   ) 

ex5.fit(neigh_graph, weights= weights)
ex5.plot_diagram()
print(ex5.diagram_)

[[3.75212014 1.99409954] 
 [3.75212014 1.99409954] 
 [3.98535762 1.98244992] 
 [3.98535762 1.98244992] 
 [3.9737506  1.9824371 ] 
 [3.54402111 1.97677169] 
 [3.9882662  1.94776161]] 
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In [206]: ex5.n_clusters = 7
labels = ex5.fit_predict(neigh_graph, weights= weights) 

norm = plt.Normalize(vmin=0, vmax=6) 

fig, ax = plt.subplots(); 

ax.cla()
ax.scatter(points[0,:], points[1,:], c=cmap(norm(labels)));
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In [209]: fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary', linewidths=0.5);
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z'); 

points3d = np.zeros((3, size_mesh**2))
for i in range(size_mesh**2): 
   points3d[0, i] = points[0,i] 
   points3d[1, i] = points[1,i] 

z_coord = np.zeros(size_mesh**2)     
for l in np.unique(labels): 
   ax.scatter(points3d[0, labels == l], points3d[1, labels == l], points3d[2, labels 
== l], s=10) 
    
ax.view_init(80, -50)
fig = plt.gcf()
fig.set_size_inches(12,7)
plt.show()

Example 6
In this last example, closer to the kind of datasets we could find in real life, we will work with the famous "Digits dataset",
containing 1797 observations each with 64 features: each entry represents a (highly compressed) hand-written digit in a
8x8 grid, where each cell can vary from 0 to 16, representing its opacity. Naturally, the dataset also contains the correct
labels of each instance: a number from 0 to 9, the one written in the grid.
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In [987]: #Load the digits dataset
digits = datasets.load_digits() 

#Display the 25th digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[25], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()

It is well known the difficulty of performing data science algorithms in high dimension, and clustering is not an exception;
in fact, it is a process particularly sensitive to numerical data being sparse. Thus, even with dimensionality reduction
techniques, it's not a good idea to expect a brilliant performance of our algorithm in this setting. In any case, it is
interesting to see what kind of results we get. The results of other clustering methods over this dataset can be found in
[4].

In [1056]: digits, real_label = datasets.load_digits(return_X_y=True) 

print(digits)
print(real_label)

We can embed the dataset in the plane by using PCA dimensionality reduction. We observe that, with that reduction
level, the different clusters of numbers are somewhat distinguishable, but there is also considerable overlapping:

[[ 0.  0.  5. ...  0.  0.  0.] 
 [ 0.  0.  0. ... 10.  0.  0.] 
 [ 0.  0.  0. ... 16.  9.  0.] 
 ... 
 [ 0.  0.  1. ...  6.  0.  0.] 
 [ 0.  0.  2. ... 12.  0.  0.] 
 [ 0.  0. 10. ... 12.  1.  0.]] 
[0 1 2 ... 8 9 8] 
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In [1009]: from sklearn.decomposition import PCA 

pca = PCA(n_components=2)
digits_red = pca.fit_transform(digits) 

def plot_clustering(X_red, labels, title=None): 
   x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0) 
   X_red = (X_red - x_min) / (x_max - x_min) 

   plt.figure(figsize=(6, 4)) 
   for i in range(X_red.shape[0]): 
       plt.text(X_red[i, 0], X_red[i, 1], str(y[i]), 
                color=plt.cm.nipy_spectral(labels[i] / 10.), 
                fontdict={'weight': 'bold', 'size': 8}) 

   plt.xticks([]) 
   plt.yticks([]) 
   if title is not None: 
       plt.title(title, size=15) 
   plt.axis('off') 
   fig = plt.gcf() 
   fig.set_size_inches(12,7) 
    
plot_clustering(digits_red, real_label, title = "2d embedding of the digits dataset,
colors= real labels")

It's useless to try to run the algorithm without doing any kind of dimensionality reduction first: accurate density estimation
is almost always unsucessful with highly sparse data. We can try to use our algorithm after killing some dimensions first.
Wit our dataset, after some experimentation, when there are 11 dimensions left DTM density estimation looks quite well:
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In [1110]: pca = PCA(n_components=11)
digits_red = pca.fit_transform(digits) 

ex6 = Tomato( 
       input_type="points", 
       metric="euclidean", 
       graph_type="knn", 
       density_type="logDTM", 
       n_clusters=10, 
       k=9, 
   ) 

ex6.fit(digits_red)
ex6.plot_diagram()

It looks like the algorithm found "naturally" 9-10 clusters, let's plot these 10 groups in 2D:
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In [1100]: labels = ex6.fit_predict(digits_red) 

pca = PCA(n_components=2)
digits_red = pca.fit_transform(digits_red) 

plot_clustering(digits_red, labels, title = "2d embedding of the digits dataset, colo
rs= clusters")

The result looks suprisingly good, actually.

A way to measure the matching degree consists in computing the vector , which
takes values , and then counting the number of times each number appears. In a perfect classification,
only 10 values would appear, more specifically , with ; in a decent clustering, we should
at least see some clearly more prominent values, which is indeed what happens in our case!

10 ⋅ real_labels + clustering_labels
∈ {0, … , 99}

10 ⋅ i + labeli i ∈ {0, … , 10}
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In [1111]: vect_count = 10*real_label + labels
print(vect_count) 

count = np.zeros((2,100))
for i in range(100): 
   count[0,i]= i
for i in vect_count: 
   count[1,i] += 1 

fig, ax = plt.subplots();
ax.cla()
ax.scatter(count[0,:], count[1,:], s=16);

From this graph it looks like most of the values have been properly grouped. Only the value 8 looks more mismatched.
We can also get an idea about how the numbers have been grouped or labeled using a table, and checking the columns
and rows: each of them should only contain one "big" value:

[ 0 12 27 ... 82 97 87] 



/

In [1102]: import pandas as pd
data = [[1, 2], [3, 4]]
pd.DataFrame(data, columns=["Foo", "Bar"]) 

table = []
for i in range(10): 
   row = [] 
   #row.append(i) 
   for i in range(i*10, i*10 +10): 
       row.append(count[1, i]) 
   table.append(row) 

pd.DataFrame(table, columns=[ 'Label 0', 'Label 1', 'Label 2', 'Label 3', 'Label 4', 
'Label 5', 'Label 6', 'Label 7', 'Label 8', 'Label 9'])

The clustering has been quite successful. In any case, the numbers 3's and 9's have been almost completely clustered
together (which is not that suprising, given the low resolution of the dataset), and the number 8 is almost evenly divided
between labels 2 (with the 1's) and 7 (with the 3's and 9's), again not very surprising.
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Out[1102]:
Label 0 Label 1 Label 2 Label 3 Label 4 Label 5 Label 6 Label 7 Label 8 Label 9

0 177.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 1.0 154.0 0.0 0.0 1.0 0.0 0.0 26.0 0.0

2 1.0 0.0 2.0 0.0 164.0 0.0 1.0 9.0 0.0 0.0

3 0.0 0.0 7.0 0.0 0.0 3.0 3.0 170.0 0.0 0.0

4 0.0 0.0 2.0 177.0 0.0 0.0 2.0 0.0 0.0 0.0

5 0.0 1.0 0.0 1.0 0.0 178.0 0.0 2.0 0.0 0.0

6 1.0 179.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 11.0

8 0.0 2.0 82.0 0.0 2.0 4.0 2.0 82.0 0.0 0.0

9 0.0 0.0 20.0 0.0 0.0 5.0 2.0 144.0 0.0 9.0
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