L MJL

Ll

UNIVERSITE DE NANTES

UMR 6629 - Nantes

Master MFA

Rapports de stage M2

Parcours

Algebre - Géometrie

¢ Nil Garcés de Marcilla Escubedo : Introduction a I'’Analyse topologique des données
et étude de l'algorithme ToMATo

¢ Clovis Chabertier : Dualités de Koszul algébrique, opéradique et propéradique

¢ Lucas Darbas : Cohomologie de Hochschild des schémas

e Thibault Chailleux : Décomposition des transformations birationnelles du plan projectif complexe
¢ Mahmoud Elimam : Lagrangian cobordisms and surgery

¢ Jean Chartier : Existence d'un 3-filet géodésique stationnaire sur une 2-sphére






Ul

UNIVERSITE DE NANTES

MEMOIRE STAGE

Master 2 : Mathématiques et applications
(Algébre et géométrie)

Faculté de Sciences - Université de Nantes

Introduction a I’Analyse topologique

des données et étude de 'algorithme
ToMATo

Auteur : Nil Garcés de Marcilla Escubedo

Tuteur : Bertrand Michel
Ecrit 4 : Laboratoire de Mathématiques Jean Leray

Nantes, 28 juin 2020



Remerciements

Ce mémoire n’aurait pu se terminer sans ’aide des personnes qui m’ont accompagné pendant
ces derniers mois si particuliers.
Je voudrais tout d’abord adresser toute ma gratitude & M. Bertrand MICHEL, professeur et cher-
cheur & I"Université de Nantes, qui, en tant que tuteur de mémoire, m’a guidé pendant tout le
travail et m’a aidé en tout moment pour continuer & avancer. Grace toutes nos visioconférences
et sa confiance et patience, surtout quand ma motivation était un peu plus faible, j’ai finalement
appris plus de choses que je ne le pensais au début de ce travail.
J’aimerais aussi remercier M. Marc GLISSE, chercheur & INRIA-Saclay, qui a été disponible a tout
moment pour répondre & mes interrogations sur le code de fagon trés précise et efficace.
Je désire aussi remercier les professeurs de 1‘'Université de Nantes en général, qui m’ont fourni les
outils nécessaires a la réussite de mes études universitaires en France.
Finalement, je voudrais exprimer ma reconnaissance envers ma famille, mes amis et collégues. Ces
derniers m’ont apporté leur soutien moral et intellectuel tout au long de ma démarche. Plus spéciale-
ment, je remercie les résidents de la cité universitaire et alentours. Durant la période de confinement
ils sont devenus comme une partie & part entiére de ma famille.



Abstract

The goal of this memoir is to expose and manipulate some modern concepts and tools in the
Data Science domain.
In the central part of the work, some basic notions and results of the emerging field of Topological
Data Analysis (TDA) are explored, notably persistent homology and persistence diagrams, together
with some stability results. Several effective algorithms to compute the homology groups and the
persistent homology of a (filtration of a) simplicial complex are also given.
Together with that, following a more general approach, a brief survey of the Machine learning pa-
radigm and some clustering algorithms are exposed in the first two chapters.
In the last chapter, the recently developed clustering method ToMATo is studied. This algorithm re-
lies heavily on some of the concepts explained in the previous chapters. The theoretical study of this
method is then followed by a more practical section in which programming takes the leading role :
a (rather visual) exploration (in Python) of the implementation of this algorithm in the GUDHI
library is carried out, as well as a little guide to understand its parameters and functionalities.

I
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0. Introduction

L’importance des domaines de la science des données (Data Science) et ’apprentissage auto-
matique (Machine Learning) continue a croitre dans le monde avec 1’évolution technologique de
notre époque. Dans ce contexte, de nouvelles idées et méthodes sont constamment développées
pour traiter, analyser et exploiter la grande quantité de données qui nous entourent. Seule une
bonne formulation mathématique peut justifier la pertinence des nouveaux algorithmes et son im-
plémentation.

Parmi le grand nombre de méthodes existantes dans la science des données, nous trouvons les
méthodes de clustering, ou segmentation des données. L’objectif de ces derniéres est de trouver
des sous-groupes "naturels" dans notre information de départ. Dans chaque groupe, les données
seraient, sous une définition & préciser, plus "similaires" entre elles. Les problémes de clustering sont
particuliérement difficiles & traiter en raison de leur nature exploratoire et non-supervisée. Ainsi,
la convenance d’un algorithme de clustering ou d’un autre dépend en grande partie des caractéris-
tiques des données d’entrée.

En paralléle a 'apparition de nouvelles techniques pour réaliser des taches spécifiques, diffé-
rentes approches générales a la science des données sont aussi développées. Le domaine émergent
de I’Analyse topologique des données (TDA en anglais) étudie les ensembles de données en utilisant
des idées de la topologie et de la géométrie. Ce domaine illustre pleinement ce phénoméne. L’intérét
pour ce champ d’étude, avec plein de nouveaux concepts et résultats, augmente de plus en plus, et
actuellement de nombreux algorithmes trés efficaces s’appuient sur la base théorique de la TDA.

Le récemment développé algorithme de clustering ToMATo (Topological Mode Analysis Tool)
fait partie de ces nouvelles méthodes. Au coeur de son fonctionnement apparaissent les notions
d’homologie persistante et les diagrammes de persistance, trés habituels dans la TDA. De plus, une
implémentation de cet algorithme a été récemment ajouté dans la librairie GUDHI, I'un des outils
de programmation de référence dans ce nouveau domaine. Il semble donc raisonnable de faire une
exploration théorique mais aussi pratique / informatique de cette technique qui vient d’étre congue.

Structure de la mémoire

Tout d’abord, dans le premier chapitre, nous verrons une exposition générale du domaine de
I’apprentissage automatique ; plusieurs concepts de base récurrents sont introduits dans cette par-
tie. Nous essaierons aussi de répondre & trois questions significatives : qu’est-ce que le Machine
Learning, pourquoi est-il utile, et comment les ordinateurs arrivent & "apprendre" et & améliorer
sa performance. Les références principales de cette partie sont [3], [7] et [9].

Puis, au chapitre 2, nous développerons qu’est-ce que le clustering, ainsi que des notions clés
dans I’étude de cette technique. Le contenu de ce chapitre est important afin de mieux comprendre
I’algorithme ToMATo, ses innovations et ses particularités. Une partie des algorithmes les plus
communs seront expliqués, et nous verrons aussi comment traiter les données pour appliquer au
mieux ces méthodes. Les références les plus importantes de cette section sont principalement [9] et
la documentation en ligne de la librairie Scikit-Learn [11], |12].

Le troisiéme chapitre constitue la partie la plus dense et mathématique du mémoire. Certains
des concepts les plus fondamentaux de 1’Analyse topologique des données y sont exposés. Nous
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verrons d’abord comment construire un complexe simplicial sur un nuage de points, et pourquoi
cette construction est intéressante. Ensuite, nous ferons l'inférence homologique de ces complexes
simpliciaux. Cela implique une connaissance des notions d’homologie persistante ainsi que des dia-
grammes de persistance. Plusieurs algorithmes sont détaillés pour étudier ces informations dans
la pratique. Nous terminerons le chapitre en étudiant la stabilité persistante des fonctions, qui est
fondamentale pour justifier de fagon théorique la performance de ’algorithme ToMATo. Plusieurs
références ont été utilisés dans cette partie, dont : 2], [3], [6], [10] et [5].

Finalement, au chapitre 4 nous explorerons 'algorithme ToMATo. Nous nous appuierons sur

les idées exposées aux chapitres précédents. D’un point de vue théorique, il convient d’expliquer
certaines constructions de graphes sur des nuages de points, et comment estimer une hypothétique
fonction de densité f & partir d’un échantillonnage. Les sources d’informations les plus importantes
dans cette section sont [4] et sa version simplifié, ainsi que [1] et [9].
Pour la pratique, nous avons produit un notebook de référence (en anglais) de 'implémentation de
I’algorithme, qui vient d’étre ajouté a la librairie GUDHI. L’objectif de cette partie était de tester
la performance de cette implémentation, ainsi que mieux connaitre le langage de programmation
Python et certains outils habituels pour réaliser ’analyse de données.

iii
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1. Introduction & ’apprentissage automatique

1.1. Machine Learning : idée générale et premiers exemples

Meéme si le concept de Machine Learning (en frangais, apprentissage statistique, ou apprentissage
automatique) a explosé en popularité ces derniéres années, souvent on pergoit un peu de confusion
en ce qui concerne la signification authentique de ce terme. Cette confusion est davantage aggravée
lorsque d’autres expressions comme data science, artificial intelligence ou data mining, étroitement
liées & la premiére, apparaissent sur la table. Inévitablement, avec le développement intensif de tous
ces nouveaux domaines, un nouveau jargon est apparu, et il est indispensable de bien connaitre les
subtiles différences entre les mots pour encadrer convenablement les problémes et les explications .

En termes généraux, le Machine Learning (ML) est le domaine d’étude qui cherche a donner
aux ordinateurs la capacité d’apprendre sans étre explicitement programmés, en utilisant des don-
nées (d’ici son interaction avec la data science) et/ ou des expériences antérieures. En voyant cette
définition, qui d’ailleurs n’est pas trés concréte, deux questions émergent naturellement par rapport
au terme "apprendre" : qu’est-ce que cela veut dire, exactement, et comment obtient-on cet ap-
prentissage 7 De plus, il est naturel de se demander dans quelles situations ou pourquoi le Machine
Learning peut étre la meilleure option a considérer. Ce sont précisément ces trois questions que
nous nous proposons de répondre tout de suite.

La premiére des trois est possiblement la plus générale : en effet, cette apprentissage peut prendre
plusieurs formes, qui peuvent varier énormément en fonction du probléme de départ. Ainsi, la ma-
niére la plus rapide de se faire une idée de quoi "apprendre" signifie véritablement est de regarder
quelques exemples de situations o le Machine Learning s’est avéré étre trés efficace. Ces exemples
vont apparaitre plusieurs fois toute au long du chapitre :

— La classification du mail dans spam et no-spam. Dans ce cas, I'idée est de développer un algo-
rithme pour choisir, en considérant plusieurs aspects (fréquence de quelques mots spécifiques,
longueur, structure générale,...), si un courriel contient des informations qui nous intéressent
ou pas. Donc, en somme, nous voulons que 'ordinateur apprenne a classer une série d’élé-
ments.

— La prédiction de la valeur d’une maison, en sachant quelques aspects comme sa taille, empla-
cement et d’autres caractéristiques, ainsi comme celles des immeubles & proximité, y compris
leur valeur. Dans cet exemple, on assume que tous ces facteurs peuvent étre utilisés pour
construire un modéle "réaliste" qui donne notre prix approximatif. Le résultat final du pro-
cessus est une quantité, qui peut donc varier continuellement. Nous avons ici un probléme
typique de régression.

— Dans un magasin, on peut essayer de détecter des groupes de clients similaires selon leurs
achats, ou selon leur genre, par exemple. En sachant cela, on peut élaborer des offres ou poli-
tiques commerciales plus dirigées vers ces groupes pour augmenter les ventes. Ici, nous avons
de nouveau un probléme de classification, mais d’une nature assez différente, car les groupes
ne sont pas connus a priori, et ils pourraient méme ne pas exister d’une fagon évidente. Nous
parlerons plus de ce type de procédure, appelé clustering, en peu plus tard.

— Le développement d’une application digitale de reconnaissance vocale. Par exemple, un pro-
gramme de smartphone capable d’écrire et chercher sur Internet toute combinaison de mots
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qu’on lui dicte. Dans ce cas, il y a aussi de quelque sorte un probléme de classification (aprés
tout, Uobjectif du programme est de bien identifier chaque mot prononcé), mais les nuances
du langage et la complexité de la prononciation humaine situent le défi beaucoup plus loin que
d’autres problémes de classification standards. Ce type de programmes qui cherchent & imiter
(et dépasser) le comportement humain et réaliser des taches plus complexes font partie de ce
qu’on appelle intelligence artificielle. Ce domaine, de plus en plus actif et prometteur, a ses
propres algorithmes et mécanismes, comme par exemple l'utilisation de réseaux neuronaux
(neural networks) ou apprentissage par renforcement (reinforcement learning).

Donc, nous voyons que la variété de ce qu’on a appelé "apprentissage" est riche et considérable
et, en fait, il y a beaucoup plus de situations et applications possibles : diagnostic médical guidé
par ordinateur, séquencgage d’ADN, vision par ordinateur,...

En tout cas, la plupart des méthodes et algorithmes ont pour objectif de classer des éléments, de
prévoir ou d’estimer des résultats ou des valeurs pour prendre des décisions, trouver des relations
entre variables, ou une combinaison de ces options.

1.2. Motivations

Mais pourquoi appeler tout cela apprentissage ? Aprés tout, tous les programmes informatiques
visent la simplification des taches et aider avec les calculs et la prise de décisions...
La différence essentielle avec le Machine Learning est la maniére dans laquelle ces programmes
arrivent & effectuer ces taches : rappelons qu’un élément clé de notre bréve définition est "sans
étre explicitement programmeés, en utilisant des données et/ ou expériences antérieures". Avant
d’expliquer, dans la section suivant, les idées générales qui présentent comment nous pouvons ar-
river & faire cela, il est naturel de se demander en premier lieu quelles sont les motivations de le faire.

Prenons-nous le premier exemple du mail. Si nous devions programmer nous-mémes un détec-
teur de mail spam (pour bien le distinguer et séparer du mail "bon"), la maniére la plus naturel
d’agir serait, d’abord, d’étudier un peu ses caractéristiques générales : quels types de mots ou d’ex-
pressions apparaissent le plus souvent dans ce type de courriels et ses fréquences en comparaison
avec le mail ordinaire, sa longueur approximative, des régularités dans le nom ou dans ’adresse de
I’émetteur, etc. Finalement, avec toute cette information, il faudrait programmer une par une les
conditions ou les seuils & dépasser pour le considérer comme un courrier indésirable.

Ce n’est pas une chose facile ni rapide a faire! Méme si nous réussissons a trouver de bonnes
conditions pour distinguer les deux types de mail, nous obtiendrions une liste énorme de régles a
considérer. Ainsi, le résultat final serait un code trés long et complexe : pas pratique a programmer
ni facile & maintenir, modifier ou mettre a jour. Un algorithme plus "machine learning" chercherait
lui-méme les caractéristiques clés en comparant des exemples des deux types de courrier et associe-
rait les poids convenables pour bien les classer.

Dans le dernier exemple de la reconnaissance vocale, la complexité d’un hypothétique pro-
gramme codé & la main devient encore plus évidente : la quantité d’information et la variabilité
dans un fichier audio est tellement énorme qu’il est simplement impossible d’analyser explicitement
tous les cas ot il sonne une "s" ou une "u". Seulement aprés avoir exposé & un bon algorithme
milliers d’enregistrements des différents mots, nous pouvons espérer qu’il arrivera a les distinguer

correctement.
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Un autre avantage des algorithmes de Machine Learning est que souvent on peut les concevoir
pour qu’ils soient adaptables & de possibles actualisations ou accroissements des données. Cette
caractéristique peut étre trés utile dans toutes les situations, y comprises celles des exemples anté-
rieurs.

Finalement, nous pouvons nous servir de toutes ces techniques et procédures pour améliorer
I’apprentissage humaine méme. En effet, quelques algorithmes ML peuvent étre inspectés pour voir
ce qu'’ils ont appris, et ainsi mieux comprendre des corrélations et tendances non reconnues précé-
demment. Utiliser les techniques ML avec cet objectif s’appelle data mining.

1.3. Meéthodologie et différents types de systémes d’apprentissage

Alors, comment obtenir cet apprentissage ? Le principe de tous les systémes de Machine Lear-
ning consiste dans le fait que la majorité des paramétres sont trouvés en utilisant des données et
des exemples déja existants, qu’on appelle "données d’entrainement" (training data). En tout cas,
c’est pratique de classer ces systémes de plusieurs maniéres en considérant quelques-unes de ses
différences méthodologiques fondamentales.

Possiblement la distinction la plus important au niveau méthodologique, car il affecte notam-
ment les possibles algorithmes a appliquer, est celle d’apprentissage supervisé et non-supervisé (et
quelques types "intermédiaires"). Cette classification prend en compte dans quelle mesure les don-
nées sur lesquelles on construit I’algorithme contiennent déja des informations certaines, i.e. on a
une connaissance préalable des types de solutions qu’on devrait obtenir.

Dans 'apprentissage supervisé, possiblement le plus naturel et intuitif, les données d’entrai-
nement incluent les solutions souhaitées; elles sont "étiquetées" (labelled). Par exemple, dans les
deux premiéres situations expliquées précédemment, nous construirions le classificateur de mail a
partir d’exemples de courriels "bons" et "spam" ; pareillement, on estimerait le prix de la maison en
utilisant un modéle qui prend en compte les caractéristiques, mais aussi les prix (i.e. la "solution",
ils sont donc étiquetées) des différentes maisons & proximité. Ces caractéristiques utilisées pour
construire le modéle s’appellent features, ou predictors.

En résumé, les systémes d’apprentissage supervisé sont congus pour donner les résultats attendus
sur les données d’entrainement, que nous connaissons. Les problémes de régression et de classifica-
tion en groupes spécifiques sont des exemples de ce type d’apprentissage.

Dans 'apprentissage non-supervisé, les données sur lesquelles nous travaillons ne sont pas éti-
quetées, et il n’y a pas une facon directe de vérifier ou mesurer la performance du systéme. Ce
type d’apprentissage est plutdt lié & la visualisation des données et son exploration : corrélations
inattendues, groupes avec des similitudes, détection des données mauvaises ou bizarres (outliers),...
Par exemple, les méthodes de clustering sont de nature non-supervisée, y compris notre algorithme
ToMATo, dont nous parlerons plus tard. Dans ce type d’apprentissage il y aurait aussi ces al-
gorithmes de visualisation qui essaient de représenter les donnés en 2D et 3D en préservant au
maximum sa structure. Finalement, nous y ajouterions aussi toutes les procédures de réduction de
la dimensionnalité, qui ont pour objectif simplifier les données sans perdre trop d’information, par
exemple en combinant plusieurs features corrélées entre elles.

D’autres types d’apprentissage sous ce critére seraient I’apprentissage semisupervisé, qui com-
bine les deux types antérieurs, ou 'apprentissage par renforcement. Dans ce dernier, assez lié au
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domaine de l'intelligence artificielle, ’algorithme observe continuellement les données et ’environ-
nement, et sélectionne et réalise des actions qui peuvent étre récompensées ou pénalisées; au fil
du temps, il apprend lui-méme les stratégies le plus efficaces pour obtenir les meilleures récompenses.

Une autre maniére de classer les systémes ML est selon sa capacité d’adaptation aux nouvelles
données. Les algorithmes qui ont besoin de tout I’ensemble de données pour étre construits cor-
rectement font partie de ce qu’on appelle apprentissage offline ; ceux qui peuvent incorporer de
nouvelles données et apprendre progressivement, une propriété en général désirable pour sa flexibi-
lité et réduction du cotit de calcul, sont de type online.

Finalement, une autre classification décisive au niveau méthodologique est celle qui prend en
compte comment le systéme ML se généralise aux nouveaux cas; c’est-d-dire de quelle fagon on
mesure sa performance en tant que prédicteur, avec de nouvelles observations.

Dans l'apprentissage basé sur des instances, I’algorithme apprend les exemples par coeur et étudie
les nouveaux cas en utilisant une "mesure de similitude". Cette derniére compare quantitative-
ment les nouveaux cas avec les données d’entrainement, afin de les étudier. En revanche, dans
I’apprentissage basé€ sur des modéles, on essaie de construire un bon modéle ou formule & partir des
exemples pour faire des prédictions. Normalement, dans le design de ce modéle, on utilise une fonc-
tion d’"aptitude" (fitness function, ou cost function) pour étudier quantitativement sa convenance
sur les données d’entrainement.

Dans les deux cas, il faut toujours garder a ’esprit que tout ensemble de données d’entrée contient
inévitablement du bruit : elles sont partiellement aléatoires, et I'information n’est jamais transpa-
rent. Donc, ajuster la flexibilité du modéle en fonction de chaque cas est toujours essentiel.

1.4. Problémes et challenges du Machine Learning

En somme, dans tout processus d’apprentissage statistique nous trouvons deux étapes : la sé-
lection d’un algorithme convenable et ’entrainement postérieur avec des données. Naturellement,
il faut faire attention a ces deux choses si nous voulons obtenir un apprentissage effectif. Certains
défis ou aspects a prendre en compte en ce qui concerne cela seraient :

o Quantité insuffisante de données : Dans la majorité des algorithmes, il faut disposer de beau-
coup de données pour entrainer correctement le modéle et le faire fonctionner. En général, on
a besoin de milliers d’exemples, ou des millions dans les problémes les plus complexes. Dans
certaines situations, il est possible de combiner ou extraire des nouvelles données a partir
de celles déja existantes, pour en avoir plus. Plusieurs études montrent que des algorithmes
trés différents peuvent accomplir des niveaux de succés similaires en utilisant suffisamment
de données.

e Données d’entrainement non représentatives : Afin d’obtenir de bonnes généralisations, les
données d’entrainement doivent étre représentatives des nouveaux cas qu’on cherche a gé-
néraliser ; sinon, les prédictions du modéle difficilement s’ajusteront aux valeurs réelles. Par
exemple, le caractére d’'un modéle pour calculer quelque spécificité d’un pays peut changer
largement en fonction de la richesse des pays utilisés pour le concevoir; il faudrait se servir
des pays avec un niveau économique similaire. Le méme principe s’applique pour prédire les
résultats d’une élection a partir des sondages.

Quand les données utilisées ne sont pas représentatives, méme si nous en avons une grande
quantité, il s’agirait ici d’un "biais d’échantillonnage" (sampling bias).
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e Données de mauvaise qualité : Naturellement, si les données d’entrainement contiennent beau-
coup d’erreurs, outliers et bruit, les algorithmes auront plus de problémes pour trouver des
"patterns" et atteindre ses objectifs. Donc, en général, c’est recommandable d’investir du
temps a détecter et écarter les outliers et traiter les valeurs manquantes ou incomplétes (data
cleaning).

e Features non pertinents : Indépendamment de I’algorithme, celui-ci seulement apprendra si les
données utilisées pendant ’étape d’entrainement ont un véritable lien avec ce que nous voulons
estimer. Le complexe processus d’obtenir un ensemble de features pertinents s’appelle feature
engineering. Il comprend, entre autres : sélectionner les features les plus utiles et écarter les
autres, les combiner pour en obtenir des nouvelles d’une fagon plus compacte (étroitement lié
a la réduction de la dimensionnalité), en créer d’autres a partir de nouvelles données,...

o Ouverfitting et underfitting : Ces deux phénomeénes, plus liés a l'algorithme lui-méme qu’a la
nature des données, se produisent quand le modéle obtenu se base trop ou respectivement
trop peu sur les données d’entrainement.

Tout algorithme de Machine Learning essaie de trouver des régularités dans les données, mais
celles-ci possédent aussi de maniére naturelle une variabilité qui peut empécher I’algorithme
de bien se généraliser & de nouveaux cas si nous nous y basons trop. Par exemple, il est presque
toujours possible de trouver une fonction polynomiale qui passe pour n’importe quelle quantité
de points dans R? si son dégrée est suffisamment élevé (i.e. si nous augmentons suffisamment
les dégrées de liberté), mais un modeéle si "courbé" ne sera possiblement pas le meilleur a
prédire de futures observations. En somme, 'overfitting se produit quand le modéle est trop
complexe par rapport au bruit et & la quantité de données d’entrainement.

Quelques possibles solutions dans ce cas seraient : recueillir plus de données, réduire le bruit
des données (i.e. réparer les erreurs dans les données et écarter les outliers) ou simplifier le mo-
déle, chose que nous pouvons faire en utilisant moins de paramétres, en considérant moins de
features ou en "contraignant" le modéle. Ce dernier approche, appelé regularization, contient
plein de méthodes et techniques : I’idée de base est d’utiliser des paramétres supplémentaires
dans lalgorithme (les hyperparamétres), indépendants du modéle, fixés d’abord et constants
pendant 'entrainement, qui "limitent" en quelque sorte la liberté des paramétres du modéle.
Trouver de bons hyperparamétres est I'une des parties importantes de construire un bon sys-
téme de Machine Learning.

Le underfitting est le probléme contraire : il se produit quand le modéle est trop simple
pour bien apprendre la structure sous-jacente des données. Trois stratégies pour améliorer
rapidement cette situation sont : admettre plus de paramétres dans le modéle, réduire les
contraintes s’il y en a, ou augmenter la pertinence des features.

e FEssai et validation : Pour étudier 'efficacité du modéle, une bonne pratique consiste & diviser
les données disponibles en plusieurs sous-groupes complémentaires et les entrainer, mesurer
et vérifier les uns contre les autres. En somme, nous trouvons trois types de ces groupes : les
données d’entrainement (training set), a partir duquel on construit le modéle ou mesure de
similitude ; les données de validation (wvalidation set), qui servent pour modifier le modéle ou
les hyperparameétres jusqu’a obtenir une performance désirable ; et les données de vérification
(test set), pour se faire une idée de 'erreur de généralisation (i.e. sa performance avec de
nouveaux cas).

On appelle cross-validation la méthode, trés commune a pratiquer, qui consiste a faire cette
procédure plusieurs fois avec tout I’ensemble des données pour mieux choisir le modeéle et les
hyperparamétres.



Introduction a la TDA et étude de I'algorithme ToMATo Nil Garcés de Marcilla

2. Plus en détail : algorithmes de clustering habituels

2.1. Considérations générales

Le cluster analysis, ou segmentation des données, a pour objectif le regroupement d’un ensemble
d’éléments en sous-groups ou clusters. Ainsi, dans chaque cluster, les éléments sont plus "proches"
entre eux a la différence des éléments classés dans des clusters différents. Dans cette branche du
Machine Learning, & caractére non supervisé et exploratoire, les algorithmes cherchent a établir
si les données peuvent étre divisées dans des groupes différents avec des propriétés suffisamment
distinctes. L’algorithme ToMATo, récemment développé, fait aussi partie de ces méthodes. Nous
aborderons plus en détail cet algorithme dans le chapitre quatre.

La question fondamentale dans le cluster analysis est comment nous mesurons ce "degrée de

similarité" (ou dissimilarité) entre les données, donc c’est la définition sur laquelle les algorithmes
se basent.
Un approche assez flexible consiste a utiliser ce qu’on appelle une matrice de proximité. Avec un en-
semble de N éléments (ordonnées), {z1,..., 2}, on construit une matrice D de dimension N x N,
ot le coeflicient d;; mesure quantitativement la proximité ou similarité de 1'élément 4 & I’élément j.
En général, plus le numéro est faible, plus des similitudes sont remarqués. De ce fait, la plupart des
algorithmes assument d;; = 0, Vi € [1, N]. De plus, certains algorithmes imposent notamment que
la matrice soit symétrique ; sinon, D peut toujours étre remplacée par (D + DT)/2. Pour travailler
avec "dissimilitudes", on peut toujours convertir tous les valeurs avec une fonction monotone dé-
croissante convenable.

Une des situations le plus habituelles est celle ot chaque élément z; consiste en p attributs de
nature quantitative. Si ces attributs sont de nature qualitative (ou catégorique), on peut parfois les
convertir facilement en numéros : par exemple, si nous avons une variable qualitative ordonnée avec

M options, nous pouvons utiliser les valeurs 2 i=1,...,M, toutes entre 0 et 1. Si la variable

n’est pas ordonnée et peut prendre M différentes valeurs, il faut préciser le "niveau de différence"
entre les paires de valeurs en utilisant une matrice (comme évoqué dans le paragraphe précédent) :
ses entrées, normalement 1s sauf Os & la diagonale, jouent le role des d; que nous expliquerons tout
de suite.

Supposons que nous disposons de plusieurs données numériques z;;, ¢ € [1,N],5 € [1,p] (les
cas catégoriques ont déja été traités). En s’appuyant sur ces données, on construit une notion de
"dissimilarité" entre les valeurs du j-éme attribut de deux éléments différents, d;(x;;, ;). Le choix
le plus commun pour d; est la distance au carré,

dj(wij, wiry) = (w5 — warj)*.

D’autres options existent aussi, comme par exemple la différence absolue |z;; — x|, qui pénalise
moins les grandes différences. Les résultats peuvent varier considérablement en fonction de la dis-
tance choisie.

Puis, nous définissons la "mesure de dissimilarité totale" d(z;, z;/) entre deux éléments en combi-
nant ces p dissimilarités individuelles. Bien que la somme est 'option la plus naturelle & considérer,
nous gagnons en flexibilité en travaillant avec une moyenne pondéré
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P P

d(mi,xir) = ij . dj(l'ij,xi/j) 5 ij =1.
Jj=1 Jj=1
Cette derniére permet d’ajuster un poids convenable a chaque attribut (ces poids dépendent né-
cessairement de la nature du probléme et des données concrétes). Pour bien adapter ces poids, il
est important de remarquer que 'influence du j-éme attribut sur la dissimilarité totale D(x;, x;)
dépend de sa contribution relative a la moyenne des dissimilarités totales entre toutes les paires
d’éléments de I’ensemble,

1 N N

p
D = ﬁz Z d(wi,xi/) = ZU}]' . Jj7
j=1

i=14'=1

) 1 NN
dj = ﬁz > dj(wig, wirg)
i=14'=1
est la dissimilarité moyenne du j-éme attribut. Ainsi, I'influence relative de la j-éme variable est
wj - dj, et fixer w; ~ 1/d; (ou directement w; = 1/d;, standardisé plus tard) donne & chaque
attribut la méme influence sur la dissimilarité totale.

Bien que cette derniére option semble appropriée, elle peut aussi étre contre-productive. En ef-

fet, souvent les attributs ne contribuent pas de la méme maniére a la notion de similitude : certaines
différences entre les valeurs peuvent refléter plus de dissimilarité que d’autres dans le contexte du
probléme, et devraient donc avoir plus de poids. Pour cela, il est important de préciser correctement
toutes ces variables, ainsi que la fonction de similitude, chose qui dépend dans une large mesure du
probléme spécifique. En fait, tous ces paramétres peuvent avoir plus d’importance que ’algorithme
lui-méme pour réussir avec le clustering.
Finalement, il est aussi important de préter attention a bien traiter les données manquantes (missing
values en anglais) dans un ou plus des attributs. On peut faire cela en utilisant une moyenne (ou
quelque autre valeur, processus appelé "imputation statistique"), en utilisant une nouvelle catégorie
qualitative "missing", en omettant quelques dissimilarités concrétes ou en écartant directement ces
éléments.

2.2. Algorithmes de clustering combinatoires

Pour résumer, nous trouvons trois types d’algorithmes de clustering :

e Les algorithmes combinatoires travaillent directement sur les données, sans avoir aucun type
de modéle probabiliste sous-jacent, et assignent directement chaque élément & un group.

e Les modéles de mélange supposent que les données constituent un échantillon i.e.d d’une
population décrite par une fonction de densité. Cette fonction de densité est caractérisée par
un modéle paramétrique formé par un mélange/ somme de plusieurs fonctions de densité
(habituellement gaussiennes) : chacune de ses fonctions décrirait un cluster.

e Les algorithmes mode-seeking ("chercheurs de modes"), aussi appelés bump hunters, ont une
approche non paramétrique et tentent d’estimer directement les différentes modes (i.e. maxi-
mums locaux) d’une hypothétique fonction de densité de base. Les éléments les plus proches
de chaque mode définissent ainsi les clusters individuels.
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Ceux du premier type sont spécialement employés pour leur simplicité. Avec les données {z1,...,zn},
un numéro préspécifié de clusters K < N est choisi, chacun étiqueté par un numéro k € {1,...,K}.
On assigne aprés a chaque élément ¢ de l'ensemble un cluster C' : {1,...,N} — {1,... k},

i+ C(i) = Cy, en essayant de minimiser une fonction "de perte" qui prend en compte les dissimi-
larités d(x;, z; ) entre les données. Une fonction de perte naturelle & considérer serait

K
W(EC) =Y Y di,zw), (1)

k=11,i’€Cy

qui quantifie de quelle maniére les observations mises dans le méme cluster sont proches entre elles.
Il est facile de voir que minimiser W (C) est équivalent a maximiser

K
B(C) = Z Z Z d(xi,aji/),

k=1i€Cy i'¢C),

car T = vaw d(x;, zi) = W(C) + B(C) est constant.

Nous pourrions penser que cela réduit le probléme au calcul de la valeur de la fonction de perte
sur toutes les possibles combinaisons, mais dans la pratique le nombre d’allocations possibles pour
tous les éléments augmente trés rapidement avec N et k. De ce fait, tout algorithme de clustering
efficace étudie seulement une fraction trés petite des attributions k& = C(i) possibles, avec 'objectif
d’identifier un sous-ensemble susceptible de contenir I'optimale, ou au moins une correspondance
assez bonne.

La stratégie se base généralement sur ce qu’on appelle un "greedy descent" itérative : une
partition initiale est choisie et, & chaque pas, les attributions sont changées de sorte que la valeur
du critére est améliorée par rapport a 'antérieure. L’algorithme se termine par une partition lorsque
aucune amélioration est possible.

Ces algorithmes, travaillant avec un sous-ensemble trés petit des combinaisons possibles, convergent
toujours & un maximum local, qui peut étre trés sub-optimal en comparaison avec le maximum

global.
2.2.1. K-means clustering
Il est un des algorithmes les plus populaires en raison de sa vitesse et sa simplicité. Il a aussi

des applications importantes dans la compression des images et signaux (vector quantization).

Cet algorithme suppose que toutes les variables sont de type quantitative, et il prend la distance
euclidienne habituelle au carré, d(z;,zy) = >30_ (zij — xj)* = ||zi — z¢||*, pour mesurer la
dissimilarité entre les observations. Avec ces conditions, nous remarquons que (1) est égal a

K
W(C) =Y Ni Y e — &l (2)
k=1 1€Cy,

ou Ty = (T1k, ..., Tpk) st le vecteur moyen associé aux observations du cluster k, et Nj est son
nombre d’éléments.

Du fait que la moyenne des {yi,...,¥n} minimise la fonction f(y) = >, (y; — y)?, nous
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pouvons obtenir une méthode itérative descendant pour résoudre
—manNkZHa:Z—ka (3)
1€Cl
notre probléme original, en considérant le probléme d’optimisation plus général
C* = mmKZNkZ l|2z: — | (4)
T AT ieon

L’algorithme est le suivant :

Algorithm 1: K-means clustering

Input: {z1,...,2x} observations quantitatives (p features chacune)
K numéro de clusters souhaité
Output: Pour chaque observation, une étiquette k € [1, K] (cluster assigné)

1 On fait une premiére attribution C(i) pour chaque observation, aléatoire ou avec unes
moyennes déja établies.

2 Avec notre partition C, on minimise la variance totale du clustering (4), obtenant ainsi les
moyennes {my,...,,my} associées & chaque cluster.

3 Avec ces valeurs {myq,...,, my}, on minimise davantage (4) en assignant a chaque
observation le cluster avec la moyenne la plus proche : C(i) = arg min, << ||; — mg||?

4 On répéte 2 et 3 jusqu’a ce que les attributions C' ne changent plus.

Etant donné que a les étapes 2 et 3 la quantité (4) diminue, la convergence de la méthode est
assurée. Néanmoins, normalement on atteint un maximum local sub-optimal. De ce fait, c’est une
bonne idée de courir 'algorithme avec différentes partitions initiales et prendre le meilleur résultat
final.

Nous pouvons généraliser 'idée du clustering K-means a distances différentes a 1’euclidienne
et features pas nécessairement quantitatives si nous travaillons directement avec les dissimilarités
d(z;, ;). Pour cela, nous pouvons utiliser I’algorithme décrit avant en changeant le my, : au lieu de
la moyenne des éléments du cluster k, nous prenons un de ces éléments ; en particulier, I’élément xy,
qui minimise ) ;. d(zk, ;). Cette nouvelle méthode, qui s’appelle clustering K-medoids, a aussi
un cout informatique considérable, et n’est souvent pas réalisable exhaustivement.

2.2.2. Clustering hiérarchique

Contrairement au clustering K-means/ K-medoids, qui part d’'un nombre de clusters K préréglé
et les cherchent, les méthodes de clustering hiérarchiques produisent une représentation "en échelle"
qui passe pour tous les nombres possibles, et ou les clusters & chaque niveau sont crées en unifiant
ou divisant ceux du niveau inférieur. De cette facon, il est possible de voir plus facilement quel
est le "bon" numéro de clusters de I’ensemble. Naturellement, il est encore nécessaire d’établir une
"mesure de similitude" entre groupes, basée sur les dissimilarités entre paires d’éléments.

Il y a deux stratégies principales pour ce type de clustering : agglomérative (bottom-up), ou
nous commengons avec un cluster pour chaque observation et nous les unifions par paires & mesure
que lalgorithme court ; et la divisive (up-bottomn), qui part par un seul cluster et ensuite les divise
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en deux peu & peu. Dans le deux cas, chaque niveau de la hiérarchie représente un regroupement
spécifique des données en clusters disjoints, et la hiérarchie entiére les différents "seuils" ou ils ap-
paraissent.

Ces agglomérations/ divisions binaires récursives peuvent étre représentées sous forme d’arbre,
qui commence avec une seule racine (le cluster avec toutes les données) et, a la fin, a une feuille pour
chaque élément. De plus, une partie important de ces méthodes ont la propriété de la "monotonie",
c’est & dire, la dissimilarité entre clusters (qui se mesure quantitativement) augmente de maniére
monotone & mesure qu’on les unifie. Ainsi, I'arbre peut étre dessiné de sorte que les bifurcations
entre les branches se produisent & des hauteurs qui reflétent la durée de tous les clusters de maniére
proportionnelle. Ce type de représentation graphique, assez compléte et informative sur les données,
s’appelle dendrogram.

Néanmoins, ces dendrograms sont assez sensibles aux données et & les particularités de la mé-
thode choisie, et ils imposent sur les données une structure hiérarchique qui pourrait ne pas exister.
Donc, plus qu'une "carte" infaillible de la structure des données elles-mémes, le dendrogram devrait
étre vu plutét comme une carte de la structure du clustering des ces données, obtenues avec un
algorithme et une métrique spécifiques.
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FIGURE 1 — Exemple de dendrogram (oil on regroupe les états des Etats-Unis, critére inconnu)

Stratégies agglomératives

Ces méthodes commencent avec un singleton cluster pour chaque élément. Puis, & chacun des
N —1 pas, les deux groupes les plus "proches" sont fusionnés, et on perd un cluster au niveau suivant.

Naturellement, la notion de "proximité" entre les groupes doit étre définie en considérant les
dissimilarités entre les paires d’observations. Soient G et H deux de ces groupes. Nous remarquons
plusieurs options pour définir la dissimilarité d(G, H) :

— Le saut minimum (single linkage en anglais) est défini pour dsr(G, H) = mineg e div-
— Le saut mazimum (complete linkage en anglais) se définie comme der, (G, H) = max;eq,ie i dii -
1

— Le lien moyen (group average en anglais) est défini pour dga (G, H) = mzieg Y iren diir-

10
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En général, si les données montrent une structure claire, avec des clusters bien séparés les uns
des autres et suffisamment compacts (i.e. ses éléments sont proches entre eux en comparaison avec
ceux de clusters différents), les trois méthodes produisent des résultats similaires. Développons
maintenant les particularités de chaque méthode :

Le type saut minimum a seulement besoin que deux éléments de groupes différents soient proches

pour les fusionner, indépendemment des autres éléments ; cela résulte souvent en clusters peu com-
pacts.
Le type saut mazimum est le pole opposé ; deux groupes G et H sont proches seulement si tous les
éléments dans son union sont relativement similaires, et les clusters sont plus compactes. Pourtant,
cela peut causer aussi une relaxation du "principe de proximité" : un élément assigné dans un clus-
ter peut étre beaucoup plus proche des éléments d’autres clusters que ceux de son propre groupe.
Le type lien moyen permet un compromis entre ces deux extrémes, mais il est aussi plus dépendant
des valeurs spécifiques des d;;r, a la différence des deux autres, qui dépendent uniquement de son
ordre.

Stratégies divisives

Ces méthodes commencent avec toutes les données dans un unique groupe, et divisent a chaque
itération un cluster existant en deux clusters plus petits.

Meéme si elles sont moins étudiées que les méthodes agglomératives, on peut toujours diviser
n’importe quel cluster en appliquant une méthode combinatoire, comme K-means avec K = 2, a
chaque itération. Cependant, en général ce processus ne produit pas une séquence de clusters avec
la propriété de la monotonie nécessaire pour la représenter correctement en forme de dendrogram.

Un algorithme qui satisfait cela serait celui-ci :

Algorithm 2: Clustering hiérarchique divisive monotone

Input: {z1,...,zy} observations quantitatives
Les dissimilarités d;;; entre toutes les paires d’observations
Output: Une séquence hiérarchique de clusters

1 On met toutes les observations dans un unique cluster, G.

2 On trouve ’élément ¢ dans G avec la dissimilarité moyenne avec les autres éléments de G,
1
Ng JjEG

3 On prend I’élément de G qui a la distance moyenne avec les éléments de G moins la
distance moyenne avec les éléments de H la plus grande et le transféere a H.

4 On continue a faire cela jusqu’a ce que cette différence devienne négative. En ce moment, il
n’y a plus d’observations dans G qui sont, en moyenne, plus proches a celles du H qu’a
celles de son groupe GG. Nous avons alors deux nouveaux clusters.

5 Nous continuons de répéter 2, 3 et 4 avec un cluster présent, nouveau ou pas, jusqu’a
obtenir IV singleton clusters. Pour choisir le groupe suivant a diviser, deux critéres utiles
seraient :

d;;, la plus élevée. Cet élément sera le premier membre d’un deuxiéme cluster H.

— Le cluster C avec le diametre D¢ = max; i ec diiv le plus grand.

— Celui avec la dissimilarité entre éléments moyenne, dgo = N—lz i cc @iz, 1a plus grande.
2 L,

11
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3. Introduction a I’Analyse topologique des données

3.1. Idée générale et motivation

L’Analyse topologique des données (Topological Data Analysis en anglais, souvent nommeée
TDA), commence a se développer dans les années 2000 a partir de quelques travails dans la topo-
logie appliquée et la géométrie algorithmique. Ce champ d’étude cherche a explorer et étudier les
bases de données en utilisant des techniques et idées typiques du domaine de la topologie. Cette
nouvelle approche de la science de données, qui s’est déja avérée trés utile dans plusieurs contextes,
a pour objectif mieux comprendre la "forme" d’un ensemble de données. Cette question peut étre
spécialement compliquée quand on travaille en dimensions élevées, et avec des donnés incomplétes
ou avec une forte présence de bruit.

En résumé, la TDA essaie de fournir des méthodes mathématiques, statistiques et algorith-
miques pour révéler, analyser et utiliser des structures géométriques et topologiques non évidents
dans un ensemble des données. Notamment, un de ses outils principales est celui de 1’homologie
persistante, une adaptation de I’homologie pour nuages de points, qui a besoin d’une solide formu-
lation théorique et mathématique.

Le schéma de déroulement habituel en TDA est :

1. L’input est généralement un ensemble fini de points avec quelque type de similarité ou distance
définie entre eux. Cette distance peut venir induite pour un hypothétique espace ambiant (par
exemple, R?) ou étre définie intrinséquement entre paires de points, en fonction du cas.

2. Quelque type de structure géométrique de nature traitable et algorithmique est construite sur
ces points, avec I'objectif de faire plus évidents quelques de ses caractéristiques. Souvent, nous
faisons cela en utilisant un ou plusieurs complezes simplicials, qui peuvent étre vus comme
une généralisation des graphes en dimensions plus élevées.

3. Nous extrayons cette information géométrique et topologique en utilisant différents méthodes,
et nous étudions sa pertinence et stabilité par rapport & possibles perturbations des données
ou présence de bruit. Cette information est aprés souvent visualisée et combinée avec d’autres
descripteurs pour guider les prochaines étapes de ’analyse des données ou taches de ML.

Notre algorithme ToMATo fait usage de certains des concepts de ce nouveau champ d’étude,
notamment de I’homologie persistante et les diagrammes de persistance. Donc, 1'objectif de cette
partie du travail est d’introduire avec rigueur et généralité les fondements de la TDA et les bases
mathématiques de I’homologie persistante.

3.2. Complexes simpliciales, recouvrements et le Théoréme du Nerf

Etant donné que la plupart des concepts de la topologie et la géométrie sont associés a des
espaces continus, une pratique habituelle dans le TDA est de "connecter" de quelque sorte les
données (représentées comme points) qui sont proches les unes des autres. On formalise souvent
cette notion de proximité en utilisant une distance entre points, qui peut étre définie entre paires
directement (espace métrique discréte) ou en plongeant les données dans un espace métrique plus
grand (typiquement, R?).

En tout cas, aprés avoir connecté les données proches, nous obtenons un graphe de voisinage,
qui permet déja appliquer plusieurs méthodes d’analyse. Pour aller au-dela de la connectivité,

12
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nous pouvons associer pas seulement paires mais aussi (k + 1)-tuples de points proches entre eux.
Nous obtenons ainsi un complexe simplicial, qui permet identifier de nouvelles caractéristiques
topologiques, comme cycles, "trous" et leurs généralisations en haute dimension.

Définition 3.1. Soit X = {zq,...,21} C R? (k + 1) points affines linéairement indépendants. Le
simplexe k-dimensionnel o = [xo,...,x;] généré pour X est l’enveloppe convere de X. Les points
originales sont ses sommets, et les simplexes générés pour les sous-ensembles de ces points sont les
faces de o.

Remarque 3.2. Formellement, les sous-ensembles d’un simplexe sont appelés ses n-faces, ot n est
sa cardinalité moins 1. Cependant, pour les cas 0 et 1 normalement on utilise les mots sommets et
arétes respectivement, et le mot face pour le cas 2 et en général.

Définition 3.3. Un complexe simplicial géométrique K C R? est une collection de simplexes telle
que :

1. Toute face d’un simplexe de K est aussi un simplexe de K.
2. Toute intersection de deux simplexes de K est vide ou une face commune aux deux.

FEncore plus généralement, un complexe simplicial abstrait avec des sommets V' est une collection
K de sous-ensembles finis de V' telle que que les éléments de V appartient a K et, pour tout élément
o de K, tout sous-ensemble de o appartient aussi a K.

Clairement, on peut utiliser la derniére définition, de nature plus combinatoire, pour étudier un
complexe simplicial géométrique, mais la direction inverse fonctionne aussi : on peut mettre tout
complexe simplicial abstrait dans R? pour quelque d, et le considérer comme un subespace avec la
topologie induite. C’est cette structure, appelée réalisation géométrigue de K, qui permet utiliser
sans problémes plein de notions géométriques et topologiques sur K.

0,® ) m

n() n

n n;

FIGURE 2 — Simplexes de dimension 0,1,2 et 3, et exemple d'un complexe simplicial géométrique

Définition 3.4. La dimension d’un simplexe est simplement sa cardinalité moins 1. La dimension
d’un complexe simplicial est la dimension plus grande parmi les simplexes qui le constituent.

Remarque 3.5. Un graphe est un complexe simplicial de dimension 1.

Etant donnée un ensemble de points X (imaginons que dans un espace métrique (M, d)), nous
pouvons construire des complexes simplicials au-dessus de plusieurs maniéres. Deux des construc-
tions les plus habituelles seraient :

1. Complexe de Vietoris-Rips, Rips,(X) : La généralisation immédiate de la notion de graphe de
voisinage. C’est le complexe simplicial qui a pour ensemble de faces les simplexes [z, . . ., z]
qui satisfont d(z;, ;) < o pour tout 0 <,j < k.

13



Introduction a la TDA et étude de I'algorithme ToMATo Nil Garcés de Marcilla

2. Compleze de éech, Cechq(X) : Etroitement lié au Vietoris-Rips complexe, c’est le complexe
simplicial formé pour les simplexes [z, . . ., 2] qui satisfont que l'intersection des k+ 1 boules
B(z;,a) nest pas vide.

Remarque 3.6. Méme si X est un ensemble fini de points dans R%, Rips,(X) et Cechq(X)
n’admettent pas toujours une réalisation géométrique dans R?, donc ses dimensions peuvent étre
plus élevées.

Remarque 3.7. C’est facile de voir qu’on a toujours Rips,(X) C Cecho(X) C Ripsasn(X), ou
les inclusions peuvent étre strictes. Si X C RY, Cecha(X) et Ripssq(X) ont le méme squelette
1-dimensionnel, i.e. le méme ensemble de sommets et arétes.

FIGURE 3 — Construction des complexes de Cechs (en bas & gauche) et de Rips. (en bas a droite).
La troisiéme image montre comme les deux complexes ont le méme squelette 1-dimensionnel.

En fait, le complexe de Cech est un cas particulier d’une construction de complexes plus générale
en utilisant des recouvrements :

Définition 3.8. Soit M un espace topologique (ou un ensemble, en général). Un recouvrement U
de M est une famille de sous-ensembles de M, U = (U;);er, qui satisfont U;erU; = M. Le nerf
d’un recouvrement U de M est le complexe simplicial abstrait C(U) qui a U; comme sommets et
les faces

0 =[Ui,..., U] €CU) = Ni_oUs; # 0

De cette fagon, Cech,(X) est le nerf du recouvrement U = (B(z;,«))s,ex de Pensemble
M = Ug,exB(x;,a), qui contient évidemment ensemble de points original. Mais un recouvre-
ment d’un ensemble de données ne doit pas forcement étre basé sur des boules centrées sur elles;
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par exemple, nous pourrions aussi en avoir un en faisant une subdivision des données en groupes
de points (non nécessairement disjoints) avec des propriétés similaires.

En tout cas, le nerf d’un recouvrement offre une description de nature combinatoire assez globale
et compacte de la relation entre les sous-ensembles du recouvrement en considérant ses plusieurs
intersections. Le Théoréme du Nerf (Nerve Theorem) est un résultat de topologie algébrique qui
lie, avec quelques assomptions, la topologie du nerf d’un recouvrement avec la topologie du recou-
vrement lui-méme. Ses implications dans 1’Analyse topologique des données sont remarquables, et
méme si nous ne le démontrerons pas, le but de la derniére partie de cette section est introduire les
notions nécessaires pour bien comprendre ce qu’il dit.

Dans la topologie, normalement nous considérons deux espaces topologiques X et Y comme
égales quand ils sont homéomorphes, i.e. nous pouvons trouver deux applications continues et
bijectives f : X — Y et g : Y — X qui satisfont go f = idx et f o g = idy. Cependant, dans
plusieurs situations, aussi dans la TDA, la notion d’homémorphisme est trop rigide, et souvent il
est convenable d’étudier des similitudes entre espaces topologiques un peu plus faibles. C’est ici ol
I’idée de I’homotopie apparait :

Définition 3.9. Soit X etY deux espaces topologiques. Deux applications continues fo, f1 : X =Y
sont homotopiques s’il existe une application continue H : X x [0,1] — Y telle que, Vz € X,
H(z,0) = fo(x) et H(x,1) = f1(z). Dans ce cas, on écrit fo ~ fi1.

On dit que X et'Y sont des espaces topologiques homotopiquement équivalents si on peut trouver
deux applications f: X — Y et g: Y — X tels que go f ~ idx et fog ~idy. Dans ce cas, on
éerit X ~Y.

La notion d’équivalence homotopique est plus faible que celle d’homéomorphisme, donc deux
espaces homéomorphes sont toujours homotopiquement équivalents, mais le réciproque n’est pas
vrai. En tout cas, I'intérét principal derriére ’homotopie est que nous pouvons définir des objets
(souvent de nature algébrique) sur les espaces topologiques qui sont effectivement des invariants
homotopiques, c’est-a-dire qui sont conservés entre des espaces topologiques homotopiquement équi-
valents. Les exemples les plus notables seraient les groupes d’homotopie et les groupes d’homologie
(singulaire, simpliciale). On parlera plus en détail de I'homologie dans la section suivante.

Définition 3.10. Un espace X est contractile s’il est homotopiquement équivalent & un point.

Exemple 3.11. Tout boule dans R%, ouverte ou fermée, est contractile. Plus généralement, tout
sous-ensemble convexe X dans R est contractile. En effet, si on suppose 0 € X, il y a les applications
f:X = {0}, 2+ 0,et g:{0} = X, 0 0. Clairement f og =~ idg (en fait, f og = idy), et
go f ~idx, avec 'application continue H : X x [0,1] — X, H(x,t) =t - x.

Un recouvrement ouvert est celui ol tous les éléments de la famille sont ouverts. Un recouvre-
ment ouvert fini ou tous les éléments et intersections entre éléments sont contractiles satisfait le
résultat suivant, souvent nommé le Théoréme du Nerf :

Théoréme 3.12. (Théoréme du Nerf) Soit U = (U;);ecs un recouvrement ouvert fini d’un sous-
ensemble X C R? tel que toute intersection des U;’s est vide ou contractile. Alors X et C(U) sont
homotopiquement équivalents.

Ainsi, on a que le nerf défini par un "bon" recouvrement de X est homotopiquement équivalent
a4 X, ce qui est remarquable pour des applications; en effet, normalement un complexe simplicial
posséde une nature beaucoup plus traitable algoritmiquement qu’un espace topologique général.
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En tout cas, le complexe de Cech se construit avec des boules fermés centrées sur chaque donnée,
donc le recouvrement n’est pas ouvert dans ce cas. Heureusement, la version suivante du théoréme
est, aussi vraie :

Théoréme 3.13. (Théoréme du Nerf pour un recouvrement convexe) Soit X C R? une
union finie d’ensembles fermés convexes F' = (F});c; dans R?. Alors X et C(F) sont homotopique-
ment équivalents.

De ce fait, on obtient que, en effet, si X est un nuage de points dans R, alors Cechq(X) est

homotopiquement équivalent a I'union des boules | J, . x B(z, ).

FIGURE 4 — Représentation de comment 'union des boules et le nerf associé (i.e. le complexe de
Cech des données) sont homotopiquement équivalents.

3.3. Inférence homologique

Résumons la situation jusqu’a ici : pour aller plus loin dans notre étude de nos ensembles de
données/ nuages de points, nous avons vu comment construire quelques structures géométriques au-
dessus, appelées complexes simplicials, de nature plus algorithmique. Aprés, nous avons exposé le
Théoréme du Nerf, donc nous avons vu que, quand X est un ensemble de points dans R¢, Cech,, (X)
est homotopiquement équivalent & 'union de boules U,exB(z, o).

Dans toute situation avec des données numériques (supposons dans R?), et d'un point de vue sta-
tistique, il y a fondamentalement deux questions qui nous intéressent : d’une part, il y a 1’"espace
d’échantillonnage" de nos données, i.e. dans quelle région M C R? toutes les possibles données
"vivent" ; de 'autre part, il y a la mesure de probabilité p sur cette région M, qui encode quelles
zones de M sont plus probables d’avoir plus de points, et de quelle maniére les données se re-
groupent. Normalement, nous supposons que M, le support de u, est compact, et que nos données
X ={z1,...,2,} ont été échantillonnées i.i.d. en suivant p.

Evidemment, pour mieux comprendre nos données, faire des prédictions, etc., nous sommes inté-
ressés a connaitre p et la "forme" de son support M. Le processus qui essaie de mieux caractériser
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M s’appelle "reconstruction géométrique", et un schéma habituel pour inférer cette information
géométrique et topologique est :

1. Nous recouvrons X avec des boules B(z, «); sous certaines conditions de régularité sur M,
nous pouvons lier la topologie de cette union avec celle de M.

2. Certaines propriétés topologiques de M sont inférées & partir du nerf de 'union de ces boules,
en utilisant le Théoréme du Nerf.

Des résultats mathématiquement rigoureux et importants existent avec cette approche de re-
construction. Néanmoins, ce n’est pas toujours possible, ni souhaitable, d’essayer de reconstruire
complétement la forme de base & partir de nos données. De plus, dans le schéma que nous venons
d’exposer, nous voyons que le choix du rayon des boules, qui souvent n’est pas du tout évident,
joue un role clé dans les résultats obtenus.

Une autre maniére de travailler les données est d’essayer de trouver des invariants topologiques
plus faibles, mais plus faciles d’inférer. C’est ici que le concept d’homologie, un outil déja clas-
sique dans la topologie algébrique, entre en scéne. Plus notamment, nous pouvons faire usage de
I’homologie simplicial sur nos complexes simplicials pour mieux les comprendre et, finalement,
élaborer davantage cette information homologique pour développer ce qu’on appelle homologie per-
sistante, qui garde une trace de comme 1’homologie des complexes simplicials obtenues évolue en
variant le rayon. Une maniére de représenter visuellement une bonne partie de toute cette informa-
tion est avec ce qu’on appelle un diagramme de persistance.

3.3.1. Homologie simpliciale et nombres de Betti

L’idée intuitive derriére de I’homologie en général est de traiter et formaliser algébriquement
la notion de "trou", ou "boucle", dans de différentes contextes mathématiques, notamment dans
les espaces topologiques. Pour toute dimension n, les "trous" n-dimensionnels sont représentés par
un espace vectoriel H,, et sa dimension serait le numéro de trous "indépendants" de ce type. Par
exemple, Hy représente les composantes connexes de notre espace, Hy les "boucles unidimension-
nelles", Hy les "cavités 2-dimensionnelles", etc.

Le premier type de théorie d’homologie qui a été développé, il y a environ un siécle, est I’ho-
mologie simpliciale, qui se construit sur les complexes simplicials. Sur ces objets, c’est relativement
simple d’imaginer la notion de trou k-dimensionnel. Méme si les concepts que nous exposerons en-
suite sont sensés avec tout corps k, nous travaillerons désormais avec k = Z/27Z = Zs, plus intuitif
A niveau géométrique, et qui simplifie les arguments ; sinon, il faudrait considérer une orientation
sur les sommets,/ faces de notre complexe, et les formules deviendraient plus compliquées.

Soit K un complexe simplicial de dimension d :

Définition 3.14. Une n-chaine est une somme formelle de simpleres n-dimensionnelles de K ;
c’est a dire, st {o1,...,0p} sont les n-faces de K, une n-chaine c est une expression du type

p
c= Z)\iai, avec \; € Zo
i=0

Pour chaque n, Pensemble des n-chaines C),(K) a une structure évidente de Zsy-espace vectoriel,
ot l'ensemble des n-faces de K est une base de C,,(K). Les chaines avec des coefficients dans Zo
ont une interprétation géométrique simple : du fait que toute n-chaine peut étre uniquement écrite
comme ¢ = 0y, + -+ 0y,,, ¢ représente simplement I'union des n-simplexes o, .
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Définition 3.15. Le bord d(c) d’un n-simplexe o est la somme de ses (n — 1)-faces. Donc, pour
le n-simplexe o = [vg, . ..,vy], on obtient la (n — 1)-chaine

n

0(0) = [0+, iy .., ]

i=0
ot [vg, ..., Ui,...,0,] estle (n— 1)-simplexe formé pour les sommets originels sauf v;.

Le bord d’un n-simplexe nous donne les (n — 1)-faces qui le constituent. Le bord ainsi défini
sur les simplexes de K peut étre étendue de maniére naturelle & une (plusieurs) fonction entre les
C;(K). Méme si on devrait les distinguer 9;, souvent on écrit simplement 9 pour éclaircir le texte :

Définition 3.16. La fonction bord est l'application linéaire définie par
0:Ch(K) — Cp_1(K)
¢ —0(c)= 28(0)

oEc

La propriété plus fondamentale de 0 est celle-ci :

Proposition 3.17. 00 =000 =0

Démonstration. Puisque la fonction bord est linéaire, il suffit de le vérifier simplement pour un seul
simplexe o = [vg, ..., v,], de dimension n :

680:3<§:[U0,...,ﬁi,...,0n]> :ia[vo,...,ﬁi,...,vn] =
0 =0

n

= [vo,...,vj,...,v,;,...,vn]+g (V0,3 Diyevy Ujyeo oy Un] = E 2Mvo, ..., Uiy oy Uy, 00] =0
j<i j>i 4,i=0
J#i

La fonction bord définit une séquence d’applications linéaires entre les C;(K) :

Définition 3.18. Le complexe de chaines associé au complexe simplicial K est la séquence d’espaces
vectoriels et applications linéaires :

(0} 2 (k) & Cor () L .. 5 1K) S Co(K) 2 {0}
Pour k € {0,...,d}, Uensemble Zy(K) de k-cycles de K est le noyau de 0 : Cx(K) — Cr—1(K) :
Zy(K) = {c € Cx(K)[ 0(c) = 0},
et l’ensemble By (K) de k-bords de K sont les chaines qui appartient a l’image de lapplication O :
Bi(K) ={ce Cr(K)|3b e Cri1(K) tel que d(b) = c},

De quelque sorte, Z;, encode quelles k-chaines sont "fermées" (d’ici le nom "cycles"), et By, quels
ensembles de k-faces sont le bord d’une (k + 1)-chaine.
Z et By sont évidemment des sous-espaces de Cy, et en vue de la Proposition 3.17, on a toujours
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By C Zj, ot la inclusion peut étre stricte. Ce dernier fait motive la définition des groups d’homo-
logie, qui essaient de trouver des "trous" dans notre complexe simplicial, i.e. des k-chaines fermées
qui ne sont la frontiére d’aucune (k + 1)-chaine du complexe :

Définition 3.19. Le k-éme groupe d’homologie de K est [’espace vectoriel quotient
Hy(K) = Z,(K)/Bi(K);

ses éléments s’appellent les classes d’homologie de K. Deux cycles qui appartient a la méme classe

d’homologie sont appelés homologues.
La dimension B (K) de Hi(K) s’appelle le k-éme nombre de Betti de K.

=1 Bp=1
B =10 G =1
%=1 =10

o Lo
|

-

S

|

=
|

v
|

FIGURE 5 — Les nombres de Betti associés & quelques complexes simplicials simples : une aréte
(avec ses sommets), le périmétre d’un triangle, un triangle, et un tétraédre.

On peut démontrer (ce qui n’est pas immédiat) que les groupes d’homologie et les nombres de
Betti sont des invariants topologiques : si Ky et K; sont deux complexes simplicials avec des réali-
sations géométriques homéomorphes, alors ses groups d’homologie sont isomorphes et ses nombres
de Betti sont égales. De plus, ces résultats sont aussi vraies si les réalisations géométriques sont
seulement homotopiquement équivalents.

Ces résultats sont une conséquence de 1’étroite relation entre ’homologie simpliciale et une
autre type d’homologie, I’homologie singuliére, beaucoup plus générale et qui peut étre définie pour
tout espace topologique. En fait, on peut démontrer que les groupes d’homologie simpliciales et
singuliéres d’un complexe simplicial sont toujours isomorphes, et le résultat est une conséquence de
I'invariance homotopique de ’homologie singuliére. Bien que notre intention dans ce mémoire n’est
pas d’introduire I’homologie singuliére, le résultat suivant, pas difficile mais sans démonstration,
nous sera utile dans les pages qui viennent :

Proposition 3.20. Soit X un espace topologique (resp. un complexe simplicial). Alors, la dimen-
sion du premier groupe d’homologie singuiliere Ho(X) (resp. homologie simpliciale) est égale au
nombre de composantes connexes (par arcs) de X.

3.3.2. Filtrations

Définition 3.21. Une filtration d’un complexze simplicial K est une suite de subcomplexes (K, )rer,
ot T C R fini ou infini, telle que Vro,r1 € T, 7o < 1r1 = K,, C K,,, et K = Uper K,. La
définition peut étre généralisée de la maniére évidente & tout espace topologique.

Dans des situations pratiques, les valeurs r € T souvent jouent le role de "paramétres d’échelle",
qui ajustent la résolution du complexe. Deux filtrations habituelles dans le TDA seraient :
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— Filtrations construites sur des nuages de points : Etant donné un sous-ensemble fini X d’un
espace métrique compact (M, d), les familles de complexes (Rips,.(X))rer et (Cech,.(X))rer
sont des filtrations. Dans ces derniéres, r peut étre vu comme le paramétre de résolution, o,
pour r < 0, nous considérons seulement les points. Par exemple, quand X est un nuage de
points a RY, grace au Théoréme du Nerf, (Cech,(X)),cr encode la topologie de la famille
d’unions de boules X, = Uyex B(x,r) lorsque r varie de zéro & infini.

— Filtrations associées aux ensembles de niveau : Etant donné un espace topologique M et une

fonction f: M — R, la famille M, = f~1((—oo,7]), r € R définit une filtration. On appelle
les ensembles M, C M les ensembles de sous-niveau de f. On peut définir également les
ensembles de super-niveau de f et sa filtration associé.
Dans les cas ol nous travaillons avec un complexe simplicial K, normalement la fonction est
définie seulement sur son ensemble de sommets V. Nous pouvons étendre f a tout simplexe
de K en prenant f([vg,...,vx]) = maxo<;<k f(v;) pour tout o = [vg,...,v;] € K. Ainsi, la
famille de sous-complexes K, = {o € K|f(c) < r} définit la filtration associée aux ensembles
de sous-niveau de f.

Avec ces deux filtrations, dans des cas réels, méme si T est infini, toutes les filtrations sont
construites sur des nuages de points, qui sont des ensembles finis, donc elles sont aussi finies. Par
conséquent, le complexe obtenu change seulement un numéro fini de fois, ce qui facilite son étude
d’un point de vue algorithmique.

Nous exposons finalement un autre type de filtration sur les complexes simpliciales, facile de
calculer et trés pratique au niveau algorithmique, comme nous verrons toute de suite :

Définition 3.22. Une filtration de décomposition d’un complexe simplicial K est une suite de
subcomplezes
@:K()CKlCKQC"'CKm_lCKmZK

qui satisfait K; = K;_1 U oy, ol o; est un simplex.

Intuitivement, dans une filtration de décomposition, nous ajoutons seulement un simplexe a
chaque fois, et il faut que toutes ses faces appartiennent déja au sous-complexe quand il est introduit.

Exemple 3.23. Avec le complexe simplicial de I'image suivant, une filtration de décomposition
pourrait étre a, b, ¢, ab, ac, d, be, abe, cd.

Remarque 3.24. C’est facile de voir que toute filtration d’un complexe simplicial (y comprises les
deux filtrations précédentes) peut étre affinée a une filtration de décomposition : il faut seulement
décomposer les nouveaux simplexes de K; respect & K;_; en sommets, arétes, 2-faces,... et les
ajouter un par un a chaque fois.

Cette derniére remarque ouvre tous les algorithmes typiques des filtrations de décomposition,
comme ceux dans les sections suivants, & toute filtration. C’est a cause de ce fait que désormais
nous travaillerons plutot avec ce type de filtrations.
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3.3.3. Un algorithme pour calculer les nombres de Betti

Supposons un complexe simplicial K avec une filtration de décomposition. Dans cette situation,
il existe un algorithme assez simple pour calculer les nombres de Betti associés & K, seulement en
gardant une trace des nombres de Betti tout au long de la filtration ; en fait, ’algorithme calcule les
nombres de Betti de chaque sous-complexe de la filtration, ce qui sera important dans ’homologie
persistante.

Pour bien effectuer cette méthode, c’est indispensable de détecter quand le nouveau simplexe o;
ajouté, de dimension k, appartient & quelque k-cycle ou non, ce qui motive la définition suivante :

Définition 3.25. Si o; appartient a quelque k-cycle, on dit qu’il est un simplexe positif; dans le
cas contraire, c’est un simplere négatif.

Dans les sections suivantes, ot plus d’algorithmes seront détaillés, nous expliquerons comment
savoir si nous ajoutons un simplexe positif ou négatif. Pour 'instant, et pour expliquer 1’algorithme,
nous pouvons supposer que nous savons détecter quand o; est positif ou négatif :

Proposition 3.26. (Algorithme) : Les nombres de Betti de K peuvent étre calculés de maniére
inductive en faisant usage d’une filtration de décomposition.

Démonstration. Evidemment, tous les nombres de Betti de Ky = () sont zéro.

Pour calculer les nombres de Betti de K;, supposons que les nombres de Betti de K;_; sont déja
calculés, et ajoutons le simplexe o;, de dimension k, pour obtenir K;. Observons que, par définition
de filtration de décomposition, o; ne peut pas faire partie du bord d’aucun (k + 1)-simplexe de Kj;.
Par conséquent, si o; est contenu dans un k-cycle de K; (i.e. positif), ce cycle n’est pas le bord
d’une (k + 1)-chaine de K;.

Il y a deux situations possibles :

Cas 1 : Si o; est positif et appartient a un k-cycle ¢ de K;, alors ¢ ne peut pas étre homologue
a un cycle ¢’ de K;_;. En effet, dans ce cas ¢ + ¢ serait le bord d’une (k + 1)-chaine d de K, et
comme o; ne peut pas appartenir a ¢’ (donc nous venons d’introduire cet nouveau simplexe a K;),
o; appartient & ¢ + ¢/ = dd, ce qui n’est pas possible comme nous avons déja remarqué au début
de la démonstration. Par conséquent, ¢ crée une nouvelle classe d’homologie, qui est linéairement
indépendant des classes générées par les cycles de K;_1, donc S (K;) > Br(K;—1) + 1.
Nous pouvons voir aussi que la dimension du k-éme groupe d’homologie ne peut pas augmenter plus
que 1 :si c et ¢’ sont deux k-cycles qui contient o;, ¢ + ¢’ est un k-cycle de K;_1, donc ¢’ est inclus
au sous-espace linéaire généré pour Z;(K;_1) et c. D’ici on a que dim Zi(K;) < dim Z;(K,;—1) + 1
et, comme Bk(Ki—l) = Bk(Ki), on a ﬁk(Kz) < Bk(Ki—l) + 1.
Il reste seulement pour montrer que By_1(K;) = Bg_1(K;_1), donc Hy_1(K;) est le seul autre
group d’homologie de K; qui peut changer en ajoutant o;, et clairement Zp_1(K;) = Zp_1(K;—1).
Le résultat est une conséquence directe du fait que o; est positif, et il appartient donc & un k-cycle
cde K; : en effet, 0 = dc = Jo; + Y, O(autres k-simplexes de K déja ajoutés), et do; peut étre écrit
comme une combinaison linéaire de bords de k-chaines de K;_1.

Cas 2 : Si o; est négatif et n’appartient a aucun k-cycle de K, alors le (k — 1)-cycle do; n’est
pas un bord a K;_;. En effet, dans ce cas nous pourrions trouver une k-chaine ¢’ a K;_; tel que
Oc = Jo;, ou de fagon équivalente, d(c + ;) = 0, ce qui implique que ¢ + o; est un k-cycle de Kj;
qui contient o; : contradiction. Par conséquent, comme le (k — 1)-cycle do;, qui n’était pas un bord
a K;_1, dévient un bord a K;, nous avons fSj_1(K;) < Br—1(K;-1) — 1. Avec un argument similaire
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a celui de la fin du Cas 1, nous pouvons démontrer 1’égalité.
Du fait que o; est négatif, c’est aussi évident que le groupe d’homologie Hy(K;) reste inaltéré. [

Nous voyons donc que, de quelque sorte, le processus se limite a trouver la différence entre les
simplexes positifs et négatifs de la filtration ; les positifs créent de nouvelles k-classes d’homologie
tandis que les négatifs effacent des (k — 1)-classes. Voici un résumé de l’algorithme :

Algorithm 3: Calcul des nombres de Betti d’un complexe simplicial K

Input: Une filtration de décomposition de K, complexe simplicial d-dimensionnel avec m
simplexes

50761a" '7Bd =0
Output: Les nombres de Betti fg, 81, ...,8q de K

1 for i =1 jusqu’'a m :
k= dim ag;
Si o; est positif :
Br =Bk +1
Si o; est négatif :

Br—1=Br—1—1

3.3.4. Homologie persistante : définitions et algorithmes

Nous avons vu que 'algorithme précédant ne compute pas seulement les nombres de Betti d’un
complexe simplicial, mais de tous les sous-complexes de la filtration (de décomposition). Intuiti-
vement, I’objectif de 'homologie persistante est de garder une trace de toute cette information et
enregistrer & quels moments chaque classe d’homologie est crée et détruite pendant le processus.

Avant d’expliquer les formalismes, montrons un petit exemple, en utilisant I’homologie singuliére
et la Proposition 3.20 :

Exemple 3.27. Soit f: (0,1) — R la fonction représentée dans I"image suivant :

;
|
R

i
'
:
i
X
|
i
'
:
-

(RS -
)
:
B L oY

-

FIGURE 6 — Diagramme de persistance d’une fonction réelle, ot seulement les composantes connexes
(i.e. Hp) sont enregistrées.

Nous sommes intéressés & étudier I’évolution de la topologie de la filtration associé aux ensembles

de sous-niveau de f, f~!((—o0,t]), & mesure que ¢ augmente. La topologie de ces sous-ensembles
change quand ¢ atteint les valeurs critiques a, b, c,d et e :
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Quand t = a, une nouvelle composante connexe apparait, et pour a < t < b, f~1((—o0,t))
est un intervalle. Quand ¢ atteint la valeur b, une deuxiéme composante connexe apparait, et pour
b<t<c f1((—00,t)) a deux composantes connexes. Pour t = ¢, ces deux composantes connexes
sont fusionnées : celle qui a été crée plus récemment, quand ¢t = b, est unifiée & la premiére. Ainsi,
on enregistre la paire (b,c¢) comme les temps de création et destruction de la composante; cette
paire est aprés représentée avec les cordonnées (b, ¢) au plan a droite. Intuitivement, le plus éloignée
un point est de la diagonale, le plus relevant est la composante.

Si nous continuons & augmenter ¢, encore une nouvelle composante est crée & ¢t = d, qui est fina-
lement unifiée & la premiére quand ¢ atteint la valeur e; ainsi, un deuxiéme point est enregistré
a droite, avec cordonnées (d,e). La premiére valeur a ne peut pas étre associée & aucune autre
valeur finie, donc la composante connexe crée pour cette ¢t ne meurt jamais; par conséquent, elle
est associée a +oo.

A la fin, toutes ces paires peuvent étre représentées comme une famille d’intervalles (barcode) ou
comme un diagramme au plan, appelé diagramme de persistance. Pour des raisons qui deviendront
claires plus tard, c’est aussi naturel d’ajouter la diagonale {y = 2} au diagramme.

Quand nous considérons des fonctions définies dans des espaces topologiques générales, atteindre
certaines valeurs critiques peut changer ne pas seulement les composantes connexes des ensembles
de sous-niveau, mais d’autres propriétés topologiques encodées dans les autres groups d’homologie
(i-e. les "trous" n-dimensionnels). De ce fait, il est aussi raisonnable de créer des paires de création/
destruction pour chaque dimension.

Finalement, supposons une fonction g "proche" & f comme celle de 'image d’en bas. Nous
pouvons observer que, méme si g a plus de paires dans son diagramme de persistance, la majorité
sont trés proches a la diagonale, donc une durée de vie assez courte. En revanche, les paires associées
a un intervalle plus long sont proches a celles de f. En d’autres termes, les propriétés topologiques
qui ont une persistance élevée sont préservées, tandis que celles qui son crées a cause de perturbations
sur la fonction ont une persistance plus petite. Nous verrons que, en effet, deux fonctions "proches"
ont toujours des diagrammes de persistance "proches". Cette notion de proximité est essentielle
pour bien distinguer et traiter le bruit topologique dans nos données.

FIGURE 7 — Une approximation g de f, et les diagrammes de persistance respectifs.
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Homologie persistante d’une filtration

Nous définissons d’abord la notion de persistance pour la filtration d’'un complexe simplicial,
qui a pour objectif étudier ’évolution de I’homologie des sous-complexes de la filtration.

Soit K un complexe simplicial d-dimensionnel avec une filtration de décomposition
p=K°cK'c---C K™ =K.

Pour tout 0 < n < m, on dénote C}' ensemble de k-chaines de K™ (avec des coefficients a
Zs). Notons que, puisque 9> = 0 et nous avons une filtration de décomposition, la restriction de
la. fonction bord sur C}' a toujours sa image contenue dans C,?__ll. Dénotons Z}} et B les cycles
et bords k-dimensionnels de K™ respectivement, donc le k-éme groupe d’homologie de K™ est
H}! = Z}'/B}}. Avec ces notations nous avons aussi

Zycztc.--cZr=27i(K), BYcCBiC---CB"=DB(K).

Définition 3.28. (Nombres de Betti persistants) : Pourp € {0,...,m} etl € {0,...,m—p}, le
k-éme nombre de Betti persistant de K! est la dimension de l’espace vectoriel H,lc’p = Z,lc/(B,lj'pﬂZ,i).

Intuitivement, le k-éme nombre de Betti persistant de K! représente le numéro de classes d’ho-

mologie indépendantes de k-cycles dans K qui ne sont pas de bords dans K'*P; par conséquente,
de maniére informelle, sa durée de vie est supérieure a p.
Nous avons vu, dans la section précédente, qu’une classe d’homologie est crée quand un simplexe
positif est ajouté a la filtration, et qu’une classe d’homologie est détruite quand le simplexe est
négatif. L’homologie persistante offre un cadre théorique pour associer des simplexes positifs et
négatifs : quand un simplexe positif est ajouté a la filtration, il crée une classe d’homologie, qui
disparait quand on ajoute son simplexe négatif associé (s’il existe).

Nous sommes intéressés a trouver un algorithme pour calculer ces nombres de Betti persistantes.
Pour I'obtenir, il faut mieux caractériser les classes d’homologie crées & chaque fois que nous ajoutons
un simplexe positif a la filtration. Rappelons que, dans la définition 3.25 de simplexe positif et
négatif, il faut seulement que o; appartient a un k-cycle, mais en général ce k-cycle n’est pas
unique. Heureusement, pour chaque k-simplexe positif o; que nous ajoutons ajoute & la filtration, il
y a un k-cycle associé "minimal", qui facilitera, & la fois, le calcul des nombres de Betti persistantes :

Lemme 3.29. Soit o; un k-simplexe positif ajouté a la filtration de K au pas i. Or, il n’y a
qu’un seul k-cycle ¢ qui n’est pas un bord dans K*, qui contient o; et qui ne contient aucun autre
k-simplexe positif.

Démonstration. Nous travaillons par induction sur I'ordre avec lequel les k-simplexes positifs sont
ajoutés a la filtration. Pour le premier k-simplexe positif o ajouté, ce k-cycle c existe par définition,
est il est nécessairement unique parce que s’il y en avait un autre ¢’ de différent, ¢ + ¢’ # 0, qui ne
contient pas o, serait aussi un k-cycle et ses éléments seraient des k-simplexes positifs, contradiction.

Supposons maintenant que le résultat est vrai pour tous les k-simplexes positifs déja ajoutés,

et ajoutons ¢;. Comme o; est positif, il existe un k-cycle d qui n’est pas un bord dans K; et qui
contient o;. Soit o;,, j =1,...,p les k-simplexes positifs différents de o; contenus dans d, et ¢;; ses
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k-cycles respectifs associés, qui existent par hypothése d’induction. Alors
c=d+cy +-+c, (5)

est un k-cycle ou o; est le seul k-simplexe positif. Du fait que o; est le dernier simplexe ajouté a
K;, il n’existe aucun (k + 1)-simplexe dans K; ol o; est une face. Par conséquent, ¢ n’est pas un
bord, et I'existence est démontrée.

Pour démontrer I'unicité de ¢, supposons deux k-cycles dy et do qui ne sont pas un bord dans K;
et qui contient o;, et répétons la construction précédente pour obtenir ¢ # éo. Alors é; — ¢ # 0 est
un k-cycle qui ne contient aucun k-simplexe positif, et nous pourrions toujours le combiner avec un
¢; antérieur pour obtenir un k-cycle avec les mémes propriétés du lemme, ce qui contredit sa unicité
et I'hypothése d’induction. Donc, nous concluons que ¢; — é; = 0, et I'unicité est démontrée. O

Bases des groupes d’homologie persistante et paires de persistance

Proposition 3.30. Les k-cycles associés aux k-simplexes positifs décrits au Lemme 3.29 peuvent
étre utilisés pour calculer une base des différents groupes d’homologie k-dimensionnels de tous les
sous-complexes de la filtration.

Démonstration. Evidemment, au début toutes les bases de HY(K) = Hj(Ko) sont vides pour
k=0,...,d. Les bases des successives H, }€ sont construites de maniére inductive :

- Supposons que nous avons déja une base de H};l et que o; est positif et de dimension k. Si
nous ajoutons a notre base la classe d’homologie définie par le cycle ¢; associé & o;, nous obte-
nons une base de H} grace au Lemme précédent. En effet, du fait que ¢; est une somme de o; et
k-simplexes négatifs, il n’est homologue a aucune combinaison linéaire des cycles qui définissent la
base de H,ifl. Du fait que dim H}C = dim H,?l + 1, vu dans la Proposition 3.26, nous obtenons une

base de Hj.

- Supposons maintenant qu'une base de H ,j;l est déja construite et que le simplexe o; est négatif
et de dimension k + 1. Soient ¢;,, ..., ¢;, les k-cycles associés aux simplexes positifs déja ajoutés,
qui définissent les classes d’homologie qui forment notre base de H f;l. Comme nous I'avons déja
expliqué, le bord do; est un k-cycle de K;_; qui n’est pas un bord dans K;_1, mais qui devient un
bord dans K;. Par conséquent, il peut étre écrit de maniére unique comme

p
aO'j = ngcik + b, (6)
k=1

ol g, € {0,1} et b est un bord. Soit I(j) = max{ix| e = 1}.

Claim : Si on enléve la classe d’homologie associé a ¢;(;) de la base de H,z_l, on obtient une
base de H'k.

En effet, comme dim Hf;l = dim H,Jc + 1 par la Propositon 3.26, il suffit de montrer que ¢,
est une combinaison linéaire d’un bord avec les autres cycles ¢;;, dans Zj. L’équation (6) antérieure
montre une telle décomposition, ce qui finis la démonstration. O

Définition 3.31. (Paires de persistance) Les paires de simplezes (T105 ;) s’appellent les paires
de persistance de la filtration de K.
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Intuitivement, la classe d’homologie crée pour o;(;) dans Kj(jy est détruite pour o; dans K. La
persistance de cette paire est j — I(j).

Le probléme avec l'algorithme antérieur est de déterminer I(j). N’oublions pas non plus qu’il
faut aussi encore expliquer, en vue de 'algorithme du calcul des nombres de Betti de la Proposi-
tion 3.26, comment détecter si un nouveau k-simplexe est positif ou négatif. Toutes ces questions
peuvent étre répondues a la fois en étudiant la filtration sous une forme matricielle. D’idée derriére
cette matrice est d’encoder le résultat de la fonction bord sur tous les simplexes de la filtration,
ordonnés. Avec cette matrice, nous pouvons réélaborer la proposition antérieur pour obtenir un
algorithme effectif pour calculer les paires de persistance, ce qui permet trouver les nombres de
Betti persistantes. Elle proportionne aussi une maniére de détecter quand le k-simplexe ajouté est
positif ou négatif.

Soit K un complexe simplicial avec une filtration de décomposition. Soit M = (m;;)i j=1,..m la
matrice associé au pas m de la filtration, o

m; ; = 1 si 0; est une face de o;, et m; ; = 0 autrefois.

Cette matrice augmente "a droite et en bas" & mesure que la filtration avance, et elle est toujours
triangulaire supérieure puisqu’on a une filtration de décomposition.

Pour une colonne Cj, soit {(j) = max{i| m;; = 1}, et non-assigné si la colonne contient
seulement des zéros. Nous pouvons alors considérer ’algorithme suivant :

Algorithm 4: Calcul des paires de persistance, version matricielle

Input: Une filtration de décomposition de K, le sous-complexe K" (qui contient m
simplexes) et la matrice M associé au pas m
1 for 57 =0 jusqu'a m :
while qu'il existe j' < j avec I(j') == 1(j)
Cj = Cj —l—Cj/ ( mod 2)

Output: Les paires (1(5),7)

Proposition 3.32. L’algorithme antérieur calcule les paires de persistance de la filtration de dé-
composition de K jusqu’au pas m, ainsi comme quels simplexes sont positifs et quels sont négatifs.

Démonstration. Remarquons que, & chaque pas de I’algorithme, la colonne C}; représente une chaine
de la forme 8(@ +2 i €iai), oueg; € {0,1}.

- Si & la fin de 'algorithme j satisfait que I(j) est assigné, alors o;(;) est un simplexe positif. En
effet, on a 8(0]- + i eiai) = 01(j) + X p<i(j) WwIps 00 Ap € {0,1}. Du fait que 0% =0, on a que
o1(;) appartient a un cycle et il est donc positif.

- Si a la fin de l'algorithme C; contient seulement des zéros, o; est positif. Effectivement,
6<Uj + Ei<j 5iai) = 0, et o; appartient donc & un cycle.

-Finalement, si & la fin de I’algorithme la colonne C; contient des termes non nuls, (0y;,0;) est
une paire de persistance, et o; est donc négatif. En effet, le bord de o; peut alors étre écrit de la
forme oy +Zp<l(j) )\pap+8( ZKj eiai). Or, 0y(; est positif, donc il a crée une classe d’homologie

au moment [(5), et il reste non associé. Du fait que le dernier index non nul d’une colonne est unique
et par la Proposition 3.30, on peut déduire que (0y(;),0;) est une paire de persistance. O
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3.3.5. Diagrammes de persistance et stabilité

Rappelons que, d’aprés le Remarque 3.24, tous les algorithmes que nous venons d’expliquer
sont aussi applicables & des filtrations pas nécessairement de décomposition. En effet, nous pouvons
toujours faire une affinage, et aprés prendre les coefficients de la filtration original. Egalement, avec
des algorithmes qui facilitent les calculs ou pas, les notions de I’homologie persistante introduites
jusqu’a ici, notamment les paires de persistance, peuvent aussi étre appliquées avec des filtrations
d’espaces topologiques plus générales, en prenant 'homologie singuliére. Nous avons déja observé
ce fait informellement dans 'exemple 3.26, et nous en verrons aussi dans cette section.

Dans tous les cas, beaucoup des informations de ’homologie persistante, notamment la durée de
vie des différentes classes d’homologie, peuvent étre facilement représentées en forme de diagramme :

Avec k fixée, soient (0(;), o) les paires de persistance (calculées avec les algorithmes précédentes,
par exemple), oil 0y(;) et 0; ont dimension k et &+ 1 respectivement. Nous représentons chacune de
ces paires dans R? avec le point de coordonnés (I(3), ) ; pour les simplexes positifs o; qui restent
non associés, nous créons les points (i, +00).

Définition 3.33. Nous appellons la représentation de cet ensemble de points dans R? avec la
diagonale A = {x = y} le diagramme de persistance k-dimensionnel de la filtration.

Plus généralement, si la filtration est indexée par une suite croissante de numéros réels, comme
par exemple avec les filtrations introduites dans la section 3.3.2,

=Ko CKo C-CK,,_, CKay, =K,

n—1
une paire de persistance de simplexes (0;,0;) est représentée par le point (;, o;), avec les indices
d’apparition et mort ; si le simplexe o; reste non associé, nous ajoutons ajoute le point (a;, +00).

Le méme type de points peuvent étre crées pour toute filtration d’'un espace topologique et
avec 'homologie singuliére, ou la coordonné x enregistre 'apparition d’une classe d’homologie et
la coordonné y sa mort. En tout cas, dans ces cas plus générales, il faut faire attention au fait que
plusieurs paires peuvent étre associées au méme point dans le plan. Donc, dans ces diagrammes de
persistance il faut aussi considérer une multiplicité pour chaque point. Par convention, les points
de la diagonale ont tous multiplicité infinie. Désormais, nous considérerons aussi une multiplicité
pour chaque point dans la définition de diagramme de persistance.

Nous pouvons définir une distance entre diagrammes de persistance pour mieux les comparer :
Définition 3.34. (Distance "bottleneck") Soient Dy et Dy deuz diagrammes de persistance.

La distance goulot ("bottleneck” en anglais) entre Dy et Dy est définie comme

dp(Dy, Dy) = inf sup |[p —v(p)|locs
7 peD;

ol y est ’ensemble de bijections entre les points de Dy et Do ; on prend m copies disjointes si un
point a multiplicité m > 1. Par convention, sip = (zp,+00), ¢ = (x4, +0), ||P — qlloc = |Tp — 24

Remarque 3.35. C’est précisément cette distance qui motive ajouter la diagonale aux diagrammes
de persistance : elle permet de comparer des diagrammes qui n’ont pas le méme nombre de points
dehors la diagonale en les associant avec des points de la diagonale.

Nous omettrons la démonstration qu’il s’agit vraiment d’une distance. Dans 'image suivante il
apparait une représentation de la distance bottleneck entre deux diagrammes de persistance :
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L J

Stabilité persistante des fonctions

Dans cette derniére partie de la section, inévitablement plus avancée et sans toutes les démons-
trations, nous allons lier la proximité de deux fonctions f et g a la proximité de ses diagrammes
de persistance. Cette relation est fondamentale pour justifier la convenance des diagrammes de
persistance associées a une fonction, ainsi comme pour identifier ses propriétés "proéminentes" et
les distinguer du "bruit topologique", i.e. des caractéristiques topologiques de courte durée crées
pour de petites perturbations. Ces résultats deviennent aussi importants pour justifier la procédure
de T'algorithme ToMATo du prochain chapitre, ot nous travaillons avec une estimation f d’une
densité f, et nous regardons son diagramme de persistance (0-dimensionnel).

Expliquons briévement la situation : soit f : X — R une fonction réelle continue définie sur un

espace topologique X. Nous voulons étudier le diagramme de persistance k-dimensionnel associé a
ses ensembles de sous-niveau {Fy, }oer, oit Fyy = f~1((—00, a]), avec ’homologie singuliére.
Une propriété fondamentale de ’homologie singuliére est que toute application continue entre es-
paces topologiques h : X — Y induit un morphisme entre les respectives (k-émes) groupes d’ho-
mologie, h, : H,(X) — H.(Y). Plus concrétement, la (k-éme) homologie singuliére est un foncteur
(covariant) de la catégorie des espaces topologiques & la catégorie des groupes. Donc, il est toujours
vrai que (idx )« = idp, (x) et (hog)s = hy o g..

Dans notre cas, on peut étudier les applications induites par les inclusions F, C F} quand a < b,
fb: H.(F,) — H.(F). Ces groupes et morphismes encodent toute l'information de 1’homologie
persistante : quelques références appellent groupes d’homologie persistante aux groupes Im f°, qui
suivent la méme idée que les groupes qui apparaissent dans la Définition 3.28, dans le cas simplicial.
Intuitivement, avec deux fonctions "proches" (avec la distance || f —g||oc = sup,cx |f(x)—g(x)]), les
moments de création et de mort de certaines caractéristiques topologiques (gardés dans les groupes
d’homologie, et représentés graphiquement dans les diagrammes de persistance respectifs D(f) et
D(g)) devraient étre similaires. Cette idée est formalisée dans le théoréme suivant :

Théoréme 3.36. (Théoréme de la stabilité bottleneck des diagrammes de persistance) :
Soit X un espace topologique triangulable avec des fonctions tame f,g : X — R. Alors, les dia-
grammes de persistance satisfont dg(D(f), D(g)) < ||f — 9]co-
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Nous démontrerons le théoréme & la fin de la section, mais sans tous les pas intermédiaires.
Avant, plusieurs définitions et résultats sont nécessaires :

Définition 3.37. Soit X un espace topologique, f : X — R. Une valeur critique homologique
de [ est un numéro réel a pour lequel il existe un entier k tel que, Ve > 0, Uapplication induite
“te . Hy(Fy_.) — Hy(F,..) nest pas un isomorphisme.

a—e °
Lemme 3.38. (Lemme de la valeur critique) : Si [a,b] ne contient aucune valeur critique
homologique de f, f° est un isomorphisme pour tout k € Z.

Démonstration. Soit m = %, or fo = f2 o f™. Si f° n’est pas un isomorphisme, au moins une des
deux fonctions antérieures ne ’est pas non plus. Ainsi, on peut construire de maniére inductive une
suite d’intervalles fermés décroissants, I'intersection desquels est une valeur critique homologique
dans [x,y], ce qui est une contradiction. O

Le lemme antérieur formalise I'idée que c’est seulement quand on atteint des valeurs critiques
homologiques que nouvelles caractéristiques topologiques sont crées ou destruites. Notre résultat
requiert une condition de finitude sur notre fonction, qui se satisfait dans la plupart des cas d’étude :

Définition 3.39. Une fonction f : X — R s’appelle tame si elle a un numéro fini de valeurs
critiques homologiques et tous les groupes d’homologie Hy(F,) ont dimension finie Vk € Z, a € R.

Rappelons maintenant la définition de la distance de Hausdorff, trés habituelle dans la TDA,
pour des nuages de points :

Définition 3.40. Soient X et Y des ensembles de points (avec multiplicité). Alors la distance
Hausdorff est dy(X,Y) = max{sup, inf, ||z — y||o,sup, inf, |y — 2[|~}

Un résultat important, mais sans démonstration, que nous utiliserons plus tard est celui-ci :

Proposition 3.41. Soit X un espace topologique triangulable avec des fonctions tame f,g: X — R.
Alors dp (D(f), D(g)) <IIf = gllsc-

Remarque 3.42. La distance Hausdorff entre deux diagrammes de persistance n’excéde jamais la
distance bottleneck, car elle ne fait pas attention aux multiplicités, ou regroupements de points. Le
résultat pour la distance bottleneck est plus fort, et clé, pour quelques applications.

Voyons avant le résultat du Théoréme 3.36 pour un cas spécial, et plus simple. Nous nous en
servirons plus tard pour prouver le cas général.
Etant donnée une fonction tame f : X — R, soit & ¢ la distance minimale entre deux points dehors
la diagonal, ou entre un point dehors la diagonale et un autre dedans :

6f = min{[|p — ql|eo| D(/)\A 3 p # q € D(f)}.

Si on dessine des carrés de rayon € = 07 /2 centrés sur les points de D(f), on obtient une diagonale
plus "grosse", et une collection finie de carrés disjoints entre eux et avec la diagonale.

Définition 3.43. Une autre fonction tame g : X — R est appelée trés proche a f si||f—g|lco < %f.

Ici un autre lemme nécessaire mais sans démonstration, de nature plus technique :

Lemme 3.44. Soient f,g : X — R des fonctions tames, g trés proche a f. Soient p € D(f)\A,
myp sa multiplicité et O, le carré centré en p de rayon € = ||f — gl|oo. Alors |D(g) NOe| = myp,.
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Lemme 3.45. (Lemme de la bijection) : Soit X un espace topologique triangulable, f,g: X — R
des fonctions tames, g trés proche & f. Alors dg(D(f),D(9)) < I|f — 9l|oo-

Démonstration. Soient p € D(f)\A et [J; le carré centré en p de rayon € = || f — g|| 0, cOmme avant.
Du lemme précédant, tous les points de D(g) N . peuvent étre associés a p. Nous pouvons suivre
cette procédure pour tous les points dehors la diagonal de D(f). Aprés, les seuls points de D(g)
qui restent sans image ont une distance supérieure a € de D(f)\A. Du fait que dg(D(f),D(g)) <e
(Proposition 3.41), ces points de D(g) sont au plus a distance € de la diagonale. Si nous leur
associons respectivement les points les plus proches de la diagonale, nous obtenons une bijection
entre D(f) et D(g) (rappelons que les points de la diagonale ont multiplicité infinie). Cette bijection
déplace les points au plus €, ce qui finit la démonstration. O

Rappelons qu’un espace topologique est appelé triangulable s’il existe un complexe simplicial
fini avec une réalisation géométrique homéomorphe. Nous pouvons montrer notre théoréme dans
toute sa généralité en faisant des approximations successives de notre fonction originelle f : X — R
par des fonctions linéaires par morceaux définies sur un complexe simplicial :

Définition 3.46. Soit K un complexe simplicial avec des valeurs réels spécifiées sur chaque sommet
i, f(x:). Sa fonction linéaire par morceauz (LPM) associée est f : K — R, & = Yo bi(x) fx:), ou
bi(x) sont les coordonnés barycentriques de x. On obtient une fonction linéaire sur chaque simplexe
du complexe.

Remarquons que, & cause de sa nature finie et linéaire, une fonction LPM sur un complexe
simpliciale fini est toujours tame. Ce fait permet de démontrer le Théoréme 3.36 pour deux fonctions
LPM f, g définies sur un complexe simplicial K fini. Avant, une derniére définition :

Définition 3.47. Une combinaison convexe de f et § est une fonction du type hy = (1 — )\)f+ Ag,
avec A € [0,1]. Cette famille de combinaisons convexes entre les deux fonctions, ot hg = f et
h1 = g, s’appelle interpolation linéaire de f a §.

Lemme 3.48. (Lemme d’interpolation) : Soient f, 4 deuz fonctions LPM définies sur un com-
plexe simplicial K fini. Alors dg(D(f),D(9)) < |If — §lloo

Démonstration. L’idée de base de la démonstration est de décomposer I'interpolation linéaire de f
4 g en petites sections pour utiliser le Lemme de la bijection, et ainsi obtenir une bijection dans
chaque section.

Soit & = ||f — §|oe, et observons que, pour tout A € [0,1], hy est tame (car elle est aussi une
fonction LPM) et 6(A) = dp,, est strictement positif quand au moins f ou § ont un point dehors la
diagonale (sinon, l'inégalité du lemme est triviale).

Donc, la famille C' = {Jx} xeqn[o,1] d'intervalles ouverts Jy = (A — 5512) JA+ %ﬁ)) forme un recouvre-
ment ouvert de lintervalle [0, 1]. Prenons un sous-recouvrement fini C’ de C, qui existe pour étre
[0,1] compact, et minimal. Soient A\; < --- < A, les points médians des intervalles de C’. Du fait
ont toujours intersection non-vide, et

que C’ est minimale, deux intervalles consécutifs Jy, et Jy,,,

6(Ai) +0(Nig1) - max{d(A;), 6(Ni1)}
4e - 2e

Aig1 — N <

Par définition de €, on a aussi ||k, — ha, 1]l = |[(Nig1 — Ai)(§ — Dlloe = e(Xig1 — ;). Par

conséquent,

max{d(A;), 0(Niy1)}
||hA7 - h)\z:+1||00 < 2 3
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ce qui implique que hy, est trés proche & hy
Lemme de la bijection, qui dit que dg(D(hy

.11, ou a l'inverse. Nous pouvons alors appliquer le
'i+1)7D(h’)\i)) < Hh)\i+1 - h/\zHoo pour 1 <:¢<n-—1
Observons que, si nous ajoutons A\g = 0 et A\,,+1 = 1 (donc hg = f et hy = §), ces derniers raisonne-
ments sont encore vraies, car 0 et 1 font aussi partie du recouvrement, et h) varie continuellement
avec A. Donc f est trés proche a hy, (ou a l'inverse), et § est trés proche & hy, (ou a l'inverse).

Maintenant, I'inégalité triangulaire donne

n

dB(D(f)7D(g)) < ZdB(D(h/\z)7D(h/\1+1)) < Z ||h)\1 - h)\i+1||00'
i=0 =0

Du fait que les hy, forment une interpolation linéaire de f a g et leurs valeurs changent linéairement
entre les deux, la derniére somme est égale & ||f — §||o0, ce qui finit la démonstration. O

Avec ce dernier résultat, nous pouvons démontrer le Théoréme 3.36 :

Théoréme de la stabilité bottleneck des diagrammes de persistance : Soit X un espace
topologique triangulable avec des fonctions tame f,g : X — R. Alors, les diagrammes de persistance

satisfont dp(D(f), D(9)) < |[f = 9lloo-

Démonstration. (du Théoréme 3.36 :) Par définition de triangulabilité, il existe un complexe sim-
plicial fini L et un homéomorphisme ¢ : L. — X. Notons que, du fait que ¢ est un homéomorphisme,
¢ fH((—~00,a])) =2 f71((—00,a]) Va € R, et les groupes d’homologie singuliére sont aussi tous
isomorphes a cause de sa fonctorialité. Par conséquent, le diagramme de persistance reste non al-
téré par ce changement de variables : f o ¢ : L — R est aussi tame et a le méme diagramme de
persistance que f.

Soit § > 0 suffisamment petit. Du fait que f et g sont continues et L est compact, il existe une
sous-division K de L telle que

[fod(x) = fod(y) <6, [god(x)—goo(y) <o (7)

pour z,y dans le méme simplexe de K.

Soient f ,g : SAdK — R les fonctions linéaires par morceaux qu’on obtient & partir de fo ¢ et go ¢
sur les sommets de SAK, ou SAK dénote la sous-division barycentrique de K. Par construction de
K, ces fonctions satisfont |[f — f o @|lsc < 6 et ||§ — g 0 ¢||oc < 6. En faisant usage du Lemme
d’Interpolation, le fait que f et ¢ different au maximum ¢ de f o ¢ et g o ¢ respectivement, et

[Ilf — 3glloc = ||f © ¢ — g © d||oo, On obtient
d5(D(F). D@) < |f — dlloo <1 06— g0 6l + 26 = |If — glloc + 20 (®)

Si nous supposons de plus que § < %, nous obtenons une bijection du Lemme de la Bijection. Du
fait que le changement de variables n’affecte pas le diagramme de persistance, on a

dp(D(f), D(f)) = dg(D(f o $), D(f)) < 6. 9)

Si nous supposons pareillement que ¢ < %9, I'inégalité triangulaire appliqué plusieurs fois avec (8)
et (9) donne
dB(D(f)7D(g)) < ||f - g”oo + 457

ce qui montre le résultat, donc § peut étre arbitrairement petit. O
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4. L’algorithme ToMATo

4.1. Introduction

L’exposition et exploration que nous ferons maintenant de l’algorithme ToMATo (Topological
Mode Analysis Tool) et son implementation dans la librairie GUDHI constituent la partie la plus
innovante de notre travail. Cette méthode, récemment congue, se situe dans les techniques de cluste-
ring, donc dans ’apprentissage non supervisé. Bien que le fonctionnement ne soit pas spécialement
complexe, il se base sur des idées de I'analyse topologique de données exposées antérieurement
qu’il faut bien comprendre, notamment les complexes simpliciales ("graphes" désormais) et les dia-
grammes de persistance.

Un autre principe important de notre algorithme est qu’il est sensé fonctionner avec des sous-
variétés de R? (ou variétés riemanniennes en général), indépendemment de sa "forme". Cela est
remarquable puisqu’une bonne partie des algorithmes de clustering existants (par exemple, la mé-
thode K-means, déja exposée) ne parviennent pas & identifier les clusters lorsque ces derniers
s’éloignent d’une structure convexe. Par exemple, certains algorithmes sont incapables de bien re-
grouper un ensemble de données échantillonnées & partir de deux anneaux concentriques dans R2.
Du ce fait, dans la section 4.1.1., nous exposerons les constructions et les arguments en prenant
une variété riemannienne X, le cas le plus général. Cependant, dans la pratique nos données sont
presque toujours dans R%, et seulement dans certains cas particuliers ils présentent une forme clai-
rement semblable a une sous-variété de R%.

En nous appuyant sur la classification des techniques de clustering faite au début de la section
"Algorithmes de clustering combinatoires", au deuxiéme chapitre, on pourrait affirmer que I'algo-
rithme ToMATo combine une partie "mode-seeking" et une partie de nature plus combinatoire. En
plus de cela, son innovation principale est que, pour guider la fusion des différents mini-clusters
tout au long de la méthode, il utilise la notion de "persistance topologique", introduite au chapitre
précédent. En plus d’étiqueter les données dans de différents groups, 'algorithme produit aussi un
diagramme de persistance, qui permet de choisir des parameétres précis afin d’obtenir le nombre de
clusters souhaité.

4.1.1. L’intuition derriére 1’algorithme : le cas continu

L’idée de base de la méthode est que, si les données sont obtenues en suivant une fonction de
densité f, les clusters le plus logiques sont ces régions ou la fonction fait des "bosses significatives".
C’est dans ces derniéres ou les points seront plus probablement situés et regroupés.

Soit X une variété riemanniene de dimension m et f une fonction f : X — R C?-continue

sans points critiques dégénérés. Supposons aussi que f a un nombre fini de points critiques. La
région ascendante d’un point critique m est le sous-ensemble de points A(m) C X qui parviennent
finalement a m en suivant le flux induit pour le champ de vecteurs gradient de f. On appelle m la
racine de x € A(m).
On peut démontrer que les régions ascendantes des pics de f forment des sous-ensembles de X
disjoints et homéomorphes & R™. De plus, si f est bornée et propre, les régions ascendantes de ces
pics couvrent X sauf un sous-ensemble de mesure de Lebesgue zéro. Il est donc logique d’utiliser
ces régions pour découper X p.p. en régions d’influence.

Considérons maintenant la famille de sous-espaces {Fy, }aer, ot F, = f~1([a, +00)) et a varie
de 400 & —oco (i.e. la filtration de X associée aux ensembles de super-niveau de f). Pour @ € R
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et x € F,, appelons C(z,a) C F, la composante connexe par arcs de F, contenant x. Selon la
Théorie de Morse, lorsqu’un maximum local m, de f entre dans la filtration au moment o = b(m,,)
(b de "birth"), une nouvelle composante connexe par arcs C(m,, @) apparait dans F,. Puis, cette
derniére cesse d’étre indépendante quand elle se connecte avec une autre composante générée pour
un pic my plus haut, pour quelque autre o = d(m,,) (d de "death"). Dans ce cas, on nomem m,
la racine de my, et on écrit m, = r(m,). Dans le diagramme de persistance 0-dimensionnel de f,
la durée de vie de m, comme racine est encodée pour le point p = (b(my), d(my)), et on appelle la
différence dp = p, — p, la proéminence de m,, ou que m,, est dp-proéminent.

My ,’

?”'T'

a = b(my) o
IR 'I’\
/ 7= proéminence de my,

a = d(mp)

T,

A(my) Almy) A(m,)

FI1GURE 8 — Représentation graphique, avec f une fonction réelle d’une variable, de toutes les idées
exposées jusqu’a ici : pics de f (points critiques/ maximums locaux), régions ascendantes de ces
pics et proéminence du pic m,.

En nous appuyant sur un "parameétre de fusion" 7 > 0, on peut seulement considérer les pics de
f de proéminence au moins 7. Pour tout pic m, de f, on itére I'"application racine" m, — r(my)
jusqu’a ce qu’un pic de proéminence 7 soit obtenu. Ce processus finit toujours, donc f a un nombre
fini de points critiques, et on a toujours f(mg,) < f(r(m,)). Appelons cette fonction itérée rx.
Observons que tout pic de proéminence au moins 7 est un point fixe de 7.
L’union des régions ascendantes de tous les pics qui arrivent finalement & m,, avec 7 est appelée le
bassin d’attraction de m, (de paramétre 7), Br(m,) :

Vm,, tel que p, —py > 7, Br(my) = U A(m).

rr(m)=mp

Clairement, B.(m,) contient A(m,), donc m, est un point fixe de 7. De plus, Ces bassins
d’attraction forment une partition de I'union de toutes les régions ascendantes. Ce sont précisément
ces bassins d’attraction qui constituent nos candidats a clusters.
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4.2. Les données d’entrée (input data)

Dans tous les cas, pour fonctionner, la méthode ToMATo a besoin de deux informations sur nos
données. Tout d’abord, 'algorithme requiert un poids pour chaque point, c’est a dire, une valeur f (1)
associée a chaque donnée ¢, qui représente une estimation d’une hypothétique fonction de densité
f, sur laquelle les données ont été obtenues. Puis, il est aussi nécessaire d’avoir un graphe de voi-
sinage, qui "connecte" de quelque sorte ces données entre elles, et qui encode la proximité des points.

De plus, une autre information clé dois étre aussi transmise a l’algorithme pour guider la fu-
sion des clusters intermédiaires : un paramétre de fusion 7. En somme, ce paramétre détermine
a partir de quelle persistance un point ou région de points se mélange avec d’autres ou pas. Sa
valeur "idéale" change selon le cas, donc elle dépend de f et le numéro de clusters que ’on souhaite
obtenir. Le fonctionnement et la détermination de ce paramétre, trés important dans la méthode,
deviendront beaucoup plus claires aprés avoir étudié la procédure de ’algorithme et le diagramme
qu’il produit.

Développons a présent les deux premiéres informations nécessaires pour ’algorithme. Nous re-
marquons que, dans la pratique, nous ne les avons presque jamais directement. En effet, dans le
cas le plus simple, nous avons seulement un nuage de points dans R? avec n observations, ou, dans
des cas plus élaborés et "théoriques", un ensemble de points dans une variété riemmanienne, qui
permet également de définir des distances entre eux. Avec une base de données réelle, nous avons
généralement une quantité n de données avec p attributs quantitatives et/ou catégoriques, ot nous
pouvons définir distances entre paires, ou les plonger dans R? "convenablement" avec un métrique
(voir l'introduction de la Section 2).

Indépendemment de la fagon dont les calculs sont réalisés ou si on utilise un espace métrique
ambiant (normalement R?), utiliser des distances entre paires de données est trés pratique : elles
permettent de construire assez rapidement les graphes de voisinage les plus naturels, et notre al-
gorithme a besoin d’un graphe entre les données pour bien fonctionner. De plus, elles sont aussi
pratiques pour calculer certaines estimations de la fonction de densité de base f.

4.2.1. Quelques constructions de graphes habituelles

Développons a présent certaines constructions de graphes habituelles sur des nuages de points,
qui peuvent naturellement étre utilisées dans notre situation. Nous assumons qu’il n’y a jamais la
méme distance entre toutes les paires de points. Si ce n’est pas le cas, nous pouvons adapter notre
démarche en fonction de la situation :

e Graphe a-Rips : 1l unit toutes les paires de points z,y qui satisfont d(z,y) < a. Il est donc
le squelette 1-dimensionnel de Rips,(X), ou Cechg (X).
Il constitue, en quelque sorte, le graphe le plus naturel pour connecter les points proches entre
eux, et il est aussi trés facile a construire. Néanmoins, le nombre d’arétes peut beaucoup varier
entre sommets différents, et le paramétre a n’est pas toujours évident pour obtenir les résultats
souhaités : si c’est trop petit, il peut y avoir un numéro excessif de composantes connexes ;
cependant, s’il est trop grand, la structure de proximité se dilue aussi.

e Graphe des k plus proches voisins (k-NN) : Il connecte chaque sommet avec ses k autres
sommets les plus proches. De cette fagon, chaque sommet est I'extrémité d’au moins & arétes.
C’est & priori un graphe orienté, donc cette relation de proximité n’est pas symétrique : par
exemple, avec k = 1, un sommet 1 peut avoir le sommet 2 comme le sommet le plus proche,

34



Introduction & la TDA et étude de ’algorithme ToMATo

Nil Garcés de Marcilla

10 4

08 A

06 o

0.4 4

0.2 4

0.0 4

10 4

0.8 4

06 o

0.4 4

024

0.0 4

mais ce dernier avoir un sommet 3 plus proche que le sommet 1. Parfois, dans la pratique, on
ignore cette directionnalité et on accepte que quelques sommets aient plus d’arétes incidentes.
Ce graphe est intéressant et utile puisque, en général, le numéro d’arétes incidentes a chaque
sommet reste assez similaire, et il n’y a jamais des points isolés. Il est aussi un peu plus
exigeant a niveau de calcul, donc il faut ordonner & chaque pas les distances d’un sommet aux
autres, mais certains algorithmes pour trouver des approximations du graphe k-NN existent
qui sont beaucoup plus rapides. Son désavantage principal est que parfois il connecte de points
qui ne sont pas spécialement proches.

Graphe de Delaunay : C’est le graphe qu’on obtient si on triangule les points de facon a ce
qu’aucun des points reste a I'intérieur du circumcercle d’aucun des triangles. Normalement,
on obtient ainsi une triangulation sans beaucoup d’angles pointus. Il y a des algorithmes assez
rapides pour le calculer, et il est aussi généralisable aux dimensions supérieures.

Son principal avantage est que, a la différence des deux algorithmes précédents, ce dernier n’a
pas besoin d’un paramétre pour étre défini. Pareillement au graphe k-NN, le numéro d’arétes
incidentes a chaque sommet est souvent similaire, mais parfois il unit des points qui ne sont
pas spécialement proches entre eux.

Ci-dessous, un exemple de chacun de ces trois graphes.

104

0.8 A

06

0.4

024
®*s

0.0

0.0

02 0.4 0.6 0.8 10

10
VER
06 1
0.4

02 1

/

0.0

0.2 0.4 06 0.8 10 0.0 0.2 0.4 06 0.8 10

FIGURE 9 — Représentation des trois constructions exposés antérieurement avec un ensemble de
20 points échantillonnés dans le carré 1x1 (distribution uniforme). En haut a droite, le graph de
Delaunay. En bas a gauche : le graphe k-NN avec k = 4 (chaque point est aussi son propre voisin le
plus proche) ; nous observons qu’une partie importante des sommets a plus de trois arétes incidentes.
En bas a droite; le graphe a-rayon avec a = 0.3.
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4.2.2. Quelques estimateurs classiques de la fonction de densité

Exposons a présent deux maniéres (non-paramétriques) d’estimer la fonction de densité f sur
laquelle on suppose que les données ont été obtenues. L’idée est toujours de construire une fonction
f , estimation de la "véritable" fonction de densité f, en utilisant la disposition des points, qui nous
donne des informations sur f. Nous ne détaillerons pas les arguments théoriques qui justifient la
justesse (asymptotique) vers f de ces méthodes, et nous ignorerons aussi les possibles généralisa-
tions sur des sous-variétés : nous supposerons que [ est simplement définie sur R? (et souvent,
seulement R).

e FEstimation par les k plus proches voisins : Rappelons avant que, par définition de fonction
de densité, un vecteur aléatoire X dans R? satisfait, pour tout borélien A C R? P(X € A) =
/ 4 J- Donc, si A est une boule petite centrée sur z, la probabilité que X tombe dans A est
approximativement f(x) multiplié par le volume de A. En fait, avec des hypothéses assez
faibles sur f continue, on a

. fB(xO,a) f(x)dz
‘}‘I—%W: f (o), (10)

otl | - | dénote le volume dans R?. Rappelons aussi que le volume de la boule unité dans R?
satisfait la formule
v, r
d= =g o
L(g+1)

ou T est la fonction Gamma T'(m) = f0+oo 2™ le=%dx, et si on varie le rayon 7 de la boule,
le volume change en suivant la formule Vj - 79,

En vue de I’équation (10), avec les données {1, ...,2,}, on peut estimer f(z) de la maniére
"naturelle" suivante : soit k un entier avec 1 < k < n, Ry)(z) = ||z (2) — || la distance de
x a son k plus proche voisin, et pu,, la fonction de répartition empirique, ot pour tout borélien

1
ACRY 1, (A) = >, 1{z,eay- Alors, I'estimateur par les £ plus proches voisins est défini
comme "
_ pa(B(z, Rxy)) k

d
@) = B R~ Vil @) —at &€ F" ()

e [Estimation par noyau (Kernel density estimation) : C’est possiblement la méthode d’estima-
tion la plus habituelle et étudiée. En résumé, c’est une généralisation de la notion d’histo-
gramme, mais facilement réalisable en dimensions plus élevées, et (souvent) aussi continue et
différenciable.

L’idée est de construire f en additionnant plusieurs petites fonctions centrées chacune sur
une donnée. On appelle ces petites fonctions noyauz, qui sont toujours réelles, non-négatives
et intégrables. De plus, en général on assume aussi, pour notre fonction noyau K(x), que
Jpa K(x)dz =1 (i.e. K(x) est une fonction de densité) et que K est radiale (K(—z) = K(x)
quand d = 1, K constant sur S, = {x € RY| ||z|| = r} en général).

Prenons maintenant nos données (z1,...,z,) (indépendantes et identiquement distribuées,
obtenues a partir de f). Nous supposerons désormais que d = 1 pour simplifier les notations,
bien que pour d général les constructions suivants sont aussi valides avec quelques 1égéres mo-
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difications. En choisissant une fonction noyau K (z), nous construisons la fonction f comme :
Fu@) = 3 Kyla =) = 3 (20 (12)
T)=— T—x) = — —).
" i " nh i=1 h

Ici, h est un paramétre d’échelle & déterminer, mais qui a une grand influence sur ’estima-
tion finale. Ce paramétre détermine de quelque sorte la largeur de la fonction noyau au-
tour de chaque donnée. C’est aussi immédiat de vérifier que quand fRK (z)dr = 1, on a
Jg fu(z)dz = 1.

Dans la pratique, la meilleure valeur de ce paramétre est difficile & déterminer, donc il
y a toujours un compromis entre biais et variance. Différents travaux essaient d’étudier
les meilleures valeurs de h en fonction de chaque situation. En tout cas, bien que cer-
taines indications existent (par exemple, avec un noyau gaussienne, il est habituel de prendre
h ~ 1.06 - min (&, %) -n*%, ou & est 'estimateur de ’écart-type habituel et EIQ est ’écart
interquartile), normalement I’estimation est faite avec plusieurs valeurs de h et on prend celle
qui donne le meilleur résultat.

En ce qui concerne les fonctions noyau, nous remarquons différentes options. Nous montrons,
pour d = 1 (mais facilement généralisables & d supérieure en prenant ||z|| au lieu de z, et en
changeant légérement quelques coefficients en fonction de la dimension), certaines des plus
utilisées, mais sans entrer dans les détails et particularités de chacune :

1
1. Noyau gaussienne : K(x) = La

1
2. Noyau uniforme : K(z) = 3 1(2){—1< = <1}-
3. Noyau triangulaire : K(z) = (1 — |z|) 1(2);_1< » <1}-

3
4. Noyau de Epanechnikov (parabolique) : K(z) = 1(1 —2?) L(2){—1< 2 <1}

70
5. Noyau tricubique : K(z) = —1(1 — |2*) L(@){—1< & <1}-

4.3.

F1GURE 10 — Toutes les fonctions noyaux mentionnées, dans le méme ordre.

La procédure de ’algorithme

Expliquons maintenant comment ’algorithme obtient les différents clusters. Supposons que nous
avons un graphe de voisinage G entre les points, des valeurs f(i) pour chaque sommet i, et le pa-
ramétre de fusion 7. L’algorithme de base se compose de deux parties :

1.

(Recherche de modes) Pour calculer les clusters de départ, TOMATo ordonne d’abord tous
les sommets de maniére décroissante en fonction de sa valeur f. Avec cet ordre, il passe par
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chaque sommet 7 et il simule un effet de gradient de la fonction de densité de base : il connecte
i avec son voisin dans G avec la f—valeur la plus haute. Si tous ses voisins ont des valeurs
inférieures, 4 est étiqueté comme un "pic" (ou mode) de f .

En regardant les arétes "de gradient" a la fin de ce processus, on obtient ce qu’on appelle
une "forét couvrante" du graphe G, une notion similaire & celle de "arbre couvrant" (i.e. un
sub-graphe de G connexe et acyclique qui passe pour tous les sommets de G); cependant,
dans ce cas, la connectivité n’est pas exigée. Chaque composante connexe dans une forét est
un arbre avec la définition usuelle dans la théorie de graphes; d’ici provient le nom.

Chaque arbre dans cette forét couvrant peut étre vu comme 1’équivalent discret d’une région
ascendante de f dans le cas continu, expliqué en 4.1.1, donc un cluster initial de notre nuage
de points. Pour conserver toute cette information, on peut numéroter les ¢ arbres obtenus et
étiqueter chaque sommet avec son arbre correspondant. Dans un arbre i, on appelle (i) (r de
"racine") son sommet avec la f—valeur la plus haute, et on appelle aussi a(j) 'arbre associé
& un sommet j.

2. (Fusion des arbres) Bien que 'idée de la premiére étape soit logique, donc elle regroupe des
données dans des "bosses" de f , elle est aussi un peu aléatoire et inévitablement insuffisant.
Dans cette deuxiéme étape, I’objectif es de fusionner les arbres "similaires", en adaptant la
notion de persistance topologique introduite a 4.1.1.

Pour cela, ToMATo passe plusieurs fois sur les sommets de G dans le méme ordre. Ici, tous
les sommets sont déja étiquetés dans un arbre. Dans cette itération, étant donné un sommet
1, deux cas sont possibles :

(a) 7 est déja un pic d’un arbre, et donc aussi sa racine, et tous les voisins de ¢ ont des
f-valeurs inférieures. Dans ce cas, les correspondances entre arbres et sommets restent
inaltérées.

(b) 4 n’est pas le pic de a(i), et on cherche des fusions potentielles entre a(i) et d’autres
arbres "a coté".
Pour cela, on prend les voisins k de i dans G (aussi de maniére ordonnée) qui satisfont
f(k) > f(i), et on regarde si f(r(a(k)) < min{f(r(a(i)), f(i) + 7} ; ainsi, on étude si le
pic de a(k) est inférieur a celui de a(i) et si sa proéminence est inférieure & 7. Si c’est le
cas, toutes les sommets appartenant a a(k) sont réétiquetés a a(i). De la méme maniére,
nous pouvons vérifier si f(r(a(i)) < min{f(r(a(k)), f(k)+7}, et réétiqueter les sommets
de a(i) a a(k) si c’est le cas.

A la fin de cette deuxiéme étape, tous les arbres (mini-clusters) de départ avec des pics de

proéminence moins de T et avec des sommets "connectés" a d’autres arbres ont été unifiés les

uns avec les autres pour créer des arbres plus grands, et avec une proéminence d’au moins

7 (nos clusters finaux). De plus, on a enregistré dans quel arbre/ cluster chaque donnée

appartient.

4.4. Information finale obtenue

Avec le processus expliqué précédemment, l'information finale obtenue semble claire : pour
chaque donnée i, une étiquette a(i), son cluster final associé. Néanmoins, la méthode précédente
n’est pas la plus utile pour travailler avec le type de problémes que 1’on retrouve avec des données
réelles. On peut donc utiliser les notions expliquées au troisiéme chapitre pour obtenir un algo-
rithme plus flexible et informatif.

En effet, en reprenant la deuxiéme étape exposée précédemment, il est évident que la valeur 7
joue un role essentiel dans 'algorithme ; c’est ce numéro qui décide quelle doit étre la proéminence
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minimale d’un pic-cluster pour ne pas étre fusionné avec d’autres pics-clusters "proches". Cepen-
dant, dans la pratique, normalement nous n’avons pas connaissance de la valeur 7 "idéale" pour
obtenir le meilleur résultat de clustering. Par exemple, nous vons déja remarqué que les valeurs f
associées a chaque donnée dépendent de l’estimation choisie et, par conséquence, un "bon" para-
métre 7, 8’il existe, possiblement aussi.

C’est au moment de choisir une valeur de 7 convenable que les diagrammes de persistance in-
troduits au troisiéme chapitre deviennent utiles. L’idée est de créer une représentation graphique
de la proéminence de tous les différents clusters pour mieux détecter quels sont spécialement pro-
éminents. Avec cette information, nous pouvons ajuster 7 pour obtenir un nombre de clusters plus
naturel, avec les étiquettes correspondantes.

Notre diagramme de persistance peut étre obtenu de la maniére suivant :

— Au début, on crée un point (x,y) pour chaque arbre-cluster initial, qui a toujours un pic
associé : son sommet avec l'estimation de f la plus élevée, un mode de f. La cordonné x
stocke cette valeur, tandis que la cordonné y reste non-assignée.

— Puis, on commence a fusionner ces clusters initiaux, en suivant la deuxiéme étape expliquée
dans la section précédente et en gardant une trace de ces fusions. Intuitivement, on peut
imaginer le paramétre de fusion 7 qui vaut 0 au début, et qui augmente progressivement.
Chaque fois que deux clusters sont fusionnés, on enregistre la mort du plus "petit" (i.e. moins
proéminent, i.e. avec un pic associé moins haut) dans la cordonnée y, qui prend la valeur
y =z — 7, tandis que le plus "grand" continue d’exister.

— Ce processus continue jusqu’a ce que toutes les fusions possibles aient lieu. A ce moment,
seulement les clusters associés aux composantes connexes du graphe de voisinage restent en
vie, et on leur assigne la cordonnée y = —oo.

Enfin, on obtient un ensemble de points qui encode d’une maniére assez compléte les proéminences
relatives de tous les clusters/basins de f, ou les distances (verticales) entre les (x,y) et la diagonale
sont leur proéminence. Il est recommandable de dessiner les points avec y = —oo avec une couleur
différente, pour mieux identifier dans le diagramme le nombre de composantes connexes existantes.

0.000035 -

0.000030

0.000025

0.000020

] .
;.. ™ ¢

0.000015 V' %, e, * s

[ ]

0.000015 0.000020 0.000025 0.000030 0.000035

FIGURE 11 — Exemple de diagramme de persistance du type que nous venons d’exposer.

On voit rapidement que le diagramme de persistance obtenu n’est qu’une variation du dia-
gramme de persistance 0-dimensionnel associé aux ensembles de super-niveau d’une fonction f,
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comme celui décrit a exemple 3.26 (ou on prenait les ensembles de sous-niveau). Cependant, la
"connectivité" est encodée dans un graphe de voisinage, et les points habitent la moitié inférieure
de la diagonal. Néanmoins, les différents résultats sur les diagrammes de persistance, notamment
ceux liés & sa stabilité (section 3.5), peuvent étre appliqués avec de petites variations dans notre
cas discret.

Nous remarquons que, méme si nous avons exposé la méthode en imaginant que la valeur 7
augmente progressivement, au niveau algorithmique tous les points du diagramme de persistance
peuvent étre calculés d’une fagon directe : au début, et aussi aprés chaque fusion, on parcourt tous
les sommets ordonnés en fonction de f en cherchant, pour un sommet ¢ avec son pic correspon-
dant p;, un voisin k dans un cluster différent qui satisfait f(k:) > f(z) et f(pk) < f(pz) (resp.
F(pr) < f(ps)). Dans ce cas, on assigne la valeur y = f(p) — f(i) au cluster du sommet k, et tous
ses sommets sont étiqt}etés avec le cluster du sommet 4, et p; devient son nouveau pic (resp. on

assigne la valeur y = f(p;) — f (7) au cluster du sommet ¢, et tous ses sommets sont étiquetés au
cluster du sommet k, et pi devient son nouveau pic).

Dans tous les cas, ce diagramme de persistance devient trés utile pour choisir une bonne valeur de
7 pour lalgorithme original, exposé a la section précédant : il convient de regarder quels points sont
de maniére naturel plus éloignés de la diagonale (et combien il y en a); puis, nous choisissons une
valeur 7 inférieure a sa proéminence, les laissant intacts & la fin. En fait, aprés avoir calculé toutes
les proéminences relatives pour dessiner le diagramme de persistance, on peut coder l'algorithme
d’une maniére encore plus intuitive : au lieu de donner une valeur 7 d’entrée, on donne le numéro
de clusters final souhaité m, et les fusions continuent de se produire jusqu’a ce que seulement les
m clusters les plus proéminents restent. Cependant, il faut prendre en compte que 'algorithme ne
peut pas fusionner des composantes connexes différentes (qui ont une proéminence "infinie").

4.5. Mise en ceuvre de ’algorithme et exploration

L’algorithme ToMATo exposé & ce chapitre vient d’étre implémenté & Python/ C++ et ajouté
a la libraire GUDHI |[8|, une des librairies de référence de la TDA. Cette librairie open-source,
codée en C++ mais avec une interface Python, offre des méthodes et ressources pour construire
des complexes simpliciales et d’autres structures sur des nuages de points, et calculer les différents
types d’homologie persistante.

La partie la plus pratique de ce travail a été de bien comprendre cette implémentation, réalisée
par le chercheur Marc Glisse. Puis, nous avons essayé de tester ses limites et possibles erreurs.
Cela a été fait par correspondance virtuelle avec plusieurs Jupyter notebooks. Cela a impliqué un
apprentissage continue de Python et d’autres outils de programmation qui sont trés pratiques et
habituels dans le monde de la science des données et sur le marché du travail en général.

Finalement, avec le code déja définitif, il paraissait approprié de préparer aussi un tutoriel de
référence (en anglais) montrant toutes les options du code. Dans ce dernier, plusieurs exemples
illustratifs aideraient et guideraient les utilisateurs potentiels. Le tutoriel final est annexé en PDF
a la fin de ce travail. Il peut aussi étre consulté en version HTML (de fagon temporaire) avec le lien
nilgarces.com/tomato.html.
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A handy guide to using the ToMATo algorithm

Introduction

This code is an implemention of the ToMATo algorithm exposed in [1], a clustering method based on the idea of
topological persistance. In short, the algorithm needs a density estimation (so to each point x we associate a value

f (;c)) and a neighborhood graph. First, it starts with a mode-seeking phase (naive hill-climbing) to build the initial
clusters (each with its own mode), following the connected points in the neighborhood graph. Finally, it merges these
initial clusters based on their prominence. This merging has a hierarchical nature, i.e. we always obtain the successive
new clusters by merging two existing ones.

The merging phase depends on a parameter, which is the minimum prominence a cluster needs to avoid getting merged
into another, adjacent, bigger cluster (i.e. with a higher associated mode); thus, it determines to a great extent the
obtained number of clusters. In practice, the convenience of this parameter depends on the input graph and the density
estimation, and it can be hard to choose it properly. This is why, in our implemention, we allow instead the option to
choose the "desired" final number of clusters n, and the algorithm itself, after computing the initial clusters as well as their
prominences, keeps merging them "parameterless-ly" until only the n clusters with highest prominence remain (if
possible).

Along with the clustering itself, the algorithm also produces the persistence diagram of the merge tree of the initial
clusters. This is a really convenient graphical tool to help decide the "natural" number of clusters in our input data. We
explain its interpretation briefly in the section "Output information”.



Input data format

As mentioned, the algorithm needs a neighborhood graph of the data and a value associated each entry (an estimation of
f over it). Given that, in many situations, the input data is a point cloud (i.e. a set of n observations each with p numerical
features), the code provides a few density estimators and graph constructions over them for convenience, but advanced
users may provide their own graph and density estimates instead of point coordinates.

Since the algorithm essentially computes basins of attraction, it is also encouraged to use it on functions that do not
represent densities at all.

For an input point cloud, the density estimation and graph construction methods that have been implemented are:

« For density estimation, the ubiquitous Kernel Density Estimation (KDE for short) can be used (using the scikit-learn
library), and also the Distance-to-a-Measure method (DTM), a bit more experimental and recently developed to face
more efficiently the potential presence of outliers; more information about it can be found in the tutorial [2] and the
paper [3]. The logarithmic versions of both estimation methods are also implemented.

 Regarding the building of the graph, there is the option to construct the k-NN graph (where, for each vertex, an edge
is created between it and its k nearest neighbors), and the r-radius graph (where an edge is created whenever two
vertices lay in a distance less than 7). Obviously, both parameters can (and should) be properly chosen. In the
following image we can see both constructions over a point cloud in the square 1x1 (first image); in the second one,
we have the k-NN graph (with k=4), while in the third we have the r-radius graph (with 7=0.3):
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Output information

At the end, the algorithm outputs basically two informations of interest:

In all cases, it produces the (0-dimensional) persistance diagram of the merging process of the initial clusters. In short,
this is a graphical representation of the lifespan of the different clusters as we keep diminishing the prominence threshold.

At the beginning, we have a point for each initial cluster, which also has an associated peak (the vertex with the highest
estimate of f, a "mode" of f). Then, we start looking for merges of these clusters, by melding them with neighboring
clusters with higher associated peaks. To do so, we basically keep checking, for the different vertices ¢ (in decreasing
order), which "neighboring” peaks p; lower than p; satisfy f (pj) < f(z) + 7, where T is our prominence value. When
this happens, we merge the whole cluster associated to that peak p; to the one in which 1 belongs, forming a new, bigger
cluster, still with peak p; . The higher T needs to be before this happens, the more prominent is p; and its associated
cluster.

In a persistance diagram, all this information is encoded in the following way: there is a point (x, y) for each initial cluster.
The x coordinate is the value of its associated peak p. The y coordinate is the value f (p) — 7 from which we can find a

"neighboring point" of that peak, but belonging to a different cluster, with equal or greater f; equivalently, it is the highest
neighbor of p not belonging to the cluster it defines. Thus, the length of vertical line connecting (3:, y) with the diagonal,
or equivalently x — v, is the prominence of the peak. In consequence, to get an idea of the real number of clusters, it is
natural to look for the number of points in the persistance diagram further away from the diagonal. The points associated
to a peak of a cluster which never dies (i.e. it never gets merged, so it forms a connected component at the end) are
colored in green.
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In view of the persistance diagram obtained, it is then natural to ask for a specific number of clusters at the end, or to
specify a certain persistance threshold. After this has been stipulated, the algorithm also outputs a numerical "label" for
each entry in the input data (in the same order they have been introduced, whatever the format): the cluster it has been
assigned to. This labelling is saved in the attribute "labels_" as an ordered vector, so it can be easily used to plot the data
in different colors or formats depending on their assigned cluster.

THE TOMATO CLASS

The code now

This is the current version of the code in the Gudhi Library:



In [63]:

This file 1is part of the Gudhi Library - https://gudhi.inria.fr/ - which is release
under MIT.
See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license detail

Author(s): Marc Glisse
Copyright (C) 2020 Inria

#
d
#
s
#
#
#
#
# Modification(s):

# - YYYY/MM Author: Description of the modification
import numpy

from ..point_cloud.knn import KNearestNeighbors

from ..point_cloud.dtm import DTMDensity

from ._tomato import *

# The fit/predict interface 1s not so well suited...

class Tomato:

This clustering algorithm needs a neighborhood graph on the points, and an estima
tion of the density at each point.

A few possible graph constructions and density estimators are provided for conven
ience, but it is perfectly natural

to provide your own.

:Requires: “SciPy <installation.html#scipy> _, “Scikit-learn <installation.html#s
cikit-Learn>"_ or others
(see :class: ~gudhi.point_cloud.knn.KNearestNeighbors™) in function of the op
tions.

Attributes
n_clusters_: 1int
The number of clusters. Writing to it automatically adjusts " labels_ .
merge_threshold : float
minimum prominence of a cluster so it doesn't get merged. Writing to it autom
atically adjusts "labels_ .
n_Lleaves_: 1int
number of Lleaves (unstable clusters) in the hierarchical tree
Leaf _Labels_: ndarray of shape (n_samples, )
cluster Llabels for each point, at the very bottom of the hierarchy
Labels_: ndarray of shape (n_samples,)
cluster Llabels for each point, after merging
diagram_: ndarray of shape ("n_leaves ~, 2)
persistence diagram (only the finite points)
max_weight_per _cc_: ndarray of shape (n_connected_components, )
maximum of the density function on each connected component. This corresponds
to the abscissa of infinite
points in the diagram
children_: ndarray of shape ( n_Lleaves_"-n_connected _components, 2)
The children of each non-leaf node. Values less than "n_leaves ~ correspond t
o leaves of the tree.
A node i greater than or equal to "n_leaves_" 1is a non-leaf node and has chil
dren children_[1 - "n_leaves_"].
Alternatively at the i-th iteration, children[i][@] and children[i][1] are me
rged to form node "n_Lleaves =~ + 1
weights : ndarray of shape (n_samples,)
weights of the points, as computed by the density estimator or provided by th
e user
params_: dict



Parameters Like metric, etc

mnn

def init_ (
self,
graph_type="knn",
density type="1logDTM",
n_clusters=None,
merge_threshold=None,

# eliminate_threshold=None,
# eliminate_threshold (float): minimum max weight of a cluster so i
t doesn't get eliminated
**params
):
Args:

graph_type (str): 'manual’', 'knn' or 'radius'. Default is 'knn'.
density type (str): 'manual', 'DTM', 'logDTM', 'KDE' or 'lLogKDE'. When yo
u have many points,
'"KDE' and 'LogkDE' tend to be slower. Default is 'LogDTM'.
metric (str[Callable): metric used when calculating the distance between
instances in a feature array.
Defaults to Minkowski of parameter p.
kde_params (dict): 1if density type is 'KDE' or 'lLogKDE', additional param
eters passed directly to
Sklearn.neighbors.KernelDensity.
kR (int): number of neighbors for a knn graph (including the vertex itsel
f). Defaults to 1e.
R_DTM (int): number of neighbors for the DTM density estimation (includin
g the vertex itself).
Defaults to k.
r (float): size of a neighborhood if graph_type is 'radius'. Also used as
default bandwidth in kde_params.
eps (float): (1+eps) approximation factor when computing distances (ignor
ed in many cases).
n_clusters (int): number of clusters requested. Defaults to None, i.e. no
merging occurs and we get
the maximal number of clusters.
merge_threshold (float): minimum prominence of a cluster so it doesn't ge
t merged.
symmetrize_graph (bool): whether we should add edges to make the neighbor
hood graph symmetric.
This can be useful with k-NN for small k. Defaults to false.
p (float): norm L”p on input points. Defaults to 2.
g (float): order used to compute the distance to measure. Defaults to di
m.
Beware that when the dimension is large, this can easily cause overfl
ows.
dim (float): final exponent in DTM density estimation, representing the d
imension. Defaults to the
dimension, or 2 when the dimension cannot be read from the input (met
ric is "precomputed”).
n_jobs (int): Number of jobs to schedule for parallel processing on the C
PU.
If -1 is given all processors are used. Default: 1.
params: extra parameters are passed to :class: ~gudhi.point_cloud.knn.KNe
arestNeighbors™ and
:class: ~gudhi.point _cloud.dtm.DTMDensity .
# Should metric="'precomputed' mean 1input_type='distance matrix'?
# Should we be able to pass metric='minkowski' (what None does currently)?
self.graph_type_ = graph_type
self.density_type_ = density_type



self.params_ = params
self. n_clusters = n_clusters
self. merge threshold = merge threshold
# self.eliminate_threshold = eliminate_threshold
if n_clusters and merge_threshold:
raise ValueError("Cannot specify both a merge threshold and a number of c
lusters")

def fit(self, X, y=None, weights=None):
Args:
X ((n,d)-array of float[(n,n)-array of float|Sequence[Iterable[int]]): co
ordinates of the points,
or distance matrix (full, not just a triangle) if metric is "precompu
ted"”, or List of neighbors
for each point (points are represented by their 1index, starting from
) if graph type 1is "manual".
weights (ndarray of shape (n_samples)): if density type is 'manual’', a de
nsity estimate at each point
y: Not used, present here for API consistency with scikit-Llearn by conven
tion.

# TODO: First detect if this 1is a new call with the same data (only threshold
changed?)

# TODO: less code duplication (subroutines?), less spaghetti, but don't compu
te neighbors twice if not needed. Clear error message for missing or contradictory pa
rameters.

if weights is not None:

density type = "manual”
else:
density type = self.density type_
if density type == "manual":
raise ValueError("If density_type is 'manual', you must provide weigh
ts to fit()")

if self.graph_type_ == "manual":
self.neighbors_ = X
# FIXME: uniformize "message 'option''

1

vs 'message "option"'

assert density_type == "manual", 'If graph_type is "manual", density_type
must be as well’
else:
metric = self.params_.get("metric", "minkowski™)
if metric != "precomputed":

self.points_ = X

# Slight complication to avoid computing knn twice.
need_knn = @
need_knn_ngb = False
need_knn_dist = False
if self.graph_type_ == "knn":
k_graph = self.params_.get("k", 10)
# If X has fewer than R points...
if k_graph > len(X):
k_graph = len(X)
need_knn = k_graph
need_knn_ngb = True
if self.density type in ["DTM", "logDTM"]:
k = self.params_.get("k", 10)
k_DTM = self.params_.get("k_DTM", k)
# If X has fewer than kR points...
if k_DTM > len(X):
k_DTM = len(X)
need_knn = max(need_knn, k_DTM)



need_knn_dist = True
# 1f we ask for more neighbors for the graph than the DTM, getting the di
stances 1s a slight waste,
# but 1t Looks negligible
if need knn > 0:
knn_args = dict(self.params_)
knn_args["k"] = need_knn
knn = KNearestNeighbors(return_index=need_knn_ngb, return_distance=need k
nn_dist, **knn_args).fit_transform(
X
)
if need_knn_ngb:
if need_knn_dist:
self.neighbors_ = knn[@][:, @:k_graph]
knn_dist = knn[1]
else:
self.neighbors_ = knn
elif need knn_dist:
knn_dist = knn
if self.density type_in ["DTM", "logDTM"]:
dim = self.params_.get("dim")
if dim is None:
dim = len(X[@]) if metric != "precomputed" else 2
q = self.params_.get("q", dim)
weights = DTMDensity(k=k_DTM, metric="neighbors", dim=dim, g=q).fit_trans
form(knn_dist)
if self.density type == "logDTM":
weights = numpy.log(weights)

if self.graph_type == "radius":
if metric in ["minkowski", "euclidean", "manhattan", "chebyshev"]:
from scipy.spatial import cKDTree

tree = cKDTree(X)
# TODO: handle "L1" and "L2" aliases?
p = self.params_.get("p")

if metric == "euclidean":
assert p is None or p == 2, "p=" + str(p) + " is not consistent w
ith metric='euclidean'"
p =2
elif metric == "manhattan":
assert p is None or p == 1, "p=" + str(p) + " is not consistent w
ith metric="'manhattan'"
p =1
elif metric == "chebyshev":
assert p is None or p == numpy.inf, "p=" + str(p) + " is not cons
istent with metric='chebyshev'"
p = numpy.inf

elif p is None:

p =2 # the default
eps = self.params_.get("eps", @)
self.neighbors_ = tree.query_ball tree(tree, r=self.params_["r"], p=p

» eps=eps)

# TODO: sklearn's NearestNeighbors.radius_neighbors can handle more metri
cs efficiently via its BallTree
# (don't bother with the _graph variant, it just calls radius_neighbors).
elif metric != "precomputed":
from sklearn.metrics import pairwise distances

X = pairwise_distances(X, metric=metric, n_jobs=self.params_.get("n_j
obs"))
metric = "precomputed"



if metric == "precomputed”:
# TODO: parallelize? May not be worth it.
X = numpy.asarray(X)

r = self.params_["r"]
self.neighbors_ = [numpy.flatnonzero(l <= r) for 1 in X]

if self.density type in {"KDE", "logKDE"}:

f.points_)

# Slow. ..
assert (

self.graph_type != "manual" and metric != "precomputed"
), "Scikit-learn's KernelDensity requires point coordinates"”
kde_params = dict(self.params_.get("kde_params", dict()))
kde_params.setdefault("metric", metric)
r = self.params_.get("r")
if r is not None:

kde_params.setdefault("bandwidth", r)
# Should we default rtol to eps?
from sklearn.neighbors import KernelDensity

weights = KernelDensity(**kde_params).fit(self.points_).score_samples(sel

if self.density_type_ == "KDE":
weights = numpy.exp(weights)

# TODO: do it at the C++ lLevel and/or in parallel if this is too slow?
if self.params_.get("symmetrize_graph"):

self.neighbors_ = [set(line) for line in self.neighbors_]
for i, line in enumerate(self.neighbors_):
line.discard(i)
for j in line:
self.neighbors_[j].add(i)

self.weights_ = weights
# This 1is where the main computation happens

self.leaf_labels , self.children_, self.diagram_, self.max_weight_per_cc_ = h
ierarchy(self.neighbors_, weights)

self.n_leaves = len(self.max_weight per cc_) + len(self.children_ )

assert self.leaf labels_.max() + 1 == len(self.max_weight_per_cc_) + len(self
.children_)

# TODO: deduplicate this code with the setters below
if self._ merge_threshold:

assert not self. n_clusters
self. n_clusters = numpy.count_nonzero(

self.diagram [:, 0] - self.diagram [:, 1] > self._ merge_ threshold
) + len(self.max_weight_per_cc_)

if self._n_clusters:

# TODO: set corresponding merge_threshold?

renaming = merge(self.children_, self.n_leaves_, self._ n_clusters)
self.labels = renaming[self.leaf labels ]

# In case the user asked for something impossible.

# TODO: check for impossible situations before calling merge.
self. n clusters = self.labels .max() + 1

else:

self.labels = self.leaf labels_
self._n_clusters = self.n_leaves_

return self

def fit_predict(self, X, y=None, weights=None):

RN

Equivalent to fit(), and returns the ~labels_".

URINT

return self.fit(X, y, weights).labels_



# TODO: add argument kR or threshold? Have a version where you can click and it sh
ows the Lline and the corresponding R?
def plot_diagram(self):

mwnon

URINT

import matplotlib.pyplot as plt

1 = self.max_weight_per_cc_.min()

r = self.max_weight per cc_.max()

if self.diagram .size > 0:
plt.plot(self.diagram_[:, 0], self.diagram_[:, 1], "ro")
1 = min(1l, self.diagram_[:, 1].min())
r = max(r, self.diagram_[:, ©].max())

if 1 == r:
if 1> 0:
1, r=0.9*1, 1.1 * r
elif 1 < o:
1, r=1.12 %1, 6.9 * r
else:
1, r = -1.0, 1.0
plt.plot([1, r], [1, r])
plt.plot(

self.max_weight per cc_, numpy.full(self.max_weight per_cc_.shape, 1.1 *
1-0.1*r), "ro", color="green"
)
plt.show()

# Use set_params instead?

@property

def n_clusters (self):
return self. n clusters

@n_clusters_.setter
def n_clusters_(self, n_clusters):
if n_clusters == self. n_clusters:
return
self. n _clusters = n_clusters
self.__merge_threshold = None
if hasattr(self, "leaf_labels "):
renaming = merge(self.children_, self.n_leaves_, self.__n_clusters)
self.labels = renaming[self.leaf labels ]
# In case the user asked for something impossible
self._n_clusters = self.labels_.max() + 1

@property
def merge_threshold (self):
return self._ merge_threshold

@merge_threshold_.setter
def merge threshold (self, merge_threshold):
if merge_threshold == self.__merge_threshold:

return
if hasattr(self, "leaf_labels "):
self.n_clusters_ = numpy.count_nonzero(self.diagram [:, 0] - self.diagram

_[:, 1] > merge_threshold) + len(
self.max_weight_per_cc_
)
else:
self. n _clusters = None
self. merge_threshold = merge_threshold



Description

Parameters

By "parameters" we mean the information we (must) provide to construct a specific instance of the class. They are given

as arguments in the constructor function "__init__":

graph_type (str): 'manual’, 'knn' (default) or 'radius’'.

density_type (str): 'manual’, 'DTM', 'logDTM' (default), 'KDE' or 'logkKDE'. With many points, 'KDE' and 'logKDE' tend
to be slower.

n_clusters (int): number of clusters requested. Defaults to None, i.e. no merging occurs and we get the maximal
number of clusters.

merge_threshold (float): minimum prominence of a cluster so it doesn't get merged.

(Naturally, both n_clusters and merge_threshold cannot be provided simultaneously, as it can be deduced from the
explanation of the algorithm)

metric (str|Callable): metric used to compute the pairwase distances between points (if we don't input them). If
None, use Minkowski of parameter p.

kde_params (dict): if density_type is 'KDE' or 'logKDE', additional parameters passed directly to
sklearn.neighbors.KernelDensity.

k (int): number of neighbors for a k-NN graph (including the vertex itself). Defaults to 10.

k_DTM (int): number of neighbors for the DTM density estimation (including the vertex itself). Defaults to k.

r (float): size of a neighborhood if graph_type is 'radius'. Also used as default bandwidth in kde_params.

eps (float): approximation factor when computing nearest neighbors (ignored in many cases).

symmetrize_graph (bool): whether we should add edges to make the neighborhood graph symmetric. This can be
useful with k-NN for small k. Defaults to false.

p (float): norm L*p on input points (numpy.inf is supported without gpu). Defaults to 2.

dim (float): final exponent in DTM density estimation, representing the dimension. Defaults to the dimension, or 2
when the dimension cannot be read from the input (metric is "precomputed"”).

q (float): order used to compute the distance to measure. Defaults to dim. Beware that when the dimension is large,
this can easily cause overflows.

n_jobs (int): Number of jobs to schedule for parallel processing on the CPU. If -1 is given all processors are used.
Default: 1.

params: extra parameters are passed to the classes gudhi.point_cloud.knn.KNearestNeighbors and
gudhi.point_cloud.dtm.DTMDensity , for example 'implementation="keops™ for the first one.



Attributes

By "attributes" we mean the properties, or variables, created within a class: they store its information, allow it to run some
of its methods and functionalities, etc... We recall also that, as a common practice, the attributes of a class (those defined
with self.) usually have some " _" in its name to make them more distinguishable within the code.

Naturally, the values of most of the attributes depend on the instance itself, and, depending on it, some of them will be
present or not. Actually, many of the previous parameters have their corresponding attribute, as for example n_clusters_
and merge_threshold_ (which, when modified, can alter the values of other attributes, as the .setter propery shows), or
they are stored inside the "params_" dictionary; input_type, metric,...

Other important attributes which are created specifically to run the desired methods and are not given as parameters are:

n_leaves_ (int): Number of leaves (unstable clusters) in the hierarchical tree. Basically, the number of "temporary"

clusters (or mini-clusters) we have along the way.

» leaf_labels_ (ndarray of shape (n_samples)): Cluster labels for each point, at the very bottom of the hierarchy.

« labels_ (ndarray of shape (n_samples)): Cluster labels for each point, after merging. Writing to n_clusters_ and
merge_threshold_ automatically adjusts it.

« diagram_ (ndarray of shape (n_leaves_, 2)): Persistence diagram (only the finite points).

» weights_: (ndarray of shape (n_samples,)): Weights of the points, as computed by the density estimator or provided
by the user.

» max_weight_per_cc_: (ndarray of shape (n_connected_components,)): Maximum of the density function on each

connected component. This corresponds to the abscissa of infinite points in the diagram.

Methods

The Tomato class contains, in essence, two methods:

« The first one is the .fit method, which does basically everything: it processes the input data taking into account its
format and the given arguments, it does the merging process depending on them, does the labelling of the entries
and stores the points that will eventually form the persistance diagram. The method .fit_predict is identical, but it
returns the labels vector. Both of them take as the input the coordinates of the points/ distance matrix/ neighborhood
matrix, and possibly a "weights" vector, the estimate of f on each entry.

« The second one is the .plot_diagram method, without arguments, that plots the persistance diagram (after the fit
method).

EXAMPLES AND TESTS

Example 1

We start with a really simple example with a few hundreds points to get used to manipulating the Tomato class.



In [32]: dimport matplotlib.pyplot as plt

cmap = plt.cm.Spectral;
fig, ax = plt.subplots();

import random as rd
import numpy as np

# Simple function to get random values for x uniformly but within intervals (0,a) U
(b, 1)
def x_var(x):
if x > 0.5:
return rd.uniform(0.6, 1)
else:
return rd.uniform(e, 0.4)

pl = np.zeros((200,2))

for i in range(200):
pl[i,0] = x_var(rd.uniform(0,1))
pl[i,1] = rd.uniform(©,1)

ax.cla()
ax.scatter(*zip(*pl1));
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There are "clearly" two main groups of points.

Let's suppose we don't know that, so we run the Tomato algorithm blindly. We use the KDE (without specifying extra
parameters, thus using the default parameters in Scikit-Learn) and the radius graph with 7= 0.1. We want to take a look
at the persistance diagram:



In [57]: dimport gudhi
from gudhi.clustering.tomato import Tomato

exl = Tomato(
input_type="points",
metric="euclidean",
graph_type="radius",
density type="KDE",
#n_clusters=2,

r=0.1,
)
labels = ex1l.fit predict(pl)
print(labels)

print("\nThere are " + str(exl.n_clusters_) +
ex1l.plot_diagram()

initial clusters")

[1416310©023130300414141203143141213316290
3200061022601827426111445210016234322
3112106241032113204323033014003036345
1000610100231124020432142202162024402
©13524411124113306510143142114131612220
2010223010410 6 4]

There are 9 initial clusters
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Even if n_clusters_ gives us 9 initial clusters (when we don't specify the parameter n_clusters in Tomato no merging
occurs), we can see from the bottom-right that there are clearly two more prominent groups, but four connected
components. Indeed, let's output the graph built on top of our data:



In [58]: from gudhi.point_cloud.knn import KNearestNeighbors
X = np.array(pl)
nbrs = KNearestNeighbors(k=30, return_distance= True)
indices, distances = nbrs.fit_transform(X)
plt.plot(X[:,0], X[:,1], '0")
for i in indices:
Y = np.zeros((2,2))
for j in range(len(i)):
if distances[int(i[@]), j] < ©.1:
v[e][e]= X[int(i[e])][e]
Y[1][e]= X[int(i[e])][1]
v[e][1]= X[int(i[]])][e]
Y[1][1]= X[int(i[j])][1]
plt.plot(Y[@], Y[1], 'ro-")

plt.show()
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Even if we know that "there are" two main clusters, we cannot force the algorithm to output them, because there is no
way the algorithm can merge disconnected components. We don't have problems if we ask for a bigger number of
clusters:

In [61]: exl.n_clusters_ = 6
print(exl.n_clusters )
print(exl.labels_ )

exl.n_clusters_ = 2
print(exl.n_clusters_)
print(exl.labels_ )

6
[1111310©2313030011111120©3113111213311090
3200011022101524121111111210011231322
3112101211032113201323033011003031311
10001101002 31121020132112202112021102
©1312111112111330©1101131121111311122090
201022301011011]

4
[111101000100000111111000110111010011090
0000011000101 302101111111010011001000
90110101011000110001000000011000001011
1000110100001 101000100110000110001100
©101011111011100011011011011110111000
001000001011011]



Unsurprisingly, if we plot the points with different colors according to their labels, we don't get a very satisfying result:

In [62]: n = exl.n_clusters_
labels = ex1.labels_

norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()
ax.scatter(*zip(*pl), c=cmap(norm(labels)))
fig
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This is the reason why running the algorithm for different values of the parameters is a good idea, specially if the
algorithm produces persistance diagrams with several green dots (i.e. connected components) near the bottom-left part
(i.e. low, isolated peaks).

Here is the situation when we increase r to 0.15:



In [63]: ex1l = Tomato(
input_type="points",
metric="euclidean",
graph_type="radius",
density type="KDE",
n_clusters=2,
r=0.13,

)

n = exl.n_clusters_

print("We obtain " + str(n) +
labels = ex1l.fit predict(pl)
print(exl.labels_ )

clusters.™)

print("\nThe persistance diagram looks better, with just two connected components, an
d two prominent regions:")
ex1l.plot_diagram()

print("\nThe graph over which the algorithm runs is:")

plt.plot(X[:,0], X[:,1], 'o")
for i in indices:
Y = np.zeros((2,2))
for j in range(len(i)):
if distances[i[©]][]j] < ©.15:
v[e][e]= X[i[e]][e]
Y[1][e]= X[i[e]][1]
Y[o][1]= X[i[j]][e]
Y[1][1]= X[i[3]][1]
plt.plot(Y[@], Y[1], 'ro-")

plt.show()

print("\nAnd the plot of the points according to their label is:")
norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()

ax.scatter(*zip(*pl), c=cmap(norm(labels)))
fig
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The graph over which the algorithm runs is:
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And the plot of the points according to their label is:
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Example 2

We use now a rather typical example to test clustering algorithms: a point cloud sampled from two concentric circles:

In [97]: from sklearn import manifold, datasets
p2, y = datasets.make_circles(n_samples=1000, factor=.5, noise=.05)

ax.cla()
ax.scatter(*zip(*p2))
fig
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It is well known that many clustering methods perform poorly with non-convex groupings of data, as the one above. This
is not the case with the Tomato algorithm, which relies just on looking for "nearby" modes. We use now the k-NN graph
construction, with k=7, and the KDE again, specifying some of it parameters now (for more information, check the Scikit-
learn documentation):



In [98]: ex2 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="KDE",

kde _params = {"bandwidth": 1.3, "kernel": "epanechnikov"},
#n_clusters=2,

k=7,

eps=0.05,

)

ex2.fit_predict(p2)
ex2.plot_diagram()
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The diagram is not specially obvious; if this happens, it is in general a good idea tu run the algorithm with different values
in the parameters.

We also see that there are several connected components, more specifically 9; a quick way to know how many of them
we have is check the size of the attribute "max_weight_per_cc_":

In [99]: n = len(ex2.max_weight_per_cc_)
print("There are " + str(n) +

connected components™)

There are 9 connected components

Let's plot these components:



In [103]: ex2.n_clusters_ = n
labels = ex2.labels_

norm = plt.Normalize(vmin=0, vmax=n-1)
ax.cla()

ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig
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A bit frustrating; this is "natural" consequence of the the k-NN graph being directed. We can "solve" this by symmetrizing
the graph, although its effectiveness is uncertain. In this case it also makes sense to reduce k, as we add more edges:



In [102]: ex2 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="KDE",

kde _params = {"bandwidth": 1.3, "kernel": "epanechnikov"},
#n_clusters=2,

k=5,

symmetrize_graph = True,

eps=0.05,

)

ex2.fit_predict(p2)
ex2.plot_diagram()

n = len(ex2.max_weight _per_cc_ )
print("There are " + str(n) +

connected components™)

ex2.n_clusters_ = n
labels = ex2.labels

norm = plt.Normalize(vmin=0, vmax=n-1)
ax.cla()

ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig
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In general, and intelligent way to proceed would be to run the algorithm for different values of k and the bandwidth A, and
see for which values we obtain "good" persistance diagrams, with "clearly prominent clusters". This is what we do below,
where, for a fixed k and different values of A\, we compute the prominence of each point of the persistance diagram (

T — y), and we plot the information, as well as the number of connected components (number under every vertical bar)

in each case:



In [148]:

for n_neigh in range(6,12):

n_di
x_di
y_di
cc =
y_cc
band
band

agram = []
agram = []
agram = []
[]
= [1]
width_values = [0.1, 2, 0.1]

width = bandwidth values[9]

while bandwidth < bandwidth_values[1]:

for

plt.
plt.
plt.
plt.
plt.
plt.
1)
plt.
n =
for

fontdict
plt.

fig = pl

fig.set

ex2 = Tomato(

input_type="points",

metric="euclidean",

graph_type="knn",

density type="KDE",

kde_params = {"bandwidth": bandwidth, "kernel": "epanechnikov"},
#n_clusters=2,

k=n_neigh,

eps=0.05,

ex2.fit(p2)
cc.append(str(len(ex2.max_weight_per_cc_)))
init_clusters = len(ex2.diagram_ )
prominences = np.zeros(init_clusters)
for i in range(init_clusters):
prominences[i] = ex2.diagram_[i,0] - ex2.diagram_[1i,1]

##"Normalizing" prominences

max_prom = np.max(prominences)

for i in range(init_clusters):
prominences[i] /= max_prom

n_diagram.append(prominences)
bandwidth += bandwidth_values[2]

i in range(len(n_diagram)):

for j in range(len(n_diagram[i])):
x_diagram.append(bandwidth _values[@] + i*bandwidth_values[2])
y_diagram.append(n_diagram[i][j])
y_cc.append(-0.08)

title('Looking for clusters')

axis('tight")

ylabel('K =" + str(n_neigh-1))

ylim((-0.15, 1.1))

xlabel('bandwidth")

xticks(np.arange(bandwidth_values[@0], bandwidth_values[1], bandwidth_values[2

subplot(6, 1, n_neigh-5)
int((bandwidth_values[1]-bandwidth_values[@])/bandwidth_values[2]) + 1

i in range(n):

plt.text(-0.02 + bandwidth_values[@] + i*bandwidth_values[2], y_cc[i], cc[i],
={'weight': 'bold', 'size': 10})

scatter(x_diagram, y_diagram)

t.gcf()
size_inches(8, 32)

plt.show()
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0.3, two more prominent clusters appear consistently, for all

One can see, for example, that when the bandwidth is A

the last values of k, and we always get two connected components. If we run Tomato with these parameters, we obtain

the "desired" result:



In [185]: ex2 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="KDE",
kde params = {"bandwidth": 0.3, "kernel": "epanechnikov"},
n_clusters=2,
k=9,
eps=0.05,
)

labels = ex2.fit predict(p2)
ex2.plot_diagram()

norm = plt.Normalize(vmin=0, vmax=1)
fig, ax = plt.subplots()

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)));
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Example 3

We do now a rather spectacular example in 3D just to show the effectiveness of the algorithm to separate clusters with
different shapes. We will generate, using points, a cube, a sphere, and a "swiss roll", together with some noise:



In [157]:

import mpl_toolkits.mplot3d.axes3d as plt3
from sklearn.datasets import make_swiss_roll

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70)

points cube = 1000
points_sphere = 800
#points_Line = 700
points_sr = 86000
points_noise = 2000

X1 = np.zeros((points_cube, 3))
for i in range(points_cube):
X1[i,e], X1[i,1], X1[i,2] = rd.uniform(-2,2), rd.uniform(-2,2), rd.uniform(-2,2)

X2 = np.zeros((points_sphere, 3))
for i in range(points_sphere):
X2[i,0], X2[i,1], X2[1i,2] rd.uniform(-1,1), rd.uniform(-1,1), rd.uniform(-1,1)
X2[i,0], X2[i,1], X2[i,2] = 12 + 3*X2[1,0]/np.sqrt(X2[1i,0]**2 + X2[1,1]**2 + X2[1i
,2]**%2), 15 + 3*X2[1,1]/np.sqrt(X2[i,0]**2 + X2[1i,1]**2 + X2[i,2]**2), -4 + 3*X2[i,2]
/np.sqrt(X2[i,0]**2 + X2[1i,1]**2 + X2[i,2]**2)

mon

X3 = np.zeros((points_Line, 3))
for i in range(points_Line):
param = rd.uniform(-15, 15)
x3[i,0], X3[1,1], X3[1,2] = 2 - param*@.7, 4 + param*0.7, 2 - param*@.6
X3[:,0] += 0.02*np.random.randn(points_Line)
X3[:,1] += 0.02*np.random.randn(points_L1ine)
X3[:,2] += 0.02*np.random.randn(points_Line)

mon

X4, = make_swiss roll(n_samples=points sr, noise=.05)

X5 = np.zeros((points_noise, 3))
for i in range(points_noise):

X5[i,0], X5[i,1], X5[i,2] = rd.uniform(-10,15), rd.uniform(-5,20), rd.uniform(-10
»15)

X
X

np.concatenate((X1,X2,X4,X5))
np.array(X)

ax.scatter(X[:, @], X[:, 1], X[:, 2], color="red", s=4);



In [158]: ax.view_init(50, -150)
fig3

Out[158]:

Let's run the algorithm with k£-NN and the logDTM estimation. We also use the parameter n_jobs=-1, which becomes
useful to increase the computational power when the size of our dataset becomes large, even though in our case we
don't have an specially high number of points:



In [159]: ex3 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="1logDTM",
#n_clusters=2,
#symmetrize graph= True,

k=9,
n_jobs=-1,
)
ex3.fit(X)

ex3.plot_diagram()
print(ex3.labels )

[158 88 158 ... 436 382 174]

We see 2-3 prominent clusters in the persistance diagram. We can "identify" the noise by checking which points have a
low estimate, and creating a new label. We plot the result at the end:



In [180]: ex3.n_clusters = 3
label = ex3.labels_

for i in range(len(X)):
if ex3.weights [i] < ©.5:
label[i] = 3

print(label)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -79)

for 1 in np.unique(label):
ax.scatter(X[label == 1, 0], X[label == 1, 1], X[label == 1, 2],
color=plt.cm.inferno(np.float(l) / np.max(label + 1)),
s=3)

[0600 ... 33 3]

In [181]: ax.view_init(50, -150)
fig3

out[181]:




The swiss roll is not completely clustered and it gets separated into two regions due to the presence of the sphere; we
cannot expect our algorithm to distinguish them properly with an intersection so noticeable. The result with two clusters is
also quite satisfactory and more realistic, with the whole spiral and the sphere clustered together. We also see that, in
both cases, the noise is quite properly identified:

In [182]: ex3.n_clusters = 2
label = ex3.labels_

for i in range(len(X)):
if ex3.weights_[i] < ©.5:
label[i] = 2

print(label)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view init(7, -70)

for 1 in np.unique(label):
ax.scatter(X[label == 1, 0], X[label == 1, 1], X[label == 1, 2],
color=plt.cm.inferno(np.float(l) / np.max(label + 1)),
s=3)

[0600 ... 22 2]




In [183]: ax.view_init(50, -150)
fig3

Out[183]:

Example 4

In this example we explore the case in which we don't give the coordinates of the points directly, but the distances
between them.

To do so, we sample a set of points over the unit sphere, but not uniformly: we sample them first in the cube 1x1x1 using
a sigmoid function in each variable to concentrate them near the vertices and edges of the cube, and then we normalize
them. This creates naturally regions of the sphere with more points, more specifically the directions pointing towards the
vertices and edges of the cube:



In [188]: def sample_spherical(npoints):
vec = []
vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
vec.append(-90.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
vec /= np.linalg.norm(vec, axis=0)
return vec

npoints = 6000
points = sample_spherical(npoints)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view init(7, -79)

ax.scatter(points[9,:], points[1,:], points[2,:], s=3);

f 100
T075
T 050
T 025
T 0.00
T-0.25
T-0.50
T-0.75
T-1.00

st
~1.00-0.75-0.50-0 250,00 0.25 psg 0.75 100 80

We compute now the pairwise distances between all the points, using the "spherical" distance dg: the distance between
two points on the surface of a unit sphere with coordinates a = (a1, as, as) and b = (by, by, bs) is given by the
formula:

dg(a,b) = arccos(ab; + ab2 + azbs)

As we don't have many points, we can compute all pairwise distances without much problem:



In [189]: distance_matrix = np.zeros((npoints, npoints))

for i in range(npoints):
distance_matrix[i,i]= ©
for j in range(i+1l, npoints):
distance matrix[i,j] = np.arccos(points[@,i]*points[©,j] + points[1,i]*points
[1,j] + points[2,i]*points[2,]])
distance_matrix[j,i] = distance_matrix[i,]j]

print(distance_matrix)

[[e. 1.1558255 1.47491536 ...
[1.1558255 @. 1.83518165 ...
[1.47491536 1.83518165 O.

N

.68105662 0.94665096 0.8865952 ]
.77024725 1.71115835 1.14674659]
.12567266 2.05734047 0.7744797 ]

N R

[2.68105662 1.77024725 2.12567266 ... ©

. 1.88764992 2.57444621]
[0.94665096 1.71115835 2.05734047 ... 1.88764992 0. 1.80283258]
[0.8865952 1.14674659 ©.7744797 ... 2.57444621 1.80283258 0@. 1]

KDE and logKDE use the already-built Scikit-learn library and we cannot use them for a precomputed distance matrix.
We use logDTM insted of DTM to make the persistance diagram look more clear:

In [190]: ex4 = Tomato(
input_type="points",
metric="precomputed",
graph_type="knn",
density type="logDTM",
#n_clusters=2,
k=10,

)

ex4.fit(distance_matrix)
ex4.plot_diagram()
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There are 8 clear clusters, a quite expected result:



In [191]: ex4.n_clusters = 8
label = ex4.labels_

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(25, -160)

for 1 in np.unique(label):
ax.scatter(points[0, label == 1], points[1, label == 1], points[2, label == 1],
color=plt.cm.jet(np.float(l) / np.max(label + 1)),
s=3)

100
075
0.50
025
0.00
-0.25
-0.50
-0.75
-1.00

Example 5

We do another easy example just to get used to other input formats to our algorithm. In this one we will input ourselves
the weights of the points as well as a neighboring graph, which will just be a rectangular mesh in the square 10x10. For
the weights, we will be using the function:
Y =Y
) + cos ( ),
2

. (Tt
f(z,y) =sin (
plotted below. In this setting, our algorithm will be just looking for basins of attraction of our function.




In [208]: def f(x, y):
return 2+ np.sin(@.5*(x+y)) + np.cos(0.5%(x-y))

X = np.linspace(-10, 10, 30)
y = np.linspace(-10, 10, 30)
X, Y = np.meshgrid(x, y)

Z = f(X, Y)

fig = plt.figure()

ax = plt.axes(projection='3d")
ax.contour3D(X, Y, Z, 50, cmap='binary")
ax.set_xlabel('x")

ax.set_ylabel('y")

ax.set zlabel('z');

1007 g
5,
L2500,
X =30 15101]

In [198]: ax.view_init(70, -50)
fig

out[198]:

And now the points, with the neighboring graph:



In [200]: size mesh = 30
points = np.zeros((2, size _mesh**2))
arange = np.linspace(-10., 10., size_mesh)

#Coordinates of the points
for i in range(size_mesh):
for j in range(size_mesh):
points[@][i*size_mesh + j]
points[1][i*size_mesh + j]

arange[i]
arange[j]

#Neighboring graph
neigh_graph = []
for i in range(size_mesh):
for j in range(size_mesh):
neigh = []
if i > o:
neigh.append((i-1)*size_mesh + j)
if i < size_mesh -1:
neigh.append((i+1l)*size mesh + j)
if j > o0:
neigh.append(i*size_mesh + j-1)
if j < size_mesh -1:
neigh.append(i*size_mesh + j+1)
neigh_graph.append(neigh)

In [201]:  #Drawing the graph
plt.plot(points[9,:], points[1,:], 'o', markersize=2)

for i in range(len(neigh_graph)):

Y = np.zeros((2,2))

for j in neigh_graph[i]:
Y[0][@]= points[@][i]
Y[1][@]= points[1][i]
Y[@][1]= points[@][]]
Y[1][1]= points[1][]]
plt.plot(Y[@], Y[1], 'ro-', linewidth=2)

plt.show()
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We now associate the weights to the different points according to f, and run the Tomato algorithm to compute the basins
of attraction:



In [202]:

#We associate the weights
weights = np.zeros(size_mesh**2)
for i in range(size_mesh**2):
weights[i] = f(points[@][i], points[1][i])

#We run Tomato

ex5 = Tomato(
graph_type = "manual",
density type = "manual”

)

ex5.fit(neigh_graph, weights= weights)
ex5.plot_diagram()
print(ex5.diagram_)

4.0 1
35
3.0 1
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[[3.75212014 1.99409954]
[3.75212014 1.99409954]
[3.98535762 1.98244992]
[3.98535762 1.98244992]
[3.9737506 1.9824371 ]
[3.54402111 1.97677169]
[3.9882662 1.94776161]]



In [206]:

ex5.n_clusters = 7
labels = ex5.fit_predict(neigh_graph, weights= weights)

norm = plt.Normalize(vmin=0, vmax=6)
fig, ax = plt.subplots();

ax.cla()
ax.scatter(points[9,:], points[1,:], c=cmap(norm(labels)));
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In [209]: fig = plt.figure()
ax = plt.axes(projection="3d")
ax.contour3D(X, Y, Z, 50, cmap="binary', linewidths=0.5);
ax.set_xlabel('x")
ax.set_ylabel('y")
ax.set_zlabel('z");

points3d = np.zeros((3, size mesh**2))

for i in range(size_mesh**2):
points3d[@, i] = points[0,i]
points3d[1, i] = points[1,i]

z_coord = np.zeros(size mesh**2)
for 1 in np.unique(labels):

ax.scatter(points3d[0, labels == 1], points3d[1, labels == 1], points3d[2, labels
== 1], s=10)

ax.view_init(80, -50)

fig = plt.gcf()
fig.set_size_inches(12,7)
plt.show()

Example 6

In this last example, closer to the kind of datasets we could find in real life, we will work with the famous "Digits dataset”,
containing 1797 observations each with 64 features: each entry represents a (highly compressed) hand-written digit in a
8x8 grid, where each cell can vary from 0 to 16, representing its opacity. Naturally, the dataset also contains the correct
labels of each instance: a number from 0 to 9, the one written in the grid.



In [987]: #Load the digits dataset
digits = datasets.load_digits()

#Display the 25th digit
plt.figure(l, figsize=(3, 3))
plt.imshow(digits.images[25], cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()
o
1
2 4
3
4
5
6 -
7
] 2 4 i

It is well known the difficulty of performing data science algorithms in high dimension, and clustering is not an exception;
in fact, it is a process particularly sensitive to numerical data being sparse. Thus, even with dimensionality reduction
techniques, it's not a good idea to expect a brilliant performance of our algorithm in this setting. In any case, it is
interesting to see what kind of results we get. The results of other clustering methods over this dataset can be found in
[4].

In [1056]: digits, real_label = datasets.load_digits(return_X_y=True)

print(digits)

print(real_label)

[[ 6. ©. 5. ... 0. 0. 0.]
[ 0. ©. ©. ... 10. 0. 0.]
[ 0. ©. ©. ... 16. 9. 0.]
[ 0. ©. 1. ... 6. 0. 0.]
[ 0. ©. 2. ...12. 0. 0.]
[ 0. ©. 10. ... 12. 1. 0.]]

[012...809 8]

We can embed the dataset in the plane by using PCA dimensionality reduction. We observe that, with that reduction
level, the different clusters of numbers are somewhat distinguishable, but there is also considerable overlapping:



In [1009]: from sklearn.decomposition import PCA

pca = PCA(n_components=2)
digits_red = pca.fit_transform(digits)

def plot_clustering(X_red, labels, title=None):
x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
X _ red = (X_red - x_min) / (x_max - x_min)

plt.figure(figsize=(6, 4))
for i in range(X_red.shape[0]):
plt.text(X_red[i, 0], X_red[i, 1], str(y[i]),
color=plt.cm.nipy spectral(labels[i] / 10.),
fontdict={"weight': 'bold', 'size': 8})

plt.xticks([])

plt.yticks([])

if title is not None:
plt.title(title, size=15)

plt.axis('off")

fig = plt.gcf()

fig.set_size_inches(12,7)

plot_clustering(digits_red, real_label, title = "2d embedding of the digits dataset,
colors= real labels")

2d embedding of the digitg dataset, colors= real labels

@ o 0 ®

It's useless to try to run the algorithm without doing any kind of dimensionality reduction first: accurate density estimation
is almost always unsucessful with highly sparse data. We can try to use our algorithm after killing some dimensions first.
Wit our dataset, after some experimentation, when there are 11 dimensions left DTM density estimation looks quite well:



In [1110]: pca = PCA(n_components=11)
digits_red = pca.fit_transform(digits)

ex6 = Tomato(
input_type="points",
metric="euclidean",
graph_type="knn",
density type="1logDTM",
n_clusters=10,
k=9,

)

ex6.fit(digits_red)
ex6.plot_diagram()

—74 A

76

—78 1

T T T T T
=30 —28 -26 —24 -2

It looks like the algorithm found "naturally" 9-10 clusters, let's plot these 10 groups in 2D:



In [1100]: labels = ex6.fit_predict(digits_red)

pca = PCA(n_components=2)
digits_red = pca.fit_transform(digits_red)

plot_clustering(digits_red, labels, title = "2d embedding of the digits dataset, colo
rs= clusters")

2d embedding of the digifs dataset, colors= clusters
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The result looks suprisingly good, actually.

A way to measure the matching degree consists in computing the vector 10 - real_labels + clustering_labels, which
takes values ¢ {O, cees 99}, and then counting the number of times each number appears. In a perfect classification,

only 10 values would appear, more specifically 10 - ¢ 4 label;, with i € {0, cee, 10}; in a decent clustering, we should
at least see some clearly more prominent values, which is indeed what happens in our case!



In [1111]: vect_count = 10*real label + labels
print(vect_count)

count = np.zeros((2,100))

for i in range(100):
count[9,i]= 1

for i in vect count:
count[1,i] += 1

fig, ax = plt.subplots();
ax.cla()
ax.scatter(count[9,:], count[1,:], s=16);

[ 012 27 ... 82 97 87]
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From this graph it looks like most of the values have been properly grouped. Only the value 8 looks more mismatched.
We can also get an idea about how the numbers have been grouped or labeled using a table, and checking the columns
and rows: each of them should only contain one "big" value:



In [1102]: dimport pandas as pd
data = [[1, 2], [3, 4]]
pd.DataFrame(data, columns=["Foo", "Bar"])

table = []
for i in range(10):
row = []
#row.append(i)
for i in range(i*10, i*10 +10):
row.append(count[1, i])
table.append(row)

pd.DataFrame(table, columns=[ 'Label @', 'Label 1', 'Label 2', 'Label 3', 'Label 4',
"Label 5', 'Label 6', 'Label 7', 'Label 8', 'Label 9'])

Out[1102]:

Label 0 Label1 Label2 Label3 Label4 Label5 Label6 Label7 Label8 Label9
0 177.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 1.0 154.0 0.0 0.0 1.0 0.0 0.0 26.0 0.0
2 1.0 0.0 2.0 0.0 164.0 0.0 1.0 9.0 0.0 0.0
3 0.0 0.0 7.0 0.0 0.0 3.0 3.0 170.0 0.0 0.0
4 0.0 0.0 2.0 177.0 0.0 0.0 2.0 0.0 0.0 0.0
5 0.0 1.0 0.0 1.0 0.0 178.0 0.0 2.0 0.0 0.0
6 1.0 179.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 11.0
8 0.0 2.0 82.0 0.0 2.0 4.0 2.0 82.0 0.0 0.0
9 0.0 0.0 20.0 0.0 0.0 5.0 2.0 144.0 0.0 9.0

The clustering has been quite successful. In any case, the numbers 3's and 9's have been almost completely clustered
together (which is not that suprising, given the low resolution of the dataset), and the number 8 is almost evenly divided
between labels 2 (with the 1's) and 7 (with the 3's and 9's), again not very surprising.
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Dans les catégories abéliennes [Gro57] possédant assez de projectifs (resp. injec-
tifs), une fagon d’obtenir des invariants, dits homologiques, est de trouver un foncteur
exact a droite (resp. gauche) et de regarder I’homologie du foncteur evalué sur une ré-
solution projective (resp. injective), ce sont les foncteurs dérivés. Cependant, As—alg
n’est pas abélienne, mais elle posséde une structure de modele [Hin97], qui permet
quand méme d’obtenir des invariants homologiques. Ce sont les résolution cofibrantes
dans les catégories de modele qui jouent le role des résolutions projectives dans les
catégories abéliennes, et les adjonctions de Quillen qui jouent celui des foncteurs
exacts d'un coté.

Si on veut obtenir de fagon systématique une résolution cofibrante X 4 5 A,
on peut chercher un endofoncteur F : C — C, muni d’'une transformation naturelle
Me : F — Ide telle que les nx soient des équivalences faibles cofibrantes. A nouveaux,
une facon d’obtenir un endofoncteur et une transformation naturelle de celui-ci vers
I'identité, est de chercher une paire de foncteurs adjoints L et R puis de considérer
la counité de 'adjonction € : Lo R — Id.

C’est ce qu’on s’attachera a faire en détail dans la premiere partie (puis dans la

seconde partie) en construisant une adjonction :

Aug — dga — alg % Conil — dga — coalg
B



Table des matiéres

[1 Une adjonction cobar-bar pour les algebres associatives|

M1

Rappels et conventions| . . . . . . . .. ... ... ..

(1.1.1 Algebres| . . . . . . . .. .
(1.1.2  Coalgebres| . . . . . . . .. ...
[1.1.3  (Co)Algebres différentielles graduées| . . . . . ... ... ...

M2

3

Une resolution plus économe| . . . . . . . . .. ...

[1.3.1 Complexe de Koszul associé a une algebre quadratique] . . . .
[1.3.2  Construction de At < BYAC BA . . . ... ... ... ....

2 Cobar-bar pour les opérades algébriques|

PI

Introduction aux opérades algébriques| . . . . . . . .. .. ... ...

[2.1.2  Opeérades| . .. ... .. . ...
[2.1.3  Algebre universelle| . . . . . . ... ...

[2.1.4 Definition d'une opérade par compositions partielles| . . . . . .
[2.1.5  Opérade libre] . . . . . .. ..o o

P2

© o O O O

11
12
15
20
21
23



TABLE DES MATIERES

[2.3  Adjonction cobar-bar opéradique] . . . . . .. ..o

[2.3.1 Morphismes tordants| . . . . . ... ... ...

36
36
37
38

40
40
44

50



Chapitre 1

Une adjonction cobar-bar pour les

algebres associatives

Ce chapitre est tres largement inspiré de [LV12]. On fixe un corps K de caracté-
ristique nulle. Dans ce qui suit, les espaces vectoriels seront sur K et les applications
entre espaces vectoriels seront supposées linéaires (sauf mention du contraire). Les
algebres et coalgebres seront toujours supposées (co-)associatives et (co-)augmentées

et I'idéal d’augmentation sera surmonté d’une barre, sauf mention du contraire.

1.1 Rappels et conventions

On introduit ici les définitions et propriétés permettant d’atteindre rapidement

I’adjonction voulue.

1.1.1 Algebres

On rappelle la construction de 'algebre libre (unitaire) sur un espace vectoriel
V:

Construction 1.1. Soit T(V) := @ V®" le K-module tensoriel et iy := iy : V <
neN*
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T(V) Uinclusion canonique. T(V') muni du produit de concaténation p :
V1 @ . @, Vepi1 @ . @t (11 ® . @ 2) (L1 ® ... @ xp) =1 ® ... @ 1y,

est une algébre associative libre sur' V', notée F,(V'), ou juste F(V') si aucune confu-
sion n’est possible. L’algébre unitaire augmentée sur un espace vectoriel V- doit quant

a elle vérifier I'adjonction :

HomuAsfalg (.F(V), A) — HOH’IK(V, A)
f — f @) iV
Soit T(V) := @ VO™ le module tensoriel unitaire muni du produit de concaténation
neN

w décrit précédemment et de l'inclusion canonique iy @ V < T(V). Alors ce triplet

F(V):=(T(V), u,iy) est une algébre unitaire augmentée sur V.

Lemme 1.1. Soit M un T'(V)-bimodule et Der(T(V'), M) l’espace des dérivations
de T(V) dans M ([LV12] 1.1.6), alors

Der(T(V), M) — Homy (V, M)

d — dOiV

est un isomorphisme. Autrement dit toute application linéaire f : V — M s’étend de

fagon unique en une dérivation dy : T(V) — M :

Vo @..@u, i dp(1 @ .. Q) = Y. 01 ®...Q f(1;) @ ... ® vy,

1<i<n
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1.1.2 Coalgebres

Définition 1.1. On rappelle les notations de Sweedler :
Alr) =3 7 ® )

et la coassociativité :
2 . ; ik ik
A*(x) = %le ® Ty @ Ty
A

AMz) =22 Q... @),

)

= Y ath ® 27h ® 2, que U'on éerira : o) ® b ® a8,
2,7 (2

Définition 1.2. Une coalgebre coaugmentée (C, A) est dite conilpotente si
Vo € C,3n,Ym >n: A™(z) =0

Un morphisme de coalgebres conilpotentes est un morphisme de coalgebres coaug-

mentées. La catégorie des coalgebres conilpotentes est notée C'onil — Coalg.

Une coalgebre colibre conilpotente sur un espace vectoriel V' dans la catégorie des
coalgebres conilpotentes est la donnée d’une coalgebre conilpotente F¢(V') et d'une
application linéaire py : F¢(V) — V vérifiant la propriété que toute application
linéaire du coidéal d’augmentation d’une coalgebre conilpotente C' dans V' se reléve
en un morphisme de coalgebres coaugmentées C' — F¢(V). Une construction est
donnée par ce qui suit.

Construction 1.2. Soit T°(V) := @ V®" le module tensoriel, py :=m : T(V) —
neN

V' la premiere projection et le coproduit de déconcaténationE] :

V21®..0x, € T(V) : A(11®..02,) == Y 110...02;Nr,11Q...Qx, € T(V)RT(V)

0<i<n

Alors (T°(V'),py,A) est une coalgébre conilpotente colibre sur V', notée F¢(V'). Ob-

1. X est le produit tensoriel au dessus de K, noté différemment pour le discerner du produit
tensoriel ® interne a T'(V).
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servons que le coproduit réduit est donné par :

A1 ®..Qxp) = Y 711Q.07;RKr1Q...0z, € T(V)RT(V)

1<i<n—1

Définition 1.3. Soit (C, A) une coalgebre conilpotente. Une codérivation de C' est

une application linéaire d : C' — C vérifiant
Aod=(d®Id)oA+ (Id®d)o A

L’espace des dérivations de C' est noté Coder(C).

Lemme 1.2. L’application linéaire suivante

Coder(T(V)) — Homg(T<(V),V)

d — py od

est un isomorphisme.

Si f € Homg(T<(V'), V), alors la codérivation correspondante est donnée par

Ve idz)™ = Y Yrle..ef@)e.. 0

1<i<n j

Ou d(z)" est la composante dans V" de d(z) et A" (z) = Zx{ ®..Q 1.
j

1.1.3 (Co)Algebres différentielles graduées

Pour une introduction détaillée au cadre différentiel gradué, le chapitre 1 de
[LV12] est suffisant.
SiV =A{V;} e¢t W = {W,} sont des espaces vectoriels gradués, alors V @ W :=
{(VeoW),} ou
VeaW),:= P VieWw,
i+j=n

Le cas W =V induit par récurrence une graduation sur V" et donc sur T'(V) .
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Soit Ks I'espace vectoriel gradué engendré par s, concentré en degré 1. La suspen-
sion de 'espace vectoriel gradué V' est définie par : sV := Ks® V', et sa dé-suspension
sV par Ks7' ® V, ott Ks™! est concentré en degré -1.

L’espace des morphismes d’espaces gradués de degré r est noté Hom(V,W),.. Le bord
J(f) d’'un morphisme d’espaces gradués f : Vo — Wi, de degré r entre complexes

de chalnes est donné par :
f) =dwo f—(=1)fody

Ainsi f est un morphisme de complexes de chaines si, et seulement si 9(f) = 0.
Jusqu’a la fin, on utilisera les définitions de Koszul : pour V et W gradués,

I’isomorphisme de symétrie 7 est donné par :

TMW:V®W — WeV

VR W > (=)l @ v

Pour f:V — V' et g: W — W’ des applications linéaires de degré | f | et | g |, leur

produit tensorielf] est
Vo@w: (f®g)(vew):= (-1 fu)® g(w)

Définition 1.4. Si (V,dy) et (W, dw) sont des complexes de chaines, leur produit

tensoriel est le complexe de chaine (V' ® W, dygw) ot
dV@W = dV ®[d—|—[d®dw

Définition 1.5. Un complexe de chaines gradué par le poids M est un complexe

de chaines M, muni d'une décomposition en somme directe de sous complexes de

2. La tensorisation — ® — reste associative.
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chaines M@ .
M =@M

deN
Une algebre différentielle graduée par le poids A, ou wdg-algebre, est la donnée d'une
structure d’algebre sur un complexe de chaines gradué par le poids A, telle que le
produit préserve le poids et le degré. On note A? la composante de poids d et degré
n de A. Elle est de plus dite conneze si A =K.14

1.1.4 Convolution

Définition 1.6. Soit (C, A, €) une dg-coalgebre et (A, p, u) une dg-algebre,
on note Hom(C, A) := @ Hom(C, A),.
reZ

La convolution :

Hom(C,A) @ Hom(C, A) — Hom(C, A)

f®g — frxgi=pof®goA
fait de (Hom(C, A),*,0,u o €) une dg-algébre unitaire.

Définition 1.7. Soient A une algebre munie d’une dérivation ds : A — A et M un
A-module a droite. Une A-dérivation sur M est une application linéaire d : M — M
telle que

Va,¥m : d(m.a) = d(m).a + m.ds(a)

Proposition 1.1. Toute application linéaire o : C' — A d’une coalgébre graduée vers
une algébre graduée, induit une application linéaire d, : C @ A — C ® A qui est une

A-dérivation et C'-codérivation, par :
d = {Id®@p)o(lde @ a® Idy)o (AR Idy)

Toute application linéaire v : C' — A induit une dérivation sur C' ® A par

do = dega + d], . On aura besoin du lemme suivant dans la section suivante.
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Lemme 1.3.

1.2 Adjonction cobar-bar

On rappelle qu’on a les paires d’adjonctions suivantes (ou les fleches opposées

sont adjointes) :

K — Mod
% U
v TolU N
Aug — alg - onil — coalg
TcoU

qui fournit une adjonction entre la catégorie des algebres augmentées Aug — alg et la
catégorie des coalgebres conilpotentes Conil—coalg, qui s’étend au cas graduéff} Cette
adjonction, se factorisant par K-Mod, oublie les structures d’algebres et coalgebres.
Dans la section qui suit, on s’attache a construire une adjonction entre les catégories
des algebres différentielles graduées augmentées dg — Aug — alg et des coalgebres
conilpotentes différentielles graduées dg — conil —coalg qui n’oubliera ni les structures
de (co-)algebre ni les différentielles internes.

Soit C une dg-coalgebre conilpotente. Un point technique intervenant dans la
section suivante nous invite a plut6t considérer F(s~'C) et non simplement F(C).

On peut alors munir 'algebre QC' := F (s_lc_') de deux dérivations d;,; et dey :

— dipt == 3 d(s-16y9n, explicitement donnée pour tous sl ® ... @s 1z, € QC
neN
par :

dmt(S_lJZl@...@S_llL'n) = Z (_]_)i‘H*TI|+~-~+|$i—1|3_15(]1(8),.,®8_1dc($i)®...®8_133n

1<i<n

— degt, Obtenue en prolongeant (voir lemme 1.1) la composée f := (id @ T ® id) o

3. L’isomorphisme naturel en A et C' : Homy_ aug—aig(T(s71C), A) =~ Hom gk (C, A)_; est noté
Ye,a
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A3®Aé3
K8_1®0&>KS_1®K8_1®0®C—'

\ 2lid®7’®id

(stl ® C’)@Z
en une dérivation sur T'(s~1C).
Et A, est le morphisme de degré -1,
Kst — Ks™' @ Ks™!
571 > stT®s!

Explicitement, f est donnée par la formule :

Vslo €570 f(s7ir) = Z(—l)‘m“s_lxi ® sl

i

Lemme 1.4. — d%,=0.

ext —

— dezt o dint + d'mt o dext =0

Esquisse de démonstration 1.1. La coassociativité de Ac implique que d?,, = 0.
Quant a I’égalité derpiodins+diniodeys = 0, elle est conséquence du caractére morphisme

de complexe de chaines de A¢.

QC munit de la différentielle daoc := dint + et :
(QC, doc)

est appelée constructz'onﬂ cobar de C.
Ayant le foncteur d’oubli, fidele

U:dg— Aug — alg — g — Aug — alg

4. Qui est fonctorielle en C'
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on va caractériser I'image de la composée :

Homdg_Aug_alg(QC’, A) ? HOIIlg_Aug_alg<QO7 A) — HomgK(C_', A)_l

Yo, A

Si f:QC — A est un morphisme d’algebres graduées augmentées, alors
f € Homgy— aug—aig(Q2C, A) & fodoc =dao f
Or QC' est quasi-libre et f est un morphisme d’algebres, donc :
fodac=dao f& fodoc-1c=dao fisc
ce qui peut se réécrire :

— [(sdc(z Z D F(s™ad). f (57 ah) = da(f(s ™)
& daoas(z) +agode(r) + 3 (=1)las(a}).a(zh) = 0
<:>8(af)+af*af:0

Ou oy = a(f). L'équation

8(ch)+ozf*af20 (MC)

est appelée équation de Maurer-Cartan.

Définition 1.8. une solution de 'équation de Maurer-Cartan o € Homg(C, A), est

appelée morphisme tordant si de plus elle vérifie :
— a(C)C A
— a(K)=0
L’espace des morphismes tordants[| de C' dans A est noté Tw(C, A).

On vient donc de montrer :

5. qui est un sous-foncteur du foncteur Hom(—, —)
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Proposition 1.2. L’isomorphisme naturel Homg,Aug,alg(T(s_lé’), A) ~ HomgK(C, 121),1

se restreint en un isomorphisme ¢, donc naturel, faisant commuter le carré :

Homy_ gug—aig(T(s7'C), A) —% Homyk(C, A)_,

| T

Homdngugfalg(Qcy A) ”””” —ooos e T’LU(C, A)

Si A est une dg-algebre augmentée, la coalgebre colibre T°(sA), munie de la

différentielle dpy := dips + degt, OU

— dip = Y, 1d¥' @dz @ Id®.

1<i<n

oy (571 ® ... @ 57y) 1= Y (1)l ® L@ sppa ® . @ STy,
1<i<n—1

est appelé construction barﬁ de A :
BA = (TC<SA),CZBA)

En faisant le méme travail que précédemment, on obtient le théoreme suivant :

Théoreme 1.5. Pour toute dg-coalgébre conilpotente C' et toute dg-algébre augmen-

tée A, on a les bijections naturelles :

Homdg_Aug_alg(QC, A) ~ TU}(O, A) ~ Homdg_coml_alg(C’, BA)

1.2.1 Reésolution cobar-bar

Le lemme de Yoneda [Mac| indique que les transformations naturelles d'un fonc-
teur, a valeurs dans la catégorie des ensembles Ens, représentable ( ~ Hom(X, —) )

vers un foncteur quelconque F'; sont paramétrées par F'(X), plus précisemment, on

6. fonctorielle en A
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a la bijection :

Nat(Hom(X, —), F) — F(X)

7 > nx(Idx)

La preuve de U'injectivité fournit une formule pour 7, qui est la suivante : VY € Ob(C),

ny (f) = F(f)(nx(Idx))

En particulier Nat(Hom(QC, —),Tw(C,—)) ~ Tw(C,QC), dont la source est
dg — Aug — alg. Soit ®¢. € Nat(Hom(QC, —), Tw(C, —)) I'isomorphisme naturel vu
a la section précédente. Par le lemme de Yoneda, celui-ci est exactement déterminé
par ¢ := Poo(ldg.) € Tw(C,QC), d’ou :

Vi QC — A QA(f) = Tw(f)Yacuane)) = Tw(f)(t) = for e Tw(C,QC).
Autrement dit, la bijection Hom(QC, A) ~T w(C, A) est donné par la précomposition
par ¢, qui est appelé morphisme tordant universel.

On a, de fagon analogue, le morphisme tordant universel © : BA — A.

Théoréeme 1.6. Tout morphisme tordant o : C' — A se factorise d’une unique fagon

par et :
QC
/ e
C d > A
H!fa\\\\‘( /
BA

Ot g, = O, () et f, = \Ifgl(a)

Théoreme 1.7. Les complezes de chaines BA®, A, AR, BA, C®,QC et QC®,C

sont acycliques.

7. L’isomorphisme Hom(—, BA) ~ Tw(—, A) est noté .
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Démonstration 1.1. Réorganisons la différentielle d, sur BARA en d, = dips+deys

ou :
— diy([say | ... | saplans:) = % (=1)Hlaletaalisg, | | sd(a;) | ... |
1<i<n
S|y + (—1)HalHanllsq, | ) sa,]d(ang) -
— dew([501 | ... | sap)any1) = X (=1)THalHallsq || sazai ||
1<i<n—1
8|y + (— 1) HHlaleFlanllisq | | sa,_1]anan

Soit e @ e : BA®, A - K®K ~ K l'augmentation, et K son noyau. On définit
Uapplication h : K — K par

h([say | ... | san]anyy) :== (—1)"+|a1|+"'+|a"|[sa1 | | say | s(any1 — €(any1))]

On a alors

(h o dint + dint 0 h)([sa1 | ... | sQR)an41) = > (—1)itnttlaltdanlig || sd(ag) | ...

| SQp, | S(CLn—H - 6<an+1))]
+ [sar | .. [ san | s(d(an+1) — e(d(ania)))]
+ Z (_1)i+n+|ai\+...+\an\[Sal |

1<i<n+1
| sd(a) [ o [ s(ant1 = €(anta))]

=0
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(dewt 0 B+ hodey)([sa1 | ... | 8a0)anir) = D (=1) 7 Hmflemltenllsq, | ) sap.ai44 | ...
1<i<n

| S(any1 — €(ani1)]

+ [say | ... | san)(ans1 — €(anyi1))

+ > (—p)tlemltenlise, | sagaig | -
1<i<n—1

| s(ans1 = e(ans)] + [sar [ - | s(an-ang1 — €(an-ani1))]

= —[sar | ... | sanani1 — €(an41)]

+ [say | ... | s(anani1 — €(ananst))]

+ [say | ... | san)(ans1 — €(any1))

= [say | ... | san]ansq

Ce qui donne hod, +d,oh = Id et donc BA®, A~ (Ker(e®e¢),d)) ® (K,0) est

acyclique.

Définition 1.9. Un morphisme tordant o : C' — A est dit de Koszul, noté a €
Kos(C, A), si et seulement si C' ®, A est acyclique.

Remarque 1.1. Les morphismes universels m et v sont donc de Koszul.

Théoreme 1.8. Soit A une dg-algébre connexe et C' une dg-coalgébre connexe. Pour

tout morphisme tordant o : C' — A, on a les équivalences :
1. C®qy A est acyclique.
2. A®, C est acyclique.
3. fo:C — BA est un quasi-isomorphisme.

4. go : QC — A est un quasi-isomorphisme.
Pour la démonstration, on utilisera la boite noire suivante :

Théoréme 1.9. Soient g : A — A’ un morphisme de wdg-algébres connezes (A©) ~
A0 ~K), f:C — C" un morphisme de wdg-coalgébres connexes, o : C — A et

o C"— A" des morphismes tordants tel que o o f = go a.. Alors si deuz parmi les
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trois morphismes f,g et fRqg: C R4 A — C' Ry A’ sont des quasi-isomorphismes,

le troisieme lest aussi.

La preuve fait appel aux suites spectrales.

Prouvons maintenant le théoréme.

Démonstration 1.2. On ne va montrer [’équivalence qu’entre les propositions 1. et
4., les autres étant similaires, et on fait [’hypothese que A et C' sont gradués par le
poids et connexes, cependant le théoréme est vrai sans ces hypothéses [HMS7]).

La construction bar de A ( resp. cobar de C) est une wdg-coalgébre connexe (resp.
dg-algébre connexe), et le morphisme g, : QC — A est un morphisme de wdg-
algébres. De plus g, ot = aoldg, donc par le théoreme précédent, comme Ids est un
quasi-isomorphisme, g, est un quasi-isomorphisme si et seulement Idc ® g, est un
quasi-isomorphisme. Or C ®, QC' est acyclique, donc g, est un quasi-isomorphisme,

si, et seulement si C ®, A est acyclique.

Corollaire 1.10. Soient A une dg-algébre augmentée et C' une dg-coalgebre co-
augmentée. L'unité € : QBA — A et la co-unité v : C — BQC sont des quasi-

isomorphismes.

Démonstration 1.3. On suppose que A et C' sont gradués par le poids et connezes
afin de faciliter la démonstration.
fr=€a:QBA — A, or BA®, A est acyclique par le théoréme 1.10, donc par le

théoreme précédent, €4 est un quasi-isomophisme. La preuve pour v est semblable.

Remarque 1.2. La construction cobar de la construction bar d’une dg-algébre aug-

mentée A, fournit un quasi-isomorphisme surjectif d’une algébre quasi-libre Q0B A

vers A. Cependant QBA = T(s7'T(sA)) contient deux types de tenseurs : les pre-
miers ceux de la construction bar et les seconds, ceux de la construction cobar. Pour
certaines algebres usuelles, dites quadratiques, dont la différentielle interne est nulle :
T(V),S(V),A(V),... Il est possible de faire mieux, en remplacant BA par Al qui sera
(lorsque A sera de Koszul) une sous-coalgébre quasi-isomorphe ¢ H°(B*A) C BA.
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On aura de plus le diagramme commutatif suivant :

QAT —— QBA

G

A

1.3 Une résolution plus économe

Définition 1.10. Soit V un espace vectoriel gradué et R C V®? un sous-espace
vectoriel gradué.
Une algebre graduée est dite quadratique si elle est isomorphe en tant qu’algebre

graduée a
A(V,R) :=T(V)/(R)

Une coalgebre graduée est dite quadmtiqueﬁ si elle isomorphe en tant que coalgebre

graduée a la sous-coalgebre de T¢(V') donnée par

C(V,R)=KaeVeae.a&( (| V¥eRV¥)ae..CcT(V)

i+j+2=n

A partir de maintenant et jusqu’a la fin de cette section, V sera de dimension

finie.

Définition 1.11. Pour A = A(V, R), la coalgébre duale de Koszul de A est définie
par

A= C(sV,s*R)

On définit aussi l'algebre duale de Koszul
A= A(V*, RY)

ot R* CV*@V* ~ (V ®V)* est orthogonal de R.

8. Une donnée quadratique est un couple (V, R C V®2) et un morphisme de données quadratiques
(V,R) — (V', R) est une application linéaire f : V — V' telle que T'(f)(R) C R’. La collection des
données quadratiques est ainsi organisée en une catégorie et A(—, —), C(—, —) sont des foncteurs.



CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGEBRES ASSOCIATIVES21
Pour C' = C(V, R), l'algébre duale de Koszul est donnée par

Ci:=A(s"'V,s*R)

Lemme 1.11. (A))i = A, (C1)i=C et (A")' = A

Exemple 1.1. — T(V) est quadratique et T(V)' = K ® V*, muni de la mutlipli-
cation nulle ( si V ~K, T(V) ~ K[X]/(X?) ).

— SV)=T(V)/(R=<2Qy—yQz|ry eV >) est quadratique. V est
de dimension finie, donc le morphisme naturel V* @ V* — (V @ V)* est un

isomorphisme, et

f®geR*

SV ey, f(y)g(z) = f(x)g(y)
S2fRe=[R¢g+gRfe<l®lle V> V&2

(par polarisation). i.e. Rt =< 1® 1,1 € V* >. Ainsi S(V)' = A(V*).

— S(V)i = A(sV), ou

AN(sV)=KDsV D .0 < ¥ €(0)s2,0) @ ... ® STo(n) | X1, .2 €V > D... C
O’EGn
Te(sV)

1.3.1 Complexe de Koszul associé a une algebre quadratique

La machinerie des morphismes tordants et le théoreme fondamental (théoréme
1.11) sur les morphismes tordants va permettre de fabriquer un morphisme QA" — A.
Soit A = A(V, R) une algebre quadratique, munie de la différentielle nulle. On définit

le morphisme de complexes de chainesﬂ de degré -1 et poids 0 comme la composée :
kAl A=Al sV >V A

Lemme 1.12. kxk =0, et donc k € Tw(Al, A) .

9. K est en fait naturel en la donnée quadratique (V, R)
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Définition 1.12. Le complexe de chaines (A" ®, A,d,) est appelé le complexe de
Koszul de I'algebre quadratique A.

Lemme 1.13. Le compleze (Al ®@, A,d,;) se scinde en
Al@, A= DA @ A, dy)

Ou (Al ®, A)™ d,) est le complexe :
0— A 5 40D o A0 _y 5 Ai) g g(n=1) _y g(0) _

Et (Al ®, A)(”) = @ AV @ AD et AiD est le sous espace des éléments de poids
i+j=n
d, induit par la graduation de V.

Démonstration 1.4. ds et da sont nulles donc d,, = d..
De plus d (521 ® ... Q 5T, @ Tpy1) = (_1)p_1+|m1|+'“+|mp71lsxl ®...® 5Ty 1 ® [Tp @ Tpy1]
done d (A1) @ A@D) ¢ AIP~D @ AW et ginsi d, (Al @ A)™) C (AI@ A)™ .

Théoréme 1.14 (critere de Koszul). Soit A une algébre quadratique. Les proposi-
tions suivantes sont équivalentes :

1. Le complexe de Koszul A ®,. A est acyclique.

2. Le complexe de Koszul A ®,, Al est acyclique.

3. f.: Al — BA est un quasi-isomorphisme.

4. ge: QAT — A est un quasi-isomorphisme.
Définition 1.13. Si I'une de ces conditions est vérifiée, alors A est dite de Koszul

Proposition 1.3. Une algébre quadratique A est de Koszul si, et seulement si A' est
de Koszul.

Esquisse de démonstration 1.2. Le dual linéaire de (A' R (AN est AT @, A a

Une SupSension pres.

Exemple 1.2. T(V) et S(V) sont de Koszul [LV12].
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1.3.2 Construction de Ai — B’A c BA

Si A est quadratique, alors

BA=KI1®sA® (sA)*? @ (sA)® @ ...
=Kl @ sV @ (sV*/R@ sV®?)
®(sVE/(VR4+RV)® sV sV /RO sV /R sV & sVE) @ ...

La graduation par le poids sur BA est donnée par w(sa; ® ... ® sa,) = w(ai) + ... +
w(ay,), et le degré de syzygie est défini par

W(sa; ® ... ® say,) == w(sa; @ ... ® sa,) —n

La composante de syzygie de degré d est notée B?A et BA, est la composante de

poids n. A a une différentielle interne nulle, donc dgs = dg.y €t :
— w(dpa(sa; ® ... ® sa,)) = w(sa; ® ... ® say,)
— O(dpa(sa1 ® ... ® 5a,)) = W(sa; @ ... @ sa,) — 1
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Ainsi BA se scinde en (BA,d) = @(BA,,d)) et BA, = @B"A,. La table qui suit
n d
(on 6te les "s" des notations pour plus de lisibilité) décrit BA :

0+ V/(VR+RV) « 2~ (V2 /RaV)® (Vo V®?/R) « 1 V3 (3)
0 d V2 /R d V®2 (2)
0 d 1% (1)
K (0)
3 2 1 0

Ou sont indiqués en ordonnée le poids et en abscisse le degré de syzygie. BA est la

somme directe des cases du tableau et donc il y’a I'inclusion de coalgebres :
Al = O(sV,s2R) < B’A C BA

Lemme 1.15. Ker(djgos) = A/, donc i induit un isomorphisme de coalgebres gra-

duées :
i Al —=— HO(B‘A)

Le méme travail avec une coalgebre quadratique C', fournit un morphisme d’al-

gebres p : QC — (' induisant un isomorphisme
p: Ho(QC) — C'

L’inclusion 7 : At — BA et la projection p : QA — A sont respectivement les appli-
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cations f, et g, données au théoreme 1.6, on en déduit le diagramme commutatif :

QA <%, OBA

ine“‘

A

Lorsque A est de Koszul, le fait que ¢ : Al — BA soit un quasi-isomorphisme nous
renseigne sur ’endroit ot il y’a des groupes d’homologie non nulle dans B*A : B°A. A
posteriori, si on veut un objet X 5 Aavee X quasi-libre, il n’est donc pas nécessaire

de regarder QBA en entier, mais seulement QB°A, voir mieux[7 :
QH°(B*A)

Intuitivement, QA" est comparable en taille a T'(T'(V)) alors que QBA est com-
parable a T'(T(T(V))).

10. PLus généralement, une wdga-algébre connexe A est dite de Koszul si 'homologie de sa
construction bar H(B®A) est concentrée en degré 0.
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Chapitre 2

Cobar-bar pour les opérades

algébriques

La référence principale pour ce chapitre est [LV12], complétée par [Mil12].

2.1 Introduction aux opérades algébriques

2.1.1 S-modules

Définition 2.1. Un S-module est la donnée d’une collection d’espaces vectoriels
M = {M(n),n € N} telle que pour tout n, M (n) est muni d'une action a droite de S,
et ses éléments sont dit d’arité n. Un S-module M est de plus dit réduit si M (0) = 0.
Un morphisme de S-modules f : M — N est une collection de morphismes de K[S,]-

modules f,, : M(n) — N(n) pour tout n. La catégorie obtenue est notée S-mod.

A tout S-module M, est associé un foncteur M : Vect — Vect, appelé foncteur

de Schur associé a M, défini sur les objets par :

M(V) = @M(n) QK[Sn] yen

neN

ou laction & gauche de S,, sur V®" est donnée sur les v; ® ... ® v, par la permutation
g
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des indices. On obtient ainsi un foncteur de schurisation (N) : S-mod — VectVe. Le

lemme suivant permet d’induire des constructions sur la catégorie but Vect"¢, par

exemple les opérations : @, ®, o, en des constructions sur la catégorie S-mod.
Proposition 2.1. Le foncteur de schurisation M — M est pleinement fidéle.

Démonstration 2.1. On procéde en deux temps en montrant d’abord qu’une trans-
formation naturelle ny : M = @M(n) s, (—)®* = N = &N (n) Qs, (—)&" est,

avec quelques hypothéses sur K, nécessairement de la forme

e = P00 : M(n) ®s, (-)°" = N(n) ®s, (—)°")

Puis on montrera que la composition M(n) — M — M est pleinement fidéle.
Commencons par montrer le premier point : pour (k,n) € N2, on considére la k-i¢me
inclusion i¥ : M (k) ®s, (—=)®* < M, la n-iéme projection p? : N'— N(n) ®g, (—)%"
et la composée nf™ .= pron,oif : M(k)®s, (—)®* — N(n)®s, (—)%". Pour tout \ €
K, en considérant \Idy, par naturalité, on obtient )\”n\k,’" = )\kn‘k/". En particulier,
st K* n’est pas recouvert par les racines de ['unité et que k # n, nécessairement
nEn = 0,.

Pour montrer la fidélité, la structure additive de Vect" e

induite par celle de Vect
(celui du but), et ladditivité du foncteur de schurisation impliquent qu’il suffit de
montrer que si f : A — B est un morphisme de S,,-modules non nul alors fo # O,.

La suite exacte courte
0— ker(f) = A—Im(f)—0
induit la suite exacte courte :
0 — ker(f) @ (K")®" — A® (K")®" — Im(f) @ (K")®" — 0

Ainsi Im(f ® Id) = Im(f) ®s, (K™)®" et par le résultat rappelé en annexe, comme
Im(f)#0, on a bien Im(f @ Id) = Im(fxx) # 0 et donc fo # 0.

La surjectivité de Homg (A, B) — Homyqvee (A, B) est d’abord montrée dans le cas
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particulier ou B = K[S,] est la représentation réguliére. En considérant 'application
linéaire K* — V' qui envoie e; sur x;, et en utilisant la naturalité de n, : A— B, on
remarque que 1, est déterminée par les nxn(a®@e; ®...®ey,), ot a parcourt A. De plus

na®e;®...Qe,) = > Niy,in€is @...Q€;,, avec N, ;. € K et les projections
(i1,---yin ) E[L,n]™
de K™ qui envoient e; sur (1 — d;1)e;, ainsi que la naturalité et la K-indépendance

des e;, @ ... ® e; , nous apprennent que n(a ® e; ® ... @ e,,) s’écrit sous la forme

na®e ®...0e,) =( Z Ao.0).€1 R ... R e,

oES),

L’application définie par f(a) == Y A,.0, vérifie f = n,.
gES,
Soit B quelconque : d’aprées les théoremes rappelés en annexe, on peut écrire

B =B,
AEA
B, € K[S,] et on a des morphismes iy : By — KI[S,] et px : K[S,] — By tels
que py o iy = Idg. D’aprés le cas particulier, pour une transformation naturelle
n 1 A — By, il existe f: A — K[S,] telle que fx =iy on, et donc n} = pyo fx. f
définie par

fF=>h

AEA
vérifie bien ne = f. En effet, ne = Y02, ainsi ngn(a @ €1 @ ... @ €,) = (L fx(a)). ®
) )
e1®...0e, € BRs, <e1®..R0e, > B, donc pour tout a, Y. f\(a) est finie. La
)

schursation commutant]]] avec la somme directe, on peut alors conclure.

Corollaire 2.1. Les coefficients dans le développement en série formelle d’un fonc-

teur de Schur sont donc unique a isomorphisme pres.

La catégorie des S-modules est abélienne et toute suite exacte courte s’y scinde, le
foncteur de schurisation est donc exact, et l’adjonction décrite dans 1’exercice 5.11.19

[LV12] implique qu’il préserve les petites colimites.

1. La schurisation admet un adjoint & droite d’aprés l'exercice 5.11.19 [LV12]
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Lemme 2.2. L’image essentielle de M — M est fermée sous @, @ et o. De plus,

on a les formules suivantes :

— MON)(V) ~ @ (M(n) @ N(n)) @xs,) V"

ne
— MQN)(V) ~ EGBN(#E,B IndgfojM@ @ N(j)) Qs VE"
n i+j=n
— MaN)(V) = @ (®M(K)®s,( @  Indg . s, N(i1)®..0N(ix))) ®s, V"
neN keN 11+...Fip=n
O Uaction de Sy, sur P Indgjl x...xsikN(i1)®--~®N(ik)) est induite de laction
11+...Fig=n

de Sg sur iy, ..., ig].

Les définitions de @@, @ et o sur S-mod sont alors immédiates des lors qu’on

demande que :
(~> : (S—IﬂOd, @7 ®7 O) — (VeCtV66t7 697 ®’ O)

commute (aux isomorphismes naturels pres) canoniquement avec ces bifoncteurs.
La composition de foncteurs étant associative, on en déduit que (S—mod, o, I), ou

I:=(0,K,0,...) ~ (~)_1(K) est monoidale (& priori non strictement).

2.1.2 Opérades

Une opérade symétrique, dans la catégorie Vect, P = (P,7,n) est un monoide
associatif unitaire dans la catégorie monoidale (S—mod, o, I) : pour tout n, des ap-
plications linéaires

T @Pk) @5, (@ Indgy s, P(in) ©...® Plir) = P(n)

11+...Fig=n
et une application linéaire
n:I—7P

ou Id := n(lg) € P(1), qui satisfont les relations d’unité et associativité. De fagon

équivalente, c¢’est un foncteur de Schur muni d’une structure de monade :

Ye:PoP =P

2. LA notation [ ndg est rappelée en annexe
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Ne: Id — P

Un morphisme d’opérades f : P — L est, par définition, un morphisme de mo-
noides unitaires : la donnée d’un morphisme de S-modules f : P — L tel que les
diagrammes :
PoP L1 Lo I
AN
P ! c

p—1 .

commutent. La catégorie des opérades symétriques dans Vect, appelées opérades
algébriques, ou juste opérades, est notée Op.

Afin de rendre plus compréhensible la notion de P-algebre, qui en sera un cas
particulier, on introduit d’abord la notion de module (& gauche) sur un monoide P

qui n’est autre qu’une action de P sur un S-module M, plus formellement :

Définition 2.2. Un module a gauche sur un monoide P est un S-module M munit

d’un morphisme de S-modules p : P o M — M associatif et unitaire.

Observons le cas particulier oun M = (A,0,0,...) est concentré en arité 0 : avec
la vision monade, P o M(V') = P(A) est le foncteur constant, et les diagrammes qui

suivent sont commutatifs :

PoP(A) - P(P(A))
)

B
v(Al lﬁ(u) A Y Ba)

P(A) P(A) X JV(A)

Réciproquement, la donnée d’un espace vectoriel A et d’une application linéaire
= YA : 75(A) — A faisant commuter ces diagrammes définissent un P-module,

concentré en arité 0, appelé P-algebre.

Définition 2.3. Une structure de P-algébre sur un espace vectoriel A est une appli-

cation linéaire 4 : P(A) — A telle que les deux diagrammes précédent commutent.
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Un morphisme entre P-algebres A et A’ est une application linéaire f : A — A’ telle
que fovya =4 0oP(f), et la catégorie des P-algebres est notée P — alg.

Pour V' un espace vectoriel, 75(V) est canoniquement muni d’une structure de
P-algebre, par vp,) = Y(P(V)) : PoP(V) — P(V), en effet, I'associativité de
v :PoP:— P implique celle de action vz .

Exemple 2.1. Les S-modules Ass := (0, K, K[S,], ..., K[S,], ...) et As := (K, K, ..., K[S,], ...)
sont munis d’une structure d’opérade induite par les inclusions S;, X ... X S;, — S,
i1+...+i =n . Une Ass-algébre (resp. As-algébre) est alors une algébre associative

(resp. unitaire) au sens classique.

Pour toute opérade P il y a un foncteur d’oubli U : P—alg — Vect, qui a une
P-algebre lui associe 'espace vectoriel sous-jacent. Il admet un adjoint a gauche,

noté F, qualifié de libre et dont on explicite la construction :

Construction 2.1. Pour F, prenons P, et pour unité de Uadjonction v, prenons
n = Id — P. On vérifie alors que le diagramme suivant commute, ce qui donne

Vexistence et unicité de f (nécessairement, f =~40P(f)).

Ou P(A) muni de v(P(A)) est vue comme une P-algébre
F
Théoréme 2.3. Cette construction définie une adjonction P—alg ——— Vect .
U

Définition 2.4. Soit A un espace vectoriel, on définit 'opérade End, comme étant
le S-module Enda(n) := Homg(A®", A) muni de la structure d’opérade induite par

la composition des applications linéaires.

3. Par définition, v4 : P(A) — A est un morphisme de P-algebres
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Proposition 2.2. Se donner une structure de P-algébre sur l’espace vectoriel A est

équivalent a se donner un morphisme d’opérade P — End 4.

Esquisse de démonstration 2.1. C’est une conséquence de l’isomorphisme naturel

Homg, (P(n), Hom(A®", A)) ~ Hom(P(n) ®s, A®", A)

2.1.3 Algebre universelle

Pour une opérade P = {P(n),n € N} quelconque, les éléments de P(n) sont
abstraits mais il est possible de les comprendre comme des opérations n-aires : si A
est une P-algebre, on considere la structure canonique de End4-algebre sur A, dont
le morphisme structurel est noté w4 : Ends(A) — A. Se donner une structure de
P-algebre sur A est équivalent a se donner un morphisme d’opérades P — End, par
la proposition 2.2. Ce qui peut se reformuler de la fagon suivante. 74 est universelle
parmi les structures de P-algebre 4 sur A : il existe un unique morphisme d’opérades

Y : P — Endya tel que le diagramme suivant commute :

P(A) T l
prs TA

P(A) ——

En ce sens, les éléments des P(n), via 1(A), sont bien des opérations n-aires sur A.

2.1.4 Définition d’une opérade par compositions partielles

Pour (P, ) une opérade, les compostions partielles o; sont définies par :

—o0,—:P(m)®@P(n) — P(m+n—1)
HRv = opo v =y7(puRid®..QidR v id.. ®id)

Ou l'identité apparait 7 fois avant v. On a alors les relations suivantes :

— (Aojp)oi1yjv=Ao; (pojv),pour 1 <i<[ 1<j<m
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— (Aojp) op—14m v = (Aopv)o; p,pour 1 <i <k <1
Ou A € P(l),u € P(m),v € P(n). Réciproquement, des compositions partielles

— o; — sur un S-module vérifiant les deux relations induisent une unique structure

d’opérade sur ce S-module.

2.1.5 Opérade libre

Dans une catégorie monoidale (C,®,I) possédant les sommes directes indéxées
par N et telle que — ® — commute des deux cotés avec celles-ci, alors en copiant la
construction de 'algebre libre sur un espace vectoriel, on obient la notion de monoide
libre sur un objet de C'. Les foncteurs de Schur ne commutant, en général, pas avec
les sommes directes, on ne peut pas appliquer ces constructions pour la catégorie
monoidale (S—mod, o, ). On renvoit a |[LV12] pour une construction "a la main'
de T'opérade libre T (M) sur le S-module M ou a [Val09] pour une construction

catégorique, permettant en plus d’expliquer la propérade libre du chapitre 3.

2.2 Constructions d’algebre homologique pour les
opérades

Afin que cette partie soit relativement concise, on omet volontairement les détails

et renvoie a [LV12] pour un exposé précis.

2.2.1 Linéarisation

Définition 2.5. Soient M, Ny, Ny trois S-modules, le S-module M o (Ny; Ny) est
par définition le sous S-module de M o (N; & Ns) tel que M o (N7 & N2)(n) est le

sous-S,-module de M(n) ®s, (N7 & N2)®™ o Ny n’apparait qu'une seule fois dans
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chaque facteur direct. les éléments :

engendrent M o (Ny; Ny). Cette définition est fonctorielle en M et Ny. Le cas parti-

culier ou N7 = I est appelée composition infinitésimale de M et N :
Moy N:=Mo (I;N)

dont les éléments typiques sont notés (p;id, id...,id,v,id...) et pour f : M — N, g :
M' — N’ des morphismes de S-modules, f o) g € Hom(M oy N, M’ oy N') est

définie par :

fow g(psid, ..., v,ad, ...) == (f(p),id, ..., g(v),id, ...)
Lemme 2.4. Pour des S-modules M, M', N, N', on a :

(M@M/) O(l)N:MO(I)N@M/ O(l)N
MO(l) (NEBNI> IMO(l)NEBMO(l) N/
IO(l)N:N
MO(l)I:M

La compostion des S-modules est alors linéarisée, celle des morphismes aussi. On
présente maintenant une linéarisation des mophismes, sans changer la composition

des S-modules.

Définition 2.6. Soient f,g : M; — N; deux morphismes de S-modules, la com-
position infinitésimale de f et g, f o' g € Hom(M; o Ny, My o (N1; Ns)) est définie
par

folg=> f@{dy, ®..0Idy, ®g®Idy, ®...® Idy,)
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Ou ¢ apparrait en i-éme position. Si de plus Ny = N, = N alors la composée
Ido(Id&Id) ;
Myo (N;N)— Myo(N@&N) — Mo N est encore notée f o g.

Lemme 2.5. La composition infinitésimale est linéaire a droite :
fo(g+h)=fog+foh

Lorsque (P,7,7) est une opérade, le produit de compostion infinitésimale 7 :
P oy P — P est définie par la composée :
Yay: PowyP=Po([;P) —— Po (I@Pf)dpmdg)?op =P

De méme, pour une coopérade (C,A,n), il y’a la décomposition infinitésimale A :

C — Co(l) C

2.2.2 Extension au cadre différentiel gradué

Définition 2.7. Un S-module différentiel gradué, abrégé dg-S-module, est une col-
lection M = {M(n),n € N} de S,-modules différentiels gradués. Un morphisme de
dg-S-modules f : (M,dy) — (N,dy) est un morphisme de S-modules gradués, de
degré 0, qui commute avec les différentielles. La catégories des dg-S-modules et ses

morphismes est notée dg-S-Mod.

Le S-module [ est considéré comme un S-module gradué, concentré en degré 0.
Soit Ks := (Ks,0,0,...) le S-module concentré en degré 1. La suspension d'un S-

1

module gradué M est définie par sM = Ks ® M. De facon analogue, Ks™" est le

méme S-module, concentré en degré —1, et la désuspension est donnée par s 1M :=
Ks!® M.

Définition 2.8. Soient (M, dys) et (N,dy) deux dg-S-modules, leur composition
M o N est un S-module gradué, qui est équippé de la différentielle

dMoN = dMOIdN -|—[dM o dN
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Proposition 2.3. La catégorie (dg—S—Mod, o, ) est monoidale.

Définition 2.9. Une opérade différentielle graduée est un monoide dans la catégorie

(dg—S—Mod, o, I) tel que le produit de compostion et 1'unité soient de degré 0.

Définition 2.10. Une dérivation d : T(E) — T(FE) sur l'opérade libre sur le S-

module gradué E est une application linéaire telle que :
v.(dold+Ido'd)=dn~

Ouvy:T(E)oT(E)— T(E) est le produit.

Proposition 2.4. Soit E un S-module gradué. Une dérivation d : T(E) — T(E)

est exzactement déterminée par sa restriction (S — linéaire) au sous-S-module E.

2.3 Adjonction cobar-bar opéradique

2.3.1 Morphismes tordants

Définition 2.11. Soit (C, A, €) une coopérade et (P,,n) une opérade, la collection
Homg (C,P) := {Homg(C(n), P(n)),n € N} est munie d’'une structure de S-module :

Proposition 2.5. Le S-module Hom(C, P) est une opérade, appelée opérade de convo-
lution. Si de plus C et P sont différentiels gradués, alors pour tout S-morphismef :

C — P de degré | f |, la dérivation
o(f) :=dpo f—(-1)Ifode

fait de (Hom(C,P),0) une dg opérade.

Définition 2.12. Pour f,g € Homg(C,P), leur produit de convolution f x g €
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Homg(C, P) est défini par :

A o
frg=CYConc’™ Y Poy, P WP

L’équation de Maurer-Cartan (M.C) dans Homg(C, P) est :

Of)+ 1+ f=0

Une solution de (M.C) de degré —1 est appelée morphisme tordant opéradique. Si
de plus C est coaugmentée par ¢ et P est augmentée par u, il faut que uo f =0 et
foc=0.

Lemme 2.6. Tout morphisme de dg-S-modules de degré —1, av: C — P induit une
dérivation d, : CoP — C o P, de carré nul si et seulement si o est un morphisme

tordant.

Dans ce cas, le complexe obtenu en tordant la différentielle deop est noté
CooP :=(CoP,dy :=deop +d)

et appelé produit de composition tordu da droite de C et P.

2.3.2 Constructions cobar et bar

Pour une dg-opérade augmentée (P,v,n,€), la construction barﬁ de P est la
coopérade Tc(s75), munie de la somme de la différentielle d.,; induite par le produit
de compostion infinitésimal v(;) et de celle induite par la différentielle dp de P, notée
dine. Elle est notée

BP := (T(sP),d := deys + diny)

De méme, pour toute dg-coopérade conilpotent C, la construction cobar de C est
donnée par 'opérade
QC := (T(s7'C),d := dewt + dint)

4. Qui est fonctorielle en P
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Théoreme 2.7. Pour toute dg-opérade augmentée P et toute dg-coopérade conilpo-

tente C, on a les isomorphismes naturels

Homg,—0,(Q2C, P) ~ Tw(C, P) ~ Homgy—coni—0p(C, BP)

2.4 Opérades quadratiques et dualité de Koszul

Une donnée quadratique opéradique est un couple (E, R) ou F est un S-module
gradué et R C T(E)® un sous S-module gradué des éléments de poids 2 de T (E). Les
éléments de R sont appelés les relations. Un morphisme de données quadratiques est
la donnée d’un morphisme de S-modules f : E'— E’ tel que T(f)(R) C R'. On peut
alors, généraliser les constructions faites au premier chapitre pour obtenir l'opérade
quadratique P(E, R) := T(E)/(R) associée a la donnée quadratique (E, R), qui est
universelle parmi les opérades quotient 7 (E) — P telles que la composée R —
T(E) — P soit nulle, ainsi que la coopérade quadratique C(E, R) C T¢(FE), vérifiant

la propriété universelle :

C——— T(B) — T(B)/R

|

C(E, R)

Définition 2.13. Pour une opérade quadratique P = P(F, R), la coopérade duale
de Koszul de P est définie par :

Pi:=C(sE,s*R)

et l'opérade duale de Koszul :
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Ou (12? est le produit d’hadamard de coopérades et * est la dualité graduée arité par

arité et S¢ est la coopérade End$y [LV12] .

Proposition 2.6. 5i P est quadratique, engendrée par un S-module réduit de dimen-

sion finie en chaque arité, alors on a
P =P(s' ST ® B RY)
et
(P =P
Ou R* sera décrit dans la section sur les propérades.

Pour une donnée quadratique (E, R), on a P(E, R)") = E et C(E,R)") = E, on

définit alors le morphisme tordant x : Pi — P comme la composée :
k:C(sE,s°R) — sE DB P(E,R)

Le complexe

Pio, P:=(PoP,d)
est appelé complexe de Koszul de 'opérade P. Une opérade quadratique est dite de
Koszul si son complexe de Koszul associé est acyclique.
Théoreme 2.8. les énoncés suivants sont équivalents :
— Le complexe de Koszul droite Pl o, P est acyclique.
— Le complexe de Koszul gauche P o, Pl est acyclique.
— L’inclusion ¢ : P — BP est un quasi-isomorphisme.

— La projection m : QP! — P est un quasi-isomorphisme.
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Chapitre 3

Propérades

3.1 Introduction

Définition 3.1. Un S-bimodule P est une collection {P(m,n), (m,n) € N*} de K[S,,|®x
K[S?%]-modules a gauche. Un morphisme de S-bimodules f : P — Q est une collec-
tion de morphismes f,,,, : P(m,n) — Q(m,n) de S,, ® S?-modules. La catégorie

des S-bimodules et leurs morphismes est notée S—BiMod.

Exemple 3.1. — A tout K-espace vectoriel V est associé le S-bimodule
Endy := {Homg(V®", V™) (m,n) € N*}

Ou les actions des groupes symétriques sont données par permutation des en-

trées et sorties.

— UnS-module M = (M (n))nen peut-étre considéré comme un S-bimodule concen-
tré en arités (1,n),n € N. Ce qui fait de S—Mod une sous-catégorie pleine de

S—BiMod.

Définition 3.2. Un graphe orienté est un graphe non planaire ou les orientations
des arrétes sont données par un flot descendant et tel que les entrées et sorties de
chaque sommet soient numérotées par les entiers. On suppose aussi que les entrées

et sorties globales du graphe sont numérotées par les entiers. L’ensemble des graphes
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orientés est noté G. Si de plus les sommets d'un graphe g peuvent étre répartis en
deux niveaux N, € {1,2}, g est qualifié de graphe a deux niveaux, et I’ensemble

des graphes & deux niveaux est noté G2.

La composition —o — des S-modules s’étend en une composition des S-bimodules
—N,—:

Définition 3.3. Pour deux S-bimodules P et Q, leur produit de composition Connexeﬂ
Q X, P est donné par

OR. P := (P R Q| Out(v) |,| In(v) |) @x X P(| Out(v) |,| In(v) |))/ ~

gEG2VEN, veN

Ou G? est 'ensemble des graphes orientés & deux niveaux connexes, Out(v) et In(v)

sont les sorties et entrées d'un sommet v, et ~ est la relation d’équivalence engendrée

WA el

o

N N

Autrement dit, les actions des groupes symétriques sur les sommets des graphes

par :

sont données par permutations de ses entrés et sorties.

Proposition 3.1. Soit T = K le S-bimodule concentré en arité (1,1), la catégorie
(S—BiMod, X, I) est monoidale.

Démonstration 3.1. L’associativité du produit X. provient de celle du produit ten-
soriel ® dans K-Mod. Pour montrer la relation d’unité P X.Z ~ P, il suffit de
remarquer que la somme est en fait prise sur les graphes connexes da deuxr niveaux
dont le premier niveaux n’est composé que de sommets a une entrée et une sortie.
L’hypothese de connexité assure que toutes les sorties sont reliées sur le méme som-
met au niveau 2 et la relation d’équivalence assure qu’il n’y ait qu’une seule copie de
P(m,n) dans PR.Z. Ainsi PR.Z ~ @ P(m,n) =P. L’isomorphisme X, P ~ P

(m,n)
se traite de la méme fagon.

1. Pour une formule algébrique, on renvoit & [Val07].
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Corollaire 3.1. les inclusions de catégories monoidales suivantes sont pleines :
(Vect, ®,K) — (S—Mod, o, I) < (S—BiMod, X, Z)

Contrairement aux S-modules, il est possible de composer horizontalement les
S-bimodules : pour f € Hom(V®" V&™) et g € Hom(V®* V&) la concaténation
de f et g est donnée par leur produit tensoriel f ® g € Hom(VEn+k y@m+l) et ]a

définition dans le cas général est :

Définition 3.4. Pour P et Q deux S-bimodules, leur produit de concaténation QP

est donné par

Q ® P(m7 n) = @ K[Sm] ®Sm/XSm// Q(m/’ n,) ® P(m”7 n,/) ®Sn’ XSn” K[Sn]

'm/+7n”:7n
n’/+n'"=n

Le S-bimodule K concentré en arité (0,0) induit une structure monoidale symé-

trique sur la catégorie des S-bimodules munie du produit de concaténation.

Définition 3.5. Une Propérade est un monoide dans la catégorie monoidale (S—BiMod, X, 1)
et un morphisme de propérades est un morphisme de monoides. La catégorie des
propérades est notée Properads. De méme, une copropérade est un comonoide dans
(S—BiMod, X, I).

Définition 3.6. Soient (P, u) et (Q,v) deux propérades, leur produit de Hadamard
PRQ est la propérade définie par
H

{PRQ(m,n) :=P(m,n) ® Q(m,n)}, p®v)
H
Remarquons que p ® v est un abus d’écriture qui utilise I'identification
(PRQ K, PRQ)(m,n) = (P K. P)(m,n) @ (QK. Q)(m,n)
H H

Dans le cas gradué, les conventions de Koszul doivent étre prises en compte.
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Exemple 3.2. Endy est une propérade. Le cas particulier ou V = K est concentré
en degré 1 est noté s et appelé propérade signature, ou propérade suspension [Gan02).
le cas ot K est concentré en degré —1 est noté s~1. Les collections A := {A(m,n) :=
s(m,n)[2 —2m]} et A=t := {A"Y(m,n) := s~ (m,n)[2m — 2]} sont aussi des propé-

rades.

Un autre exemple est donné par ce qui suit : le foncteur d’oubli U : Properads —
S—BiMod admet un adjoint & gauche F et pour un S-bimodule V', (F(V), iy : V —
F(V)) est appelé propérade libre sur V.

Construction 3.1. Soit V' un S-bimodule, la propérade libre sur V est donnée par

la somme sur les graphes connexes G, :

F(V) = (D QV( Out(v) || In(v)]))/ ~
geG.veN

La composition i est induite de la composition des graphes orientés, et le morphisme

V — F(V) est induit par l'inclusion Ge 1y = Ge.

L’application qui & un graphe lui associe son nombre de sommet(s) induit une

partition de I'ensemble des graphes orientés connexes : G. = |] G (n), et ainsi une

neN
décomposition F(V) = @ F) (V).
neN

Remarque 3.1. Pour la définition de copropérade colibre conilpotente (le coproduit
itéré suffisamment de fois de tout élément est nul) sur un S-bimodule V' on renvoit
a [Val07].

Définition 3.7. Une donnée quadratique (V,R) dans la catégorie S-biMod est la
donnée d’un S-bimodule V' et d’un sous-S-bimodule R de F(2)(V). A une telle donnée

quadratique est associée une propérade, qualifiée de quadratique :
F(V,R) := F(V)/(R)

Par extension, une propérade est dite quadratique si elle est isomorphe a une certaine

propérade F(V, R), et binaire quadratique si V' est concentré en arité (1,2) et (2,1).
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Exemple 3.3. La propérade BiLie encodant les bialgebres de Lie est quadratique
binaire, engendrée par le S-bimodule V@ W, avec V =V (1,2) = m.K ou le produit
m est anticommutatif et W = W (2,1) = AK o1 le coproduit A est anticommutatif.

Et pour espace des relations R, [’espace engendré par

—Re= 4 / + <
\
\+ \+

/ l 1 L
— D= /\\ - /\/ + /\/ - \/\+ \/\

3.2 Calculs de duaux

Dans toute cette section, les S-bimodules sont de dimensions finies en chaque

arité. Pour un S-bimodule P, son dual de Czech PV est défini par
PY(m,n) := sgng, Qx P(m,n)* @k sgns,
Et sa suspension sP est définie par
s®@P

ou s est le S-bimodule concentré en arité (0,0) et degré 1 : s(0,0) := K.

Définition 3.8. Soit P = P(FE, R) une propérade quadratique, sa copropérade duale
est définie par

Pl .= F(sE, s*R)

et sa propérade duale est définie par
P= A QP
H

Proposition 3.2. Soit E un S-bimodule (concentré en les arités (1,2) et (2,1)).
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Linclusion EV = A 'sE* — A7V (F¢(sE))* induit un unique isomorphisme de pro-
pérades au dessus de EY :

K
GRIY

®: F(EY) — AYF(sE)) (E)Y

qui induit un isomorphisme encore noté ® :
d: F(EY)/(® A *RY)) — P!

Exemple 3.4. Soit E =V & W un S-bimodule, ot V' est concentré en arité (1,2)

et engendré par des produils \‘/, et W est concentré en arité (2,1), engendré par
des coproduits /\\. L’isomorphisme ® est alors donné sur le sous-module de poids
2 en arité (2,2), Fo)(EY)(2,2), par :
~N. N AN
- 1 == =( 7))

1/\2

| !
N, N,

L L i
47/\/H+/\/:%”Yd
I I
. L P
‘*/\/H—/\/IQAYJ
[ [ s

I P
NS T NS
I [

I I
— NS T N
! l L

Et en arité (1,3) par :

\<>/H\</ﬂﬂ\< %
\ \

— Yo €Sy : \< / . E(U)\</
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Pour V et W deux S-bimodules, on notera (I; W) K. (I;V) le sous-S-bimodule
de (I W)K. (I®V) composé des graphes ayant exactement un sommet indexé par
une opération de V' au niveau 1 et un sommet indéxé par une opération de W au

niveau 2.
Définition 3.9. Soient V' et W deux S-bimodules, une régle de réécriture \ est un
morphisme de S-bimodules :

A (LW)R(LV) = (L V) R (I W)

telle que si on note D) := Im((Id,—\)) et si P:=F(VOW)/(R® D, D S) est une
propérade avec R C F(2)(V), S C Fo)(W), 'application

FV)/(R) R F(W)/(S) =P

est injective.
Lemme 3.2. Soit A : (I; W)X, (I;V) — (I; V). (I; W) une régle de réécriture et
Dy le graphe de —\. La régle de réécriture dans F(EY) :
Ai=@ o —(AT (PN)) 0 @ (LVY) R (LEWY) = (LWY) R, (1;VY)
vérifie :
DS\ = CI)_I(D/J\:132)\>

Démonstration 3.2. On commence par rappeler les deux faits classiques suivants :

— Si f: A— A est une application et ¢ : A = B est une bijection , alors
¢:(Gr(f)) = Gr(¢o fog™)

— Si f : A — B est une application linéaire, en notant f* : B* — A* application
transposée, on a

Gr(f)y-=Gr(=f)

o A® B et B® A sont identifiés canoniquement et Gr(f) est le graphe de f.
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On en déduit alors

D5 = @ H(D_p-11520))
(AT Dy,y)
o

! (ij\_*lsQ/\)

Notons que la derniére égalite est obtenue par finitude des dimensions et exactitude

de A\™'® —.

Théoréme 3.3 (proposition 8.2 [Val07]). Soit P une propérade de la forme F(V@W)/(R@G D D 5),
Re Fo(V),Se FoW)etDyC (ZToW)XR(ZoV)BIZOV)X(TOW) , définie
par une régle de réécriture X, telle que la somme des dimensions de V @ W soit finie.

Alors la propérade duale de P est donnée par

P ~FWYaeVY)/(S®D;®R)
avec pour régle de réécriture N définie au lemme 3.2 et S := ®1(A~'s251), R =
LA IS2RY).

Esquisse de démonstration 3.1. [] reste a vérifier que D, = D5, c’est exactement

l"objet du lemme 3.2.

Exemple 3.5. La régle de réécriture pour la propérade BiLie = F(V & W)/(R &
D& S), avec V =< p >g= \‘/.K et W =< A >g= /\\.K munis des actions par

signature, est donnée par

AN (LW)R(LV)=WegV — (VYK (L; W)
o | i i b [ i |
\ = N T N T NN T N
N, | | | ! J | | !
Calculons \
U N NN 1 P
T )= (= )=+
| ! } ‘

— A
O
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i.e:

1.e :
< N
)\(\A/\)—-l-
J | PN
oo NS
A )=t
J l N
N RN~ NS
— A )0 T ) =4
| N PN

Ce qui donne

AN | i AN [ |
Di=< | = ~_~>&< | — ~_~>
N | SN |

N N0
S P e T P e
N | | N | |
Corollaire 3.4. La propérade duale de Koszul BiLie' de la propérade des bialgébres
de Lie, BiLie, est donnée par BiLie' = F(VOW)/(R®D®S) ou 'V est engendré sur
K par un produit commutatif m en arité (1,2) et W par un coproduit cocommutatif
A en arité et (2,1). L’espace des relations, R® D & S, est engendré par
— \< o \>/ l’associateur.
\ \

\ \ .
— / — o le coassociateur .
L/\z\vs // N\,

\
— N
\‘/
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Démonstration 3.3. BiLie=F (Ve W)/(R&D&S) avec Ve W =mKaeAK
et les relations ont été données dans l'exemple 3.3. D’aprés le théoréme précédent,
BiLie' est engendrée par VVOWY = m* K@ A* K, avec m* un produit commutatif et

A* un coproduit cocommutatif. Les relations R+ en arité (1,3) sont 'orthogonal de la

a(1) a(2) (3)

relation de Jacobi : sie, = \/\ ,0 € Ss, alors une base de Foy(VOW)(1,3)
\

est (erq, e(123); €(132)) et la relation de Jacobi s’écrit dans cette base erq+e(123) +€(132)
sont orthogonal est donc engendré par < €7, — €{123); €(123) ~ €(132) >=< €14~ €(123) >

c’est a dire l'associateur. Le cas de larité (3,1) est dual a celui-ci. En arité (1,1)

\
l’orthogonal de 0 est donné par < <> >. En arité (2,2), c’est Dy calculé a Uezemple

\
3.5.
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Annexe A

Rappels

On commence par rappeler quelques résultats fondamentaux sur les représenta-
tions des groupes finis, sous I’hypothese que la caractéristique du corps K ne divise

par 'ordre du groupe.

Définition A.1. Soit G un groupe et H < G un sous groupe de G. Pour un H-
module & droite M, la représentation induite de G sur M est notée Ind$ M, définie
par :

Ind$M = M @5 K[G]

ou la multiplication a gauche H x G — G induit la structure de H-module a gauche

de K[G].

Théoréme A.1 (Maschke). Toute représentation de G est somme directe de sous

représentations irréductibles.

Théoreme A.2. Toute représentation irréductible de G est facteur direct dans la

représentation réqulicre.

Une conséquence de ces deux résultats est que tout K[G]-module est facteur direct

d’un module libre, i.e est projectif. On en déduit un lemme de non-annulation :

Lemme A.3. Soit B un S,-module non réduit a 0, alors

B ®s, (K")®" #0
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PK[S) o (Kv)e
= e1®..R0e,

Démonstration A.1. L’inclusion induit la suite exacte

courte :
0 — K[S,] < (K")®" — Coker(i) — 0

Par projectivité de B, on en déduit la suite exacte courte :
0 = B®s, K[S,] ~ B <> B®s, (K" - B®g, Coker(i) — 0

En particulier, B ®s, (K™)®"™ est non nul.
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La cohomologie de Hochschild est une théorie d’algebre homologique concernant les
algebres associatives. Elle apparait en 1945 dans les travaux de Gerhard Hochschild
et sera étudié durant le XX siecle par de nombreux mathématiciens. Gerstenhaber,
Schack, Loday, on encore Grothendieck contribueront a étendre cette théorie aux schémas
a travers plusieurs définitions. Le but de ce mémoire est d’étudier les travaux de Swan
pour comprendre ces différentes définitions.

Le cadre général est une algebre associative A (non nécessairement unitaire) sur un
anneau commutatif k, et un bimodule M sur A, c¢’est a dire un A-module a droite et a
gauche satisfaisant les relations suivantes

Am = mA
a(mb) = (am)b

pour tout m € M, A\ € k et a,b € A. Lorsque A est unitaire, cela revient a considérer un
module sur 'anneau A = A ® A, ou ® = ®y, a travers la formule

(a ®b)m = amb

pour tout m € M et a,b € A. Etant donné notre motivation a étudier des schémas, A sera
toujours unitaire et méme commutative. On introduit ensuite le complexe de Hochschild

Co(A, M) = M @ A®"

dont la différentielle est définie par les applications k-linéaire suivantes

d=Y(-1)id;: M ® A®" — M ® A®"~}
i=0
do(m®a1®“-®an):ma1®a2®---®an
di(mM®ar®- - ®a,) =m@a1 @+ @ a1 ® -+ ®a, pour 0 <i<n
dy(mM®@a1 ® - ®a,) =a,mRa; @+ @ Ap_y

Lorsque A est commutative, ces applications sont A°-linéaires. On peut alors définir
I’homologie de Hochschild de A a valeurs dans M par

H,(A,M) = H,(Cs(A, M))

Traditionnellement, on note Co(A) = Co(A, M) et HH,(A) = Ho (A, M). Pour mieux
comprendre cette homologie, il est commode d’utiliser le complexe "bar” de A°-module

B,(A)=A® A®"® A

dont la différentielle est donnée par les applications A°-linéaires

d=>(-1)d: A0 A" R A - AR A®" 1A
i=0
d;(a/0®“'®an+1> :a’0®.”®aiaﬂi+l®“'®an+l
La multiplication dans A permet d’obtenir une résolution de A°-module
BJ(A) — A

Si A est projective sur k, alors B,(A) est projectif sur A, et dans ce cas

H,(A, M) =Tori (M, A) = Tor’ (A, M)



Pour définir la cohomologie de Hochschild de A & valeurs dans M, on s’inspire la situation
précédente en posant

H"(A,M) = H"(Home(Bo(A), M))
de sorte que si A est projective sur k alors
H"(A, M) = Ext%.(A, M)

Puisque les schémas que nous considererons seront toujours basés sur un corps, les algebres
que 'ont rencontrera seront toujours projectives. Ainsi, on préferera définir I’homologie et
la cohomologie de Hochschild & travers les foncteurs dérivés Torl (A, —) et Ext%.(A, —).

Dans son article "Hochschild cohomology of quasiprojective schemes”, Swan intro-
duit trois définitions différentes de la cohomologie de Hochschild d'un schéma basé sur un
corps, puis il prouve que ces trois définitions coincident si le schéma est quasi-projectif. La
démonstration fait appel a différents concepts de géométrie algébrique et utilise des tech-
niques standard d’algebre homologique telles que les suites spectrales. Notre objectif est
de comprendre cet article en détaillant les preuves de chacun des résultats intermédiaires
en apportant parfois des preuves alternatives ainsi que la démonstration générale. On
conservera le plan en dix parties de ’article original.
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1 Cohomologie de Hochschild

Rappelons la définition de la cohomologie de Hochschild d'une algebre commutative
A sur un corps k. On considere A° = A ® A avec ® = ®y, ainsi que la multiplication

e A = A

qui permet de regarder un A-module M comme un A°-module que 'on notera M. ou
simplement M si cela ne préte a aucune confusion. La cohomologie de Hochschild de A a
valeur dans un A°-module M est définie par

H*(A, M) = Ext%.(A, M)
On peut calculer cette cohomologie en utilisant la résolution projective de A°-module
B.,(A) 5 A

ol Be(A) est le complexe "bar” de A [2, 1.1.12]. Trés souvent, on souhaite calculer la
cohomologie de Hochschild de A a valeur dans un A°~-module M.. Dans cette configuration,
on a l'identification

Homae(Bo(A), M:) = Homa(A ®ae Bo(A), M)
Combinée avec I'isomorphisme de complexe de A-module
A®pe Bo(A) ~ Co(A)
ou Ce(A) est le complexe de Hochschild de A [2, 1.1.3], ce calcul donne
H"(A, M) = H"(Homs(Cs(A), M))

pour tout A-module M.

Exemple (H® & H') : La différentielle C;(A) — Co(A) est nulle car A est commutative

A° A

SRt——=st —ts

Ceci montre que HY(A, M) = Homu(A, M) = M et H' (A, M) = Z'(Homa(C.(A), M)).
La différentielle Cy(A) — C}(A) donnée par

A® A A°
SREIERXr——=stRQr —sQRQtr+rst

et I'adjonction Homu (A, M) = Homy(A, M) permette d’interpréter les 1-cocycles de
Hom(Co(A), M) comme les dérivations de A dans M : H'(A, M) = Der (A, M).

La premiere maniere d’adapter cette définition a un schéma X sur un corps k est de
considérer avec x = X I'application diagonale

0: X =X xX

pour regarder chaque faisceau F de Ox-module comme un faisceau de Ox« x-module en

prenant J,F mais en notant simplement F a la place de §,F. On peut alors définir la

cohomologie de Hochschild de X a valeur dans un faisceau F de Ox-module par
H*(Ox,F) = Ext?

Oxxx

<0X7f)



Cette définition généralise la cohomologie de Hochschild d’une algebre, au sens ou si
X = Spec A est affine et F = M"™ est quasi-cohérent alors

H*(Ox,F)=H*(A, M)
Ceci provient du fait que X x X = Spec A°, ,0x = A.” et §,F = M.™, ce qui implique
Exty,  (Ox, F) = Exty.(A, M)

Cette définition arrive avec une suite spectrale de Grothendieck. De fait, le foncteur
Homey, (Ox,—) envoie les faisceaux de Oxyx-module injectifs vers les faisceaux de
Ox«x-module I'-acyclique. Plus généralement, si O est un faisceau d’anneau sur un
espace topologique, F un faisceau de O-module et Z un faisceau injectif de O-module
alors le faisceau Homeo(F,Z) est flasque : pour toute inclusion d’ouvert V' C U et tout
morphisme de faisceau de O|y-module

]ﬂv-—%]%v
correspond un morphisme de faisceau de O|y-module
(Flv)v = Zlu

ou (Fly)u désigne le faisceau Fly étendu par 0 sur U [1, Ch.Il, Ex.1.19]. On obtient
alors un triangle commutatif

En ajoutant a cela que les faisceaux flasques sont I'-acycliques [1, Ch.III, Prop.2.5], on
obtient la propriété recherchée. Ainsi, la composition de foncteur

HomOXxX(OX7 _) =To HomOXXX (OXv _)
induit pour tout faisceau F de Ox-module une suite spectrale de Grothendieck

EY = HP(X x X, Exth  (Ox, F)) = Exth? (Ox,F)

OXXX OX><X

Supposons X de type fini et séparé sur k. Les fibres de 0, sont alors données par
((5*.7)5(1) = F, et (5*./—")y =0siy §§ d(X)

pour tout faisceau F de Ox-module. Puisque X x X est noethérien et §,Ox cohérent,
ceci montre que le faisceau Ext%XXX (Ox,F) est a support dans la diagonale §(X) :

(Extg (Ox, F))y = Ext((IDXXxyy(((S*OX)y’ (0.F)y)

Oxxx

[1, Ch.III, Prop.6.8]. En conséquence, l'unité
Exthy, (Ox, F) — 5*5’1€xt%mx((’)x,]—")

est un isomorphisme. Puisque I'od, = I, la cohomologie du faisceau £ xt‘éXXX (Ox, F) sur

X x X coincide avec la cohomologie du faisceau 6 'Extd, ~ (Ox,F) sur X. On préferera

Oxxx
donc écrire la suite spectrale de Grothendieck sous la forme

HP(X, Extl,  (Ox,F)) = H"*(Ox, F)
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en regardant Exty,  (Ox,F) comme un faisceau sur X via 571, Ce dernier hérite d'une
structure de O x-module étant donnée que le morphisme de faisceau de 6~ 'Ox y x-module

§1Exty  (Ox,F) — 6*Exty, (Ox,F)

Oxxx Oxxx

est un isomorphisme. En effet, sur les fibres, on est ramené au morphisme

Extl (OX,x,fx) — OX,z ®OX><X,5(Z) Ext! (OX,mv-Fx>

Ox xx,5(z) Ox xx,5(z)

Pour construire la réciproque, on part de la multiplication

OX@ x Ext?

Ox x x,6(x)

(OX@, ]:33) — Extq

Ox xX,6(z)

(OX,:z:w/—:z)

induite par la structure de Ox ,-module de F,, puis on vérifie la bilinéarité sur Ox x 5(z)
grace au triangle commutatif donné par la co-unité

62@) (5*OX)5(:B)

Ox xX.,5(z)

i
8% OX,x

o1 0’ : Oxxx — 0,0x et 6 : 6 'Oxyx — Ox. Par abus de notation, on parlera donc du
faisceau Extf,  (Ox, F) sur X au lieux d’écrire 6*Exty,  (6.0x,0.F).

On peut préciser cette suite spectrale pour les schémas lisses. Commencons par rap-
peler une propriété élémentaire d’algebre homologique qui nous servira également au para-
graphe 5 : si on se donne un complexe de R-module projectif

P, P, P, 0

tel que les homologies sont des R-modules projectifs, alors on a des isomorphismes
HY(Hompg(P.,N)) ~ Hompg(H,(P,), N)

pour tout R-module N et tout g. Pour le démontrer, on note Z, = Z,(P,) les cycles et
B, = Bq(P.) les bords de P, puis on utilise les suites exactes courtes

0—>Z,—> P,—> B,—>0

0 By Zq H,(P,) —=0
et la projectivité de I’homologie de P, pour obtenir les isomorphismes
Zq ~ Hy(P,) & By
ce qui permet de prouver par récurrence sur g € N
P,~B,® Z,

de sorte que le complexe P, s’identifie au complexe

By®© Zy——>By1© 24

(b, ¢) ———(0,b)

Dans cette configuration, le complexe Hompg(P,, N) s’identifie au complexe

-+« —>Hompg(By,, N) ® Hompg(Z,, N) Hompg(Byy1, N) @ Homgp(Zy41, N) > - -
(fag)l (g|Bq+170)




Les cocycles s’identifient alors a Hompg(B,, N) & Homp(H,(P.), N) car les morphismes
Z, — N nuls sur By, correspondent aux morphismes H,(FP,) — N ; tandis que les
cobords s’identifient a I'image de Hompg(Z,, N) par la restriction sur By, c’est a dire
Hompg(Byt1, N). En effet, la seconde suite exacte courte fournit une fleche Z, — B,y
qui est I'identité sur B,y de sorte que la restriction sur B, est surjective. Ceci prouve
I'isomorphisme annoncé. Ce résultat peut étre utilisé dans la situation suivante. Soient

S—R
un morphisme d’anneau, M un S-module et N un R-module. Les groupes
Extl(M,N) et Tory (R, M)

sont naturellement munit d’une structure de R-module. Si on suppose pour tout ¢ que
T 07‘5 (R, M) est projectif sur R alors on a un isomorphisme de R-module

Exti(M,N) ~ Homg(Tory (R, M), N)

Pour le voir, on prend une résolution projective de S-module
P, — M
Le complexe R ®g P, est alors projectif sur R et son homologie
Hy(R®g P,) =Torf (R, M)
est par hypothese projective sur R. On a alors un isomorphisme
Hi(Homp(R ®s Po,N)) ~ Homg(H,(R ®s P,), N)
et le résultat se déduit alors de I’adjonction
Homp(R ®g Py, N) ~ Homg(P., N)
En particulier, lorsque A est lisse sur k, on peut appliquer ceci au morphisme d’anneau
e:A°— A
car le théoreme de HKR fournit des isomorphismes naturels de A-module
Tor{" (A, A) ~ QY

de sorte que TOT?E(A, A) est projectif sur A. On obtient un isomorphisme de A-module

Extl. (A, N) ~ Homa(Q%, N)

Exemple: Si X = Spec Aet F = N~ alors H"(Ox, F) = Ext’. (A, N) ~ Hom (2%, N).

Supposons X lisse sur k. Pour tout ouvert affine U = Spec A de X, on dispose d’un
isomorphisme de faisceau de Opy-module

Extd

Oxxx

(Ox,0x) |y = Eath. (A, A)~ ~ (QF)Y

[1, Ch.III, Prop.6.2 & Ex.6.7]. Ces isomorphismes naturels se recollent pour former un
isomorphisme de faisceau de Ox-module

SxthXXX(OX, Ox) ~ Q%)Y ~ N"Tx
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ot Tx = (2%)V est le faisceau tangent de X, le deuxiéme isomorphisme étant donné par
le fait que Q% est localement libre. Avant de conclure, énongons une propriété générale
pour un faisceau d’anneau O arbitraire. Pour tout faisceau A, B et G de O-module et
tout ouvert U, application I'(U, O)-bilinéaire

T(U, Homo (A, B)) x T(U,G) —T(U, Homo (A, B® G))
(0, 5) (—®s)ob

induit un morphisme de faisceau de O-module
Homo(A,B) @ G — Home(A,B® G)
Lorsque A est projectif sur O et G est localement libre, ¢’est un isomorphisme :

Home, (Az, By) o, G =~ PHomo, (A, B,)

el

~ Homo, (As, PB.) ~ Home, (Az, B: @0, Gz)

iel
avec G, ~ @O,. Puisque les faisceaux localement libres sont plats, on obtient en partic-
iel
ulier pour tout faisceau localement libre F de Ox-module des isomorphismes
Ea:t?gXXX(OX, Ox)® F ~ E:L’t?gXXX(OX,]:)
On peut aussi appliquer cette propriété au faisceau canonique wy = Q% de X
(A Tx) @ wx ~ Home, (%, Ox) @ wy ~ Home, (2%, wx)
Et la multiplication des formes différentielles
Q4 @ 0T wy
induit par adjonction un isomorphisme

QT ~ Home, (Q%, wx)

ce qui peut se vérifier en utilisant la liberté sur Ox, des fibres Q% = Qf, . Le faisceau
wx ® F étant localement libre, on peut résumer ce qui précede par l'isomorphisme

Extd

Oxxx

(Ox,wx ®F) ~ QL0 F

ou d = dim X. Ainsi la suite spectrale donnée par la cohomologie de Hochschild de X a
valeur dans wx ® F s’écrit

H?(X, Q%90 F) = H(Ox,wx @ F)

On verra au paragraphe 2 que si X est quasi-projectif sur un corps de caractéristique
nulle alors cette suite spectrale dégénere et induit une décomposition

H'Ox,wx @ F)~ @ H!(X, QL% F)

pt+q=n
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2 Définition par ’hyper-ext

La deuxieme définition de la cohomologie de Hochschild d'un schéma X sur un corps
s’'inspire d’avantage du calcul

HP (A, M) = H(Hom(Ca(A), M)
Soit C, le complexe de faisceau de Ox-module associé au préfaisceau
U~ C.(T(U, Ox))
La cohomologie de Hochschild d’un faisceau F de Ox-module sur X peut étre définie par
HH*(X,F) = Eaxty,, (Co, F)
c’est a dire pour toute résolution injective F — Z°* de faisceau de Ox-module
HH"(X,F)= H"(Homo, (Ce,Z*))
L’objectif principal de I'article de Swan est de démontrer le théoreme suivant :

Théoreme 2.1 : Soit X un schéma quasi-projectif sur un corps. Il existe un isomorphisme
de d-foncteur en F

H*(Ox,F)~ HH*(X,F)

On peut donner par exemple I’application suivante.

Corollaire 2.2 : Soit X un schéma projectif sur un corps. Pour tout faisceau cohérent
F de Ox-module, HH™(X, F) est un espace vectoriel de dimension finie.

Preuve : Les faisceaux Ext},  (Ox, F) sont cohérents donc les HP(X, Exty, (Ox, F))
sont des espaces vectoriels de dimension finie [1, Ch.III, Th.5.5]. De plus, X est un espace
topologique noethérien de dimension N finie, donc H?(X,Exty, (Ox,F)) = 0 pour
p > N [1, Ch.III, Th.2.7] et ainsi H"(Ox, F) est une somme directe finie d’espace vecto-
riels de dimension finie. W

Dans l'article original [3], Swan remarque qu’on peut également définir la cohomologie
cyclique de X en considérant le complexe de faisceau D, associé au préfaisceau
U Do(I'(U,Ox))

ou D,(A) désigne le complexe total du double complexe de Connes d'une algebre A sur
un corps [2, 2.1.7] puis en posant

HC*(X,F) = Eaty, (D, F)
La suite exacte courte usuelle [2, 2.2.2]
00— Co(A) —= D¢(A) —= Dy (A)[-2] —=0
induit une suite exacte courte de complexe de faisceau de Ox-module

0—>Cy —= Dy —= Dy[~2] —=0

et par suite une longue suite exacte cohomologique de Connes
oo —=HC" (X, F)—=HC"(X,F)—= HH"(X,F) —= HC" Y(X, F) — - - -

qui permet de généraliser par récurrence le corollaire 2.2 a la cohomologie cyclique de X.
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La principale difficulté autour de cette définition réside dans le fait que C, n’est pas
quasi-cohérent en général. Néanmoins, tout comme la précédente, elle arrive avec une
suite spectrale.

Lemme 2.3 : Soit O un faisceau d’anneau sur un espace topologique. Pour tout complexe
de faisceau A, de O-module borné en bas et tout faisceau G de O-module, il existe une
suite spectrale

Ey! = Butp(Hy(A),G) = Eatp (A, G)

Preuve : Soit G — Z* une résolution injective de faisceau de O-module. Puisque A, est
borné en bas, la suite spectrale donnée en filtrant selon les colonnes le double complexe

e _>.H0mO(Aq+1,Ip) —>~H0m(’)<Aq+17Ip+1) -

o —— Homo( Ay, I?) Homo (A, P —— - -

converge vers la cohomologie totale Extzgq(A., G). On peut calculer la deuxieme page :
E{* = Home(A,,IP)
EY" = HY(Homo(Ae, IP)) = Homo(H,(Al), )

By = Hy(Hi(Homo(As, 1%))) = Exto(Hy(Al),G) B

Lorsque l'on prend O = Oy, A, = C, et que 'on pose H, = H,(C,), on obtient
Bty (Hy, F) = HHP™(X, F)

Pour comprendre le faisceau H,, on a besoin d’une propriété importante concernant
I’homologie de Hochschild des algebres commutatives. Pour tout morphisme plat d’algebre

A— B
le morphisme d’algebre induit
A¢ — B¢
est également plat et on dispose alors d’une formule de changement de base
Tor2(M,N) ~ Tor8 (B* ® 4« M, N)
pour tout A°-module M et tout B¢-module N. Puisque B ® 4 A ~ B, on obtient
B®a Tord (M, A) ~ TorA (M, B) ~ Tor2(B* ®c M, B)

= B®y Hy(A, M) ~ H,(B, B* ® 4 M)
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En particulier, 'homologie de Hochschild commute avec la localisation :
(ST1A)Y @4 A= (STA) @4 A®y (ST1A) ~ S71A
= (S'A) @, HH,(A) ~ HH,(S7'A)

ou HH,(A) = H.(A, A). On rencontrera les morphismes plats dans d’autres situations.
Par exemple, une immersion ouverte de schéma affine

Spec B — Spec A
induit sur les sections globales un morphisme plat
p:A—B

Pour s’en convaincre, il suffit de prouver que tout monomorphisme de A-module

0—=M-—T>N
est envoyé par le foncteur B ® 4 — vers un monomorphisme

0—=Ba ML Bo,N

Par hypothese, ¢ induit pour tout q € Spec B un isomorphisme d’anneau
Ay ~ By

olt p = »!(q). On a alors un carré commutatif

B,®@sBoaM —2% . B @pBo,sN

Puisque A, est plat sur A, le morphisme du bas est un monomorphisme. Par conséquent,
Vq € Spec B, By ®@p ker(1® f) =0
= ker(l1® f)=0

d’ou le résultat. Donnons a présent un lemme important qui nous accompagnera jusqu’a
la démonstration du théoreme 2.1.

Lemme 2.4 : Soit X un schéma de type fini sur un corps.

(1) H, est un faisceau cohérent pour tout q.

(2) ( H,) = HH,(I'(U, Ox)) pour tout ouvert affine U de X.
(3) Si X est lisse alors H, ~ Q%.

(4) Si X = Spec A est af‘ﬁne alors on a un quasi-isomorphisme

5*B, "5 c,
ou B, est le complexe de faisceau sur X x X associé au complexe de A°-module B,(A).

Preuve : La faisceautification est un foncteur exact, donc H, est associé au préfaisceau

U~— HH,(I'(U,Ox))

14



Or, 'homologie de Hochschild commute avec la localisation. Donc si U est un ouvert
affine de X alors le préfaisceau

U>SV e HH/(I(V,Ox))
correspond a la localisation du I'(U, Ox)-module HH,(I'(U, Ox)). En particulier,
I'U,H,) = HH,(I'(U, Ox))

Puisque X est de type fini sur un corps, HH,(I'(U, Ox)) est de type fini sur I'(U, Ox) : si
A est une algebre de type fini sur un corps k alors on a un morphisme d’algebre surjectif

klxy, ...,z — A
qui induit un morphisme d’anneau surjectif
Alxy, ...,z > AR A

ce qui montre que A€ est Noethérien. Ainsi, A admet une résolution projective de A°-
module de type fini et par conséquent T' or(j‘e (A, A) est un A°-module de type fini. Puisque
HH,(A) =Tor/" (A, A) est un A-bimodule symétrique, HH,y(A) est un A-module de type
fini. Tout ceci prouve (1) et (2). Le point (3) découle directement du théoreme de HKR.
Supposons X = Spec A affine. Sur les ouverts principaux de X x X, on a une composition

(A°)f @ac Bo(A) = Ac(p) ®ae Ba(A) 2 Acp) @4 Co(A) = ColAc(y))
qui défini un morphisme de faisceau de Oxy x-module
Be = 0.Ca
On obtient par adjonction un morphisme de complexe de Ox-module
0*Be — C,

C’est un quasi-isomorphisme. Pour le voir, il suffit de calculer I’homologie sur les fibres
en chaque idéal premier p € X :

(6°B.)y = Ay @aey, (A%)g ®ae BalA)) = Ay @4 Ba(A) = A, ©4 Ca(A)

ou q € X x X désigne I'image réciproque de p par la multiplication. Le morphisme de
complexe de Ap,-module

A, @4 Co(A) = Co(4Ay)
est un quasi-isomorphisme :

Hy(Ap @4 Co(A)) = Ay @4 Hy(Co(A)) = HH,y(A) = HH,y(Ay) = Hy(Co(4,)) B

Ce résultat permet de réécrire la suite spectrale précédente lorsque X est lisse :
Bty (%, F) = HHPY(X, F)
On peut calculer Ea:t%x(Qg(, F) en utilisant la suite spectrale de Grothendieck
EY = H(X, Ext], (A%, F)) = Extg? (%, F)
donnée par la composition de foncteur

Home, (Q%,—) =T o Home, (%, —)

15



L’idée est que Qf est localement libre de rang fini ce qui implique d'une part que
£ ;m%x (Q%,F) = 0 pour tout j > 0 et par conséquent la page E» de la suite de Grothendieck
ne comporte qu’'une seule ligne ce qui induit un isomorphisme

Bty (5, F) ~ HP(X, Homo, (%, F))

et d’autre part que le morphisme de faisceau de Ox-module
QL)Y @ F = Homo, (Q%, F)
introduit au premier paragraphe est un isomorphisme. En particulier,
Homo, (%, wx @ F) =~ QY @ F

Alinsi la suite spectrale donnée par la cohomologie de Hochschild de wyx ® F sur X s’écrit

HY(X, QY99 F) = HHPM (X, wx @ F)
Ceci nous amene au deuxieme théoreme principal de I'article de Swan.

Théoreme 2.5 : Soit X un schéma quasi-projectif sur un corps. Si H, est localement
libre pour tout g alors les suites spectrales

HP(X, Extz,)xxx((f)x,}—)) = HP*(Ox,F)
Bxty, (Hy, F) = HHPY(X, F)
sont isomorphes. En particulier, si X est lisse alors les suites spectrales
HP(X, Q5 ® F) = H*(Ox,wx ® F)
HP (X, Q% "® F) = HHP (X, wx @ F)
sont isomorphes.

Ce théoreme nous permet de démontrer la décomposition de la cohomologie de Hochschild
annoncée a la fin du paragraphe 1.

Corollaire 2.6 : Soit X un schéma lisse et quasi-projectif sur un corps de caractéristique
nulle. La suite spectrale

H?(X, Q%5 ® F) = H*(Ox,wx ® F)
dégénere et induit un isomorphisme

H"Ox,wx @ F)~ @ H!(X, QL% F)

ptq=n
Preuve : Le théoreme 2.5 nous ramene a la suite spectrale
HY (X, Q% "® F) = HHP" (X, wx @ F)

L’idée est d’utiliser la A-décomposition de ’homologie de Hochschild d’une algebre com-
mutative A sur un anneaux contenant Q [2, 4.5.10] :

Cu(A) = PCI(A)

i>0
ol C@(A) est un sous-complexe de Cy(A) dont I’homologie H Y (A) satisfait
HHy(A) = HH{" (A)
HH,(A) = HH(A), n>1

1<n

o
IN
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Lorsque A est lisse, on a HHT(Li)(A) = 0 pour tout ¢ # n [2, 3.4.4 & 4.5.12]. Ceci induit
une décomposition

>0
de sorte que la suite spectrale
HY(X, QY99 F) = HHPM(X, wx @ F)

se décompose comme somme directe des suites spectrales associées aux doubles complexes
Homo, (CSZ),I') oll wy ® F — Z* est une résolution injective. La deuxieme page

B} = Bty (H,(C),wx © F)

consiste alors en une seule colonne ¢ = 7, ce qui montre la dégénérescence a la deuxieme
page et donne ainsi le résultat. Wl

Exemple : Si A est un anneau Noethérien alors tous les faisceaux quasi-cohérents sur
X = Spec A sont I'-acycliques [1, Ch.III, Th.3.5]. Ainsi, si A est une algebre lisse sur un
corps de caractéristique nulle et si F est quasi-cohérent sur X alors le corollaire 2.6 donne

H"(Ox,wx @ F) ~T(X,Q% " ® F)
Or, le théoreme de HKR nous avait permis de démontrer au paragraphe 1 l'identité
H"(Ox,wx @ F) = Homa(2%,Q4 ®4 M)
ou F = M~. L’isomorphisme de A-module
Homa(0%, Q%4 @4 M) ~ Q4" @4 M

nous permet alors d’interpréter le corollaire 2.6 comme une généralisation du théoreme
de HKR aux schémas lisses et quasi-projectifs sur un corps de caractéristique nulle.
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3 Définition de Gerstenhaber-Schack

Introduisons a présent la troisieme définition de la cohomologie de Hochschild d’un
schéma X sur un corps. Dans ce paragraphe, tous les préfaisceaux sont définis sur la
sous-catégorie A C Top(X) des ouverts affines de X. Pour distinguer les faisceaux des
préfaisceaux, on notera O le faisceau d’anneau Ox vu comme un préfaisceau d’anneau et

D, : U — C,(I'(U,Oyx))

le complexe de préfaisceau de O-module auquel C, est associé.

Considérons le préfaisceau d’anneau
O°:U—T(UOx)T(U,0Ox)
La multiplication induit un morphisme de préfaisceau d’anneau
0°—=0

qui permet de regarder tous les faisceaux de Ox-module comme des préfaisceaux de O°-
module. Gerstenhaber et Schack définissent la cohomologie de Hochschild de X a valeur
dans un faisceau F de Ox-module par

Extt. (O, F)
Nalvement, on voudrait considérer le complexe de préfaisceau de O°-module
B, : U — Bo(I'(U,Ox))
comme une résolution de préfaisceau de O°-module
Be — O
et utiliser I'identification suivante
Home, (Ce, F) = Homo(De, F) = Home (O Qoe Be, F) = Homoe (Ba, F)

Le probleme est que B, n’est en général pas projectif sur O°. Par contre, chaque B, (U)
est projectif sur O¢(U), et cette propriété va nous permettre de construire une résolution
projective de préfaisceau de O°-module convenable et de démontrer le théoreme suivant.

Théoréme 3.1 : Exty. (O, F) ~ HH*(X,F).

Le but est de construire une résolution projective de préfaisceau de O°-module a partir
de B,, mais on peut la définir dans un cadre plus général. Soient A un préfaisceau d’anneau
et A — mod la catégorie des préfaisceaux de A-module. On dispose d’une adjonction

R: A—mod— [[ A(U)—mod
Ueh

M——— (M(U))vea

L: [[AU)—mod A — mod

UeA
M (U s @ AU) @aw) My)
VoU

18



dont on peut expliciter I'unité 7 et la co-unité ¢ :

(mv)v : My — @ A(U) @) My
VoU

. 1l@m siV=U

mn 0 siV£U

mU) = @ AU) @awy M(V) —— M(U)

VouU

(ay @ my)ysy ——— > ay -mylu
VouU

On note P = LR et on définit un foncteur
Q: A—mod—— A — mod
Mi———ker(epm)

Ceci nous fournit pour tout préfaisceau M de A-module et tout ouvert U € A une suite
exacte scindée de A(U)-module

0 em(U)

QM(U)

PM(U)

M(U)

s

ot s:m1@me A\U) @) MU) C PM(U). En particulier, pour tout n € N, on
pose P, M = PQ"M et on a une suite exacte scindée de A(U)-module

0— > Q"M M(U) —> P,M(U) —> Q" M(U) —=0

On a ainsi construit une résolution de préfaisceau de A-module

PzM P1M P(),/\/l M 0

Supposons que M(U) est projectif sur A(U) pour tout U € A. Dans ce cas l'objet

RM = (M(U))yea est projectif dans [[ A(U)—mod. Puisque R est exact, L préserve les
UeA
projectifs et donc PM est projectif sur A. Les suites exactes scindées précédentes nous

permettent de démontrer par récurrence que chaque Q" M(U) est projectif sur A(U),
de sorte que P, M est également projectif sur A. On a ainsi construit une résolution
projective de préfaisceau de A-module

PM — M

Au besoin, on notera plutot PAM si 'on doit préciser le préfaisceau d’anneau A.
Avant de démontrer le théoreme 3.1, on a besoin du lemme suivant.

Lemme 3.2 : Si A — B est un morphisme de préfaisceau d’anneau alors pour tout n € N

B@AP;‘M ZPE(B(X)AM)

Preuve : Pour tout U € A, on a

(B@a PAM)(U) = B(U) @4w) (D AU) @) M(V))

VouU

~ @ BU) @) AU) @0y M(V)

VoU

~ @ B(U) @puy B(V) @40y M(V) = PP(B@4 M)(U)

VoU
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Puis on conclue par récurrence en utilisant le diagramme a lignes exactes
0——=B®4Q"M B®yPAM——=Bo4 M—=0
0—=Q(BIuM)—=PE(BIyg M) —= B4 M—0

et le lemme des cing. L’exactitude de la premiere ligne est donnée par la présence d’une
section lorsque 1’'on évalue en chaque ouvert U € A. W

Preuve du théoreme 3.1 : On considere la résolution de préfaisceau de O°-module
Be — O
et les résolutions projectives de préfaisceau de O°-module
P,B, — B,

Si on filtre selon les colonnes le double complexe

B Py g ——---

g—1Bp — Py1Bp 1 — -

on obtient la suite spectrale convergente suivante :

B, sigq=0
1 _ P
qu—{O siq#0

g = O st(pg)=(0,0)
P 0 si(pq)#(0,0)
Le complexe total fournit ainsi une résolution projective de préfaisceau de O°-module
P,B, — O

ce qui donne Eztp. (O, F) = H"(Homee(PB,, F)). Soit F — I* une résolution injective
de faisceau de Ox-module. Si on regarde F comme un complexe concentré en 0, on a
alors un quasi-isomorphisme

Homoe(P.B,, F) 8 Homoe (P.B.,Z°*)

Pour le voir, on filtre selon les colonnes le double complexe

oo —— Homoe ((PJBa)p, T0HY) —— Homoe ((PuBa) pi1, Z8) — - -

e Homow (PuBu)y T9) ——= Homow (PuBy) o1, I) — -
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et on obtient par projectivité
EY = HY(Homoe((PoBs)yp, L)) = Homoe ((PaBBa),, HI(Z*))
d’ou I'isomorphisme a la page F;. En utilisant ’adjonction et le lemme 3.2, on a
Hompe (PP B,,I%) = Homo (O ®0- PP B,,I*)
~ Homo (P2 (O ®@pe B.),Z°) ~ Homo(PPD,.,I*)

Comme précédemment, on peut regarder D, comme un double complexe centré en la ligne
0 et obtenir un quasi-isomorphisme avec le complexe total

P.D, % D,

car lorsque 'on filtre selon les colonnes le double complexe

on obtient I'isomorphisme a la page E' :
ol D, sig=0
pa 0 sig#0
Puis l'injectivité donne un quasi-isomorphisme

q.18.

Homo(PyDy,ZI*%) = Homep(D,s,Z*)

ce qui se voit en filtrant selon les colonnes le double complexe

+oo——> Homo(Dyi1,27) —> Homo(Dyy1, IPH) —— - - -

-« ——> Homop(D,, I?) Homo(Dy, IPt!) —— -+

B = H9(Homo(Da, I¥)) = Homeo(H,(D.), 7%)

Notons que ZP est injectif comme préfaisceau de O-module car 'inclusion des faisceaux
de Ox-module dans les préfaisceaux de O-module admet comme adjoint a gauche la
faisceautification, qui est exacte. Cette inclusion préserve donc les injectifs. On peut a
présent terminer la démonstration :

Bty (0, F) = H'(Homo: (P.B., F))
~ H"(Homepe(P:Bs,Z°*))
~ H"(Homo(PyDs,Z*))
~ H"(Homo(D.,I*%))
~ H"(Homoy (Co,1°)) = HH"(X, F) W
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4 Résolutions localement libres

Pour démontrer les théoremes 2.1 et 2.5, il nous faut établir un lien entre la coho-
mologie de Hochschild d'un schéma X et 1'hyper-ext du complexe C,. Pour palier aux
difficultés concernant le complexe C,, on va se ramener dans un premier temps a con-
sidérer ’hyper-ext d’une résolution localement libre de 0,Ox. Dans ce paragraphe, on
va mettre en avant des propriétés de complexe de faisceau qui nous serviront jusqu’a la
démonstration du théoreme général.

On commence par énoncer un résultat fondamental pour notre étude, que I'on peut
énoncer sous la généralité suivante. On considere O un faisceau d’anneau sur un espace
topologique X. Pour ne pas se soucier de la convergence des suites spectrales, tous les
complexes de faisceau seront, dans ce paragraphe, supposés bornés en bas.

Lemme 4.1 : Un quasi-isomorphisme de complexe de faisceau de O-module
A B,
induit un isomorphisme entre les suites spectrales
Exth(H,(AL),G) = Exth (A, G)
Extty(H,(B.),G) = Exth (B, Q)
pour tout faisceau G de O-module. Deux morphismes de complexe homotopes
A = B,

induisent le méme morphisme de suite spectrale.

Preuve : Soit G — Z° une résolution injective. La premiere suite spectrale est donnée
en filtrant selon les colonnes le double complexe

e HOT)’L@(Aq_A,_l,Ip) I H0m0<-’4q+171.p+1) -

..—)HOmo(Aq,Ip> HOmo(Aq,Ierl)—)...

E{* = Home(A,,IP)
EY = HY(Home(A.,I7)) = Home(Hy(A.),I7)
E3" = Hy(H{(Homo(As, I*))) = Exty(Hy(A), G)
Tout morphisme de complexe A, — B, induit un morphisme de double complexe
Homo(B.,I*) — Home(A., I*)

puis un morphisme entre les suites spectrales associées. On voit qu'un quasi-isomorphisme
induit un isomorphisme entre les pages F; et par conséquent entre les suites spectrales
(E,)r>2. De méme, deux applications homotopes induisent le méme morphisme sur la
page E; et donc le méme morphisme de suite spectrale (E,),>2. B
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Lemme 4.2 : Soient £, un complexe de faisceau localement libre de O-module et
A B
un quasi-isomorphisme de complexe de faisceau de O-module. On a un quasi-isomorphisme

Homo (L, A®) v Homeo (L, B*)

Preuve : On dispose d'un morphisme de double complexe de faisceau de O-module
Home(Le, A*) — Homo (L, B*)

En filtrant selon les colonnes le double complexe de faisceau

s Homo (L, AT = Homo (L1, ATH) — -

-+ ——=Homo(L,, A?) ——— Homo(Ly11, AT) —— -~

on obtient un isomorphisme a la page E :
EYY = HY(Homo(Ly, A%)) = Home(L,, HI(A*))
Cette égalité de faisceau découle d’une identification des fibres
(H*(Homo(Ly, A%)))s = H(Homo, (Lya, A))
= Homo, (Lpq, HI(A3)) = (Homo(Ly, HI(A*)))a

en utilisant que £, , est un O,-module libre. Puisque les suites spectrales convergent, ceci
entraine un isomorphisme des cohomologies totales. B

Lemme 4.3 : Si F est un faisceau plat de O-module et G un faisceau injectif de O-module
alors le faisceau Home(F,G) est injectif.

Preuve : Homo(—, Homo(F,G)) ~ Homo(—,G) o (F @0 —)

Lemme 4.4 : Un quasi-isomorphisme de complexe de faisceau flasque de O-module
A 18 B
induit un quasi-isomorphisme de complexe de I'O-module

T A 25 T

Preuve : Soit M* le cone de A* — B*. Par hypothese, M*® est exacte. On a donc une
résolution flasque du faisceau nul

0— M*

et ainsi 0 = HY(I'M?*®) pour tout ¢q. Puisque I'’M* est le cone de I'A* — I'B®, c’est le
résultat. W
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Concentrons nous a présent sur le cas des schémas.

Lemme 4.5 : Sii:Y — X est un morphisme de schéma, A un faisceau de Ox-module
et B un faisceau de Oy-module alors on a un isomorphisme de faisceau de Ox-module

Homo, (A, i,.B8) ~ i, Homo, (i* A, B)

Preuve : On commence par construire pour tout faisceau F de Ox-module un isomor-
phisme naturel de faisceau de Oy-module

i"(F ®oy A) > i*F Qo i A
Pour ce faire, on part de 'unité 1 — 7,4* qui fournit un morphisme
F ®oy A= i, 0°F Qo i1 A
puis le morphisme Ox — i,Oy donne
18 F oy 148" A = 1,0°F @;,0, 124" A
que 'on compose par le morphisme
10 F Q.04 11" A = 1,(I* F ®o, i*A)

et on obtient par adjonction le morphisme voulu. C’est un isomorphisme, comme on peut
le constater sur les fibres :

(i*(F ®ox A))y = Ovy R0y, (Fity) Doy, Aitw))
~ (Ovy ®0y i) Fitw) @0xi) (Oviy R0y ) Aity)) = (0" F Qo, i"A)y
On démontre alors le lemme grace au plongement de Yoneda :
Homo (F, Home, (A,i.B)) ~ Home, (F ®o, A, i.B)
~ Homoe, (i*(F Qo A),B) ~ Home, (i*F Qo, i* A, B)

~ Home, (i*F, Home, (i* A, B)) ~ Homo, (F,isHomo, (1*A,B)) R

On arrive au dernier résultat du paragraphe, dont le corollaire est le premier pas vers
la démonstration du théoreme général.

Proposition 4.6 : Soient 7 : Y < X une immersion fermée, £, un complexe de faisceau
localement libre de Ox-module et S un faisceau de Oy-module. On a un isomorphisme
de d-foncteur en S

Extt, (L, 1.S) ~ Extp, (i*L,,S)

Preuve : Soient S — 7Z° et i,§ — J°* deux résolutions injectives. Le fait que ¢ soit une
immersion fermée entraine que le foncteur 7, est exact :

(06 F )iy = Fy et (inF ), =0siz ¢ i(Y)
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En particulier, 7,5 — i,Z° est une résolution et on a un triangle commutatif

(A

1S q.is.

T°

D’apres le lemme 4.2, on obtient un quasi-isomorphisme
Homoy (Lo, 1.L°) o Homoy (Lo, T*)
Or, d’apres le lemme 4.5, on a un isomorphisme
Homo, (Lo, 1.L°) ~ i, Homo, (i*Le, I°*)

et d’apres le lemme 4.3, les faisceaux Homo, (Le, T*) et Homo, (i*L4, Z*) sont injectifs et
donc flasques. Par suite le faisceau i, Homoe, (i*Le,Z°) est flasque et le lemme 4.4 donne
un quasi-isomorphisme

q.1Ss.

['(X,i.Home, (i* Lo, I°)) = T'(X, Homo, (Le, T*))
c’est a dire
Homo, (i*L4,2°) 5 Homo, (L, T*)

ce qui donne l'isomorphisme recherché. Pour la naturalité, on choisit pour toute suite
exacte de faisceau de Oy-module

0 S’ S S’ 0

des suites exactes de résolutions injectives

O _’Z/. IO I//. O

O jl. j. j”. 0

rendant le diagramme a ligne exacte suivant commutatif

0 L' 1.L° i.I" ——=0

R

0 jlo j. j//. 0

Ceci induit un diagramme a ligne exacte commutatif

e HY 0T HY(1.27) —— (0. T7) — H .27 —

l | | |

- 5 Hn(j/o) Hn(j.) Hn<j”.) H'rz—l—l(j/o) L
En reprenant le quasi-isomorphisme initial

Homoy (Lo, 1.L°) LN Homoy (Lo, T*)
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la naturalité est donnée a la page F,

T HOTTL@X (£p7 i*Iq+1) B ,HO?TLOX <£p+17 i*Iq+1) _—

o ——=Home, (L, i.L7) Homoy (Lpt1, 1. L7) — -+ -

EY = Hi(Home, (Ly,1.Z%)) = Homo, (L,, H1(i,.Z*)) B

Corollaire 4.7 : Soient X un schéma séparé et £, un complexe de faisceau localement
libre de Oy« x-module tel que Hy(Ls) = 0,.O0x et H,(Ls) = 0 pour tout p # 0. Pour tout
faisceau F de Ox-module, on a un isomorphisme de d-foncteur en F

H™"(Ox,F) ~ Eaty, (6*Ls, F)

Preuve : On part de I'isomorphisme donné par la proposition 4.6 appliquée a I'immersion
fermée 6 : X — X x X

Ext™

Oxxx

(Lo, 0.F) = Eatfy (6*La, F)

puis on applique le lemme 4.1 au quasi-isomorphisme

q.is.

Le = 0.0x
ce qui fournit un isomorphisme naturel en F

HH(OX,.F) = Ext?

Oxxx

(0.0x, 0. F) ~ Ext:

Oxxx

(Le,6,F) B
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5 Suites spectrales

Le corollaire 4.7 établie un lien entre la cohomologie de Hochschild d'un schéma X
séparé et de type fini sur un corps avec I’hyper-ext d'une résolution localement libre de
0,Ox. On souhaite aller plus loin en comparant les suites suites spectrales associées
précédemment. Pour ce faire, on va utiliser les résolutions de Cartan-Eilenberg et les
techniques de convergence des suites spectrales. La référence original de Swan est

H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press,
Princeton, NJ, 1956).

Rappelons ici le vocabulaire introduit dans I'article [3]. On se place dans une catégorie
abélienne ayant assez d’injectif, et on suppose tous les complexes bornés en bas.

Un CE-monomorphisme i : A* — B*® est un monomorphisme de complexe tel que
iv : H*(A®) — H*(B®) est un monomorphisme. Une suite CE-exacte est une suite exacte

0 o Lo 9o 0

telle que im(f) — C*® est un CE-monomorphisme. Un complexe I* est CE-injectif si pour
tout CE-monomorphisme A®* — B® et tout morphisme A®* — I°, il existe une factorisation

A —— B°

N

I.
Enfin, une CE-résolution d’un complexe A® est une suite CE-exacte

0 Ao CO- Clo C«Qo

ou CP* est CE-injectif pour tout p > 0. Les CE-résolutions existent toujours dans les
catégories ayant assez d’injectif. Une propriété importante pour la suite est que si C**
est une CE-résolution de A® et F' un foncteur additif alors

HI(F(C®)) = F(HJ(C*))

pour tout ¢ > 0. On va s’intéresser au cas des faisceaux avec F' = I'. On pourra alors
calculer I'hypercohomologie d'un complexe de faisceau en utilisant les CE-résolutions.

Lemme 5.1 : Soit M, un complexe de faisceau localement libre sur un schéma Y tel que
H,(M,) est localement libre pour tout ¢. Pour tout faisceau S de Oy-module, on a un
isomorphisme naturel

HY(Home, (Ma.,S)) ~ Homo, (H,(M.,),S)

Preuve : Pour un foncteur contravariant F' exact a gauche et un complexe C, arbitraires,
on peut construire un morphisme naturel

HI(F(Ca)) = F(H,y(CW))

Notons Z; le conoyau de la différentielle Cy1 — C,. Par hypothese, F'(Z;) est le noyau
de F(C,) = F(Cy41) et par conséquent,

HY(F(C,)) = coker(F(Cy—1) — F(Z[’]))
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On dispose d'une suite exacte

0— H,(C,) —> 72! —

q—1
qui induit une composition nulle
F(Cy1) = F(Zy) — F(Hy(Ch))
d’ou la factorisation naturelle
F(Cqr) —> F(Zy) — H(F(CL))
[
\ [
y
F(H,y(C,))

Revenons au cas ou F' = Home, (—,S) et Co = M,. Pour vérifier que 'on a un isomor-
phisme sur les fibres, on est ramené au cas ou 'on applique Hompg(—, N) & un complexe
de R-module projectif

P, P P 0

tel que les homologies sont des R-modules projectifs. Comme il a été remarqué au premier
paragraphe, cette configuration implique 'isomorphisme voulu

Hi(Hompg(P.,N)) ~ Homgr(H,(F.),N) R

Il faut remarquer 'utilisation de 'hypothese ”localement libre” sur le complexe M,
et 'homologie Ho(M,). En fait, lemme 5.1 reste vrai si ’on suppose seulement que les fi-
bres M, et H,(M,), = H,(Ma.,) sont des Oy ,-modules projectifs. Cette démonstration
nous montre la grande maniabilité, liée au passage aux fibres, des faisceaux pour les ques-
tions homologiques.

Corollaire 5.2 : Sous les mémes hypotheses, si

L F e F 0

est une suite exacte de faisceau de Oy-module, alors la suite

0—>F

0 —— Home, (M., F') L Homo, (M., F) —Z>Home, (M, F") —=0
est CE-exacte.
Preuve : La suite est exacte sur les fibres, car M, est projective sur Oy,,. Puisque f

est un monomorphisme, on a H1(im(f,)) ~ Hi(Home, (M., F')) et le lemme 5.1 donne
un diagramme commutatif

Hi(im(f.)) Hi(Homo, (M., F))

\2 |

0 ——Homo, (Hy(M.), F') ——Homo, (Hy(M.), F)

Par hypothese, les fibres de H,(M,) sont projectives Oy, donc la ligne inférieure est
exacte et notre suite est CE-exacte.

On arrive ici a 1’étude des suites spectrales annoncée en introduction. Rappelons ici
qu’une suite spectrale associée a un double complexe nul hors d'un quart de plan (par
exemple une CE-résolution) converge toujours vers la cohomologie totale. Cela justifie
que les complexes que 1’'on considere dans ce paragraphe sont supposés bornés en bas.

28



Lemme 5.3 : Sous les hypotheses du lemme 5.1, les suites spectrales
Exty, (Hy(M.),S) = Exty) 1(M.,S)
H?(Y, H1(Home, (M,,S))) = HT(Y, Home, (M.,,S))

sont isomorphes.

Preuve : Soit § — Z°* une résolution injective. Le corollaire 5.2 montre que la suite
0 ——= Homo, (M,,S) —= Home, (M., I°) —= Home, (M, T') — - -

est CE-exacte, donc si on choisit une résolution CE-injective Home, (M,,S) — J** alors
il existe un morphisme f unique a homotopie pres rendant le triangle suivant commutatif

Homo, (M" I.)

/

Home, (Ma,,S) f

T

j..
En appliquant I', on obtient un morphisme de double complexe
L'f:Homo, (M, I%) — T'(T*)

Lorsque ’on filtre selon les colonnes le double complexe

.. ._>H0moy(_/\/lq+1,l'p) —>H0mOY(Mq+17Ip+1) -

-+« ——> Home, (M,, I?) Homeo, (Mg, IPT) —— - -

on obtient la premiere suite spectrale :
EY = Hi(Homo, (M, IP)) = Homo, (Hy,(Ma,),ZP)
BT = Euxto, (Hy(M,),S)

Et lorsque 'on filtre selon les colonnes le double complexe

e s F(jp,qul) S I‘(ijrl,qH) e — ...

= T(JP) —— F(jp+1,q) ...
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on obtient la deuxieme suite spectrale :
EYT = HUI(J™)) = T(HY(T™))
Ey" = Hy(D(HY(T**))) = HP(Y, HY(Homo, (M., S)))

Cette derniere égalité découle du fait que la CE-résolution Home,, (M., S) — J** induit
des résolutions injectives HY(Homo, (M., S)) — HI(J**) pour tout p. Ainsi, il nous
reste a vérifier que notre morphisme I'f induit un isomorphisme sur la page Fs. Sur la
page Fp, I'f est donné en appliquant I' au morphisme

Homo, (Hy(M,),Z*%) — HI(T**)
Or par hypothese, le lemme 4.3 nous dis que
Homoy (H,(M.). S) = Homo, (H,(M.),Z°)
est une résolution injective, tout comme
Hi(Homo, (M., S)) = HI(T**)

Puisque les deux faisceaux Homo, (H,(Ma,),S) et HY(Home, (M., S)) sont isomorphes
d’apres le lemme 5.1, ils ont donc la méme cohomologie sur Y ce qui signifie que I'f est
un isomorphisme sur la page E£>. B

Avant d’aboutir au résultat final de ce paragraphe, on a besoin d’un dernier lemme
que l'on peut énoncer sous une forme générale.

Lemme 5.4 : Soient ¢ : Y < X une immersion fermée et A® un complexe de faisceau de
Oy-module. Les suites spectrales

HP(Y,H1(A®)) = HP(Y, A®)
HP(X, H1(i,A%)) = HPT(X, i, .A®)
sont isomorphes.

Preuve : Soient A* — Z°*® et i, A* — J°** deux CE-résolutions. Les double-complexes
F(K Ioo) ’ F(X, joo)

induisent alors les deux suites spectrales voulues. On construit un morphisme comme
suit. i, est exact donc i, A4° — 7,Z°° est une résolution. Il existe ainsi un morphisme f
unique a homotopie pres rendant le triangle suivant commutatif

i T
i A° f
\joo
En appliquant I'( X, —), on obtient un morphisme de double complexe
DX, f):T(Y,Z**) - ['(X,T*°)
qui correspond sur la page Fs a l'isomorphisme

HP(Y, H(A®)) = HP(X, i, H1(A*)) ~ H(X, H1(i, A*)) B
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Proposition 5.5 : Soient ¢ : ¥ — X une immersion fermée et £, un complexe de
faisceau localement libre de Ox-module tel que Hy(L.) = T, H,(Ls) = 0 pour tout ¢ # 0
et H,(i*L,) est localement libre pour tout g. Pour tout faisceau S de Oy-module, les
suites spectrales

Eath, (Hy(i"L,),S) = Eatly!(i* L., S)
H? (X, Exth (T,i.S)) = Extl) {(T,i.S)
sont isomorphes.

Preuve : Soit i,S — J°* une résolution injective. La deuxieme suite spectrale est donné
par I’hypercohomologie sur X du complexe de faisceau Homo, (T, T*) [4, Th.5.8.3]. Si
on regarde 7 comme un complexe de faisceau concentré en 0, on dispose par hypothese
d’un quasi-isomorphisme

LS T
Par injectivité, on obtient un quasi-isomorphisme
HOmoX (T, j') qii' HOTTLOX (ﬁ., j.)

de sorte que la deuxieme suite spectrale est donnée par I'hypercohomologie sur X du
complexe total de Home, (Le, J*). Soit S — Z* une résolution injective. Le foncteur i,
est exact, donc i,S§ — 7,Z°® est une résolution et on a un triangle commutatif

(A
1,S q.is.
\ e
En particulier, puisque les fibres de £, sont libres, on obtient un quasi-isomorphisme
Homo, (Le,1.L°) a5 Homoy (Lo, T*)
Or le lemme 4.5 donne un isomorphisme

Homo, (Le,1,.L°%) ~ i, Homo, (1* L4, I°*)

En conséquence, la deuxieme suite spectrale est donnée par I’hypercohomologie sur X du
complexe total de i, Home, (i*Le,Z*), qui est d’apres le lemme 5.4 donnée par I'hypercoho-
mologie sur Y du complexe total de Home, (i*Ls,Z°). Mais si on regarde S comme un
complexe concentré en 0, on dispose d'un quasi-isomorphisme

S
et puisque les fibres de i*L, sont libres, on obtient un quasi-isomorphisme
Homeo, (i"La,S) 5 Home, (i* Lo, T*)
Ainsi la deuxieme suite spectrale est isomorphe a la suite spectrale
HP(Y, Hi(Homo, (i* L., S))) = HPT(Y, Home, (i*Le, S))

Cette derniere est, par le lemme 5.3, isomorphe a la premiere suite spectrale. Bl
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Une conséquence immédiate de cette proposition est le cas ou 'immersion fermée est
Iapplication diagonale ¢ d’un schéma séparé X et ou 7 = 0,Oyx :

Corollaire 5.6 : Soient X un schéma séparé et de type fini sur un corps et £, un complexe
de faisceau localement libre de Oxx x-module tel que Hy(L,) ~ 0.O0x, Hy(Ls) = 0 pour
tout ¢ # 0 et H,(i*L,) est localement libre pour tout ¢. Pour tout faisceau F de Ox-
module, les suites spectrales

Extyy (Hy(0"L.),F) = Eatl) (6" La, F)
H? (X, Exth  (Ox,F)) = H"*(Ox, F)

sont isomorphes.
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6 Résolutions plates

Apres avoir établi un lien entre la cohomologie de Hochschild d’un schéma X séparé
et de type fini sur un corps avec 'hyper-ext d’une résolution localement libre de 6,Ox,
on va se ramener a considérer des résolutions plates et quasi-cohérentes de 6,Ox. Ceci
nous permettra en particulier de démontrer les théoremes 2.1 et 2.5 dans le cas ou X est
affine en utilisant la résolution

B. — 5*0)(

introduite au lemme 2.4 (4).

Dans ce paragraphe, tous les complexes de chaines sont supposés bornés en bas et X
désigne un schéma quasi-projectif sur un corps. Le résultat suivant justifie la présence de
cette derniere hypothese.

Lemme 6.1 : Soit F — G un épimorphisme de faisceau quasi-cohérent sur X. Si ¢
est cohérent alors il existe un faisceau localement libre £ de Ox-module ainsi qu'un
morphisme de faisceau £ — F tel que la composition

L—F—=G

est un épimorphisme.

Preuve : Supposons X projectif sur un anneau Noethérien et F cohérent. Dans ce cas
il existe un faisceau localement libre £ de Ox-module ainsi qu’un épimorphisme

L—F

[1, Ch.II, Cor.5.18]. Si X est seulement supposé quasi-projectif sur un corps, alors F se
prolonge sur l'adhérence de X dans P" [1, Ch.II, Ex.5.15] qui est un schéma projectif
sur un anneau Noethérien. On est alors ramené a la situation précédente. Enfin, si F
est seulement supposé quasi-cohérent, alors F est I'union de ses sous-faisceaux cohérents
[1, Ch.Il, Ex.5.15.¢] et 'un d’entre eux est envoyé sur G. En effet, la restriction de
I’épimorphisme F — G sur un ouvert affine de X est déterminée par une application
linéaire surjective M — N avec N est de type fini et se restreint donc sur un sous module
de type fini M’ C M en une surjection. Puisque X est quasi-compact, on peut construire
le faisceau cohérent F' C F voulu. D’apres ce qui précede, il existe un faisceau localement
libre £ de Ox-module ainsi qu’un épimorphisme

L—F
On obtient ainsi une composition

L—F CF—=G

qui est un épimorphisme. W

Lemme 6.2 : Soit K, un complexe de faisceau quasi-cohérent sur X tel que chaque
H;(KC,) est cohérent. Il existe un complexe de faisceau localement libre £, de O x-module
et un quasi-isomorphisme

£, K,
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Preuve : On construit £, par récurrence sur p € N. On initialise avec le lemme 6.1 qui
fournit un faisceau localement libre £y de Ox-module et un morphisme de faisceau

Eo — IC()
tels que la composition
ﬁ() — ’Co — HO(]C.)

est un épimorphisme. Supposons a présent que 'on dispose d'un complexe de faisceau
localement libre £, de Ox-module

0—=L,—= L, Ly Ly 0
et d’'un morphisme de complexe de faisceau de Ox-module
fiLe— Ko
tel que le morphisme induit sur I’homologie
fet Hi(La) — H;(K,)

est un isomorphisme pour tout ¢ < p et un épimorphisme pour 7 = p. Soit P le tiré-en-
arriere suivant

P—2Z,(L)

/| |

Kpi1 —3= Zp(Ks)
On dispose d'un diagramme commutatif a lignes exactes

p—=4 Zy(Ly) —> coker(d') —=0
|
T
Y
Kpt1 4 Zp(Ke) —> Hyp(Ko) —0
ot ¢ est donné par la propriété universelle du conoyau de d’ :
(vof)od =vodo f'=0

Notre hypothese de récurrence implique que p o u = v o f = f, est un épimorphisme.
Donc ¢ est un épimorphisme. De plus, une chasse au diagramme sur les fibres permet de
montrer que ¢ est un monomorphisme : si ¢(x) = 0 alors on choisit y tel que u(y) = =

7

) v

I
—

puis on choisit z tel que dz = f(y)

(2,9) >yt
f’I fI Iw
2= dzr——=>0



et on obtient x = pod'(z,y) = 0. Ceci prouve que coker(d') ~ H,(K,) est un faisceau
cohérent. Par conséquent, im(d’) = ker(u) est un faisceau cohérent [1, Ch.II, Prop.5.7].
Utilisons a nouveau le lemme 6.1 : d’une part, on peut trouver un faisceau localement

libre £,,, sur X et un morphisme
a: L, —P

tels que im(d' o o) = im(d') ; et d’autre part un faisceau localement libre £7,, sur X et
un morphisme

B Z+1 — Zp+1(’C-)

dont la composition par la projection Z,1(Ks) — Hp41(Ko) est un épimorphisme. On
pose alors L, = L, ® L7, puis on définit une différentielle

(doa)®0: Ly — Z,(Ls)
et un morphisme
(ffoa)®B: Lpr1 = Kpir

Par construction, on obtient un morphisme de complexe

0 £p+§d/ooc)@0£p . El EO 0
(f’oa)éBBl lf lf lf
S G P G o —

Puisque im(d' o a) = im(d') = ker(u) = ker(p o u) = ker(v o f), ce morphisme induit en
homologie un isomorphisme

Hy(La) ~ Hy(K,)
Enfin, la construction de § implique que ce morphisme induit en homologie un épimorphisme

Hy(Le) — Hypia(K)

car L, C Zp1(Ls) = Hpy1(L,). On peut donc répéter cette construction a l'infini. W

Lemme 6.3 : Sous les mémes hypotheses, supposons L'y et L£”, deux complexes de
faisceau localement libre de O x-module quasi-isomorphes a K, :

q.1S. q.is.
L'e = Ko L' = Ko

Il existe un complexe de faisceau localement libre £, de Ox-module et un diagramme
commutatif a homotopie pres

,C. q.1S. ,C/.

q.isl lq.is.

£”. — IC.
q.is.

Preuve : Soit M, le cone de l'identité de Cq[1]. 1l arrive avec un épimorphisme
M, — K,
Soit G, le noyau du morphisme

L'eBL'sBMe— K,
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La suite exacte courte
0—>go—>£/o @ACH. @MQ—>’CO—>0

induit une longue suite exacte homologique

s Hy(Go) — Ho(L'0) @ Hy (L)) — Hy(Ka) —2> H, 1(Go) — -
Par hypothese, le morphisme
H,(L's)® H,(L"y) — H,(K,)

est surjectif et son noyau est canoniquement isomorphe a H,(L's) de telle sorte que le
morphisme connectant 0 est nul et que la composition par la projection canonique

Ge > Le® L s DMe— Ly

est un quasi-isomorphisme. Le lemme 6.2 permet de trouver un complexe de faisceau
localement libre £, de Ox-module et un quasi-isomorphisme

L. "% 6.
En utilisant les projections canoniques
LeyDL'sOMe =L LoD L yDMe — Ly DM,

on construit un carré commutatif

Lo—2 .,
q.is q.is.
E//. b M. q.is. IC.

Enfin, en utilisant I'inclusion composée a la projection
L'y ®Me— L = LTe DM,

on obtient le carré commutatif a homotopie pres recherché

Lo,

q.z‘sl lq.is.

ﬁ”. —Y IC.
q.18.

Pour le voir, il suffit de vérifier que le morphisme de complexe
Lo—=Ge—=LBL OMe—=LeDL s — K,

est homotope a I’application nulle. Pour ce faire, on utilise la contractibilité du cone M,
qui fournit une homotopie s

o My M, My — -
/ 1l /ll / ll /
My M, My_y —- -

et on obtient une homotopie S

Ly L, Ly —> -
PRy aveyd
1 1 1
. - K, Kpq—>---

en prenant S : £, — M, = M, — Kppq. B
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Lemme 6.4 : Soient A — B un morphisme de faisceau d’anneau sur un espace topologique
et f: Fe — G, un morphisme de complexe de faisceau plat de A-module. Si f est un
quasi-isomorphisme alors

1@ f:BRsFe = BR4Ge

est un quasi-isomorphisme.

Preuve : Soit M, le cone de f. Par hypothese, M, est exact et se décompose en suites
exactes courtes

O Zl Ml MO 0

0—>Z,—> M,—>Z, | —>0

pour tout p > 1. Aussi, M, est plat sur A, donc Z, est plat sur A pour tout p > 0 [4,
Ex.3.2.2]. Ainsi, Tor{(B, Z,) pour tout p > 0 et on a des suites exactes courtes

0—BR4 21— B4 M| —=B 4 My——=0
0—=BR42,—BIsM,—B®R4 2,1 —0
pour tout p > 1, de sorte que B ®4 M,, le cone de (1 ® f), est exact. B

On arrive au résultat le plus important de ce paragraphe. En corollaire, on obtiendra
les théoremes 2.1 et 2.5 dans le cas affine, mais on utilisera également ce résultat pour le
cas général.

Proposition 6.5 : (1) Soit G, un complexe de faisceau plat et quasi-cohérent de Ox x-
module tel que Hy(G,) = 0,O0x et Hy(G,) = 0 pour tout ¢ # 0. Pour tout faisceau F de
Ox-module, on a un isomorphisme de J-foncteur en F

H™"(Ox, F) ~ Eat, (0.G,, F)
(2) Si de plus H,(0,.G,) est localement libre pour tout g, alors les suites spectrales
Exty (Hy(6%G.), F) = Eath) 1(6G., F)
HP(X, Sl'thXXX (Ox, ./T")) = Hp-l-q(OX’ I)

sont isomorphes.

Preuve : (1) Le lemme 6.2 donne un complexe de faisceau localement libre £, de Ox-
module et un quasi-isomorphisme

LG,

Le foncteur 6! est exact et 6* = (Ox ®s-10y,y —) 00 . D’apreés le lemme 6.4, on a un
quasi-isomorphisme

5Ly 5 5%,
En utilisant le corollaire 4.7 et le lemme 4.1, on obtient un isomorphisme naturel en F
H™(Ox,F) = Eaty (0.Lq, F) ~ Eaty (0,.Gs, F)

qui, d’apres le lemme 6.3, ne dépend pas du choix de

LG,
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(2) Plus précisément, le lemme 4.1 donne un isomorphisme entre les suites spectrales
Exty (Hy(0%G.), F) = Eath,) 1(6G., F)
Exty, (Hy(0"La), F) = Bty (6" La, F)

Cette derniere est, par le corollaire 5.6, isomorphe a la suite spectrale

Hp<X7 gxt%Xxx(OX’f)) = Hp-&-q(OX’f') |

On peut a présent démontrer les théoremes 2.1 et 2.5 dans le cas ou X = Spec A
est un schéma affine sur une algebre de type fini sur un corps. La résolution plate (car
projective) de A®-module

B.(A) — A
induit une résolution de faisceau plat quasi-cohérent de Oy x-module
B. — (5*0 X

On peut lui appliquer la proposition 6.5. Pour conclure, il suffit de constater par le lemme
2.4 (4) et le lemme 4.1 que les suites spectrales

Exty (Hy(0"Bs), F) = Eatpy (6" Ba, F)
Bty (Hy, F) = HHP™(X, F)

sont isomorphes.
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7 Lemmes théoriques sur les faisceaux

Pour pouvoir aborder le théoreme dans sa généralité, il nous faut aller plus loin dans
les considérations géométriques. Dans ce paragraphe, on va mettre a profit la propriété de
séparation des schémas, satisfaite en particulier par les schémas quasi-projectifs. L’idée
principale est la suivante. Dans un schéma X séparé sur un schéma affine, I'intersection
de deux ouverts affines est encore un ouvert affine [1, Ch.Il, Ex.4.3]. Une conséquence
importante est que pour tout ouvert affine U de X, I'inclusion U < X est un morphisme
affine. Ce que l'on va constater, c’est que les morphismes affines ont les bonnes propriétés
concernant les faisceaux quasi-cohérents et, s’ils sont plats, envoient par poussé-en-avant
les faisceaux plats quasi-cohérents vers des faisceaux plats quasi-cohérents.

Commencons par une propriété des faisceaux associés aux préfaisceaux de module :

Lemme 7.1 : Soient R un préfaisceau d’anneau sur un espace topologique X, R son
faisceau associé, M un préfaisceau de R-module et M son faisceau associé. Si pour tout
ouvert U de X, M(U) est plat sur R(U), alors M est plat sur R.

Preuve : Puisque M®x— est toujours exact a droite, on doit s’assurer que si f : F — G
est un monomorphisme de faisceau de R-module alors 1 ® f: M®rF — M®RrG est un
monomorphisme de faisceau de R-module. Par hypothese, le morphisme de préfaisceau
1® f: M®pF — M®rG est un monomorphisme. On a donc des monomorphismes sur
les fibres. Le fait est que M®@gF et M®%rF ont les mémes fibres quelque soit F. Ainsi,
le morphisme 1 ® f : M@rF — M®rG est un monomorphisme sur les fibres et par
conséquent un monomorphisme de faisceau de R-module. B

Intéressons-nous a présent aux morphismes affines de schéma :

Lemme 7.2 : Soit f : X — Y un morphisme plat et affine de schéma. Si F est un
faisceau plat et quasi-cohérent sur X alors f.F est plat et quasi-cohérent sur Y.

Preuve : La question étant locale en Y, on est ramené a traiter le cas ou Y = Spec A
est affine, et par hypothese sur f, ou X = Spec B est affine. f est alors donné par un
morphisme plat d’anneau ¢ : A — B, et F est associé a un B-module plat M. Dans ce
cas, f.«F est associé au A-module M (dont la loi externe est donnée par @), ce dernier
étant plat sur A étant donné les isomorphismes de foncteur

MRs— ~ (M@BB)®A— ~ (M®B_) o (B®A—) [ |

Lemme 7.3 : Soit f: X — Y un morphisme affine de schéma. Le foncteur
fe:q—Coh(X) — q— Coh(Y)

est bien défini et exact.

Preuve : La question étant locale en Y, on est ramené une nouvelle fois au cas ou

Y = Spec A est affine puis par hypothese sur f, ou X = Spec B est affine. Dans cette

configuration, les catégories ¢ — Coh(X) et ¢ — Coh(Y") sont respectivement équivalentes
aux catégories B — mod et A — mod, et f, correspond alors au foncteur

B —mod = A — mod

qui envoie un B-module M vers le A-module M induit, lequel est exact. B
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Lemme 7.4 : Pour tout carré cartésien de schéma

X2 x

Y

S/ _g> S
tel que f est affine, il existe un isomorphisme de foncteur

g fe= 9" q— Coh(X) — q — Coh(S')

Preuve : La transformation naturelle g*f, — f’.¢'" existe dés que l'on a un tel carré
commutatif. Pour la construire, on part de la co-unité puis on utilise I’adjonction :

1—=4.9"

*

fi = [d.9" =a9.f.9

*

gfe— .9

Pour prouver 'isomorphisme, on commence par le cas ou S = Spec A et S’ = Spec A’
sont des schémas affines. Alors par hypothese sur f, X = Spec B est un schéma affine
et puisque le carré est cartésien, X' = Spec A’ ® 4 B est également un schéma affine.
Dans cette configuration, les catégories ¢ — Coh(X) et ¢ — Coh(S") sont respectivement
équivalentes aux catégories B — mod et A’ — mod et la transformation naturelle

g fe— 9"
correspond a l'isomorphisme de foncteur
A®Ry—~(A®sB)®pg—: B—mod— A" —mod

Pour le cas général, on remarque que pour tout faisceau F de Ox-module, tout ouvert U
de S et tout ouvert U’ de S tel que g(U') C U, on a ¢ (f " (U")) C f~1(U) et les deux
identifications suivantes

(" F)lor = (glo)* (fly-1 )« (Fl 1))
(f/*gl*]:)’U/ = (f/’f’_l(U’))*(gl‘f"l(U’))*<‘F’f_1(U))

La premiere identification découle du fait que (¢~ f.F)|vr et (glvr) " (f] =) «(Flp-1w))
sont deux faisceaux associés au méme préfaisceau

U DV coimT(f~Y(W),F)=_colim T(f~(W),F|an)

Wog(V) USWg(V)
La deuxieme identification provient du méme raisonnement : pour tout ouvert V' de U’,
LV, (f'ug" F)lo) =T(F (V). g" F)
LV (f 2 on)o (0 L prron) (Flpr@)) = DU V) (0 s o) (Flr0))
et les deux faisceaux ¢’ ' F et (¢| p=1wn)”(Flg-1(0y) sont associés au méme préfaisceau
fHU) DV = colim T(W,F) = colim  T'(W, Fl|r1w))

Wog'(V) f=HU)DWDg' (V)
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Ceci étant dit, si on fixe un ouvert affine U de S, alors pour tout ouvert affine U’ de S’
tel que g(U’) C U, on a un carré cartésien de schéma

_ gl'f’fl(U’) -
) f7HU)
fllf’_l(U’) f|f*1(U>
U U
9y

On se retrouve alors dans la premiere situation considérée et on obtient ’isomorphisme
des faisceaux restreints sur U’ :

(9" fF)lor = (f'og" F)lor

Pour conclure, on choisit un recouvrement U de S par des ouverts affines, puis on recouvre
g 1(U) par des ouverts affines de S” pour tout U € U. On obtient alors un recouvrement
U' de S’ par des ouverts affines tels que 'image de chaque U’ € U’ par g est contenu dans
un U € Y. On a ainsi I'isomorphisme sur un recouvrement de S" et donc sur S’. W

On termine ce paragraphe par un résultat élémentaire qu’on pourrait aussi énoncer
dans la catégorie des espaces topologiques :

Lemme 7.5 : Soient f : X — S un morphisme de schéma et U un ouvert de X. On
considere le carré cartésien

) ——X
gl f
U - S

ot ¢ et j sont les inclusions et g = f|;-1(). Pour tout faisceau F de Ox-module,

i foF = 99" F

Preuve : Puisque 7 et j sont des inclusions, les foncteurs i* et j* correspondent aux
restrictions. En fait, la restriction sur U coincide avec le foncteur i~! et on a

i* - (OU ®i_1(9x —) O i_l
OU = OX|U = i_lox
Ainsi, pour tout ouvert V' de U, on a

PVt fuF) =T(f71(V), F) =T(g~'(V), F) =LV, g5*F) B
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8 Préfaisceau de faisceau

L’objectif de ce paragraphe est d’introduire le complexe de Cech associé & un préfais-
ceau de faisceau. Dans certaines configurations topologiques et algébriques, la cohomolo-
gie de Cech coincide avec la cohomologie des faisceaux [1, Ch.III, Th.4.5]. Nous allons lui
trouver un intéret dans ce qu’il nous permettra de recoller, a quasi-isomorphisme pres,
une famille de complexe de faisceau indexée sur les ouverts affines de notre schéma en un
double complexe de faisceau. Pour pouvoir utiliser les propriétés du complexe de Cech &
plusieurs reprises et dans des situations différentes, on préferera dans un premier temps
travailler avec un préfaisceau a valeurs dans une catégorie abélienne arbitraire.

Soient X un espace topologique, A une catégorie abélienne (compleéte) et () un préfais-
ceau sur X a valeurs dans A dont les restrictions seront toutes notées par p. A tout
recouvrement ouvert U = (U;);e; de X, on associe un complexe de cochaine de A, noté
C*(U, Q) comme suit. On choisit un bon ordre < sur I, et on considere pour tout entier
naturel n le produit

Cn(“?@) = H Q(Uzozn)

o< <in

ou U; Uy, N---NU,;, . Considérons les projections canoniques
Pig-in - C"(U, Q) = Q(Usy...i,

et définissons pour tout entier v compris entre 0 et n + 1 les applications

6, C"U,Q) — C™ U, Q)

0 tn

Par Pig..inq © 0y = po Digeoiyin 1 On peut alors définir les différentielles
n+1
d= > (=1)%5,:C"(U,Q) — C" (U, Q)
v=0
On dispose aussi d'une application définie a partir des restrictions

e:Q(X) = C'(U. Q)

c’est a dire p; o€ = p. On peut vérifier que I'on obtient bien un complexe dans A
0—Q(X) —>CU, Q) —~ C' (U, Q) — > C*(U, Q) *— - --

On voudrait s’assurer que ce complexe est indépendant du choix de l'ordre sur /. Pour
ce faire, on étend les projections en posant

piO"'in = 0
si pour deux indices p1 # v on a i, = 1, et
Potio)-olin) = SIN(0)Dig--iy,

pour toute permutation o de {4, - - ,%,}. Alors sion se donne un raffinement V = (V});e,
de U, on peut choisir une application a : J — I telle que V; C Uy,;) pour ensuite définir
un morphisme de complexe qui commute avec e

a*:C*'(U,Q) — C*(V,Q)

Par Pjy..j, © & = P O Pa(jo)a(j.) LoOrsque V = U avec un autre ordre, on peut prendre
a = idy et a* est alors un isomorphisme.
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On énonce a présent un résultat qui justifiera plus tard la généralité choisie pour notre
construction du complexe de Cech.

Lemme 8.1 : Si X € U alors le complexe
0—>Q(X) —>C'U, Q) —C'U, Q) —~C*U,Q) “—
est exact.

Preuve : On choisit sur I un ordre tel que min I = 0 et X = Uy. On peut alors expliciter
une homotopie S entre l'identité et I’application nulle

0 QX)—==C'U,Q)—=C'U, Q)—>02(u Q)
0 Q(X) ——C°U, Q) —=C'(U, Q)_>c2(u Q) —

0 sl =

définie par p;,..;, 0 S = ..
P Piy-in Poiy-i,, Sl 01 >

0

0 pour tout n > 1 et S =pypourn=0. A
Ce lemme va s’avérer tres utile lorsque A sera la catégorie des faisceaux ou des com-

plexes de faisceau sur un schéma. Le fait que I'exactitude d’une suite de faisceau peut

s’étudier localement va nous permettre de s’y ramener en permanence. Quittons les

généralités et concentrons-nous a présent sur les faisceaux.

Soit F un faisceau sur X. On construit un préfaisceau PxF sur X a valeurs dans les
faisceaux sur X en posant pour tout ouvert U de X, PxF(U) = i.(Fl|y) oui: U — X
désigne l'inclusion. Les restrictions sont données pour toute inclusion V' C U et tout
ouvert W par

D(W,PxF(U)) =T(W NU,F) = T(WNV,F) =T(W, PxF(V))

Lemme 8.2 : Pour tout ouvert U et V de X, PxF(U)|y = PhF(UNV).

Preuve : On applique le lemme 7.5 au carré cartésien d’inclusion
ppiq

Unv -2 -u
|
v X

et on obtient Px F(U)|y = i* fuf*F = g3 f* F =Py F(UNV). B

Supposons & présent que U est fini. Avec cette hypothese, le complexe de Cech
C*(U, Q) est toujours borné en haut, car C"™(U, Q) est un produit vide pour tout n > |U|.

Corollaire 8.3 : Pour tout ouvert V de X, C*(U, PxF)|y = C*UNV, PyF).

Preuve : On a vu au lemme 7.5 que la restriction sur V' est donnée par le foncteur adjoint
a gauche ¢* ou i : V < X désigne 'inclusion. Cette opération commute donc avec toutes
les colimites et en particulier avec les produits finis d’une catégorie abélienne. Ainsi,

C"U,PxF)lv= ]I PxFUg-i)lv= 1] PvFUy.c, NV)=C"UNV,P,F) R

10<-<in 10<-++<in

43



Lemme 8.4 : Le complexe de faisceau
0—=F —=C'U,PxF)—=CYU,PxF)—=C?*(U,Px F) —- -
est exact.
Preuve : L’exactitude d’un complexe de faisceau est équivalente a I’exactitude locale sur

un recouvrement. Puisque U recouvre X, on peut vérifier I'exactitude seulement sur les
ouverts V € U. Le fait est que V € U NV, donc le lemme 8.1 nous dis que le complexe

0 Py F C'UNV, Py F)—=C'UNV, Py F)—=C*UNV, Py F) —---
est exact. Mais Py F = F|y donc le résultat découle du corollaire 8.3. B
Corollaire 8.5 : Si F* est un complexe de faisceau sur X alors
e: F*— C*(U, PxF*)
est un quasi-isomorphisme.

Preuve : En regardant /* comme un double complexe concentrée dans la ligne indicée
par 0, les morphismes ¢ : F? — C*(U, Px FP) induisent un morphisme de double complexe

e: F* — C*(U, PxF*)

Puisque U est fini, le double complexe C*(U, PxF*) est borné (i.e. ses diagonales n’ont
qu’un certain nombre d’objet non nul) et on peut calculer sa cohomologie & partir de suite
spectrale. Lorsque 'on filtre le double complexe

e (qurl(z/[7 Px FP) —— C‘]H(L{, pX]:pH) _— ..

o —— CYU, Px FP) — C1(U, pX}“pH) - =

selon les colonnes, on obtient un isomorphisme a la page E' d’apres le lemme 8.4, car la
cohomologie verticale est celle du complexe de Cech C*(U, PxF?). B

On termine ce paragraphe par un résultat que 1’'on utilisera lors de la démonstration
du théoreme générale :

Lemme 8.6 : Soit M* — N*® un morphisme de complexe de préfaisceau sur X. Si pour

tout ouvert U de X, c¢’est un quasi-isomorphisme sur les sections M*(U) 9N *(U) alors
le morphisme de double complexe induit est un quasi-isomorphisme :

C* (U, M*) 5 C*(U, N*)
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Preuve : Lorsqu’on filtre selon les colonnes le double complexe

- ——=CP(U, Mq+1) - (jzvﬂ(u7 Mq+1) ...

oo ——=CPU, M) —— Cp+1(u7 M) ——— -

on obtient un isomorphisme a la page E' : puisque U est fini, les produits sont finis et
commutent avec la cohomologie, et ainsi la cohomologie verticale est

HUCPU,M* = T[ HYM*(Uy..)) = CP(U, HY(M*) B

10<-<ip
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9 Technique de recollement de Cech

Soit X un schéma quasi-compact et séparé sur un corps. Pour chaque ouvert affine
U de X, on se donne un complexe S,y de faisceau de Opy-module. Supposons que pour
chaque inclusion V' C U d’ouverts affines de X, on dispose d’'un morphisme de complexe
de faisceau de Oy -module

puv : Sevlv — Sev
satisfaisant pour tout ouvert affine W C V' C U de X les relations suivantes :
pUU = idSoU
puw = pvw © (puv)|w

Concretement, c¢’est une donnée de recollement de faisceau, au fait pres que les pyy ne
sont a priori pas des isomorphismes. Si chaque pyy est un isomorphisme, alors il existe
un complexe S, de faisceau de Ox-module et des isomorphismes de complexe

oy S.‘U — S.U

tels que pyunv ooy = pyunv ooy sur UNV pour tout ouvert affine U et V' de X [1, Ch.II,
Ex.1.22]. Plus généralement, en supposant que chaque pyy est un quasi-isomorphisme,
on va construire des préfaisceaux PyS, de complexe de faisceau tel que pour tout re-
couvrement fini U/ de X par des ouverts affines et tout ouvert affine V' de X, on a des
quasi-isomorphismes

Su O UNV, PyS,) (U, PxS.) |y

Le faisceau C*(U, PxS,) jouera alors le role de recollement a quasi-isomorphisme pres.
Cette construction, appliquée au cas particulier Sqy = Co(I'(U, Oy))™, nous permettra de
démontrer le théoreme général.

Pour tout ouvert affine U de X, soit PxSe(U) = j.Sey ou j : U — X désigne
I'inclusion. Si on a deux ouverts affines V' C U, on peut définir une restriction
PxSe(U) = PxS.(V)
donnée pour tout ouvert W de X par
(W, PxS.(U)) = LW NU,Sor) = DIWNV, Surlv) "D T(W NV, Sav) = T(W, PxS.(V))

Ceci fait de PxS, un préfaisceau sur X de complexe de faisceau de Ox-module. En fait,
si les complexes Sqy proviennent d’un méme complexe S,, c’est-a-dire si Soy = S|y, €t si
les pyy correspondent aux restrictions de S,, alors cette construction correspond a celle
du paragraphe précédent. On va pouvoir adapter les énoncés a cette situation.

Lemme 9.1 : Si chaque S,y est quasi-cohérent et si chaque pyy est un quasi-isomorphisme
alors on a des quasi-isomorphismes naturels

PxSo(U)|y S Py S (UNV)

Preuve : Le lemme 7.5 appliqué au carré cartésien d’inclusion

Unv-i-u
j’l l]
v X




permet d’obtenir fonctoriellement le morphisme suivant

PeSu(U)ly = *uSetr = 10" Setr = §'(Susrloow) 2257 PeS (U NV

L’hypothese de séparation sur X montre que 7' est un morphisme affine de schéma. Ainsi,
d’apres le lemme 7.3, j', est exact et j', pyuny est un quasi-isomorphisme. W

Soit U un recouvrement fini de X par des ouverts affines. Cette propriété de fini-

tude permet d’utiliser les suites spectrales pour calculer I’homologie du double complexe
C*(U, PxS.,) :

Corollaire 9.2 : Sous les mémes hypotheses, on a un quasi-isomorphisme naturel

C*(U, PxS.)|v 5 C*(UNV, PyS,)

Preuve : Le morphisme est donné par le lemme 9.1 :

C"U, PxS)ly = I PxSe(Uioi)lv ™S I PrSelUiy.c, NV)=C™UNV, PyS,)

10<-<in 1< <ip

Si on filtre le double complexe

.. ._>Cp(u, PX‘Sq)‘V —>Cp+1(u7PX$q>|V—> .

e — CP(U, PXSq71)|V s C’p+1(Z/{, PXSqfl)lV - . ...

selon les colonnes, on obtient un isomorphisme a la page E7, car ’homologie verticale est

Hi(CP(U, PxSa)lv) =TI Hy(PxSe(Ui-.i,)|v) ®

i<+ <in
Pour chaque ouvert affine V' de X, on dispose d’une augmentation
E: va.(V) = S.V — C‘(Ll N V, va.)

introduite au paragraphe précédent. On se retrouve alors dans une situation analogue a
celle du lemme 8.4, ou 'on avait construit une résolution de faisceau.

Lemme 9.3 : Sous les mémes hypotheses, on a une résolution de complexe de faisceau

0 S.V CO(L{HV,PVS.)—>01(L{HV,PVS.)—>---

Preuve : Puisque 'on travail avec des faisceaux, on peut vérifier ’exactitude seulement
sur un recouvrement, typiquement sur chaque W € «YNV. On a alors un carré commutatif

SOV‘W_>C.(U N ‘/7 PVS.)‘W

q.is.l lq.is.

Sa ——= C*(UNW, PyS.)
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de sorte que 'exactitude du complexe
0 —=8uw|w —=C'UNV. PyS.)|lw —=C'UNV, PyS,)|w —= -
est équivalente a ’exactitude du complexe
0 Sew C'UNW, PyS,) —=CHUNW, PySy) —---
Ce dernier est exact d’apres le lemme 8.1, car W e U N W et PySe(W) = Se. M

Considérons a présent le cas ot Soy est le faisceau quasi-cohérent sur U associé au
complexe de I'(U, Oy )-module Co(I'(U, Oy)). Les pyy sont donnés par les applications

F(V, OV) ®I‘(U,OU) C.(F(U, OU)) - C‘(F(V7 OV))

Ce sont des quasi-isomorphismes, comme cela a pu étre remarqué au paragraphe 2 : une
immersion ouverte de schéma affine V < U induit un morphisme plat

(U, 0p) — T'(V,0y)
Grace aux propriétés de I’homologie de Hochschild, on obtient
H,(D(V, Ov) ®rw.op) Co(T(U, Ov))) = T(V, Ov) @rw.oy) Ha(Co(P(U, Op)))
=TV, Ov) @rw.oy) HHa(I'(U, Op)) = HH,(T(V, Ov)) = Hu(Co(T(V, Ov)))

On peut donc utiliser les résultats précédents a ce cas particulier. En fait, ces faisceaux
Sey ressemblent aux faisceaux restreins Ce|y. Plus précisément, on a un morphisme

S.U — C.’U
donné sur les ouverts principaux par les applications canoniques
LU, 0v)s @rw,oy) Co(I'(U, Ov)) = Co(T'(U, Op)s)

pour tout s € T'(U, Op). C’est un quasi-isomorphisme, comme le montre le lemme 2.4 (4)
appliqué a U, en constatant que I'isomorphisme de complexe de I'(U, Oy )-module

F(U, OU) r(U,0p)e B.(F(U, OU)) ~ C.(F(U, OU))
induit un isomorphisme de faisceau quasi-cohérent
5U*(B.(F(U, OU))N) ~ S.U

Tout ceci nous amene au dernier résultat de ce paragraphe.
Lemme 9.4 : C*(U, PxS,) L C*(U, PxC,)

Preuve : Puisqu’il s’agit d’un morphisme de faisceau, on peut démontrer 1’énoncé sur un
recouvrement, a savoir sur chaque V' € Y. On a alors le diagramme commutatif suivant

C"(L[, sz.)lv D C"(Z/I, PXc.)lv

ql l:

C.(Z/{, PXs.)lv I C.(Z/{, PXc.)lv

q.is.T Tq.is.

S.V - Co |V

q.1s.

L’égalité et les quasi-isomorphismes verticaux se justifient respectivement (de gauche a
droite puis de haut en bas) par le corollaire 9.2, le lemme 8.2, le lemme 9.3 et le corollaire
8.5. On obtient le résultat voulu. W
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10 Preuve du théoreme

Soit X un schéma quasi-projectif sur un corps. Pour chaque ouvert affine U = Spec A
de X, on peut considérer Boy le faisceau quasi-cohérent sur U x U = Spec A€ associé au
complexe de A°-module B,(A). On peut aussi considérer Sy le faisceau quasi-cohérent
sur U associé au complexe de A-module Cy(A). Comme il a été remarqué précédemment,
ces deux objets sont liés par un isomorphisme de complexe de faisceau de Op-module

Setv = 0y Bars

On va définir un préfaisceau &, sur les ouverts affines de X a valeurs dans les faisceaux
quasi-cohérents de Oy x-module.

Pour tout ouvert affine U de X, on note &(U) = i, Bey ot i : U x U — X x X désigne
Iinclusion. Pour tout ouvert affine V' € U, on dispose d’une restriction

(U, Op) — T'(V,0y)
qui induit canoniquement un morphisme de complexe de I'(U, Oy )-module
Bo(I'(U, Ov)) = Bo(I'(V, Ov))
et qui par suite induit un morphisme de faisceau de Oy «y-module
By — i'Bay
ouni :V xV — U x U désigne I'inclusion. En appliquant i, on obtient une restriction
Eo(U) = i Bey — 141 Bay = Eo(V)

qui fait de &, un préfaisceau.

Choisissons un recouvrement fini & de X par des ouverts affines. Considérons ensuite
F: = C*(U,E,) et F, son complexe total, qui est borné en bas. Chaque Byy est un
complexe de faisceau quasi-cohérent et plat de Opyypy-module. D’apres le lemme 7.2,
chaque &,(U) = i,.B.y, et par suite F,, est un complexe de faisceau quasi-cohérent et plat
de Oxyx-module. Enfin, la résolution de A°-module

Be(A) — A
induit une résolution de faisceau quasi-cohérent de Oy «y-module
Bey — 0u+Ov
et en appliquant i,, le lemme 7.3 montre que I'on obtient un quasi-isomorphisme
E(U) B 1,60.00 = 6.5,0y = 6. PxOx(U)

ou j : U — X désigne l'inclusion et ou l'on regarde §,PxOx(U) comme un complexe
concentré en 0. D’apres le lemme 8.6,

Fo=C(U,E) S C*(U,5,PxOx)

En appliquant le foncteur exact J, a la résolution fournie par le lemme 8.4, on obtient
une résolution de faisceau de Oy x-module

(5*0)( — 5*C.<Z/{,ch)x> = C'(U,é*PXOX)
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Ceci permet d’obtenir les isomorphismes
Ho(Fe) = Ho(C*(U, 0.PxOx)) ~ 0.0x
Hy(F,) =~ Hy(C*(U,0.PxOx)) =0

pour tout ¢ # 0. On peut ainsi appliquer la proposition 6.5 (1) qui fournit pour tout
faisceau M de Ox-module I'isomorphisme de d-foncteur en M

H"(Ox, M) ~ Eaty (6" F,, M)

Pour utiliser ce résultat, on va comparer 0*F, et C,. Si on applique le lemme 7.4 au
carré cartésien

UL UxU

|

X—5>X><X

alors on obtient un isomorphisme de faisceau de Ox-module
PxSe(U) = juSer = jubu  Bey = "1 Bey = 64 (U)

En remarquant que 0* commute avec les sommes et les produits finis, le lemme 9.4 nous
fournit un quasi-isomorphisme

§*Fe = C*(U, 5E) =~ C*(U, PxS.) 5 C*(U, PxC.)
Or, d’apres le corollaire 8.5, on dispose également d'un quasi-isomorphisme
. g
ou G, désigne le complexe total de C*(U, PxC,). Ainsi, d’apres le lemme 4.1,
Exty, (0 Fo, M) =~ Extgy (Go, M) ~ Extp, (Co, M)

ce qui prouve l'isomorphisme naturel en M

H"(Ox, M) ~ HH"(X, M)

Supposons a présent que chaque H, est localement libre. D’apres ce qui précede,
H,(6"Fa) ~ Hy(Go) ~ Hy(Co) = H,
D’apres la proposition 6.5 (2), les suites spectrales suivantes sont isomorphes
Exty, (H (6" F,), M) = Ext)) (6" Fy, M)
HY (X, Exty,  (Ox, M)) = H'*(Ox, M)
Par le lemme 4.1, la premiere suite spectrale est isomorphe a la suite spectrale
Eatly (Hy, M) = HHP1(X, M)

C’est le résultat annoncé.
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On peut vérifier que I'isomorphisme ne dépend pas du recouvrement U choisi. Si U’
est un recouvrement fini de X par des ouverts affines alors

V={UNU :UelU,U U}

est un recouvrement fini de X par des ouverts affines qui raffine 4. Les restrictions
induisent alors un morphisme de complexe

cU,-)—C(V,—)

rendant le diagramme suivant commutatif

5 Co(U, £.) Co(U, PxC.) <= c.
| | 5
5oV, E) C*(V, PyC.) ~— C.

On obtient ainsi le diagramme commutatif suivant

Extt, (6*Fo, M) e Eatdy (Go, M)
~ | |

—
Extg, (0% F., M) o~ Extp, (G,, M)

—
T HHM(X, M)
—

H"(Ox, M)

ou F, et G. désignent respectivement les complexes totaux de C*(V,&,) et C*(V, PxC,).

o1



XXSY

/s
MY
v
(U, F)
HY(C.)

HMC,,)

S—1A

Lexique des notations

produit des schémas X et Y fibré sur un schéma S

application diagonale d’un schéma X sur un schéma de base
pushforward d’un faisceau F par une application continue f : X — Y
pullback d’un faisceau G par une application continue f : X — Y
faisceau Oy ®-10, f7'G si f: X — Y est un morphisme de schéma
faisceau quasi-cohérent sur Spec A associé a un A-module M
faisceau U — Homoy, (Fluv, Glv)

foncteur dérivé du foncteur Home (F, —)

fibre d'un faisceau F en un point x

module des g-formes différentielles de Kahler sur une algebre A
faisceau des g-formes différentielles relatives sur un S-schéma X
module dual Homu (M, A) d'un A-module M

faisceau dual Home(F, O) d'un faisceau de O-module F

sections F(U) d’un faisceau F sur un ouvert U

homologie en la premiere variable du double complexe C,,
homologie en la seconde variable du double complexe C,,

anneaux des fractions a numérateur dans A et a dénominateur dans .S
anneaux des fractions pour s € A et S = {s" : n € N}

anneaux des fractions pour p € Spec Aet S =A\p

quasi-isomorphisme
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Introduction

L’étude du groupe de Cremona consiste & regarder les applications birationnelles de P?(C) dans lui-méme,
appelées transformations birationnelles de P?(C).
Une telle transformation peut s’écrire via des polynémes homogenes de méme degré fy, f1, fo sous la forme :

f: [l‘ Y Z] - [fo(zaz%z) : fl(x,y,z) : fQ(xvyVZ)]

Elle est alors bien définie sauf sur un nombre fini de pointsEl, correspondant aux racines communes des
polyndmes fo, fi, fo. A I'inverse, elle contracte des courbes sur les points-base de la transformation f~!.

Un autre point de vue de la géométrie birationnelle est encore de regarder les points-base de f et leur
multiplicité pour caractériser une telle transformation (& automorphisme pres).

On s’intéresse ici au cas particuliers des transformations quadratiques, c’est a dire les transformations
birationnelles de degré 2. Ces transformations possedent trois points-base, chacun avec multiplicité 1, et le
théoreme de Noether—Castelnuovoﬂ affirme qu’avec les automorphismes, ces transformations engendrent le
groupe de Cremona :

Théoréme 0.1 (Noether-Castelnuovo [3])
Les transformations birationnelles de P?(C) peuvent étre décomposées en transformations quadratiques et en
automorphismes.

En 1915, J.W. Alexander rédigea une preuve courte de ce théoréeme dans un article "On the factorization
of the Cremona plane transformations" [I], sous forme d’un algorithme permettant de décomposer progres-
sivement la transformation. Il consiste a regarder les points-base de la transformation et leur multiplicité, et
a précomposer par des inverses de transformations quadratiques bien choisies.

Ces transformations quadratiques modifient les points-base de f, qui voient alors leur multiplicité baisser,
jusqu’a ce que la composition soit elle-méme une transformation de degré 2. On obtient ainsi une décompo-
sition de f en transformations quadratiques.

Il arrive cependant que 'application f ne soit pas aussi simple, et posséde des points-base qui ne sont pas
directement dans P?(C), et qui n’apparaissent qu’apres avoir éclaté P?(C) en certain points. Ce phénomene
complexifie I’algorithme, mais une telle décomposition est encore possible, et sous réserve de quelques pré-
compositions quadratiques supplémentaires, on peut se ramener au premier cas.

L’objectif de ce mémoire est d’étudier cet algorithme et d’en donner une formulation moderne afin de
pouvoir 'appliquer et, a terme, I'implémenter informatiquement.

Le premier chapitre fournit les définitions permettant d’aborder la démonstration du théoreme : les
notions d’applications régulieéres et rationnelles, les diviseurs et leurs propriétés, le produit d’intersection
et les éclatements y seront rappelés, et on donnera également un théoreme di a Zariski sur la factorisation
des applications birationnelles comme suite d’éclatements.

Dans le second chapitre, on démontrera les équations de conditions qui fournissent des contraintes qui
permettent entre autre de compter les multiplicités possibles pour une transformation birationnelle de degré

1. Ce sont des cas particuliers de points-base de f que 'on définira de maniere plus générale.
2. Enoncé et démontré partiellement par Max Noether ; démontré complétement par Guido Castelnuovo en 1901 3l



donné. On exprime ensuite le degré de la composition d’une transformation birationnelle avec une transfor-
mation quadratique, ainsi que les points-base et leur multiplicité afin de caractériser de telles compositions.

Le troisiéme chapitre consiste en la démonstration du théoréme de Noether-Castelnuovo donnée par
J.W. Alexander par induction sur la complexité d’une transformation birationnelle, définie comme 2j =
deg(f) —ms(Op) ou Og est le point-base de plus grande multiplicité de f.

On effectue ensuite quelques calculs de décompositions en appliquant I’algorithme & des transformations
plus ou moins complexe, et on donnera également une preuve du test de Hudson [2] p.225] qui utilise cette
décomposition algorithmique pour déterminer si des nombres qui vérifient les équations de conditions pour
le degré d sont des données de multiplicités valides pour une transformation birationnelle de degré d.

Enfin, on donnera une explication de I'implémentation informatique en Python de l'algorithme de décom-
position.

Vassily Kandinsky (1925) - Free Curve to the Point.
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Chapitre 1

Rappels

Dans tout le mémoire, on se place sur le corps des nombres complexes C. En particulier, P? désignera le
plan projectif complexe P?(C).

1.1 Applications rationnelles et régulieres

1.1.1 Définitions

On rappelle ici les définitions et propriétés de base en rapport avec les applications régulieres et ration-
nelles.

Définition 1.1 (Variété quasiprojective ([6] p.46))
On appelle variété quasiprojective un ouvert d’un fermé de P pour un certain n (i.e. 'intersection d’un
ouvert et d'un fermé de P").
Une sous-variété d’une variété quasiprojective X est un sous-ensemble Y C X qui est une variété quasipro-
jective.

Définition 1.2 (Fonctions et applications réguliéres ([6] p.48))
Soit X C P™ une variété quasiprojective irréductible.
Soit x € X. Une fonction réguliére en z est une fonction définie au voisinage de x et a valeur dans C
qui est le quotient de deux polyndmes homogenes de méme degré P,Q € C[T1,...,T,], avec Q(z) # 0. Une
fonction réguliére sur X est une fonction définie sur X et réguliere au voisinage de tout =z € X.
On note C[X] 'anneau des fonctions réguliéres sur X.
Une application réguliére f : X — P™ est la donnée de m + 1 polynémes Fy, ..., F,, € C[Ty,...,T;]
homogenes et de méme degré et tels que pour tout x € X, un des F; soit non nul en x. On note pour un
z e X, f(x) =[Fo(z) :...: Fpn(x)].

Soit X C P™ une variété quasiprojective irréductible. On peut considérer le sous-anneau Ox des fractions
rationnelles C(77,...,T,) constitué des quotients P/Q tels que P et @ soient homogenes de méme degrés et
que @ n’est pas toujours nul sur X.

Le sous-ensemble des fractions P/Q telles que P est toujours nul sur X en forme un idéal maximal M x.

Définition 1.3 (Fonctions et applications rationnelles ([6] p.50))
Soit X C P™ une variété quasiprojective irréductible.
Le corps des fonctions rationnelles sur X est le corps des fractions de C[X], ou de maniére équivalente,
le corps Ox /M x. Une telle fonction f est dite réguliére en z € X §’il existe en existe un représentant P/Q
tel que Q(z) # 0. On définit alors f(x) = P(z)/Q(x).
Une application rationnelle f : X --+ P™ est la donnée de m + 1 polynoémes Fy, ..., F,, € C[Ty,...,T;]
homogenes et de méme degré dont 'une d’entre elle n’est pas toujours nulle sur X. On quotiente par la



relation d’équivalence :
f =g <— V’L,] S {07...,m},F¢Gj = F]Gl

On notera alors f = [Fy:...: Fy,)].

Remarque
Une application rationnelle f : X — P™ définit la donnée de m + 1 fonctions rationnelles en quotientant
par un des polyndéme non toujours nul sur X. On dit alors qu'une application rationnelle est réguliere en
x € X si elle définit des fonctions rationnelles régulieres en x et non toutes nulles en z. On note alors
f(:c) = [Fo(z):...: Fp(2)].
Etant donnée Y C P™ une variété quasiprojective, on dit que f envoit X vers Y s’il existe un ouvert U de
X sur lequel f est réguliere et tel que f(U) C Y. L’image de X dans Y par f est alors 'image de 'union de
tous les ouverts vérifiant cela. On note f : X — Y une telle application.
Une application rationnelle entre deux variétés quasiprojectives f : X --» Y est dite birationnelle si 'image
de X dans Y par f est dense et s'il existe une application rationnelle f/': Y --» X telle que fo f'(y) =y et
f'o f(x) = x lorsque les images sont bien définies.

Par la suite, on appellera transformation birationnelle (du plan projectif) toute application bira-
tionnelle de P? dans P2. On peut montrer [6, Theorem 3 p.109] quune telle application n’est pas réguliere
seulement en un nombre fini de points.

On définit le degré de f comme étant le degré minimal des polynomes définissant la transformation, c’est
a dire le degré des polynémes quand ils n’ont pas de facteurs communs.

On fournit également la notion de multiplicité d’une courbe en un point : étant donnée S une surface
quasiprojective, p € S, on peut considérer I'anneau local des germes de fonctions régulieres en p : Og, )y, d’idéal
maximal mg .

Alors il existe un unique k& € N tel que, si f est une équation locale de C en p, f € mF\mF*+1 que I'on
définit comme la multiplicité de C en p. [4, p.16]

1.2 Diviseurs

1.2.1 Définitions

Définition 1.4 (Diviseur ([6] p.151))
Etant donné une variété quasiprojective irréductible X, on appelle diviseur premier sur X un sous-ensemble
algébrique fermé irréductible de X de codimension 1.
On note Div(X) le groupe abélien libre engendré par les diviseurs premiers sur X. Un élément de Div(X)
est appelé diviseur sur X.

On note (C;);er 'ensemble des diviseurs premiers sur X. Si D =), _; k;C; € Div(X), 'union des C; tels
que k; # 0 est appelé support de D. Un diviseur Y k;C;, est dit effectif si k; > 0 pour tout i.
A chaque fonction rationnelle f € k(X) non nulle, on peut associer un diviseur div(f) de la maniére suivante :
on peut montrer qu’il n’existe qu'un nombre fini de diviseurs premiers en lesquels la multiplicité de f est non
nulle [6 p.153]. On peut donc considérer le diviseur :

div(f) = ve, (f)C
iel

Un diviseur obtenu comme cela est appelé diviseur principal. L’ensemble des diviseurs principaux forment
un sous-groupe de Div(X), par les relations [0 p.153] :

{ div(f.g) = div(f)+ div(g)
div(l/f) = —div(f) et div(c) =0



pour ¢ fonction constante non nulle.

En quotientant par ce sous-groupe, on obtient le groupe CI(X) des classes de diviseurs sur X. Deux divi-
seurs de la méme classe sont dits linéairement équivalents.

Dans le cas de P2, on peut classifier les diviseurs par leur degré, en définissant le degré d'un diviseur linéai-
rement par rapport au degré des diviseurs premiers qui le constituent, le degré d’un diviseur étant nul si, et
seulement si, il est principal. Ainsi, CI(P?) ~ Z. [6], p.154].

Soit X une variété quasiprojective irréductible réguliere et D = Y7 | k;C; un diviseur. Comme X est
réguliere, il existe un ouvert U sur lequel chaque C; est décrit par une équation locale m; = 0. En posant
alors f = 7r’f1 ...k on dit alors que D = div(f) sur U. Réciproquement, la donnée d’ouverts U; recouvrant

X et de fonctions rationnelles f; : U; — C formant un systéme compatible, i.e. telles que sur U; N Uj, les
fonctions f;, f; ne valent jamais 0 et f;/f; est réguliere, définit un diviseur D sur X. [6] p.155]

1.2.2 Propriétés des diviseurs

On a besoin pour travailler avec les diviseurs de donner une propriété importante : étant donné un nombre
fini de points 1, ..., %, de X et un diviseur D, alors D est linéairement équivalent & un diviseur D’ dont le
support ne contient pas xy,...,ZTn,.

Cela permet de définir le tiré-en-arriere d’une classe de diviseur par une application réguliere.

Théoréme 1.5 (Déplacement des diviseurs ([6] Theorem 1 p.158))
Soit D un diviseur d’une variété quasiprojectives irréductible réguliéere X, et x1,...,x, € X. Il existe un
diviseur D’ linéairement équivalent & D et dont le support ne contient aucun des x;.

Soient X,Y des variétés irréductibles quasiprojective réguliéres. Etant donné un diviseur D sur Y et une
application réguliere ¢ : X — Y, on peut définir un diviseur ¢*(D) sur X a la condition que ¢(X) ¢ Supp(D)
en considérant un certain systéme compatible de fonctions rationnelles sur des ouverts de X[6], p.155-156].
On peut, plus généralement, définir le tiré-en-arriere d’une classe de diviseurs sur Y, par le théoréeme précé-
dent : soit D un diviseur tel que ¢(X) C Supp(D), et x € ¢(X). Alors il existe un diviseur D’ linéairement
équivalent & D et dont le support ne contient pas x, de sorte que ¢(X) ¢ Supp(D’), et on peut définir
6 (D).

On a donc une fonction ¢* : CI(Y) — CI(X) bien définie (en vérifiant que deux diviseurs linéairement
équivalents sont envoyés dans la méme classe) et qui est un morphisme de groupe.

1.2.3 La classe de diviseurs canonique

On va définir, sans s’étendre trop sur leur propriétés, les formes différentielles régulieres et rationnelles
sur une variété quasiprojective irréductible réguliere X.

Quelques rappels sur la différentielle d’une fonction réguliére

Soit X une variété quasiprojective. On rappelle la définition de I'espace tangent de Zariski : soit x € X,
I'espace tangent de Zariski en z est le C-espace vectoriel T, X = (m,/m2)Y ot m, = {f € C[X] | f(x) = 0}.
On note T* X le fibré tangent de X, c’est a dire I'union disjointe des (7, X)" = m,/m2.

A une application réguliére f : X — Y on peut associer sa différentielle en = € X [6l, p.88]. En effet, f induit
une application entre les ensembles de fonctions régulieres des deux variétés :

f* : ClyY] — CX]
g +—> gof

De plus, on a bien, f*(my(,)) C m, et f*(m?g;v)) C m2, donc f* se restreint et passe au quotient. Finalement
la transposée de cette nouvelle application f* fournit la différentielle de f en z,d, f : T, X — T)Y.



En prenant Y = Af, on définit la différentielle d’une fonction réguliere f. Cette différentielle est & valeur
dans (C,E| Donc d,. f € (T, X)". On a finalement une application appelée différentielle de f, df : X — T*X.

Formes différentielles réguliéres et rationnelles

On considere ici une variété quasiprojective irréductible réguliere X de dimension n. On note ®"[X] le
C[X]-module des fonctions X — A" T*X qui envoient z vers un élement de A" (T, X)*.

Définition 1.6 (Forme différentielle réguliere ([6] p.195))
Une r-forme différentielle réguliére sur X est une fonction ¢ € ®"[X] qui est localement le produit
extérieur de différentielles de fonctions régulieres :
pour tout x € X, il existe un voisinage U de x tel que ¢ |y soit dans le sous-C[U]-module de ®"[U] engendré
par les dfi A -+ Adf, pour f1,..., f. € C[U].
On note Q7[X] le sous-k[X]-module de ®"[X] des r-formes différentielles régulieres sur X.

Définition 1.7 (Forme différentielle rationnelle ([6] p.202))
On note Q7(X) le quotient de I’ensemble

{(Uw )< [T v |weQT[U]}

Vcx

par la relation d’équivalence :
(U,w) ~ (U',w'") <= 3V CcUNU’ ouvert non vide,w |[y=w' |y

Un élément & de Q"(X) est une r-forme différentielle rationnelle.

Si @ contient un couple (U,w), on dit que w est réguliére sur U. On appelle domaine de régularité de ©
Pouvert Uy, = U 0)es U-

On notera abusivement par la suite w = @.

Remarque
On observe que Q°(X) = C(X) [5, p.176, Proposition-définition 1.1], ce qui fait de Q"(X) un C(X)-espace
vectoriel, via 'opération produit extérieur.
O"(X) =Q"(U) pour U un ouvert de X, par définition de la relation d’équivalence : on a autant de classes
dans I'un que dans 'autre, méme si les classes sont plus petites dans le second.
Par cette remarque, on peut montrer que Q7 (X) est un C(X )-espace vectoriel de dimension (n) en utilisant
le résultat sur le rang du C[U]-module Q"[U] pour U un ouvert assez petit de X [6, p.200 Theorem 2] et le
fait qu’une fonction réguliére sur un ouvert de X définit une fonction rationnelle sur X [6, p.203 Theorem 3].
Par ailleurs, on a pour un voisinage assez petit d’un point € X, une base de Q"[U] sur C[U] donnée par
(duiy, A...dug)iy<...<i, POUr U1, ..., u, € C[U] des fonctions régulieres donnéesﬂ

En particulier, Q"(X) est de dimension 1 sur kC(X).

La classe de diviseurs canonique

Soit X une variété quasiprojective réguliere irréductible de dimension n.
En considérant le cas particulier des n-formes différentielles rationnelles sur X, on peut obtenir une classe de
diviseurs particuliers sur X :
Soit w € Q™(X). On peut recouvrir X par un nombre fini d’ouverts affines (quitte & les intersecter avec
() A

un recouvrement affine) U; sur lesquels w = g(i)du1 A dug). Les fonctions ¢(* : U; --» C forment un

1. Puisque (C[Aqf] est isomorphe comme C-espace vectoriel & anneau des polyndmes & une variable C[t] par définition. Deés
lors, my/m2 est isomorphe au quotient du sous-anneau des polynoémes sans coefficients constants par (¢2), lui méme isomorphe
acC.

2. vérifiant que Yy € U, (dyu1,...,dyun) forme une base de (T, X)V [6, p.200 Theorem 2].



systéme compatible de fonctions rationnelles [6, p.209] qui définit donc un diviseur div(w) sur X.

Ces diviseurs vérifient la relation div(fw) = div(f) + div(w). En particulier, tous ces diviseurs sont dans
une méme classe K x appelée classe canonique associée a X, puisque Q"(X) est de dimension 1 sur C(X).

Exemple 1 (Calcul de Kp2)
Pour calculer Kp2, il suffit de déterminer une 2-forme différentielle rationnelle sur P2. On va partir d’une
forme différentielle réguliére sur un des ouverts affines classiques (par exemple Uy) de P? et la prolonger aux
autres ouverts, d’abord sur l'intersection, puis en une forme différentielle rationnelle sur P2, et calculer au
passage l'expression locale du diviseur associé.
On considere Uy, Uy, Us les ouverts affines de P2 donnés par :

Uiz{(l'oixllwg)E]PQ‘l‘i?éO}

Sur Uy, on pose y; = fﬁ—o, avec ¢ = 1, 2. Les fonctions y; sont bien définies sur Uy et forment bien une base de
Q?[Uy] comme k[Up]-module, donnée par la forme w = dy; A dys. Cette forme fournit un diviseur div(w), qui
est nul sur U, puisque div(w) = div(1) sur U. Etudions alors la valeur de cette forme hors de Up.

Sur Uy, on a cette fois pour coordonnées locales z; = 22, zo = 22 En particulier, 21 = =, 20 = £ sur Uy NU;
' b z1’ 1 p ’ Y1’ Y1 0
(cela correspond aux changements de cartes habituels de P?).
Donc sur UyN Uy, on a via la différentielle d’une composée, dy; = —dz%, dys = zldzzz;gz?dzl. Ainsi, sur UyNUq,
1 1

ona :

d21 ZleQ — z2d21 ]_

w=dyiNdys = | ——5 | N | — 5 | = ——3dz1 Ndz
2] 21 21

On peut ainsi prolonger w sur U;. Notons que similairement au premier cas, la forme w’ = dz; A dzy est une
base de Q2[U;]. Cette forme fournit un diviseur nul sur Uy. Ainsi, on peut calculer div(w) sur Uy :

div(w) = div (—{)’w') = div (—13) +div(w') = =3 - div(z1)
“1 1

De méme, sur Us, si on note t; = i—;’,tg = %, alors on a encore div(w) = —3 - div(ty) sur Us.
Ces deux derniers diviseurs sont les expressions locales du diviseur div(zp). En effet, géométriquement,
div(zg) = {(0 : z1 : ) € P?}, qui est un diviseur premier. Sa restriciton a U; (resp. Uz) correspond
exactement au lieu des zéros de 21 = I (resp. t; = £2), avec la méme multiplicité. On a donc div(zo) =
div(z1) sur Uy, et div(zg) = div(ty) sur Us.
En remontant, on a donc sur P2, div(w) = —3- div(xg) puisque cette égalité est vraie localement. Ceci fournit
la classe canonique de P? : puisque div(zg) est linéairement équivalent & une droite générale L,

Kpo = —3-L

1.3 Produit d’intersection

On définit le produit d’intersection sans rappeler sa contruction (ce sont en particulier ses propriétés qui
seront utiles) :

Définition 1.8 (([4] p.14), ou ([6] p.223-232) pour la construction)
Soit S une surface quasiprojective irréductible réguliere.

Il existe une unique opération :
-: Div(S) x Div(S) — Z

vérifiant que :
— Si deux diviseurs C' et D sont en position générale [0, p.223], alors C - D = #(C N D).
— Si C,C’ sont linéairement équivalents et D, D’ aussi, alors C-D=C-D'=C'"-D=C"-D'".



Etant donnée une droite L dans P2, son intersection avec elle-méme L2 vaut 1 puisque L est équivalent &
L', L”, deux droites en position générale, qui ne se coupent qu’en un point.
De plus, comme CI(P?) ~ Z, si C, D sont des diviseurs quelconques sur P2, ils sont linéairement équivalents
a deg(C)L et deg(D)L avec L une droite de P2. On a alors une formulation du théoréme de Bézout :

Théoréme 1.9 (Bézout ([6] p.236))
Soient C, D des diviseurs sur P?, alors

C - D = deg(C) deg(D)

1.4 Eclatements

Définition 1.10 (Eclatement d’une surface quasiprojective réguliere ([4] p.15))
Soit S une surface quasiprojective réguliere irréductible, et soit p € S.
Une application réguliere 7 : Y — S (avec Y variété quasiprojective réguliére) est un éclatement de S en
p si 7 est un isomorphisme régulier de Y\7~1(p) vers S\{p}.
Cet éclatement est unique & isomorphisme pres, et on notera souvent Y = B, (S).

Exemple 2
L’éclatement de P? en le point [0 : 0 : 1] est donné par :

Blig.o)(P?) = {([z 1y : 2], [u: v]) € P* x P' | 2v = yu}

qui forme une sous-variété quasiprojective réguliere irréductible de P? x P!.

Pour une surface quasiprojective irréductible réguliére S, on peut considérer un ouvert affine U C S avec ses
coordonnées locales ui,ug : U — C pour lesquelles p = (0,0) (i.e. u1(p) = uz2(p) = 0). L’image réciproque de
U par I’éclatement de S en p est alors isomorphe & 1'ouvert : [6, p.116]

{(.’E, [tl : tg]) e U x ]Pl | ul(x)tg = UQ((E)tl}
On peut décomposer cet ouvert en deux ouverts affines {t; # 0} et {t2 # 0}, affines via les cartes (z, [t :

to]) = (u1(z),ta/t1) et (x,[t1 : ta]) = (ua(x),t1/t2). Dans la premiére carte par exemple, que I'on note via
les coordonnées locales vq, va, on a pour tout x € {t; # 0} :

m(v1(x), v2(2)) = (v1(2), v1(2)va(2))

On peut ainsi exprimer le tiré-en-arriere des fonctions coordonnées sur un de ces ouverts affines : 7*u; (x) =
v1(z) et T ug(x) = v1(z)va(x).

Comme vu plus tot, étant donnée une courbe irréductible sur S, on peut considérer son image réciproque
par 7, 7*C = 7~ }(C). On définit sa transformée stricte C = 7=1(C\{p}).
L’image réciproque de p par m, dans Bl,(S) correspond a une droite E appelée diviseur exceptionnel

associé a p. On notera souvent cette droite I, ou F,. On peut alors exprimer I'image réciproque par m
d’une courbe irréductible de S :

Lemme 1.11 ([4] p.17)
Soit C' une courbe irréductible de S, alors :

™(C) = C +me(p)E

Démonstration. Soit C' une courbe irréductible de S. On considére un ouvert affine U de S, avec pour
coordonnées les fonctions réguliéres uy, us : U — C pour lesquelles u; (p) = ua(p) = 0.

Dés lors, C' a une expression locale dans U en fonction des coordonnées : il existe Py, Pit1, ..., P, € C[T1, T3]
des polynomes homogenes de degrés respectifs k, k + 1,...,r, avec k = mc(p), tels que :

VeelU,re(C — ZPZ'(W(JE‘),W(?U)) =0
i=k
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Le tiré-en-arriere de C' par 7 est alors donné localement via les coordonnées m*u; :

Ve € n 1 (U),n(x) € C +— ZPZ‘(TI'*ul(Z‘),ﬂ'*UQ(Z‘))
i=k

Comme vu plus t6t, on a alors pour vi,vs un systéme de coordonnées locales dans un ouvert affine V' C
Y (U):

Ve e Vin(z) € C < Zﬂ(vl(x),vl(x)vg(x)) =0 < " Zvl(a:)i*kPi(l,vg(x))
i=k i=k

Finalement, cela fournit une expression du tiré-en-arriere de C en tant que diviseur : 7°C' =k - E + c. O

On a aussi les résultats d’intersection suivants :

Proposition 1.12 ([4] p.17)

Soit C, D deux diviseurs sur S. Alors :
— 7*C-7*D = 0.
— 7*C-E=0.
— E?2 = 1.

De plus, si C' est une courbe irréductible, on a :
— C?=C%—me(p)*.
— C-E=mc(p).

On exprime enfin la classe de diviseur canonique dans I’éclatement Kp; (s :

Lemme 1.13
KBlp(S) =7"Ks+ FE

Démonstration. On considere un ouvert affine U C S contenant p, et uy,us : U — C des fonctions régulieres
sur U valant 0 en p et formant un systéme de coordonnées locales sur U.
Soit w une 2-forme différentielle rationnelle sur U : w = fdu; A dus. On peut considérer son tiré en arriére
par w: Bl,(S) — S :

m'w = 7" fd(m uy) A d(m ug)

On peut déterminer ces deux nouvelles coordonnées locales en utilisant I’expression de I’éclatement sur U :
{(z,[t1 : ta]) € U x P! | uy(z)ta = uz(z)t1}. En effet, les cartes locales de cet éclatement sont par exemple
données par {t; # 0} :

($7 [tl : tz]) — (’ul(l'),tg/tl)

Et on peut alors exprimer 7 sur cette carte locale : w(z,y) = (x,zy). Finalement, cela donne 1’expression
des fonctions rationnelles m*uy, m*ug sur Pouvert {t; # 0} de U : n*ui(x,y) = = et m*uz(z,y) = xy. En
remplacant dans le tiré-en-arriere :

mr'w=7n"fde Nd(zy) =7 fde AN (z-dy+y-de)=7"f -z -de ANdy
Ainsi, en terme de diviseurs, div(m*w) = div(n* f - ) = div(7* f) + div(z) = m*div(w) + E, et donc :

KBlp(S) =n"Kg+ FE
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1.5 Théoréeme de Zariski

Dans cette derniére section de rappels, on donne I’énoncé du théoréme de Zariski, qui permet de décom-
poser une transformation birationnelle entre deux surfaces projectives réguliéres en une suite d’éclatements
et d’effondrements, ainsi que la définition du systéme linéaire associé & une tranformation birationnelle.

Théoréme 1.14 (de Zariski ([6] p.256))
Soient X,Y deux surfaces projectives réguliéres, et f : X --» Y. Alors il existe deux suite d’éclatements
m:Z +Xetn:Z =Y telsque f =non~!:

On appelle cette donnée de deux suites d’éclatements une résolution de f par le théoréme de Zariski.
Une résolution Z est dite minimale si pour tout autre résolution Z’, on a une application réguliére ¢ : Z' — Z
telle que le diagramme commute :

Z/
|
i 7 n'
/ x
X—---=--- >Y
f

On peut vérifier que cette résolution minimale est unique a isomorphisme et ordre pres.

On définit alors un point-base d’une transformation birationnelle f comme étant un des points éclaté
par m dans une résolution minimale de f par le théoreme de Zariski. Les points éclatés par 7 sont alors les
points-base de f~'. Ainsi, dans une résolution minimale, 7 éclate les points-base de f et 7 contracte des
droites sur les points-base de f~1, et ces droites correspondent & celles qui sont contractées par f, & éclate-
ment pres.

Soient A et B deux points-base de f : X --+ Y. On considére une résolution minimale Z de f par le
théoreme de Zariski avec les mémes notations que précédemment, et on décompose 7 : Z — X en éclatements :
Z=X, s Xy e Xy — X=X
Soit alors ¢ € {1,...,n} tel que B est éclaté par m;. On dit alors que A est infiniment proche de B si
A € 7, Y(B), autrement dit, si A est sur le diviseur exceptionnel associé & B.

Exemple 3
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On considere la transformation birationnelle appelée involution quadratique standard, et donnée par :
vz iy 2] --» [yz s xz o xy]

Elle n’est pas définie en les points Og = [1:0:0],01; =[0:1:0] et O3 =[0:0: 1]. Ces points correspondent
aux points-base de inv. En effet, on obtient inv en éclatant P2 en ces trois points, puis en contractant les
droites passant par deux des points sur le troisieme, comme dans la figure ci-dessus.

On verra dans le chapitre 4 des exemples de transformations birationnelle dont les points-base ne sont
pas tous dans P2.

1.5.1 Systemes linéaires

Définition 1.15 (Systéme linéaire d’une transformation birationnelle ([4] p.19))
Soit f : P2 --» P? une transformation birationnelle.
Le systéme linéaire associé & f, noté Ay est ’ensemble des préimages des droites de P? .
Si f={[fo: fi:f2], avec les f; sans facteurs communs, un élément du systéme linéaire est donc de la forme

{[l‘ ‘Y Z} ‘ (lofo(l‘,y72) + a1f1($7y,2) + a2f2(337y,z) = O} pour [a() tap a2]-

Remarque
On définit un élément général du systéme linéaire associé a f comme la préimage d’une droite générale
dans le contexte qui nous intéresse, c’est & dire d’une droite ne passant pas par les points-base de f et de f~!
qui sont en nombre fini. Tout élément général du systéme linéaire de f est une courbe irréductible passant par
les points-base de f avec méme multiplicité [4, p.19]. On peut alors définir la multiplicité d’une transformation
birationnelle en un point P comme étant la multiplicité d’un élément général du systéme linéaire associé a
ce point dans le cas ou P est un point-base de f, et 0 sinon.
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Chapitre 2

Propriétés des transformations de P?

Dans ce chapitre, on établit plusieurs propriétés des transformations de P? qui seront utiles dans la
démonstration par J.W. Alexander du théoreme de Noether-Castelnuovo.

On montre en premier lieu les équations de condition qui permettent entre autres de classifier les trans-
formations d’un degré donné, puisqu’elles fournissent une contrainte sur les points-base de celles-ci.

L’objet de la seconde partie est la caractérisation de la composition d’une transformation birationnelle avec
une transformation quadratique ayant tous ses points-base dans P2. On en calcule le degré et la multiplicité
aux points-base. On utilisera ces formules dans la preuve du théoréme, puisque la méthode employée consiste
a précomposer la transformation considérée par une transformation quadratique afin de la simplifier.

On commence par établir un lemme qui sera utile dans les preuves suivantes :

Lemme 2.1

Soit f : P? --» P? une transformation birationnelle de points-bases O1,...,Oy, f~! ayant pour points-bases
Q1,...,Q;. On considére une résolution minimale de f par le théoréme de Zariski : il existe deux suites
d’éclatements 7,1 : S — P? tels que le diagramme suivant commute :
S
P2- - — - —— > P2
!

Soit maintenant D une courbe irréductible fermée de P? qui n’est pas contractée par f~! et C Iimage de
D par f~'. Alors la transformée stricte D™ = n=1(D\{Q1,...,Q;}) de D par 1 est égale a la transformée

stricte C(™ de C par m.

Démonstration. On considére les diviseurs exceptionnels Ey = 77 1(0y),...,Ey = 7 Y(Oy) (resp. F; =
n~HQ1),...,Fy =n71(Q;)) de 7 (resp. n) associés respectivement aux points Oy, ..., O (resp. Q1, ..., Q).
En tant que suites d’éclatements, 7 et 1 induisent des isomorphismes 7 : S\(EU- - -UE}y) — P2\{Ox, ..., O}
et 77: S\(FiU---UF)— PQ\{Ql,. . ~;Ql}~
Montrons 1’égalité des transformées strictes par double inclusion :

Inclusion O : Soit z € C(™. On suppose que © ¢ F1U---UE,UFyU---UF;. Des lors, 'image de x par 7
n’est pas un point-base de f et on peut considérer f o7 (z) € D. Comme D est une courbe générale, f o7 (x)
n’est pas un point-base de f~! et on peut donc prendre son image par 7', qui vaut z par commutativité du

diagramme. B
Ainsi, 771 (D\{O; ...,04} € D et donc c’est encore vrai pour la fermeture.
Inclusion C : Par symétrie, en appliquant Iinclusion pécédente a f~* O
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2.1 Equations de condition

Théoréme 2.2 (Equations de condition)
Soit f : P? --» P? une transformation birationnelle. On note O, ..., Oy, les points-bases de f. Alors :

k
> my(0:)° = deg(f)* — 1

k
>_mys(0:) = 3(deg(f) — 1)

Démonstration. On note Q1, ..., Q; les points-base de f~!.
On considére une résolution minimale de f par le théoreme de Zariski : il existe deux suites suites d’éclatements
m,n: S — P2 tels que 7 éclate les points-bases de f et 7 ceux de f~!, et que le diagramme suivant commute :

Onnote F, ..., E} les diviseurs exceptionnels associés a 7 et F1, ..., Fj ceux associés a 7. Soient mainteant
L, L' deux droites générales de P2. On considere les éléments généraux de Ay associés C' = (f~1)(L),C’ =
(f~H)(L') par f. On a alors ms(O;) = mc(O;) = mer(0;) par définition, et :

V= L. L =Lyl =L . " (L, L' générales)

1=Cm. 67(7T) (lemme

k k
1= <7r*c -3 mC(Oi)EZ) <7r*c’ -y mcr(Oi)Ei> (lemme [T.11)
i=1 i=1

k
1=C-C"— Z me(0;)mer (0;) (proposition
i=1
k
1 = deg(f)? — me(Oi)2 (C - C" = deg(f)? par Bézout)
i=1

Démontrons maintenant la seconde formule : si on considére & nouveau une droite générale L et C € Ay
Pélément général associé & L, on peut alors calculer le produit d’intersection L - Kp2 = L - (—3H) = —3.
D’autre part :

l
L-Kp2=n"L -n"Kp2 = L. [ Kg— ZFj (par itération du lemme [1.13))
j=1
N N k
—3=L".Kg=L". (w*sz + ZEZ> (mr(Q;) =0 car L générale)
i=1

k
—3=C™. ('R'*KPZ + ZEZ> (Z(") =Ccm par le lemme

i=1
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k k
-3 = <7r*C — ch(Oi)El) (w*KPz + ZE2> (lemme -1.11
i=1

i=1
k
—3=C- -Kp + Z mc(0;) (proposition
i=1
k
—3 = —3deg(f) + me(Oi) (Bézout)
i=1

2.2 Composition des tranformations

Proposition 2.3
Soient f,g des transformations birationnelles de degré v et u. On a la formule :

k
deg(fog™ ') =vu— Z my(0;)mgy(0;)

avec Oy, ..., Oy les points-base de g.

Démonstration. On cherche a calculer deg(f o g=1). Soit L C P? une droite générale et C' = (go f~1)(L) €

Apog-1.
fog
On considere alors une résolution minimale de g par le théoréme de Zariski :
S
N\
P2<—-—— ——— P2 — — — — > P?
9 f

Soit H une droite générale de P2. Par le théoréme de Bézout, deg(fog~!) = C- H et en tirant en arriére
les diviseurs, on a deg(fog™1) = n;C - mfH = 7;C - H(™) puisque H est une droite générale, qui ne passe
par aucun des points-bases Q1,...,Q; de g—', éclatés par ;.

Comme 7y (resp. m1) éclate les O; (resp. @;). On note également E; (resp. F;) le diviseur exceptionnel
dans S associé a O; (resp. ;). En exprimant le tiré-en-arriere de C, on obtient :

l l
deg(fog™) = | C™ 4+ me(Q))F; | - H™) =C™)  H™ +3 “me(Q,)F; - H™

=1 j=1
Or, H ne passe pas par @1, ..., Q;, donc son produit d’intersection avec les diviseurs exceptionnels de 7
est nul.
De plus, si on note D (resp. G) la préimage de L (resp. H) par f~! (resp. g~1), on a en adaptant le
lemme 2] au cas de C :
deg(fog™!) = Cr) | glm) — plr) | Glr2)

On développe alors ’expression :

k

Kk :
deg(fog™) = (WSD - ZmD<Oi>Ei> : (WSG - ch(oi)Ei> =mD - m3G =Y mp(0;)ma(0;)

i=1
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Or, 3D - 715G = D - G = deg(g) deg(f) par le lemme de Bézout. Finalement :

k
deg(f o g~") = deg(g) deg(f) — > _ mg(Os)my(0;)

i=1

Proposition 2.4

Soit inv : P2 —-» P? I'involution standard donnée par : inv : [z :y: 2] --» [yz : 2z : 2], et o, B : P2 — P?
deux automorphismes de P?. On pose h = 3 o inv o a. La transformation h a donc pour points-base O; =
a™([1:0:0]),02 =a"1([0:1:0]),03 =a ([0:0:1]), et si on considére les droites L; j passant par
les points O;,0; (i.e. I'ensemble des points dont la k-eme coordonnée est nulle, avec k € {1,2,3}\{7,j} la
coordonnée restante), alors elles sont contractées sur Qr = 5(Oy) :

— Ly o est contractée par h sur Q3 = 5([0: 0 : 1]).

— Ly 3 est contractée par h sur Q2 = ([0 :1:0]).

— Ly 3 est contractée par h sur Q1 = B([1:0:0]).
Soit f : P? —-» P? une transformation birationnelle de degré au moins 2. On note Si, ..., S, les points-base
de f.

Alors les points-base de f o h™! sont d’une part les @Q;, avec pour multiplicité :
Mmyop-1(Qi) = deg(g) — mg(O;) — mg(Op)

pour {i,j,k} = {1,2,3}, et d’autre part les h(S;) avec 1 < j < r tel que S; n’est pas un point-base de h avec
multiplicité myop-1(h(S;)) = mg(Sj).H

Démonstration. On considére tout d’abord la résolution de h par le théoréeme de Zariski : il existe 7y, o :
S --» P? deux suites d’éclatements du plan projectif tels que h = mg o ! Les points éclatés par mo sont
ceux de h, c’est & dire O, Oq, O3 et ceux de 71 sont ceux de h™1, c’est & dire Q1, Q2, Q3. Pour i € {1,2,3},
on note F; (resp. E;) le diviseur exceptionnel de my (resp. ma) associé a @Q; (resp. O;).

Soit L une droite générale de P?. On considere C' = (ho f~1)(L) € Ajop-1. On peut donner via le lemme
une expression de la multiplicité de f o h~! en les Q; comme produit d’intersection.
Faisons le cas ¢ = 1 par exemple :

3
o) . I = (WTC — ZmC<Q1)> - By = mfohfl(Ql)

i=1

En appliquant le lemme [2.1& C, et en notant G = (h=1)(C) = (f~1)(L), on a G(™) = C(™)_ Donc on
peut calculer le produit d’intersection :

M fon—1(Q1) = G = (175G — ms(01)Ey — my(Os)Es — ms(03)E3) - Fy (lemme

(m2) — (m2)

(Fi1=Ls3 ™)

1. Cela fonctionne si S; est dans P2, mais dans le cas ol S, est sur le diviseur exceptionnel associé & Sy, il faut éclater h(Sj)
pour retrouver un nouveau point-base noté abusivement h(S).

= (135G —m(01)Ey —my(02)Es —my(03)Es) - L
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= (W;G - mg(OQ)EQ - mg(Og)Eg) . (’/T;L273 - EQ - Eg) (multlphcltés de L2,3)

=G - L—myg(O3) —my(03) = deg(g) — mg(O2) — my(O3) (proposition et Bézout)

On a le résultat similairement pour Q2, Q3.
Maintenant, un point-base de f o h~! est nécessairement :

1. Soit un Q;.
2. Soit I'image h(S;) d’un point-base S; de f qui est dans P? et tel que S; ¢ {O1, 02,03}
3. Soit un point situé sur le diviseur exceptionnel associé a un des points-base précédents.

Le premier cas vient d’étre traité.

Pour le second cas, il faut remarquer que la transformée stricte d’un élément général du systéme linéaire de
f passe par le diviseur exceptionnel associé a S; exactement my(S;) fois, et que h~! ne change pas cette
propriété. Pour le dernier cas, on peut montrer qu’il n’y a un tel point-base qu’au dessus des images des
h(S;), et uniquement dans le cas ot il y a déja un point-base Sy, au dessus de S, et que les multiplicités sont
conserveés :

— La premiére assertion revient & montrer que f o h~! est toujours bien définie au dessus des Q; qui ne
sont pas des h(S;). Pour simplifier les notations, on le montre pour ¢ = 1 : le diviseur exceptionnel
associé a () est envoyé sur la droite L2,3.E| On suppose alors par I’absurde qu’il existe un x sur le
diviseur exceptionnel associé & @1 tel que f o h~! ne soit pas définie en z.

Ainsi, 'image de x sur Lo 3 est un point-base de f puisque sinon f o h™! serait définie en x, donc ce
serait un S;. Or, c’est absurde car on a supposé que (1 n’était pas un h(S;), et h contracte Lo 3 sur
@1. On a donc démontré la premiére assertion.

— Dans le cas ot le point considéré est un h(S;) avec S; qui n’est pas un point-base de h, il faut remarquer
qu'en éclatant S; via 7 : S — P? d’un coté et en contractant Eg, sur h(S;) via 7 : S — P? de l'autre,
on obtient un diagramme commutatif :

Ainsi, un point-base de f qui était au dessus de S; se retrouve bien au dessus de h(S;), et par

commutativité du diagramme c’est encore un point-base de f o A~ 1.
O

On peut en fait montrer que les transformations quadratiques ayant leurs points-base dans P? sont toutes
des transformations quadratiques standard, c’est a dire de la forme « o inv o 3 comme ci-dessus :

Lemme 2.5
Les transformations quadratiques ayant tous leur points-base dans P? sont toutes les mémes & automorphisme
preés.

Démonstration. Soit g : P2 -—» P? une transformation quadratique dont les trois points-base A, B,C sont
dans P2.

En particulier, le théoreme de Bézout contraint A, B,C a ne pas étre colinéaires, puisque sinon, on aurait
pour une courbe D du systéme linéaire de P? :

2 =deg(D)deg(Lap) =mp(A)+mp(B) +mp(C) + ZmD(G)mLAB(G) >3
G

De méme pour les points-base A’, B’,C’ de f~!, qui sont également tous dans P?. Donc on peut composer g
par les automorphismes «, 8 : P2 — P? qui vérifient :

2. Similairement & ce qu’on a vu dans la résolution de Zariski de I’involution standard, et c’est ainsi que I’on calcule f o h~1
pour un élément sur le diviseur exceptionnel de Q1 : en prenant I'image par f de son image dans Lg 3.
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— a[1:0:0]))=Aet 8([1:0:0]) =B
— a([0:1:0])=Bet 5([0:1:0])=C".
— a[0:0:1])=Cet 5([0:0:1)) = A"
La transformation f = 7' o g o a a alors les mémes points-base avec méme multiplicité que I’involution

standard :
P? - P?

[x:y:2z] = [yz:zz:ay

Par la formule sur les composée d’une transformation birationnelle avec une transformation quadratique, on
calcule alors que foinv a pour degré 4—1—1—1 = 1 et aucun point-base. Il s’agit donc d’un automorphisme
v : P2 — P2,

Ainsi, on a f oinv =, c’est a dire (v~ o f) oinv = id, et donc (Bovy) togoa=~"to f =inv. O

En particulier, par la proposition [2:4] on peut connaitre la multiplicité aux points-base la composée d'une
transformation birationnelle de P? avec n’importe quelle transformation quadratique ayant ses points-base
dans P2,

Dans la suite, on supposera par défault que "'involution quadratique standard de points-base A, B,C €
P2" désigne une transformation quadratique ayant pour points-base A, B, C' (unique & automorphisme pres)
et vérifiant :

— Lap est contractée sur C

— L ¢ est contractée sur B

— Lpc est contractée sur A

En particulier, on peut regrouper toutes les informations des propositions [2.3] et [2:4] en les appliquant &
ces transformations que I'on utilisera dans la preuve :

Corrollaire 2.6
Soit f : P? --» P2 une transformation birationnelle de degré n et de points-base Q1,. .., Qx.
Soit g : P? --» P2 Iinvolution quadratique standard de points-base A, B, C.
Alors h = fog~! a pour degré :
2n —my(A) —my(B) —ms(C)

et ses points-base sont :
— A, B, C avec pour multiplicité :

mp(A) =n—mys(B) —m(C)

mp(B) =n —my(A) —m(C)

mp(C) =n —ms(A) —my(B)
— Les g(Q;) tels que Q; # A, B,C, avec pour multiplicité :

mp(9(Q:)) = my(Qi)
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Chapitre 3

Théoréme de Noether-Castelnuovo

3.1 Introduction de la preuve

On veut démontrer dans ce chapitre le théoréeme

Comme la démonstration est claire pour les transformations de degré 1, on le montre pour les transfor-
mations de degré supérieur ou égal a 2.
Commencons par introduire quelques définitions qui serviront par la suite :

Définition 3.1
Soit f : P2 --» P? une transformation birationnelle du plan projectif de degré n > 2. On note Oy, ..., Oy, ses
points-bases, classés par multiplicité décroissante ag > a1 > --- > .

— On note 2js la complexité de f, définie par :

n—aqp
2

Jjr = = 27=n—p

— On note By ’ensemble des points-base différents de Og et ayant une multiplicité supérieure a j;. On
définit par ailleurs hy = |By|, de sorte qu'ici,

By ={01,...,0n,}

On notera j; = j et hy = h lorsqu’il n’y a pas de confusion possible. En combinant les deux équations de
conditon du théoréme on obtient I’équation suivante dont on se servira par la suite : Vj € Q,

k

> ailai —j)=(n—1)(n—3j+1) (3.1)

i=0
On peut alors donner quelques propriétés sur la complexité 2j et I'ensemble By d’une transformation f

de degré supérieur a 1 :

— On note d’abord que 2j > 1, puisque deg(f) > 2. En effet, par le théoréme de Bézout, une droite
passant par Og coupe forcément une courbe générale du systeme linéaire de C' en au moins deux
points, et donc :

n:ao—i—Zmp(C) > o
P

— De plus, on peut borner les multiplicité des points de By : par le théoreme de Bézout appliqué a la
droite Lo1 = Lo,0, et un élément C' du systeme linéaire de f, on a :

deg(Lo,1)deg(C)=n=C"-Lo;
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OI‘, C- LO,l = QoML , (00) + Q1ML , (Ol) + Zp mc(p)mLo,l (p) =ap+ar+ Zp mC(p)' AinSia
2j:n—a0:a1+2mc(p) > o
P

Finalement, on obtient les bornes voulues :
2> > > an > (3.2)
On a de plus une condition sur ks, qui montre que By n’est jamais vide :
Lemme 3.2

Soit f : P? --» P? une transformation birationnelle de degré n > 2. Alors hy est toujours strictement plus
grand que 1.

Démonstration. On soustrait a 1’équation 1) 37 —1 >0 a droite et Zf:th a;(a; — j) < 0 a gauche, de
sorte qu’on a l'inégalité :

hf
> ailai—j) > (n—1)(n—=3j+1) = (3j = 1) =n(n—3j) — (n—3j) + n— 1= 3j + 1 = n(n — 3)

1=0

Or,n—3j=n—2j—j=ay—j,donc:

hy
> aila; = j) > n(ag - j)
=0

> n(ag —j) — ao(ao — j)
> (n —ap) (o — j)
> 25 (a0 — 4)

Par (3.2, on obtient en majorant les a; & gauche puis en simplifiant :

hy
25 Y (i = 5) > 2j(a0 — )
=1

hy
Z(O‘i —j)>ag—j (3.3)
i=1

Ceci n’est pas possible si I’on a pas hy > 2 puisque o1 < . O

Exemple 4 (Transformations de De Jonquiéres)
On peut étudier le cas spécial ou f est une transformation birationnelle de complexité 25 = 1. Une transfor-
mation de ce type s’appelle transformation de De Jonquiéres.
Op a alors pour multiplicité deg(f) — 1 par définition de la complexité. Et les autres points sont simples
puisque leur multiplicité est bornée par % et 1 par les inégalités La premiere équation de condition
fournit alors :
deg(f) — 1 4 |{Points-base simples de f}| = 3(deg(f) — 1)

Et ainsi, f a un point-base de multiplicité deg(f) — 1 et 2(deg(f) — 1) points-base simples.

3.2 Preuve du théoreme de Noether-Castelnuovo
Soit f une transformation birationnelle de P? de degré n > 2. Montrons dans un premier temps que

si les points Oy, ...,0 de By ne sont pas tous dans P2, on peut précomposer f par des transformations
quadratiques pour les rendre ramener dans P? :
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Proposition 3.3
Soit f une transformation birationnelle de P? de degré m > 2. On reprend pour les points-base de f les
notations précédentes.

Alors il existe des involutions quadratiques standardes p1, ..., ps telles que f' = f o p1_1 o---op 1 vérifie :
— hf/ = hf +2

— Oy est le point-base de plus grande multiplicité de f" et tous les points de By sont dans P2,

Démonstration. La preuve s’effectue en deux étapes :

Séparation des points-base en O : Soient A, B deux points de P? distincts des points-base de f, tels que
Og, A, B soient en position générale. On considere alors 'involution quadratique standard p; de points-base
Oy, A, B. Par le théoréeme on a alors le degré et les nouvelles multiplicité de f/ = fo pl_l aux points-base

OQ,A,BZ
deg(f') = 2n—apy=n+2j>n
mp(Op) = n=2j+w
myp(A) = n—ay=2j
mp(B) = n—ag=2j

Ainsi, la multiplicité de Op augmente et reste la plus grande, et deux nouveaux points-base sont introduit,
de multiplicité 255 > jr. f’ a encore 2j; pour complexité, puisque 2j = deg(f’) —mp (Op) =2n—ag—n =
n — o = 2j7. Donc par le calcul des nouvelles multiplicités, hy = hy 4 2.

De plus, si 1 <1 < hy est tel que Oy est infiniment proche de Oy, son image par pl_1 notée encore O; est alors
sur la droite AB, par la résolution de p; par le théoreme de Zariski :

Donc tous les points qui étaient infiniment proches de Oy sont désormais dans P?.

Séparation des autres points-base : On note a nouveau n = deg(f’). Soient O’ = O; € By qui est tel
qu’un autre point-base O” est infiniment proche de O’. On considere I'involution quadratique standard py de
points-base Og, O', C, avec C en position générale. Encore par le théoréme la transformation f” = f'opy !
a alors pour degré et pour multiplicité aux points-base Og, O’, C' :

deg(f"y = 2n—ap—a; =n+2j—a; >n
mys(Op) = n—oy

mp(0O') = n—ag=2j

mf//(c) = N —0y)— 05

Oy est encore le point de multiplicité la plus grande, puisque par (3.2)), n — ; > n—2j = g, et donc comme
précédemment, 2js» = 2j¢. De plus, C' ¢ Byr, puisque n — ag — a; = 2j5 — a; < 2j5 — jg < js. Donc
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hf” = hf/.
D’autre part, soit O” = O; € By, puisque la droite Ly ; est contractée sur C, il faut vérifier deux choses afin
d’éviter que d’autres points-bases ne soient infiniment proches a la suite de cette transformation :
— Que O” ne peut pas étre sur la droite Lo ;
— Que, si O” est infiniment proche de O’, O” ne soit pas sur la droite Lo ; dans la variété S de la
résolution de po donnée par le théoréme de Zariski (i.e. que O” ne soit pas l'intersection de du diviseur

(r2) _ 75 '(Lo,;\{Op,0’}) dans S) :

exceptionnel Eo associé a O’ et de Lo ;

S
v\
P2777@77>P2

Le théoréme de Bézout empéche ces deux cas d’arriver, puisque dans les deux cas, le produit d’intersection
de la droite Lo ; et d’'un membre général C’ du systeéme linéaire de f’ donnerait :

n = LO.,j . C/ = g -|—Oéi -|—Oéj + me/(p)
P
Donc 25 > a; + ¢, et par (3.2)), on obtiendrait 2j > j + j.
Ainsi, ces situations particuliéres ne peuvent pas arriver, et donc les points-bases qui ne sont pas concernés
par po restent inchangés pendant que O’ et O” sont séparés par p. comme le montre le diagramme suivant :

En itérant cette seconde étape pour tous les points-base de multiplicité supérieure & j qui sont infiniment
proches, on peut les séparer un par un, et puisque C est en position générale, les autres points-base ne
changent pas.

Finalement, la transformation obtenue a tous ses points-base de multiplicité supérieure & j dans P2. O

Lemme 3.4
Soit f une transformation birationnelle de P? de degré n > 2 telle que tous les points de By sont dans P2.
On note h = hy et j = jy, et on reprend les notations précédentes pour les points-base de f.
Alors, il existe une involution quadratique standard p de P? telle que f' = f o p~' vérifie la disjonction
suivante :

1. Si Oy est encore le point-base de f' de plus grande multiplicité, alors tous les points de By sont dans
Pz, 2jp =2j et hy =h—2.
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2. Sinon, jy < j.

Démonstration. Soient O;,0; € By. Alors, Op, O;,0; ne sont pas alignés dans P? :
En effet si ce n’était pas le cas, on aurait par le théoréme de Bézout appliqué a la droite OyO; et a une courbe
C du systeme linéaire de f :

n:ao+ai+aj+2mc(p)2040—|—0¢i—|—04j
p

Et donc 2j > a; + o5 > j + j = 27, ce qui est absurde.

On peut donc considérer I'involution quadratique standard g de P? de points-base Oy, O;, O;, et la trans-
formation f/ = f o ¢~ !. Le théoréme fournit le degré et les nouvelles multiplicités aux points concernés :

deg(f') = 2n—ap—a;—aj=n+2j—a;—a; <n
my(Og) = n—oa; —a

mp(0;) = j—oy

my(0;) = j—a

la multiplicité des autres points-base restant inchangée. On a alors la disjonction suivante :
— Si Oy est le point-base de plus grande multiplicité de f’, alors la complexité de f’ est donnée par :

2jpr = deg(f') —myg(Oo) = (2n —ap — a; — aj) — (n — @ — @) =n — apg = 2j

Donc f a encore 2j pour complexité, et donc O; et O; ne sont plus des points de multiplicité supérieure
a jp = j. On en déduit que By a deux points en moins par rapport a f.
— Sinon, alors soit O; le point-base de multiplicité la plus grande, on a alors ms(O;) > my (Oyp), et
donc :
2jy = deg(f') —my (Or) < deg(f') —my(Oo) = 2j

La complexité de f’ est donc inférieure a celle de f.

On peut alors combiner la proposition 3.3 et le lemme [3.4] :

Proposition 3.5
Soit f une transformation birationnelle de P? de degré n > 2. On note h = hy et j = jy, et on reprend pour
les points-base de f les notations précédentes.
Alors, il existe une composée g d’involutions quadratiques standardes de P? telles que la transformation
f'' = fog~! vérifie la disjonction :
1. Si Oq est encore le point-base de f" de plus grande multiplicité, alors jy = j et hy = h — 2.
2. Sinon, 25 < 2j.

Démonstration. On applique tout d’abord la proposition a f : il existe une composée de transformations
quadratique q; telle que f1 = foqq ! possede encore Oy comme point-base de plus grande multiplicité, et
vérifie 255, = 2j et hy = h +2.
On applique alors une premieére fois le lemme a f1 : on obtient la transformation fo = fioqy 1 On a alors
la disjonction du lemme :
— Dans le deuxiéme cas du lemme [3:4] fo a une complexité inférieure a 2j, et donc la transformation
fo = fo(qoq)"! vérifie le deuxiéme cas de la proposition.
— Dans le premier cas du lemme 2jf, = 2j et hy, = hy, —2 = h, tous les points de By, étant dans
P2. On applique alors & nouveau le lemme a fa, et la transformation obtenue f3 = fy0¢3 1=
fol(gsoqoqy)~" vérifie bien la proposition.

O

On peut mainteant rassembler ces résultats pour obtenir la démonstration du théoréme [0.1] :
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Démonstration du théoréme de Noether-Castelnuovo. On va procéder par double récurrence, sur la com-
plexité et sur le nombre de points-base de multiplicité supérieure a cette complexité pour démontrer le
théoreme.

On pose '’hypothese de récurrence :

Hy; p, = "Toute transformation birationnelle du plan projectif vérifiant 255 = 2j et hy = h se décompose
en une composée de transformée quadratiques et d’automorphismes'".

— Initialisation en j : Montrons que pour tout A > 2, on a bien Hy ) (i.e. que les transformations de
De Jonquiéres, vues dans 'exemple [4] se décomposent en transformations quadratiques. On effectue
pour cela une récurrence sur h :

— Initialisation en h : 1l s’agit de montrer vérifier H; 5. Soit f une transformation de De Jonquieres
avec hy = 2. Comme une telle transformation a 2(deg(f) — 1) points-base simples, on en déduit
que deg(f) = 2, et donc f est une transformation quadratique.

— Hérédité en h : Soit h > 2. On suppose H; ,_1 et on veut montrer Hy ;. Soit f une transformation
de De Jonquieres avec h points-base simples. On applique la proposition a f et on obtient une
transformation f' = f o ¢g~' qui est encore de De Jonquiéres, et a h — 2 points-base simples. Par
Ihypothése Hi 1, f se décompose alors en une composée de transformations quadratiques, et
donc f également.

— Hérédité en j : Soit 2j < 1 fixé. On suppose qu’on a pour tout h > 2, Hy(;_1),. Montrons qu’on a
encore pour tout h > 2, Hy; . Pour cela, on démontre encore la récurrence en h :

— Initialisation en h : Montrons qu’on a bien Hy; .
Soit f une transformation birationnelle de P? de complexité 2; telle que hy = 2. On reprend pour
les points-base de f les notations précédentes.
En appliquant la proposition a f, on obtient une transformation f' = f o ¢g~! qui a une com-
plexité inférieure a 2j, puisque h < 3.|I| Par I'hypothese Hy(;_1) 5, pour h' assez grand, f’ est bien
une composée de transformation quadratiques, et donc f également puisque f = f' o g~ *.

— Hérédité en h : Soit h > 2. On suppose Haj 1. Montrons alors Haj j,.
Soit f une transformation birationnelle de P? de complexité 2; telle que hy = h. On reprend pour
les points-base de f les notations précédentes.
On applique encore la proposition a f et on obtient la transformation f’ = f o g~! vérifiant la
disjonction de la proposition :
1. Soit f” ala méme complexité que f et hyr = h—2. Par I'hypothese Haj j—1, f est une composée
de transformations quadratiques, et donc f = f' o g~! I'est également.

2. Soit 2j; < 2§, et donc par 'hypothese Ha(;_1),5 pour h’ assez grand, f’ est une composée de
transformations quadratiques et c’est encore le cas pour f.

Finalement, on a montré que pour tout h > 2, Hy; 1, ce qui démontre ’hérédité en j.
Ainsi, on a démontré la double récurrence, et donc toute transformation birationnelle se décompose en
transformations quadratiques. O

Remarque
On a en fait montré un résultat un peu plus fort que celui donné par le théorémel[0.1} puisque l'on utilise ici que
des involutions quadratiques standardesﬂ ayant tous leur points-base dans P2, qui sont égales & l'involution

1. En effet, sinon cette transformation vérifierait hy = 1, ce qui contredit le lemmep
2. Dans l'initialisation de h, si jamais la transformation quadratique obtenue a la fin n’est pas une involution quadratique
standard, on peut encore la décomposer, comme on le fera au chapitre suivant.
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standard & automorphisme pres par le lemme [2.5] :
[:y:z] --» [yz : xz : ay]

Le résultat que l'on a finalement montré est que I'involution standard et les automorphismes engendrent les
transformations birationnelles de P2.
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Chapitre 4

Applications du théoreme de
Noether-Castelnuovo

Le caractere algorithmique de la preuve de J.W. Alexander permet de décomposer facilement une trans-
formations de P? en connaissant ses points-base avec multiplicité.
Dans ce chapitre, on applique 'algorithme & certaines transformations, d’abord de maniére calculatoire, puis
en décrivant ces transformations uniquement avec leurs points-base et multiplicités, les calculs devenant ra-
pidement compliqués.

On appliquera donc d’abord ’algorithme de maniére numérique pour les transformations quadratiques,
puis de maniére abstraite pour les transformations de degrés 3 et 5.
Enfin, on parlera du test de Hudson, qui permet de connaitre exactement, étant donné un entier positif,
le nombre de points-base avec multiplicité possible pour une transformation birationnelle de ce degré. On
utilisera ce test dans I'implémentation informatique de I'algorithme de J.W. Alexander, donnée en annexe.

4.1 Transformations quadratiques

On a étudié précédemment les transformations quadratiques ayant tous leurs points-base dans P?, mais
ces derniers peuvent également étre infiniment proches comme on I’a vu dans l'algorithme, et accessibles
seulement par éclatement d’un autre point-base.

Les équations de condition appliquée a une transformation quadratique permet de dire que toute trans-
formation quadratique a exactement trois points-base simples[ﬂ Il s’agit donc de voir ou se trouvent ces
points-base :

4.1.1 Deux points-base dans P? et un point-base infiniment proche

On cherche une transformation ayant pour points-base [1: 0 : 0] et [0 : 1 : 0] dans P? et contractant la
droite passant par ces deux points. Considérons la transformation :

fileiy:z]--» [zz:y(z —2): 2(2 — 2)]

Cette transformation a bien pour points-base [1 : 0 : 0],[0 : 1 : 0] dans P2. On considere 1’éclatement de P2
en[0:1:0]:m: Bl[oﬂzo]IPQ — P? avec

Blig.1.oP? = {([z:y: 2], [u:v]) € P*> x P! | zu = zv}

Le diviseur exceptionnel est 771([0:1:0]) = {([0: 1:0],[u:v]) € P? x P1}.
fom est alors définie sur le diviseur exceptionnel, excepté sur un point : on regarde 'ouvert {u # 0} = {([zv :

1.4—-1= Zk o2, avec a; > 1, d’out le résultat.

1=1 7
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y:2],[1:v]) € P2 x P'}. Sur cet ouvert, on a :

form([zv:y:z],[1:v])=f(lzv:y:2]) = [P0 2y(1 —v): 22(1 —v)] = [zv: y(1 —v) : 2(1 — )]

On observe alors que f n’est pas définie sur un point de ouvert intersecté avec la droite {z = 0}, le point
([0:1:0],[1:1]), qui est sur le diviseur exceptionnel E. C’est le troisiéme point-base de la transformation.
Cette transformation est donc bien du type voulu.

On peut maintenant appliquer 'algorithme pour décomposer f : on choisit Oy = [1:0:0],0; =[0:1:
0,02 =([0:1:0],[1:1]).
En précomposant avec la transformation quadratique standard, puisque Og, 01,05 = [0 : 0 : 1] sont en
position générale, on obtient la transformation :

hilz:y:z] - f(yz: xz:yx]) = [yPea : xz(yr —yz) s yx(yr —yz)] = [yz : 2(z — 2) : y(x — 2)]

Cette transformation a pour points-base les points Og, O1 et un point sur la droite OgOs3 dispersé par I'invo-
lution, que 'on reconnait comme étant le point [1:0: 1].
Comme les points Og, 01,03 ne sont pas colinéaires, on a décomposé f en une composée de deux transfor-
mations quadratiques & points-base dans P? : f = h o inv.

4.1.2 Trois points-base infiniment proches

On veut cette fois une transformation possédant un seul point-base dans P2. La contrainte sur les mul-
tiplicités permet de dire que ces trois points-base ne sont pas alignés, et donc il faut nécessairement deux
éclatements pour les révéler.

11 faut donc chercher une transformation ayant un point-base Oy dans P2, un point-base O; sur le diviseur
exceptionnel Ep, dans Blp,P? et un point-base Oq sur le diviseur exceptionnel Ep, dans Blo, (Blo,P?).
On consideére la transformation :

filw:y:z] - [xz:yz—2®: 2%
Elle posseéde un seul point-base dans P? : Og = [0 : 1 : 0]. On vérifie que la transformation posséde bien les
propriétés mentionnées.
En éclatant P? en ce point :

Bl[O;l:O]IP’2 ={([x:y:2],[u:v]) € PP x P! | 2u = zv}
fom est définie sur le diviseur exceptionnel Eo, sauf sur un point. Dans 'ouvert {v # 0} = {([z : y : zu], [u :
1]€P?x P}, ona:

2 22}

form([rx:y:xul,[u:1]) = f([x:y:2u]) = [2%u: zyu — 2% : 2%u?] = [vu : yu — x : 2u?]

On remarque que le point O; = ([0 : 1 : 0],[0 : 1]) est un point-base de f o m présent dans cet ouvert. On
peut le regarder dans la carte affine de Bl[oﬂzoﬂP’Q définie par {v # 0,y # 0}. Cette carte est isomorphe au

plan affine via :
([x:1:2,[u:1]) — (z,u)
([x, 1, zu], [1,v]) + (x,u)

Et donc O correspond dans cette carte au point (0,0) et la droite Vect((0,1)) correspond au diviseur ex-
ceptionnel Ep,. On définit alors la fonction f sur le plan affine via I'isomorphisme de celui-ci avec la carte
pour simplifier les calculs :

flzu) = f([z:1:zu]) = [zu:u—2: zu?]

On effecture alors 1’éclatement local de A% en (0,0) :

BZ(O,O)AQ ={((z,y),[s:1]) € A? x P! | zs = yt}
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Dans Pouvert affine {t # 0}, on a alors

fon((z,xs),[s:1]) = f(z,zs) = [2%s 1 x5 — 2 : 2%} = [zs : 5 — 1 : 2257]
On observe alors que le point ((0,0), [1 : 1]) est un point-base de f, qui est présent sur le diviseur exceptionnel
Eo,. On a donc finalement trouvé trois points-base infiniment proches pour f. Cette transformation est donc
bien du type voulu.

On peut alors appliquer I'algorithme a cette transformation :

Il faut commencer par disperser les points-bases qui sont infiniment proches du premier point Ogy. Comme
dans la preuve vue avant, on prend deux autres points A et B tels que Oy, A, B soient en position générale,
disons A=1[0:0:1] et B =[1:0:1], de sorte que O7 ne soit pas envoyé sur A ou B, mais bien entre les
deux. Cette involution est donnée par :

go:lriy:z]-—»x:y:z+a]lofyz:axzaylolx:y:z—a]=[y(z —x):x(z —x): yz2]

On peut alors calculer la nouvelle transformation, qui devrait avoir quatre points-base dans P? :

f'=Ffogo=luziyz—a®: o ly(z —a) s w(z — 2) : y2]

= [y°2(z — @) rayz(z — 2) —y? (2 — 2)" 1 y?27]
=[yz(z—2):z2(z — ) —y(z — )% : y2?

Cette transformation est bien de degré 3 et a quatre points-base dans P2 : [0:1:0],[0:0: 1],[1:0: 1]
et [1:0:0]. Les trois points [0: 0:1],[1:0: 1] et [1:0: 0] sont des points-base simples et Oy = [0: 1 : 0]
est un point-base double, puisque si L est une droite générale de P? correspondant aux coefficients [a : b : ¢],
le tiré-en-arriere de L est donné par la cubique ayz(z — z) + b(zz(z — z) — y(2 — x)?) + cyz? = 0, qui a bien
les multiplicités voulues aux points-base de f.
De plus le dernier point correspond au point qui était sur le diviseur exceptionnel associé a Og, puisqu’il
n’était pas présent dans les points-base de g (corollaire . Le dernier point-base est donc sur ce point,
comme on ’a vu au paragraphe précédent.

On va donc & nouveau composer avec une involution quadratique standard de points-base [0 : 1 : 0],[1 :
0 : 0] et un point en position générale, disons [1 : 2 : 3]. Une telle involution est donnée par la composition
[x+2z:y+2z:32]ofyz:xz:xylo[3z — z: 3y — 2z : 2], clest & dire :

gr:xiy:z] -+ [xBy—22): 2y — 2)(3x — 2) : (Bx — 2)(3y — 22)]
On calcule alors la nouvelle transformation :

fr=fog = lya(z —2) s wa(z — 2) —y(z — 2)? 1 y2®| o [w(3y — 22) : (2y — 2) (3w — 2) : (3x — 2) 3y — 22)]
=2y — 2)(3z — 2)(2x — 2) : 2(3y — 22)(2x — 2) — (2y — 2)(2z — 2)? : (2y — 2)(3z — 2)?]

C’est une transformation de degré 3, ayant pour points-base :

— [0:1:0],[1:0:0] comme points-base de g1 ([1: 2 : 3] étant directement dispersé).

— [1: 3 : 3] comme nouveau point-base correspondant & celui qui était sur le diviseur exceptionnel associé

afl:0:0.p

— q1([0:0:1])=[0:1:2]et g1 ([1:0:1]) =[1:1:2]

Le point [0 : 1 : 0] est de multiplicité 2 et les autres sont de multiplicité 1. Comme c’est le seul type
homaloidal pour une transformation de degré 3, tous les points-base sont bien dans P2.
On traite, dans la section suivante, de la décomposition des transformations birationnelles de degré 3.

Remarque
Ici on aurait aussi pu décomposer, a partir du deuxiéme stade, avec l'involution standard, et on se serait
retrouvé dans le cas d’une transformation quadratique avec deux points-base dans P2, que 'on a vu a la
section précédente.

2. Pour le trouver, on le cherche sur la droite z = 3z passant par [0:1:0] et [1:2: 3], et donc de la forme [z : y : 3z]. On
remplace alors dans 1’équation de f”’.
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4.2 Transformation de degré 3

Soit f une transformation de degré 3. On regarde quelles sont les possibilités de points-base pour f :

— La premieére équation de condition fournit que la somme des carrés des multiplicités vaut 8.

— La second fournit que la somme des multiplicités vaut 6.
La seule possibilité est donc un point-base de multiplicité 2 et quatre points-base simples.
On suppose dans un premier temps qu’ils sont tous dans P? et on les note Oy, ..., Os, classés par multiplicité
décroissante.
Cette transformation a pour complexité 2j; = 2. En appliquant ’algorithme, on peut alors regarger 'invo-
lution quadratique standard g de points-base Oy, O4, O5. Les multplicités obtenues aprés composition pour
h = f ¢) g_l :

— mp(Opg)=3-1-1=1

— mp(04) =3-2-1=0

— mp(05)=3-2-1=0
Les autres multiplicités restant les mémes.
On observe que la nouvelle transformation h a trois points-base de multiplicité 1 dans P2. C’est donc une
transformation quadratique de la forme voulue.
Finalement, on a décomposé cette transformation de degré 3 en une composée de deux transformations qua-
dratiques.

On peut maintenant regarder ce qu’il se passe lorsqu'un point-base est infiniment proche d’un autre.
Imaginons par exemple que le point-base O5 est infiniment proche du point-base Oy.
Comme dans I’algorithme, on considére deux points Og et O de P? tels que Og, Og, O7 soient en position
générale.
On effectue I'involution quadratique standard g; de points-base Oy, Og, O7 et on note f; = f o g~
Avec les formules, f; est de degré 4 et a pour nouvelle multiplicité en Og, Og, O7 :

—mp (OO) =3

- mf1(06)=3—2:1

— mp(07)=3-2=1
On a a nouveau une complexité 257, = 2, et deux nouveaux points-base simples. On poursuit alors ’algorithme
jusqu’a décomposer la transformation :
On précompose f1 avec l'involution quadratique standard g, de points-base Og, Og, O7, et les nouvelles
multiplicités de fo = f1 095 ' est une transformation de degré 3 ayant pour nouvelles multiplicités aux points
O(), 067 07 :

— mp(O0g)=4—-1-1=2

— ms(0s) =4—-3-1=0

— myg,(07)=4-3-1=0
On a donc deux points-base en moins, et on obtient donc que f5 est une transformation de degré 3 ayant tous
ses points-base dans P2. On peut donc appliquer la décomposition ci-dessus pour avoir que fo se décompose en
une composée de deux transformations quadratiques ayant leurs points-base dans P? : f = gs0g¢4. Finalement,
on a décomposé f en une composée de quatre transformations quadratiques ayant leurs points-base dans P2.

4.3 Transformation de degré 5

On consideére une transformation f de degré 5 ayant tous ses points-base dans P?. Appliquons I’algorithme
pour la décomposer en transformations quadratiques.
Déterminons d’abord les multiplicités possibles pour f :

— La premiére équation de condition fournit que la somme des carrés des multiplicités vaut 24.

— La second fournit que la somme des multiplicités vaut 12.
On a donc les possibilités suivantes :

1. Un point-base de multiplicité 4 et huit points-base simples.
2. Deux points-base de multiplicité 3 et six points-base simples.

3. Un point-base de multiplicité 3, trois points-base de multiplicité 2 et trois points-base simples

30



4. Six points-base de multiplicité 2.

Décomposons la derniére transformation.
Tout d’abord, sa complexité est 2j; = 3. On note g; 'involution quadratique standard de points-base
00,01,02, et f1 = fogy 1 est une transformation de degré 4 ayant et ayant 1 pour nouvelles multi-
plicité aux points-base Ogy, O1,02. O n’est plus le point-base de plus grande multiplicité et la complexité a
donc baissé :
2jp =2

On applique alors I'involution quadratique standard go de points-base O3, Oy, O5. On obtient une transfor-
mation fy = f1 09, 1 de degré 2, ayant 0 pour nouvelle multiplicité en ces points, qui ne sont donc plus des
points-base de fs.

f2 est une transformation quadratique ayant ses points-base Oy, O1, Oy dans P? avec multiplicité 1.

On a donc décomposé f en une composée de trois transformations quadratiques ayant leur points-base dans
P2,

4.4 Test de Hudson

Comme le montrent les exemples précédents, pour désigner et manipuler une transformation rationnelle

de grand degré, il peut-étre préférable de la désigner par ses points-base et leur multiplicité, ainsi que par les
courbes qu’elle contracte, ce qui les caractérisent a automorphisme pres.
Dans le cadre de l'algorithme de J.W. Alexander, les points-base d’une transformation birationnelle et leur
muliplicité forment des éléments intéressants pour classifier les transformation birationnelles du plan projec-
tif en familles qui auront presque la méme décomposition par 1'algorithme puisque les multiplicités sont des
quantités numériques, qui peuvent étre calculées par les équations de condition.

On peut alors considérer le probleme inverse : étant donnée un degré et une liste de multiplicités calculée
avec les équations de condition, ces quantités définissent-elles une famille de transformations birationnelles,
et comment le savoir ?

L’algorithme de J.W Alexander fournit une réponse a cette question : il suffit de supposer qu’il existe
une transformation birationnelle du plan projectif qui a le degré voulu et le nombre de points-base avec
multiplicité voulu, et si on arrive & la décomposer via I’algorithme, alors c’est qu’elle existait bien au départ
(il suffit de recomposer les transformations quadratiques — dont on sait bien qu’elles existent — pour I'obtenir).

Le test de Hudson, bien que sa preuve soit plus compliquée que cela, introduit un moyen de vérification
proche de cette intuition. C’est un test purement numérique que I'on peut donc facilement implémenter en
programmation. On peut trouver une démonstration de la proposition qui énonce 'exactitude du test
dans l'article de Jérémy Blanc et Alberto Calabri [2].

Définition 4.1 (Type homaloidal)
On appelle type homaloidal un couple (d, (mq,...,ms)) € N x ZF1 avec mg > --- > m;, vérifiant les
équations de condition :

k
Z m; = 3(d — 1)
i=0
k
Z m?=d*—1
i=0
Un type homaloidal (d, (my, ..., my)) est dit propre s’il existe une transformation birationnelle de P? de
degré d et ayant k+ 1 points-base de multiplicités respectives my, ..., my. Il est dit impropre si ce n’est pas

le cas.

Le probleme consiste donc a trouver une méthode permettant de dire si un type homaloidal est propre
ou impropre. Le test de Hudson permet de simplifier les types homaloidaux jusqu’a obtenir un type connu.
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L’intuition de ce test est justement celle rencontrée lors que la preuve de I'algorithme de J.W. Alexander :
si on a une transformation birationnelle (ayant tous ses points-base dans P?), on peut la composer avec
des involutions quadratiques standardes jusqu’a diminuer la complexité suffisamment pour reconnaitre une
transformation connue, et en vertu du théoreme si cette méthode échoue c’est que la transformation
birationnelle de départ n’existait pas.

Le test de Hudson consiste justement & faire subir au type homaloidal une "involution quadratique stan-
dard" purement numérique, en modifiant le degré et les multiplicités du type homaloidal, jusqu’a obtenir un
automorphisme :

1. Etant donné un type homaloidal (d, (mq,...,mz)), on vérifie qu’il ne contient pas de multiplicité
négative. Si c’est le cas, le test échoue. Si d =1 le test est véfrifié.

2. On pose € = mg + my + mg — d. Et on trie les valeurs de (d — €, (mg — €,m; —€,ma —€,...,mg)). On
applique encore 1’étape 1 a ce dernier type homaloidal.

On a de plus la caractérisation suivante (démontrée dans I’article [2]), qui sera utile pour I'implémentation
informatique de I’algorithme de J.W. Alexander :

Proposition 4.2
Un type homaloidal est propre si, et seulement si il vérifie le test de Hudson.
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Chapitre 5

Annexe : Implémentation de
I’algorithme

Le but de ce chapitre est de fournir une explication de 'implémentation en Python de I’algorithme de
J.W. Alexander.

On commence par introduire les convention utilisées pour les objets a manipuler (points-base et transfor-
matione birationnelles), puis on donnera une descritption des fonctions utilisées, sans entrer dans le détail
du code. Le but est de fournir une documentation pour expliquer comment manipuler ’algorithme.

En premier lieu, on introduit les classes d’objets utilisés par I’algorithme pour coder les informations
abstraites que sont les points-base et les transformations birationnelles (vues ici comme une collection de
points-base et d’une multiplicité pour chaque point-base).

Ensuite, on donne le fonctionnement de quelques fonctions auxiliaires dont I'utilité consiste a aider a la
création de transformation birationnelles respectant les contraintes des équations de condition (théoréme
et le test de Hudson (section 4.4), et & permettre la composition d’une transformation birationnelle avec une
involution quadratique.

Enfin, on précise le fonctionnement de I'implémentation de 'algorithme de J.W. Alexander.

Il faut noter deux choses importantes quant a 'implémentation de la méthode :

— Apres avoir composé une transformation birationnelle f avec une involution quadratique g, on devrait
avoir comme point-base pour la composée les points-base de g et les images par g des points-base P
de f : g(P), en vertu du corollaire Pour des raison de lisibilité dans ’algorithme, qui peut vite
devenir compliqué, on notera ces derniers comme pour f : g(P) sera noté simplement P. Il faut garder
cela en téte lorsqu’on lit la décomposition de chaque fonction.

— Les points sont toujours supposés le plus général possible, méme lorsque ce n’est pas censé étre le
cas : par exemple lorsque 'on a un point Oy sur le diviseur associé a Op comme dans la preuve de
la proposition on compose f avec I'involution quadratique de points-base Og, A, B, avec A, B en
position générale (toutes ces opérations sont effectuées dans la fonction make_transfo_disjoint).
Le point-base O est alors transporté sur un point de la droite (AB) et les points-base O1, A, B ne
sont alors plus en position générale dans ce cas précis, précisément parce qu’il est sur un diviseur
exceptionnel au départ.

Cependant comme tous ces points-base sont dans P2, ’algorithme considérera qu’ils sont en position
générale, et on ne pourra donc pas recomposer par la transformation quadratique pour retrouver des
points-base infiniment proches.

La décomposition fonctionne donc bien dans ce cas précis, mais on ne peut pas recomposer en arriére.[ﬂ

5.1 Classes d’objets : points-base et transformation birationnelle

On commence par définir deux nouvelles classes d’objets : la classe point et la classe transfo_plane

1. Je prévois de corriger ce phénomene en essayant d’introduire une notion d’alignement dans la classe point.
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Classe point

Cette classe possede 3 attributs et 2 méthodes. Elle a pour but de représenter les points abstraits que ’on
trouve dans ’algorithme de J.W. Alexander : en effet, comme il est possible qu'une transformation biration-
nelle aie des points-base qui ne soit pas dans P? directement, il faut définir une classe qui contienne & la fois
les points dans P? et dans I’éclatement sans différencier leur nature.

Pour cela on ajoute aux caractéristiques d’un point B la possibilité d’avoir un autre point A comme "parent”,
dans le cas ou B est sur le diviseur exceptionnel associé a A.

Liste des attributs de la classe point :

— name (string) : le nom qui sera utilisé pour le point.

— parent (point ou None) : dans le cas ou le point est situé sur le diviseur exceptionnel d’un autre
point, on le stocke ici.

— descr (string) : Une bréve description du point (son nom et ot il se trouve).

Liste des méthodes de la classe point :
— change_name ayant pour argument :
— name (string)
Remplace le nom du point par name.
— parentize ayant pour argument :
— P (point/None)
Remplace le parent du point par le point P.

Pour déclarer un nouveau point, on écrit point (name, parent) (ou éventuellement point (name) s’il est
dans P?) avec :

— name (string) : le nom du nouveau point.

— parent (point/None) : le parent du nouveau point.

Remarque
Lorsque I'on affiche un point avec print, la console affichera la description descr du point. En revanche, si
I’on affiche un point indirectement, par exemple dans une liste ou dans un tuple, la console affichera seulement
le nom du point. Par exemple :
>>> A = point ("A")
>>> B = point ("B",A)
>>> print (A)
A in P72
>>> print (B)
B in E_{A}
>>> print ((A,B))
(A, B)
Le diviseur exceptionnel associé & un point A sera toujours noté E4 dans cet algorithme.

Classe transfo_plane

Cette classe possede 6 attributs et 2 méthodes. Le but de cette classe est de coder les propriétés d’une
transformation birationnelle. Pour cela, on utilise le fait que les points-base et les multiplicités d’une transfor-
mation birationnelle identifient cette derniére a automorphisme pres. On va ainsi coder une transformation
birationnelle comme la donnée de points et de multiplicités associés a ces points, a travers la classe point
définie précédemment.

Liste des attributs de la classe transfo_plane :

— name (string) : le nom qui sera utilisé pour le la transformation birationnelle.

— degree (int) : le degré de la transformation.

— base_points (1ist depoint) : la liste des points-base de la transformation, classée par multiplicité
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décroissante.

— multiplicities (list de int) : la liste des multiplicités des points-base de la transformation,
classée par ordre décroissant.

— complexity (int) : la complexité 25 de la transformation.

— h (int) : lindice du dernier point dans la liste base_points qui soit de multiplicité strictement
supérieure a j.

— descr (string) : une bréve description de la transformation, qui fournit son degré et ses points-base
classés par ordre de multiplicité.

Liste des méthodes de la classe transfo_plane :

— change_name ayant pour argument :
— name (string)
Remplace le nom de la transformation par name.

— parentize ayant pour argument :
— i (unsigned int)
— 3 (int)
Met le i-eéme point-base de base_points sur le diviseur exceptionnel du j-éme point-base de
base_points. En particulier, on requiert que i > j puisque base_points est classée par mul-
tiplicité croissante.
On autorise le cas particulier j < 0, et la fonction replace alors le i-éme point de base_points dans
P2 (i.e. donne la valeur None & son parent).

Pour déclarer une nouvelle transformation birationnelle, on écrit transfo_plane (name, degree, 1_f, mult)
avec :

— name (string) : le nom de la nouvelle transformation.

— degree (int) : le degré de la nouvelle transformation.

— 1_f (list de point) : la liste des points-base de la transformation.

— mult (list de int) : la liste des multiplicité correspondant aux points-base de la transformation.
En particulier, on demande que 1_f et mult soient de la méme taille, et que mult soit classée par ordre
décroissant. On supposera alors que la i-eme case de mult correspondera & la multiplicité du i-eme élément
de 1_f.

Remarque
Comme précédemment, lorsque 1’on affiche une transformation avec print, la console affichera la description
descr de la transformation. En revanche, si I'on affiche cette transformation indirectement, par exemple dans
une liste ou dans un tuple, la console affichera seulement le nom name de la transformation. Par exemple :
>>> f = transfo_plane("f",2, [point ("A"),point ("B"),point ("C")1,[1,1,11])
>>> print (f)
f birationnal transformation of P"2 of degree 2 with basepoints:
A in P72 with multiplicity 1
B in P72 with multiplicity 1
C in P"2 with multiplicity 1
>>> print ([f, f.base_points[0]])
[£,A]

Remarque

Avec ce qui a été vu précédemment dans le mémoire, on sait qu’une transformation birationnelle d’un certain
degré ne peut pas avoir n’importe quel type homaloidal associé. Afin de résoudre ce probléme, on introduira
d’ici deux section une fonction permettant de calculer les types homaloidaux propres associés & un certain
degré et qui crée la transformation birationnelle pour le type choisi.

Il n’est cependant pas interdit de faire des "parentages" absurdes (par exemple de mettre les points-base
d’indice 1 et 2 sur le diviseur exceptionnel de celui d’indice 0 : on a vu qu’aucune transformation birationnelle
ne pouvait vérifier cela), mais nous laissons la cohérence du parentage a la discrétion de l'utilisateur.
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La fonction mult

En plus de ces deux classes, on introduit une fonction mult servant a calculer la multiplicité d’une trans-
formation birationnelle en un point.

Liste des entrées de la fonction mult :
— transfo (transfo_plane) : la transformation birationnelle considérée.
— p (point) : le point en lequel on veut calculer la multiplicité de transfo.

La fonction renvoit :
— transfo.multiplicities[i] sip et transfo.base_points[i] coincident.
— 0 si p ne correspond a aucun des éléments de transfo.multiplicities.

5.2 La fonction transfo_deg

L’objectif de la fonction transfo_deg est de calculer, pour un degré donné, tous les types homaloidaux
propres pour ce degré la, de les présenter a 1'utilisateur pour qu’il en choississe un, et de renvoyer ’objet
transfo_plane correspondant.

Elle permet en particulier d’étre certain de la validité de la transformation obtenue, et évite de devoir
créer les fonctions a la main.

Néanmoins, la complexité de cette fonction est élevée, et pour un degré trop grand, elle mettra beaucoup de
temps a calculer les possibilités. La seule solution est alors de créer un objet transfo_plane, correspondant
au type homaloidal voulu, a la main.

La fonction partition_sq

Cette fonction permet de réduire les possibilités de types homaloidaux a ceux vérifiant les équations de
conditions démontrées dans le théoreme qui fournissent une condition nécessaires pour étre un type
homaloidal propre. Il s’agit d’une fonction récursive.

Etant donnés deux nombres s1, so, le premier correspondant dans le théoréme a 3(deg(f)—1) et le second

a deg(f)? — 1, on veut trouver récursivement les solutions (as,. .., a,) au probléme :
n
{ S1 = 21‘:1 Q;
_ noo9
S2 = D0

Pour cela, on veut retirer peu a peu des «; potentiels & s; et a? A s, et refaire le probléme avec les
nombres obtenus jusqu’a obtenir (si, s2) = (0,0) auquel cas on retient la suite de nombres soustraits. Si on
obtient s; < 0 ou sy < 0, la suite de nombres soustraits n’est pas valide, et on ne la retient pas.

Le fonctionnement de partition_sqg est décrit par la figure 5.1

Liste des entrées de la fonction partition_sqg:

— s_1 (int) : le nombre dont on veut la partition en nombres entiers.

— s_2 (int) : le nombre dont on veut la partition en carrés d’entiers.

— m (int) : une borne supérieure pour les nombres a soustraire. Par exemple |/55.

— 1_tmp (list de int) : une liste contenant les éléments de la partition qui est en train d’étre testée.
— 1 (1ist de 1ist de int) : une liste contenant les partitions qui vérifient le probléme.
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‘ Début

On relance partition_sqg avec :

s1>0et sy >0 81%81_%
- > Pour a allant de m a 0 : Sg < S2 —a
| m=a
1 \Esl, s2) = (0,0) et les listes inchangées.
1 Sinon On ajoute lymp +a &'l
|
|
| /
|
|
T FinBoucle

Si lymyp est non vide, on supprime son dernier élément.

/ Retourner . /

‘ Fin ’

FIGURE 5.1 — Fonctionnement de partition_sgq.

La fonction transfo_deg

Pour le fonctionnement de transfo_deg, voir figure [5.2

Liste des entrées de la fonction transfo_deg :

— n (int) : le degré de la transformation voulue.

— choice_input (int) : le choix de l'utilisateur dans la liste des types homaloidaux calculés. Cette
variable est facultative et évite simplement & 1'utilisateur de choisir (elle vaut —1 par défaut, et si elle
a cette valeur, le choix se déclenchera).

On introduit également en figure I’évolution du temps de calcul de transfo_deg afin de donner a
l'utilisateur une vision de son utilisation. En effet, il devient supérieur & 1 min a partir du degré 26, et la
complexité augmente exponentiellement.

A partir d’un certain degré, il convient donc de créer les transformations 4 la main, en connaissant déja le
type homaloidal voulu, ou méme en le vérifiant par 'algorithme de J.W. Alexander : si 'algorithme termine
pour une transformation avec tous ses points-base dans P2, c’est que le type homaloidal est valable.
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Début f < transfo_plane("£f",1,[]1,1[1])

Sinon

1.1 + partition_sqg(B8(n—1),n%2—1,|/(n2-1)])

On garde dans une liste 1 toues les sous-listes
de 1_1 qui vérifient le test de Hudson

choice_input= —1

choice_input# —1

/ Entrer choice € {1, ...,len (1) } / choice < choice_input

1_f < [point ("O_i")] pour ¢ allant de 0 & 1len (1 [choice-1])-1

f < transfo_plane("f",n,1_f,1[choice-1])

/ Retourner £ /

‘ Fin ’

FIGURE 5.2 — Fonctionnement de transfo_deg.

Evolution du temps de calcul pour les degrés 1 a 25
40

354

30 A

25

204

Temps (s)

15

10

Degré

FIGURE 5.3 — Complexité de la fonction transfo_deg.
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5.3 La fonction compose_quad

On introduit une fonction permettant de composer une transformation birationnelle de degré quelconque
avec une transformation quadratique, en utilisant les résultats du chaptire 2, section 2.
Par abus de notation, et comme précisé dans l'introduction de cet annexe, afin d’éviter de complexifier les
notations, on redonnera encore le méme nom S; aux points-base de la composée foh~! qui sont de la forme
h(S;) (cf. corollaire .
Cette fonction crée une nouvelle transformation a partir des points-base des deux précédentes, en respectant
le résultat du corollaire 2.6l
Son fonctionnement est donné a la figure

Liste des entrées de la fonction compose_quad :

— f (transfo_plane) : la transformation birationnelle de degré quelonque.

— g (transfo_deg) : la transformation quadratique avec laquelle on composera f£. Elle est supposée
de degré 2 et avec tous ses points-base dans P2.

— name (string) : le nom a donner & la composée des deux transformations.

Début | Erreur
’ g.degree # 2 ‘

g.degree =2

0,0_tmp,alpha,alpha_tmp <+ []

Ajout simultané a O et alpha des éléments de f.base_points qui ne
sont pas dans g.base_points, et de leur multiplicité pour £

Ajout simultané & O_tmp et alpha_tmp des éléments de g.base_points et de
leur nouvelles multiplicités données par le théoreme

Insertion simultanée des éléments de O_tmp (resp. alpha_tmp) dans O
(resp. alpha) de sorte que alpha soit décroissante

deg <+ 2(f.degree) — Z?:o (mult (f,g.base_points[i]))

h < transfo_plane (name, deg, O, alpha)

/ Retourner h /

‘ Fin ’

FIGURE 5.4 — Fonctionnement de compose_quad.
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5.4 La fonction make_transfo_disjoint

La fonction make_transfo_disjoint prend en entrée une transformation birationnelle f et sépare
les points-base infiniment proches de f qui sont de multiplicité supérieure a jr, en suivant la preuve de la
proposition [3.3] Pour cela, 'algorithme regarde parmi les points Oq, ..., Oy lesquels sont infiniment proches
d’un autre, ou de Ogy. S’il en existe, on les sépare comme dans la preuve, en composant avec :

— Une transformation de points-base O, A, B s’il y a des points-base infiniment proches de Oy (avec

A, B en position générale par rapport a tous les points-base).
— Des transformations de points-base Og, O;, C si le point-base O; est infiniment proche d’un autre O,
(avec C en position générale par rapport a tous les autres points-base).
Au bout d’un certain nombre de compositions, la transformation f a la propriété voulue, et on la renvoie
ainsi qu’une liste 1ist_comp des transformations quadratiques appliquées (celles mentionnées ci-dessus), et
un compteur count qui indique le nombre de fois ot la fonction a été lancée (et qui sert uniquement pour
numeéroter les points généraux introduits, afin de ne pas les confondre entre eux d’une itération sur l'autre).
Pour le fonctionnement de make_transfo_disjoint, voir la figure 5.6

Liste des entrées de la fonction make_transfo_disjoint :

— f_input (transfo_plane) : la transformation birationnelle de degré quelonque & traiter.

— count (int) : un compteur du nombre de fois ol on a lancé la fonction en séparant effectivement des
points-base (reste constant s’ils sont déja séparés).

— 1 (list de transfo_plane) : liste contenant les transformations quadratiques déja effectuées pour
simplifier la transformation. Par défaut, elle est vide.

5.5 La fonction decomp_transfo

Cette fonction effectue I'algorithme de J.W. Alexander en combinant les fonctions vues jusqu’a mainte-
nant. Elle se décline en deux fonctions :
— La fonction decomp_transfo_rec, qui est une fonction récursive et qui applique purement 1’algo-
rithme.
— La fonction decomp_transfo, qui applique la fonction précédente et met en forme les résultats
obtenus.

La fonction decomp_transfo_rec

Comme mentionné ci-dessus, cette fonction applique 'algorithme a la transformation :
— On sépare d’abord les points-base de £_input. Et on regarde ensuite le degré de f£. Si elle est de
degré 2 ou 1, on a fini.
— Sinon, on précompose f avec I'involution quadratique de points-base Ogy, 01,02 et on recommence
avec la composée.
On garde en mémoire dans une liste les transformations quadratiques par lesquelles on a déja composé, de
sorte qu’a la fin, on obtient : (£, count,l) pu f est la derniére transformation (quadratique) avant la
sortie de l'algorithme, et 1 est la liste des transformations quadratiques effectuées depuis le début. Pour
obtenir toutes ces transformations dans le bon ordre, il faudra donc ajouter f a la liste et inverser cette
derniere, ce qui sera le rdle de la fonction decomp_transfo.

Liste des entrées de la fonction decomp_transfo_rec :

— f (transfo_plane) : la transformation birationnelle de degré quelonque & décomposer.

— count (int) : un compteur pour la fonction make_transfo_disjoint. Par défaut, il vaut O.

— 1 (list de transfo_plane) : liste contenant les transformations quadratiques déja effectuées pour
simplifier la transformation. Par défaut elle est vide.

Pour le fonctionnement de decomp_transfo_rec, voir figure[5.5]
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| m e e e e o >{ Début

Sinon

(f,count,l) < make_transfo_disjoint (f_input,count, l_input)

f.degree > 2

On ajoute & 1, gien (1), de points-base :
f.base_points[0], f.base_points[l],f.base_points[2]

f < compose_quad (£, gien(1)s "f1eny ")

bm e m i m o m o —— - (f,count,l) < decomp_transfo_rec (f,count,l)

/ Retourner (£, count,1). //

Fin

FIGURE 5.5 — Fonctionnement de decomp_transfo_rec.

La fonction decomp_transfo

La fonction decomp_transfo reprend la fonction récursive précédente, réorganise la liste des transfor-
mations quadratiques effectuées, et renvoie cette liste. C’est cette fonction qu’il faut utiliser pour décomposer
une transformation birationnelle en transformations quadratiques.

Liste des entrées de la fonction decomp_transfo :
— f_input (transfo_plane) : la transformation birationnelle de degré quelonque a décomposer.

Fonctionnement de decomp_transfo :

La fonction effectue 'opération (£, count,l) < decomp_transfo_rec (f). Elle ajoute ensuite f a
la fin de 1 et renvoie la liste dans I'ordre inverse. La liste correspond & la décomposition quadratique de f.
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——————————— » Tant qu’il reste des points avec parent #* None :

Début ’

Test : on regarde dans f.base_points : Non
s’il y a des points avec parent # None.

Retourner
(£, count, list_comp)

/

Oui

s’'il y a des points avec parent = f.base_points[0].

Test : on regarde dans f.base_points : Non

lOui

On ajoute & 1ist_comp,

de points—base : Acount s Beount s £+ base_points [0]
avec (Acount 7 Beount généraux).

Jlen (list_comp) »

|

On déparente les points tels que parent = f.base_points[0].

f < Compose_quad (fl glen(list_comp) 14 "flen(list_comp) ">

J < premier

indice trouvé.

|

avec (Coount général).

On ajoute & 1ist_comp, Jien(1ist_comp)s
de points-base : Coount, £.base_points[j], f.base_points[0]

|

On déparente le point

f.base_points[j].

f < compose_quad (£, gieni

" X 1] )
st_comp) 7 count, len(list_comp)

,,,,,,,,,,,,,,,,,,,,,,,, Fin Boucle

Retourner /
(f,count+1, list_comp) /

{ Fin

FIGURE 5.6 — Fonctionnement de make_transfo_disjoint.
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5.6 Exemples et applications

Parmi les fonctions introduites plus tot, on peut faire une distinction entre les fonctions techniques, qui ne
servent que pour définir les fonctions utiles; parmi toutes les fonctions introduites, I'utilisateur aura surtout
a utiliser :

— La fonction transfo_deg, pour créer une nouvelle transformation de degré arbitraire sans connaitre

les types homaloidaux valides pour ce degré.

— La fonction compose_quad pour composer une transformation avec une transformation quadratique.

— La fonction decom_transfo pour avoir la décomposition en involutions quadratiques d’une trans-

formation quadratique.
Ainsi que les initialisations des classes point et transfo_plane lorsqu’il souhaite manipuler directement
ce type d’objet.

Voici un exemple d’utilisation de ces trois fonctions, qui reprend la décomposition des transformations de
degré 5 que l'on a effectué & la main dans la section [4.3]:

1. On crée une transformation quadratique de degré 5 ayant 6 points-base de multiplicité 2.
On décompose cette transformation en involutions quadratiques.

On affiche un & un les éléments de la liste obtenue.

L

On recompose un a un les éléments de la liste, et on affiche la composition obtenue.

>>> f=transfo_deg(5)

i-114, 1, 1, 1, 1, 1, 1, 1, 1]

2 - 103, 2, 2, 2, 1, 1, 1]

3 -12, 2, 2, 2, 2, 2]

Choose a decomposition of multiplicities among those calculated above (type : int

between 1 and 3): 3

>>> l=decomp_transfo (f)
>>> for i1 in range(len(l)):
print (1[1])

print ("-———————- ")

2 birational transformation of P"2 of degree 2 with basepoints:
0 in P72 with multiplicity 1,
1 in P72 with multiplicity 1,
2 in P72 with multiplicity 1.

g_1l birational transformation of P"2 of degree 2 with basepoints:
O0_3 in P"2 with multiplicity 1,
O0_4 in P"2 with multiplicity 1,
O_5 in P72 with multiplicity 1.
g_0 birational transformation of P"2 of degree 2 with basepoints:
O0_0 in P"2 with multiplicity 1,
O_1 in P"2 with multiplicity 1,
O_2 in P"2 with multiplicity 1.

>>> g=1[0]
>>> for i1 in range(l,len(l)):
g=compose_quad (g, 1[i],"g")

>>> print (qg)
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g birational transformation of P"2 of degree 5 with basepoints:
O0_3 in P"2 with multiplicity 2,
O_4 in P"2 with multiplicity 2,
O0_5 in P72 with multiplicity 2,
O0_0 in P"2 with multiplicity 2,
O0_1 in P"2 with multiplicity 2,
O_2 in P"2 with multiplicity 2.

On effectue un autre exemple avec une transformation birationnelle qui possede des points-base infiniment
proches. Comme mentionné dans 'introduction de ce chapitre, on ne peut pas recomposer les transformations

une fois la décomposition effectuée.

1. On crée une transformation birationnelle f de degré 6 avec 2 points-base de multiplicité 3, 4 points-base

de multiplicité 2, et un point-base de multiplicité 1.

2. On place O; sur le diviseur exceptionnel Ep, associé a Oy, et on place O3 sur Ep, avec la fonction

parentize.

3. On décompose f et on affiche la décomposition.

>>> f=transfo_deg(6)

1-15 1, 1, 1,1, 1, 1, 1, 1, 1, 1]
2 - [41 2/ 2/ 2! 21 1/ 1/ l]

3 -3, 3,3, 2,1, 1, 1, 1]

4 - [3, 3, 2, 2, 2, 2, 1]

Choose a decomposition of multiplicities among those calculated above (type
between 1 and 4): 4

>>> f.parentize(1,0)

>>> f.parentize(3,1)

>>> print (f)

f birational transformation of P"2 of degree 6 with basepoints:
0 in P72 with multiplicity 3,

1 in E_O_0 with multiplicity 3,

2 in P72 with multiplicity 2,

3 in E_O_1 with multiplicity 2,

4 in P"2 with multiplicity 2,

5 in P72 with multiplicity 2,

6 in P"2 with multiplicity 2.

>>> l=decomp_transfo (f)

>>> for i1 in range(len(l)):

print (1[1i])

print ("-—————————= ")

f_5 birational transformation of P2 of degree 2 with basepoints:
O_6 in P"2 with multiplicity 1,

O_1 in P"2 with multiplicity 1,

O_0 in P"2 with multiplicity 1.

g_4 birational transformation of P"2 of degree 2 with basepoints:
O0_3 in P"2 with multiplicity 1,

O0_4 in P"2 with multiplicity 1,

O_5 in P72 with multiplicity 1.

g_3 birational transformation of P"2 of degree 2 with basepoints:
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O_1 in P"2 with multiplicity 1,

O0_0 in P"2 with multiplicity 1,

O_2 in P"2 with multiplicity 1.

g_2 birational transformation of P"2 of degree 2 with basepoints:
0_0 in P"2 with multiplicity 1,

A_0 in P72 with multiplicity 1,

B_ 0 in P"2 with multiplicity 1.

g_l birational transformation of P"2 of degree 2 with basepoints:
0_0 in P"2 with multiplicity 1,

O_1 in P"2 with multiplicity 1,

C_0,1 in P"2 with multiplicity 1.

g_0 birational transformation of P"2 of degree 2 with basepoints:
0_0 in P"2 with multiplicity 1,

A_0 in P"2 with multiplicity 1,

B_ 0 in P"2 with multiplicity 1.
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Abstract

This document consists of three chapters. The first chapter introduce basic concepts
and definitions in symplectic geometry and contact geometry. In the second
chapter we define Lagrangian cobordism between two legenedrian submanifolds of a
contact manifold, and prove that legendrian isotopy is realized by such cobordism.
We also study gf-compatible Lagrangian cobordisms and prove a gf version of such
realization. In the third chapter we give two descriptions of Lagrangian surgery, the
second of which applies to exact symplectic manifolds and exact Lagrangians and
is realized by Lagrangian cobordism from the lift of the Lagrangian submanifold

before surgery to the lifting of Lagrangian submanifold after surgery.
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Chapter 1

Symplectic and Contact Geometry

In this chapter we introduce basic concepts of symplectic and contact geometries.

1.1 Symplectic Manifolds

1.1.1 Skew Symmetric Bilinear forms

In this section we will review symplectic linear algebra

Definition 1.1.1. Let V be an m-dimensional vector space over R. A Bilinear

form 2 :V x V — R is skew symmetric if Q(z,y) = —Q(y, x) for all z,y € V.

We have standard form of such forms.

Proposition 1.1.1. Let Q) be a skew-symmetric form on V. Then there is a basis

U, Uk, €1, €n, f1,7++ , fn Such that

Qui,-) =0, Qei,e5) = Qfi, f;) =0, Qes, f3) = 0y



Proof. Let U = ker Q = {u € V|Q(u,-) = 0. Choose a basis uy,- - ,u; of U, and
let W be complementary space of U, that’s V =U & W. Let e; € W, then there
is fi such that Q(eq, fi) = 1. We let

Wi = span{ey, f1} , W= {w € W|Q(w,v) =0 for all v € W}

We have

o WiNW ={0}: Forlet v =ae; +bfi € Wy NW? then 0 = Q(v,e;) = —b
and 0 = Q(v, f1) = a. Hence v — 0.

o W =W, W For let v € W, and suppose that Q(v,e;) = c and Q(v, f1) =
d. Then
V= (—Cfl + del) + (’U + Cf1 - d€1>,

where we note that —cf; +de; € Wy and v + cf; — de; € ng

We continue the process by picking up 0 # e; € Wi, then there is f, € W} such
that Q(eq, fo) = 1. We let

Q|
Wy = span{es, fo} , W, - {fwe WHQw,b) =0 for all ve W}

Q
We get again W = W, @ W§, continuing in this way we get W, Wy _ 0 for

some n (as dim V' < oo, and hence
V=UeW & - - oW,

where W; = span{e;, f;} and all summands are orthogonal with respect to 2. [

We say 2 is non-degenerate(or symplectic) if the map Q : V — V* defined
by Q(u) = Q(u,-) is isomorphism. The kernel of this map is U constructed in
the proof above, so € is non-degenerate if and only if U = {0}. In this case we

say (V,Q) a symplectic vector space. Note that by the above proposition V is



even dimensional. A basis ey, -« ,e,, f1, -+, f, as in the proposition is called a

symplectic basis.

Corollary 1.1.2. Let V' be a vector space of dimension n, € is non-degenerate if
and only if Q™ # 0. (Here Q" =QN---Q)

The following proposition follows easily from definitions

Proposition 1.1.3. Let (V,Q) be a symplectic vector space. Let W C V be
a subspace, then dimY + dimY® = dimV, where Y¢ = {v € V|Qv,u) =
0 for allu e W}

We say W C (V,Q) an isotropic subspace if W C W, It follows from above
proposition that dim W < %dim V. If W == W% we say W is Lagrangian, it
follows in this case that dim W = dim W = %dim V.

1.1.2 Basic concepts for symplectic manifolds

We begin with the definition of symplectic manifolds.

Definition 1.1.2. Let M be a manifold. A 2-form w which is closed and w, :
T, x T,M — R is symplectic for all p is called symplectic form. The pair (M,w)
is then called symplectic manifold. If w = df, then M is called exact symplectic

manifold.

A submanifold L. C M is called lagrangian if T, L is lagrangian subspace of
T, M for each x € L, so dim L = % dim M, and immersion ¢ : L. — M is lagrangian
if di(z)(T, L) is lagrangian subspace of T,,M for each x € L or equivalently i*w = 0.

Now we give the definiton of symplectomorphisms

Definition 1.1.3. Let (M;,w;) and (Ma, ws) be 2n- dimensional symplectic manifolds
and let ¢ : M; — M, be a diffeomorphism. Then ¢ is symplectomorphism if

* —
Yrwe = wy.



We give the important examples

Example 1.1.1. 1. Let M = R?" with coordinates qi, -+ , ¢n,P1,- - , Pn. Then

the form

Wstd = Z dg; N dp;

=1

is symplectic. So (R*", wyy) is symplectic manifold.

2. (Important example) Let X be a manifold, and M = T*X be its cotangent
bundle, we have a canonical symplectic form w.,, defined on M defined as
follows: We first define canonical 1-form A.,,. Denote by 7 : M — X the
projection and let p = (z, ) € T, X, define Auan|(a,0)(v) = a(dr(z, a)(v)).
To check smoothness, we compute A, in coordinates. Let (U, qi, - ,q,)
be coordinate chart of M, and (T*U, q1,- - ,qn,p1,- - ,Pn) be the associated
coordinate chart of T*M (which means that for p = (x,a) € T*U, we have
a=>.pi(p)(dg),). It is easily seen that

>\can = szd%
=1

which is smooth. Define

Wean = — d)\can ;

this is trivially closed, and in local coordinates
Wean = Z dQZ A dpz
i

SO Wean 18 symplectic, we call it the canonical symplectic form.For future
reference, it can be checked that considering the natural identification T{, 0)T* X =
T,X @ T;X, we have

wcan‘(x,O) (Uv UJ) = wi('llo) - ’Uik(IUQ)

for v = (vo,v)), w = (wo,w1) € TpnT*X



Given a diffeomorphism f : M; — M,, we can lift it to a symplectomorphism
fu o (T*My,w1) — (T" My, ws), where wy and wy are the corresponding canonical

symplectic forms. Define

f#(xla al) = (f(]?), ((dfw)*>710‘1)7

In fact fu turns out to be exact symplectomorphism in the sense of the following

claim
Claim. f;fﬁ)\g = A1, where ); is the canonical 1-form of T M; so that w; = —dA,.

Proof. let p; = (z1, 1) € T*M; and py = (z9, ag) = f#(p1), then we have to show
that

(df#>;1 (/\2)}72 = (/\1)1)1 (1'1)

We have the following facts

o (dfy)*as = oy and x9 = f(xy) (by definition of fy)

o (A\1)p, = (dm)*oq and (A2),, = (dma)*ap where 7; is the projection T%M; —
M.

e Mo fyu=fom

The proof of [[.1] is

(dfs)p, (A2)p, = (df ), (dm2) "z = (d( [ 0 m2));,, 2
= (d(f om)), a2 = (dm1),, (df )7, o
= (dm)p, 01 = (A1),

An important class of symplectomorphisms is the class of hamiltonian differemorphisms.

To define it we have to define the Hamiltonian vector field. Fix a sympelctic

8



manifold (M,w). We say that a vector field X : M — T'M is Hamiltonian vector

field if there is a function (called Hamiltonian function) such that
txw = dH

We denote X by Xpgy. A diffeomrophism ¢ : M — M is hamiltonian if there is
isotopy
[0,1] x M — M, (t,x) — ()

such that 1), is generated by time dependent Hamitonian vector field Xy, where H;
is smooth family of Hamiltonians and ¢ = ;. We can see that ¢ is symplectomorphism,

for
d * * * *
E%W = % (EXHt) = wt (dLXHtw) + LXHw, dw = 1/)1} (ddHt) =0,

SO Yjw = Yjw = w.

1.1.3 Moser-type theorems

One of the fundamental techniques in symplectic geometry is Moser’s argument.

Given smooth family of symplectic forms w; on M, with the property

d
Ewt = dO't (12)

The goal of Moser argument is to construct smooth family of diffeomorphisms 1),
such that

The idea is to construct v, as flows of (to be determined) time dependent vector

field X;. That’s p
Ewt = Xt (@] wt (14)



If this is the case then taking the derivative of [L.3| with respect to ¢, we get
67 (G + L) = 0
t dtwt X Wt) =
By [I.7 and Cartan formula,
0 =do; + d(ex,wt) + tx, (dwt) = doy + d(ex,w)

This equation is satisfied if

O = Ltht

But by non-degeneracy of w;, we get a unique time dependent vector field X;. It

follows that 1), is determined by [I.4 Using this argument, we prove the following:

Theorem 1.1.4. [Moser isotopy theorem| Let (M*", w) be symplectic manifold,
and S C M be a submanifold (not necessarily compact). Suppose wg,w be symplectic
forms such that for allz € X, wo|, and w|, are equal. Then there exist neighborhoods

Uy, Uy of S in M and diffeomorphism 1 : Uy — Uy such that
Yls=id , P*wi =wp

Proof. We use Moser argument above. We find a neighborhood U, of S such that
there is o € Q' (Up) satisfying

0, =0 forallz € S , do=w; —w

We endow M with riemmannian metric. We know by (Tubular neighborhood
theorem) that there exists function ¢ : S — R, such that the restriction of
exp: TS+ — M to

Ue = {(z,v)|z € S,v € TS*, |v]| < e(z)}

10



is embedding, we denote the image by Uy. For 0 <t <1, define ¢, : Uy — U; by

¢r(exp(p, v)) = exp(p, tv)

Clearly ¢o(Uy) C S and ¢, is embedding whenever ¢t > 0, with ¢;|s = id. Letting
T = W1 — Wy, we get
¢o(1) =0, ¢i7 =7

Define p
Y, = (%Cbt) oy

This vector field may be singular at t = 0. However, we have
d * * * *
%@T = ¢y (Ly,7) = ¢;(d(ty,7) + 1y, d7) = d(¢; (v, 7)),

where o is smooth family of 1-forms ¢;(ty,7). Note that for v € T, U, we have

0tlo(v) = (97 (ty,T) (V) = (v, T) gy (2) (dDe (2) (V) = Ty, () (Yi(P(2)), ds () (v))

which is smooth at ¢ = 0, and it vanishes on S. Putting o = fol o dt (note that
Oy = f010t|m dt =0 for z € X, we get

1 1
T=¢1‘T—¢E§T=/ i(qﬁjr) dt:/ do, dt = do
0 dt 0

Now we start Moser argument, let w; = (1 — t)wy + tw, since wy|, = wyl|, for all
r € S, then by a compactness argument it follows that by shrinking Uy, w; is
nondegenerate on U,. By nondegenracy we find time dependent vector field X; on
Uy by

tx,w+o =0,

Because o, = 0 for all z € S, it follows that X; = 0 on S. Now we have to show
that by shrinking U if necessary, the family of maps v; defined as solution to the

initial value problem

d )
E@bt:Xto"ébta Py = id,
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is defined on Uy for all ¢ € [0, 1]. It suffices to show that for every z € S, there is
a neighborhood V, of x, such that for the integral curve 6(t) starting at y € V), is
defined for ¢ € [0, 1], where then we can replace Uy by Uy N |J,cg Ve Translating

the claim to local neighborhood we find that we need to show

Claim. Let F': [0,1] x B(0,e) — R" be continuous and lipschitz in the second
argument uniformaly with respect to the first argument. Suppose that F'(¢,0) = 0,
then there exist ¢ < € such that for any xy € B(0,6), the solution € of initial value

problem

0'(t) = F(t,6(t)) , 0(0) = xo,

is defined on [0, 1]

To prove this claim, we find an apriori estimate on the solution. Because of

lipschitz condition in the claim, there is constant C' such that
[F(t,z)| = |F(t,x) = F(t,0)] < Clz]
Suppose 6 is solution of the initial value problem in the claim, then
6°(1)] = |F'(t,6(t)] < ClO()],
hence by Gronwall inequality, we get
10(8)] < |aole” (1.5)

We let 6 = %e‘ce < €, suppose g € B(0,0). If 6 (the solution of the initial value
problem) has maximal interval [0,7), then by ODE theory |0(t)] — € as t — 7.
But from [I.5] we get

0(t)] < 5e°" < %GC”_CG < %e
which is a contradiction. So @ is defined on [0, 1] for any =, € B(0, d). This proves

the claim.
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Finally let Uy = ¥ (Up), then ¢y : Uy — Uy is the desired diffeomorphism. Note
that 1|s = id because X; =0 on S. O
We have a corollary

Corollary 1.1.5 (Darboux theorem). Every symplectic form is locally diffeomorphic

to weg on R?".

Proof. Follows from [1.1.4] and |[1.1.1| by setting L = {pt} and O

A coordinate chart (U, (q1,-*+ ,qn,P1,",0n)) of symplectic manifold (M, w) is

called Darboux coordinate chart, if
w = Z dg; N dp;
i=1
The corollary states that there is Darboux coordinates around any point of M.

Theorem 1.1.6 (Weinstein-Darboux Theorem). Let (M*", w) be symplectic manifold,
and © : L — M be Lagrangian submanifold, then there exist a neighborhood U
of the zero section Ly in T*L and neighborhood U of L and diffeomorhphism
v Uy — U such that

i:¢0i0 ) ¢*w:wcan
Proof. Since L is Lagrangian, then for x € L the map
B:T,M—T:L; u— Qu,-)

descends to map

Be: NoL=T,M/T,L — TrL; [u] = Qu,-),

13



in fact 3,’s give isomorphism B: NL — T*L. We have the following easy to prove

claim

Claim. If J is a compatible almost complex structure on (M,w), then JTL,

is Lagrangian subspace of T, M and in fact with respect to the riemannian metric
gy, the bundle JT'L is orthogonal to T'L.

Fix an almost complex structure J, by the claim we can identify JT'L with NL
by the isomorphism v — [v], so we can consider § : JI'L — T*L. Fix the
riemannian metric ¢g; and recall that there is a neighborhood V, of 0-section of
JTL and neighborhood U’ of L in M such that the map Vy, — U’ defined by
(x,v) — exp,(—wv) is difeomorphism. Composing the later map with AL, we get

a diffeomorhpism

¢: Uy = U5 (z,0) = exp(—F71a)

where U/ is a neighborhood of the zero section. We have to check that ¢*w and
Wean agree on the zero section. Indeed, for (vg,vy) € T IT"L =T, L®T;L, we

have
do(vg, vg) = vo — B_l(U;)

hence for v = (v, v§) and w = (wp, wg) lying in T(*x,o)L

¢ W0 (0, W) = Wy(dd(a,0) (v), dD(a.0) (w))
wq(d(z,0 ( ): do(z,0)(w))

o(v0 = B7H(vg), wo — 57 (wp))
wq (8™ 1( 0) vo) — w(B™ (vg), wo)
0(vo) — vg(wo)

= Wean | (¢,0) (Ua w)

Il
(S

I
E,

Now by Moser stability theorem, we can find neighborhoods Uy, U] C U], of the
zero section of 7L and diffeomorphism ¢ : Uy — U which is identity on the zero-
section and satisfies ©*(¢*w) = wean. It follows that v = po p : Uy — d(Uy) =1 U
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is the required map. O

We have the following easy corollary

Corollary 1.1.7. Let (M*",w) be a symplectic manifold and let L be a Lagrangian
submanifold of M. Then around each point of L, there is Darbouz coordinate chart

(u7QI7"' s qn, D1yt 0 7pn) SUCh th,a,t
LOU = falpi() = -+ = pala) = 0]

Proof. Pick a point o € L. By Weinstein-Darboux theorem, we can find neighborhoods
Uy, Uy of L and the zero section of T* L respectively, such that there is symplectomorphism
Y Uy — U, satistying

¢*<W) = Wean ¢Oi0 =1

Let (V,q1,q2,+* ,qn) be coordinate chart in L centered at zg, let (77 1(V), ¢ =

(@1, ,Gn, D1, ,Pn)) be the associated coorindates on 7Ly, then by composing,
¢ = @o ™t : U — R™ gives coordinate chart of M centered at xy, we abuse
notation and denote again ¢ = (q1,- -+ ,qn, P1,* " ,Pn). We get clearly,

w= qui/\dpz- , LNU={plpi(z) =+ = pp(x) =0}

]

Theorem 1.1.8. Let (M?",w) be a symplectic manifold. Let Ly, Lo be Lagrangian
submanifolds intersecting transversely at xq, then there is Darboux coordinates

(U, G1y s Guy D1y Dn) around x, such that

Lintd = {z € M|py(x) = -+ = pul2) = 0}, LonU = {y € M|gs(x) = -~ = gu(x) = 0}

Proof. (Sketch) The problem is local, so we can assume that L;, Ly are Lagrangian
submanifolds of (R?",w,,) interescting transversally at the origin. By the above

corollary, we can further assume that L; = R™ x {0}. It follows by transversality
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that near the origin, L, coincides with a graph of function f : R™ — R", that’s Lo
coincides with {(f(p),p)|p € R™} near the origin. In other words, L is defined by

equations ¢; = fi(p1,- -+ ,pn) near 0, where f; is the i-th component of f;. Because

L5 is Lagrangian, we should have
> df; Adp; =0 (1.6)

Now we set

G =¢q¢— filpi,-- ,pn) » Di =D

and restrict to a small neighborhood around zero. It follows that

n

e [, is the set of all points satisfying ¢; = --- =

® ¢, ,Gn, D1, " ,Pn are Darboux coordinates:
Wetd = Z dg; N dp;
= > d(@ + f:) A dp,
=Y dgi Adp; + dfs A dp;

= dg A dp;

where the last equality follows by equation

1.2 Contact Manifolds

Throughout M is a manifold.
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1.2.1 Basic concepts for contact manifolds

Definition 1.2.1. A k-dimensional Distribution on M is a choice of k-dimensional
linear subspace §, C T,M for each p € M. This distribution is smooth if £ :=
Up6 v §p C T'M is smooth sub-bundle. In this case we say § is a smooth distribution
on M.

We have the following "local frame" criterion of smooth distributions

Proposition 1.2.1. Let §, C T,M constitute a k-dimensional distribution on M.
Then & = UpeM & C TM is smooth distribution on M if and only if every point
p € M has a neighborhood U on which there are smooth vector fields X1, --- , Xy €
L'(U,TM) such that Xilg, - -+ , Xglq form a basis of &, for every g € U.

We also have the the following 1-form criterion of smooth distributions

Proposition 1.2.2. Let {, C T,M constitute a k-dimensional distribution on M.
Then & = UpeM & C TM is smooth distribution on M if and only if every point
p € M has a neighborhood U on which there are smooth 1—forms ot,--- o™ F
such that

& = ker oz; N---Nker ag_k (1.7)

Proof. Suppose !, - -, o™ ¥ are 1-forms satisfying equation on neighborhood
of p. We can extend them on possibly smaller neighborhood to smooth coframe
(al, -+ ,a"). Let (Ey,---, E,) be the dual frame. Then by it follows that &
is spanned by E, .1, -+, E, on neighborhood of p. It follows by that ¢ is
smooth distribution.

Conversely, suppose ¢ is smooth. Then by there is a neighborhood of any
p € M on which there are smooth vector field X, --- , X} spanning £&. On possibly
smaller neighborhood of p, these can be extended to smooth frame (X,---, X,).

Let (e',---,€") be the dual coframe, then it is easy to see

— k+1 n
§g =kere, 7 N---Nkerey
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A particular case of the above proposition is the case of codimension 1 smooth
distributions, for which at every point p € M there exist 1-form « on neighborhoood
U of p such that kerav = & on U. We say «a is local defining form of £ near p. One
observes by basic linear that if o and o' are two local defining forms of £ on U and

U’ respectively, then o/ = fa on U N U’ for some smooth non-vanishing function
f:UunU —R.

Definition 1.2.2. A contact structure on M is a smooth distribution & of codimension
1 on M such that for every p there is a local defining form « near p such that do|¢
is non-degenrate (i.e symplectic). The pair (M, ¢) is called contact manifold, and
any local defining form o with the above property is called (local) contact form.

If « is defined on all of M, we say « is a global contact form.

Remark 1.2.1. In fact it follows that any local defining form of contact structure
¢ is contact form. Indeed, let o/ be local defining form on U, pick ¢ € U and let
a be contact form on neighborhood U’ of q. Then on U N U’ we have o/ = fa.
Taking differentials,

do/ =df Na+ fda

By restricting to £ (noting that ol = 0), we get do/|¢ = fdale. Hence do/|¢ is
non-degenerate on U N U’.

Remark 1.2.2. It follows from non-degeneracy that ranké = 2n, and hence M has
odd dimension 2n + 1

From now on (M, £) is a contact manifold. We have the following obvious proposition

of symplectic linear algebra.

Proposition 1.2.3. Let V' be vector space and 2 : V xV — R be skew symmetric
bilinear map, such that Q|w«w is non-degenerate where W is subspace of V' of

codimension 1, then V =W & ker )
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Accordingly, given local contact form « on contact manifold (M, &). we get
T,M = ker o, @ ker da,,

We have the following characterization of contact structures
Proposition 1.2.4. £ is contact structure on M if and only if a A (da)™ # 0 for

any local defining 1-form.

Proof. Take a basis {e1, f1, - ,en, fn,7} of T,M such that span{e;.---, f,} =

&, = ker o, and span{r} = ker da,, then

ap N (dap>n(rvelvf17 e >€n7fn) = aP<T)(dap)n(€17f17 T 7en>fn)

Here we used the formula

wANXy, - X)) = Y WXy Xog)(Xawen) s Xogran)

(k,l) shuffles o

and the observation (doy,)"(---,7,---) = 0. As a,(r) # 0, we conclude a;, A
(dap)™ # 0 if and only if (day)(e1, fi, -+ s en, fn) # 0 if and only if (da, )", if
and only if (day)le, is non-degenerate by corollary ]

Perhaps a natural question is when we can find a global contact, we have the
following proposition.

Proposition 1.2.5. A contact manifold (M,&) has a global contact form if and
only if € is coorientable (that’s TM/E is orientable).

If a contact manifold (M, &) is given global contact form, we say (M, «) is contact

manifold. We have the following definition.

Definition /Proposition 1.2.6. Given a contact manifold (M,«), there is a
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unique vector field R, satisfying
a(Ry,) =1 (1.8)

tr,da =10 (1.9)
This vector field is called Reeb vector field determined by . The contact form is

wnwvariant under the flow of R,

Proof. kerda ~ TM/¢ is a trivial bundle line bundle, hence there is a nowhere
vanishing vector field R such that R, € ker doy,, so a( R). Tt follows that R, = 1

a(R)
satisfies [1.9) Uniqueness is clear. The last statement follows directly from
Cartan formula of lie derivatives. O

Definition 1.2.3. A submanifold L of M is called isotropic if T,L C &, for all
relL

We have dimensional constraint on L

Definition /Proposition 1.2.7. Suppose L — (M?*" 1 £) is isotropic, then dim L <
n. If dim L = n, then L is called Legendrian submanifold.

Proof. 1t L is isotropic, then «|;, = 0. This implies (da)|, = d(alp) if T, C
(&, day,) is isotropic, hence dim(7,L) < 2 dim(&,) =n O

Now we define contactomorphism of contact manifolds

Definition 1.2.4. Two contact manifolds (M;,&;) and (M, &) are said to be
contactomorphic if there is diffeomorphism f : M; — My such tha T'f (&) = &. If
& = ker oy, then this is equivalent to f*as = Ao, where A : M; — R\ {0}

Let (M, & = ker o) be a contact manifold. A contact isotopy is a smooth family
1y of contactomorphisms with ¢y = id, then ¥;a = M\;a. Because \g =1 > 0, then
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A¢. Suppose that X; is the generating time-dependent vector field. That’s
d
E% = Xi0pt

Then p
aqﬁa = }\ta = @D(,Uta),

where i, = A 0 ¢, L. Because ¢ L, o0 = Lapra, it follows that
Lx, o0 = ppo

Conversely, given X, satisfying this condition, we get

d * _ *
El/}t a = (g 0 Y)Y,

hence Y, = elorsvs dsq, - A vector field X on M is called contact vector field. The
discussion above illustrates that the lie algebra of group of contactomorphisms is

the space of contact vector fields

Proposition 1.2.8. Let (M,¢ = kera) be a contact manifold. Then there is a
one-to-one correspondance between contact vector fields and functions H : M — R

given by

e X = Hy = a(X)

o X — Xy, defined uniquely by

a(Xp) = H ; ix,da = dH(R,)a — dH

Example 1.2.1.

(1) On R*"*! with coordinates (z1,y1,"++ , Tn, Yn, 2), define oy = dz — > yida;.

Let’s compute compute a; A (day)™:

doy = Z dz; Ndy; = (don)" = nldzy Adys A -+ AN dz, A dy,
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Hence

a1 ANday =nldz Adxy ANdyy A -+ Ndx, A dy, # 0.

oy is sometimes denoted by aq. The reeb vector field is R, ,,, = %
(2) Another contact structure on R***! is defined by the form
ay =dz + Z xjdy; — y;dx;) = dz + ZTQdHJ,
j=1
where (7;,6;) is the polar coordinates in (x;,y;)—plane j = 1,--- ,n. It follows

that (R, ) is strictly contactomorphic to (R?", as,. Indeed, let

- Y —T1 —T1— U Yn — Tpn —Tn — Yn 1
f(x17y17”'axn7yn7z)_( 9 ) 9 y T 9 ) 2 7Z_§2j:xjy])

Then f is diffeomorphism and
> (5 —z)d(—w; — y;) + (w; + y;)d(y; — ;)

[roag = ijyj
J

1
=dz—3 Z(%‘d% +ysdy;) + Z vjdr; + zjdy; — y;da; — yidy; + vidy; — x5dy; + ydy; —
j j

MH

=dz — Zyjdxj =0

J

(3) Regard S?"*1 as the set of unit vectors
n+1
(@191, Tt Yo |1 = Z(%Z +yi) =1}

i

We let i : S2"F1 — R?™™ be the inclusion. Let o = 3 Y, (z:dy; — yidz;). We have
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)

k

:2”(n—1)!de1/\dyn/\---/\dxk//\\dyk/\---/\dxk/\dyk
k

(d(o))" " = (Z dx; N dyr — dyx N dﬂ?k)

and

rdr Ao = % (Z(l'idxi - yidyi)) A (Z(%‘d%‘ - yjdfffj))

i J

1
i g

As can be easily seen, the wedge of each term on the right side of this equation

n—1

with i # j against (do)"~! is zero, hence rdr A o A (do)" ! is

2" —1)! (Z(wf + y?)dx; A dyl-> A (Z dey Ndyy N+ Ndxp Ndyp A -+ AN dx, 1 A dynH)
; k
which is clearly equal to

2" Intrtday Adyy A - - dZpgq A dynia

which is not equal to 0 whenever r # 0. As S*"*! is level surface of S?"*! of r,

then o = i*o is defines contact structure on S?*t1.

(4) Let X be a manifold of dimension n, then the jet space J'(X) :=T*X x R is

contact manifold with contact form o = dz — A\.,,,, where z is the real coordinate.
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Indeed,
a A (da)” = (dz — Aean) N (—dAean)™ = (—=1))"dz A\ dAean

The reeb vector field is R, = %, and for any function f : X — R. The submanifold

{(¢.df(q), f(@)lg € X} C J'M

is Legendrian.

Now we describe how contact manifolds arise from symplectic manifolds, but first

let’s give a definition

Definition 1.2.5. Let (W?"*2 ) be symplectic manifold. A vector field X on W

is called Liouvelle vector field if Lxw = w.

Remark 1.2.3. If (W,w) has liouvelle vector field, then it is exact. Indeed by

Cartan formula w = Lxw = d(1xw) + txdw = d(1xw)

We have the required proposition

Proposition 1.2.9. Let X be a liouvelle vector field on (W,w). Let M — W be
a hypersurface (i.e submanifold of codimension 1). If X is transverst to M (i.e
X, € T,M for allp € M), then (M, xw|n) is contact manifold.

Proof. let @ = 1xw, we have

1

an(da)" = (txw) A (dixw)" = (txw) ANw" = 1

n+1)

Lx(w

where in the last equality we used the antiderivation property of interior multiplication.
Because w™™! is volume form on W, it follows that & A (da)" restricted to M is
volume form, for if vy, ,vonq1 span T,M, then vy, --- , v9py1, X, span T,IW,
Hence

dp A (ddp)n(vla e 7U2n+1) = WZH(Xm Uy, >/U2n+1) 7& 0
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In fact every contact manifold arises in this way, as we will see after defining

symplectization.

1.2.2 Symplectization and Contactisation
Symplectization

Definition /Proposition 1.2.10. Let (M?" ™1 &) and (N?"*1 €) be contact manifolds.
Then

(1) The following set
W ={(z,8)lr € M, 3 €T, M s.t ker(8) =¢&,}
is symplectic submanifold of (T* M, wean) and is called the symplectization of (M, £).

(2) If € is cooriented and « is global form giving the coorientation, then the map
O, R*" XM —>W, ; (t,x) — tay,

is symplectomorphism from (R* x M, d(tmic)) to (W, wean). In this case we call
the component (Wy = ®o(Ry X M), wWean|wy) the intrinsic symplectization of M
(It doesn’t depend on choice of o). Given o, we call (R x M, d(e*«)) the extrinsic
symplectization. It is symplectomorphic to Wy via composition of (s,z) — (€, x)
and V.

(8) let f : M — N be a diffecomorphism. Then, denoting by W and X the
symplectizations of M and N respectively, f is contactmorphism if and only if
f2(W) = X in which case fglw : W — X is symplectomorphism. If M, N are
cooriented by contact forms «, 3, then the same assertion holds with W replaced

with Wy given that [ preserves coorientations. If f is strict contactomorphism,
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then under identification above of intrinsic symplectizations R x M and R x N

with Wy and Xo, fu is given by (s,x) — (s, f(x)).

Proof.

(1) We begin by showing W is submanifold of dimension 2n + 2. We let « be
local defining form of & near p, we extend to local coframe a; = o, a9, -,y
defined on V' > p. Let (U,xy, - ,2,) be a coordinate chart around p. We let
for each v € T;U, we let y'(y) be the i-th component of ~, with respect to the
above frame, that’s v = >, y'(y)yl|,. Defining 7; = z; o7 : T*U — R, we get
coordinate chart of (T*U,Z7, -+ ,Tp, Y1, - ,Yn) of T M. Note that WNT*U is the
intersection of 7*M \ {0} and the set {y, = -+ = y,, = 0}, which is submanifold
of T*U. It follows that W is submanifold of 7*M. Now we check it is symplectic,
that is dAean|w is symplectic. Let « be local defining form defined on U, and let
¢ : R* x U — W be defined by ¢(t,x) = ta,. We observe that ¢*(Aean|w) = ta.
But as dimW =2n + 1 and

(d(ta))™™ = (dt A o+ tda)" ™ = (n+ 1)t"dt A a A (da)n

But the latter is non-zero, s0 ¢*(Wean|w) = ¢*(dAcan|w) is non-degenerate. This

proves (1)
(2) follows from last part of the previous argument.

(3) Clear from the definitions. O

Now we make an important observation. Keeping the notation of the above
proposition. If ¢, : M — M is contact isotopy, then the the lift &t W =W
Hamiltonian isotopy. Indeed, let X, be the vector field generating ¥ and observe
that

¢:(>‘can|W) = )\can|W =:0
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Differentiating this equation with respect to t, we get
0=Lg0=d0(X,))+ tg,db

which proves X; is Hamiltonian.

Contactisation

Let (M, df) be exact symplectic manifold. We define its contactisation to be (W, §)
where W = M x R with coordinate z on R and § = dz + . It is obvious that 8

is indeed a contact form, for
BAB) = (dz+60) A (dz+0)" =dz A (dO)"

which is non-degenerate. The Reeb vector field is R = %.
Now we say (L,¢) is a nice exact Lagrangian immersed submanifold in (M, d#) if
it is a generic immersed submanifold (in the sense that all self intersections are
double, transversal and isolated) and ¢*0 = df such that for every self-intersection
point p the values of the potential f at the two preimages of p are distinct.
Any nice exact Lagrangian submanifold (L, ¢) of M with potential f defines Lagrangian
embedding

LW = (), —f())

The image of «* is called Legendrian lift of (L, ¢), it is indeed legendrian (¢7)*(dz +
0) = —df +¢*0 = 0. On the other hand any Legendrian submanifold of W projects
to Lagrangian immersed sumbanifold of M via the projection (x,z) — z. Points

of self intersection of L corresponds to Reeb chords of L™.
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1.2.3 Moser type theorems

First of all we have the following theorem of Gray, which roughly states that there

is not non-trivial deformations of contact structure.

Theorem 1.2.11. If {&}icpoq is smooth family of contact structures on compact
M. Then there is isotopy {¢y : M — M }ici0.1) such that (¢¢)«(&o) = &

Proof. Let a; be smooth family of 1-forms such that ker o, = &. We want to find
¢y, such that

drow = frag (1.10)

for some non-vanishing functions f; : M — R — {0}. We find ¢, as flow of time

dependent vector X;, that’s

d .
Ewthtowt, o = id

Differentiating [1.10, we get

. d Ldfi
Y, (%wt + ﬁXtOét) = _td_ttwt v =1y (gtat)’

where g; = (—t—) o;. If we choose X; to lie in ker oy = &, then the equation is
satisfied if

d
1?:(%0% + ix,dog) = gy (1.11)
Plugging the Reeb vector field R; in we get

d
%at(Rt) =Gt

We use this to define g;. By the non-degenracy of dayle, , and the fact R, €

ker(g;on — %at), there is a unique vector field X; satisfying |1.11}

]

Theorem 1.2.12. Let (M?" ™! «) be a contact manifold. For any p € M, there is

28



a coordinate (x1,y1, " , Tn,Yn, 2) around p in which « is standard form, that’s
n
a=dz — Z yidx;
i=1

Proof. Let (U, (u,- -+ ,us,)) be coordinate cube, such that R = R, = 8%1. Let S
be the the submanifold defined by u; = 0. Since S is trasversal to R, then df|s
is symplectic, hence after shrinking U and S if necessary, we can find Darbouc
coordinates (x1,y1, - ,Tn,ys) for S and extend it to U by being constant on
integral curves of R. Let 6 be the 1-form ), y;dz; on U, so da|g = —df|S. But
as trda = 1gd0, it follows that df 4+ da = 0 at points of S. Then Lz = Lra =0
which implies d(f+«) is invariant under the flow of R, hence d(f+«) = 0on U. By
Poincare lemma, there is smooth function z : U — R such that dz = 6 + a, we can
assume that z(p) = 0. Since dz,(R,) = 1, we have {dx;|,, dy:|p,dz,} are linearly
independent, so there is neighborhood around p on which (z1,y1,- - , Zn, Yn, 2) are

coordinates. O

Theorem 1.2.13. Let L C (M,§) be Legendrian submanifold, then there exists
neighborhood U of L and neighborhood Uy of the zero section of J'(L) such that
there exist contactomorphism v : Uy — U such that ¥(Ly) = L, where Ly is the
zero section of L in JY(L) (in otherwords Lo = L x {0}

1.2.4 Generating families

Let M be a manifold, and let f : M x RY — R" be a smooth map, where M x RY
has coordinates (x,§). Suppose that 0 is regular value of d¢f : M x RN — RV,
The submanifold (9,f)71(0) is called the fiber critical set and denote it by X;.
Define

i Xy —=>T°M 5 (z,n) = (2,0.f(x,n)),

and
g S = J'M 5 (2,n) & (2, 0:f (x,m), f(x,n)),
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it can be checked that iy and j; are immersions. The image L of if is immersed
Lagrangian submanifold; the image A of j; is immersed Legendrian submanifold.
We say that f generates L and A or that f is generating family. It is important to
note that the Reeb chords of A are in bijective correspondence with critical points
of 6(x,&,&) = f(x,&) — f(z,£) with positive critical value.

We say a generating family f is linear at infinity, if there is a linear function
A :RY — R such that f(x,£) = A(£) outside a compact set.
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Chapter 2

Lagrangian cobordism

2.0.1 Definition and compatible generating functions

Definition 2.0.1. Let A~ and AT be two legendrian submanifolds of (M,§ =
ker(a)), then a lagrangian cobordism between A_ and \; is a lagrangian submanfiold
of the symplectisation (R x M, d(e'a)) such that there exists 7" with

LN ((—o0, =T] x X) = (=00, T] x A_

LN ([T,00) x X)=[T,00) x Aj.

That cobordism is denoted by A_ < A,.

We will be mainly concerned with lagrangian cobordisms of legendrian submanifolds
in (J'M,dz — \). To use generating families to study them, we need to identify

its symplectisation with cotangent bundle.

Proposition 2.0.1. Let M be a manifold, then then the symplectisation (R x
JIM,d(e'a)) of (J'M,a = dz — \) is symplectomorphic to (T*(Ry X M), Wean)-
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In fact the symplectomorphism is given by
0:RxJ'M—T Ry x M) ; (s,q,p2)— (°,q,2,€p)
Proof. Suppose that a point in 7*(R, x M) has coordinates (¢, z, z,y), then

6*(wcan) = 0*(_d(2dt + yde’))
= —d(zd(e®) + e°pdq)
= —d(—e’dz + e’pdq) = d(e’a)

]

So the lagrangian cobordism L can be viewed as Lagrangian submanifold of
T*(Ry x M), and hence may be constructed by generating function. We will be
interested in the case, we have a generating function compatible with those of

given ones for A_ and A,

Definition 2.0.2. Let fi : M x RN and F : (R, x M) x RY be functions. We
say (F, f_, f1) is compatible if for some S > 1, get

tf-(,6) t<1/8
tf+($,£) tZS

[t x,§) =

A gf-compatible lagrangian cobordism consists of a lagrangian cobordism A_ <7
A and a compatible triple of generating functions (F, f_, fy) of 8(L) C T*(R, x
M), A_, A, C J'M respectively. A gf-compatible lagrangian cobordism is denoted
by

(Ao, f2) =@r) (Ats f4)

We should note that if we are given compatible triple (F, f_, f,) with 0 being
a regular value of O¢f_,0¢fy,0F, then F' determines an immersed lagrangian
cobordism from A_ to A,. We call the resulting immersed cobordism together

with the triple a gf-compatible immersed lagrangian cobordism.
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2.0.2 Isotopy is realised by lagrangian cobordism

The aim of this section is to prove the following theorem which is due to Chantraine
13l
Theorem 2.0.2. [legendrian isotopy gives "cylinderical” cobordism| Let (M,§ =

ker ) be a compact contact manifold, and j, : A — M be isotopy of legendrian

embeddings into M. Then there is a lagrangian cobordism from Ny = j;(A) to
A= ji(A)

We need to prove isotopy extension theorem, which says that an isotopy of
isotropic submanifolds can be realized by ambient contact isotopy. First we need

the following lemma

Lemma 2.0.3. Let M be a manifold, and S be a submanifold of M. Suppose
that f : S — R is smooth function, and X is one form in N along S (that’s
ANeT(S,T*Mlg)). If

df,(v) = A\, (v) forv e T,S,

then there is F': M — R such that

o [ls=f

o dF, =)\, forallpe S

If S is compact, then we can choose F to be compactly supported.

We illustrate the lemma by proving the case M = R”™ x R", S = R™ — M is
submaninfold by inclusion of the first coordinate. So we have as given f : R™ — R

and smooth family of linear maps a, : R™ x R” — R parametrized by = € S, such
that a,((v,0)) = df,(v). We construct F' by the formula

F,y) = f(x) + a.((0,y))
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We see that

e F(z,0)= f(x)

o dF(z0)(v1,v2) = dfy(v1) + a((0,v2) = a((v1, v2))

This construction can be adapted to the general case by use of tubular neighborhood

and cuf off function.

Theorem 2.0.4 (isotopy extension theorem). Let j, : L — (M, = ker(a)) be
an isotopy of isotropic embeddings of a closed manifold L in a contact manifold.

Then there ezist compactly supported contact isotopy vy of (M,§)

Proof. Define time-dependent vector field X; along j;(L) by

) d .
XtOJt:EJt

Assume L is submanifold of M and j, the inclusion L C M. We want to find
compactly supported smooth function H, : M — R whoose hamiltonian vector

field X, equals X, along Ji(L), this will prove the theorem. X, is defined in terms
of H, by

(X)) =H, , tx,do=dH/(Ry)o — dH,

We need
(X)) = H, , ux,do=dH,(R,)a—dH, along j,(L) (2.1)

We use the lemma above to construct H, with 2.1|satisfied. Define H, : j,(L) — R
by H; = a(X;), and let \; be the one form along j;(L) defined by

At = —tx,da
In particular A(R,) = 0. So, what we need is H, such that

e H, = H, along j;(L)

34



e dH, = X along j,(L)

By lemma, we need only to show that
dHi(v) = M(v) for v € T(ji(L))

That’s
d(tx,a)(v) = —ix,da(v) for v € T(j,(L))

This is equivalent to

j;(ljxtda) —|—j:d(LXtOé) =0

which is in turn equivalent to

" d .
0= ji (L) = (i)
but this is automatically true as j; is isotropic embedding. O]

Now we sketch the proof of theorem [2.0.2l We let j; be such isotopy, then
we extend j; to compactly supported contact isotopy ;. This in turn lift to
Uy M — M. As we have already seen in subsection , Uy is generated by
Hamiltonian vector field Xy, for function H; : M — R. Pick S > 0 We define
Hamiltonian H, : M — R by

Hi(s,x) s>8
H{(s,z) = i(s,2) ,
0 s < =S

and let ¢; be its Hamiltonian flow, that’s the one generated by Xp;. The following

properties of ¢; are clear

o Pu(s,x) = &t(s,x) = (s,Y(x)) for s > S

o O(s,x) = (s,z) for s < —5.
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Let T be large enough so that ¢;([—S,S] x M) C (=T, T) x M. Denote by L the
lagrangian submanifold ¢ (R x A_) (note that ¢; is hamiltonian diffeomorphism).
Then by the properties above we get

e LN ([T,00) x M) = [T,00) x Ay : By choice of T and properties of ¢,
above, we note that ¢;(s,z) lies in [T, 00) x M if and only if s > T. So the
intersection on the left hand side is ¢ ([T, 00) x A_) = (id x ) ([T, 00) X
A_) =[T,00) x A as required.

e LN ((—o0,~T] x M) = (—00,T] x A_: Similar.

2.0.3 Some results on gf-compatible lagrangian cobordisms

Theorem 2.0.5. Let A C J'M be a legendrian submanifold with linear-at-infinity
genergating function f, then there exist an immersed gf-compatible lagrangian

cobordism ) <z p) (A, f)

Proof. The idea is to deform the f to linear function. First let f agree with liner

function A outside a compact subset of M x RY. We have to construct a function
F:Ry x M xRN — R satisfying

1. for all t, F(t,z,€) = By(£) outside a compact set of {t} x M x RY for some

non-zero linear function By

2. There exists T' > 0 such that F'(¢,z,£) equals B(§) for t < 1/T and tf(z,§)
forallt > T.

3. 0 is regular value of O¢F

The construction of a function G : Ry x M x RN — R satisfying (1) and (2) is
simple. Just let p: Ry — R which is 0 on (0,1] and 1 on [2,). Define G by

G(t,x,8) = t(o(t)f(x, &) + (1 —a(t))A(§)).
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For any T > 2 to see that (1) and (2) are satisfied. Moreover there for ¢t < 1/T,
G(t,z,€) agrees whith tA(£) outside a compact set of {t } x M x RY. Now we
need to modify G to F' to get the final property (3) satisfied. The modification
is quite standard, we perturbate be adding € - £ for well chosen e. Note that as f
is linear-at-infinity and the set of critical p, there exist a open and oints convex
ball U around 0 which consists entirley of regular values of 0¢. There exists e € U
which is regular value of 9:G and such that € -§ #= tA({) for all t. Choose a
smooth path ¢ : Ry — U such that o(t) = € for t < 2 and o(t) - & # tA(E) for
t€[2,T] and o(t) =0 for ¢t € [T, ). We define F to be

Gz, t,§) —e-& t<2
F(twrvf) = G(t,lC,f) _€(t> 5: tf(‘r7£> —O'(t) 5 le [27T]
tf(z, &) t>Tx

The properties (1) and (2) are clearly satisfied for G. Now we prove (3). One one
hand € is regular value of 0:G, so 0 is regular value of 0:F' = 0:G — e for t < 2. On
the other hand we have for ¢ > 2, 0¢f(t,x,&) = 0 if and only if 0f(x,&) = o(¢)/t,
but by convexity of U, o(t)/t is regular value of df(x,£). It follows immediately
that 0 is regular value of O¢F as d(0:F)(t,z,€) : R (T,M & RY) — RV is

(0cr(t.€) ~ /(1) 1+ d(@cS)(x.))

We need a lemma

Lemma 2.0.6. Let (f; : M x RN — R),cg, be a smooth one parameter family of
generating functions. Let F : Ry x M x RY — RY be defined

F(t,l‘,f) = tft<x7£)

Suppose that
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e 0 is regular value of F

o for all (x,&,&) in the fiber critical set of 6;(x,&, &) = fi(x, &) — fi(z, &), we

have

ax(st (l’, 57 6,) = 5t(x> ga SI) 7& _tat(st (l’, 57 6,)7
then F' generates an embedded submanifold in T*(R, x M)

Proof. Since 0 is regular value of J¢F', then F' generates an immersed lagrangian

L = {(tv x, ft(xv g) + tatft(ﬁa 5)7 taxf(xv 5))|@§f(1’, 5) = O}
We need to find double points... So, double points are in bijective correspondence
with points (¢, z,,&) with £ # & satisfying
o (x,£,¢) is in the fiber critical set of A\
o 0x0(2,§,€) =0

o 0uf(x,6,¢) = —tdf (2,8,

The lemma clearly follows. O

We have the following version of with gf-compatible cobordisms.

Theorem 2.0.7. Suppose that A_ is legendrian submanifold of J*M with linear-
at-infinity generating function f_, and that A_ s legendrian isotopic to Ay with

linear-at-infinity generating function f.. Then there is a gf-compatible cobordism

(Ao, o) =@r) (Aes f4)

Proof. (Sketch.) Let (j; : A = M);cr, be the legendrian isotopy. Denote A; =
Jt(A) such that Ay = A_ for t < 1/T and Ay = Ay for t > T. There is a one-

parameter family of generating functions linear-at-infinity f; that generates A;.
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We will reparametrize the one-parameter family f;, so that F(t,z,&) = tf,(x,§)
satisfies lemma . Since 0 is regular value of O, f; for all ¢, then 0 is regular
value of J:F'. Observe that 0,0,(x,§,¢) = 0 if (x,€) and (z,&’) are endpoints of
reeb chord, where then the length of the reeb chord is |§;(x, &, £')|. Let h > 0 be
the minimum length of reeb chords of all of the legendrians A; of the legnedrian

isotopy. It suffices to show that for every (z,&,¢’) in the fiber critical set of d;

h
004 (2, €, §)| < e

Since the fiber critical set of §; is compact for each ¢, and 0;d; vanishes outside a
compact interval, then 0,d; is bounded as function of (¢, x, &, &) where (z,&,£') lies

in the fiber critical set of ;. Choose p: R, — R, such that

h

0<p(t) < ———
p() tmaX|8t5t\7

then lettlng ft = fp(t)7 St(x, 57 5/) = ft(x7 6) - ft(x7 6/) we get

h

19:01( £, €)lemto| = £/ (10)|0180(: &, ) mptro)] < sy

]
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Chapter 3

Lagrangian Surgery

Recall that an immersed submanifold of M is a pair (L,¢) of manifold L and
immersion ¢ : L — M. In this chapter all immersed submanifolds are considered
to be generic. That’s all points of self intersections are double,transversal and
isolated. So if x is a point of self intersection, then the pre-image of ¢ consists of
two points {21, zo} and there is open neighborhood U C M of x containing no other
self intersection such that (=!(U) is union of disjoint open neighborhoods Uy, U, of
x1, To respectively and ¢|y, is embedding, in particular UNu(L) = «(U;) Ue(Us) and
1(Uy) intersect ¢(Us) transversally at x. An equipment of (L, () at z, is an order of
tangent spaces 1,.¢(Uy) and T,(¢(Us)). We say (L, ) oriented if L is oriented.

Throughout P* = S"7! x S! and Q" the manifold obtained from S™~! x I by
identifying (x,1) with (7(z),0) where 7 : S"~! — S"~! is the standard orientation

reversing involution (given by reflection).

All symplectic manifolds are oriented by its symplectic structure, that’s (M,w)

is oriented by w".

40



3.1 First Description

Lagrangian handles

Let (R?",wyyq) be the standard symplectic manifold, suppose it is oriented by the
form w”. Denote by L, and L, the Lagrangian submanifolds R” x {0} and {0} xR"
respectively. We have the following definition

Definition 3.1.1. Let € > 0 and o : S" ! x R — R?" be a Lagrangian embedding
satisfying:

o 0(S" ! x (—¢,¢€)) C B(0,¢)

o o(z,t) = —tz for (2,t) € S" ! x (—o0, —¢

e o(z,t) =tz for (2,t) € S"! X [¢,00).

So in particular, denoting the two n—dimensional discs of radius € containing 0 by

B, C L, and B, C L, respectively, we get
o(S" ! x (=00, —€]) = Ly \ B, ; o(S" ! x [e,00)) = L, \ B,

o or its image is called an e-Lagrangian handle. If I" denotes this image and L, and
L, are oriented, then we say the Lagrangian handle is positive (denoted sgn I' = 1)
if L, \ B, = I and L, \ B, — I induce the same orientations on I' and negative

(denoted sgn I' = —1) if these orientations are different.

Lagrangian handles exist by the following theorem
Theorem 3.1.1. Suppose that L, and L, are oriented and let ¢ > 0. Then there
exists an e-Lagrangian handle I' with sgn I' = (—1)n(n271)+1Lx - L,
Proof. Let f and g be functions R — R such that
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f(t)=tfort>eand f(t) =0 for t < —e

g(t)=—tfort < —cand g(t) =0 fort >e

t— (f(t),g(t)) is embedding R — R?

o /f(t)2+g(t)? <eforte (—ee)

Define o : S"~! x R — R?" by

o(z,t) = (f(t)z 9(t)2).

We have

1. 0*wsqg = 0: Let ¢ : S" ! xR < R™ xR be the inclusion, and define 6 : R* x R
by a(z,t) = (f(t)z,g(t)z), with coordinates of first factor R™ be z,- - z,.

We have 0 = 6 o+, and
Fwaa = > _(f'(t)zdt + f(t)dz) A (g (E)zidt + g(t)dz;)

= SO (6~ g (@ 0z A

and it follows that

o*waa = > _(f(t)g'(t) — g'(t) f(£))(zi 0 )d(z; 0 1) Adt =0,

because Y ,(z00)? =1 = > (zi0u)d(z0t) =0.

2. o is immersion: We compute the differential, let (v,s) € T(;,)(S" ' x R) =
T.5" ' x T,R = T,S" 'R, we have

do(z,t)(v, ) = (f'(t)sz + f(t)v, g'(t)sz + g(t)v)
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As {z,v} =0, then z and v are linearly independent unless v = 0. Hence for

(v, s) # (0,0)
do(z,t)(v,5) =0 = [f'(t) =g'(t) or f(t) = g(t)

But this is impossible by choice of f and g

3. o is injective: This follows by positivity of f and g and the last property of
f and g.

4. o is proper: clear from the construction.

It follows that o is Lagrangian embedding. It is clear that conditions in definition
of handle are satisfied, by choice of f and ¢g. So ¢ is e-lagrangian handle. The

statement about sign is straightforward. O

Construction of Lagrangian surgery

Next we turn to the construction of surgery of an immersed Lagrangian submanifold.
Let (M, w) be a symplectic manifold and (L, ¢) be an immersed Lagrangian submanifold,
and let z be a point of self-intersection of L, write 1™ (x) = {x1,z2}. Suppose that

L is equipped at = by equipment (ly,l3). Pick a neighborhood U C M of x small
enough so that

e There is open neighborhood U C M of x containing no other self intersection
such that (~1(U) is union of disjoint open neighborhoods Uy, Uy of zy,x9
respectively and ¢|y, is embedding, in particular U N (L) = «(Uy) U t(Us).
Denoting ¢(U;) = L;, we get L, intersecting Lo transversally at . We assume
T,L1 =1, and T,Ls = Iy

e There is symplectomorphism ¢ : (U, z) — (B(0,¢€),0) such that ¢~ !(L,) =
Ly and ¢ (L,) = Lo.
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This possible by theorem [1.1.8] Now we let ¢ : S"7! x R — R?" be a Lagrangian
¢/3-handle with image I'. Let V = ¢~1(B(0,2¢/3))

L= L\ V) U(S"™ x (—€€)/ ~

where ~ is the equivalence class generated by (z,t) ~ (" 'p~to(z,t) for t €
(—e, —2¢/3) U (2¢/3,€). There is a unique manifold structure on L such that the

inclusions

iy L\ N V) s L, dg: S"E X (—e,€) = L

are open embeddings. We define

) () ifp=1[z], ze L\ (V)

Lp o lo(z,t)  ifp=zt], (2,t) € S"! x (—¢,€)
This is clearly well defined and is smooth Lagrangian immersion because the
composition with ¢; and iy are smooth Lagrangian immersions. It is seen that the
image of this immersion coincides with ¢(L) outside V' and has one self intersection
removed. The image is exactly (L \ U) U ¢ }(I'). We call (L,7) a result of
Lagrangian surgery at point z. It is a generic immersed submanifolds, because self
intersections happen outside U, where the new immersion coincides with the old
one. If L is oriented, then L, and L, inherits orientation and we say the surgery is
positive(negative) if the handle I" is positive(negative) with respect to orientations
on L, and L, induced by those of L; and L, respectively. So the surgery sign
depends on the equipment in fact the sign is exactly (—1)*"=V/2¥1] . [, By
changing eqquipment, we can control the sign as in following proposition which is

clear

Proposition 3.1.2. Let (L,.) be an oriented immersed Lagrangian submanifold

with point of self intersection x
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1. Ifn is odd, then there exists a Lagrangian surgery of any sign at point x.
2. Ifn is even, then there exists Lagrangian surgery of sign (—1)""=1/2+1ind(z).

Remark 3.1.1. If (L, 1) is oriented and the surgery is positive, then (L,:) inherits
natural orientation which agrees with orientation of L under embdedding i; :
L\t (V)= L.

The following two propositions will follow directly from constructions:

Proposition 3.1.3. Let (L, 1) be immersed Lagrangian with L connected and let

x be a point of self intersection. Let ([:, 7) be a result of Lagrangian surgery at x.

1. If L is oriented, Then L = L#P if the surgery is positive and L = L#Q if

the surgery is negative.

2. If L is non-orientable, then L~ L#Q X L#P.

On the other hand if (L = Ly U Lo, () is timmersed submanifold where Ly and Ly
are connected and x is a point of self-intersection, then denoting by (Z~L, ) a result

of Lagrangian surgery at z, we have L = Li#Ls
Proposition 3.1.4. Let (L,.) be a closed immersed Lagrangian submanifold of
(M?",w), and let (L,7) be a result of Lagrangian surgery.

1. 1,([L]) and i.([L]) are homologous (mod 2)

2. if L is oriented and the surgery is positive, then 1, ([L]) and 7. ([f]) are homologous,

where L is given the natural orientation of remark.

Now we give an application to the surgery construction on embedding problems:

Theorem 3.1.5. 1. Let Ly and Ly be closed connected manifolds with Lagrangian
embedding into R*". Then there is a Lagrangian embedding of L1# Lo#Q into
R2™. Ifn is odd, then Ly, #Lo#P admits Lagrangian embedding into R*".
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2. Let L be a closed connected manifold having Lagrangian immersion into R?".
Then there is a Lagrangian embedding of L#kQ into R*™ for some k. If n
1s odd, then there is Lagrangian embedding of L#kP.

Proof. To prove (1) Let i; : L; +> R?" denote the Lagrangiann embeddings.
By linear map and perturbation we can assume that i1(L1) and is(Ls) intersect
transversaly at exactly two points x; and x5. Let (l~} = Ly U Ly, 7) be defined by
u(z) = i;(z) if x € L;. Then (L,7) is immersed Lagrangian submanifold with two
points of self intersections x1, zo. We perform Lagrangian surgery at x, to get an
immersed Lagrangian submanifold (L®", (V). By proposition|3.1.3} LU > L #L,.
If one of L; or Ly is non-orientable, then L() is non-orientable, and by the same
proposition after applying a surgery at x, we get a generic immersed submanifold
(L2,1@) such that L? = LOH#Q = Li#L,#Q. But this immersed submanifold
has no self interections and generic, so we get embedding L # Lo#Q — R?*". Now
assume that both L; and L, are oriented, and fix a choice of orientations. We have

two cases

e Let n be odd, then L® is LO#Q or LO#P according to the choice of sign
of surgery, so we get embeddings L #Lo#P — R?" and L1 #Lo#Q — R

e Let n be even. Suppose that ind(z;) = (—1)%“. Then the first surgery
is positive and we get the natural orientation on (LM, i), because of
compatibility of this orientation with that of (f/, t), we get the new index
at xo the same as old index at the same point which is —ind(x;), so the
second surgery is negative, and we get L® = LO£Q. So we get embedding
(@ L@ > [ #,HQ — R

Proving (2) is similar by performing surgery k times. O

Another application is

Theorem 3.1.6. Let (M?*",w) be a symplectic manifold. Suppose that G = Z
when n is odd and G = Zs when n is even. Let o € H,(M,G) be represented by
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Lagrangian immersion (that’s there is a G-oriented Lagrangian immersed submanfold

(L, ) such that 1. ([L]) = a). Then « can be represented by a Lagrangian embedding.

Proof. Let « be represented by (L, ¢), we know that ¢ is homotopicc to ¢/ which is
generic. ¢/ also represents . We can apply successive Lagrangian surgeries to get
embedded submanifold (L, 7). If L is oriented and n is odd, then we can demand

the surgeries to be positive. The theorem follows by proposition [3.1.4]

3.2 Second Discritption via cobordism

Basically I will reproduce section 8.2 of the paper [4] here. In exact symplectic
manifold, we construct surgery of lagrangian submanifold obtained by first lifting
the submanifold to the contactization, and then remove reeb chords, and then
projecting back. There is lagrangian cobordism from the lift before surgery to

that after surgery.

Local model of Lagrangian surgery

Let 1,0 > 0, and consider the open subset

‘/77,5 = {(q>p7 Z)HQ| <n, ’p| <20 , B € R}

let ¢ > 0, and denote by A;; 5 the submanifold given by the two sheets

)
(@ pscllal = aclal)llel < m) where facls) = -5+ 5
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which is legendrian as we have seen in Chapter 1. More explicitly,
) ) ¢
A= +og, +—g* £ 2 <
o = 0. A2 2P £ )lal <)

It is seen that it has one Reeb chord of length ¢, namely the one joining (0,0, —%)
to (0,0, % We note that A, 5. can be given by generating function

3

3
Flsc: BOM) xR =R, (q,8) = 3 = gy5(lal€,

where

7 = (2sct)

Now let g, 5. : Ry — R be a function such that

_ 3/2
o g 5c(5) = (Bfocls)’” for s > 2

® g,50(8) <0fors<i
- ’ 26m
e 0<(g,5)(s) < e

The last condition can be acheived if ( < ?—g. Let A, ;. C J'B(0,n) be the

legendrian submanifold generated by

_ £ _
Fisc: BOmM xR =R, (,8) = 5 = g5(lal)€

By the last condition A, ; - is subset of V;, 5.c. Also we should note that A:; 5. agrees
with AJs - in {(q,p,2)[3n/4 < gl <n, |p| < 26,2 € R}.

Constuction of Surgery and cobordism

Fix an exact symplectic manifold (M, 6). Let L be a generic nice exact Lagrangian

immersed submanifold with self intersection points @, -- ,x, and let L™ be the
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legendrian lift to the contactization (W, 3). The self intersection point x; corresponds

to a Reeb chord which we denote by a;.

Definition 3.2.1. With the above notation, the set of Reeb chords {ay, - ,a,}
is called contractible if there are disjoint neighborhoods U; of a; such that there
is a strict contactomorphism (Us, U N et (L7)) = (Vi 5,00 A, 5,.c.) for 1,05, ¢ > 0

; ) 76imi
with ¢; < 2%

We let {ai,---,a,} be a set of contractible Reeb chords. Denote by ¢; :
(Us, U N (L)) = (Vyse, A s¢) @ strict contactomorphism as in definition. Let
L*(ay, -+ ,a,) be the legendrian submanifold (L™ \ J,(Ui)) U U, A, 5, - This
is indeed a legendrian submanifold by the fact that A:;M agrees with A:;M in
{(g,p,2)|3n/4 < |q| < n ., |p| < 20,z € R} C V,,5,¢,, and that ¢; is strict

contactomorphism.

Denote by L(x1,- -, x,) the Lagrangian projection of L™ (xy,--- ,z,), then L(ay, - - -
agrees with L outside neighborhoods of z; and has k self intersections removed.
The latter fact follows because (; can be made arbitrarily small, so no Reeb chord

is created when passing from A4y, 5.¢ to A 5 .

Next we construct Lagrangian cobordism from L*(aq,---,a,) to Lt but first
we construct a Lagrangian cobordism from A, - to A; se MR xJ 'B(0,n). In fact
we construct a gf-compatible cobordism. Define G, 5. : Ry — R to be a function

satisfying for S > 1 the following properties

Gnoc(t,s) =g, 5.(s) for s <1/S
o Gyoclt,s) = g:,f(;’c(s) for s > S
o 2G(t,0)>0

¢ G"%&C(t? S) = 97—;5,((8) - g;(m(S) for s > 37]/4
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We define
53
F77757C : (R-‘r X B(O»W)) XR—=>R ’ (taxaé.) =1 (5 + GU,(S,C(ta |q|))

According to Chapter 2, thi gives immersed Lagrangian cobordism X, 5. in R x
J'B(0,n) from A, 5 - to A} 5 - with points of self intersection possibly corresponding

to critcal points of

6F77757C (t7 4, 51’ 52) = F77757C(t7 q, 51) - F’r],(S,C (t’ q, 52)

with positive values, But the third property of GG eliminates this possibility. Thus
the cobordism is embedded.

In the trivial cobordism Rx L*, we replace Rx (U;NLT) with the (idx ¢;) (3, 5.¢,)-
This can be glued to yield smooth embedded submanifold R x W because of the
fourth property of G, and it is Lagrangian because id x ¢; : RxW — Rx J'B(0,7;)

is symplectomorphism. So we have obtained cobordism from L*(ay,--- ,a,) to
L.
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Introduction

Le présent mémoire vient a la fois clore un cycle d’études a I’Université de Nantes et ouvrir une perspective
de recherche en mathématiques. En effet, le Master de Mathématiques Fondamentales et Appliquées (MFA)
proposé & Nantes, prévoit en deuxiéme année 1’écriture d’un mémoire, sous la direction d’'un chercheur en
mathématiques. L’objet de ce travail peut étre une analyse d’article de recherche récent, ou la résolution d’'un
probléme ouvert raisonnable. J’ai travaillé sous la direction de Laurent Hauswirth, Professeur a 1’Université
de Marne la Vallée et Samuel Tapie, Maitre de Conférences a 1'Université de Nantes. Je les remercie cha-
leureusement pour 'aide qu’ils m’ont apportée, dans des circonstances de confinement délicates. Les objets
étudiés et les outils utilisés dans ce mémoire sont préalables & un futur travail de recherche en thése, dirigé par
Laurent Hauswirth et Arnaud de Mesmay. Il s’agira de montrer I’existence, dans une 3-sphére riemannienne,
de doubles bulles stationnaires qui divisent la courbure totale de la sphére en trois parts égales. Pour ’heure
nous tentons de résoudre un probléme analogue, en plus basse dimension : I'existence d’un 3-filet géodésique
stationnaire & la surface d’une 2-sphére riemannienne, qui divise la courbure totale de la sphére en trois
parts égales. Nous nous appuyons sur des techniques de balayages introduites par Birkhoff et reprises dans
un article de Colding et Minicozzi, Min-Mazx for sweepouts by curves, écrit en 2007. Le Chapitre 1 donne
une caractérisation de ’objet étudié. Les Chapitres 2 et 3 décrivent les approches de plusieurs chercheurs qui
ont franchi des étapes décisives dans ce domaine. Dans les chapitres 4 et 5 enfin, nous esquissons une preuve
d’existence dans un cas particulier de sphéres et donnons des résultats qui pourraient aider notre recherche
A venir.

FIGURE 1 — Jacques Lipchitz - The Rescue, 1945



Chapitre 1

Filets géodésiques stationnaires.

Considérons une variété Riemannienne M et un multi-graphe G. Un filet F sur M modelé par G est
un plongement C! par morceaux de G dans M. Les sommets et arétes du graphe sont ainsi envoyés sur les
sommets et arétes du filet - ou net suivant 'usage anglais. Un filet est dit géodésique si chacune de ses arétes
sont des géodésiques. En outre, un filet est dit stationnaire si, pour tout flot ®; de difftomorphismes de
M, la fonctionnelle de longueur L(®:(F)) admet un point critique en zéro. Il ne s’agit pas nécessairement
d’un extremum local; cela complique sérieusement la recherche d’un tel filet. Le théoréme suivant montre
en particulier qu’un filet non géodésique ne saurait étre stationnaire. C’est pourquoi un filet stationnaire
sera souvent appelé filet géodésique stationnaire. Un filet géodésique minimisant peut étre deux choses dis-
tinctes en général. Soit un filet géodésique stationnaire, critique en tant que minimum pour la fonctionnelle
de longueur. Soit un filet géodésique stationnaire dont les arétes réalisent la distance (cf. Tan Adelstein). Ces
conditions ne sont ni nécessaires ni suffisantes I'une pour 'autre.

Exhibons maintenant une caractérisation utile - qui chez certains auteurs fait office de définition - du filet
stationnaire.

Theoréme 1.1
Soit F un filet sur une variété Riemannienne M. Une condition nécessaire et suffisante pour que F soit
stationnaire est qu’en chacun de ses sommets, la somme des vecteurs unitaires tangents aux arétes soit nulle
- cela correspond, pour les sommets de valence trois, a une trisection angulaire - et qu’il soit géodésique.

Démonstration. Pour simplifier ’écriture, nous supposons que F est constitué de deux sommets A et B,
reliés par n arétes, disjointes en dehors de A et B. Cette restriction n’est que combinatoire et n’affecte pas
l’essentiel de la preuve. Supposons d’abord que les arétes cy,...,c, de F sont des géodésiques paramétrées
par longueur d’arc comme suit :

Vi € {1,...,n}7 Ci . [O,ZZ} — M

Avec les rencontres suivantes : ¢;(0) = A et ¢;(I;) = B.
Supposons aussi la condition aux sommets :

n

> d(0)=0et Z d(1)=0

=1

Soit maintenant un groupe C' de difféomorphismes & un paramétre ®,.
On pose, pour v € [0,0;] et ¢t € {1,...,n}:

Vi) = 5 ulei(u)lco

On veut dériver en zéro la fonctionnelle de longueur totale :

L(t)zg/oli

2<I>t(ci(u)) du

ou




La premiére formule variationnelle (x) donne :

n

l;
L'(0) = Z << V> b _/0 < Vcécg(u),Vi(u) > du)

=1

Orvie{l,...,n}, ¢/ =0et V1(0) =--- =V,(0) et Vi(l1) =--- =V, (). Donc :

(2

(0) =< S0 0.Vl > — < 30 e0), Vi(0) >
=1

i=1
Ainsi, sous nos hypothéses, L'(0) = 0, i.e. F est stationnaire.

Réciproquement, nous devons montrer une formule de la forme P = (Q A R). Une table de vérité montre
qu’elle est équivalente a la formule P = Q A (wR A Q) = —P. Montrons d’abord qu’un filet stationnaire

est nécessairement géodésique. Supposons que L'(0) donnée par (x) est nulle, pour tout flot ®; de M. En
particulier, pour un champ vectoriel V' sur M, restreint & 7, nul en 0 et en [;, on a :

n l7,
Z/ < chb_c;(u), Vi(u) > du =0
i=170
Si de plus V; est positivement colinéaire & V. ¢} le long de ¢; et Vj # i, V; = 0, alors il vient :
I
/ < Vi), Vi(w) > du = 0 avee Yu € [0,4], < Veci(u), Vi(u) >= k(w)][Ve;ch(w)[* = 0
0

D’ol nécessairement : V. c; =0.
4
Nous n’avons pas formulé d’hypothéses sur i, donc toutes les arétes de F sont des géodésiques.

Montrons ensuite qu’un filet géodésique qui ne satisfait pas la condition de somme nulle aux sommets ne
peut étre stationnaire. Supposons quen A, on ait ¥ =: Y1 | ¢5(0) #0 € TaM.

On transporte ¥ parallélement le long de chaque ¢; en X;(u). En particulier, Vi € {1,...,n}, 3;(0) = X.
On construit ¢ champs de vecteurs le long de ¢y, ..., ¢, en réduisant quadratiquement les ¥; dans un rayon
géodésique r suffisament petit devant F :

u—r

2
Vi(u) = 0 pour u > r et Vi(u) = 3;(u) ( > pour u € [0, 7]

r
On construit une variation de F autour de A, raccordée a Iidentité au-deld, de maniére C' :

Vi€ {1,...,n},Yu € [0,7[,Vt € [—¢, €], ci(u) = expe, (u) (tVi(u))
On construit un flot ®; sur M qui est I'identité a Pextérieur du disque géodésique D(A,r) et qui, a 'intérieur

du disque, se comporte le long de FND(A,r) comme la variation précédente. Ainsi obtient-on par définition :

Vie{l,...,n},Vu € 0,1], %fbt(q(u))h:o = V;(u)

La premiére formule variationnelle donne :

i=1

L'(0) = —Z < ¢;(0),Vi(0) >= — <Xn: c;(O),Ei(O)> =—<EXY>#0

Donc F n’est pas stationnaire. O]

Enfin, la formule de Gauss-Bonnet implique qu’un filet géodésique stationnaire, dont les sommets sont
tous de degré 3 et les faces bordées par le méme nombre d’arétes, découpe la sphére en portions de courbures
totales égales. C’est le cas pour un filets modelé sur le ©-graphe : 2 sommets et trois arétes.



Chapitre 2

Preuves d’existence des filets géodésiques
stationnaires : un balayage historique, de
Poincaré a Hass & Morgan.

Le graphe élémentaire - consistant en un unique sommet bordant une unique aréte fermée - modéle
le lacet simple dans M. Il est clair qu'un tel lacet pointé, géodésique et stationnaire (i.e. sans angle au
sommet) n’est autre quune géodésique fermée et simple. Ainsi, les premiéres preuves d’existence de filets
géodésiques stationnaires coincident avec les premiéres constructions de géodésiques périodiques sans points
d’auto-intersection. Le 20e siécle est riche de développements autour de ces problémes d’existence. Nous en
parcourons un chemin chronologique.

2.1 La preuve incompléte de Poincaré

Les travaux mené par Henri Poincaré en 1892 dans 1’ Analysis Situs, autour du Groupe Fondamentale
des variétés, permettent de construire des géodésiques fermées dans les surfaces riemanniennes dont le 7
est non trivial. En effet, dans une classe d’homotopie non-triviale, on désigne une suite minimisante pour la
longueur, qui converge dans I'espace des courbes C!, vers une géodésique fermée, ayant la méme régularité
que la métrique. La difficulté demeure, comme dans le cas de la 2-sphére, quand 71 (M) = 0. Dans un article
de 1905 intitulé Sur les lignes géodésiques des surfaces convexes, Poincaré propose une preuve de I'existence
d’une géodésique fermée et simple dans la 2-sphére en toute courbure. Il considére d’abord un certain espace
de lacets divisant la 2-sphére en deux hémisphéres de courbures totales égales.

FIGURE 2.1 — Recherche d’un lacet divisant en deux parts égales la courbure totale de S.



Cet espace n’est certes pas vide. Pour en construire un élément, il suffit d’envoyer la 2-sphére S considérée
vers une 2-sphére ronde S° via un difféomorphisme ®, de balayer S avec les images réciproques des paralléles
de de S° et d’appliquer le Théoréme des valeurs intermédiaires. La deuxiéme idée de Poincaré est de considérer
le minimum des longueurs des lacets de cet espace. Il suppose que ce minimum est réalisé par un lacet ~, dont
il démontre enfin le caractére géodésique. Son ellipse réside dans I'affirmation qu’un lacet de l’espace doit
réaliser le minimum de longueur ; cet argument est donné par Christopher Croke en 1982, dans Poincaré’s
problem and the lenght of the shortest closed geodesic on a convex hypersurface.

2.2 L’idée de Birkhoff

En 1917, George David Birkhoff expose dans un article intitulé Dynamical systems with two degrees of
freedom, un protocole de recherche d’une géodésique fermée et simple dans une 2-sphére S de courbure
quelconque. Il y décrit comment envoyer une 2-sphére de paramétres dans la 2-sphére S via une application
B:S? — S, continue et de degré 1 (homotope & un homéomorphisme), appelée balayage®. Il considére
ensuite la classe d’homotopie 0y d'un tel balayage By et définit la largueur de S, relativement a €2y, comme
le nombre positif :

W =: min max FE(B(.,t))
BeQo t€[0,1]

Ou FE est I’énergie de la fibre B(., ). Le degré de B empéche W d’étre nul. On construit une suite de balayages
dont les pics d’énergie convergent vers W. On ne sait pas encore a ce stade si la suite des fibres maximales
converge vers une certain lacet. Birkhoff introduit alors un nouvel outil : le resserrement des courbes. Cette
application est homotope a 'identité, elle agit sur un espace approprié de lacets sur S et satisfait entre autres
deux propriétés : elle diminue la longueur et discrimine les courbes presque géodésiques, sur lesquelles elle
a un faible effet. Cela permet en particulier de resserrer contintiment chacun des balayages de la suite et
d’obtenir une suite B7(., ;) qui converge vers G, I'ensemble des géodésiques fermées et simples de S. G est a
priori non vide, puisqu’il contient les points, mais notre limite ne saurait étre un point : elle réalise W. C’est
ainsi la premiére preuve d’existence d’au moins une géodésique fermée sur toute sphére.

2.3 Un Théoréme optimal de Lyusternik et Schnirelmann

En 1929, Lazar Lyusternik and Lev Schnirelmann démontrent dans une note publiée au Comptes Rendus
de I’Académie des Sciences de Paris, le théoréme suivant :

Theoréme 2.1
Toute variété riemannienne homéomorphe a la sphére posséde au moins trois géodésiques fermées non tri-
viales, distinctes et simples. >

2.4 Un Théoréme de Hass et Morgan en courbure positive

A Tinstar de Poincaré et Croke, Joél Hass et Frank Morgan ont utilisé des arguments de minimisation
sur un espace de filets divisant en parts égales la courbure totale d’une sphére. Ils 'ont fait pour montrer
Iexistence d’un 3-filets géodésique stationnaire sur toute sphére riemannienne de courbure positive®. Un
3-filet divise la sphére en trois zones. Il peut-étre modelé sur trois topologie de graphes :

— Le O-graphe (2 sommets et trois arétes).
— Le graphe en 8 (1 sommet et 2 arétes en lacets).
— La paire de lunette (2 sommets joints par une aréte et deux arétes en lacets supplémentaires).

1. La source peut-étre transformée en [0, 1] X [0, 1], pourvu qu’on impose d’une part : V¢t € [0,1], B(0,t) = B(1,t), d’autre
part : Vs € [0,1],B(s,0) = A et B(s,1) = B. C’est le point de vue que nous adoptons.

2. Ce résultat est optimal dans le sens ou certaines variétés sphériques, dont les ellipsoides, n’admettent que trois géodésiques
fermées et simples.

3. Rappelons le Théoréme de plongement d’Alexandrov : Une 2-sphére riemannienne a une courbure positive si et
seulement si elle est isométrique au bord d’un convexe de R3 muni de la métrique induite.
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FIGURE 2.2 — Trois modéles de graphes pour les 3-filets

Leur preuve repose fondamentalement sur un théoréme que Morgan démontre en 1994 dans un article
intitulé Soap bubbles in R? and surfaces et qui permet de déformer un graphe donné pour amener chaque
zone qu’il délimite vers une zone d’aire donnée.

Theoréme 2.2 (Frank Morgan - Soap bubbles in R? and surfaces - Théoréme 3.2)
Soit M une surface riemannienne lisse, compacte et connezxe. Soit Gy un graphe plongé dans M, avec m
faces Fy, ..., Fy, Soient Ay,..., Ay >0, avec Y, A; < aire M. Il y a une déformation continue f; de M
telle que fo = Id, fi injective pour 0 <t < 1, A(f1(F;)) = A; et G = f1(Go) minimise la longueur parmi tous
les graphes dont les faces atteignent ces aires cibles. G consiste en la rencontre d’arcs de courbure constante,
disjoints ou coincidant. De plus, aux sommets de G, les vecteurs unitaires tangents sont de sommes nulles.

Morgan ajoute en fin d’article (Paragraphe 3.4 - page 360) que
la mesure d’aire peut étre remplacée par n’importe quelle inté-
grale d’une fonction réelle positive définie sur M. Aussi adaptent-
ils ce théoréme en prenant la fonction courbure sur une sphére
convexe et en considérant les trois graphes qui modélent les 3-
filets sur la sphére. Ils parviennent ainsi & construire sur une
sphére convexe un 3-filets qui partage la courbure totale sui-
vant une prescription et qui minimisant pour cette propriété. Dans
leur article intitulé Geodesic nets on the 2 sphere (1997), Frank
et Morgan vérifient enfin que les arétes de ce filet sont néces-
sairement des géodésiques. Ainsi démontrent-ils Dexistence de 3-
filets géodésiques stationnaires sur les sphéres de courbure posi-
tive.

On commence par définir la classe des filets admissibles sur laquelle on pourra déterminer un filet mini-
misant. Considérons un filet G parmi les trois modéles de 3-filets et assignons & chaque angle, selon la valence
du sommet, une valeur cible :

— Pour un sommet de valence trois : t; = 27/3.

— Pour un sommet de valence quatre : 7/3 <t; < 2m/3 et t; = t; pour les angles opposés par le sommet.

Assignons a chaque face F; C S? — G une courbure totale cible K;, par la formule :

Kj=2r—) (7—t),

oil la somme est prise sur tous les angles cibles contenus dans F;. Rappelons la formule de Gauss Bonnet

appliquée & une face F :
R+/ k+ > (m—s;) =2m,
Jome e

oll R est la courbure de Gauss?, k est la courbure géodésique - c’est-a-dire la composante normale du vecteur
de courbure V¢’ - et ou s; est 'angle actuel du i-éme sommet de Fj. Si toutes les arétes de G sont des

4. Dans une variété Riemannienne, la courbure sectionnelle en un point z, dans la direction d’un plan P de ’espace tangent,
correspond & la courbure de Gauss en  du morceau de surface engendré par le disque unitaire de P, via ’application exponentielle.
En dimension deux, courbure sectionnelle et courbure de Gauss sont une méme chose. On rappelle que la courbure de Gauss



géodésiques et si les angles s; de chaque face correspondent aux angles cibles ¢;, alors la courbure totale des
F}; est égale & la courbure totale cible :

/FRZQ’/’T*Z(W*Si):27T72(7T7ti):Kj

J

Bilan : pour chaque région du 3-filet modelé sur le f-graphe, la courbure totale cible est 47/3. Les mono-
gones du 3-filet modelé sur le graphe a lunettes ont une courbure totale cible égale a 57 /3, tandis que le
quadrilatére a une courbure totale cible égale a 27/3. Enfin, le 3-filet en huit délimite deux monogones dont
les courbures totales cibles sont égales et comprises entre 47/3 et 57/3, ainsi qu’un 2-gones dont la courbure
totale cible est comprise entre 27/3 et 47/3. On appelle filets admissibles sur la 2-sphére les 3-filets qui at-
teignent effectivement ces trois répartitions de la courbure totales, avec possiblement des écrasements d’arétes.

On note Gy le 3-filet mnimisant dans cette classe de filets admissibles, comme annoncé. Si I'une des ré-
gions F; de Gy est bordée par les angles s;, alors la formule de Gauss-Bonnet implique que la courbure
géodésique & la frontiére de F; satisfait :

()7 /(Sij—Z@i—ti)

Considérons un chemin fermé ~ traversant Gy transversalement. La premiére formule de variation de la
longueur d’une courbe C? implique que la dérivée de la longueur de la courbe, lorsqu’elle est perturbée dans
la direction d’un vecteur W € T, M, ou = = c(u) est assez loin des bords, est donnée par le produit scalaire
de W et du vecteur de courbure de la courbe :

u-+e

L/(0) = —/ < Vud, W >
U—e€

En réalité, on considére un champ de vecteur le long de la courbe qui vaut W dans un petit voisinage de x

et s’annule brusquement au-deléd, via une approximation de l'identité. On néglige le régime transitoire de la

variation. Par ailleurs, la dérivée de la courbure totale d’'une face jouxtant une courbe soumise & une telle

perturbation est donnée par le produit de R et de la partie normale de W :

d
—\t:o/ RAV = R < W,ng > du,
dt D(t) D

ol n, est la normale sortante. Montrons d’abord que le long d’une aréte de ¢ € G le produit kR est constant.
On sait déja par le Théoréme 2.2 que k est constant le long des arétes de Gg. Le scalaire k est signé et dépend
de la normale & ¢ choisie. On prend soin de considérer le long de ¢ une normale qui ne change pas d’orientation.
Soient x et y deux points distincts de ¢. On pousse ¢ en x dans le sens de la normale avec un coefficient oy
et y dans le sens opposé a la normale avec un coefficient as. On obtient d’une part L'(0) = 2ek(az — aq) et
d’autre part :
i|t:Q RdV = 2€]€(R10(1 — R2a2),

ou D(t) est le domaine délimité par ¢ pour lequel la normale & ¢ est la normale sortante. On veut absolument
préserver les courbures totales des faces adjacentes en c¢. C’est pourquoi on impose Rja; = Raaa, c’est-a-dire
a1 = Raan/R;. Cette condition implique :

(0) =2k (22 =)

est en particulier le produit des courbures principales, c’est-a-dire les courbures planes - minimale et maximale - des sections
orthogonales au plan tangent. On rappelle enfin, dans un cadre abstrait, la définition de la courbure sectionnelle, out R est le
tenseur de Riemann associé a une variété (M, <,>),  est un point de M et u, v sont des vecteurs de T, M :

< R(u,v)v,u >
<u,u > 0,0 > — < u,v >2

Kg(u,v) =

5. Détail : féFjkJ:Qﬂ'—Z(ﬂ’—Si)—fFJ_RZQW—E(W—Si)—Kj =2r =Y (m—s;) —2m+ > (m—t;) =D (si — ti)

Seuls les sommets de degré 4 donnent une contribution non nulle, car pour un sommet de degré 3, on a s; = t; = 2{



Si Ry # R, on pourrait avoir L'(0) < 0 en choisissant convenablement le signe de aa. Cela est impossible. En
effet, on ne peut obtenir par variation de Gy aucun graphe de plus petite longueur qui conserve les courbures
totales de ses faces. Conclusion : Ry = Ry et le produit kR est constant le long de c.

Un raisonnement similaire permet de montrer qu’on a nécessairement . k; R; = 0, ou la somme est prise
sur ’ensemble des points d’intersection de v avec Gy et ol les normales permettant de définir k& sont prises
dans le sens de la marche ®. En effet, dans le cas contraire, on devrait étre en mesure de construire une poussée
infinitésimale de Gy dans la direction de y qui occasionnerait un nouveau graphique de plus petite longueur
et divisant S? en régions de mémes courbures totales, ce qui est impossible. On peut donc définir une fonction
de pression p & valeur réelle sur ’ensemble des régions avec la propriété que la différence des pressions de
deux régions séparées par un arc go de Gy ayant une courbure k est donnée par Ap = kR. La fonction p
est définie comme étant nulle sur une région arbitraire et donnée par la formule Ap = kR, successivement
sur des régions adjacentes séparées par un arc de multiplicité un. Pour deux régions adjacentes séparées par
un arc de multiplicité m, nous utilisons la formule Ap = mkR. Notez que si deux régions voisines ont la
méme pression, alors 'aréte du graphique qui les sépare vérifie k = 0 (car R > 0, par hypothése) et sont des
géodésiques, du moins 1a oul elles ne se heurtent pas a d’autres arétes.

Nous considérons maintenant chacun des trois types combina-
toires de graphes admissibles. Supposons d’abord que Gy soit un
O-graphe qui ne s’est pas effondré en huit. Si toutes les pressions
sont égales, alors Gy donne un filet géodésique. C’est ce que nous
allons montrer. Soit F}; une région de pression maximale. On a :

p3 = kiR + koRy + k3R3 = 0 = py
pj —Ppj—1 =kjR; et p; > pj1

Donc k;R; > 0, i.e. k; > 0. De méme on montre que k;j4; < 0.
En signant chaque courbure géodésique des arétes bordant F}; vers
I'intérieur de la face, on arrive & k£ > 0 partout au bord de Fj. La
formule (x) dans le cas du theta donne :

/ k=0
SF;

J

P2 = kiR + ko Ry

Fy

I vient £ = 0. Cela implique que la pression dans les deux autres régions est égale a celle de F; de sorte que
les trois régions ont une pression égale. Etant donné que les arcs de délimitation ne se heurtent pas prés d’un
sommet (condition au sommets, voir Théoréme 2.2), ils commencent comme des géodésiques et ne se heurtent
jamais. Par conséquent, tous les arcs de frontiére sont des géodésiques. Finalement, si Gy ne dégénére pas en
huit, il doit former un réseau géodésique modelé sur le ©-graphe.

Un argument similaire s’applique au graphes & lunettes. Soit encore F; une région de pression maximale.
On a k > 0 a la frontiére et par (2) : k = 0. Si F; est le 4-gone, cela implique que toutes les pressions sont
égales puisque les deux autres régions sont adjacentes a Fj. Si F}; est un monogone, alors le 4-gone a la méme
pression maximale et encore une fois toutes les pressions sont égales. Ainsi, si Gy ne dégénére pas en huit,
il forme alors un réseau géodésique. Le dernier cas est plus délicat a traiter. Nous renvoyons a la preuve du
Claim 1, dans Hass et Morgan (1997), page 3847.

Dans cette approche, I’hypothése de convexité est décisive. Nous espérons, a I'issue de ce mémoire, pouvoir
démontrer Pexistence de 3-filets géodésiques stationnaires sur les 2-sphéres riemannienne en toute courbure.
Pour cela, nous allons privilégier les stratégies de balayages et de rétrécissement des courbes propres a
Birkhoff. Nous aurons recours a la formulation moderne donnée par Tobias Colding et William Minicozzi.

Remarque 2.1. Sur un ellipsoide d’équation ax® + by? + cz% =1, les symétries facilitent la recherche d’un
O-filet. Considérons l'une des trois géodésiques fermées et simples. Le long de l'une des deux autres - dans
un plan perpendiculaire & la premiére - on fait glisser un point P d’ow partent deuz arcs géodésiques dans les
deux directions paralléles au plan de la premiére géodésique. Ces deux arcs rencontrent la premiére géodésique
en deux points. La continuité du flot géodésique permet de désigner P de telle sorte que la rencontre se fasse
avec un angle de 27/3. Un raisonnement symétrique dans I’hémisphére opposé acheéve la construction.

6. Au point z € Gg N, on s’assure que < ¢’,n > soit positif.



Minimiser la longueur sur un espace de filets qui séparent la courbure totale d’une sphére en parts égales est
un principe standard. Il faut néanmoins s’assurer que ’espace sur lequel on minimise est non vide.

Theoréme 2.3
Soit S une 2-sphére riemannienne. Il existe un filet lisse sur S, modelé sur le ©-graphe, qui divise la courbure
totale de Sen trois parts égales.

Démonstration. 1l existe par définition un difféomorphisme ® qui envoie S sur la sphére ronde unitaire de
R3. Considérons v une géodésique fermée et simple de S. On peut choisir ® de telle sorte qu’il envoie v sur

H
léquateur c. On fixe A et B diamétralement opposés sur ®(v) avec § =: (Oz, OB). Soit « € [0, 7).
On construit le demi-plan :

cos(0) sin(0)cos(a)
Iy, =vect | | sin(8) |, | cos()cos(a) N{z>0}= vect(O?7 )N {z >0}
0 sin(a)

Quand « balaye |0, 7[, Il o N S? balaye une famille de demi-grands-cercles de S2.
De méme on construit IIg , en remplagant o par —« et {z > 0} par {z <0}.

On considére :
4
ay = min a|/ Rds:—ﬂ
10,7 & 1{Ily,,NS2|c<a} 3

4
g = max a|/ Rds = —
]=m,0[ ®-1{Ilg ,NS2|o>a} 3

En effet, I'intégrale de courbure qui intervient dans le définition de o et a.g est une fonction continue de « :
elle vaut 0 quand « tend vers 0 et 2w quand « tend vers 7, conséquence de la formule de Gauss-Bonnet et
du fait que « est géodésique. Cette intégrale atteint 47 /3 en vertu du Théoréme des valeurs intermédiaires.
On regarde le ©-filet sur S :

Go =P '(Tlnay NS US H(TIg0s NS?)UD (N {y < tan(h)x})
Conclusion : Gy scinde S en trois zones de courbures totales égales a 47 /3.

Remarque 2.2. Dans l’espace métrique ot nous regardons les Go 7, Uapplication 8 — Gg n’est pas continue.
En revanche, nous pensons qu’il existe d’autres constructions de balayages qui la rendent continue.

FIGURE 2.3 — Construction d’un O-filet divisant S en 3 zones de courbures totales égales.

O

7. Espace des applications [0, 1] x {1,2,3}/R — S2, de carré intégrable, presque partout dérivable et de dérivée au carré
intégrable. R est la relation d’équivalence définie par (0,1)R(0,2)R(0,3) et (1,1)R(1,2)R(1,3).
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Chapitre 3

Colding & Minicozzi :
Une relecture de Birkhoff.

Dans cette partie, nous nous reportons a 'article Min-Maz for sweepouts by curves de Tobias Colding et
William Minicozzi écrit en 2007. Nous présentons les objets et techniques utilisées, puis détaillons les preuves
de deux résultats clés. L’enjeux est de définir le bon espace de courbes sur lequel doit s’appliquer le pull
tight introduit par Birkhoff. On introduit dans ce but ’espace A des applications géodésiques par morceaux
de S dans M avec exactement L angles (éventuellement des angles plats) telles que la longueur de chaque
géodésique ne dépasse pas 27, paramétrée par un multiple constant de longueur d’arc. De telles courbes,
parcourues a vitesse 1, sont L-Lipschitz (conséquence immédiate de I'inégalité triangulaire). L'espace A est
inclus dans ’espace de Sobolev W12 des applications de S' dans M, qui lui confére une topologie induite.
La norme dans W12, donnée par fsl |f|? + |f|?, dépend du plongement de M choisi. Des conditions sur ce
plongement son données dans I'article de Colding & Minicozzi !. Attention : cette norme confére a A, non pas
une structure d’espace normeé - car la norme de Sobolev est définie dans un espace vectoriel de chemins vivant
dans ’espace du plongement de M - mais une structure induite d’espace métrique. Dans tout ce chapitre,
nous reprenons les notations introduites dans la section 2.2.

3.1 Raccourcissement de courbes

Le raccourcissement de courbes - ou pull tight - est une application ¥ : A — A telle que :
(1) U(y) est homotope a v et L(¥(7y)) < L(7).
(2) U(y) dépend contintiment de ~.
(3) 11 existe une fonction continue ¢ : [0,00) — [0, 00) avec ¢(0) = 0 et telle que :

12(y) — me))
2(W() )

(4) Etant donné € > 0, il existe § > 0 tel que, si v € A avec L(y) — L(¥(v)) < 4, alors dist(y, G) < e.

dist®(7, ¥(7)) < & (

11 existe une telle application : on en trouvera une construction explicite dans [Co Mi]. On notera que
cette construction permet de définir ¥ sur W2 tout entier. En revanche, les propriétés qui viennent d’étre
énoncées nécessite la compacité de A. La propriété (4) met en évidence atout discriminatoire de ¥, au sens
ou son action a d’autant moins d’effet sur une courbe v € A que celle-ci se trouve proche de G au sens
de la norme W12 sur A. Elle découle a la fois de la compacité de A, de la continuité de ¥ et d’une

1. Notons qu'’il est possible de définir une norme intrinséque sur A. Le recours naturel au plongement permet de simplifier
certaines preuves. Composer un plongement avec une homothétie n’affecte pas les propriétés variationnelles de la variété. C’est
pourquoi Colding et Minicozzi proposent une dilatation de M qui rende sa courbure suffisamment petite et son rayon d’injectivité
suffisamment grand. Cela se traduit par trois exigences :

— (M1) sup,, |A] < 1/16 ot A est la seconde forme fondamentale de M.
— (M2) Rjn (M) > 81 et R < 1/64, de sorte que toute boule géodésique de rayon < 47 dans M est strictement convexe.
— (M3) Vz,y € M, |z —y| < 1= disty(z,y) <2[z —y|

11



La source de y est découpée
en 2L intervalles.

Portions géodésiques

FIGURE 3.1 — Raccourcissement d’une courbe dans A.

propriété propre a la construction décrite dans [Co Mi] : les points fixes de ¥ sont exactement les éléments
de G. Montrons cette propriété (4), via un raisonnement par l’absurde. S’il existe ¢ > 0 et une suite 7, de
A telle que pour tout j, L(vy;) — L(¥(v;)) < 1/, avec pourtant dist(vy;, G) > €. Puisque A est compacte, il
existe une sous suite 7;, qui converge dans A vers . Par hypothése, la sous suite ¥(+;, ) converge aussi vers
~v. Or, par continuité de WU, cette limite est aussi ¥(y), d’on ¥(vy) = . En tant que point fixe de A, on a
nécessairement v € G. Cela qui contredit ’hypothése selon laquelle les «; restent & distance non nulle de G.
Le Lemme suivant permet de démontrer le Théoréme de la section 3.

Lemme 3.1 (Colding & Minicozzi - Min-Mazx for sweepouts by curves - Lemme 1.4)
Soient W > 02 et € > 0. Il existe § > 0, qui tend vers zéro avec ¢, tel que siy € A et

(x) 2m(W = 8) < L*(¥(7)) < L*(v) < 20(W +4),
alors dist(¥(7),G) < e.

Démonstration. Soient W > 0 et € > 0. Soit 7; > 0, donné par (3), tel que ¥§ > 0, § < 1 = ¢(8) < €2/4.
On rappelle que ¢ est continue positive, avec ¢(0) = 0. Soit 72 > 0, donné par (4), tel que L(y) — L(¥(y)) <
1y = dist(y,G) < ¢/2, ou vy € A.

On pose 6 = min(n1,72) et § = 6 /4.
Supposons que l'on ait 27(W — ) < L2(¥(y)) < L2(y) < 27(W + 96).
Il vient d’une part :

12(7) = L2(W(7)) < 476

L)~ L) < 20 s,

L(y) +L(¥(v)
Donc dist(y, G) < €/2.
Il vient d’autre part :
L) = L(¥()
ZICTCh

Donc dist?(¥(7),v) = ¢ (%) < €2/4, ie. dist(¥(7y),v) < €/2.

L’inégalité triangulaire donne, pour tout g € G :

dist(¥ (), g) < dist(¥(y),v) + dist(v, g)

En minimisant sur G & droite et & gauche, on arrive a la conclusion :

dist (U (7), G) < dist(¥(7),7) + dist(y,G) < €

O

2. Si aucune hypothése n’accompagne a priori le réel W, il se trouve que la prémisse (x) pourra étre satisfaite si I'on prend
pour W la largeur de M et pour «, une courbe suffisament proche de son image par ¥, a la mesure de 6.

12



3.2 Une bonne suite de balayages.

Soit 2 I'ensemble des applications continues B : S* x [~1,1] — M telles que pour tout t, Papplication
B(.,t) est dans W2, Papplication t — B(., ) est continue de [—1,1] vers W2 et enfin, B envoie S* x {—1}
sur des points. Etant donnée une application B € €2, la classe d’homotopie 2 est définie comme 1’ensemble

des application B € € qui sont homotopes & B a travers des applications de 2. Fixons désormais une classe
d’homotopie non triviale de balayages et notons-1a simplement 2 pour plus de lisibilité. Choisissons une suite
d’applications B? € Q (cf. 2.2) avec :

, 1
E(BI(.,t) < W+ -
e (B7(.,1)) +j (%)

On trouvera dans [Co Mi| une construction d’une nouvelle suite de balayages o7 € €2, homotopes & 1’ et dont
les fibres, en plus de vérifier 'inégalité (xx), appartiennent a A. Sur chaque fibre de ces nouveaux balayages,
s’applique le rétrécissement des courbes. On obtient ainsi une troisiéme suite de balayages v/ € €, homotopes
a o7 et définis par : 47 (., t) = ¥(a?(.,1)).

3.3 Presque maximal implique presque critique

Theoréme 3.1 (Colding & Minicozzi - Min-Maz for sweepouts by curves - Théoréme 1.9)
Soient W >0 et € > 0; il existe 6 > 0 tel que, si j > 1/§ et pour un certain ty :

2By () = LAV (., to)) > 2m(W — 6),

alors pour ce j nous avons dist(y7 (., 1), G) < €.

Démonstration. Précisons que sur A, I’énergie n’est autre que la longueur au carré, divisée par 2.
Cela dit, soit W > 0 et € > 0. Soit encore § > 0, donné par le Lemme 3.1.1, tel que :

(o € Aet 2m(W —6) < L*(¥(0)) < L*(0) < 2r(W +8)) = dist(¥(0),G) < ¢
Supposons que j > 1/8 et qu'il existe o tel que :
L*(v7(.,t0)) > 2m(W — 0)
Comme v/ (., to) = W (a7 (., to)) avec L(W(a?(.,t9))) < L(07(.,to)), il vient :
2(W — 8) < L2(W(a7 (., t0))) < L*(o7 (., t0))

Or, par (x*), L%(07(.,t9)) = 27 E(07(., 1)) < 2m(W +1/j) < 2x(W +6).
En vertu des qualités conférées a 4, il vient : dist(y7(.,t0), G) < e.
L]

Appliquons enfin le théoréme 3.3.1 a la largeur W de M (relativement a un balayage canonique non
trivial) et & € > 0, aussi petit que l’on veut. Prenons j > 1/§ o ¢ est donné par le Théoréme. Ainsi a-t-on :

W < E( (.t
< mnax (¥ (-, 1))

Soit ¢ le paramétre qui réalise le maximum. On a E(v7(.,ty)) > W —4. Cela implique que dist(y7 (., o), G) < e.
Nous pouvons donc construire une sous-suite de fibres qui converge dans A compact, vers une limite ~, tout
en s’approchant toujours plus de G. Comme G est fermé, si v n’appartenait pas a G, les fibres de la sous-suite
finiraient par s’accumuler dans un voisinage ouvert de y distinct de G, c’est-a-dire a une distance minimum
de G : Impossible! Donc v € G.
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Chapitre 4

Traque d’un 3-filet géodésique
stationnaire dans une 2-sphéres a
pantalon, par balayage tripodal.

L’article de Joél Hass What is an almost normal surface montre l'existence d’un découpage de la 2-spheére
le long d’un ensemble saturé maximal G de géodésiques fermées et simples - saturé au sens ol toute autre
géodésique fermée et simple doit couper un élément de I’ensemble ; maximal au sens du cardinal * - découpage
qui, & défaut d’étre unique, dresse une liste exhaustive de constituants topologiques permettant de décrire
une 2-sphére : le pantalon, la nasse, le bonnet. Le premier est une sphére privée de trois disques disjoints
délimités par des éléments stables de G. La nasse est un anneau bordé par deux éléments de G, I'un stable,
I'autre instable. Le bonnet est un disque bordé par une géodésique instable de G. La présence d’un pantalon
étant salutaire pour la recherche que nous faisons, nous classons les 2-sphéres de la fagon suivante :

— Les sphéres portant au moins un pantalon.
— Les double-bonnets, dont les sphéres convexes.

— Les concaténations de nasses par paires renversées, se refermant sur des bonnets.

FIGURE 4.1 — Familles saturées maximales de géodésiques fermées sur des 2-sphéres

Notre objectif dans cette section, est de prouver l'existence d’un 3-filet géodésique stationnaire au niveau
des pantalons. Ne suivent pour le moment que des esquisses de preuves. Nous allons élaborer une procédure
de min-max adaptée a la topologie du pantalon et & celle de la cible : le 3-filet. Nous nous inspirons du
formalisme de Colding et Minicozzi. Il faut pourtant définir une nouvelle procédure de rétrécissement, plus
délicate a manier. Le balayage standard que nous proposons consiste a accrocher trois anneaux aux bords du
pantalon et de les faire se nouer au centre, le long d’un 3-filet. Détaillons maintenant cette construction.

1. Cardinal éventuellement infini si la sphére contient un trongon annulaire plat ou torique.
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4.1 Balayage tripodal d’un pantalon.

Soient P C M un pantalon de bords 1, 72,73 (géodésiques) et Q I'ensemble des applications continues
B: S x{1,2,3} x [0,1] — P, injectives sur S* x {1,2,3} x [0,1[ ou, Vi,Vt,B(.,i,t) est dans W2, On
demande, pour i = 1,2, 3, le raccord aux bords : S! x {i} x 0 — Im(7;). A i et t fixés, on rappelle que es
applications s — B(s, i,t) sont munies de la norme de Sobolev donnée par :

B0l = [ (BF+ BP)
Sl
De plus, on exige en t = 1 une rencontre des trois manches en un 3-filet F :

et B =:B(0.5,1,1) = B(0.5,2,1) = B(0.5,3,1).
,2,1,) =B(s+0.5,3,1) et Vs € [0.5,1], B(s,1,1) = B(s,2,1).

s
I
o
—
=
—_
—
N—
Il
[a—
=
=
—
N
Il
Salion
—
=
w
~ =
w ~—

La réunion des courbes t — B(0,14,t),¢ = 1,2,3 d’une part, des courbes t — B(0.5,4,t),7 = 1,2,3 d’autre
part, forme deux tripodes T4 et Tg qui sont la colonne vertébrale de notre balayage.

A (s=0)
i=1
i1=2
1=3

B (s=0.5)

FIGURE 4.2 — Balayage tripodal d’un pantalon

4.2 Largeur tripodale d’un pantalon.

cations B € Q homotopes a B & travers des applications de Q. A toute classe d’homotopie Q(B), on associe

la largeur W = W (B), définie en prenant l'infimum du maximum des énergies des tranches B(., {1,2,3},1) :

Etant donné une application Be Q, la classe d’homotopie Q(B) est définie comme ’ensemble des appli-

W= inf max E(B(,{1,2,3}1))
BeQ(B) t€[—1,1]

ott Vénergie est donnée par E(B(.,{1,2,3},t)) = S0_, [ [8s(s,i,t)[?ds.

La topologie de P et les hypothéses sur 2 impliquent ? qu’il existe un réel strictement positif qui minore
lénergie de toute fibre B(.,,t). C’est pourquoi la largeur W est nécessairement strictement positive.

4.3 Procédure de resserrement du balayage

Soit B € Q. A Vinstar de Birkhoff, nous allons définir une procédure de rétrécissement de B. Le paragraphe
suivant résume une fausse piste que nous avons empruntée et dont on a tiré des legons.

2. Ce point est a détailler.

15



— s=20
t=1
_____ Géodésiques

FIGURE 4.3 — Point de Fermat

Remarque 4.1 (Fausse piste). Pour augmenter nos chances qu’une suite décroissante de balayages converge
vers un filet stationnaire, nous avons eu l’idée de redresser chaque balayage en ses deux sommets de sorte que
le 3-filet central satisfasse la condition au angle du Théoréme 1.1. Malheureusement, l’angle formé par deuz
arétes n’est pas une fonction continue sur l’espace des paires jointes d’arétes W12, En témoigne la figure 4.4
ci-dessous. Voici le détail de cette construction. Il s’agit de redresser le S-filet F (t = 1) au niveau de ses
deuzx sommets, ainsi que les fibres de B pour t proche de 1. Nous détaillons le protocole pour le point A. Soit
r > 0 suffisamment petit mais mazimal, pour que D(A,r) et D(B,r) satisfassent trois conditions : Il doivent
étre convexes, contenus dans les disques d’injectivité de chacun de leurs points et leurs frontiéres ne doivent
ni se toucher, ni couper les fibres de B en plus de deux points. On note E, F,G les points d’intersection de
C(A,r) et F. On note également Hy, Ho, H3 les points d’intersections de C(A,r) et du tripode T4 (s =0).
Il existe trois réels €1, €, €5 dans [0,1] tels que H; = B(0,4,1 — ¢€;) pour i = 1,2,3. Soit A’ le point de Fer-
mat® du triangle EFG. On remplace le 3-filet, entre A et E, F,G, par des arcs géodésiques issus de A’. On
remplace le tripode Ty, entre A et Hy, Ho, H3 par des arcs géodésiques issus de A’. Enfin, pouri=1,2,3 et
t €]1 —¢;, 1], la courbe B(.,i,t) rencontre le cercle C(A,r) en deux points et le nouvel arc géodésique A'H; en
un point situés entre les deux premiers. On interpole alors ces trois points par deuxr géodésiques. On obtient
un nouveau balayage tripodale B € Q. On pourra vérifier sa continuité en t.

FIGURE 4.4 — Non continuité de ’angle

D’abord, transformons chaque demi-fibre* de B en une application géodésique par morceaux. Cette opé-
ration, continue en t, consiste a scinder les intervalles [0, 0.5] et [0.5, 1] en intervalles conjoints sur lesquels on
remplace la fibre par un troncon de géodésique ®. Le nombre d’intervalles doit étre pair et suffisamment grand

3. Le point de Fermat d’un triangle ABC dans le plan - dont les angles n’excédent pas 120° - est I'unique point F' tel que
(FA,FB) = (FB,FC) = 27/3. De plus, la somme des distances FA, FB et F'C est minimisante. L’énoncé est transposable sur
une surface riemannienne, & condition que le triangle se trouve & l'intérieur du disque d’injectivité de chacun de ses sommets :
il existe un point F et trois géodésiques [F'A], [F'B] et [F'C] qui se rencontrent en F suivant un angle de 27/3 et telles que la
somme de leurs longueurs est minimisante. En revanche, si 'un des sommets forme un angle de plus de 120°, alors le point de
Fermat n’est autre que ce sommet.

4. Por 0<s<1/2et1/2<s<1.

5. On vérifiera qu’au bord des manches du pantalon, cette procédure est bien définie. Cela tient au fait que le voisinage des
bords est géodésiquement convexe.
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pour que l'interpolation soit bien définie. Elle permet de regarder les nouvelles demi-fibres dans l'espace I'
défini ci-aprés, sur lequel s’applique la procédure de rétrécissement introduite dans la définition 4.1.

Soit F[La,b]a ou simplement T" §’il n’y a pas d’ambiguité, espace des chemins ¢ : [a, ] — P géodésiques par
morceaux avec L angles, éventuellement plats, correspondant & une partition de la source, propre a chaque

chemin :
L

[a,b] = U[ﬂﬁi,wiﬂ}, onta=x0 < <xp41=">
i=0
Sur chaque morceaux, on demande que ¢ soit I'unique plus courte géodésique de z; & x;41. On remarque que
L doit étre impair et suffisamment grand pour que ((L+ 1) Rinj(P))? >> 27rW. L’espace I' est métrique pour
la norme W12, On vérifiera qu’il est compact. Nous définissons maintenant une application de resserrement

des fibres du balayage, qui se veut un analogue dans notre situation & celle de Colding-Minicozzi que nous
avons utilisée a la section 3.1.

Définition 4.1
Soit (zg,...,xr+1) un découpage de [a,b] en L+ 1 intervalles et soit v € F[La,b]. On précise que les angles de
v ne sont pas nécessairement situés en (To,...,Tr41).

— On remplace v par une géodésique sur chaque intervalle [Ty, Togt2]k—o,...,(L—1)/2 Pour obtenir 7.
— On remplace 7 par une géodésique sur chaque intervalle [Toy1, Tory3|p—o,...(L—3)/2, Pour obtenir 4.

— On re-paraméltrise 4 pour obtenir une courbe & vitesse constance, en tout point de dérivabilité.

On note I1(7y) la nouvelle application [a,b] — P.

yixg)

Yixy)

yixy)

FIGURE 4.5 — Application II

Proposition 4.1 (Non démontrée - Jugée raisonnable, a 'aune de la section 3.1)
Lopérateur I1 : T’ — T de la précédente définition vérifie quatre propriétés, semblables o celles de ¥ :

(1) (~y) est homotope a v et L(II(v)) < L(v).
(2) II(y) dépend contindment de ~.
(3) Il existe une fonction continue ¢ : [0,00) — [0,00) avec ¢p(0) =0 et telle que :

Bm—ﬂmw»
M) )

(4) Etant donné e > 0, il existe § > 0 tel que, si y € I' avec L(vy) — L(IL(v)) < 8, alors dist(y,G) < €, ou G
est l’espace fermé des géodésiques a deux bords.

dm%%Hw»s¢(
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4.4 Vers une preuve d’existence.

Soit B/ une suite de balayages qui satisfait :

1
E(B(.,{1,2,3},6)) < W + =
Jnax (B({ 1) +j

Soit I'>2 I’ensemble des triplets de paires de chemins dans I' joints en leurs extrémités. Plus précisément, c’est
Pensemble des applications : 7 : [0,1]x{1,2,3,4,5,6} — PouVi=1,...,6:T(.,i) €TetT(0,1)=7(0,2);
7(0,3) =T(0,4); 7(0,5) = T7(0,6) (idem pour 7 (1,—)). On munit ['*? d’une structure d’espace normé ott
la norme d’un élément 7 est la somme des normes de ses 6 arétes dans I' (idem pour la longueur). Les arétes
jointes le demeurent & la limite, c’est pourquoi I'*? est fermé. Ci-aprés deux résultats dans I'>2. Ce sont des
analogues du Lemme et du Théoréme de la partie 3. On note II(T), pour 7 € I'*:2, 'élément de T2 tel que
Vi=1,...,6 : I(T)(.,i) = O(T(.,4)). Comme II fixe les extrémités, on a bien II(7)) € I'>2. On note G*2
I’ensemble des triplets de paires de géodésiques dans G jointes en leurs extrémités.

Lemme 4.1
Soient W >0 et e > 0. I existe 6 > 0 tel que, si T € I'3? et

(%) 27(W —68) < L*(T(T)) < LA(T) < 2n(W +6),

alors dist(TI(T), G>?) < e.

Démonstration. Soient W > 0 et € > 0. Soit 19 > 0, donné par (3), tel que ¥§ > 0, § < g = ¢(8) < €2/144.
On rappelle que ¢ est continue positive, avec ¢(0) = 0. Soit, pour i = 1,...,6, ; > 0, donnés par (4), tels
que L(¢;) — L(TI(¢;)) < 1 = dist(c;, G) < €/12, ou les ¢; sont les arétes d’'un T € I'®2, jointes deux par
deux en leurs extrémités. Si L(T) — L(II(T)) < min n;, alors dist(7, G>?) < €/2.

On pose 6 = min(1o, 7;) et § = 6 /4.
Supposons que U'on ait 27(W — §) < L2(II(T)) < L3(T) < 27(W +9).
Il vient d’une part :

LA(T) — L*(T(T)) < 476

<6 < min 7;

Donc dist(7,G3?) < €/2.
De méme, on montre que dist(II(7),7) < e.

L’inégalité triangulaire donne :

dist(II(7), G*?) < dist(IL(T), T) + dist(T, G*?) < e

Theoréme 4.1 (Voir Théoréme 3.1)
Soient W >0 et € > 0; il existe 6 > 0 tel que, si k> 1/§ et pour un certain tq :

2 E(2%(.,{1,2,3},t0)) = L2(2%(.,{1,2,3},t0)) > 27(W — 6),

alors pour ce k nous avons dist(Z%(.,{1,2,3},t), G>?) < e.
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Dans I’état actuel de nos recherches, nous aboutissons & deux conjectures, sous la forme d’un porisme :

Conjecture 4.1.

Si 1 est valeur d’adhérence des temps de réalisation des mazimums d’énergie, alors on considére une sous-suite
de tranches B*(.,{1,2,3},t3) telle que :

, 1
mag E(B*(.,{1,2,3},t) = B(B*(.,{1,2,3},t,) < W + 7 avee , — 1
tel0,

On redresse chaque balayage B pour construire un balayage B dont les tranches B¥(.,{1,2,3},t) sont dans
I'32. On applique enfin lopérateur 11 & toutes les demi-fibres de Aék, pour obtenir un troisiéme balayage noté
Zk homotope & B*. On a : Wt € [0,1], 2%(.,{1,2,3},t) = T(B*(.,{1,2,3},t)). Le théoréme 4.1 précédent
s’applique alors et une certaine suite de tranches Z*(.,{1,2,3},t,) doit converger vers trois paires de demi-
fibres géodésiques. Comme ti, —» 1, et bien qu’en général ty, # t),, nous pensons que cette limite est un 3-filet
géodésique stationnaire.

Conjecture 4.2.

Si 1 n’est pas valeur d’adhérence des temps de réalisation des maximums d’énergie, alors redresse chaque
balayage B* comme précédemment. Il existe h tel que pour tout s € [1 — h,1], s n’est pas non plus valeur
d’adhérence des temps de réalisation des mazximums d’énergie. On sait que VU est homotope a l'identité. On
construit une famille continue d’opérateurs Uy, pour s € [0,1] telle que U5 = ¥ pour tout s € [0,1 — h] et
U, = Id. Cette homotopie, dont on trouve une description dans CrokeS, est telle que s < t = (L(vy) —
L(Yy(7))) < (L(y) — L(Y4(v))). On applique, pour tout s € [0,1], lopérateur ¥, auz trois fibres B*(.,i,s

pour obtenir un troisiéme balayage noté Z*. Il s’agira de montrer que Z* est continu en t et homotope a B¥.
Nous pensons pouvoir conclure qu’il existe une suite de tranches de ZF qui converge vers trois géodésiques
fermées, simples et disjointes.

Supposons que ces conjectures soient vraies. Dans un pantalon, trois géodésiques fermées, simples et
disjointes ne peuvent étre que les trois bords 71, v2 et 3. La situation de la deuxiéme conjecture est donc
impossible, puisqu’en courbure négative, ces bords ne sauraient ni réaliser un maximum d’énergie, ni mini-
miser une suite de maximums d’énergie. Donc, seule la situation de la premiére conjecture a lieu et il existe
un 3-filet géodésique stationnaire dans P.

4.5 Autre esquisse de preuve - ol I’on n’utilise pas de balayage

Soit I' l’espace des chemins ¢ : [0,1] — P géodésiques par morceaux avec L angles, éventuellement plats,
correspondant & une partition de la source, propre a chaque chemin :

L
[0, 1] = U[xi,$i+1}, oul=zxp<--- < Tr41 = 1
=0

Sur chaque morceaux, on demande que c soit I'unique plus courte géodésique de z; & x;41. On remarque que
L doit étre impair et suffisamment grand pour que ((L + 1) Rinj(P))? >> 27rW. L’espace I est compact.

Soit H la classe d’homotopie - dans l'espace des O-filets sur P avec arétes c; 23 dans I' - d'un O-filet
canonique tel que Vi € Z/3Z, la concaténation de ¢; et ¢;11 est homotope & 7;42. Nous pensons qu’un tel
représentant existe (cf. figure 4.5). Par ailleurs, étant donnée une suite de ©-filets dans H, les suites induites
d’arétes (c)nen ne peuvent converger dans I' que pour former un ©-filet limite ou un graphe en huit. En
effet, pour ¢ # j, on montre qu’il ne peut y avoir convergence des deux suites (c') et (c?), ni vers deux points

(nécessairement confondus), ni vers une méme aréte. Supposons que (c}') et (c}}) convergent 7 vers un méme

chemin constant. Pour tout n, il existe par hypothése une homotopie Al : [n,n + 1] x [0,1] — P entre ¢} et
C;H'l, ainsi quune homotopie h} : [n,n +1] x [0, 1] — P entre ¢} et C;H_l, toutes deux issues de I’homotopie
dans H entre les deux O-filets dont on a extrait les arétes c* et ¢} d’une part, C?H et C?H d’autre part. On

6. Area and the lengthof the shortest closed geodesic, 1986 - Pages 4 et 5.
7. On pourra observer qu’une suite de paires accrochées d’éléments de I" ne peut converger que vers une paire accrochée
d’éléments de I', qui est compact.
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a pour tout t et pour tout n : A'(t,0) = h7(t,0) et hj'(t,1) = h}(t,1). On construit deux homotopies qui
relient chaque terme des suites (c}') et (c}) :

hi + [0,1[x[0,1] — P telle que h;(t, s) = h DI (f(t), 5) o f(t) = %t —1
1
@:DJVWJL—»Pquwhﬂm@:hy@%ﬂm@ouﬂﬂzii?—l
On prolonge ces homotopies en 1 en posant h;(1,.) = lim (c') et h(1,.) = lim (c}).
n—>aoo n—moao0

On a pour tout ¢ : hi(t,0) = h;(t,0) et hi(t,1) = h;(t,1). Ainsi la concaténation de ¢ et ¢} forme un
lacet homotope a un point, & travers des lacets de P. Or, par hypothése, elle est aussi homotope a I'une des
trois composantes de bord de P. Le lemme suivant montre qu’il n’est pas possible qu'une composante de
bord de P soit homotope & un point.

Lemme 4.2
Une variété topologique compacte connexe a bord, de dimension 2, dont l'une des composantes de bord est un
cercle homotope a 0, est nécessairement un disque.

Ainsi, (') et (C?) ne peuvent s’écraser en un seul point. On montre de méme qu’elles ne peuvent s’écraser
I'une contre 'autre sur toute leur longueur. On pose :

W = min E(F)
H

En vertu du raisonnement précédent, on a nécessairement W > 0.
On extrait dans H une suite de O-filets telle que : W < E(F/) < W +1/j (x).
On note II(F) € H le filet obtenu en appliquant II aux trois arétes de F. On a pour tout j :

W < E(I(FY)) < B(F?) < 1/j

Cela implique :

3 3
0< B - 3 B <
3
, 1
0< 3 (B - Bel)) < 3
Pour i = 1,2, 3, il vient :
0< B(I)) - B() < 5
L)) - L(d) < il <

JLAU)) + L)) J

Soit € > 0 et soit 0 prescrit par la propriété (4) de la Proposition 4.3.1. Soit enfin j > 2m/§. D’aprés cette
méme propriété (4), L(c]) < e pour i = 1,2,3. Ainsi la suite 77 converge-t-elle vers un 3-filet géodésique
N. Une des arétes peut converger vers un point ; il s’agit alors d’un 3-filet géodésique modelé sur le graphe
en 8. Nous savons en outre que E(N) = W, de sorte que toute variation de N' augmente son énergie et sa
longueur totale. C’est donc un 3-filet géodésique stationnaire.

Conclusion : Notre procédure de minimisation sur une famille de ©-filets conduit a I’existence d’un 3-filet
stationnaire sur les pantalons, modelé sur le ©-graphe ou le graphe en 8. Néanmoins, une procédure de mi-
nimisation sur un espace convenable de 3-filets modelés sur le graphe en 8, décrits comme images de S* dans
un pantalon géodésiquement convexe, ot I'on impose un point de contact, donne déja depuis Poincaré une
géodésique fermée qui s’auto-intersecte une fois, c’est-a-dire un cas particulier de huit stationnaire. Ainsi,
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FIGURE 4.6 — Dégénérescence du ©-filet

notre preuve n’est-elle peut-étre pas satisfaisante, dans le sens ou elle ne garantit pas I'existence d’un objet
nouveau. Nous aimerions savoir par exemple s’il existe toujours un 3-filet stationnaire modelé sur le ©-graphe
dans un pantalon - c’est précisément I’enjeu de la partie précédente, demeurée au stade de la conjecture. Par
ailleurs, si un 8 limite est minimisant parmi les 8 et les ©, il ne I'est pas parmi tous les 3-filets. En effet,
un graphe a lunettes pourrait modeler un 3-filet stationnaire optimal. La topologie particuliére du pantalon
nous invite a rechercher un résultat plus fort que la stationnarité, a savoir étre minimisant.

Calendrier de recherche : Dans un premier temps, nous nous attacherons & prouver les deux conjectures
du chapitre 4, nous aurons alors montré ’existence de ©-filets stationnaires dans les pantalons. Si le cas du
pantalon présente des avantages topologiques, les deux autres types de 2-sphéres - & savoir les doubles bonnets
et les concaténations de nasses - charrient de nouveaux problémes. Nous privilégierons deux approches pour
tenter de construire des 3-filets stationnaires sur n’importe quelle 2-sphére. La premiére sera quantitative : Le
chapitre suivant nous donne des estimations pour balayer une sphére avec des cercles de longueur limité, qui
doivent s’articuler autour de ©-filets. Une traque de type algorithmique pourrait nous permettre de resserrer
le filet sur notre proie. La deuxiéme est qualitative : nous essaierons de balayer la sphére directement avec des
O-filets. Il s’agira de décrire un représentant de classe convenable pour qu'un procédure de min-max puisse
aboutir. L’avantage de cette procédure est que la procédure de min-max ne peut qu’aboutir & un ©-filet.
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Chapitre 5

Un nouvel horizon :
L’article de Yevgeny Liokumovich

Dans son article de 2014 Slicing a 2-sphére, Yevgeny Liokumovich tente de séparer la 2-sphére en zones d’aires
maximales, avec des lacets de longueurs minimales. Par ailleurs, il décrit comment envoyer une sphére dans
un arbre trivalent, de telle sorte que les pré-images des sommets trivalents soient des O-filets de longueur
controlée. Nous rapportons ici quelques résultats qui nous semblent pouvoir éclairer notre recherche a venir
sur les filets.

Il y a une obstruction & la division d’une 2-sphére M en deux hémisphéres d’aires grandes par une courbe
simple et fermée petite. En effet, si M est une pieuvre aux tentacules suffisamment minces et longues, alors
pour tout r > %, la longueur de la courbe fermée simple la plus courte subdivisant M en deux régions d’aire
> r|M| peut étre arbitrairement grande. Alexander Nabutovsky pose la question suivante : quelle est la
valeur maximale de r € [i, %] telle que pour un certains ¢(r), chaque 2-sphére riemannienne d’aire 1 peut
étre subdivisée en deux disques d’aire > r par une simple courbe fermée de longueur < ¢(r) ? !

Un premier résultat apporte une réponse a cette question.

Theoréme 5.1 (Slicing a 2-sphére, Theorem 1, page 2)
Il exziste une simple courbe fermée v de longueur inférieure a 26+/|M| qui subdivise M en deuz sous-disques
d’aire supérieure a |M|.

Theoréme 5.2 (Slicing a 2-sphére, Theorem 2, page 2)
1l existe une application f de M dans un arbre trivalent T, telle que les fibres de f ont une longueur < 26+/| M|
et une topologie controlée : la pré-image de chaque point intérieur est une simple courbe fermée, la pré-image
de chaque sommet terminal est un point et la pré-image de chaque sommet de degré 3 est homéomorphe au
O©-graphe.

Theoréme 5.3 (Slicing a 2-sphére, Theorem 3, page 2)
Il existe une fonction de Morse f: M — R dont les fibres ont une longueur qui n’excéde pas 52+/|M|.

Définition 5.1 (Slicing a 2-sphére, Definition 9, page 8)
Une application f de My, vers un arbre trivalent T est appelée une T-application si la topologie des fibres de
f est controlée dans le sens suivant : la préimage de tout point & l'intérieur d’une aréte de T est un cercle, il
existe k sommets terminaux xy € T, tels que f~1(xy) est une composante connexe de OMy, la pré-image des
autres points terminaux de T sont des points et la pré-image d’un sommet trivalent de T est homéomorphe
au 0-graphe.

1. Pour r = i, Panos Papasoglu a trouvé c(r) = 2v/3 (Cheeger constants of surfaces and isoperimetric inequalities, 2009).
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FIGURE 5.1 — T-application vers un arbre trivalent a 8 sommets, dont 5 points terminaux.

Remarque 5.1. Le balayage du pantalon que nous décrivons dans la partie 4 peut étre décrit comme les
niveaux d’une T-application vers un tripode, ou les 3 points terminaux ont pour pré-images les 3 composantes
de bord du pantalon. La pré-image du sommet trivalent est un ©-filet.

Theoréme 5.4 (Slicing a 2-sphére, Theorem 10, page 8)
Pour r € (0, i] et tout € > 0, il existe une T-application f de M,, p > 0, telle que chaque fibre de f a une

longueur inférieur a 1_6\(;1)? + |OM,| + €.

Lemme 5.1 (Slicing a 2-sphére, Lemma 11, page 9)
Soit Ay et Ay deux sous-variétés lisses fermées (avec frontieére) de M,, telles que o = A1 N Ay est un arc
conneze. Soit ¢; la composante connexe de 0; qui contient o. Supposons que |cq Uco| < L et que chaque A;
admet une T-application avec des fibres de longueur < L, alors Ay U Ay admet une T-application avec des
fibres de longueur < L.

Lemme 5.2 (Slicing a 2-sphére, Lemma 12, page 9)
Pour tout € > 0, il existe | > 0 tel que pour tout disque D C M, avec |0D| <, il existe un difféomorphisme f
de D vers le disque fermé standard Dy = {x?+y? < 1} tel que la longueur de chaque pré-image f~*({z%+y? =
cte}) n’excéde pas (1 + €)|0D].

Lemme 5.3 (Slicing a 2-sphére, Lemma 13, page 10)
Pour tout € > 0, il existe A > 0 tel que pour tout disque D C M, avec |D| < A, il existe une T-application
f de D avec des fibres plus courtes que |0D| + e.
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