
L M J L

UMR 6629 - Nantes

Master MFA

Rapports de stage M2

Parcours

Algèbre - Géométrie

•	 Nil Garcés de Marcilla Escubedo : Introduction à l’Analyse topologique des données
					 et étude de l’algorithme ToMATo

•	 Clovis Chabertier : Dualités de Koszul algébrique, opéradique et propéradique

•	 Lucas Darbas : Cohomologie de Hochschild des schémas

•	 Thibault Chailleux : Décomposition des transformations birationnelles du plan projectif complexe

•	 Mahmoud Elimam : Lagrangian cobordisms and surgery

•	 Jean Chartier : Existence d’un 3-filet géodésique stationnaire sur une 2-sphère

MÉMOIRE STAGE

Master 2 : Mathématiques et applications
(Algébre et géométrie)

Faculté de Sciences - Université de Nantes

Introduction à l’Analyse topologique
des données et étude de l’algorithme

ToMATo

Auteur : Nil Garcés de Marcilla Escubedo

Tuteur : Bertrand Michel
Écrit à : Laboratoire de Mathématiques Jean Leray

Nantes, 28 juin 2020

Remerciements

Ce mémoire n’aurait pu se terminer sans l’aide des personnes qui m’ont accompagné pendant
ces derniers mois si particuliers.
Je voudrais tout d’abord adresser toute ma gratitude à M. Bertrand MICHEL, professeur et cher-
cheur à l’Université de Nantes, qui, en tant que tuteur de mémoire, m’a guidé pendant tout le
travail et m’a aidé en tout moment pour continuer à avancer. Grâce toutes nos visioconférences
et sa confiance et patience, surtout quand ma motivation était un peu plus faible, j’ai finalement
appris plus de choses que je ne le pensais au début de ce travail.
J’aimerais aussi remercier M. Marc GLISSE, chercheur à INRIA-Saclay, qui a été disponible à tout
moment pour répondre à mes interrogations sur le code de façon très précise et efficace.
Je désire aussi remercier les professeurs de l‘Université de Nantes en général, qui m’ont fourni les
outils nécessaires à la réussite de mes études universitaires en France.
Finalement, je voudrais exprimer ma reconnaissance envers ma famille, mes amis et collègues. Ces
derniers m’ont apporté leur soutien moral et intellectuel tout au long de ma démarche. Plus spéciale-
ment, je remercie les résidents de la cité universitaire et alentours. Durant la période de confinement
ils sont devenus comme une partie à part entière de ma famille.

Abstract

The goal of this memoir is to expose and manipulate some modern concepts and tools in the
Data Science domain.
In the central part of the work, some basic notions and results of the emerging field of Topological
Data Analysis (TDA) are explored, notably persistent homology and persistence diagrams, together
with some stability results. Several effective algorithms to compute the homology groups and the
persistent homology of a (filtration of a) simplicial complex are also given.
Together with that, following a more general approach, a brief survey of the Machine learning pa-
radigm and some clustering algorithms are exposed in the first two chapters.
In the last chapter, the recently developed clustering method ToMATo is studied. This algorithm re-
lies heavily on some of the concepts explained in the previous chapters. The theoretical study of this
method is then followed by a more practical section in which programming takes the leading role :
a (rather visual) exploration (in Python) of the implementation of this algorithm in the GUDHI
library is carried out, as well as a little guide to understand its parameters and functionalities.

2010 Mathematics Subject Classification : 55Uxx, 62H30, 68T01

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Table des matières

0 Introduction ii

1 Introduction à l’apprentissage automatique 1
1.1 Machine Learning : idée générale et premiers exemples 1
1.2 Motivations . 2
1.3 Méthodologie et différents types de systèmes d’apprentissage 3
1.4 Problèmes et challenges du Machine Learning . 4

2 Plus en détail : algorithmes de clustering habituels 6
2.1 Considérations générales . 6
2.2 Algorithmes de clustering combinatoires . 7

2.2.1 K-means clustering . 8
2.2.2 Clustering hiérarchique . 9

3 Introduction à l’Analyse topologique des données 12
3.1 Idée générale et motivation . 12
3.2 Complexes simpliciales, recouvrements et le Théorème du Nerf 12
3.3 Inférence homologique . 16

3.3.1 Homologie simpliciale et nombres de Betti . 17
3.3.2 Filtrations . 19
3.3.3 Un algorithme pour calculer les nombres de Betti 21
3.3.4 Homologie persistante : définitions et algorithmes 22
3.3.5 Diagrammes de persistance et stabilité . 27

4 L’algorithme ToMATo 32
4.1 Introduction . 32

4.1.1 L’intuition derrière l’algorithme : le cas continu 32
4.2 Les données d’entrée (input data) . 34

4.2.1 Quelques constructions de graphes habituelles 34
4.2.2 Quelques estimateurs classiques de la fonction de densité 36

4.3 La procédure de l’algorithme . 37
4.4 Information finale obtenue . 38
4.5 Mise en œuvre de l’algorithme et exploration . 40

Références 41

Annexe : A handy guide to using the ToMATo algorithm 41

i

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

0. Introduction

L’importance des domaines de la science des données (Data Science) et l’apprentissage auto-
matique (Machine Learning) continue à croître dans le monde avec l’évolution technologique de
notre époque. Dans ce contexte, de nouvelles idées et méthodes sont constamment développées
pour traiter, analyser et exploiter la grande quantité de données qui nous entourent. Seule une
bonne formulation mathématique peut justifier la pertinence des nouveaux algorithmes et son im-
plémentation.

Parmi le grand nombre de méthodes existantes dans la science des données, nous trouvons les
méthodes de clustering, ou segmentation des données. L’objectif de ces dernières est de trouver
des sous-groupes "naturels" dans notre information de départ. Dans chaque groupe, les données
seraient, sous une définition à préciser, plus "similaires" entre elles. Les problèmes de clustering sont
particulièrement difficiles à traiter en raison de leur nature exploratoire et non-supervisée. Ainsi,
la convenance d’un algorithme de clustering ou d’un autre dépend en grande partie des caractéris-
tiques des données d’entrée.

En parallèle à l’apparition de nouvelles techniques pour réaliser des tâches spécifiques, diffé-
rentes approches générales à la science des données sont aussi développées. Le domaine émergent
de l’Analyse topologique des données (TDA en anglais) étudie les ensembles de données en utilisant
des idées de la topologie et de la géométrie. Ce domaine illustre pleinement ce phénomène. L’intérêt
pour ce champ d’étude, avec plein de nouveaux concepts et résultats, augmente de plus en plus, et
actuellement de nombreux algorithmes très efficaces s’appuient sur la base théorique de la TDA.

Le récemment développé algorithme de clustering ToMATo (Topological Mode Analysis Tool)
fait partie de ces nouvelles méthodes. Au coeur de son fonctionnement apparaissent les notions
d’homologie persistante et les diagrammes de persistance, très habituels dans la TDA. De plus, une
implémentation de cet algorithme a été récemment ajouté dans la librairie GUDHI, l’un des outils
de programmation de référence dans ce nouveau domaine. Il semble donc raisonnable de faire une
exploration théorique mais aussi pratique / informatique de cette technique qui vient d’être conçue.

Structure de la mémoire

Tout d’abord, dans le premier chapitre, nous verrons une exposition générale du domaine de
l’apprentissage automatique ; plusieurs concepts de base récurrents sont introduits dans cette par-
tie. Nous essaierons aussi de répondre à trois questions significatives : qu’est-ce que le Machine
Learning, pourquoi est-il utile, et comment les ordinateurs arrivent à "apprendre" et à améliorer
sa performance. Les références principales de cette partie sont [3], [7] et [9].

Puis, au chapitre 2, nous développerons qu’est-ce que le clustering, ainsi que des notions clés
dans l’étude de cette technique. Le contenu de ce chapitre est important afin de mieux comprendre
l’algorithme ToMATo, ses innovations et ses particularités. Une partie des algorithmes les plus
communs seront expliqués, et nous verrons aussi comment traiter les données pour appliquer au
mieux ces méthodes. Les références les plus importantes de cette section sont principalement [9] et
la documentation en ligne de la librairie Scikit-Learn [11], [12].

Le troisième chapitre constitue la partie la plus dense et mathématique du mémoire. Certains
des concepts les plus fondamentaux de l’Analyse topologique des données y sont exposés. Nous

ii

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

verrons d’abord comment construire un complexe simplicial sur un nuage de points, et pourquoi
cette construction est intéressante. Ensuite, nous ferons l’inférence homologique de ces complexes
simpliciaux. Cela implique une connaissance des notions d’homologie persistante ainsi que des dia-
grammes de persistance. Plusieurs algorithmes sont détaillés pour étudier ces informations dans
la pratique. Nous terminerons le chapitre en étudiant la stabilité persistante des fonctions, qui est
fondamentale pour justifier de façon théorique la performance de l’algorithme ToMATo. Plusieurs
références ont été utilisés dans cette partie, dont : [2], [3], [6], [10] et [5].

Finalement, au chapitre 4 nous explorerons l’algorithme ToMATo. Nous nous appuierons sur
les idées exposées aux chapitres précédents. D’un point de vue théorique, il convient d’expliquer
certaines constructions de graphes sur des nuages de points, et comment estimer une hypothétique
fonction de densité f à partir d’un échantillonnage. Les sources d’informations les plus importantes
dans cette section sont [4] et sa version simplifié, ainsi que [1] et [9].
Pour la pratique, nous avons produit un notebook de référence (en anglais) de l’implémentation de
l’algorithme, qui vient d’être ajouté à la librairie GUDHI. L’objectif de cette partie était de tester
la performance de cette implémentation, ainsi que mieux connaître le langage de programmation
Python et certains outils habituels pour réaliser l’analyse de données.

iii

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

1. Introduction à l’apprentissage automatique

1.1. Machine Learning : idée générale et premiers exemples

Même si le concept deMachine Learning (en français, apprentissage statistique, ou apprentissage
automatique) a explosé en popularité ces dernières années, souvent on perçoit un peu de confusion
en ce qui concerne la signification authentique de ce terme. Cette confusion est davantage aggravée
lorsque d’autres expressions comme data science, artificial intelligence ou data mining, étroitement
liées à la première, apparaissent sur la table. Inévitablement, avec le développement intensif de tous
ces nouveaux domaines, un nouveau jargon est apparu, et il est indispensable de bien connaître les
subtiles différences entre les mots pour encadrer convenablement les problèmes et les explications .

En termes généraux, le Machine Learning (ML) est le domaine d’étude qui cherche à donner
aux ordinateurs la capacité d’apprendre sans être explicitement programmés, en utilisant des don-
nées (d’ici son interaction avec la data science) et/ ou des expériences antérieures. En voyant cette
définition, qui d’ailleurs n’est pas très concrète, deux questions émergent naturellement par rapport
au terme "apprendre" : qu’est-ce que cela veut dire, exactement, et comment obtient-on cet ap-
prentissage ? De plus, il est naturel de se demander dans quelles situations ou pourquoi le Machine
Learning peut être la meilleure option à considérer. Ce sont précisément ces trois questions que
nous nous proposons de répondre tout de suite.

La première des trois est possiblement la plus générale : en effet, cette apprentissage peut prendre
plusieurs formes, qui peuvent varier énormément en fonction du problème de départ. Ainsi, la ma-
nière la plus rapide de se faire une idée de quoi "apprendre" signifie véritablement est de regarder
quelques exemples de situations où le Machine Learning s’est avéré être très efficace. Ces exemples
vont apparaître plusieurs fois toute au long du chapitre :

— La classification du mail dans spam et no-spam. Dans ce cas, l’idée est de développer un algo-
rithme pour choisir, en considérant plusieurs aspects (fréquence de quelques mots spécifiques,
longueur, structure générale,...), si un courriel contient des informations qui nous intéressent
ou pas. Donc, en somme, nous voulons que l’ordinateur apprenne à classer une série d’élé-
ments.

— La prédiction de la valeur d’une maison, en sachant quelques aspects comme sa taille, empla-
cement et d’autres caractéristiques, ainsi comme celles des immeubles à proximité, y compris
leur valeur. Dans cet exemple, on assume que tous ces facteurs peuvent être utilisés pour
construire un modèle "réaliste" qui donne notre prix approximatif. Le résultat final du pro-
cessus est une quantité, qui peut donc varier continuellement. Nous avons ici un problème
typique de régression.

— Dans un magasin, on peut essayer de détecter des groupes de clients similaires selon leurs
achats, ou selon leur genre, par exemple. En sachant cela, on peut élaborer des offres ou poli-
tiques commerciales plus dirigées vers ces groupes pour augmenter les ventes. Ici, nous avons
de nouveau un problème de classification, mais d’une nature assez différente, car les groupes
ne sont pas connus à priori, et ils pourraient même ne pas exister d’une façon évidente. Nous
parlerons plus de ce type de procédure, appelé clustering, en peu plus tard.

— Le développement d’une application digitale de reconnaissance vocale. Par exemple, un pro-
gramme de smartphone capable d’écrire et chercher sur Internet toute combinaison de mots

1

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

qu’on lui dicte. Dans ce cas, il y a aussi de quelque sorte un problème de classification (après
tout, l’objectif du programme est de bien identifier chaque mot prononcé), mais les nuances
du langage et la complexité de la prononciation humaine situent le défi beaucoup plus loin que
d’autres problèmes de classification standards. Ce type de programmes qui cherchent à imiter
(et dépasser) le comportement humain et réaliser des tâches plus complexes font partie de ce
qu’on appelle intelligence artificielle. Ce domaine, de plus en plus actif et prometteur, a ses
propres algorithmes et mécanismes, comme par exemple l’utilisation de réseaux neuronaux
(neural networks) ou l’apprentissage par renforcement (reinforcement learning).

Donc, nous voyons que la variété de ce qu’on a appelé "apprentissage" est riche et considérable
et, en fait, il y a beaucoup plus de situations et applications possibles : diagnostic médical guidé
par ordinateur, séquençage d’ADN, vision par ordinateur,...
En tout cas, la plupart des méthodes et algorithmes ont pour objectif de classer des éléments, de
prévoir ou d’estimer des résultats ou des valeurs pour prendre des décisions, trouver des relations
entre variables, ou une combinaison de ces options.

1.2. Motivations

Mais pourquoi appeler tout cela apprentissage ? Après tout, tous les programmes informatiques
visent la simplification des tâches et aider avec les calculs et la prise de décisions...
La différence essentielle avec le Machine Learning est la manière dans laquelle ces programmes
arrivent à effectuer ces tâches : rappelons qu’un élément clé de notre brève définition est "sans
être explicitement programmés, en utilisant des données et/ ou expériences antérieures". Avant
d’expliquer, dans la section suivant, les idées générales qui présentent comment nous pouvons ar-
river à faire cela, il est naturel de se demander en premier lieu quelles sont les motivations de le faire.

Prenons-nous le premier exemple du mail. Si nous devions programmer nous-mêmes un détec-
teur de mail spam (pour bien le distinguer et séparer du mail "bon"), la manière la plus naturel
d’agir serait, d’abord, d’étudier un peu ses caractéristiques générales : quels types de mots ou d’ex-
pressions apparaissent le plus souvent dans ce type de courriels et ses fréquences en comparaison
avec le mail ordinaire, sa longueur approximative, des régularités dans le nom ou dans l’adresse de
l’émetteur, etc. Finalement, avec toute cette information, il faudrait programmer une par une les
conditions ou les seuils à dépasser pour le considérer comme un courrier indésirable.

Ce n’est pas une chose facile ni rapide à faire ! Même si nous réussissons à trouver de bonnes
conditions pour distinguer les deux types de mail, nous obtiendrions une liste énorme de règles à
considérer. Ainsi, le résultat final serait un code très long et complexe : pas pratique à programmer
ni facile à maintenir, modifier ou mettre à jour. Un algorithme plus "machine learning" chercherait
lui-même les caractéristiques clés en comparant des exemples des deux types de courrier et associe-
rait les poids convenables pour bien les classer.

Dans le dernier exemple de la reconnaissance vocale, la complexité d’un hypothétique pro-
gramme codé à la main devient encore plus évidente : la quantité d’information et la variabilité
dans un fichier audio est tellement énorme qu’il est simplement impossible d’analyser explicitement
tous les cas où il sonne une "s" ou une "u". Seulement après avoir exposé à un bon algorithme
milliers d’enregistrements des différents mots, nous pouvons espérer qu’il arrivera à les distinguer
correctement.

2

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Un autre avantage des algorithmes de Machine Learning est que souvent on peut les concevoir
pour qu’ils soient adaptables à de possibles actualisations ou accroissements des données. Cette
caractéristique peut être très utile dans toutes les situations, y comprises celles des exemples anté-
rieurs.

Finalement, nous pouvons nous servir de toutes ces techniques et procédures pour améliorer
l’apprentissage humaine même. En effet, quelques algorithmes ML peuvent être inspectés pour voir
ce qu’ils ont appris, et ainsi mieux comprendre des corrélations et tendances non reconnues précé-
demment. Utiliser les techniques ML avec cet objectif s’appelle data mining.

1.3. Méthodologie et différents types de systèmes d’apprentissage

Alors, comment obtenir cet apprentissage ? Le principe de tous les systèmes de Machine Lear-
ning consiste dans le fait que la majorité des paramètres sont trouvés en utilisant des données et
des exemples déjà existants, qu’on appelle "données d’entraînement" (training data). En tout cas,
c’est pratique de classer ces systèmes de plusieurs manières en considérant quelques-unes de ses
différences méthodologiques fondamentales.

Possiblement la distinction la plus important au niveau méthodologique, car il affecte notam-
ment les possibles algorithmes à appliquer, est celle d’apprentissage supervisé et non-supervisé (et
quelques types "intermédiaires"). Cette classification prend en compte dans quelle mesure les don-
nées sur lesquelles on construit l’algorithme contiennent déjà des informations certaines, i.e. on a
une connaissance préalable des types de solutions qu’on devrait obtenir.

Dans l’apprentissage supervisé, possiblement le plus naturel et intuitif, les données d’entraî-
nement incluent les solutions souhaitées ; elles sont "étiquetées" (labelled). Par exemple, dans les
deux premières situations expliquées précédemment, nous construirions le classificateur de mail à
partir d’exemples de courriels "bons" et "spam" ; pareillement, on estimerait le prix de la maison en
utilisant un modèle qui prend en compte les caractéristiques, mais aussi les prix (i.e. la "solution",
ils sont donc étiquetées) des différentes maisons à proximité. Ces caractéristiques utilisées pour
construire le modèle s’appellent features, ou predictors.
En résumé, les systèmes d’apprentissage supervisé sont conçus pour donner les résultats attendus
sur les données d’entraînement, que nous connaissons. Les problèmes de régression et de classifica-
tion en groupes spécifiques sont des exemples de ce type d’apprentissage.

Dans l’apprentissage non-supervisé, les données sur lesquelles nous travaillons ne sont pas éti-
quetées, et il n’y a pas une façon directe de vérifier ou mesurer la performance du système. Ce
type d’apprentissage est plutôt lié à la visualisation des données et son exploration : corrélations
inattendues, groupes avec des similitudes, détection des données mauvaises ou bizarres (outliers),...
Par exemple, les méthodes de clustering sont de nature non-supervisée, y compris notre algorithme
ToMATo, dont nous parlerons plus tard. Dans ce type d’apprentissage il y aurait aussi ces al-
gorithmes de visualisation qui essaient de représenter les donnés en 2D et 3D en préservant au
maximum sa structure. Finalement, nous y ajouterions aussi toutes les procédures de réduction de
la dimensionnalité, qui ont pour objectif simplifier les données sans perdre trop d’information, par
exemple en combinant plusieurs features corrélées entre elles.

D’autres types d’apprentissage sous ce critère seraient l’apprentissage semisupervisé, qui com-
bine les deux types antérieurs, ou l’apprentissage par renforcement. Dans ce dernier, assez lié au

3

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

domaine de l’intelligence artificielle, l’algorithme observe continuellement les données et l’environ-
nement, et sélectionne et réalise des actions qui peuvent être récompensées ou pénalisées ; au fil
du temps, il apprend lui-même les stratégies le plus efficaces pour obtenir les meilleures récompenses.

Une autre manière de classer les systèmes ML est selon sa capacité d’adaptation aux nouvelles
données. Les algorithmes qui ont besoin de tout l’ensemble de données pour être construits cor-
rectement font partie de ce qu’on appelle apprentissage offline ; ceux qui peuvent incorporer de
nouvelles données et apprendre progressivement, une propriété en général désirable pour sa flexibi-
lité et réduction du coût de calcul, sont de type online.

Finalement, une autre classification décisive au niveau méthodologique est celle qui prend en
compte comment le système ML se généralise aux nouveaux cas ; c’est-à-dire de quelle façon on
mesure sa performance en tant que prédicteur, avec de nouvelles observations.
Dans l’apprentissage basé sur des instances, l’algorithme apprend les exemples par coeur et étudie
les nouveaux cas en utilisant une "mesure de similitude". Cette dernière compare quantitative-
ment les nouveaux cas avec les données d’entraînement, afin de les étudier. En revanche, dans
l’apprentissage basé sur des modèles, on essaie de construire un bon modèle ou formule à partir des
exemples pour faire des prédictions. Normalement, dans le design de ce modèle, on utilise une fonc-
tion d’"aptitude" (fitness function, ou cost function) pour étudier quantitativement sa convenance
sur les données d’entraînement.
Dans les deux cas, il faut toujours garder à l’esprit que tout ensemble de données d’entrée contient
inévitablement du bruit : elles sont partiellement aléatoires, et l’information n’est jamais transpa-
rent. Donc, ajuster la flexibilité du modèle en fonction de chaque cas est toujours essentiel.

1.4. Problèmes et challenges du Machine Learning

En somme, dans tout processus d’apprentissage statistique nous trouvons deux étapes : la sé-
lection d’un algorithme convenable et l’entraînement postérieur avec des données. Naturellement,
il faut faire attention à ces deux choses si nous voulons obtenir un apprentissage effectif. Certains
défis ou aspects à prendre en compte en ce qui concerne cela seraient :

• Quantité insuffisante de données : Dans la majorité des algorithmes, il faut disposer de beau-
coup de données pour entraîner correctement le modèle et le faire fonctionner. En général, on
a besoin de milliers d’exemples, ou des millions dans les problèmes les plus complexes. Dans
certaines situations, il est possible de combiner ou extraire des nouvelles données à partir
de celles déjà existantes, pour en avoir plus. Plusieurs études montrent que des algorithmes
très différents peuvent accomplir des niveaux de succès similaires en utilisant suffisamment
de données.

• Données d’entraînement non représentatives : Afin d’obtenir de bonnes généralisations, les
données d’entraînement doivent être représentatives des nouveaux cas qu’on cherche à gé-
néraliser ; sinon, les prédictions du modèle difficilement s’ajusteront aux valeurs réelles. Par
exemple, le caractère d’un modèle pour calculer quelque spécificité d’un pays peut changer
largement en fonction de la richesse des pays utilisés pour le concevoir ; il faudrait se servir
des pays avec un niveau économique similaire. Le même principe s’applique pour prédire les
résultats d’une élection à partir des sondages.
Quand les données utilisées ne sont pas représentatives, même si nous en avons une grande
quantité, il s’agirait ici d’un "biais d’échantillonnage" (sampling bias).

4

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

• Données de mauvaise qualité : Naturellement, si les données d’entraînement contiennent beau-
coup d’erreurs, outliers et bruit, les algorithmes auront plus de problèmes pour trouver des
"patterns" et atteindre ses objectifs. Donc, en général, c’est recommandable d’investir du
temps à détecter et écarter les outliers et traiter les valeurs manquantes ou incomplètes (data
cleaning).

• Features non pertinents : Indépendamment de l’algorithme, celui-ci seulement apprendra si les
données utilisées pendant l’étape d’entraînement ont un véritable lien avec ce que nous voulons
estimer. Le complexe processus d’obtenir un ensemble de features pertinents s’appelle feature
engineering. Il comprend, entre autres : sélectionner les features les plus utiles et écarter les
autres, les combiner pour en obtenir des nouvelles d’une façon plus compacte (étroitement lié
à la réduction de la dimensionnalité), en créer d’autres à partir de nouvelles données,...

• Overfitting et underfitting : Ces deux phénomènes, plus liés à l’algorithme lui-même qu’à la
nature des données, se produisent quand le modèle obtenu se base trop ou respectivement
trop peu sur les données d’entraînement.
Tout algorithme de Machine Learning essaie de trouver des régularités dans les données, mais
celles-ci possèdent aussi de manière naturelle une variabilité qui peut empêcher l’algorithme
de bien se généraliser à de nouveaux cas si nous nous y basons trop. Par exemple, il est presque
toujours possible de trouver une fonction polynomiale qui passe pour n’importe quelle quantité
de points dans R2 si son dégrée est suffisamment élevé (i.e. si nous augmentons suffisamment
les dégrées de liberté), mais un modèle si "courbé" ne sera possiblement pas le meilleur à
prédire de futures observations. En somme, l’overfitting se produit quand le modèle est trop
complexe par rapport au bruit et à la quantité de données d’entraînement.
Quelques possibles solutions dans ce cas seraient : recueillir plus de données, réduire le bruit
des données (i.e. réparer les erreurs dans les données et écarter les outliers) ou simplifier le mo-
dèle, chose que nous pouvons faire en utilisant moins de paramètres, en considérant moins de
features ou en "contraignant" le modèle. Ce dernier approche, appelé regularization, contient
plein de méthodes et techniques : l’idée de base est d’utiliser des paramètres supplémentaires
dans l’algorithme (les hyperparamètres), indépendants du modèle, fixés d’abord et constants
pendant l’entraînement, qui "limitent" en quelque sorte la liberté des paramètres du modèle.
Trouver de bons hyperparamètres est l’une des parties importantes de construire un bon sys-
tème de Machine Learning.

Le underfitting est le problème contraire : il se produit quand le modèle est trop simple
pour bien apprendre la structure sous-jacente des données. Trois stratégies pour améliorer
rapidement cette situation sont : admettre plus de paramètres dans le modèle, réduire les
contraintes s’il y en a, ou augmenter la pertinence des features.

• Essai et validation : Pour étudier l’efficacité du modèle, une bonne pratique consiste à diviser
les données disponibles en plusieurs sous-groupes complémentaires et les entraîner, mesurer
et vérifier les uns contre les autres. En somme, nous trouvons trois types de ces groupes : les
données d’entraînement (training set), à partir duquel on construit le modèle ou mesure de
similitude ; les données de validation (validation set), qui servent pour modifier le modèle ou
les hyperparamètres jusqu’à obtenir une performance désirable ; et les données de vérification
(test set), pour se faire une idée de l’erreur de généralisation (i.e. sa performance avec de
nouveaux cas).
On appelle cross-validation la méthode, très commune à pratiquer, qui consiste à faire cette
procédure plusieurs fois avec tout l’ensemble des données pour mieux choisir le modèle et les
hyperparamètres.

5

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

2. Plus en détail : algorithmes de clustering habituels

2.1. Considérations générales

Le cluster analysis, ou segmentation des données, a pour objectif le regroupement d’un ensemble
d’éléments en sous-groups ou clusters. Ainsi, dans chaque cluster, les éléments sont plus "proches"
entre eux à la différence des éléments classés dans des clusters différents. Dans cette branche du
Machine Learning, à caractère non supervisé et exploratoire, les algorithmes cherchent à établir
si les données peuvent être divisées dans des groupes différents avec des propriétés suffisamment
distinctes. L’algorithme ToMATo, récemment développé, fait aussi partie de ces méthodes. Nous
aborderons plus en détail cet algorithme dans le chapitre quatre.

La question fondamentale dans le cluster analysis est comment nous mesurons ce "degrée de
similarité" (ou dissimilarité) entre les données, donc c’est la définition sur laquelle les algorithmes
se basent.
Un approche assez flexible consiste à utiliser ce qu’on appelle une matrice de proximité. Avec un en-
semble de N éléments (ordonnées), {x1, . . . , xN}, on construit une matrice D de dimension N ×N ,
où le coefficient dij mesure quantitativement la proximité ou similarité de l’élément i à l’élément j.
En général, plus le numéro est faible, plus des similitudes sont remarqués. De ce fait, la plupart des
algorithmes assument dii = 0, ∀i ∈ [1, N]. De plus, certains algorithmes imposent notamment que
la matrice soit symétrique ; sinon, D peut toujours être remplacée par (D+DT)/2. Pour travailler
avec "dissimilitudes", on peut toujours convertir tous les valeurs avec une fonction monotone dé-
croissante convenable.

Une des situations le plus habituelles est celle où chaque élément xi consiste en p attributs de
nature quantitative. Si ces attributs sont de nature qualitative (ou catégorique), on peut parfois les
convertir facilement en numéros : par exemple, si nous avons une variable qualitative ordonnée avec

M options, nous pouvons utiliser les valeurs
i− 1

2

M
, i = 1, . . . ,M , toutes entre 0 et 1. Si la variable

n’est pas ordonnée et peut prendre M différentes valeurs, il faut préciser le "niveau de différence"
entre les paires de valeurs en utilisant une matrice (comme évoqué dans le paragraphe précédent) :
ses entrées, normalement 1s sauf 0s à la diagonale, jouent le rôle des dj que nous expliquerons tout
de suite.

Supposons que nous disposons de plusieurs données numériques xij , i ∈ [1, N] , j ∈ [1, p] (les
cas catégoriques ont déjà été traités). En s’appuyant sur ces données, on construit une notion de
"dissimilarité" entre les valeurs du j-ème attribut de deux éléments différents, dj(xij , xi′j). Le choix
le plus commun pour dj est la distance au carré,

dj(xij , xi′j) = (xij − xi′j)2.

D’autres options existent aussi, comme par exemple la différence absolue |xij − xi′j |, qui pénalise
moins les grandes différences. Les résultats peuvent varier considérablement en fonction de la dis-
tance choisie.

Puis, nous définissons la "mesure de dissimilarité totale" d(xi, xi′) entre deux éléments en combi-
nant ces p dissimilarités individuelles. Bien que la somme est l’option la plus naturelle à considérer,
nous gagnons en flexibilité en travaillant avec une moyenne pondéré

6

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

d(xi, xi′) =

p∑
j=1

wj · dj(xij , xi′j) ,
p∑
j=1

wj = 1.

Cette dernière permet d’ajuster un poids convenable à chaque attribut (ces poids dépendent né-
cessairement de la nature du problème et des données concrètes). Pour bien adapter ces poids, il
est important de remarquer que l’influence du j-ème attribut sur la dissimilarité totale D(xi, xi′)

dépend de sa contribution relative à la moyenne des dissimilarités totales entre toutes les paires
d’éléments de l’ensemble,

D̄ =
1

N2

N∑
i=1

N∑
i′=1

d(xi, xi′) =

p∑
j=1

wj · d̄j ,

où

d̄j =
1

N2

N∑
i=1

N∑
i′=1

dj(xij , xi′j)

est la dissimilarité moyenne du j-ème attribut. Ainsi, l’influence relative de la j-ème variable est
wj · d̄j , et fixer wj ∼ 1/d̄j (ou directement wj = 1/d̄j , standardisé plus tard) donne à chaque
attribut la même influence sur la dissimilarité totale.

Bien que cette dernière option semble appropriée, elle peut aussi être contre-productive. En ef-
fet, souvent les attributs ne contribuent pas de la même manière à la notion de similitude : certaines
différences entre les valeurs peuvent refléter plus de dissimilarité que d’autres dans le contexte du
problème, et devraient donc avoir plus de poids. Pour cela, il est important de préciser correctement
toutes ces variables, ainsi que la fonction de similitude, chose qui dépend dans une large mesure du
problème spécifique. En fait, tous ces paramètres peuvent avoir plus d’importance que l’algorithme
lui-même pour réussir avec le clustering.
Finalement, il est aussi important de prêter attention à bien traiter les données manquantes (missing
values en anglais) dans un ou plus des attributs. On peut faire cela en utilisant une moyenne (ou
quelque autre valeur, processus appelé "imputation statistique"), en utilisant une nouvelle catégorie
qualitative "missing", en omettant quelques dissimilarités concrètes ou en écartant directement ces
éléments.

2.2. Algorithmes de clustering combinatoires

Pour résumer, nous trouvons trois types d’algorithmes de clustering :

• Les algorithmes combinatoires travaillent directement sur les données, sans avoir aucun type
de modèle probabiliste sous-jacent, et assignent directement chaque élément à un group.

• Les modèles de mélange supposent que les données constituent un échantillon i.i.d d’une
population décrite par une fonction de densité. Cette fonction de densité est caractérisée par
un modèle paramétrique formé par un mélange/ somme de plusieurs fonctions de densité
(habituellement gaussiennes) : chacune de ses fonctions décrirait un cluster.

• Les algorithmes mode-seeking ("chercheurs de modes"), aussi appelés bump hunters, ont une
approche non paramétrique et tentent d’estimer directement les différentes modes (i.e. maxi-
mums locaux) d’une hypothétique fonction de densité de base. Les éléments les plus proches
de chaque mode définissent ainsi les clusters individuels.

7

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Ceux du premier type sont spécialement employés pour leur simplicité. Avec les données {x1, . . . , xN},
un numéro préspécifié de clusters K < N est choisi, chacun étiqueté par un numéro k ∈ {1, . . . ,K}.
On assigne après à chaque élément i de l’ensemble un cluster C : {1, . . . , N} → {1, . . . , k},
i 7→ C(i) = Ck, en essayant de minimiser une fonction "de perte" qui prend en compte les dissimi-
larités d(xi, xi′) entre les données. Une fonction de perte naturelle à considérer serait

W (C) =

K∑
k=1

∑
i,i′∈Ck

d(xi, xi′), (1)

qui quantifie de quelle manière les observations mises dans le même cluster sont proches entre elles.
Il est facile de voir que minimiser W (C) est équivalent a maximiser

B(C) =

K∑
k=1

∑
i∈Ck

∑
i′ /∈Ck

d(xi, xi′),

car T =
∑N
i,i′ d(xi, xi′) = W (C) +B(C) est constant.

Nous pourrions penser que cela réduit le problème au calcul de la valeur de la fonction de perte
sur toutes les possibles combinaisons, mais dans la pratique le nombre d’allocations possibles pour
tous les éléments augmente très rapidement avec N et k. De ce fait, tout algorithme de clustering
efficace étudie seulement une fraction très petite des attributions k = C(i) possibles, avec l’objectif
d’identifier un sous-ensemble susceptible de contenir l’optimale, ou au moins une correspondance
assez bonne.

La stratégie se base généralement sur ce qu’on appelle un "greedy descent" itérative : une
partition initiale est choisie et, à chaque pas, les attributions sont changées de sorte que la valeur
du critère est améliorée par rapport à l’antérieure. L’algorithme se termine par une partition lorsque
aucune amélioration est possible.
Ces algorithmes, travaillant avec un sous-ensemble très petit des combinaisons possibles, convergent
toujours à un maximum local, qui peut être très sub-optimal en comparaison avec le maximum
global.

2.2.1. K-means clustering

Il est un des algorithmes les plus populaires en raison de sa vitesse et sa simplicité. Il a aussi
des applications importantes dans la compression des images et signaux (vector quantization).

Cet algorithme suppose que toutes les variables sont de type quantitative, et il prend la distance
euclidienne habituelle au carré, d(xi, xi′) =

∑p
j=1(xij − xi′j)

2 = ||xi − xi′ ||2, pour mesurer la
dissimilarité entre les observations. Avec ces conditions, nous remarquons que (1) est égal à

W (C) =

K∑
k=1

Nk
∑
i∈Ck

||xi − x̄k||2, (2)

où x̄k = (x̄1k, . . . , x̄pk) est le vecteur moyen associé aux observations du cluster k, et Nk est son
nombre d’éléments.

Du fait que la moyenne des {y1, . . . , ym} minimise la fonction f(y) =
∑m
i=1(yi − y)2, nous

8

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

pouvons obtenir une méthode itérative descendant pour résoudre

C∗ = min
C

K∑
k=1

Nk
∑
i∈Ck

||xi − x̄k||2, (3)

notre problème original, en considérant le problème d’optimisation plus général

C∗ = min
C,{mk}K1

K∑
k=1

Nk
∑
i∈Ck

||xi −mk||2. (4)

L’algorithme est le suivant :

Algorithm 1: K-means clustering
Input: {x1, . . . , xN} observations quantitatives (p features chacune)

K numéro de clusters souhaité
Output: Pour chaque observation, une étiquette k ∈ [1,K] (cluster assigné)

1 On fait une première attribution C(i) pour chaque observation, aléatoire ou avec unes
moyennes déjà établies.

2 Avec notre partition C, on minimise la variance totale du clustering (4), obtenant ainsi les
moyennes {m1, . . . , ,mk} associées à chaque cluster.

3 Avec ces valeurs {m1, . . . , ,mk}, on minimise davantage (4) en assignant à chaque
observation le cluster avec la moyenne la plus proche : C(i) = arg min1≤k≤K ||xi −mk||2

4 On répète 2 et 3 jusqu’à ce que les attributions C ne changent plus.

Étant donné que à les étapes 2 et 3 la quantité (4) diminue, la convergence de la méthode est
assurée. Néanmoins, normalement on atteint un maximum local sub-optimal. De ce fait, c’est une
bonne idée de courir l’algorithme avec différentes partitions initiales et prendre le meilleur résultat
final.

Nous pouvons généraliser l’idée du clustering K-means à distances différentes à l’euclidienne
et features pas nécessairement quantitatives si nous travaillons directement avec les dissimilarités
d(xi, xi′). Pour cela, nous pouvons utiliser l’algorithme décrit avant en changeant le mk : au lieu de
la moyenne des éléments du cluster k, nous prenons un de ces éléments ; en particulier, l’élément xk
qui minimise

∑
i∈Ck d(xk, xi). Cette nouvelle méthode, qui s’appelle clustering K-medoids, a aussi

un coût informatique considérable, et n’est souvent pas réalisable exhaustivement.

2.2.2. Clustering hiérarchique

Contrairement au clustering K-means/ K-medoids, qui part d’un nombre de clusters K préréglé
et les cherchent, les méthodes de clustering hiérarchiques produisent une représentation "en échelle"
qui passe pour tous les nombres possibles, et où les clusters à chaque niveau sont crées en unifiant
ou divisant ceux du niveau inférieur. De cette façon, il est possible de voir plus facilement quel
est le "bon" numéro de clusters de l’ensemble. Naturellement, il est encore nécessaire d’établir une
"mesure de similitude" entre groupes, basée sur les dissimilarités entre paires d’éléments.

Il y a deux stratégies principales pour ce type de clustering : l’agglomérative (bottom-up), où
nous commençons avec un cluster pour chaque observation et nous les unifions par paires à mesure
que l’algorithme court ; et la divisive (up-bottom), qui part par un seul cluster et ensuite les divise

9

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

en deux peu à peu. Dans le deux cas, chaque niveau de la hiérarchie représente un regroupement
spécifique des données en clusters disjoints, et la hiérarchie entière les différents "seuils" où ils ap-
paraissent.

Ces agglomérations/ divisions binaires récursives peuvent être représentées sous forme d’arbre,
qui commence avec une seule racine (le cluster avec toutes les données) et, à la fin, a une feuille pour
chaque élément. De plus, une partie important de ces méthodes ont la propriété de la "monotonie",
c’est à dire, la dissimilarité entre clusters (qui se mesure quantitativement) augmente de manière
monotone à mesure qu’on les unifie. Ainsi, l’arbre peut être dessiné de sorte que les bifurcations
entre les branches se produisent à des hauteurs qui reflètent la durée de tous les clusters de manière
proportionnelle. Ce type de représentation graphique, assez complète et informative sur les données,
s’appelle dendrogram.

Néanmoins, ces dendrograms sont assez sensibles aux données et à les particularités de la mé-
thode choisie, et ils imposent sur les données une structure hiérarchique qui pourrait ne pas exister.
Donc, plus qu’une "carte" infaillible de la structure des données elles-mêmes, le dendrogram devrait
être vu plutôt comme une carte de la structure du clustering des ces données, obtenues avec un
algorithme et une métrique spécifiques.

Figure 1 – Exemple de dendrogram (où on regroupe les états des États-Unis, critère inconnu)

Stratégies agglomératives
Ces méthodes commencent avec un singleton cluster pour chaque élément. Puis, à chacun des

N−1 pas, les deux groupes les plus "proches" sont fusionnés, et on perd un cluster au niveau suivant.

Naturellement, la notion de "proximité" entre les groupes doit être définie en considérant les
dissimilarités entre les paires d’observations. Soient G et H deux de ces groupes. Nous remarquons
plusieurs options pour définir la dissimilarité d(G,H) :

— Le saut minimum (single linkage en anglais) est défini pour dSL(G,H) = mini∈G,i′∈H dii′ .

— Le saut maximum (complete linkage en anglais) se définie comme dCL(G,H) = maxi∈G,i′∈H dii′ .

— Le lien moyen (group average en anglais) est défini pour dGA(G,H) =
1

NGNH

∑
i∈G

∑
i′∈H dii′ .

10

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

En général, si les données montrent une structure claire, avec des clusters bien séparés les uns
des autres et suffisamment compacts (i.e. ses éléments sont proches entre eux en comparaison avec
ceux de clusters différents), les trois méthodes produisent des résultats similaires. Développons
maintenant les particularités de chaque méthode :

Le type saut minimum a seulement besoin que deux éléments de groupes différents soient proches
pour les fusionner, indépendemment des autres éléments ; cela résulte souvent en clusters peu com-
pacts.
Le type saut maximum est le pôle opposé ; deux groupes G et H sont proches seulement si tous les
éléments dans son union sont relativement similaires, et les clusters sont plus compactes. Pourtant,
cela peut causer aussi une relaxation du "principe de proximité" : un élément assigné dans un clus-
ter peut être beaucoup plus proche des éléments d’autres clusters que ceux de son propre groupe.
Le type lien moyen permet un compromis entre ces deux extrêmes, mais il est aussi plus dépendant
des valeurs spécifiques des dii′ , à la différence des deux autres, qui dépendent uniquement de son
ordre.

Stratégies divisives
Ces méthodes commencent avec toutes les données dans un unique groupe, et divisent à chaque

itération un cluster existant en deux clusters plus petits.

Même si elles sont moins étudiées que les méthodes agglomératives, on peut toujours diviser
n’importe quel cluster en appliquant une méthode combinatoire, comme K-means avec K = 2, à
chaque itération. Cependant, en général ce processus ne produit pas une séquence de clusters avec
la propriété de la monotonie nécessaire pour la représenter correctement en forme de dendrogram.

Un algorithme qui satisfait cela serait celui-ci :

Algorithm 2: Clustering hiérarchique divisive monotone
Input: {x1, . . . , xN} observations quantitatives

Les dissimilarités dii′ entre toutes les paires d’observations
Output: Une séquence hiérarchique de clusters

1 On met toutes les observations dans un unique cluster, G.
2 On trouve l’élément i dans G avec la dissimilarité moyenne avec les autres éléments de G,

1
NG

∑
j∈G dij , la plus élevée. Cet élément sera le premier membre d’un deuxième cluster H.

3 On prend l’élément de G qui a la distance moyenne avec les éléments de G moins la
distance moyenne avec les éléments de H la plus grande et le transfère à H.

4 On continue à faire cela jusqu’à ce que cette différence devienne négative. En ce moment, il
n’y a plus d’observations dans G qui sont, en moyenne, plus proches à celles du H qu’à
celles de son groupe G. Nous avons alors deux nouveaux clusters.

5 Nous continuons de répéter 2, 3 et 4 avec un cluster présent, nouveau ou pas, jusqu’à
obtenir N singleton clusters. Pour choisir le groupe suivant a diviser, deux critères utiles
seraient :
— Le cluster C avec le diametre DC = maxi,i′∈C dii′ le plus grand.
— Celui avec la dissimilarité entre éléments moyenne, d̄C = 1

N2
C

∑
i,i′∈C dii′ , la plus grande.

11

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

3. Introduction à l’Analyse topologique des données

3.1. Idée générale et motivation

L’Analyse topologique des données (Topological Data Analysis en anglais, souvent nommée
TDA), commence à se développer dans les années 2000 à partir de quelques travails dans la topo-
logie appliquée et la géométrie algorithmique. Ce champ d’étude cherche à explorer et étudier les
bases de données en utilisant des techniques et idées typiques du domaine de la topologie. Cette
nouvelle approche de la science de données, qui s’est déjà avérée très utile dans plusieurs contextes,
a pour objectif mieux comprendre la "forme" d’un ensemble de données. Cette question peut être
spécialement compliquée quand on travaille en dimensions élevées, et avec des donnés incomplètes
ou avec une forte présence de bruit.

En résumé, la TDA essaie de fournir des méthodes mathématiques, statistiques et algorith-
miques pour révéler, analyser et utiliser des structures géométriques et topologiques non évidents
dans un ensemble des données. Notamment, un de ses outils principales est celui de l’homologie
persistante, une adaptation de l’homologie pour nuages de points, qui a besoin d’une solide formu-
lation théorique et mathématique.

Le schéma de déroulement habituel en TDA est :
1. L’input est généralement un ensemble fini de points avec quelque type de similarité ou distance

définie entre eux. Cette distance peut venir induite pour un hypothétique espace ambiant (par
exemple, Rd) ou être définie intrinsèquement entre paires de points, en fonction du cas.

2. Quelque type de structure géométrique de nature traitable et algorithmique est construite sur
ces points, avec l’objectif de faire plus évidents quelques de ses caractéristiques. Souvent, nous
faisons cela en utilisant un ou plusieurs complexes simplicials, qui peuvent être vus comme
une généralisation des graphes en dimensions plus élevées.

3. Nous extrayons cette information géométrique et topologique en utilisant différents méthodes,
et nous étudions sa pertinence et stabilité par rapport à possibles perturbations des données
ou présence de bruit. Cette information est après souvent visualisée et combinée avec d’autres
descripteurs pour guider les prochaines étapes de l’analyse des données ou tâches de ML.

Notre algorithme ToMATo fait usage de certains des concepts de ce nouveau champ d’étude,
notamment de l’homologie persistante et les diagrammes de persistance. Donc, l’objectif de cette
partie du travail est d’introduire avec rigueur et généralité les fondements de la TDA et les bases
mathématiques de l’homologie persistante.

3.2. Complexes simpliciales, recouvrements et le Théorème du Nerf

Étant donné que la plupart des concepts de la topologie et la géométrie sont associés à des
espaces continus, une pratique habituelle dans le TDA est de "connecter" de quelque sorte les
données (représentées comme points) qui sont proches les unes des autres. On formalise souvent
cette notion de proximité en utilisant une distance entre points, qui peut être définie entre paires
directement (espace métrique discrète) ou en plongeant les données dans un espace métrique plus
grand (typiquement, Rd).

En tout cas, après avoir connecté les données proches, nous obtenons un graphe de voisinage,
qui permet déjà appliquer plusieurs méthodes d’analyse. Pour aller au-delà de la connectivité,

12

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

nous pouvons associer pas seulement paires mais aussi (k + 1)-tuples de points proches entre eux.
Nous obtenons ainsi un complexe simplicial, qui permet identifier de nouvelles caractéristiques
topologiques, comme cycles, "trous" et leurs généralisations en haute dimension.

Définition 3.1. Soit X = {x0, . . . , xk} ⊂ Rd (k + 1) points affines linéairement indépendants. Le
simplexe k-dimensionnel σ = [x0, . . . , xk] généré pour X est l’enveloppe convexe de X. Les points
originales sont ses sommets, et les simplexes générés pour les sous-ensembles de ces points sont les
faces de σ.

Remarque 3.2. Formellement, les sous-ensembles d’un simplexe sont appelés ses n-faces, où n est
sa cardinalité moins 1. Cependant, pour les cas 0 et 1 normalement on utilise les mots sommets et
arêtes respectivement, et le mot face pour le cas 2 et en général.

Définition 3.3. Un complexe simplicial géométrique K ⊂ Rd est une collection de simplexes telle
que :

1. Toute face d’un simplexe de K est aussi un simplexe de K.

2. Toute intersection de deux simplexes de K est vide ou une face commune aux deux.

Encore plus généralement, un complexe simplicial abstrait avec des sommets V est une collection
K de sous-ensembles finis de V telle que que les éléments de V appartient à K et, pour tout élément
σ de K, tout sous-ensemble de σ appartient aussi à K.

Clairement, on peut utiliser la dernière définition, de nature plus combinatoire, pour étudier un
complexe simplicial géométrique, mais la direction inverse fonctionne aussi : on peut mettre tout
complexe simplicial abstrait dans Rd pour quelque d, et le considérer comme un subespace avec la
topologie induite. C’est cette structure, appelée réalisation géométrique de K, qui permet utiliser
sans problèmes plein de notions géométriques et topologiques sur K.

Figure 2 – Simplexes de dimension 0,1,2 et 3, et exemple d’un complexe simplicial géométrique

Définition 3.4. La dimension d’un simplexe est simplement sa cardinalité moins 1. La dimension
d’un complexe simplicial est la dimension plus grande parmi les simplexes qui le constituent.

Remarque 3.5. Un graphe est un complexe simplicial de dimension 1.

Étant donnée un ensemble de points X (imaginons que dans un espace métrique (M,d)), nous
pouvons construire des complexes simplicials au-dessus de plusieurs manières. Deux des construc-
tions les plus habituelles seraient :

1. Complexe de Vietoris-Rips, Ripsα(X) : La généralisation immédiate de la notion de graphe de
voisinage. C’est le complexe simplicial qui a pour ensemble de faces les simplexes [x0, . . . , xk]

qui satisfont d(xi, xj) ≤ α pour tout 0 ≤ i, j ≤ k.

13

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

2. Complexe de Čech, Cechα(X) : Étroitement lié au Vietoris-Rips complexe, c’est le complexe
simplicial formé pour les simplexes [x0, . . . , xk] qui satisfont que l’intersection des k+1 boules
B(xi, α) n’est pas vide.

Remarque 3.6. Même si X est un ensemble fini de points dans Rd, Ripsα(X) et Cechα(X)

n’admettent pas toujours une réalisation géométrique dans Rd, donc ses dimensions peuvent être
plus élevées.

Remarque 3.7. C’est facile de voir qu’on a toujours Ripsα(X) ⊆ Cechα(X) ⊆ Rips2α(X), où
les inclusions peuvent être strictes. Si X ⊂ Rd, Cechα(X) et Rips2α(X) ont le même squelette
1-dimensionnel, i.e. le même ensemble de sommets et arêtes.

Figure 3 – Construction des complexes de Cech e
2
(en bas à gauche) et de Ripse (en bas à droite).

La troisième image montre comme les deux complexes ont le même squelette 1-dimensionnel.

En fait, le complexe de Čech est un cas particulier d’une construction de complexes plus générale
en utilisant des recouvrements :

Définition 3.8. Soit M un espace topologique (ou un ensemble, en général). Un recouvrement U
de M est une famille de sous-ensembles de M , U = (Ui)i∈I , qui satisfont ∪i∈IUi = M . Le nerf
d’un recouvrement U de M est le complexe simplicial abstrait C(U) qui a Ui comme sommets et
les faces

σ = [Ui0 , . . . , Uik] ∈ C(U) ⇐⇒ ∩kj=0Uij 6= ∅

De cette façon, Cechα(X) est le nerf du recouvrement U = (B(xi, α))xi∈X de l’ensemble
M = ∪xi∈XB(xi, α), qui contient évidemment l’ensemble de points original. Mais un recouvre-
ment d’un ensemble de données ne doit pas forcement être basé sur des boules centrées sur elles ;

14

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

par exemple, nous pourrions aussi en avoir un en faisant une subdivision des données en groupes
de points (non nécessairement disjoints) avec des propriétés similaires.

En tout cas, le nerf d’un recouvrement offre une description de nature combinatoire assez globale
et compacte de la relation entre les sous-ensembles du recouvrement en considérant ses plusieurs
intersections. Le Théorème du Nerf (Nerve Theorem) est un résultat de topologie algébrique qui
lie, avec quelques assomptions, la topologie du nerf d’un recouvrement avec la topologie du recou-
vrement lui-même. Ses implications dans l’Analyse topologique des données sont remarquables, et
même si nous ne le démontrerons pas, le but de la dernière partie de cette section est introduire les
notions nécessaires pour bien comprendre ce qu’il dit.

Dans la topologie, normalement nous considèrons deux espaces topologiques X et Y comme
égales quand ils sont homéomorphes, i.e. nous pouvons trouver deux applications continues et
bijectives f : X → Y et g : Y → X qui satisfont g ◦ f = idX et f ◦ g = idY . Cependant, dans
plusieurs situations, aussi dans la TDA, la notion d’homémorphisme est trop rigide, et souvent il
est convenable d’étudier des similitudes entre espaces topologiques un peu plus faibles. C’est ici où
l’idée de l’homotopie apparaît :

Définition 3.9. Soit X et Y deux espaces topologiques. Deux applications continues f0, f1 : X → Y

sont homotopiques s’il existe une application continue H : X × [0, 1] −→ Y telle que, ∀x ∈ X,
H(x, 0) = f0(x) et H(x, 1) = f1(x). Dans ce cas, on écrit f0 ' f1.
On dit que X et Y sont des espaces topologiques homotopiquement équivalents si on peut trouver
deux applications f : X → Y et g : Y → X tels que g ◦ f ' idX et f ◦ g ' idY . Dans ce cas, on
écrit X ' Y .

La notion d’équivalence homotopique est plus faible que celle d’homéomorphisme, donc deux
espaces homéomorphes sont toujours homotopiquement équivalents, mais le réciproque n’est pas
vrai. En tout cas, l’intérêt principal derrière l’homotopie est que nous pouvons définir des objets
(souvent de nature algébrique) sur les espaces topologiques qui sont effectivement des invariants
homotopiques, c’est-à-dire qui sont conservés entre des espaces topologiques homotopiquement équi-
valents. Les exemples les plus notables seraient les groupes d’homotopie et les groupes d’homologie
(singulaire, simpliciale). On parlera plus en détail de l’homologie dans la section suivante.

Définition 3.10. Un espace X est contractile s’il est homotopiquement équivalent à un point.

Exemple 3.11. Tout boule dans Rd, ouverte ou fermée, est contractile. Plus généralement, tout
sous-ensemble convexeX dans Rd est contractile. En effet, si on suppose 0 ∈ X, il y a les applications
f : X → {0}, x 7→ 0, et g : {0} → X, 0 7→ 0. Clairement f ◦ g ' id{0} (en fait, f ◦ g = id{0}), et
g ◦ f ' idX , avec l’application continue H : X × [0, 1] −→ X, H(x, t) = t · x.

Un recouvrement ouvert est celui où tous les éléments de la famille sont ouverts. Un recouvre-
ment ouvert fini où tous les éléments et intersections entre éléments sont contractiles satisfait le
résultat suivant, souvent nommé le Théorème du Nerf :

Théorème 3.12. (Théorème du Nerf) Soit U = (Ui)i∈I un recouvrement ouvert fini d’un sous-
ensemble X ⊆ Rd tel que toute intersection des Ui’s est vide ou contractile. Alors X et C(U) sont
homotopiquement équivalents.

Ainsi, on a que le nerf défini par un "bon" recouvrement de X est homotopiquement équivalent
à X, ce qui est remarquable pour des applications ; en effet, normalement un complexe simplicial
possède une nature beaucoup plus traitable algoritmiquement qu’un espace topologique général.

15

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

En tout cas, le complexe de Čech se construit avec des boules fermés centrées sur chaque donnée,
donc le recouvrement n’est pas ouvert dans ce cas. Heureusement, la version suivante du théorème
est aussi vraie :

Théorème 3.13. (Théorème du Nerf pour un recouvrement convexe) Soit X ⊆ Rd une
union finie d’ensembles fermés convexes F = (Fi)i∈I dans Rd. Alors X et C(F) sont homotopique-
ment équivalents.

De ce fait, on obtient que, en effet, si X est un nuage de points dans Rd, alors Cechα(X) est
homotopiquement équivalent à l’union des boules

⋃
x∈X B(x, α).

Figure 4 – Représentation de comment l’union des boules et le nerf associé (i.e. le complexe de
Čech des données) sont homotopiquement équivalents.

3.3. Inférence homologique

Résumons la situation jusqu’à ici : pour aller plus loin dans notre étude de nos ensembles de
données/ nuages de points, nous avons vu comment construire quelques structures géométriques au-
dessus, appelées complexes simplicials, de nature plus algorithmique. Après, nous avons exposé le
Théorème du Nerf, donc nous avons vu que, quand X est un ensemble de points dans Rd, Cechα(X)

est homotopiquement équivalent à l’union de boules ∪x∈XB(x, α).

Dans toute situation avec des données numériques (supposons dans Rd), et d’un point de vue sta-
tistique, il y a fondamentalement deux questions qui nous intéressent : d’une part, il y a l’"espace
d’échantillonnage" de nos données, i.e. dans quelle région M ⊆ Rd toutes les possibles données
"vivent" ; de l’autre part, il y a la mesure de probabilité µ sur cette région M , qui encode quelles
zones de M sont plus probables d’avoir plus de points, et de quelle manière les données se re-
groupent. Normalement, nous supposons que M , le support de µ, est compact, et que nos données
X = {x1, . . . , xn} ont été échantillonnées i.i.d. en suivant µ.

Évidemment, pour mieux comprendre nos données, faire des prédictions, etc., nous sommes inté-
ressés à connaître µ et la "forme" de son support M . Le processus qui essaie de mieux caractériser

16

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

M s’appelle "reconstruction géométrique", et un schéma habituel pour inférer cette information
géométrique et topologique est :

1. Nous recouvrons X avec des boules B(x, α) ; sous certaines conditions de régularité sur M ,
nous pouvons lier la topologie de cette union avec celle de M .

2. Certaines propriétés topologiques deM sont inférées à partir du nerf de l’union de ces boules,
en utilisant le Théorème du Nerf.

Des résultats mathématiquement rigoureux et importants existent avec cette approche de re-
construction. Néanmoins, ce n’est pas toujours possible, ni souhaitable, d’essayer de reconstruire
complètement la forme de base à partir de nos données. De plus, dans le schéma que nous venons
d’exposer, nous voyons que le choix du rayon des boules, qui souvent n’est pas du tout évident,
joue un rôle clé dans les résultats obtenus.

Une autre manière de travailler les données est d’essayer de trouver des invariants topologiques
plus faibles, mais plus faciles d’inférer. C’est ici que le concept d’homologie, un outil déjà clas-
sique dans la topologie algébrique, entre en scène. Plus notamment, nous pouvons faire usage de
l’homologie simplicial sur nos complexes simplicials pour mieux les comprendre et, finalement,
élaborer davantage cette information homologique pour développer ce qu’on appelle homologie per-
sistante, qui garde une trace de comme l’homologie des complexes simplicials obtenues évolue en
variant le rayon. Une manière de représenter visuellement une bonne partie de toute cette informa-
tion est avec ce qu’on appelle un diagramme de persistance.

3.3.1. Homologie simpliciale et nombres de Betti

L’idée intuitive derrière de l’homologie en général est de traiter et formaliser algébriquement
la notion de "trou", ou "boucle", dans de différentes contextes mathématiques, notamment dans
les espaces topologiques. Pour toute dimension n, les "trous" n-dimensionnels sont représentés par
un espace vectoriel Hn, et sa dimension serait le numéro de trous "indépendants" de ce type. Par
exemple, H0 représente les composantes connexes de notre espace, H1 les "boucles unidimension-
nelles", H2 les "cavités 2-dimensionnelles", etc.

Le premier type de théorie d’homologie qui a été développé, il y a environ un siècle, est l’ho-
mologie simpliciale, qui se construit sur les complexes simplicials. Sur ces objets, c’est relativement
simple d’imaginer la notion de trou k-dimensionnel. Même si les concepts que nous exposerons en-
suite sont sensés avec tout corps k, nous travaillerons désormais avec k = Z/2Z = Z2, plus intuitif
à niveau géométrique, et qui simplifie les arguments ; sinon, il faudrait considérer une orientation
sur les sommets/ faces de notre complexe, et les formules deviendraient plus compliquées.

Soit K un complexe simplicial de dimension d :

Définition 3.14. Une n-chaîne est une somme formelle de simplexes n-dimensionnelles de K ;
c’est à dire, si {σ1, . . . , σp} sont les n-faces de K, une n-chaîne c est une expression du type

c =

p∑
i=0

λiσi, avec λi ∈ Z2

Pour chaque n, l’ensemble des n-chaînes Cn(K) a une structure évidente de Z2-espace vectoriel,
où l’ensemble des n-faces de K est une base de Cn(K). Les chaînes avec des coefficients dans Z2

ont une interprétation géométrique simple : du fait que toute n-chaîne peut être uniquement écrite
comme c = σi1 + · · ·+ σim , c représente simplement l’union des n-simplexes σij .

17

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Définition 3.15. Le bord ∂(σ) d’un n-simplexe σ est la somme de ses (n− 1)-faces. Donc, pour
le n-simplexe σ = [v0, . . . , vn], on obtient la (n− 1)-chaîne

∂(σ) =

n∑
i=0

[v0, . . . , v̂i, . . . , vn]

où [v0, . . . , v̂i, . . . , vn] est le (n− 1)-simplexe formé pour les sommets originels sauf vi.

Le bord d’un n-simplexe nous donne les (n − 1)-faces qui le constituent. Le bord ainsi défini
sur les simplexes de K peut être étendue de manière naturelle à une (plusieurs) fonction entre les
Ci(K). Même si on devrait les distinguer ∂i, souvent on écrit simplement ∂ pour éclaircir le texte :

Définition 3.16. La fonction bord est l’application linéaire définie par

∂ : Cn(K) −→ Cn−1(K)

c 7→ ∂(c) =
∑
σ∈c

∂(σ)

La propriété plus fondamentale de ∂ est celle-ci :

Proposition 3.17. ∂∂ = ∂ ◦ ∂ = 0

Démonstration. Puisque la fonction bord est linéaire, il suffit de le vérifier simplement pour un seul
simplexe σ = [v0, . . . , vn], de dimension n :

∂∂σ = ∂
(n∑
i=0

[v0, . . . , v̂i, . . . , vn]
)

=

n∑
i=0

∂[v0, . . . , v̂i, . . . , vn] =

=
∑
j<i

[v0, . . . , v̂j , . . . , v̂i, . . . , vn]+
∑
j>i

[v0, . . . , v̂i, . . . , v̂j , . . . , vn] =

n∑
j,i=0
j 6=i

2[v0, . . . , v̂i, . . . , v̂j , . . . , vn] = 0

La fonction bord définit une séquence d’applications linéaires entre les Ci(K) :

Définition 3.18. Le complexe de chaînes associé au complexe simplicial K est la séquence d’espaces
vectoriels et applications linéaires :

{0} ∂−→ Cd(K)
∂−→ Cd−1(K)

∂−→ . . .
∂−→ C1(K)

∂−→ C0(K)
∂−→ {0}

Pour k ∈ {0, . . . , d}, l’ensemble Zk(K) de k-cycles de K est le noyau de ∂ : Ck(K)→ Ck−1(K) :

Zk(K) = {c ∈ Ck(K)| ∂(c) = 0},

et l’ensemble Bk(K) de k-bords de K sont les chaînes qui appartient a l’image de l’application ∂ :

Bk(K) = {c ∈ Ck(K)| ∃ b ∈ Ck+1(K) tel que ∂(b) = c},

De quelque sorte, Zk encode quelles k-chaînes sont "fermées" (d’ici le nom "cycles"), et Bk quels
ensembles de k-faces sont le bord d’une (k + 1)-chaîne.
Zk et Bk sont évidemment des sous-espaces de Ck, et en vue de la Proposition 3.17, on a toujours

18

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Bk ⊆ Zk, où la inclusion peut être stricte. Ce dernier fait motive la définition des groups d’homo-
logie, qui essaient de trouver des "trous" dans notre complexe simplicial, i.e. des k-chaines fermées
qui ne sont la frontière d’aucune (k + 1)-chaîne du complexe :

Définition 3.19. Le k-ème groupe d’homologie de K est l’espace vectoriel quotient

Hk(K) = Zk(K)/Bk(K);

ses éléments s’appellent les classes d’homologie de K. Deux cycles qui appartient à la même classe
d’homologie sont appelés homologues.
La dimension βk(K) de Hk(K) s’appelle le k-ème nombre de Betti de K.

Figure 5 – Les nombres de Betti associés à quelques complexes simplicials simples : une arête
(avec ses sommets), le périmètre d’un triangle, un triangle, et un tétraèdre.

On peut démontrer (ce qui n’est pas immédiat) que les groupes d’homologie et les nombres de
Betti sont des invariants topologiques : si K0 et K1 sont deux complexes simplicials avec des réali-
sations géométriques homéomorphes, alors ses groups d’homologie sont isomorphes et ses nombres
de Betti sont égales. De plus, ces résultats sont aussi vraies si les réalisations géométriques sont
seulement homotopiquement équivalents.

Ces résultats sont une conséquence de l’étroite relation entre l’homologie simpliciale et une
autre type d’homologie, l’homologie singulière, beaucoup plus générale et qui peut être définie pour
tout espace topologique. En fait, on peut démontrer que les groupes d’homologie simpliciales et
singulières d’un complexe simplicial sont toujours isomorphes, et le résultat est une conséquence de
l’invariance homotopique de l’homologie singulière. Bien que notre intention dans ce mémoire n’est
pas d’introduire l’homologie singulière, le résultat suivant, pas difficile mais sans démonstration,
nous sera utile dans les pages qui viennent :

Proposition 3.20. Soit X un espace topologique (resp. un complexe simplicial). Alors, la dimen-
sion du premier groupe d’homologie singuilière H0(X) (resp. homologie simpliciale) est égale au
nombre de composantes connexes (par arcs) de X.

3.3.2. Filtrations

Définition 3.21. Une filtration d’un complexe simplicial K est une suite de subcomplexes (Kr)r∈T ,
où T ⊆ R fini ou infini, telle que ∀r0, r1 ∈ T , r0 ≤ r1 =⇒ Kr0 ⊆ Kr1 , et K = ∪r∈TKr. La
définition peut être généralisée de la manière évidente à tout espace topologique.

Dans des situations pratiques, les valeurs r ∈ T souvent jouent le rôle de "paramètres d’échelle",
qui ajustent la résolution du complexe. Deux filtrations habituelles dans le TDA seraient :

19

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

— Filtrations construites sur des nuages de points : Étant donné un sous-ensemble fini X d’un
espace métrique compact (M,d), les familles de complexes (Ripsr(X))r∈R et (Cechr(X))r∈R
sont des filtrations. Dans ces dernières, r peut être vu comme le paramètre de résolution, où,
pour r ≤ 0, nous considérons seulement les points. Par exemple, quand X est un nuage de
points à Rd, grâce au Théorème du Nerf, (Cechr(X))r∈R encode la topologie de la famille
d’unions de boules Xr = ∪x∈XB(x, r) lorsque r varie de zéro à infini.

— Filtrations associées aux ensembles de niveau : Étant donné un espace topologique M et une
fonction f : M → R, la famille Mr = f−1((−∞, r]), r ∈ R définit une filtration. On appelle
les ensembles Mr ⊆ M les ensembles de sous-niveau de f . On peut définir également les
ensembles de super-niveau de f et sa filtration associé.
Dans les cas où nous travaillons avec un complexe simplicial K, normalement la fonction est
définie seulement sur son ensemble de sommets V . Nous pouvons étendre f à tout simplexe
de K en prenant f([v0, . . . , vk]) = max0≤i≤k f(vi) pour tout σ = [v0, . . . , vk] ∈ K. Ainsi, la
famille de sous-complexes Kr = {σ ∈ K|f(σ) ≤ r} définit la filtration associée aux ensembles
de sous-niveau de f .

Avec ces deux filtrations, dans des cas réels, même si T est infini, toutes les filtrations sont
construites sur des nuages de points, qui sont des ensembles finis, donc elles sont aussi finies. Par
conséquent, le complexe obtenu change seulement un numéro fini de fois, ce qui facilite son étude
d’un point de vue algorithmique.

Nous exposons finalement un autre type de filtration sur les complexes simpliciales, facile de
calculer et très pratique au niveau algorithmique, comme nous verrons toute de suite :

Définition 3.22. Une filtration de décomposition d’un complexe simplicial K est une suite de
subcomplexes

∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Km−1 ⊂ Km = K

qui satisfait Ki = Ki−1 ∪ σi, où σi est un simplex.

Intuitivement, dans une filtration de décomposition, nous ajoutons seulement un simplexe à
chaque fois, et il faut que toutes ses faces appartiennent déjà au sous-complexe quand il est introduit.

Exemple 3.23. Avec le complexe simplicial de l’image suivant, une filtration de décomposition
pourrait être a, b, c, ab, ac, d, bc, abc, cd.

Remarque 3.24. C’est facile de voir que toute filtration d’un complexe simplicial (y comprises les
deux filtrations précédentes) peut être affinée à une filtration de décomposition : il faut seulement
décomposer les nouveaux simplexes de Ki respect à Ki−1 en sommets, arêtes, 2-faces,... et les
ajouter un par un à chaque fois.

Cette dernière remarque ouvre tous les algorithmes typiques des filtrations de décomposition,
comme ceux dans les sections suivants, à toute filtration. C’est à cause de ce fait que désormais
nous travaillerons plutôt avec ce type de filtrations.

20

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

3.3.3. Un algorithme pour calculer les nombres de Betti

Supposons un complexe simplicial K avec une filtration de décomposition. Dans cette situation,
il existe un algorithme assez simple pour calculer les nombres de Betti associés à K, seulement en
gardant une trace des nombres de Betti tout au long de la filtration ; en fait, l’algorithme calcule les
nombres de Betti de chaque sous-complexe de la filtration, ce qui sera important dans l’homologie
persistante.

Pour bien effectuer cette méthode, c’est indispensable de détecter quand le nouveau simplexe σi
ajouté, de dimension k, appartient à quelque k-cycle ou non, ce qui motive la définition suivante :

Définition 3.25. Si σi appartient à quelque k-cycle, on dit qu’il est un simplexe positif ; dans le
cas contraire, c’est un simplexe négatif.

Dans les sections suivantes, où plus d’algorithmes seront détaillés, nous expliquerons comment
savoir si nous ajoutons un simplexe positif ou négatif. Pour l’instant, et pour expliquer l’algorithme,
nous pouvons supposer que nous savons détecter quand σi est positif ou négatif :

Proposition 3.26. (Algorithme) : Les nombres de Betti de K peuvent être calculés de manière
inductive en faisant usage d’une filtration de décomposition.

Démonstration. Évidemment, tous les nombres de Betti de K0 = ∅ sont zéro.
Pour calculer les nombres de Betti de Ki, supposons que les nombres de Betti de Ki−1 sont déjà
calculés, et ajoutons le simplexe σi, de dimension k, pour obtenir Ki. Observons que, par définition
de filtration de décomposition, σi ne peut pas faire partie du bord d’aucun (k+ 1)-simplexe de Ki.
Par conséquent, si σi est contenu dans un k-cycle de Ki (i.e. positif), ce cycle n’est pas le bord
d’une (k + 1)-chaîne de Ki.

Il y a deux situations possibles :

Cas 1 : Si σi est positif et appartient à un k-cycle c de Ki, alors c ne peut pas être homologue
à un cycle c′ de Ki−1. En effet, dans ce cas c + c′ serait le bord d’une (k + 1)-chaîne d de Ki, et
comme σi ne peut pas appartenir à c′ (donc nous venons d’introduire cet nouveau simplexe à Ki),
σi appartient à c + c′ = ∂d, ce qui n’est pas possible comme nous avons déjà remarqué au début
de la démonstration. Par conséquent, c crée une nouvelle classe d’homologie, qui est linéairement
indépendant des classes générées par les cycles de Ki−1, donc βk(Ki) ≥ βk(Ki−1) + 1.
Nous pouvons voir aussi que la dimension du k-ème groupe d’homologie ne peut pas augmenter plus
que 1 : si c et c′ sont deux k-cycles qui contient σi, c+ c′ est un k-cycle de Ki−1, donc c′ est inclus
au sous-espace linéaire généré pour Zk(Ki−1) et c. D’ici on a que dimZk(Ki) ≤ dimZk(Ki−1) + 1

et, comme Bk(Ki−1) = Bk(Ki), on a βk(Ki) ≤ βk(Ki−1) + 1.
Il reste seulement pour montrer que Bk−1(Ki) = Bk−1(Ki−1), donc Hk−1(Ki) est le seul autre
group d’homologie de Ki qui peut changer en ajoutant σi, et clairement Zk−1(Ki) = Zk−1(Ki−1).
Le résultat est une conséquence directe du fait que σi est positif, et il appartient donc à un k-cycle
c de Ki : en effet, 0 = ∂c = ∂σi+

∑
∂(autres k-simplexes de K déjà ajoutés), et ∂σi peut être écrit

comme une combinaison linéaire de bords de k-chaînes de Ki−1.

Cas 2 : Si σi est négatif et n’appartient à aucun k-cycle de Ki, alors le (k − 1)-cycle ∂σi n’est
pas un bord à Ki−1. En effet, dans ce cas nous pourrions trouver une k-chaîne c′ à Ki−1 tel que
∂c = ∂σi, ou de façon équivalente, ∂(c + σi) = 0, ce qui implique que c + σi est un k-cycle de Ki

qui contient σi : contradiction. Par conséquent, comme le (k− 1)-cycle ∂σi, qui n’était pas un bord
à Ki−1, dévient un bord à Ki, nous avons βk−1(Ki) ≤ βk−1(Ki−1)− 1. Avec un argument similaire

21

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

à celui de la fin du Cas 1, nous pouvons démontrer l’égalité.
Du fait que σi est négatif, c’est aussi évident que le groupe d’homologie Hk(Ki) reste inaltéré.

Nous voyons donc que, de quelque sorte, le processus se limite à trouver la différence entre les
simplexes positifs et négatifs de la filtration ; les positifs créent de nouvelles k-classes d’homologie
tandis que les négatifs effacent des (k − 1)-classes. Voici un résumé de l’algorithme :

Algorithm 3: Calcul des nombres de Betti d’un complexe simplicial K
Input: Une filtration de décomposition de K, complexe simplicial d-dimensionnel avec m

simplexes
β0, β1, . . . , βd = 0

Output: Les nombres de Betti β0, β1, . . . , βd de K

1 for i = 1 jusqu’à m :
k= dimσi
Si σi est positif :

βk = βk + 1
Si σi est négatif :

βk−1 = βk−1 − 1

3.3.4. Homologie persistante : définitions et algorithmes

Nous avons vu que l’algorithme précédant ne compute pas seulement les nombres de Betti d’un
complexe simplicial, mais de tous les sous-complexes de la filtration (de décomposition). Intuiti-
vement, l’objectif de l’homologie persistante est de garder une trace de toute cette information et
enregistrer à quels moments chaque classe d’homologie est crée et détruite pendant le processus.

Avant d’expliquer les formalismes, montrons un petit exemple, en utilisant l’homologie singulière
et la Proposition 3.20 :

Exemple 3.27. Soit f : (0, 1)→ R la fonction représentée dans l’image suivant :

Figure 6 – Diagramme de persistance d’une fonction réelle, où seulement les composantes connexes
(i.e. H0) sont enregistrées.

Nous sommes intéressés à étudier l’évolution de la topologie de la filtration associé aux ensembles
de sous-niveau de f , f−1((−∞, t]), à mesure que t augmente. La topologie de ces sous-ensembles
change quand t atteint les valeurs critiques a, b, c, d et e :

22

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Quand t = a, une nouvelle composante connexe apparaît, et pour a ≤ t ≤ b, f−1((−∞, t))
est un intervalle. Quand t atteint la valeur b, une deuxième composante connexe apparaît, et pour
b ≤ t ≤ c, f−1((−∞, t)) a deux composantes connexes. Pour t = c, ces deux composantes connexes
sont fusionnées : celle qui a été crée plus récemment, quand t = b, est unifiée à la première. Ainsi,
on enregistre la paire (b, c) comme les temps de création et destruction de la composante ; cette
paire est après représentée avec les cordonnées (b, c) au plan à droite. Intuitivement, le plus éloignée
un point est de la diagonale, le plus relevant est la composante.
Si nous continuons à augmenter t, encore une nouvelle composante est crée à t = d, qui est fina-
lement unifiée à la première quand t atteint la valeur e ; ainsi, un deuxième point est enregistré
à droite, avec cordonnées (d, e). La première valeur a ne peut pas être associée à aucune autre
valeur finie, donc la composante connexe crée pour cette t ne meurt jamais ; par conséquent, elle
est associée à +∞.
À la fin, toutes ces paires peuvent être représentées comme une famille d’intervalles (barcode) ou
comme un diagramme au plan, appelé diagramme de persistance. Pour des raisons qui deviendront
claires plus tard, c’est aussi naturel d’ajouter la diagonale {y = x} au diagramme.

Quand nous considérons des fonctions définies dans des espaces topologiques générales, atteindre
certaines valeurs critiques peut changer ne pas seulement les composantes connexes des ensembles
de sous-niveau, mais d’autres propriétés topologiques encodées dans les autres groups d’homologie
(i.e. les "trous" n-dimensionnels). De ce fait, il est aussi raisonnable de créer des paires de création/
destruction pour chaque dimension.

Finalement, supposons une fonction g "proche" à f comme celle de l’image d’en bas. Nous
pouvons observer que, même si g a plus de paires dans son diagramme de persistance, la majorité
sont très proches à la diagonale, donc une durée de vie assez courte. En revanche, les paires associées
à un intervalle plus long sont proches à celles de f . En d’autres termes, les propriétés topologiques
qui ont une persistance élevée sont préservées, tandis que celles qui son crées à cause de perturbations
sur la fonction ont une persistance plus petite. Nous verrons que, en effet, deux fonctions "proches"
ont toujours des diagrammes de persistance "proches". Cette notion de proximité est essentielle
pour bien distinguer et traiter le bruit topologique dans nos données.

Figure 7 – Une approximation g de f , et les diagrammes de persistance respectifs.

23

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Homologie persistante d’une filtration

Nous définissons d’abord la notion de persistance pour la filtration d’un complexe simplicial,
qui a pour objectif étudier l’évolution de l’homologie des sous-complexes de la filtration.

Soit K un complexe simplicial d-dimensionnel avec une filtration de décomposition

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K.

Pour tout 0 ≤ n ≤ m, on dénote Cnk l’ensemble de k-chaînes de Kn (avec des coefficients à
Z2). Notons que, puisque ∂2 = 0 et nous avons une filtration de décomposition, la restriction de
la fonction bord sur Cnk a toujours sa image contenue dans Cn−1k−1 . Dénotons Znk et Bnk les cycles
et bords k-dimensionnels de Kn respectivement, donc le k-ème groupe d’homologie de Kn est
Hn
k = Znk /B

n
k . Avec ces notations nous avons aussi

Z0
k ⊂ Z1

k ⊂ · · · ⊂ Zmk = Zk(K), B0
k ⊂ B1

k ⊂ · · · ⊂ Bmk = Bk(K).

Définition 3.28. (Nombres de Betti persistants) : Pour p ∈ {0, . . . ,m} et l ∈ {0, . . . ,m−p}, le
k-ème nombre de Betti persistant deKl est la dimension de l’espace vectoriel H l,p

k = Zlk/(B
l+p
k ∩Zlk).

Intuitivement, le k-ème nombre de Betti persistant de Kl représente le numéro de classes d’ho-
mologie indépendantes de k-cycles dans Kl qui ne sont pas de bords dans Kl+p ; par conséquente,
de manière informelle, sa durée de vie est supérieure à p.
Nous avons vu, dans la section précédente, qu’une classe d’homologie est crée quand un simplexe
positif est ajouté à la filtration, et qu’une classe d’homologie est détruite quand le simplexe est
négatif. L’homologie persistante offre un cadre théorique pour associer des simplexes positifs et
négatifs : quand un simplexe positif est ajouté à la filtration, il crée une classe d’homologie, qui
disparaît quand on ajoute son simplexe négatif associé (s’il existe).

Nous sommes intéressés à trouver un algorithme pour calculer ces nombres de Betti persistantes.
Pour l’obtenir, il faut mieux caractériser les classes d’homologie crées à chaque fois que nous ajoutons
un simplexe positif à la filtration. Rappelons que, dans la définition 3.25 de simplexe positif et
négatif, il faut seulement que σi appartient à un k-cycle, mais en général ce k-cycle n’est pas
unique. Heureusement, pour chaque k-simplexe positif σi que nous ajoutons ajoute à la filtration, il
y a un k-cycle associé "minimal", qui facilitera, à la fois, le calcul des nombres de Betti persistantes :

Lemme 3.29. Soit σi un k-simplexe positif ajouté à la filtration de K au pas i. Or, il n’y a
qu’un seul k-cycle c qui n’est pas un bord dans Ki, qui contient σi et qui ne contient aucun autre
k-simplexe positif.

Démonstration. Nous travaillons par induction sur l’ordre avec lequel les k-simplexes positifs sont
ajoutés à la filtration. Pour le premier k-simplexe positif σ ajouté, ce k-cycle c existe par définition,
est il est nécessairement unique parce que s’il y en avait un autre c′ de différent, c+ c′ 6= 0, qui ne
contient pas σ, serait aussi un k-cycle et ses éléments seraient des k-simplexes positifs, contradiction.

Supposons maintenant que le résultat est vrai pour tous les k-simplexes positifs déjà ajoutés,
et ajoutons σi. Comme σi est positif, il existe un k-cycle d qui n’est pas un bord dans Ki et qui
contient σi. Soit σij , j = 1, . . . , p les k-simplexes positifs différents de σi contenus dans d, et cij ses

24

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

k-cycles respectifs associés, qui existent par hypothèse d’induction. Alors

c = d+ ci1 + · · ·+ cip (5)

est un k-cycle où σi est le seul k-simplexe positif. Du fait que σi est le dernier simplexe ajouté à
Ki, il n’existe aucun (k + 1)-simplexe dans Ki où σi est une face. Par conséquent, c n’est pas un
bord, et l’existence est démontrée.

Pour démontrer l’unicité de c, supposons deux k-cycles d̂1 et d̂2 qui ne sont pas un bord dans Ki

et qui contient σi, et répétons la construction précédente pour obtenir ĉ1 6= ĉ2. Alors ĉ1− ĉ2 6= 0 est
un k-cycle qui ne contient aucun k-simplexe positif, et nous pourrions toujours le combiner avec un
ci antérieur pour obtenir un k-cycle avec les mêmes propriétés du lemme, ce qui contredit sa unicité
et l’hypothèse d’induction. Donc, nous concluons que ĉ1 − ĉ2 = 0, et l’unicité est démontrée.

Bases des groupes d’homologie persistante et paires de persistance

Proposition 3.30. Les k-cycles associés aux k-simplexes positifs décrits au Lemme 3.29 peuvent
être utilisés pour calculer une base des différents groupes d’homologie k-dimensionnels de tous les
sous-complexes de la filtration.

Démonstration. Évidemment, au début toutes les bases de H0
n(K) = Hk(K0) sont vides pour

k = 0, . . . , d. Les bases des successives Hi
k sont construites de manière inductive :

- Supposons que nous avons déjà une base de Hi−1
k et que σi est positif et de dimension k. Si

nous ajoutons à notre base la classe d’homologie définie par le cycle ci associé à σi, nous obte-
nons une base de Hi

k grâce au Lemme précédent. En effet, du fait que ci est une somme de σi et
k-simplexes négatifs, il n’est homologue à aucune combinaison linéaire des cycles qui définissent la
base de Hi−1

k . Du fait que dimHi
k = dimHi−1

k + 1, vu dans la Proposition 3.26, nous obtenons une
base de Hi

k.

- Supposons maintenant qu’une base de Hj−1
k est déjà construite et que le simplexe σj est négatif

et de dimension k + 1. Soient ci1 , . . . , cip les k-cycles associés aux simplexes positifs déjà ajoutés,
qui définissent les classes d’homologie qui forment notre base de Hj−1

k . Comme nous l’avons déjà
expliqué, le bord ∂σj est un k-cycle de Kj−1 qui n’est pas un bord dans Kj−1, mais qui devient un
bord dans Kj . Par conséquent, il peut être écrit de manière unique comme

∂σj =

p∑
k=1

εkcik + b, (6)

où εk ∈ {0, 1} et b est un bord. Soit l(j) = max{ik| εk = 1}.

Claim : Si on enlève la classe d’homologie associé à cl(j) de la base de Hj−1
k , on obtient une

base de Hjk.

En effet, comme dimHj−1
k = dimHj

k + 1 par la Propositon 3.26, il suffit de montrer que cl(j)
est une combinaison linéaire d’un bord avec les autres cycles cik dans Zjk. L’équation (6) antérieure
montre une telle décomposition, ce qui finis la démonstration.

Définition 3.31. (Paires de persistance) Les paires de simplexes (σl(j), σj) s’appellent les paires
de persistance de la filtration de K.

25

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Intuitivement, la classe d’homologie crée pour σl(j) dans Kl(j) est détruite pour σj dans Kj . La
persistance de cette paire est j − l(j).

Le problème avec l’algorithme antérieur est de déterminer l(j). N’oublions pas non plus qu’il
faut aussi encore expliquer, en vue de l’algorithme du calcul des nombres de Betti de la Proposi-
tion 3.26, comment détecter si un nouveau k-simplexe est positif ou négatif. Toutes ces questions
peuvent être répondues à la fois en étudiant la filtration sous une forme matricielle. D’idée derrière
cette matrice est d’encoder le résultat de la fonction bord sur tous les simplexes de la filtration,
ordonnés. Avec cette matrice, nous pouvons réélaborer la proposition antérieur pour obtenir un
algorithme effectif pour calculer les paires de persistance, ce qui permet trouver les nombres de
Betti persistantes. Elle proportionne aussi une manière de détecter quand le k-simplexe ajouté est
positif ou négatif.

Soit K un complexe simplicial avec une filtration de décomposition. Soit M = (mij)i,j=1,...,m la
matrice associé au pas m de la filtration, où

mi,j = 1 si σi est une face de σj , et mi,j = 0 autrefois.

Cette matrice augmente "à droite et en bas" à mesure que la filtration avance, et elle est toujours
triangulaire supérieure puisqu’on a une filtration de décomposition.

Pour une colonne Cj , soit l(j) = max{i| mi,j = 1}, et non-assigné si la colonne contient
seulement des zéros. Nous pouvons alors considérer l’algorithme suivant :

Algorithm 4: Calcul des paires de persistance, version matricielle
Input: Une filtration de décomposition de K, le sous-complexe Km (qui contient m

simplexes) et la matrice M associé au pas m

1 for j = 0 jusqu’à m :
while qu’il existe j′ < j avec l(j′) == l(j)

Cj = Cj + Cj′ (mod 2)

Output: Les paires (l(j), j)

Proposition 3.32. L’algorithme antérieur calcule les paires de persistance de la filtration de dé-
composition de K jusqu’au pas m, ainsi comme quels simplexes sont positifs et quels sont négatifs.

Démonstration. Remarquons que, à chaque pas de l’algorithme, la colonne Cj représente une chaîne
de la forme ∂

(
σj +

∑
i<j εiσi

)
, où εi ∈ {0, 1}.

- Si à la fin de l’algorithme j satisfait que l(j) est assigné, alors σl(j) est un simplexe positif. En

effet, on a ∂
(
σj +

∑
i<j εiσi

)
= σl(j) +

∑
p<l(j) λpσp, où λp ∈ {0, 1}. Du fait que ∂2 = 0, on a que

σl(j) appartient à un cycle et il est donc positif.

- Si à la fin de l’algorithme Cj contient seulement des zéros, σj est positif. Effectivement,
∂
(
σj +

∑
i<j εiσi

)
= 0, et σj appartient donc à un cycle.

-Finalement, si à la fin de l’algorithme la colonne Cj contient des termes non nuls, (σl(j), σj) est
une paire de persistance, et σj est donc négatif. En effet, le bord de σj peut alors être écrit de la
forme σl(j)+

∑
p<l(j) λpσp+∂

(∑
i<j εiσi

)
. Or, σl(j) est positif, donc il a crée une classe d’homologie

au moment l(j), et il reste non associé. Du fait que le dernier index non nul d’une colonne est unique
et par la Proposition 3.30, on peut déduire que (σl(j), σj) est une paire de persistance.

26

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

3.3.5. Diagrammes de persistance et stabilité

Rappelons que, d’après le Remarque 3.24, tous les algorithmes que nous venons d’expliquer
sont aussi applicables à des filtrations pas nécessairement de décomposition. En effet, nous pouvons
toujours faire une affinage, et après prendre les coefficients de la filtration original. Également, avec
des algorithmes qui facilitent les calculs ou pas, les notions de l’homologie persistante introduites
jusqu’à ici, notamment les paires de persistance, peuvent aussi être appliquées avec des filtrations
d’espaces topologiques plus générales, en prenant l’homologie singulière. Nous avons déjà observé
ce fait informellement dans l’exemple 3.26, et nous en verrons aussi dans cette section.

Dans tous les cas, beaucoup des informations de l’homologie persistante, notamment la durée de
vie des différentes classes d’homologie, peuvent être facilement représentées en forme de diagramme :

Avec k fixée, soient (σl(j), σj) les paires de persistance (calculées avec les algorithmes précédentes,
par exemple), où σl(j) et σj ont dimension k et k+1 respectivement. Nous représentons chacune de
ces paires dans R2 avec le point de coordonnés (l(j), j) ; pour les simplexes positifs σi qui restent
non associés, nous créons les points (i,+∞).

Définition 3.33. Nous appellons la représentation de cet ensemble de points dans R2 avec la
diagonale ∆ = {x = y} le diagramme de persistance k-dimensionnel de la filtration.

Plus généralement, si la filtration est indexée par une suite croissante de numéros réels, comme
par exemple avec les filtrations introduites dans la section 3.3.2,

∅ = Kα0
⊂ Kα1

⊂ · · · ⊂ Kαn−1
⊂ Kαn = K,

une paire de persistance de simplexes (σi, σj) est représentée par le point (αi, αj), avec les indices
d’apparition et mort ; si le simplexe σi reste non associé, nous ajoutons ajoute le point (αi,+∞).

Le même type de points peuvent être crées pour toute filtration d’un espace topologique et
avec l’homologie singulière, où la coordonné x enregistre l’apparition d’une classe d’homologie et
la coordonné y sa mort. En tout cas, dans ces cas plus générales, il faut faire attention au fait que
plusieurs paires peuvent être associées au même point dans le plan. Donc, dans ces diagrammes de
persistance il faut aussi considérer une multiplicité pour chaque point. Par convention, les points
de la diagonale ont tous multiplicité infinie. Désormais, nous considérerons aussi une multiplicité
pour chaque point dans la définition de diagramme de persistance.

Nous pouvons définir une distance entre diagrammes de persistance pour mieux les comparer :

Définition 3.34. (Distance "bottleneck") Soient D1 et D2 deux diagrammes de persistance.
La distance goulot ("bottleneck" en anglais) entre D1 et D2 est définie comme

dB(D1, D2) = inf
γ

sup
p∈D1

||p− γ(p)||∞,

où γ est l’ensemble de bijections entre les points de D1 et D2 ; on prend m copies disjointes si un
point a multiplicité m > 1. Par convention, si p = (xp,+∞), q = (xq,+∞), ||p− q||∞ = |xp − xq|.

Remarque 3.35. C’est précisément cette distance qui motive ajouter la diagonale aux diagrammes
de persistance : elle permet de comparer des diagrammes qui n’ont pas le même nombre de points
dehors la diagonale en les associant avec des points de la diagonale.

Nous omettrons la démonstration qu’il s’agit vraiment d’une distance. Dans l’image suivante il
apparaît une représentation de la distance bottleneck entre deux diagrammes de persistance :

27

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Stabilité persistante des fonctions

Dans cette dernière partie de la section, inévitablement plus avancée et sans toutes les démons-
trations, nous allons lier la proximité de deux fonctions f et g à la proximité de ses diagrammes
de persistance. Cette relation est fondamentale pour justifier la convenance des diagrammes de
persistance associées à une fonction, ainsi comme pour identifier ses propriétés "proéminentes" et
les distinguer du "bruit topologique", i.e. des caractéristiques topologiques de courte durée crées
pour de petites perturbations. Ces résultats deviennent aussi importants pour justifier la procédure
de l’algorithme ToMATo du prochain chapitre, où nous travaillons avec une estimation f̂ d’une
densité f , et nous regardons son diagramme de persistance (0-dimensionnel).

Expliquons brièvement la situation : soit f : X → R une fonction réelle continue définie sur un
espace topologique X. Nous voulons étudier le diagramme de persistance k-dimensionnel associé à
ses ensembles de sous-niveau {Fα}α∈R, où Fα = f−1((−∞, α]), avec l’homologie singulière.
Une propriété fondamentale de l’homologie singulière est que toute application continue entre es-
paces topologiques h : X → Y induit un morphisme entre les respectives (k-èmes) groupes d’ho-
mologie, h∗ : H∗(X)→ H∗(Y). Plus concrètement, la (k-ème) homologie singulière est un foncteur
(covariant) de la catégorie des espaces topologiques à la catégorie des groupes. Donc, il est toujours
vrai que (idX)∗ = idH∗(X) et (h ◦ g)∗ = h∗ ◦ g∗.

Dans notre cas, on peut étudier les applications induites par les inclusions Fa ⊂ Fb quand a < b,
f ba : H∗(Fa) → H∗(Fb). Ces groupes et morphismes encodent toute l’information de l’homologie
persistante : quelques références appellent groupes d’homologie persistante aux groupes Im f ba, qui
suivent la même idée que les groupes qui apparaissent dans la Définition 3.28, dans le cas simplicial.
Intuitivement, avec deux fonctions "proches" (avec la distance ||f−g||∞ = supx∈X |f(x)−g(x)|), les
moments de création et de mort de certaines caractéristiques topologiques (gardés dans les groupes
d’homologie, et représentés graphiquement dans les diagrammes de persistance respectifs D(f) et
D(g)) devraient être similaires. Cette idée est formalisée dans le théorème suivant :

Théorème 3.36. (Théorème de la stabilité bottleneck des diagrammes de persistance) :
Soit X un espace topologique triangulable avec des fonctions tame f, g : X → R. Alors, les dia-
grammes de persistance satisfont dB(D(f), D(g)) < ||f − g||∞.

28

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Nous démontrerons le théorème à la fin de la section, mais sans tous les pas intermédiaires.
Avant, plusieurs définitions et résultats sont nécessaires :

Définition 3.37. Soit X un espace topologique, f : X → R. Une valeur critique homologique
de f est un numéro réel a pour lequel il existe un entier k tel que, ∀ε > 0, l’application induite
fa+εa−ε : Hk(Fa−ε)→ Hk(Fa+ε) n’est pas un isomorphisme.

Lemme 3.38. (Lemme de la valeur critique) : Si [a, b] ne contient aucune valeur critique
homologique de f , f ba est un isomorphisme pour tout k ∈ Z.

Démonstration. Soit m = x+y
2 , or f ba = f bm ◦fma . Si f ba n’est pas un isomorphisme, au moins une des

deux fonctions antérieures ne l’est pas non plus. Ainsi, on peut construire de manière inductive une
suite d’intervalles fermés décroissants, l’intersection desquels est une valeur critique homologique
dans [x, y], ce qui est une contradiction.

Le lemme antérieur formalise l’idée que c’est seulement quand on atteint des valeurs critiques
homologiques que nouvelles caractéristiques topologiques sont crées ou destruites. Notre résultat
requiert une condition de finitude sur notre fonction, qui se satisfait dans la plupart des cas d’étude :

Définition 3.39. Une fonction f : X → R s’appelle tame si elle a un numéro fini de valeurs
critiques homologiques et tous les groupes d’homologie Hk(Fa) ont dimension finie ∀k ∈ Z, a ∈ R.

Rappelons maintenant la définition de la distance de Hausdorff, très habituelle dans la TDA,
pour des nuages de points :

Définition 3.40. Soient X et Y des ensembles de points (avec multiplicité). Alors la distance
Hausdorff est dH(X,Y) = max{supx infy ||x− y||∞, supy infx ||y − x||∞}.

Un résultat important, mais sans démonstration, que nous utiliserons plus tard est celui-ci :

Proposition 3.41. Soit X un espace topologique triangulable avec des fonctions tame f, g : X → R.
Alors dH(D(f), D(g)) < ||f − g||∞.

Remarque 3.42. La distance Hausdorff entre deux diagrammes de persistance n’excède jamais la
distance bottleneck, car elle ne fait pas attention aux multiplicités, ou regroupements de points. Le
résultat pour la distance bottleneck est plus fort, et clé, pour quelques applications.

Voyons avant le résultat du Théorème 3.36 pour un cas spécial, et plus simple. Nous nous en
servirons plus tard pour prouver le cas général.
Étant donnée une fonction tame f : X → R, soit δf la distance minimale entre deux points dehors
la diagonal, ou entre un point dehors la diagonale et un autre dedans :

δf = min{||p− q||∞| D(f)\∆ 3 p 6= q ∈ D(f)}.

Si on dessine des carrés de rayon ε = δf/2 centrés sur les points de D(f), on obtient une diagonale
plus "grosse", et une collection finie de carrés disjoints entre eux et avec la diagonale.

Définition 3.43. Une autre fonction tame g : X → R est appelée très proche à f si ||f−g||∞ <
δf
2 .

Ici un autre lemme nécessaire mais sans démonstration, de nature plus technique :

Lemme 3.44. Soient f, g : X → R des fonctions tames, g très proche à f . Soient p ∈ D(f)\∆,
mp sa multiplicité et �ε le carré centré en p de rayon ε = ||f − g||∞. Alors |D(g) ∩�ε| = mp.

29

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Lemme 3.45. (Lemme de la bijection) : Soit X un espace topologique triangulable, f, g : X → R
des fonctions tames, g très proche à f . Alors dB(D(f), D(g)) ≤ ||f − g||∞.

Démonstration. Soient p ∈ D(f)\∆ et �ε le carré centré en p de rayon ε = ||f−g||∞, comme avant.
Du lemme précédant, tous les points de D(g) ∩�ε peuvent être associés à p. Nous pouvons suivre
cette procédure pour tous les points dehors la diagonal de D(f). Après, les seuls points de D(g)

qui restent sans image ont une distance supérieure à ε de D(f)\∆. Du fait que dH(D(f), D(g)) ≤ ε
(Proposition 3.41), ces points de D(g) sont au plus à distance ε de la diagonale. Si nous leur
associons respectivement les points les plus proches de la diagonale, nous obtenons une bijection
entre D(f) et D(g) (rappelons que les points de la diagonale ont multiplicité infinie). Cette bijection
déplace les points au plus ε, ce qui finit la démonstration.

Rappelons qu’un espace topologique est appelé triangulable s’il existe un complexe simplicial
fini avec une réalisation géométrique homéomorphe. Nous pouvons montrer notre théorème dans
toute sa généralité en faisant des approximations successives de notre fonction originelle f : X → R
par des fonctions linéaires par morceaux définies sur un complexe simplicial :

Définition 3.46. Soit K un complexe simplicial avec des valeurs réels spécifiées sur chaque sommet
xi, f(xi). Sa fonction linéaire par morceaux (LPM) associée est f̂ : K → R, x̂ =

∑
i bi(x)f(xi), où

bi(x) sont les coordonnés barycentriques de x. On obtient une fonction linéaire sur chaque simplexe
du complexe.

Remarquons que, à cause de sa nature finie et linéaire, une fonction LPM sur un complexe
simpliciale fini est toujours tame. Ce fait permet de démontrer le Théorème 3.36 pour deux fonctions
LPM f̂ , ĝ définies sur un complexe simplicial K fini. Avant, une dernière définition :

Définition 3.47. Une combinaison convexe de f̂ et ĝ est une fonction du type hλ = (1−λ)f̂ +λĝ,
avec λ ∈ [0, 1]. Cette famille de combinaisons convexes entre les deux fonctions, où h0 = f̂ et
h1 = ĝ, s’appelle interpolation linéaire de f̂ à ĝ.

Lemme 3.48. (Lemme d’interpolation) : Soient f̂ , ĝ deux fonctions LPM définies sur un com-
plexe simplicial K fini. Alors dB(D(f̂), D(ĝ)) ≤ ||f̂ − ĝ||∞

Démonstration. L’idée de base de la démonstration est de décomposer l’interpolation linéaire de f̂
à ĝ en petites sections pour utiliser le Lemme de la bijection, et ainsi obtenir une bijection dans
chaque section.

Soit ε = ||f̂ − ĝ||∞, et observons que, pour tout λ ∈ [0, 1], hλ est tame (car elle est aussi une
fonction LPM) et δ(λ) = δhλ est strictement positif quand au moins f̂ ou ĝ ont un point dehors la
diagonale (sinon, l’inégalité du lemme est triviale).
Donc, la famille C = {Jλ}λ∈Q∩[0,1] d’intervalles ouverts Jλ = (λ− δ(λ)

4ε , λ+ δ(λ)
4ε) forme un recouvre-

ment ouvert de l’intervalle [0, 1]. Prenons un sous-recouvrement fini C ′ de C, qui existe pour être
[0, 1] compact, et minimal. Soient λ1 < · · · < λn les points médians des intervalles de C ′. Du fait
que C ′ est minimale, deux intervalles consécutifs Jλi et Jλi+1 ont toujours intersection non-vide, et

λi+1 − λi ≤
δ(λi) + δ(λi+1)

4ε
≤

max{δ(λi), δ(λi+1)}
2ε

Par définition de ε, on a aussi ||hλi − hλi+1
||∞ = ||(λi+1 − λi)(ĝ − f̂)||∞ = ε(λi+1 − λi). Par

conséquent,

||hλi − hλi+1
||∞ ≤

max{δ(λi), δ(λi+1)}
2

,

30

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

ce qui implique que hλi est très proche à hλi+1
, ou à l’inverse. Nous pouvons alors appliquer le

Lemme de la bijection, qui dit que dB(D(hλi+1
), D(hλi)) ≤ ||hλi+1

− hλi ||∞ pour 1 ≤ i ≤ n − 1.
Observons que, si nous ajoutons λ0 = 0 et λn+1 = 1 (donc h0 = f̂ et h1 = ĝ), ces derniers raisonne-
ments sont encore vraies, car 0 et 1 font aussi partie du recouvrement, et hλ varie continuellement
avec λ. Donc f̂ est très proche à hλ1 (ou à l’inverse), et ĝ est très proche à hλn (ou à l’inverse).

Maintenant, l’inégalité triangulaire donne

dB(D(f̂), D(ĝ)) ≤
n∑
i=0

dB(D(hλi), D(hλi+1)) ≤
n∑
i=0

||hλi − hλi+1 ||∞.

Du fait que les hλi forment une interpolation linéaire de f̂ à ĝ et leurs valeurs changent linéairement
entre les deux, la dernière somme est égale à ||f̂ − ĝ||∞, ce qui finit la démonstration.

Avec ce dernier résultat, nous pouvons démontrer le Théorème 3.36 :

Théorème de la stabilité bottleneck des diagrammes de persistance : Soit X un espace
topologique triangulable avec des fonctions tame f, g : X → R. Alors, les diagrammes de persistance
satisfont dB(D(f), D(g)) < ||f − g||∞.

Démonstration. (du Théorème 3.36 :) Par définition de triangulabilité, il existe un complexe sim-
plicial fini L et un homéomorphisme φ : L→ X. Notons que, du fait que φ est un homéomorphisme,
φ−1(f−1((−∞, a])) ∼= f−1((−∞, a]) ∀a ∈ R, et les groupes d’homologie singulière sont aussi tous
isomorphes à cause de sa fonctorialité. Par conséquent, le diagramme de persistance reste non al-
téré par ce changement de variables : f ◦ φ : L → R est aussi tame et a le même diagramme de
persistance que f .

Soit δ > 0 suffisamment petit. Du fait que f et g sont continues et L est compact, il existe une
sous-division K de L telle que

|f ◦ φ(x)− f ◦ φ(y)| ≤ δ, |g ◦ φ(x)− g ◦ φ(y)| ≤ δ (7)

pour x, y dans le même simplexe de K.
Soient f̂ , ĝ : SdK → R les fonctions linéaires par morceaux qu’on obtient à partir de f ◦ φ et g ◦ φ
sur les sommets de SdK, où SdK dénote la sous-division barycentrique de K. Par construction de
K, ces fonctions satisfont ||f̂ − f ◦ φ||∞ ≤ δ et ||ĝ − g ◦ φ||∞ ≤ δ. En faisant usage du Lemme
d’Interpolation, le fait que f̂ et ĝ diffèrent au maximum δ de f ◦ φ et g ◦ φ respectivement, et
||f − g||∞ = ||f ◦ φ− g ◦ φ||∞, on obtient

dB(D(f̂), D(ĝ)) ≤ ||f̂ − ĝ||∞ ≤ ||f ◦ φ− g ◦ φ||∞ + 2δ = ||f − g||∞ + 2δ. (8)

Si nous supposons de plus que δ < δf
2 , nous obtenons une bijection du Lemme de la Bijection. Du

fait que le changement de variables n’affecte pas le diagramme de persistance, on a

dB(D(f), D(f̂)) = dB(D(f ◦ φ), D(f̂)) ≤ δ. (9)

Si nous supposons pareillement que δ < δg
2 , l’inégalité triangulaire appliqué plusieurs fois avec (8)

et (9) donne
dB(D(f), D(g)) ≤ ||f − g||∞ + 4δ,

ce qui montre le résultat, donc δ peut être arbitrairement petit.

31

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

4. L’algorithme ToMATo

4.1. Introduction

L’exposition et exploration que nous ferons maintenant de l’algorithme ToMATo (Topological
Mode Analysis Tool) et son implementation dans la librairie GUDHI constituent la partie la plus
innovante de notre travail. Cette méthode, récemment conçue, se situe dans les techniques de cluste-
ring, donc dans l’apprentissage non supervisé. Bien que le fonctionnement ne soit pas spécialement
complexe, il se base sur des idées de l’analyse topologique de données exposées antérieurement
qu’il faut bien comprendre, notamment les complexes simpliciales ("graphes" désormais) et les dia-
grammes de persistance.

Un autre principe important de notre algorithme est qu’il est sensé fonctionner avec des sous-
variétés de Rd (ou variétés riemanniennes en général), indépendemment de sa "forme". Cela est
remarquable puisqu’une bonne partie des algorithmes de clustering existants (par exemple, la mé-
thode K-means, déjà exposée) ne parviennent pas à identifier les clusters lorsque ces derniers
s’éloignent d’une structure convexe. Par exemple, certains algorithmes sont incapables de bien re-
grouper un ensemble de données échantillonnées à partir de deux anneaux concentriques dans R2.
Du ce fait, dans la section 4.1.1., nous exposerons les constructions et les arguments en prenant
une variété riemannienne X, le cas le plus général. Cependant, dans la pratique nos données sont
presque toujours dans Rd, et seulement dans certains cas particuliers ils présentent une forme clai-
rement semblable a une sous-variété de Rd.

En nous appuyant sur la classification des techniques de clustering faite au début de la section
"Algorithmes de clustering combinatoires", au deuxième chapitre, on pourrait affirmer que l’algo-
rithme ToMATo combine une partie "mode-seeking" et une partie de nature plus combinatoire. En
plus de cela, son innovation principale est que, pour guider la fusion des différents mini-clusters
tout au long de la méthode, il utilise la notion de "persistance topologique", introduite au chapitre
précèdent. En plus d’étiqueter les données dans de différents groups, l’algorithme produit aussi un
diagramme de persistance, qui permet de choisir des paramètres précis afin d’obtenir le nombre de
clusters souhaité.

4.1.1. L’intuition derrière l’algorithme : le cas continu

L’idée de base de la méthode est que, si les données sont obtenues en suivant une fonction de
densité f , les clusters le plus logiques sont ces régions où la fonction fait des "bosses significatives".
C’est dans ces dernières où les points seront plus probablement situés et regroupés.

Soit X une variété riemanniene de dimension m et f une fonction f : X → R C2-continue
sans points critiques dégénérés. Supposons aussi que f a un nombre fini de points critiques. La
région ascendante d’un point critique m est le sous-ensemble de points A(m) ⊆ X qui parviennent
finalement à m en suivant le flux induit pour le champ de vecteurs gradient de f . On appelle m la
racine de x ∈ A(m).
On peut démontrer que les régions ascendantes des pics de f forment des sous-ensembles de X
disjoints et homéomorphes à Rm. De plus, si f est bornée et propre, les régions ascendantes de ces
pics couvrent X sauf un sous-ensemble de mesure de Lebesgue zéro. Il est donc logique d’utiliser
ces régions pour découper X p.p. en régions d’influence.

Considérons maintenant la famille de sous-espaces {Fα}α∈R, où Fα = f−1([α,+∞)) et α varie
de +∞ à −∞ (i.e. la filtration de X associée aux ensembles de super-niveau de f). Pour α ∈ R

32

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

et x ∈ Fα, appelons C(x, α) ⊆ Fα la composante connexe par arcs de Fα contenant x. Selon la
Théorie de Morse, lorsqu’un maximum local mp de f entre dans la filtration au moment α = b(mp)

(b de "birth"), une nouvelle composante connexe par arcs C(mp, α) apparaît dans Fα. Puis, cette
dernière cesse d’être indépendante quand elle se connecte avec une autre composante générée pour
un pic mq plus haut, pour quelque autre α = d(mp) (d de "death"). Dans ce cas, on nomem mq

la racine de mp, et on écrit mq = r(mp). Dans le diagramme de persistance 0-dimensionnel de f ,
la durée de vie de mp comme racine est encodée pour le point p = (b(mp), d(mp)), et on appelle la
différence dp = px − py la proéminence de mp, ou que mp est dp-proéminent.

Figure 8 – Représentation graphique, avec f une fonction réelle d’une variable, de toutes les idées
exposées jusqu’à ici : pics de f (points critiques/ maximums locaux), régions ascendantes de ces
pics et proéminence du pic mp.

En nous appuyant sur un "paramètre de fusion" τ ≥ 0, on peut seulement considérer les pics de
f de proéminence au moins τ . Pour tout pic mq de f , on itère l’"application racine" mq 7→ r(mq)

jusqu’à ce qu’un pic de proéminence τ soit obtenu. Ce processus finit toujours, donc f a un nombre
fini de points critiques, et on a toujours f(mq) ≤ f(r(mq)). Appelons cette fonction itérée r∗τ .
Observons que tout pic de proéminence au moins τ est un point fixe de r∗τ .
L’union des régions ascendantes de tous les pics qui arrivent finalement à mp avec r∗τ est appelée le
bassin d’attraction de mp (de paramètre τ), Bτ (mp) :

∀mp tel que px − py ≥ τ, Bτ (mp) =
⋃

r∗τ (m)=mp

A(m).

Clairement, Bτ (mp) contient A(mp), donc mp est un point fixe de r∗τ . De plus, Ces bassins
d’attraction forment une partition de l’union de toutes les régions ascendantes. Ce sont précisément
ces bassins d’attraction qui constituent nos candidats à clusters.

33

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

4.2. Les données d’entrée (input data)

Dans tous les cas, pour fonctionner, la méthode ToMATo a besoin de deux informations sur nos
données. Tout d’abord, l’algorithme requiert un poids pour chaque point, c’est à dire, une valeur f̂(i)

associée à chaque donnée i, qui représente une estimation d’une hypothétique fonction de densité
f , sur laquelle les données ont été obtenues. Puis, il est aussi nécessaire d’avoir un graphe de voi-
sinage, qui "connecte" de quelque sorte ces données entre elles, et qui encode la proximité des points.

De plus, une autre information clé dois être aussi transmise à l’algorithme pour guider la fu-
sion des clusters intermédiaires : un paramètre de fusion τ . En somme, ce paramètre détermine
à partir de quelle persistance un point ou région de points se mélange avec d’autres ou pas. Sa
valeur "idéale" change selon le cas, donc elle dépend de f̂ et le numéro de clusters que l’on souhaite
obtenir. Le fonctionnement et la détermination de ce paramètre, très important dans la méthode,
deviendront beaucoup plus claires après avoir étudié la procédure de l’algorithme et le diagramme
qu’il produit.

Développons à présent les deux premières informations nécessaires pour l’algorithme. Nous re-
marquons que, dans la pratique, nous ne les avons presque jamais directement. En effet, dans le
cas le plus simple, nous avons seulement un nuage de points dans Rd avec n observations, ou, dans
des cas plus élaborés et "théoriques", un ensemble de points dans une variété riemmanienne, qui
permet également de définir des distances entre eux. Avec une base de données réelle, nous avons
généralement une quantité n de données avec p attributs quantitatives et/ou catégoriques, où nous
pouvons définir distances entre paires, ou les plonger dans Rp "convenablement" avec un métrique
(voir l’introduction de la Section 2).

Indépendemment de la façon dont les calculs sont réalisés ou si on utilise un espace métrique
ambiant (normalement Rd), utiliser des distances entre paires de données est très pratique : elles
permettent de construire assez rapidement les graphes de voisinage les plus naturels, et notre al-
gorithme a besoin d’un graphe entre les données pour bien fonctionner. De plus, elles sont aussi
pratiques pour calculer certaines estimations de la fonction de densité de base f .

4.2.1. Quelques constructions de graphes habituelles

Développons à présent certaines constructions de graphes habituelles sur des nuages de points,
qui peuvent naturellement être utilisées dans notre situation. Nous assumons qu’il n’y a jamais la
même distance entre toutes les paires de points. Si ce n’est pas le cas, nous pouvons adapter notre
démarche en fonction de la situation :

• Graphe α-Rips : Il unit toutes les paires de points x, y qui satisfont d(x, y) ≤ α. Il est donc
le squelette 1-dimensionnel de Ripsα(X), ou Cechα

2
(X).

Il constitue, en quelque sorte, le graphe le plus naturel pour connecter les points proches entre
eux, et il est aussi très facile à construire. Néanmoins, le nombre d’arêtes peut beaucoup varier
entre sommets différents, et le paramètre α n’est pas toujours évident pour obtenir les résultats
souhaités : si c’est trop petit, il peut y avoir un numéro excessif de composantes connexes ;
cependant, s’il est trop grand, la structure de proximité se dilue aussi.

• Graphe des k plus proches voisins (k-NN) : Il connecte chaque sommet avec ses k autres
sommets les plus proches. De cette façon, chaque sommet est l’extrémité d’au moins k arêtes.
C’est à priori un graphe orienté, donc cette relation de proximité n’est pas symétrique : par
exemple, avec k = 1, un sommet 1 peut avoir le sommet 2 comme le sommet le plus proche,

34

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

mais ce dernier avoir un sommet 3 plus proche que le sommet 1. Parfois, dans la pratique, on
ignore cette directionnalité et on accepte que quelques sommets aient plus d’arêtes incidentes.
Ce graphe est intéressant et utile puisque, en général, le numéro d’arêtes incidentes à chaque
sommet reste assez similaire, et il n’y a jamais des points isolés. Il est aussi un peu plus
exigeant a niveau de calcul, donc il faut ordonner à chaque pas les distances d’un sommet aux
autres, mais certains algorithmes pour trouver des approximations du graphe k-NN existent
qui sont beaucoup plus rapides. Son désavantage principal est que parfois il connecte de points
qui ne sont pas spécialement proches.

• Graphe de Delaunay : C’est le graphe qu’on obtient si on triangule les points de façon à ce
qu’aucun des points reste a l’intérieur du circumcercle d’aucun des triangles. Normalement,
on obtient ainsi une triangulation sans beaucoup d’angles pointus. Il y a des algorithmes assez
rapides pour le calculer, et il est aussi généralisable aux dimensions supérieures.
Son principal avantage est que, à la différence des deux algorithmes précédents, ce dernier n’a
pas besoin d’un paramètre pour être défini. Pareillement au graphe k-NN, le numéro d’arêtes
incidentes à chaque sommet est souvent similaire, mais parfois il unit des points qui ne sont
pas spécialement proches entre eux.

Ci-dessous, un exemple de chacun de ces trois graphes.

Figure 9 – Représentation des trois constructions exposés antérieurement avec un ensemble de
20 points échantillonnés dans le carré 1x1 (distribution uniforme). En haut à droite, le graph de
Delaunay. En bas à gauche : le graphe k-NN avec k = 4 (chaque point est aussi son propre voisin le
plus proche) ; nous observons qu’une partie importante des sommets a plus de trois arêtes incidentes.
En bas à droite ; le graphe α-rayon avec α = 0.3.

35

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

4.2.2. Quelques estimateurs classiques de la fonction de densité

Exposons à présent deux manières (non-paramétriques) d’estimer la fonction de densité f sur
laquelle on suppose que les données ont été obtenues. L’idée est toujours de construire une fonction
f̂ , estimation de la "véritable" fonction de densité f , en utilisant la disposition des points, qui nous
donne des informations sur f . Nous ne détaillerons pas les arguments théoriques qui justifient la
justesse (asymptotique) vers f de ces méthodes, et nous ignorerons aussi les possibles généralisa-
tions sur des sous-variétés : nous supposerons que f est simplement définie sur Rd (et souvent,
seulement R).

• Estimation par les k plus proches voisins : Rappelons avant que, par définition de fonction
de densité, un vecteur aléatoire X dans Rd satisfait, pour tout borélien A ⊆ Rd, P(X ∈ A) =∫
A
f . Donc, si A est une boule petite centrée sur x, la probabilité que X tombe dans A est

approximativement f(x) multiplié par le volume de A. En fait, avec des hypothèses assez
faibles sur f continue, on a

lim
α→0

∫
B(x0,α)

f(x)dx

|B(x0, α)|
= f(x0), (10)

où | · | dénote le volume dans Rd. Rappelons aussi que le volume de la boule unité dans Rd
satisfait la formule

Vd =
π
d
2

Γ(d2 + 1)
,

où Γ est la fonction Gamma Γ(m) =
∫ +∞
0

xm−1e−xdx, et si on varie le rayon r de la boule,
le volume change en suivant la formule Vd · rd.

En vue de l’équation (10), avec les données {x1, . . . , xn}, on peut estimer f(x) de la manière
"naturelle" suivante : soit k un entier avec 1 ≤ k ≤ n, R(k)(x) = ||x(k)(x)− x|| la distance de
x à son k plus proche voisin, et µn la fonction de répartition empirique, où pour tout borélien

A ⊆ Rd, µn(A) =
1

n

∑n
i=1 1{xi∈A}. Alors, l’estimateur par les k plus proches voisins est défini

comme

fn(x) =
µn(B(x,R(k)))

|B(x,R(k))|
=

k

nVd||x(k)(x)− x||d
, x ∈ Rd. (11)

• Estimation par noyau (Kernel density estimation) : C’est possiblement la méthode d’estima-
tion la plus habituelle et étudiée. En résumé, c’est une généralisation de la notion d’histo-
gramme, mais facilement réalisable en dimensions plus élevées, et (souvent) aussi continue et
différenciable.
L’idée est de construire f̂ en additionnant plusieurs petites fonctions centrées chacune sur
une donnée. On appelle ces petites fonctions noyaux, qui sont toujours réelles, non-négatives
et intégrables. De plus, en général on assume aussi, pour notre fonction noyau K(x), que∫
Rd K(x)dx = 1 (i.e. K(x) est une fonction de densité) et que K est radiale (K(−x) = K(x)

quand d = 1, K constant sur Sr = {x ∈ Rd| ||x|| = r} en général).
Prenons maintenant nos données (x1, . . . , xn) (indépendantes et identiquement distribuées,
obtenues à partir de f). Nous supposerons désormais que d = 1 pour simplifier les notations,
bien que pour d général les constructions suivants sont aussi valides avec quelques légères mo-

36

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

difications. En choisissant une fonction noyau K(x), nous construisons la fonction f̂ comme :

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
. (12)

Ici, h est un paramètre d’échelle à déterminer, mais qui a une grand influence sur l’estima-
tion finale. Ce paramètre détermine de quelque sorte la largeur de la fonction noyau au-
tour de chaque donnée. C’est aussi immédiat de vérifier que quand

∫
RK(x)dx = 1, on a∫

R fh(x)dx = 1.
Dans la pratique, la meilleure valeur de ce paramètre est difficile à déterminer, donc il
y a toujours un compromis entre biais et variance. Différents travaux essaient d’étudier
les meilleures valeurs de h en fonction de chaque situation. En tout cas, bien que cer-
taines indications existent (par exemple, avec un noyau gaussienne, il est habituel de prendre
h ≈ 1.06 ·min

(
σ̂, EIQ1.34

)
· n− 1

5 , où σ̂ est l’estimateur de l’écart-type habituel et EIQ est l’écart
interquartile), normalement l’estimation est faite avec plusieurs valeurs de h et on prend celle
qui donne le meilleur résultat.

En ce qui concerne les fonctions noyau, nous remarquons différentes options. Nous montrons,
pour d = 1 (mais facilement généralisables à d supérieure en prenant ||x|| au lieu de x, et en
changeant légèrement quelques coefficients en fonction de la dimension), certaines des plus
utilisées, mais sans entrer dans les détails et particularités de chacune :

1. Noyau gaussienne : K(x) =
1
√

2π
e−

1
2x

2

.

2. Noyau uniforme : K(x) =
1

2
1(x){−1≤ x ≤1}.

3. Noyau triangulaire : K(x) = (1− |x|) 1(x){−1≤ x ≤1}.

4. Noyau de Epanechnikov (parabolique) : K(x) =
3

4
(1− x2) 1(x){−1≤ x ≤1}.

5. Noyau tricubique : K(x) =
70

81
(1− |x|3)3 1(x){−1≤ x ≤1}.

Figure 10 – Toutes les fonctions noyaux mentionnées, dans le même ordre.

4.3. La procédure de l’algorithme

Expliquons maintenant comment l’algorithme obtient les différents clusters. Supposons que nous
avons un graphe de voisinage G entre les points, des valeurs f̂(i) pour chaque sommet i, et le pa-
ramètre de fusion τ . L’algorithme de base se compose de deux parties :

1. (Recherche de modes) Pour calculer les clusters de départ, ToMATo ordonne d’abord tous
les sommets de manière décroissante en fonction de sa valeur f̂ . Avec cet ordre, il passe par

37

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

chaque sommet i et il simule un effet de gradient de la fonction de densité de base : il connecte
i avec son voisin dans G avec la f̂ -valeur la plus haute. Si tous ses voisins ont des valeurs
inférieures, i est étiqueté comme un "pic" (ou mode) de f̂ .
En regardant les arêtes "de gradient" à la fin de ce processus, on obtient ce qu’on appelle
une "forêt couvrante" du graphe G, une notion similaire à celle de "arbre couvrant" (i.e. un
sub-graphe de G connexe et acyclique qui passe pour tous les sommets de G) ; cependant,
dans ce cas, la connectivité n’est pas exigée. Chaque composante connexe dans une forêt est
un arbre avec la définition usuelle dans la théorie de graphes ; d’ici provient le nom.
Chaque arbre dans cette forêt couvrant peut être vu comme l’équivalent discret d’une région
ascendante de f dans le cas continu, expliqué en 4.1.1, donc un cluster initial de notre nuage
de points. Pour conserver toute cette information, on peut numéroter les q arbres obtenus et
étiqueter chaque sommet avec son arbre correspondant. Dans un arbre i, on appelle r(i) (r de
"racine") son sommet avec la f̂ -valeur la plus haute, et on appelle aussi a(j) l’arbre associé
à un sommet j.

2. (Fusion des arbres) Bien que l’idée de la première étape soit logique, donc elle regroupe des
données dans des "bosses" de f̂ , elle est aussi un peu aléatoire et inévitablement insuffisant.
Dans cette deuxième étape, l’objectif es de fusionner les arbres "similaires", en adaptant la
notion de persistance topologique introduite à 4.1.1.
Pour cela, ToMATo passe plusieurs fois sur les sommets de G dans le même ordre. Ici, tous
les sommets sont déjà étiquetés dans un arbre. Dans cette itération, étant donné un sommet
i, deux cas sont possibles :

(a) i est déjà un pic d’un arbre, et donc aussi sa racine, et tous les voisins de i ont des
f̂ -valeurs inférieures. Dans ce cas, les correspondances entre arbres et sommets restent
inaltérées.

(b) i n’est pas le pic de a(i), et on cherche des fusions potentielles entre a(i) et d’autres
arbres "à côté".
Pour cela, on prend les voisins k de i dans G (aussi de manière ordonnée) qui satisfont
f̂(k) ≥ f̂(i), et on regarde si f̂(r(a(k)) ≤ min{f̂(r(a(i)), f̂(i) + τ} ; ainsi, on étude si le
pic de a(k) est inférieur à celui de a(i) et si sa proéminence est inférieure à τ . Si c’est le
cas, toutes les sommets appartenant à a(k) sont réétiquetés à a(i). De la même manière,
nous pouvons vérifier si f̂(r(a(i)) ≤ min{f̂(r(a(k)), f̂(k)+τ}, et réétiqueter les sommets
de a(i) à a(k) si c’est le cas.

À la fin de cette deuxième étape, tous les arbres (mini-clusters) de départ avec des pics de
proéminence moins de τ et avec des sommets "connectés" à d’autres arbres ont été unifiés les
uns avec les autres pour créer des arbres plus grands, et avec une proéminence d’au moins
τ (nos clusters finaux). De plus, on a enregistré dans quel arbre/ cluster chaque donnée
appartient.

4.4. Information finale obtenue

Avec le processus expliqué précédemment, l’information finale obtenue semble claire : pour
chaque donnée i, une étiquette a(i), son cluster final associé. Néanmoins, la méthode précédente
n’est pas la plus utile pour travailler avec le type de problèmes que l’on retrouve avec des données
réelles. On peut donc utiliser les notions expliquées au troisième chapitre pour obtenir un algo-
rithme plus flexible et informatif.

En effet, en reprenant la deuxième étape exposée précédemment, il est évident que la valeur τ
joue un rôle essentiel dans l’algorithme ; c’est ce numéro qui décide quelle doit être la proéminence

38

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

minimale d’un pic-cluster pour ne pas être fusionné avec d’autres pics-clusters "proches". Cepen-
dant, dans la pratique, normalement nous n’avons pas connaissance de la valeur τ "idéale" pour
obtenir le meilleur résultat de clustering. Par exemple, nous vons déjà remarqué que les valeurs f̂
associées à chaque donnée dépendent de l’estimation choisie et, par conséquence, un "bon" para-
mètre τ , s’il existe, possiblement aussi.

C’est au moment de choisir une valeur de τ convenable que les diagrammes de persistance in-
troduits au troisième chapitre deviennent utiles. L’idée est de créer une représentation graphique
de la proéminence de tous les différents clusters pour mieux détecter quels sont spécialement pro-
éminents. Avec cette information, nous pouvons ajuster τ pour obtenir un nombre de clusters plus
naturel, avec les étiquettes correspondantes.

Notre diagramme de persistance peut être obtenu de la manière suivant :

— Au début, on crée un point (x, y) pour chaque arbre-cluster initial, qui a toujours un pic
associé : son sommet avec l’estimation de f la plus élevée, un mode de f . La cordonné x
stocke cette valeur, tandis que la cordonné y reste non-assignée.

— Puis, on commence à fusionner ces clusters initiaux, en suivant la deuxième étape expliquée
dans la section précédente et en gardant une trace de ces fusions. Intuitivement, on peut
imaginer le paramètre de fusion τ qui vaut 0 au début, et qui augmente progressivement.
Chaque fois que deux clusters sont fusionnés, on enregistre la mort du plus "petit" (i.e. moins
proéminent, i.e. avec un pic associé moins haut) dans la cordonnée y, qui prend la valeur
y = x− τ , tandis que le plus "grand" continue d’exister.

— Ce processus continue jusqu’à ce que toutes les fusions possibles aient lieu. À ce moment,
seulement les clusters associés aux composantes connexes du graphe de voisinage restent en
vie, et on leur assigne la cordonnée y = −∞.

Enfin, on obtient un ensemble de points qui encode d’une manière assez complète les proéminences
relatives de tous les clusters/basins de f , où les distances (verticales) entre les (x, y) et la diagonale
sont leur proéminence. Il est recommandable de dessiner les points avec y = −∞ avec une couleur
différente, pour mieux identifier dans le diagramme le nombre de composantes connexes existantes.

Figure 11 – Exemple de diagramme de persistance du type que nous venons d’exposer.

On voit rapidement que le diagramme de persistance obtenu n’est qu’une variation du dia-
gramme de persistance 0-dimensionnel associé aux ensembles de super-niveau d’une fonction f ,

39

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

comme celui décrit à l’exemple 3.26 (où on prenait les ensembles de sous-niveau). Cependant, la
"connectivité" est encodée dans un graphe de voisinage, et les points habitent la moitié inférieure
de la diagonal. Néanmoins, les différents résultats sur les diagrammes de persistance, notamment
ceux liés à sa stabilité (section 3.5), peuvent être appliqués avec de petites variations dans notre
cas discret.

Nous remarquons que, même si nous avons exposé la méthode en imaginant que la valeur τ
augmente progressivement, au niveau algorithmique tous les points du diagramme de persistance
peuvent être calculés d’une façon directe : au début, et aussi après chaque fusion, on parcourt tous
les sommets ordonnés en fonction de f̂ en cherchant, pour un sommet i avec son pic correspon-
dant pi, un voisin k dans un cluster différent qui satisfait f̂(k) ≥ f̂(i) et f̂(pk) ≤ f̂(pi) (resp.
f̂(pk) ≤ f̂(pi)). Dans ce cas, on assigne la valeur y = f̂(pk)− f̂(i) au cluster du sommet k, et tous
ses sommets sont étiquetés avec le cluster du sommet i, et pi devient son nouveau pic (resp. on
assigne la valeur y = f̂(pi) − f̂(i) au cluster du sommet i, et tous ses sommets sont étiquetés au
cluster du sommet k, et pk devient son nouveau pic).

Dans tous les cas, ce diagramme de persistance devient très utile pour choisir une bonne valeur de
τ pour l’algorithme original, exposé à la section précédant : il convient de regarder quels points sont
de manière naturel plus éloignés de la diagonale (et combien il y en a) ; puis, nous choisissons une
valeur τ inférieure a sa proéminence, les laissant intacts à la fin. En fait, après avoir calculé toutes
les proéminences relatives pour dessiner le diagramme de persistance, on peut coder l’algorithme
d’une manière encore plus intuitive : au lieu de donner une valeur τ d’entrée, on donne le numéro
de clusters final souhaité m, et les fusions continuent de se produire jusqu’à ce que seulement les
m clusters les plus proéminents restent. Cependant, il faut prendre en compte que l’algorithme ne
peut pas fusionner des composantes connexes différentes (qui ont une proéminence "infinie").

4.5. Mise en œuvre de l’algorithme et exploration

L’algorithme ToMATo exposé à ce chapitre vient d’être implémenté à Python/ C++ et ajouté
à la libraire GUDHI [8], une des librairies de référence de la TDA. Cette librairie open-source,
codée en C++ mais avec une interface Python, offre des méthodes et ressources pour construire
des complexes simpliciales et d’autres structures sur des nuages de points, et calculer les différents
types d’homologie persistante.

La partie la plus pratique de ce travail a été de bien comprendre cette implémentation, réalisée
par le chercheur Marc Glisse. Puis, nous avons essayé de tester ses limites et possibles erreurs.
Cela a été fait par correspondance virtuelle avec plusieurs Jupyter notebooks. Cela a impliqué un
apprentissage continue de Python et d’autres outils de programmation qui sont très pratiques et
habituels dans le monde de la science des données et sur le marché du travail en général.

Finalement, avec le code déjà définitif, il paraissait approprié de préparer aussi un tutoriel de
référence (en anglais) montrant toutes les options du code. Dans ce dernier, plusieurs exemples
illustratifs aideraient et guideraient les utilisateurs potentiels. Le tutoriel final est annexé en PDF
à la fin de ce travail. Il peut aussi être consulté en version HTML (de façon temporaire) avec le lien
nilgarces.com/tomato.html.

40

http://www.nilgarces.com/tomato.html

Introduction à la TDA et étude de l’algorithme ToMATo Nil Garcés de Marcilla

Références

[1] Gérard Biau et Luc Devroye. Lectures on the Nearest Neighbor Method. Springer Series in
Data Sciences. Springer New York Inc.

[2] Jean-Daniel Boissonant, Frédéric Chazal et Mariette Yvinec. « Geometric and Topologi-
cal Inference ». In : (2018).

[3] Frédéric Chazal et Bertrand Michel. « An introduction to Topological Data Analysis :
fundamental and practical aspects for data scientists ». In : (oct. 2017).

[4] Frédéric Chazal et al. « Persistence-Based Clustering in Riemannian Manifolds ». In : Jour-
nal of the ACM 60 (juin 2011). doi : 10.1145/1998196.1998212.

[5] David Cohen-Steiner, Herbert Edelsbrunner et John Harer. « Stability of Persistence
Diagrams ». In : Discrete Computational Geometry 37 (2007), p. 103-120.

[6] Herbert Edelsbrunner, David Letscher et Afra Zomorodian. « Topological Persistance
and Simplification ». In : Discrete Computational Geometry 28 (2002), p. 511-533.

[7] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow. O’Reilly
Media, Inc., 2017. isbn : 9781492032632.

[8] GUDHI Library. url : https://gudhi.inria.fr/. (accessed : 20.06.2020).

[9] Trevor Hastie, Robert Tibshirani et Jerome Friedman. The Elements of Statistical Lear-
ning. Springer Series in Statistics. Springer New York Inc., 2001.

[10] Allen Hatcher. Algebraic topology. Cambridge : Cambridge Univ. Press, 2000. url : https:
//cds.cern.ch/record/478079.

[11] F. Pedregosa et al. « Scikit-learn : Machine Learning in Python ». In : Journal of Machine
Learning Research 12 (2011), p. 2825-2830.

[12] Scikit-Learn documentation : Clustering. url : https : / / scikit - learn . org / stable /
modules/clustering.html. (accessed : 20.05.2020).

41

https://doi.org/10.1145/1998196.1998212
https://gudhi.inria.fr/
https://cds.cern.ch/record/478079
https://cds.cern.ch/record/478079
https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html

/

A handy guide to using the ToMATo algorithm

Introduction
This code is an implemention of the ToMATo algorithm exposed in [1], a clustering method based on the idea of
topological persistance. In short, the algorithm needs a density estimation (so to each point we associate a value

) and a neighborhood graph. First, it starts with a mode-seeking phase (naive hill-climbing) to build the initial
clusters (each with its own mode), following the connected points in the neighborhood graph. Finally, it merges these
initial clusters based on their prominence. This merging has a hierarchical nature, i.e. we always obtain the successive
new clusters by merging two existing ones.

The merging phase depends on a parameter, which is the minimum prominence a cluster needs to avoid getting merged
into another, adjacent, bigger cluster (i.e. with a higher associated mode); thus, it determines to a great extent the
obtained number of clusters. In practice, the convenience of this parameter depends on the input graph and the density
estimation, and it can be hard to choose it properly. This is why, in our implemention, we allow instead the option to
choose the "desired" final number of clusters , and the algorithm itself, after computing the initial clusters as well as their
prominences, keeps merging them "parameterless-ly" until only the clusters with highest prominence remain (if
possible).

Along with the clustering itself, the algorithm also produces the persistence diagram of the merge tree of the initial
clusters. This is a really convenient graphical tool to help decide the "natural" number of clusters in our input data. We
explain its interpretation briefly in the section "Output information".

x

(x)f̂

n

n

/

Input data format

As mentioned, the algorithm needs a neighborhood graph of the data and a value associated each entry (an estimation of
 over it). Given that, in many situations, the input data is a point cloud (i.e. a set of observations each with numerical

features), the code provides a few density estimators and graph constructions over them for convenience, but advanced
users may provide their own graph and density estimates instead of point coordinates.

Since the algorithm essentially computes basins of attraction, it is also encouraged to use it on functions that do not
represent densities at all.

For an input point cloud, the density estimation and graph construction methods that have been implemented are:

For density estimation, the ubiquitous Kernel Density Estimation (KDE for short) can be used (using the scikit-learn
library), and also the Distance-to-a-Measure method (DTM), a bit more experimental and recently developed to face
more efficiently the potential presence of outliers; more information about it can be found in the tutorial [2] and the
paper [3]. The logarithmic versions of both estimation methods are also implemented.

Regarding the building of the graph, there is the option to construct the -NN graph (where, for each vertex, an edge
is created between it and its nearest neighbors), and the -radius graph (where an edge is created whenever two
vertices lay in a distance less than). Obviously, both parameters can (and should) be properly chosen. In the
following image we can see both constructions over a point cloud in the square 1x1 (first image); in the second one,
we have the -NN graph (with =4), while in the third we have the -radius graph (with =0.3):

f n p

k

k r

r

k k r r

/

Output information
At the end, the algorithm outputs basically two informations of interest:

In all cases, it produces the (0-dimensional) persistance diagram of the merging process of the initial clusters. In short,
this is a graphical representation of the lifespan of the different clusters as we keep diminishing the prominence threshold.

At the beginning, we have a point for each initial cluster, which also has an associated peak (the vertex with the highest
estimate of , a "mode" of). Then, we start looking for merges of these clusters, by melding them with neighboring
clusters with higher associated peaks. To do so, we basically keep checking, for the different vertices (in decreasing
order), which "neighboring" peaks lower than satisfy , where is our prominence value. When
this happens, we merge the whole cluster associated to that peak to the one in which belongs, forming a new, bigger
cluster, still with peak . The higher needs to be before this happens, the more prominent is and its associated
cluster.

In a persistance diagram, all this information is encoded in the following way: there is a point for each initial cluster.
The coordinate is the value of its associated peak . The coordinate is the value from which we can find a

"neighboring point" of that peak, but belonging to a different cluster, with equal or greater ; equivalently, it is the highest
neighbor of not belonging to the cluster it defines. Thus, the length of vertical line connecting with the diagonal,
or equivalently , is the prominence of the peak. In consequence, to get an idea of the real number of clusters, it is
natural to look for the number of points in the persistance diagram further away from the diagonal. The points associated
to a peak of a cluster which never dies (i.e. it never gets merged, so it forms a connected component at the end) are
colored in green.

In view of the persistance diagram obtained, it is then natural to ask for a specific number of clusters at the end, or to
specify a certain persistance threshold. After this has been stipulated, the algorithm also outputs a numerical "label" for
each entry in the input data (in the same order they have been introduced, whatever the format): the cluster it has been
assigned to. This labelling is saved in the attribute "labels_" as an ordered vector, so it can be easily used to plot the data
in different colors or formats depending on their assigned cluster.

f f

i

pj pi () < (i) + τf̂ pj f̂ τ

pj i

pi τ pj

(x, y)

x p y (p) − τf̂

f̂

p (x, y)
x − y

THE TOMATO CLASS

The code now
This is the current version of the code in the Gudhi Library:

/

In [63]: # This file is part of the Gudhi Library - https://gudhi.inria.fr/ - which is release
d under MIT.
See file LICENSE or go to https://gudhi.inria.fr/licensing/ for full license detail
s.
Author(s): Marc Glisse
#
Copyright (C) 2020 Inria
#
Modification(s):
- YYYY/MM Author: Description of the modification

import numpy
from ..point_cloud.knn import KNearestNeighbors
from ..point_cloud.dtm import DTMDensity
from ._tomato import *

The fit/predict interface is not so well suited...

class Tomato:
 """
 This clustering algorithm needs a neighborhood graph on the points, and an estima
tion of the density at each point.
 A few possible graph constructions and density estimators are provided for conven
ience, but it is perfectly natural
 to provide your own.

 :Requires: `SciPy <installation.html#scipy>`_, `Scikit-learn <installation.html#s
cikit-learn>`_ or others
 (see :class:`~gudhi.point_cloud.knn.KNearestNeighbors`) in function of the op
tions.

 Attributes

 n_clusters_: int
 The number of clusters. Writing to it automatically adjusts `labels_`.
 merge_threshold_: float
 minimum prominence of a cluster so it doesn't get merged. Writing to it autom
atically adjusts `labels_`.
 n_leaves_: int
 number of leaves (unstable clusters) in the hierarchical tree
 leaf_labels_: ndarray of shape (n_samples,)
 cluster labels for each point, at the very bottom of the hierarchy
 labels_: ndarray of shape (n_samples,)
 cluster labels for each point, after merging
 diagram_: ndarray of shape (`n_leaves_`, 2)
 persistence diagram (only the finite points)
 max_weight_per_cc_: ndarray of shape (n_connected_components,)
 maximum of the density function on each connected component. This corresponds
to the abscissa of infinite
 points in the diagram
 children_: ndarray of shape (`n_leaves_`-n_connected_components, 2)
 The children of each non-leaf node. Values less than `n_leaves_` correspond t
o leaves of the tree.
 A node i greater than or equal to `n_leaves_` is a non-leaf node and has chil
dren children_[i - `n_leaves_`].
 Alternatively at the i-th iteration, children[i][0] and children[i][1] are me
rged to form node `n_leaves_` + i
 weights_: ndarray of shape (n_samples,)
 weights of the points, as computed by the density estimator or provided by th
e user
 params_: dict

/

 Parameters like metric, etc
 """

 def __init__(
 self,
 graph_type="knn",
 density_type="logDTM",
 n_clusters=None,
 merge_threshold=None,
 # eliminate_threshold=None,
 # eliminate_threshold (float): minimum max weight of a cluster so i
t doesn't get eliminated
 **params
):
 """
 Args:
 graph_type (str): 'manual', 'knn' or 'radius'. Default is 'knn'.
 density_type (str): 'manual', 'DTM', 'logDTM', 'KDE' or 'logKDE'. When yo
u have many points,
 'KDE' and 'logKDE' tend to be slower. Default is 'logDTM'.
 metric (str|Callable): metric used when calculating the distance between
instances in a feature array.
 Defaults to Minkowski of parameter p.
 kde_params (dict): if density_type is 'KDE' or 'logKDE', additional param
eters passed directly to
 sklearn.neighbors.KernelDensity.
 k (int): number of neighbors for a knn graph (including the vertex itsel
f). Defaults to 10.
 k_DTM (int): number of neighbors for the DTM density estimation (includin
g the vertex itself).
 Defaults to k.
 r (float): size of a neighborhood if graph_type is 'radius'. Also used as
default bandwidth in kde_params.
 eps (float): (1+eps) approximation factor when computing distances (ignor
ed in many cases).
 n_clusters (int): number of clusters requested. Defaults to None, i.e. no
merging occurs and we get
 the maximal number of clusters.
 merge_threshold (float): minimum prominence of a cluster so it doesn't ge
t merged.
 symmetrize_graph (bool): whether we should add edges to make the neighbor
hood graph symmetric.
 This can be useful with k-NN for small k. Defaults to false.
 p (float): norm L^p on input points. Defaults to 2.
 q (float): order used to compute the distance to measure. Defaults to di
m.
 Beware that when the dimension is large, this can easily cause overfl
ows.
 dim (float): final exponent in DTM density estimation, representing the d
imension. Defaults to the
 dimension, or 2 when the dimension cannot be read from the input (met
ric is "precomputed").
 n_jobs (int): Number of jobs to schedule for parallel processing on the C
PU.
 If -1 is given all processors are used. Default: 1.
 params: extra parameters are passed to :class:`~gudhi.point_cloud.knn.KNe
arestNeighbors` and
 :class:`~gudhi.point_cloud.dtm.DTMDensity`.
 """
 # Should metric='precomputed' mean input_type='distance_matrix'?
 # Should we be able to pass metric='minkowski' (what None does currently)?
 self.graph_type_ = graph_type
 self.density_type_ = density_type

/

 self.params_ = params
 self.__n_clusters = n_clusters
 self.__merge_threshold = merge_threshold
 # self.eliminate_threshold_ = eliminate_threshold
 if n_clusters and merge_threshold:
 raise ValueError("Cannot specify both a merge threshold and a number of c
lusters")

 def fit(self, X, y=None, weights=None):
 """
 Args:
 X ((n,d)-array of float|(n,n)-array of float|Sequence[Iterable[int]]): co
ordinates of the points,
 or distance matrix (full, not just a triangle) if metric is "precompu
ted", or list of neighbors
 for each point (points are represented by their index, starting from
0) if graph_type is "manual".
 weights (ndarray of shape (n_samples)): if density_type is 'manual', a de
nsity estimate at each point
 y: Not used, present here for API consistency with scikit-learn by conven
tion.
 """
 # TODO: First detect if this is a new call with the same data (only threshold
changed?)
 # TODO: less code duplication (subroutines?), less spaghetti, but don't compu
te neighbors twice if not needed. Clear error message for missing or contradictory pa
rameters.
 if weights is not None:
 density_type = "manual"
 else:
 density_type = self.density_type_
 if density_type == "manual":
 raise ValueError("If density_type is 'manual', you must provide weigh
ts to fit()")

 if self.graph_type_ == "manual":
 self.neighbors_ = X
 # FIXME: uniformize "message 'option'" vs 'message "option"'
 assert density_type == "manual", 'If graph_type is "manual", density_type
must be as well'
 else:
 metric = self.params_.get("metric", "minkowski")
 if metric != "precomputed":
 self.points_ = X

 # Slight complication to avoid computing knn twice.
 need_knn = 0
 need_knn_ngb = False
 need_knn_dist = False
 if self.graph_type_ == "knn":
 k_graph = self.params_.get("k", 10)
 # If X has fewer than k points...
 if k_graph > len(X):
 k_graph = len(X)
 need_knn = k_graph
 need_knn_ngb = True
 if self.density_type_ in ["DTM", "logDTM"]:
 k = self.params_.get("k", 10)
 k_DTM = self.params_.get("k_DTM", k)
 # If X has fewer than k points...
 if k_DTM > len(X):
 k_DTM = len(X)
 need_knn = max(need_knn, k_DTM)

/

 need_knn_dist = True
 # if we ask for more neighbors for the graph than the DTM, getting the di
stances is a slight waste,
 # but it looks negligible
 if need_knn > 0:
 knn_args = dict(self.params_)
 knn_args["k"] = need_knn
 knn = KNearestNeighbors(return_index=need_knn_ngb, return_distance=need_k
nn_dist, **knn_args).fit_transform(
 X
)
 if need_knn_ngb:
 if need_knn_dist:
 self.neighbors_ = knn[0][:, 0:k_graph]
 knn_dist = knn[1]
 else:
 self.neighbors_ = knn
 elif need_knn_dist:
 knn_dist = knn
 if self.density_type_ in ["DTM", "logDTM"]:
 dim = self.params_.get("dim")
 if dim is None:
 dim = len(X[0]) if metric != "precomputed" else 2
 q = self.params_.get("q", dim)
 weights = DTMDensity(k=k_DTM, metric="neighbors", dim=dim, q=q).fit_trans
form(knn_dist)
 if self.density_type_ == "logDTM":
 weights = numpy.log(weights)

 if self.graph_type_ == "radius":
 if metric in ["minkowski", "euclidean", "manhattan", "chebyshev"]:
 from scipy.spatial import cKDTree

 tree = cKDTree(X)
 # TODO: handle "l1" and "l2" aliases?
 p = self.params_.get("p")
 if metric == "euclidean":
 assert p is None or p == 2, "p=" + str(p) + " is not consistent w
ith metric='euclidean'"
 p = 2
 elif metric == "manhattan":
 assert p is None or p == 1, "p=" + str(p) + " is not consistent w
ith metric='manhattan'"
 p = 1
 elif metric == "chebyshev":
 assert p is None or p == numpy.inf, "p=" + str(p) + " is not cons
istent with metric='chebyshev'"
 p = numpy.inf
 elif p is None:
 p = 2 # the default
 eps = self.params_.get("eps", 0)
 self.neighbors_ = tree.query_ball_tree(tree, r=self.params_["r"], p=p
, eps=eps)

 # TODO: sklearn's NearestNeighbors.radius_neighbors can handle more metri
cs efficiently via its BallTree
 # (don't bother with the _graph variant, it just calls radius_neighbors).
 elif metric != "precomputed":
 from sklearn.metrics import pairwise_distances

 X = pairwise_distances(X, metric=metric, n_jobs=self.params_.get("n_j
obs"))
 metric = "precomputed"

/

 if metric == "precomputed":
 # TODO: parallelize? May not be worth it.
 X = numpy.asarray(X)
 r = self.params_["r"]
 self.neighbors_ = [numpy.flatnonzero(l <= r) for l in X]

 if self.density_type_ in {"KDE", "logKDE"}:
 # Slow...
 assert (
 self.graph_type_ != "manual" and metric != "precomputed"
), "Scikit-learn's KernelDensity requires point coordinates"
 kde_params = dict(self.params_.get("kde_params", dict()))
 kde_params.setdefault("metric", metric)
 r = self.params_.get("r")
 if r is not None:
 kde_params.setdefault("bandwidth", r)
 # Should we default rtol to eps?
 from sklearn.neighbors import KernelDensity

 weights = KernelDensity(**kde_params).fit(self.points_).score_samples(sel
f.points_)
 if self.density_type_ == "KDE":
 weights = numpy.exp(weights)

 # TODO: do it at the C++ level and/or in parallel if this is too slow?
 if self.params_.get("symmetrize_graph"):
 self.neighbors_ = [set(line) for line in self.neighbors_]
 for i, line in enumerate(self.neighbors_):
 line.discard(i)
 for j in line:
 self.neighbors_[j].add(i)

 self.weights_ = weights
 # This is where the main computation happens
 self.leaf_labels_, self.children_, self.diagram_, self.max_weight_per_cc_ = h
ierarchy(self.neighbors_, weights)
 self.n_leaves_ = len(self.max_weight_per_cc_) + len(self.children_)
 assert self.leaf_labels_.max() + 1 == len(self.max_weight_per_cc_) + len(self
.children_)
 # TODO: deduplicate this code with the setters below
 if self.__merge_threshold:
 assert not self.__n_clusters
 self.__n_clusters = numpy.count_nonzero(
 self.diagram_[:, 0] - self.diagram_[:, 1] > self.__merge_threshold
) + len(self.max_weight_per_cc_)
 if self.__n_clusters:
 # TODO: set corresponding merge_threshold?
 renaming = merge(self.children_, self.n_leaves_, self.__n_clusters)
 self.labels_ = renaming[self.leaf_labels_]
 # In case the user asked for something impossible.
 # TODO: check for impossible situations before calling merge.
 self.__n_clusters = self.labels_.max() + 1
 else:
 self.labels_ = self.leaf_labels_
 self.__n_clusters = self.n_leaves_
 return self

 def fit_predict(self, X, y=None, weights=None):
 """
 Equivalent to fit(), and returns the `labels_`.
 """
 return self.fit(X, y, weights).labels_

/

 # TODO: add argument k or threshold? Have a version where you can click and it sh
ows the line and the corresponding k?
 def plot_diagram(self):
 """
 """
 import matplotlib.pyplot as plt

 l = self.max_weight_per_cc_.min()
 r = self.max_weight_per_cc_.max()
 if self.diagram_.size > 0:
 plt.plot(self.diagram_[:, 0], self.diagram_[:, 1], "ro")
 l = min(l, self.diagram_[:, 1].min())
 r = max(r, self.diagram_[:, 0].max())
 if l == r:
 if l > 0:
 l, r = 0.9 * l, 1.1 * r
 elif l < 0:
 l, r = 1.1 * l, 0.9 * r
 else:
 l, r = -1.0, 1.0
 plt.plot([l, r], [l, r])
 plt.plot(
 self.max_weight_per_cc_, numpy.full(self.max_weight_per_cc_.shape, 1.1 *
l - 0.1 * r), "ro", color="green"
)
 plt.show()

 # Use set_params instead?
 @property
 def n_clusters_(self):
 return self.__n_clusters

 @n_clusters_.setter
 def n_clusters_(self, n_clusters):
 if n_clusters == self.__n_clusters:
 return
 self.__n_clusters = n_clusters
 self.__merge_threshold = None
 if hasattr(self, "leaf_labels_"):
 renaming = merge(self.children_, self.n_leaves_, self.__n_clusters)
 self.labels_ = renaming[self.leaf_labels_]
 # In case the user asked for something impossible
 self.__n_clusters = self.labels_.max() + 1

 @property
 def merge_threshold_(self):
 return self.__merge_threshold

 @merge_threshold_.setter
 def merge_threshold_(self, merge_threshold):
 if merge_threshold == self.__merge_threshold:
 return
 if hasattr(self, "leaf_labels_"):
 self.n_clusters_ = numpy.count_nonzero(self.diagram_[:, 0] - self.diagram
_[:, 1] > merge_threshold) + len(
 self.max_weight_per_cc_
)
 else:
 self.__n_clusters = None
 self.__merge_threshold = merge_threshold

/

Description

Parameters

By "parameters" we mean the information we (must) provide to construct a specific instance of the class. They are given
as arguments in the constructor function "__init__":

graph_type (str): 'manual', 'knn' (default) or 'radius'.
density_type (str): 'manual', 'DTM', 'logDTM' (default), 'KDE' or 'logKDE'. With many points, 'KDE' and 'logKDE' tend
to be slower.
n_clusters (int): number of clusters requested. Defaults to None, i.e. no merging occurs and we get the maximal
number of clusters.
merge_threshold (float): minimum prominence of a cluster so it doesn't get merged.

(Naturally, both n_clusters and merge_threshold cannot be provided simultaneously, as it can be deduced from the
explanation of the algorithm)

metric (str|Callable): metric used to compute the pairwase distances between points (if we don't input them). If
None, use Minkowski of parameter p.
kde_params (dict): if density_type is 'KDE' or 'logKDE', additional parameters passed directly to
sklearn.neighbors.KernelDensity.
k (int): number of neighbors for a k-NN graph (including the vertex itself). Defaults to 10.
k_DTM (int): number of neighbors for the DTM density estimation (including the vertex itself). Defaults to k.
r (float): size of a neighborhood if graph_type is 'radius'. Also used as default bandwidth in kde_params.
eps (float): approximation factor when computing nearest neighbors (ignored in many cases).
symmetrize_graph (bool): whether we should add edges to make the neighborhood graph symmetric. This can be
useful with k-NN for small k. Defaults to false.
p (float): norm L^p on input points (numpy.inf is supported without gpu). Defaults to 2.
dim (float): final exponent in DTM density estimation, representing the dimension. Defaults to the dimension, or 2
when the dimension cannot be read from the input (metric is "precomputed").
q (float): order used to compute the distance to measure. Defaults to dim. Beware that when the dimension is large,
this can easily cause overflows.
n_jobs (int): Number of jobs to schedule for parallel processing on the CPU. If -1 is given all processors are used.
Default: 1.
params: extra parameters are passed to the classes gudhi.point_cloud.knn.KNearestNeighbors and
gudhi.point_cloud.dtm.DTMDensity , for example 'implementation="keops"' for the first one.

/

Attributes

By "attributes" we mean the properties, or variables, created within a class: they store its information, allow it to run some
of its methods and functionalities, etc... We recall also that, as a common practice, the attributes of a class (those defined
with self.) usually have some "_" in its name to make them more distinguishable within the code.

Naturally, the values of most of the attributes depend on the instance itself, and, depending on it, some of them will be
present or not. Actually, many of the previous parameters have their corresponding attribute, as for example n_clusters_
and merge_threshold_ (which, when modified, can alter the values of other attributes, as the .setter propery shows), or
they are stored inside the "params_" dictionary; input_type, metric,...

Other important attributes which are created specifically to run the desired methods and are not given as parameters are:

n_leaves_ (int): Number of leaves (unstable clusters) in the hierarchical tree. Basically, the number of "temporary"
clusters (or mini-clusters) we have along the way.
leaf_labels_ (ndarray of shape (n_samples)): Cluster labels for each point, at the very bottom of the hierarchy.
labels_ (ndarray of shape (n_samples)): Cluster labels for each point, after merging. Writing to n_clusters_ and
merge_threshold_ automatically adjusts it.
diagram_ (ndarray of shape (n_leaves_, 2)): Persistence diagram (only the finite points).
weights_: (ndarray of shape (n_samples,)): Weights of the points, as computed by the density estimator or provided
by the user.
max_weight_per_cc_: (ndarray of shape (n_connected_components,)): Maximum of the density function on each
connected component. This corresponds to the abscissa of infinite points in the diagram.

Methods

The Tomato class contains, in essence, two methods:

The first one is the .fit method, which does basically everything: it processes the input data taking into account its
format and the given arguments, it does the merging process depending on them, does the labelling of the entries
and stores the points that will eventually form the persistance diagram. The method .fit_predict is identical, but it
returns the labels vector. Both of them take as the input the coordinates of the points/ distance matrix/ neighborhood
matrix, and possibly a "weights" vector, the estimate of on each entry.

The second one is the .plot_diagram method, without arguments, that plots the persistance diagram (after the fit
method).

f

EXAMPLES AND TESTS

Example 1
We start with a really simple example with a few hundreds points to get used to manipulating the Tomato class.

/

In [32]: import matplotlib.pyplot as plt

cmap = plt.cm.Spectral;
fig, ax = plt.subplots();

import random as rd
import numpy as np

Simple function to get random values for x uniformly but within intervals (0,a) U
(b, 1)
def x_var(x):
 if x > 0.5:
 return rd.uniform(0.6, 1)
 else:
 return rd.uniform(0, 0.4)

p1 = np.zeros((200,2))
for i in range(200):
 p1[i,0] = x_var(rd.uniform(0,1))
 p1[i,1] = rd.uniform(0,1)

ax.cla()
ax.scatter(*zip(*p1));

There are "clearly" two main groups of points.

Let's suppose we don't know that, so we run the Tomato algorithm blindly. We use the KDE (without specifying extra
parameters, thus using the default parameters in Scikit-Learn) and the radius graph with = 0.1. We want to take a look
at the persistance diagram:

r

/

In [57]: import gudhi

from gudhi.clustering.tomato import Tomato

ex1 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="radius",
 density_type="KDE",
 #n_clusters=2,
 r=0.1,
)

labels = ex1.fit_predict(p1)
print(labels)

print("\nThere are " + str(ex1.n_clusters_) + " initial clusters")
ex1.plot_diagram()

Even if n_clusters_ gives us 9 initial clusters (when we don't specify the parameter n_clusters in Tomato no merging
occurs), we can see from the bottom-right that there are clearly two more prominent groups, but four connected
components. Indeed, let's output the graph built on top of our data:

[1 4 1 6 3 1 0 2 3 1 3 0 3 0 0 4 1 4 1 4 1 2 0 3 1 4 3 1 4 1 2 1 3 3 1 6 0
 3 2 0 0 0 6 1 0 2 2 6 0 1 8 2 7 4 2 6 1 1 1 4 4 5 2 1 0 0 1 6 2 3 4 3 2 2
 3 1 1 2 1 0 6 2 4 1 0 3 2 1 1 3 2 0 4 3 2 3 0 3 3 0 1 4 0 0 3 0 3 6 3 4 5
 1 0 0 0 6 1 0 1 0 0 2 3 1 1 2 4 0 2 0 4 3 2 1 4 2 2 0 2 1 6 2 0 2 4 4 0 2
 0 1 3 5 2 4 4 1 1 1 2 4 1 1 3 3 0 5 1 0 1 4 3 1 4 2 1 1 4 1 3 1 6 1 2 2 0
 2 0 1 0 2 2 3 0 1 0 4 1 0 6 4]

There are 9 initial clusters

/

In [58]: from gudhi.point_cloud.knn import KNearestNeighbors
X = np.array(p1)
nbrs = KNearestNeighbors(k=30, return_distance= True)
indices, distances = nbrs.fit_transform(X)
plt.plot(X[:,0], X[:,1], 'o')
for i in indices:
 Y = np.zeros((2,2))
 for j in range(len(i)):
 if distances[int(i[0]), j] < 0.1:
 Y[0][0]= X[int(i[0])][0]
 Y[1][0]= X[int(i[0])][1]
 Y[0][1]= X[int(i[j])][0]
 Y[1][1]= X[int(i[j])][1]
 plt.plot(Y[0], Y[1], 'ro-')

plt.show()

Even if we know that "there are" two main clusters, we cannot force the algorithm to output them, because there is no
way the algorithm can merge disconnected components. We don't have problems if we ask for a bigger number of
clusters:

In [61]: ex1.n_clusters_ = 6
print(ex1.n_clusters_)
print(ex1.labels_)

ex1.n_clusters_ = 2
print(ex1.n_clusters_)
print(ex1.labels_)

6
[1 1 1 1 3 1 0 2 3 1 3 0 3 0 0 1 1 1 1 1 1 2 0 3 1 1 3 1 1 1 2 1 3 3 1 1 0
 3 2 0 0 0 1 1 0 2 2 1 0 1 5 2 4 1 2 1 1 1 1 1 1 1 2 1 0 0 1 1 2 3 1 3 2 2
 3 1 1 2 1 0 1 2 1 1 0 3 2 1 1 3 2 0 1 3 2 3 0 3 3 0 1 1 0 0 3 0 3 1 3 1 1
 1 0 0 0 1 1 0 1 0 0 2 3 1 1 2 1 0 2 0 1 3 2 1 1 2 2 0 2 1 1 2 0 2 1 1 0 2
 0 1 3 1 2 1 1 1 1 1 2 1 1 1 3 3 0 1 1 0 1 1 3 1 1 2 1 1 1 1 3 1 1 1 2 2 0
 2 0 1 0 2 2 3 0 1 0 1 1 0 1 1]
4
[1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0
 0 0 0 0 0 1 1 0 0 0 1 0 1 3 0 2 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0
 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1
 1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0
 0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0
 0 0 1 0 0 0 0 0 1 0 1 1 0 1 1]

/

Unsurprisingly, if we plot the points with different colors according to their labels, we don't get a very satisfying result:

In [62]: n = ex1.n_clusters_
labels = ex1.labels_

norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()
ax.scatter(*zip(*p1), c=cmap(norm(labels)))
fig

This is the reason why running the algorithm for different values of the parameters is a good idea, specially if the
algorithm produces persistance diagrams with several green dots (i.e. connected components) near the bottom-left part
(i.e. low, isolated peaks).

Here is the situation when we increase to 0.15:r

Out[62]:

/

In [63]: ex1 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="radius",
 density_type="KDE",
 n_clusters=2,
 r=0.13,
)

n = ex1.n_clusters_
print("We obtain " + str(n) + " clusters.")
labels = ex1.fit_predict(p1)
print(ex1.labels_)

print("\nThe persistance diagram looks better, with just two connected components, an
d two prominent regions:")
ex1.plot_diagram()

print("\nThe graph over which the algorithm runs is:")

plt.plot(X[:,0], X[:,1], 'o')
for i in indices:
 Y = np.zeros((2,2))
 for j in range(len(i)):
 if distances[i[0]][j] < 0.15:
 Y[0][0]= X[i[0]][0]
 Y[1][0]= X[i[0]][1]
 Y[0][1]= X[i[j]][0]
 Y[1][1]= X[i[j]][1]
 plt.plot(Y[0], Y[1], 'ro-')

plt.show()

print("\nAnd the plot of the points according to their label is:")

norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()
ax.scatter(*zip(*p1), c=cmap(norm(labels)))
fig

/

We obtain 2 clusters.
[1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0
0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1
1 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0
0 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0 1 1]

The persistance diagram looks better, with just two connected components, and two pr
ominent regions:

The graph over which the algorithm runs is:

And the plot of the points according to their label is:

Out[63]:

/

Example 2
We use now a rather typical example to test clustering algorithms: a point cloud sampled from two concentric circles:

In [97]: from sklearn import manifold, datasets
p2, y = datasets.make_circles(n_samples=1000, factor=.5, noise=.05)

ax.cla()
ax.scatter(*zip(*p2))
fig

It is well known that many clustering methods perform poorly with non-convex groupings of data, as the one above. This
is not the case with the Tomato algorithm, which relies just on looking for "nearby" modes. We use now the -NN graph
construction, with =7, and the KDE again, specifying some of it parameters now (for more information, check the Scikit-
learn documentation):

k

k

Out[97]:

/

In [98]: ex2 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="knn",
 density_type="KDE",
 kde_params = {"bandwidth": 1.3, "kernel": "epanechnikov"},
 #n_clusters=2,
 k=7,
 eps=0.05,
)

ex2.fit_predict(p2)
ex2.plot_diagram()

The diagram is not specially obvious; if this happens, it is in general a good idea tu run the algorithm with different values
in the parameters.

We also see that there are several connected components, more specifically 9; a quick way to know how many of them
we have is check the size of the attribute "max_weight_per_cc_":

In [99]: n = len(ex2.max_weight_per_cc_)
print("There are " + str(n) + " connected components")

Let's plot these components:

There are 9 connected components

/

In [103]: ex2.n_clusters_ = n
labels = ex2.labels_

norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig

A bit frustrating; this is "natural" consequence of the the -NN graph being directed. We can "solve" this by symmetrizing
the graph, although its effectiveness is uncertain. In this case it also makes sense to reduce , as we add more edges:

k

k

Out[103]:

/

In [102]: ex2 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="knn",
 density_type="KDE",
 kde_params = {"bandwidth": 1.3, "kernel": "epanechnikov"},
 #n_clusters=2,
 k=5,
 symmetrize_graph = True,
 eps=0.05,
)

ex2.fit_predict(p2)
ex2.plot_diagram()

n = len(ex2.max_weight_per_cc_)
print("There are " + str(n) + " connected components")

ex2.n_clusters_ = n
labels = ex2.labels_

norm = plt.Normalize(vmin=0, vmax=n-1)

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)))
fig

There are 3 connected components

Out[102]:

/

In general, and intelligent way to proceed would be to run the algorithm for different values of and the bandwidth , and
see for which values we obtain "good" persistance diagrams, with "clearly prominent clusters". This is what we do below,
where, for a fixed and different values of , we compute the prominence of each point of the persistance diagram (

), and we plot the information, as well as the number of connected components (number under every vertical bar)
in each case:

k λ

k λ

x − y

/

In [148]: for n_neigh in range(6,12):
 n_diagram = []
 x_diagram = []
 y_diagram = []
 cc = []
 y_cc = []
 bandwidth_values = [0.1, 2, 0.1]
 bandwidth = bandwidth_values[0]

 while bandwidth < bandwidth_values[1]:
 ex2 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="knn",
 density_type="KDE",
 kde_params = {"bandwidth": bandwidth, "kernel": "epanechnikov"},
 #n_clusters=2,
 k=n_neigh,
 eps=0.05,
)
 ex2.fit(p2)
 cc.append(str(len(ex2.max_weight_per_cc_)))
 init_clusters = len(ex2.diagram_)
 prominences = np.zeros(init_clusters)
 for i in range(init_clusters):
 prominences[i] = ex2.diagram_[i,0] - ex2.diagram_[i,1]

 ##"Normalizing" prominences
 max_prom = np.max(prominences)
 for i in range(init_clusters):
 prominences[i] /= max_prom

 n_diagram.append(prominences)
 bandwidth += bandwidth_values[2]

 for i in range(len(n_diagram)):
 for j in range(len(n_diagram[i])):
 x_diagram.append(bandwidth_values[0] + i*bandwidth_values[2])
 y_diagram.append(n_diagram[i][j])
 y_cc.append(-0.08)

 plt.title('Looking for clusters')
 plt.axis('tight')
 plt.ylabel('K =' + str(n_neigh-1))
 plt.ylim((-0.15, 1.1))
 plt.xlabel('bandwidth')
 plt.xticks(np.arange(bandwidth_values[0], bandwidth_values[1], bandwidth_values[2
]))
 plt.subplot(6, 1, n_neigh-5)
 n = int((bandwidth_values[1]-bandwidth_values[0])/bandwidth_values[2]) + 1
 for i in range(n):
 plt.text(-0.02 + bandwidth_values[0] + i*bandwidth_values[2], y_cc[i], cc[i],
fontdict={'weight': 'bold', 'size': 10})

 plt.scatter(x_diagram, y_diagram)

fig = plt.gcf()
fig.set_size_inches(8, 32)
plt.show()

/

/

One can see, for example, that when the bandwidth is = 0.3, two more prominent clusters appear consistently, for all
the last values of , and we always get two connected components. If we run Tomato with these parameters, we obtain
the "desired" result:

λ

k

/

In [185]: ex2 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="knn",
 density_type="KDE",
 kde_params = {"bandwidth": 0.3, "kernel": "epanechnikov"},
 n_clusters=2,
 k=9,
 eps=0.05,
)

labels = ex2.fit_predict(p2)
ex2.plot_diagram()

norm = plt.Normalize(vmin=0, vmax=1)

fig, ax = plt.subplots()

ax.cla()
ax.scatter(*zip(*p2), c=cmap(norm(labels)));

Example 3
We do now a rather spectacular example in 3D just to show the effectiveness of the algorithm to separate clusters with
different shapes. We will generate, using points, a cube, a sphere, and a "swiss roll", together with some noise:

/

In [157]: import mpl_toolkits.mplot3d.axes3d as plt3
from sklearn.datasets import make_swiss_roll

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70)

points_cube = 1000
points_sphere = 800
#points_line = 700
points_sr = 8000
points_noise = 2000

X1 = np.zeros((points_cube, 3))
for i in range(points_cube):
 X1[i,0], X1[i,1], X1[i,2] = rd.uniform(-2,2), rd.uniform(-2,2), rd.uniform(-2,2)

X2 = np.zeros((points_sphere, 3))
for i in range(points_sphere):
 X2[i,0], X2[i,1], X2[i,2] = rd.uniform(-1,1), rd.uniform(-1,1), rd.uniform(-1,1)
 X2[i,0], X2[i,1], X2[i,2] = 12 + 3*X2[i,0]/np.sqrt(X2[i,0]**2 + X2[i,1]**2 + X2[i
,2]**2), 15 + 3*X2[i,1]/np.sqrt(X2[i,0]**2 + X2[i,1]**2 + X2[i,2]**2), -4 + 3*X2[i,2]
/np.sqrt(X2[i,0]**2 + X2[i,1]**2 + X2[i,2]**2)

"""
X3 = np.zeros((points_line, 3))
for i in range(points_line):
 param = rd.uniform(-15, 15)
 X3[i,0], X3[i,1], X3[i,2] = 2 - param*0.7, 4 + param*0.7, 2 - param*0.6
 X3[:,0] += 0.02*np.random.randn(points_line)
 X3[:,1] += 0.02*np.random.randn(points_line)
 X3[:,2] += 0.02*np.random.randn(points_line)
"""

X4, _ = make_swiss_roll(n_samples=points_sr, noise=.05)

X5 = np.zeros((points_noise, 3))
for i in range(points_noise):
 X5[i,0], X5[i,1], X5[i,2] = rd.uniform(-10,15), rd.uniform(-5,20), rd.uniform(-10
,15)

X = np.concatenate((X1,X2,X4,X5))
X = np.array(X)

ax.scatter(X[:, 0], X[:, 1], X[:, 2], color="red", s=4);

/

In [158]: ax.view_init(50, -150)
fig3

Let's run the algorithm with -NN and the logDTM estimation. We also use the parameter n_jobs=-1, which becomes
useful to increase the computational power when the size of our dataset becomes large, even though in our case we
don't have an specially high number of points:

k

Out[158]:

/

In [159]: ex3 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="knn",
 density_type="logDTM",
 #n_clusters=2,
 #symmetrize_graph= True,
 k=9,
 n_jobs=-1,
)

ex3.fit(X)
ex3.plot_diagram()
print(ex3.labels_)

We see 2-3 prominent clusters in the persistance diagram. We can "identify" the noise by checking which points have a
low estimate, and creating a new label. We plot the result at the end:

[158 88 158 ... 436 382 174]

/

In [180]: ex3.n_clusters_ = 3
label = ex3.labels_

for i in range(len(X)):
 if ex3.weights_[i] < 0.5:
 label[i] = 3

print(label)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70)

for l in np.unique(label):
 ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
 color=plt.cm.inferno(np.float(l) / np.max(label + 1)),
 s=3)

In [181]: ax.view_init(50, -150)
fig3

[0 0 0 ... 3 3 3]

Out[181]:

/

The swiss roll is not completely clustered and it gets separated into two regions due to the presence of the sphere; we
cannot expect our algorithm to distinguish them properly with an intersection so noticeable. The result with two clusters is
also quite satisfactory and more realistic, with the whole spiral and the sphere clustered together. We also see that, in
both cases, the noise is quite properly identified:

In [182]: ex3.n_clusters_ = 2
label = ex3.labels_

for i in range(len(X)):
 if ex3.weights_[i] < 0.5:
 label[i] = 2

print(label)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70)

for l in np.unique(label):
 ax.scatter(X[label == l, 0], X[label == l, 1], X[label == l, 2],
 color=plt.cm.inferno(np.float(l) / np.max(label + 1)),
 s=3)

[0 0 0 ... 2 2 2]

/

In [183]: ax.view_init(50, -150)
fig3

Example 4
In this example we explore the case in which we don't give the coordinates of the points directly, but the distances
between them.

To do so, we sample a set of points over the unit sphere, but not uniformly: we sample them first in the cube 1x1x1 using
a sigmoid function in each variable to concentrate them near the vertices and edges of the cube, and then we normalize
them. This creates naturally regions of the sphere with more points, more specifically the directions pointing towards the
vertices and edges of the cube:

Out[183]:

/

In [188]: def sample_spherical(npoints):
 vec = []
 vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
 vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
 vec.append(-0.5 + 1/(1 + np.exp(-5*np.random.uniform(-1,1, npoints))))
 vec /= np.linalg.norm(vec, axis=0)
 return vec

npoints = 6000
points = sample_spherical(npoints)

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(7, -70)

ax.scatter(points[0,:], points[1,:], points[2,:], s=3);

We compute now the pairwise distances between all the points, using the "spherical" distance : the distance between
two points on the surface of a unit sphere with coordinates and is given by the
formula:

As we don't have many points, we can compute all pairwise distances without much problem:

dS

a = (, ,)a1 a2 a3 b = (, ,)b1 b2 b3

(a, b) = arccos(+ b2 +)dS a1b1 a2 a3b3

/

In [189]: distance_matrix = np.zeros((npoints, npoints))

for i in range(npoints):
 distance_matrix[i,i]= 0
 for j in range(i+1, npoints):
 distance_matrix[i,j] = np.arccos(points[0,i]*points[0,j] + points[1,i]*points
[1,j] + points[2,i]*points[2,j])
 distance_matrix[j,i] = distance_matrix[i,j]

print(distance_matrix)

KDE and logKDE use the already-built Scikit-learn library and we cannot use them for a precomputed distance matrix.
We use logDTM insted of DTM to make the persistance diagram look more clear:

In [190]: ex4 = Tomato(
 input_type="points",
 metric="precomputed",
 graph_type="knn",
 density_type="logDTM",
 #n_clusters=2,
 k=10,
)

ex4.fit(distance_matrix)
ex4.plot_diagram()

There are 8 clear clusters, a quite expected result:

[[0. 1.1558255 1.47491536 ... 2.68105662 0.94665096 0.8865952]
 [1.1558255 0. 1.83518165 ... 1.77024725 1.71115835 1.14674659]
 [1.47491536 1.83518165 0. ... 2.12567266 2.05734047 0.7744797]
 ...
 [2.68105662 1.77024725 2.12567266 ... 0. 1.88764992 2.57444621]
 [0.94665096 1.71115835 2.05734047 ... 1.88764992 0. 1.80283258]
 [0.8865952 1.14674659 0.7744797 ... 2.57444621 1.80283258 0.]]

/

In [191]: ex4.n_clusters_ = 8
label = ex4.labels_

fig3 = plt.figure()
ax = plt3.Axes3D(fig3)
ax.view_init(25, -160)

for l in np.unique(label):
 ax.scatter(points[0, label == l], points[1, label == l], points[2, label == l],
 color=plt.cm.jet(np.float(l) / np.max(label + 1)),
 s=3)

Example 5
We do another easy example just to get used to other input formats to our algorithm. In this one we will input ourselves
the weights of the points as well as a neighboring graph, which will just be a rectangular mesh in the square 10x10. For
the weights, we will be using the function:

plotted below. In this setting, our algorithm will be just looking for basins of attraction of our function.

f(x, y) = sin() + cos(),
x + y

2

x − y

2

/

In [208]: def f(x, y):
 return 2+ np.sin(0.5*(x+y)) + np.cos(0.5*(x-y))

x = np.linspace(-10, 10, 30)
y = np.linspace(-10, 10, 30)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');

In [198]: ax.view_init(70, -50)
fig

And now the points, with the neighboring graph:

Out[198]:

/

In [200]: size_mesh = 30
points = np.zeros((2, size_mesh**2))
arange = np.linspace(-10., 10., size_mesh)

#Coordinates of the points
for i in range(size_mesh):
 for j in range(size_mesh):
 points[0][i*size_mesh + j] = arange[i]
 points[1][i*size_mesh + j] = arange[j]

#Neighboring graph
neigh_graph = []
for i in range(size_mesh):
 for j in range(size_mesh):
 neigh = []
 if i > 0:
 neigh.append((i-1)*size_mesh + j)
 if i < size_mesh -1:
 neigh.append((i+1)*size_mesh + j)
 if j > 0:
 neigh.append(i*size_mesh + j-1)
 if j < size_mesh -1:
 neigh.append(i*size_mesh + j+1)
 neigh_graph.append(neigh)

In [201]: #Drawing the graph
plt.plot(points[0,:], points[1,:], 'o', markersize=2)

for i in range(len(neigh_graph)):
 Y = np.zeros((2,2))
 for j in neigh_graph[i]:
 Y[0][0]= points[0][i]
 Y[1][0]= points[1][i]
 Y[0][1]= points[0][j]
 Y[1][1]= points[1][j]
 plt.plot(Y[0], Y[1], 'ro-', linewidth=2)

plt.show()

We now associate the weights to the different points according to f, and run the Tomato algorithm to compute the basins
of attraction:

/

In [202]: #We associate the weights
weights = np.zeros(size_mesh**2)
for i in range(size_mesh**2):
 weights[i] = f(points[0][i], points[1][i])

#We run Tomato
ex5 = Tomato(
 graph_type = "manual",
 density_type = "manual"
)

ex5.fit(neigh_graph, weights= weights)
ex5.plot_diagram()
print(ex5.diagram_)

[[3.75212014 1.99409954]
 [3.75212014 1.99409954]
 [3.98535762 1.98244992]
 [3.98535762 1.98244992]
 [3.9737506 1.9824371]
 [3.54402111 1.97677169]
 [3.9882662 1.94776161]]

/

In [206]: ex5.n_clusters = 7
labels = ex5.fit_predict(neigh_graph, weights= weights)

norm = plt.Normalize(vmin=0, vmax=6)

fig, ax = plt.subplots();

ax.cla()
ax.scatter(points[0,:], points[1,:], c=cmap(norm(labels)));

/

In [209]: fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary', linewidths=0.5);
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');

points3d = np.zeros((3, size_mesh**2))
for i in range(size_mesh**2):
 points3d[0, i] = points[0,i]
 points3d[1, i] = points[1,i]

z_coord = np.zeros(size_mesh**2)
for l in np.unique(labels):
 ax.scatter(points3d[0, labels == l], points3d[1, labels == l], points3d[2, labels
== l], s=10)

ax.view_init(80, -50)
fig = plt.gcf()
fig.set_size_inches(12,7)
plt.show()

Example 6
In this last example, closer to the kind of datasets we could find in real life, we will work with the famous "Digits dataset",
containing 1797 observations each with 64 features: each entry represents a (highly compressed) hand-written digit in a
8x8 grid, where each cell can vary from 0 to 16, representing its opacity. Naturally, the dataset also contains the correct
labels of each instance: a number from 0 to 9, the one written in the grid.

/

In [987]: #Load the digits dataset
digits = datasets.load_digits()

#Display the 25th digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[25], cmap=plt.cm.gray_r, interpolation='nearest')
plt.show()

It is well known the difficulty of performing data science algorithms in high dimension, and clustering is not an exception;
in fact, it is a process particularly sensitive to numerical data being sparse. Thus, even with dimensionality reduction
techniques, it's not a good idea to expect a brilliant performance of our algorithm in this setting. In any case, it is
interesting to see what kind of results we get. The results of other clustering methods over this dataset can be found in
[4].

In [1056]: digits, real_label = datasets.load_digits(return_X_y=True)

print(digits)
print(real_label)

We can embed the dataset in the plane by using PCA dimensionality reduction. We observe that, with that reduction
level, the different clusters of numbers are somewhat distinguishable, but there is also considerable overlapping:

[[0. 0. 5. ... 0. 0. 0.]
 [0. 0. 0. ... 10. 0. 0.]
 [0. 0. 0. ... 16. 9. 0.]
 ...
 [0. 0. 1. ... 6. 0. 0.]
 [0. 0. 2. ... 12. 0. 0.]
 [0. 0. 10. ... 12. 1. 0.]]
[0 1 2 ... 8 9 8]

/

In [1009]: from sklearn.decomposition import PCA

pca = PCA(n_components=2)
digits_red = pca.fit_transform(digits)

def plot_clustering(X_red, labels, title=None):
 x_min, x_max = np.min(X_red, axis=0), np.max(X_red, axis=0)
 X_red = (X_red - x_min) / (x_max - x_min)

 plt.figure(figsize=(6, 4))
 for i in range(X_red.shape[0]):
 plt.text(X_red[i, 0], X_red[i, 1], str(y[i]),
 color=plt.cm.nipy_spectral(labels[i] / 10.),
 fontdict={'weight': 'bold', 'size': 8})

 plt.xticks([])
 plt.yticks([])
 if title is not None:
 plt.title(title, size=15)
 plt.axis('off')
 fig = plt.gcf()
 fig.set_size_inches(12,7)

plot_clustering(digits_red, real_label, title = "2d embedding of the digits dataset,
colors= real labels")

It's useless to try to run the algorithm without doing any kind of dimensionality reduction first: accurate density estimation
is almost always unsucessful with highly sparse data. We can try to use our algorithm after killing some dimensions first.
Wit our dataset, after some experimentation, when there are 11 dimensions left DTM density estimation looks quite well:

/

In [1110]: pca = PCA(n_components=11)
digits_red = pca.fit_transform(digits)

ex6 = Tomato(
 input_type="points",
 metric="euclidean",
 graph_type="knn",
 density_type="logDTM",
 n_clusters=10,
 k=9,
)

ex6.fit(digits_red)
ex6.plot_diagram()

It looks like the algorithm found "naturally" 9-10 clusters, let's plot these 10 groups in 2D:

/

In [1100]: labels = ex6.fit_predict(digits_red)

pca = PCA(n_components=2)
digits_red = pca.fit_transform(digits_red)

plot_clustering(digits_red, labels, title = "2d embedding of the digits dataset, colo
rs= clusters")

The result looks suprisingly good, actually.

A way to measure the matching degree consists in computing the vector , which
takes values , and then counting the number of times each number appears. In a perfect classification,
only 10 values would appear, more specifically , with ; in a decent clustering, we should
at least see some clearly more prominent values, which is indeed what happens in our case!

10 ⋅ real_labels + clustering_labels
∈ {0, … , 99}

10 ⋅ i + labeli i ∈ {0, … , 10}

/

In [1111]: vect_count = 10*real_label + labels
print(vect_count)

count = np.zeros((2,100))
for i in range(100):
 count[0,i]= i
for i in vect_count:
 count[1,i] += 1

fig, ax = plt.subplots();
ax.cla()
ax.scatter(count[0,:], count[1,:], s=16);

From this graph it looks like most of the values have been properly grouped. Only the value 8 looks more mismatched.
We can also get an idea about how the numbers have been grouped or labeled using a table, and checking the columns
and rows: each of them should only contain one "big" value:

[0 12 27 ... 82 97 87]

/

In [1102]: import pandas as pd
data = [[1, 2], [3, 4]]
pd.DataFrame(data, columns=["Foo", "Bar"])

table = []
for i in range(10):
 row = []
 #row.append(i)
 for i in range(i*10, i*10 +10):
 row.append(count[1, i])
 table.append(row)

pd.DataFrame(table, columns=['Label 0', 'Label 1', 'Label 2', 'Label 3', 'Label 4',
'Label 5', 'Label 6', 'Label 7', 'Label 8', 'Label 9'])

The clustering has been quite successful. In any case, the numbers 3's and 9's have been almost completely clustered
together (which is not that suprising, given the low resolution of the dataset), and the number 8 is almost evenly divided
between labels 2 (with the 1's) and 7 (with the 3's and 9's), again not very surprising.

References
[1]. Frédéric CHAZAL et al., Persistence-Based Clustering in Riemannian Manifolds . In :Journal of the ACM 60 (juin
2011).doi:10.1145/1998196.1998212 : URL: https://hal.inria.fr/inria-00389390/document (https://hal.inria.fr/inria-
00389390/document)

[2]. Tutorial for DTM: https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-DTM-filtrations.ipynb
(https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-DTM-filtrations.ipynb)

[3]. Gérard BIAU, Frédéric CHAZAL, David COHEN-STEINER, Luc DEVROYE, Carlos RODRIGUEZ. A Weighted k-
Nearest Neighbor Density Estimate for Geometric Inference . 2011. ffinria-00560623v1 : URL:
http://luc.devroye.org/BiauChazalCohenDevroyeRodriguez-kNN-2EJS-2011.pdf
(http://luc.devroye.org/BiauChazalCohenDevroyeRodriguez-kNN-2EJS-2011.pdf)

[4] Various Agglomerative Clustering on a 2D embedding of digits: https://scikit-
learn.org/stable/auto_examples/cluster/plot_digits_linkage.html#sphx-glr-auto-examples-cluster-plot-digits-linkage-py
(https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html#sphx-glr-auto-examples-cluster-plot-digits-
linkage-py)

Out[1102]:
Label 0 Label 1 Label 2 Label 3 Label 4 Label 5 Label 6 Label 7 Label 8 Label 9

0 177.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.0 1.0 154.0 0.0 0.0 1.0 0.0 0.0 26.0 0.0

2 1.0 0.0 2.0 0.0 164.0 0.0 1.0 9.0 0.0 0.0

3 0.0 0.0 7.0 0.0 0.0 3.0 3.0 170.0 0.0 0.0

4 0.0 0.0 2.0 177.0 0.0 0.0 2.0 0.0 0.0 0.0

5 0.0 1.0 0.0 1.0 0.0 178.0 0.0 2.0 0.0 0.0

6 1.0 179.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0 0.0 0.0 168.0 0.0 0.0 11.0

8 0.0 2.0 82.0 0.0 2.0 4.0 2.0 82.0 0.0 0.0

9 0.0 0.0 20.0 0.0 0.0 5.0 2.0 144.0 0.0 9.0

https://hal.inria.fr/inria-00389390/document
https://github.com/GUDHI/TDA-tutorial/blob/master/Tuto-GUDHI-DTM-filtrations.ipynb
http://luc.devroye.org/BiauChazalCohenDevroyeRodriguez-kNN-2EJS-2011.pdf
https://scikit-learn.org/stable/auto_examples/cluster/plot_digits_linkage.html#sphx-glr-auto-examples-cluster-plot-digits-linkage-py

Dualités de Koszul algébrique,
opéradique et propéradique

Mémoire de M2

Clovis Chabertier

Sous la direction de Salim Rivière

2020

2

3

Dans les catégories abéliennes [Gro57] possédant assez de projectifs (resp. injec-
tifs), une façon d’obtenir des invariants, dits homologiques, est de trouver un foncteur
exact à droite (resp. gauche) et de regarder l’homologie du foncteur evalué sur une ré-
solution projective (resp. injective), ce sont les foncteurs dérivés. Cependant, As−alg
n’est pas abélienne, mais elle possède une structure de modèle [Hin97], qui permet
quand même d’obtenir des invariants homologiques. Ce sont les résolution cofibrantes
dans les catégories de modèle qui jouent le rôle des résolutions projectives dans les
catégories abéliennes, et les adjonctions de Quillen qui jouent celui des foncteurs
exacts d’un coté.

Si on veut obtenir de façon systématique une résolution cofibrante XA

∼
� A,

on peut chercher un endofoncteur F : C → C, muni d’une transformation naturelle
η• : F → IdC telle que les ηX soient des équivalences faibles cofibrantes. A nouveaux,
une façon d’obtenir un endofoncteur et une transformation naturelle de celui-ci vers
l’identité, est de chercher une paire de foncteurs adjoints L et R puis de considérer
la counité de l’adjonction ε : L ◦R→ Id.

C’est ce qu’on s’attachera à faire en détail dans la première partie (puis dans la
seconde partie) en construisant une adjonction :

Aug − dga− alg Conil − dga− coalg
B

Ω

4

Table des matières

1 Une adjonction cobar-bar pour les algèbres associatives 6
1.1 Rappels et conventions . 6

1.1.1 Algèbres . 6
1.1.2 Coalgèbres . 8
1.1.3 (Co)Algèbres différentielles graduées 9
1.1.4 Convolution . 11

1.2 Adjonction cobar-bar . 12
1.2.1 Résolution cobar-bar . 15

1.3 Une résolution plus économe . 20
1.3.1 Complexe de Koszul associé à une algèbre quadratique 21
1.3.2 Construction de A¡ ↪→ B0A ⊂ BA 23

2 Cobar-bar pour les opérades algébriques 26
2.1 Introduction aux opérades algébriques 26

2.1.1 S-modules . 26
2.1.2 Opérades . 29
2.1.3 Algèbre universelle . 32
2.1.4 Définition d’une opérade par compositions partielles 32
2.1.5 Opérade libre . 33

2.2 Constructions d’algèbre homologique pour les opérades 33
2.2.1 Linéarisation . 33
2.2.2 Extension au cadre différentiel gradué 35

TABLE DES MATIÈRES 5

2.3 Adjonction cobar-bar opéradique . 36
2.3.1 Morphismes tordants . 36
2.3.2 Constructions cobar et bar . 37

2.4 Opérades quadratiques et dualité de Koszul 38

3 Propérades 40
3.1 Introduction . 40
3.2 Calculs de duaux . 44

A Rappels 50

6

Chapitre 1

Une adjonction cobar-bar pour les
algèbres associatives

Ce chapitre est très largement inspiré de [LV12]. On fixe un corps K de caracté-
ristique nulle. Dans ce qui suit, les espaces vectoriels seront sur K et les applications
entre espaces vectoriels seront supposées linéaires (sauf mention du contraire). Les
algèbres et coalgèbres seront toujours supposées (co-)associatives et (co-)augmentées
et l’idéal d’augmentation sera surmonté d’une barre, sauf mention du contraire.

1.1 Rappels et conventions

On introduit ici les définitions et propriétés permettant d’atteindre rapidement
l’adjonction voulue.

1.1.1 Algèbres

On rappelle la construction de l’algèbre libre (unitaire) sur un espace vectoriel
V :

Construction 1.1. Soit T̄ (V) := ⊕
n∈N∗

V ⊗n le K-module tensoriel et iV := i1 : V ↪→

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES7

¯T (V) l’inclusion canonique. ¯T (V) muni du produit de concaténation µ :

∀x1 ⊗ ...⊗ xn∀xn+1 ⊗ ...⊗ xk : (x1 ⊗ ...⊗ xn).(xn+1 ⊗ ...⊗ xk) := x1 ⊗ ...⊗ xk

est une algèbre associative libre sur V , notée Fu(V), ou juste F(V) si aucune confu-
sion n’est possible. L’algèbre unitaire augmentée sur un espace vectoriel V doit quant
à elle vérifier l’adjonction :

HomuAs−alg(F(V), A) → HomK(V, Ā)

f 7→ f ◦ iV

Soit T (V) := ⊕
n∈N

V ⊗n le module tensoriel unitaire muni du produit de concaténation

µ décrit précédemment et de l’inclusion canonique iV : V ↪→ T (V). Alors ce triplet
F(V) := (T (V), µ, iV) est une algèbre unitaire augmentée sur V .

Lemme 1.1. Soit M un T (V)-bimodule et Der(T (V),M) l’espace des dérivations
de T (V) dans M ([LV12] 1.1.6), alors

Der(T (V),M) → HomK(V,M)

d 7→ d ◦ iV

est un isomorphisme. Autrement dit toute application linéaire f : V →M s’étend de
façon unique en une dérivation df : T (V)→M :

∀v1 ⊗ ...⊗ vn : df (v1 ⊗ ...⊗ vn) =
∑

1≤i≤n
v1 ⊗ ...⊗ f(vi)⊗ ...⊗ vn

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES8

1.1.2 Coalgèbres

Définition 1.1. On rappelle les notations de Sweedler :

∆(x) =
∑
i

xi1 ⊗ xi2

et la coassociativité :
∆2(x) = ∑

i,k
xi1 ⊗ x

i,k
2,1 ⊗ x

i,k
2,2 = ∑

i,j
xi,j1,1 ⊗ x

i,j
1,2 ⊗ xi2, que l’on écrira : ∑

i
xi1 ⊗ xi2 ⊗ xi3.

∆n(x) = ∑
i
xi1 ⊗ ...⊗ xin+1.

Définition 1.2. Une coalgèbre coaugmentée (C,∆) est dite conilpotente si

∀x ∈ C̄,∃n,∀m ≥ n : ∆m(x) = 0

Un morphisme de coalgèbres conilpotentes est un morphisme de coalgèbres coaug-
mentées. La catégorie des coalgèbres conilpotentes est notée Conil − Coalg.

Une coalgèbre colibre conilpotente sur un espace vectoriel V dans la catégorie des
coalgèbres conilpotentes est la donnée d’une coalgèbre conilpotente F c(V) et d’une
application linéaire pV : F c(V) → V vérifiant la propriété que toute application
linéaire du coidéal d’augmentation d’une coalgèbre conilpotente C̄ dans V se relève
en un morphisme de coalgèbres coaugmentées C → F c(V). Une construction est
donnée par ce qui suit.

Construction 1.2. Soit T c(V) := ⊕
n∈N

V ⊗n le module tensoriel, pV := π1 : T c(V)→

V la première projection et le coproduit de déconcaténation 1 :

∀x1⊗...⊗xn ∈ T (V) : ∆(x1⊗...⊗xn) :=
∑

0≤i≤n
x1⊗...⊗xi�xi+1⊗...⊗xn ∈ T c(V)�T c(V)

Alors (T c(V), pV ,∆) est une coalgèbre conilpotente colibre sur V , notée F c(V). Ob-

1. � est le produit tensoriel au dessus de K, noté différemment pour le discerner du produit
tensoriel ⊗ interne à T (V).

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES9

servons que le coproduit réduit est donné par :

∆̄(x1 ⊗ ...⊗ xn) :=
∑

1≤i≤n−1
x1 ⊗ ...⊗ xi � xi+1 ⊗ ...⊗ xn ∈ ¯T c(V) � ¯T c(V)

Définition 1.3. Soit (C,∆) une coalgèbre conilpotente. Une codérivation de C est
une application linéaire d : C → C vérifiant

∆ ◦ d = (d⊗ Id) ◦∆ + (Id⊗ d) ◦∆

L’espace des dérivations de C est noté Coder(C).

Lemme 1.2. L’application linéaire suivante

Coder(T c(V)) → HomK(T c(V), V)

d 7→ pV ◦ d

est un isomorphisme.
Si f ∈ HomK(T c(V), V), alors la codérivation correspondante est donnée par

∀x : d(x)(n) =
∑

1≤i≤n

∑
j

xj1 ⊗ ...⊗ f(xji)⊗ ...⊗ xjn

Où d(x)n est la composante dans V ⊗n de d(x) et ∆̄n−1(x) = ∑
j
xj1 ⊗ ...⊗ xjn.

1.1.3 (Co)Algèbres différentielles graduées

Pour une introduction détaillée au cadre différentiel gradué, le chapitre 1 de
[LV12] est suffisant.
Si V = {Vi} et W = {Wj} sont des espaces vectoriels gradués, alors V ⊗ W :=
{(V ⊗W)n} où

(V ⊗W)n :=
⊕
i+j=n

Vi ⊗Wj

Le cas W = V induit par récurrence une graduation sur V ⊗n et donc sur T (V) .

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES10

Soit Ks l’espace vectoriel gradué engendré par s, concentré en degré 1. La suspen-
sion de l’espace vectoriel gradué V est définie par : sV := Ks⊗V , et sa dé-suspension
s−1V par Ks−1 ⊗ V , où Ks−1 est concentré en degré -1.
L’espace des morphismes d’espaces gradués de degré r est noté Hom(V,W)r. Le bord
∂(f) d’un morphisme d’espaces gradués f : V• → W•+r de degré r entre complexes
de chaînes est donné par :

∂(f) := dW ◦ f − (−1)rf ◦ dV

Ainsi f est un morphisme de complexes de chaînes si, et seulement si ∂(f) = 0.
Jusqu’à la fin, on utilisera les définitions de Koszul : pour V et W gradués,

l’isomorphisme de symétrie τ est donné par :

τV,W : V ⊗W → W ⊗ V

v ⊗ w 7→ (−1)|v||w|w ⊗ v

Pour f : V → V ′ et g : W → W ′ des applications linéaires de degré | f | et | g |, leur
produit tensoriel 2 est

∀v ⊗ w : (f ⊗ g)(v ⊗ w) := (−1)|g||v|f(v)⊗ g(w)

Définition 1.4. Si (V, dV) et (W,dW) sont des complexes de chaînes, leur produit
tensoriel est le complexe de chaîne (V ⊗W,dV⊗W) où

dV⊗W := dV ⊗ Id+ Id⊗ dW

Définition 1.5. Un complexe de chaînes gradué par le poids M est un complexe
de chaînes M , muni d’une décomposition en somme directe de sous complexes de

2. La tensorisation −⊗− reste associative.

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES11

chaines M (d) :
M =

⊕
d∈N

M (d)

Une algèbre différentielle graduée par le poids A, ou wdg-algèbre, est la donnée d’une
structure d’algèbre sur un complexe de chaînes gradué par le poids A, telle que le
produit préserve le poids et le degré. On note A(d)

n la composante de poids d et degré
n de A. Elle est de plus dite connexe si A(0) = K.1A

1.1.4 Convolution

Définition 1.6. Soit (C,∆, ε) une dg-coalgèbre et (A, µ, u) une dg-algèbre,
on note Hom(C,A) := ⊕

r∈Z
Hom(C,A)r.

La convolution :

Hom(C,A)⊗Hom(C,A) → Hom(C,A)

f ⊗ g 7→ f ∗ g := µ ◦ f ⊗ g ◦∆

fait de (Hom(C,A), ∗, ∂, u ◦ ε) une dg-algèbre unitaire.

Définition 1.7. Soient A une algèbre munie d’une dérivation dA : A→ A et M un
A-module à droite. Une A-dérivation sur M est une application linéaire d : M →M

telle que
∀a,∀m : d(m.a) = d(m).a+

−
m.dA(a)

Proposition 1.1. Toute application linéaire α : C → A d’une coalgèbre graduée vers
une algèbre graduée, induit une application linéaire dα : C ⊗A→ C ⊗A qui est une
A-dérivation et C-codérivation, par :

drα := (Id⊗ µ) ◦ (IdC ⊗ α⊗ IdA) ◦ (∆⊗ IdA)

Toute application linéaire α : C → A induit une dérivation sur C ⊗ A par
dα := dC⊗A + drα . On aura besoin du lemme suivant dans la section suivante.

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES12

Lemme 1.3.
d2
α = dr∂(α)+α∗α

1.2 Adjonction cobar-bar

On rappelle qu’on a les paires d’adjonctions suivantes (où les flèches opposées
sont adjointes) :

K−Mod

Aug − alg Conil − coalg

T

T cŪ

T c◦Ū

Ū

T◦Ū

qui fournit une adjonction entre la catégorie des algèbres augmentées Aug−alg et la
catégorie des coalgèbres conilpotentes Conil−coalg, qui s’étend au cas gradué 3. Cette
adjonction, se factorisant par K-Mod, oublie les structures d’algèbres et coalgèbres.
Dans la section qui suit, on s’attache à construire une adjonction entre les catégories
des algèbres différentielles graduées augmentées dg − Aug − alg et des coalgèbres
conilpotentes différentielles graduées dg−conil−coalg qui n’oubliera ni les structures
de (co-)algèbre ni les différentielles internes.

Soit C une dg-coalgèbre conilpotente. Un point technique intervenant dans la
section suivante nous invite à plutôt considérer F(s−1C̄) et non simplement F(C̄).
On peut alors munir l’algèbre ΩC := F(s−1C̄) de deux dérivations dint et dext :

— dint := ∑
n∈N

d(s−1C̄)⊗n , explicitement donnée pour tous s−1x1 ⊗ ...⊗ s−1xn ∈ ΩC
par :

dint(s−1x1⊗...⊗s−1xn) =
∑

1≤i≤n
(−1)i+|x1|+...+|xi−1|s−1x1⊗...⊗s−1dC(xi)⊗...⊗s−1xn

— dext, obtenue en prolongeant (voir lemme 1.1) la composée f := (id⊗ τ ⊗ id) ◦

3. L’isomorphisme naturel en A et C : Homg−Aug−alg(T (s−1C̄), A) ' HomgK(C̄, Ā)−1 est noté
ψC,A

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES13

∆s ⊗∆C̄ :
Ks−1 ⊗ C̄ Ks−1 ⊗Ks−1 ⊗ C̄ ⊗ C̄

(Ks−1 ⊗ C̄)⊗2

∆s⊗∆C̄

f
' id⊗τ⊗id

en une dérivation sur T (s−1C̄).
Et ∆s est le morphisme de degré -1,

Ks−1 → Ks−1 ⊗Ks−1

s−1 7→ s−1 ⊗ s−1

Explicitement, f est donnée par la formule :

∀s−1x ∈ s−1C̄ : f(s−1x) =
∑
i

(−1)|xi1|s−1xi1 ⊗ s−1xi2

Lemme 1.4. — d2
ext = 0.

— dext ◦ dint + dint ◦ dext = 0

Esquisse de démonstration 1.1. La coassociativité de ∆C implique que d2
ext = 0.

Quant à l’égalité dext◦dint+dint◦dext = 0, elle est conséquence du caractère morphisme
de complexe de chaînes de ∆C.

ΩC munit de la différentielle dΩC := dint + dext :

(ΩC, dΩC)

est appelée construction 4 cobar de C.
Ayant le foncteur d’oubli, fidèle

U : dg − Aug − alg → g − Aug − alg

4. Qui est fonctorielle en C

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES14

on va caractériser l’image de la composée :

Homdg−Aug−alg(ΩC,A) ↪→
U

Homg−Aug−alg(ΩC,A) →
ψC,A

HomgK(C̄, Ā)−1

Si f : ΩC → A est un morphisme d’algèbres graduées augmentées, alors

f ∈ Homdg−Aug−alg(ΩC,A)⇔ f ◦ dΩC = dA ◦ f

Or ΩC est quasi-libre et f est un morphisme d’algèbres, donc :

f ◦ dΩC = dA ◦ f ⇔ f ◦ dΩC |s−1C̄ = dA ◦ f|s−1C̄

ce qui peut se réécrire :

− f(sdC(x)) +
∑
i

(−1)|xi1|f(s−1xi1).f(s−1xi2) = dA(f(s−1x))

⇔ dA ◦ αf (x) + αf ◦ dC(x) +
∑

(−1)|xi1|αf (xi1).αf (xi2) = 0

⇔ ∂(αf) + αf ∗ αf = 0

Où αf := ψC,A(f). L’équation

∂(αf) + αf ∗ αf = 0 (M.C)

est appelée équation de Maurer-Cartan.

Définition 1.8. une solution de l’équation de Maurer-Cartan α ∈ HomK(C,A), est
appelée morphisme tordant si de plus elle vérifie :

— α(C̄) ⊂ Ā

— α(K) = 0

L’espace des morphismes tordants 5 de C dans A est noté Tw(C,A).

On vient donc de montrer :
5. qui est un sous-foncteur du foncteur Hom(−,−)

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES15

Proposition 1.2. L’isomorphisme naturel Homg−Aug−alg(T (s−1C̄), A) ' HomgK(C̄, Ā)−1

se restreint en un isomorphisme φ, donc naturel, faisant commuter le carré :

Homg−Aug−alg(T (s−1C̄), A) HomgK(C̄, Ā)−1

Homdg−Aug−alg(ΩC,A) Tw(C,A)

ψC,A

φC,A

Si A est une dg-algèbre augmentée, la coalgèbre colibre T c(sĀ), munie de la
différentielle dBA := dint + dext, où

— dint := ∑
1≤i≤n

Id⊗i−1 ⊗ dsĀ ⊗ Id⊗n−i.

— dext(sx1 ⊗ ...⊗ sxn) := ∑
1≤i≤n−1

(−1)i−1+|x1|+...+|xi|sx1 ⊗ ...⊗ sxi.xi+1 ⊗ ...⊗ sxn.

est appelé construction bar 6 de A :

BA := (T c(sĀ), dBA)

En faisant le même travail que précédemment, on obtient le théorème suivant :

Théorème 1.5. Pour toute dg-coalgèbre conilpotente C et toute dg-algèbre augmen-
tée A, on a les bijections naturelles :

Homdg−Aug−alg(ΩC,A) ' Tw(C,A) ' Homdg−conil−alg(C,BA)

1.2.1 Résolution cobar-bar

Le lemme de Yoneda [Mac] indique que les transformations naturelles d’un fonc-
teur, à valeurs dans la catégorie des ensembles Ens, représentable (' Hom(X,−))
vers un foncteur quelconque F , sont paramétrées par F (X), plus précisemment, on

6. fonctorielle en A

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES16

a la bijection :

Nat(Hom(X,−), F) → F (X)

η 7→ ηX(IdX)

La preuve de l’injectivité fournit une formule pour η, qui est la suivante : ∀Y ∈ Ob(C),

ηY (f) = F (f)(ηX(IdX))

En particulier Nat(Hom(ΩC,−), Tw(C,−)) ' Tw(C,ΩC), dont la source est
dg−Aug− alg. Soit ΦC,. ∈ Nat(Hom(ΩC,−), Tw(C,−)) l’isomorphisme naturel vu
à la section précédente. Par le lemme de Yoneda, celui-ci est exactement déterminé
par ι := ΦΩC(IdΩC) ∈ Tw(C,ΩC), d’où :
∀f : ΩC → A,ΦA(f) = Tw(f)(ΨΩC(IdΩC)) = Tw(f)(ι) = f ◦ ι ∈ Tw(C,ΩC).
Autrement dit, la bijection Hom(ΩC,A) →' Tw(C,A) est donné par la précomposition
par ι, qui est appelé morphisme tordant universel.
On a, de façon analogue, le morphisme tordant universel π : BA→ A.

Théorème 1.6. Tout morphisme tordant α : C → A se factorise d’une unique façon
par π et ι :

ΩC

C A

BA

∃!gα

α

ι

∃!fα π

Où gα = Φ−1
A (α) et fα = Ψ−1

C (α) 7

Théorème 1.7. Les complexes de chaînes BA⊗πA, A⊗πBA, C⊗ι ΩC et ΩC⊗ιC
sont acycliques.

7. L’isomorphisme Hom(−, BA) ' Tw(−, A) est noté Ψ.

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES17

Démonstration 1.1. Réorganisons la différentielle dπ sur BA⊗A en dπ = dint+dext
où :

— dint([sa1 | ... | san]an+1) = ∑
1≤i≤n

(−1)i+|a1|+...+|ai−1|[sa1 | ... | sd(ai) | ... |

san]an+1 + (−1)n+|a1|+...+|an|[sa1 | ... | san]d(an+1) .

— dext([sa1 | ... | san]an+1) = ∑
1≤i≤n−1

(−1)i−1+|a1|+...+|ai|[sa1 | ... | saiai+1 | ... |

san]an+1 + (−1)n−1+|a1|+...+|an−1|[sa1 | ... | san−1]anan+1

Soit ε ⊗ ε : BA ⊗π A → K ⊗ K ' K l’augmentation, et K son noyau. On définit
l’application h : K → K par

h([sa1 | ... | san]an+1) := (−1)n+|a1|+...+|an|[sa1 | ... | san | s(an+1 − ε(an+1))]

On a alors

(h ◦ dint + dint ◦ h)([sa1 | ... | san]an+1) =
∑

1≤i≤n
(−1)i+n−1+|ai|+...|an|[sa1 | ... | sd(ai) | ...

| san | s(an+1 − ε(an+1))]

+ [sa1 | ... | san | s(d(an+1)− ε(d(an+1)))]

+
∑

1≤i≤n+1
(−1)i+n+|ai|+...+|an|[sa1 | ...

| sd(ai) | ... | s(an+1 − ε(an+1))]

= 0

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES18

(dext ◦ h+ h ◦ dext)([sa1 | ... | san]an+1) =
∑

1≤i≤n
(−1)i−1+n+|ai+1|+|an|[sa1 | ... | sai.ai+1 | ...

| s(an+1 − ε(an+1)]

+ [sa1 | ... | san](an+1 − ε(an+1))

+
∑

1≤i≤n−1
(−1)i+n+|ai+1|+|an|[sa1 | ... | sai.ai+1 | ...

| s(an+1 − ε(an+1)] + [sa1 | ... | s(an.an+1 − ε(an.an+1))]

= −[sa1 | ... | sanan+1 − ε(an+1)]

+ [sa1 | ... | s(anan+1 − ε(anan+1))]

+ [sa1 | ... | san](an+1 − ε(an+1))

= [sa1 | ... | san]an+1

Ce qui donne h ◦ dπ + dπ ◦ h = Id et donc BA ⊗π A ' (Ker(ε ⊗ ε), d|) ⊕ (K, 0) est
acyclique.

Définition 1.9. Un morphisme tordant α : C → A est dit de Koszul, noté α ∈
Kos(C,A), si et seulement si C ⊗α A est acyclique.

Remarque 1.1. Les morphismes universels π et ι sont donc de Koszul.

Théorème 1.8. Soit A une dg-algèbre connexe et C une dg-coalgèbre connexe. Pour
tout morphisme tordant α : C → A, on a les équivalences :

1. C ⊗α A est acyclique.

2. A⊗α C est acyclique.

3. fα : C → BA est un quasi-isomorphisme.

4. gα : ΩC → A est un quasi-isomorphisme.

Pour la démonstration, on utilisera la boite noire suivante :

Théorème 1.9. Soient g : A→ A′ un morphisme de wdg-algèbres connexes (A(0) '
A′(0) ' K) , f : C → C ′ un morphisme de wdg-coalgèbres connexes, α : C → A et
α′ : C ′ → A′ des morphismes tordants tel que α′ ◦ f = g ◦ α. Alors si deux parmi les

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES19

trois morphismes f, g et f ⊗ g : C ⊗α A→ C ′ ⊗α′ A′ sont des quasi-isomorphismes,
le troisième l’est aussi.

La preuve fait appel aux suites spectrales.
Prouvons maintenant le théorème.

Démonstration 1.2. On ne va montrer l’équivalence qu’entre les propositions 1. et
4., les autres étant similaires, et on fait l’hypothèse que A et C sont gradués par le
poids et connexes, cependant le théorème est vrai sans ces hypothèses [HMS74].
La construction bar de A (resp. cobar de C) est une wdg-coalgèbre connexe (resp.
dg-algèbre connexe), et le morphisme gα : ΩC → A est un morphisme de wdg-
algèbres. De plus gα ◦ ι = α◦ IdC, donc par le théorème précédent, comme IdC est un
quasi-isomorphisme, gα est un quasi-isomorphisme si et seulement IdC ⊗ gα est un
quasi-isomorphisme. Or C ⊗ι ΩC est acyclique, donc gα est un quasi-isomorphisme,
si, et seulement si C ⊗α A est acyclique.

Corollaire 1.10. Soient A une dg-algèbre augmentée et C une dg-coalgèbre co-
augmentée. L’unité ε : ΩBA � A et la co-unité ν : C ↪→ BΩC sont des quasi-
isomorphismes.

Démonstration 1.3. On suppose que A et C sont gradués par le poids et connexes
afin de faciliter la démonstration.
fπ = εA : ΩBA → A, or BA ⊗π A est acyclique par le théorème 1.10, donc par le
théorème précédent, εA est un quasi-isomophisme. La preuve pour ν est semblable.

Remarque 1.2. La construction cobar de la construction bar d’une dg-algèbre aug-
mentée A, fournit un quasi-isomorphisme surjectif d’une algèbre quasi-libre ΩBA
vers A. Cependant ΩBA = T (s−1T (sĀ)) contient deux types de tenseurs : les pre-
miers ceux de la construction bar et les seconds, ceux de la construction cobar. Pour
certaines algèbres usuelles, dites quadratiques, dont la différentielle interne est nulle :
T (V), S(V),Λ(V),... Il est possible de faire mieux, en remplaçant BA par A¡ qui sera
(lorsque A sera de Koszul) une sous-coalgèbre quasi-isomorphe à H0(B•A) ⊂ BA.

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES20

On aura de plus le diagramme commutatif suivant :

ΩA¡ ΩBA

A

∼

1.3 Une résolution plus économe

Définition 1.10. Soit V un espace vectoriel gradué et R ⊂ V ⊗2 un sous-espace
vectoriel gradué.
Une algèbre graduée est dite quadratique si elle est isomorphe en tant qu’algèbre
graduée à

A(V,R) := T (V)/(R)

Une coalgèbre graduée est dite quadratique 8 si elle isomorphe en tant que coalgèbre
graduée à la sous-coalgèbre de T c(V) donnée par

C(V,R) := K⊕ V ⊕ ...⊕ (
⋂

i+j+2=n
V ⊗i ⊗R⊗ V ⊗j)⊕ ... ⊂ T c(V)

A partir de maintenant et jusqu’à la fin de cette section, V sera de dimension
finie.

Définition 1.11. Pour A = A(V,R), la coalgèbre duale de Koszul de A est définie
par

A¡ := C(sV, s2R)

On définit aussi l’algèbre duale de Koszul

A! := A(V ∗, R⊥)

où R⊥ ⊂ V ∗ ⊗ V ∗ ' (V ⊗ V)∗ est l’orthogonal de R.

8. Une donnée quadratique est un couple (V,R ⊂ V ⊗2) et un morphisme de données quadratiques
(V,R)→ (V ′, R′) est une application linéaire f : V → V ′ telle que T (f)(R) ⊂ R′. La collection des
données quadratiques est ainsi organisée en une catégorie et A(−,−), C(−,−) sont des foncteurs.

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES21

Pour C = C(V,R), l’algèbre duale de Koszul est donnée par

C ¡ := A(s−1V, s−2R)

Lemme 1.11. (A¡)¡ = A, (C ¡)¡ = C et (A!)! = A

Exemple 1.1. — T (V) est quadratique et T (V)! = K⊗ V ∗, muni de la mutlipli-
cation nulle (si V ' K, T (V) ' K[X]/(X2)).

— S(V) := T (V)/(R :=< x⊗ y − y ⊗ x | x⊗ y ∈ V ⊗2 >) est quadratique. V est
de dimension finie, donc le morphisme naturel V ∗ ⊗ V ∗ → (V ⊗ V)∗ est un
isomorphisme, et

f ⊗ g ∈ R⊥

⇔ ∀x⊗ y, f(y)g(x) = f(x)g(y)

⇔ 2.f ⊗ g = f ⊗ g + g ⊗ f ∈< l ⊗ l, l ∈ V ∗ >⊂ V ∗⊗2

(par polarisation). i.e. R⊥ =< l ⊗ l, l ∈ V ∗ >. Ainsi S(V)! = Λ(V ∗).

— S(V)¡ = Λc(sV), où
Λc(sV) = K⊕ sV ⊕ ...⊕ <

∑
σ∈Sn

ε(σ)sxσ(1) ⊗ ...⊗ sxσ(n) | x1, ...xn ∈ V > ⊕... ⊂

T c(sV)

1.3.1 Complexe de Koszul associé à une algèbre quadratique

La machinerie des morphismes tordants et le théorème fondamental (théorème
1.11) sur les morphismes tordants va permettre de fabriquer un morphisme ΩA¡ � A.
Soit A = A(V,R) une algèbre quadratique, munie de la différentielle nulle. On définit
le morphisme de complexes de chaînes 9 de degré -1 et poids 0 comme la composée :

κ : A¡ → A := A¡ � sV ' V ↪→ A

Lemme 1.12. κ ∗ κ = 0, et donc κ ∈ Tw(A¡, A) .
9. κ est en fait naturel en la donnée quadratique (V,R)

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES22

Définition 1.12. Le complexe de chaînes (A¡ ⊗κ A, dκ) est appelé le complexe de
Koszul de l’algèbre quadratique A.

Lemme 1.13. Le complexe (A¡ ⊗κ A, dκ) se scinde en

A¡ ⊗κ A =
⊕
n

((A¡ ⊗κ A)(n), dκ|)

Où ((A¡ ⊗κ A)(n), dκ|) est le complexe :

0→ A¡(n) → A¡(n−1) ⊗ A(1) → ...→ A¡(1) ⊗ A(n−1) → A(n) → 0

Et (A¡ ⊗κ A)(n) = ⊕
i+j=n

A¡(j) ⊗ A(i), et A¡(d) est le sous espace des éléments de poids

d, induit par la graduation de V .

Démonstration 1.4. dA et dA¡ sont nulles donc dκ = drκ.
De plus dκ(sx1⊗ ...⊗sxp⊗xp+1) = (−1)p−1+|x1|+...+|xp−1|sx1⊗ ...⊗sxp−1⊗ [xp⊗xp+1]
donc dκ(A¡(p) ⊗ A(q)) ⊂ A¡(p−1) ⊗ A(q+1) et ainsi dκ((A¡ ⊗ A)(n)) ⊂ (A¡ ⊗ A)(n) .

Théorème 1.14 (critère de Koszul). Soit A une algèbre quadratique. Les proposi-
tions suivantes sont équivalentes :

1. Le complexe de Koszul A¡ ⊗κ A est acyclique.

2. Le complexe de Koszul A⊗κ A¡ est acyclique.

3. fκ : A¡ ↪→ BA est un quasi-isomorphisme.

4. gκ : ΩA¡ � A est un quasi-isomorphisme.

Définition 1.13. Si l’une de ces conditions est vérifiée, alors A est dite de Koszul

Proposition 1.3. Une algèbre quadratique A est de Koszul si, et seulement si A! est
de Koszul.

Esquisse de démonstration 1.2. Le dual linéaire de (A! ⊗κ
A! (A!)¡ est A¡ ⊗κ A à

une supsension près.

Exemple 1.2. T (V) et S(V) sont de Koszul [LV12].

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES23

1.3.2 Construction de A¡ ↪→ B0A ⊂ BA

Si A est quadratique, alors

BA = K1⊕ sĀ⊕ (sĀ)⊗2 ⊕ (sĀ)⊗3 ⊕ ...

= K1⊕ sV ⊕ (sV ⊗2/R⊕ sV ⊗2)

⊕ (sV ⊗3/(V R +RV)⊕ sV ⊗ sV ⊗2/R⊕ sV ⊗2/R⊗ sV ⊕ sV ⊗3)⊕ ...

La graduation par le poids sur BA est donnée par ω(sa1⊗ ...⊗ san) := ω(a1) + ...+
ω(an), et le degré de syzygie est défini par

∼
ω(sa1 ⊗ ...⊗ san) := ω(sa1 ⊗ ...⊗ san)− n

La composante de syzygie de degré d est notée BdA et BAn est la composante de
poids n. A a une différentielle interne nulle, donc dBA = dext et :

— ω(dBA(sa1 ⊗ ...⊗ san)) = ω(sa1 ⊗ ...⊗ san)

— ω̃(dBA(sa1 ⊗ ...⊗ san)) = ∼
ω(sa1 ⊗ ...⊗ san)− 1

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES24

Ainsi BA se scinde en (BA, d) = ⊕
n

(BAn, d|) et BAn = ⊕
d
BdAn. La table qui suit

(on ôte les "s" des notations pour plus de lisibilité) décrit BA :

... (4)

0 V ⊗3/(V R +RV) (V ⊗2/R⊗ V)⊕ (V ⊗ V ⊗2/R) V ⊗3 (3)

0 V ⊗2/R V ⊗2 (2)

0 V (1)

K (0)

3 2 1 0

d d

d d

d

Où sont indiqués en ordonnée le poids et en abscisse le degré de syzygie. BA est la
somme directe des cases du tableau et donc il y’a l’inclusion de coalgèbres :

A¡ = C(sV, s2R) i
↪→ B0A ⊂ BA

Lemme 1.15. Ker(d|B0A) = A¡, donc i induit un isomorphisme de coalgèbres gra-
duées :

i : A¡ H0(B•A)'

Le même travail avec une coalgèbre quadratique C, fournit un morphisme d’al-
gèbres p : ΩC � C ¡ induisant un isomorphisme

p : H0(Ω•C)→ C ¡

L’inclusion i : A¡ ↪→ BA et la projection p : ΩA¡ � A sont respectivement les appli-

CHAPITRE 1. UNE ADJONCTION COBAR-BAR POUR LES ALGÈBRES ASSOCIATIVES25

cations fκ et gκ données au théorème 1.6, on en déduit le diagramme commutatif :

ΩA¡ ΩBA

A

Ωi

p
∼ εA

Lorsque A est de Koszul, le fait que i : A¡ ↪→ BA soit un quasi-isomorphisme nous
renseigne sur l’endroit où il y’a des groupes d’homologie non nulle dans B•A : B0A. A
posteriori, si on veut un objet X ∼

� A avec X quasi-libre, il n’est donc pas nécessaire
de regarder ΩBA en entier, mais seulement ΩB0A, voir mieux 10 :

ΩH0(B•A)

Intuitivement, ΩA¡ est comparable en taille à T (T (V)) alors que ΩBA est com-
parable à T (T (T (V))).

10. PLus généralement, une wdga-algèbre connexe A est dite de Koszul si l’homologie de sa
construction bar H(B•A) est concentrée en degré 0.

26

Chapitre 2

Cobar-bar pour les opérades
algébriques

La référence principale pour ce chapitre est [LV12], complétée par [Mil12].

2.1 Introduction aux opérades algébriques

2.1.1 S-modules

Définition 2.1. Un S-module est la donnée d’une collection d’espaces vectoriels
M = {M(n), n ∈ N} telle que pour tout n,M(n) est muni d’une action à droite de Sn
et ses éléments sont dit d’arité n. Un S-moduleM est de plus dit réduit siM(0) = 0.
Un morphisme de S-modules f :M→N est une collection de morphismes de K[Sn]-
modules fn : M(n)→ N(n) pour tout n. La catégorie obtenue est notée S-mod.

À tout S-moduleM, est associé un foncteur M̃ : V ect→ V ect, appelé foncteur
de Schur associé àM, défini sur les objets par :

M̃(V) :=
⊕
n∈N

M(n)⊗K[Sn] V
⊗n

où l’action à gauche de Sn sur V ⊗n est donnée sur les v1⊗ ...⊗ vn par la permutation

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 27

des indices. On obtient ainsi un foncteur de schurisation (̃.) : S-mod → V ectV ect. Le
lemme suivant permet d’induire des constructions sur la catégorie but V ectV ect, par
exemple les opérations : ⊕, ⊗, ◦, en des constructions sur la catégorie S-mod.

Proposition 2.1. Le foncteur de schurisationM 7→ M̃ est pleinement fidèle.

Démonstration 2.1. On procède en deux temps en montrant d’abord qu’une trans-
formation naturelle η• : M̃ := ⊕

n
M(n) ⊗Sn (−)⊗n → Ñ := ⊕

n
N(n) ⊗Sn (−)⊗n est,

avec quelques hypothèses sur K, nécessairement de la forme

η• =
⊕
n

(ηn• : M(n)⊗Sn (−)⊗n → N(n)⊗Sn (−)⊗n)

Puis on montrera que la composition M(n) ↪→ M → M̃ est pleinement fidèle.
Commençons par montrer le premier point : pour (k, n) ∈ N2, on considère la k-ième
inclusion ik• : M(k)⊗Sk (−)⊗k ↪→ M̃, la n-ième projection pn• : Ñ � N(n)⊗Sn (−)⊗n

et la composée ηk,n• := pn• ◦η• ◦ ik• : M(k)⊗Sk (−)⊗k → N(n)⊗Sn (−)⊗n. Pour tout λ ∈
K, en considérant λIdV , par naturalité, on obtient λnηk,nV = λkηk,nV . En particulier,
si K∗ n’est pas recouvert par les racines de l’unité et que k 6= n, nécessairement
ηk,n• = 0•.
Pour montrer la fidélité, la structure additive de V ectV ect induite par celle de V ect
(celui du but), et l’additivité du foncteur de schurisation impliquent qu’il suffit de
montrer que si f : A → B est un morphisme de Sn-modules non nul alors f• 6= 0•.
La suite exacte courte

0→ ker(f) ↪→ A� Im(f)→ 0

induit la suite exacte courte :

0→ ker(f)⊗ (Kn)⊗n ↪→ A⊗ (Kn)⊗n � Im(f)⊗ (Kn)⊗n → 0

Ainsi Im(f ⊗ Id) = Im(f)⊗Sn (Kn)⊗n et par le résultat rappelé en annexe, comme
Im(f) 6= 0, on a bien Im(f ⊗ Id) = Im(fKn) 6= 0 et donc f• 6= 0.
La surjectivité de HomSn(A,B)→ HomV ectV ect(Ã, B̃) est d’abord montrée dans le cas

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 28

particulier où B = K[Sn] est la représentation régulière. En considérant l’application
linéaire Kn → V qui envoie ei sur xi, et en utilisant la naturalité de η• : Ã→ B̃, on
remarque que η• est déterminée par les ηKn(a⊗e1⊗ ...⊗en), où a parcourt A. De plus
η(a⊗e1⊗ ...⊗en) = ∑

(i1,...,in)∈[[1,n]]n
λi1,...inei1⊗ ...⊗ein avec λi1,...in ∈ K et les projections

de Kn qui envoient ei sur (1 − δi,k)ei, ainsi que la naturalité et la K-indépendance
des ei1 ⊗ ...⊗ ein, nous apprennent que η(a⊗ e1 ⊗ ...⊗ en) s’écrit sous la forme

η(a⊗ e1 ⊗ ...⊗ en) = (
∑
σ∈Sn

λσ.σ).e1 ⊗ ...⊗ en

L’application définie par f(a) := ∑
σ∈Sn

λσ.σ, vérifie f̃ = η•.
Soit B quelconque : d’après les théorèmes rappelés en annexe, on peut écrire

B =
⊕
λ∈Λ

Bλ

Bλ ∈ K[Sn] et on a des morphismes iλ : Bλ ↪→ K[Sn] et pλ : K[Sn] � Bλ tels
que pλ ◦ iλ = IdB. D’après le cas particulier, pour une transformation naturelle
ηλ• : Ã→ B̃λ, il existe fλ : A→ K[Sn] telle que f̃λ = ĩλ ◦ ηλ• , et donc ηλ• = p̃λ ◦ f̃λ. f
définie par

f :=
∑
λ∈Λ

fλ

vérifie bien η• = f̃ . En effet, η• = ∑
λ
ηλ• , ainsi ηKn(a ⊗ e1 ⊗ ... ⊗ en) = (∑

λ
fλ(a)). ⊗

e1 ⊗ ... ⊗ en ∈ B⊗Sn < e1 ⊗ ... ⊗ en >' B, donc pour tout a, ∑
λ
fλ(a) est finie. La

schursation commutant 1 avec la somme directe, on peut alors conclure.

Corollaire 2.1. Les coefficients dans le développement en série formelle d’un fonc-
teur de Schur sont donc unique à isomorphisme près.

La catégorie des S-modules est abélienne et toute suite exacte courte s’y scinde, le
foncteur de schurisation est donc exact, et l’adjonction décrite dans l’exercice 5.11.19
[LV12] implique qu’il préserve les petites colimites.

1. La schurisation admet un adjoint à droite d’après l’exercice 5.11.19 [LV12]

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 29

Lemme 2.2. L’image essentielle deM 7→ M̃ est fermée sous ⊕, ⊗ et ◦. De plus,
on a les formules suivantes :

— (M̃⊕ Ñ)(V) ' ⊕
n∈N

(M(n) ⊕
N(n)) ⊗

K[Sn] V
⊗n

— (M̃⊗ Ñ)(V) ' ⊕
n∈N

(⊕
i+j=n

IndSnSi×SjM(i)⊗N(j)) ⊗
K[Sn] V

⊗n

— (M̃◦Ñ)(V) ' ⊕
n∈N

(⊕
k∈N

M(k) ⊗
Sk(

⊕
i1+...+ik=n

IndSnSi1×...×Sik
N(i1)⊗...⊗N(ik)))

⊗
Sn V

⊗n

Où l’action de Sk sur
⊕

i1+...+ik=n
IndSnSi1×...×Sik

N(i1)⊗...⊗N(ik)) est induite 2 de l’action

de Sk sur [[i1, ..., ik]].

Les définitions de ⊕, ⊗ et ◦ sur S-mod sont alors immédiates dès lors qu’on
demande que :

(̃.) : (S−mod,⊕,⊗, ◦)→ (V ectV ect,⊕,⊗, ◦)

commute (aux isomorphismes naturels près) canoniquement avec ces bifoncteurs.
La composition de foncteurs étant associative, on en déduit que (S−mod, ◦, I), où
I := (0,K, 0, ...) ' (̃.)−1(K) est monoïdale (à priori non strictement).

2.1.2 Opérades

Une opérade symétrique, dans la catégorie V ect, P = (P , γ, η) est un monoïde
associatif unitaire dans la catégorie monoïdale (S−mod, ◦, I) : pour tout n, des ap-
plications linéaires

γn : ⊕
k
P (k)⊗Sk (⊕

i1+...+ik=n
IndSnSi1×...×Sik

P (i1)⊗ ...⊗ P (ik))→ P (n)

et une application linéaire
η : I → P

où Id := η(1K) ∈ P (1), qui satisfont les relations d’unité et associativité. De façon
équivalente, c’est un foncteur de Schur muni d’une structure de monade :

γ• : P̃ ◦ P̃ → P̃

2. LA notation IndG
H est rappelée en annexe

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 30

η• : Id→ P̃

Un morphisme d’opérades f : P → L est, par définition, un morphisme de mo-
noïdes unitaires : la donnée d’un morphisme de S-modules f : P → L tel que les
diagrammes :

P ◦ P L ◦ L

P L

f◦f

γ γ

f

I

P L

η η

f

commutent. La catégorie des opérades symétriques dans V ect, appelées opérades
algébriques, ou juste opérades, est notée Op.

Afin de rendre plus compréhensible la notion de P-algèbre, qui en sera un cas
particulier, on introduit d’abord la notion de module (à gauche) sur un monoïde P
qui n’est autre qu’une action de P sur un S-moduleM, plus formellement :

Définition 2.2. Un module à gauche sur un monoïde P est un S-moduleM munit
d’un morphisme de S-modules µ : P ◦M→M associatif et unitaire.

Observons le cas particulier où M = (A, 0, 0, ...) est concentré en arité 0 : avec
la vision monade, P̃ ◦ M̃(V) = P̃(A) est le foncteur constant, et les diagrammes qui
suivent sont commutatifs :

P̃ ◦ P̃(A) P̃(P̃(A))

P̃(A) P̃(A)

A

=

γ(A) P̃(µ)

µ µ

A P̃(A)

A

η(A)

Id
γ(A)

Réciproquement, la donnée d’un espace vectoriel A et d’une application linéaire
µ = γA : P̃(A) → A faisant commuter ces diagrammes définissent un P-module,
concentré en arité 0, appelé P-algèbre.

Définition 2.3. Une structure de P-algèbre sur un espace vectoriel A est une appli-
cation linéaire γA : P̃(A)→ A telle que les deux diagrammes précédent commutent.

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 31

Un morphisme entre P-algèbres A et A′ est une application linéaire f : A→ A′ telle
que f ◦ γA = γA′ ◦ P(f), et la catégorie des P-algèbres est notée P − alg.

Pour V un espace vectoriel, P̃(V) est canoniquement muni d’une structure de
P-algèbre, par γP̃(V) := γ(P̃(V)) : P̃ ◦ P̃(V) → P̃(V), en effet, l’associativité de
γ : P ◦ P :→ P implique celle de l’action γP̃(V).

Exemple 2.1. Les S-modules Ass := (0,K,K[S2], ...,K[Sn], ...) et As := (K,K, ...,K[Sn], ...)
sont munis d’une structure d’opérade induite par les inclusions Si1 × ...× Sik ↪→ Sn,
i1 + ...+ ik = n . Une Ass-algèbre (resp. As-algèbre) est alors une algèbre associative
(resp. unitaire) au sens classique.

Pour toute opérade P il y a un foncteur d’oubli U : P−alg → V ect, qui à une
P-algèbre lui associe l’espace vectoriel sous-jacent. Il admet un adjoint à gauche,
noté F , qualifié de libre et dont on explicite la construction :

Construction 2.1. Pour F , prenons P̃, et pour unité de l’adjonction ν, prenons
η : Id → P̃. On vérifie alors que le diagramme suivant commute, ce qui donne
l’existence et l’unicité de f̃ (nécessairement, f̃ = γA ◦ P̃(f)).

V A

P̃(V) P̃(A)

P̃2(V) P̃2(A)

f

ηV

Id

ηA
f̃

P̃(f)

ηP̃(V)

Id

γA

ηP̃(A)
P̃(f̃)

P̃2(f)

γP̃(A)

Où P̃(A) muni de γ(P̃(A)) est vue comme une P-algèbre 3

Théorème 2.3. Cette construction définie une adjonction P−alg V ect
U

F
.

Définition 2.4. Soit A un espace vectoriel, on définit l’opérade EndA comme étant
le S-module EndA(n) := HomK(A⊗n, A) muni de la structure d’opérade induite par
la composition des applications linéaires.

3. Par définition, γA : P̃(A)→ A est un morphisme de P-algèbres

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 32

Proposition 2.2. Se donner une structure de P-algèbre sur l’espace vectoriel A est
équivalent à se donner un morphisme d’opérade P → EndA.

Esquisse de démonstration 2.1. C’est une conséquence de l’isomorphisme naturel

HomSn(P (n),Hom(A⊗n, A)) ' Hom(P (n)⊗Sn A
⊗n, A)

2.1.3 Algèbre universelle

Pour une opérade P = {P (n), n ∈ N} quelconque, les éléments de P (n) sont
abstraits mais il est possible de les comprendre comme des opérations n-aires : si A
est une P-algèbre, on considère la structure canonique de EndA-algèbre sur A, dont
le morphisme structurel est noté πA : EndA(A) → A. Se donner une structure de
P-algèbre sur A est équivalent à se donner un morphisme d’opérades P → EndA par
la proposition 2.2. Ce qui peut se reformuler de la façon suivante. πA est universelle
parmi les structures de P-algèbre γA sur A : il existe un unique morphisme d’opérades
ψ : P → EndA tel que le diagramme suivant commute :

EndA(A)

P(A) A

πA

γA

ψ(A)

En ce sens, les éléments des P (n), via ψ(A), sont bien des opérations n-aires sur A.

2.1.4 Définition d’une opérade par compositions partielles

Pour (P , γ) une opérade, les compostions partielles ◦i sont définies par :

− ◦i − : P(m)⊗ P(n) → P(m+ n− 1)
µ⊗ ν 7→ µ ◦i ν := γ(µ⊗ id⊗ ...⊗ id⊗ ν ⊗ id...⊗ id)

Où l’identité apparait i fois avant ν. On a alors les relations suivantes :

— (λ ◦i µ) ◦i−1+j ν = λ ◦i (µ ◦j ν), pour 1 ≤ i ≤ l, 1 ≤ j ≤ m

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 33

— (λ ◦i µ) ◦k−1+m ν = (λ ◦k ν) ◦i µ, pour 1 ≤ i ≤ k ≤ l

Où λ ∈ P(l), µ ∈ P(m), ν ∈ P(n). Réciproquement, des compositions partielles
− ◦i − sur un S-module vérifiant les deux relations induisent une unique structure
d’opérade sur ce S-module.

2.1.5 Opérade libre

Dans une catégorie monoïdale (C,⊗, I) possédant les sommes directes indéxées
par N et telle que −⊗− commute des deux cotés avec celles-ci, alors en copiant la
construction de l’algèbre libre sur un espace vectoriel, on obient la notion de monoïde
libre sur un objet de C. Les foncteurs de Schur ne commutant, en général, pas avec
les sommes directes, on ne peut pas appliquer ces constructions pour la catégorie
monoïdale (S−mod, ◦, I). On renvoit à [LV12] pour une construction "à la main"
de l’opérade libre T (M) sur le S-module M ou à [Val09] pour une construction
catégorique, permettant en plus d’expliquer la propérade libre du chapitre 3.

2.2 Constructions d’algèbre homologique pour les
opérades

Afin que cette partie soit relativement concise, on omet volontairement les détails
et renvoie à [LV12] pour un exposé précis.

2.2.1 Linéarisation

Définition 2.5. Soient M,N1, N2 trois S-modules, le S-module M ◦ (N1;N2) est
par définition le sous S-module de M ◦ (N1 ⊕ N2) tel que M ◦ (N1 ⊕ N2)(n) est le
sous-Sn-module de M(n) ⊗Sn (N1 ⊕ N2)⊗n où N2 n’apparait qu’une seule fois dans

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 34

chaque facteur direct. les éléments :

N1 ... N1 N2 N1

M

engendrent M ◦ (N1;N2). Cette définition est fonctorielle en M et N2. Le cas parti-
culier où N1 = I est appelée composition infinitésimale de M et N :

M ◦(1) N := M ◦ (I;N)

dont les éléments typiques sont notés (µ; id, id..., id, ν, id...) et pour f : M → N, g :
M ′ → N ′ des morphismes de S-modules, f ◦(1) g ∈ Hom(M ◦(1) N,M

′ ◦(1) N
′) est

définie par :

f ◦(1) g(µ; id, ..., ν, id, ...) := (f(µ), id, ..., g(ν), id, ...)

Lemme 2.4. Pour des S-modules M,M ′, N,N ′, on a :

(M ⊕M ′) ◦(1) N = M ◦(1) N ⊕M ′ ◦(1) N

M ◦(1) (N ⊕N ′) = M ◦(1) N ⊕M ◦(1) N
′

I ◦(1) N = N

M ◦(1) I = M

La compostion des S-modules est alors linéarisée, celle des morphismes aussi. On
présente maintenant une linéarisation des mophismes, sans changer la composition
des S-modules.

Définition 2.6. Soient f, g : Mi → Ni deux morphismes de S-modules, la com-
position infinitésimale de f et g, f ◦′ g ∈ Hom(M1 ◦ N1,M2 ◦ (N1;N2)) est définie
par

f ◦′ g :=
∑
i

f ⊗ (IdN1 ⊗ ...⊗ IdN1 ⊗ g ⊗ IdN1 ⊗ ...⊗ IdN1)

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 35

Où g apparraît en i-ème position. Si de plus N1 = N2 = N alors la composée
M2 ◦ (N ;N) ↪→M2 ◦ (N ⊕N)

Id◦(Id⊕Id)
� M ◦N est encore notée f ◦′ g.

Lemme 2.5. La composition infinitésimale est linéaire à droite :

f ◦′ (g + h) = f ◦′ g + f ◦′ h

Lorsque (P , γ, η) est une opérade, le produit de compostion infinitésimale γ(1) :
P ◦(1) P → P est définie par la composée :

γ(1) : P ◦(1) P = P ◦ (I;P) P ◦ (I ⊕ P) P ◦ P P
IdP◦(η+IdP)

γ

De même, pour une coopérade (C,∆, η), il y’a la décomposition infinitésimale ∆(1) :
C → C ◦(1) C.

2.2.2 Extension au cadre différentiel gradué

Définition 2.7. Un S-module différentiel gradué, abrégé dg-S-module, est une col-
lectionM = {M(n), n ∈ N} de Sn-modules différentiels gradués. Un morphisme de
dg-S-modules f : (M,dM) → (N, dN) est un morphisme de S-modules gradués, de
degré 0, qui commute avec les différentielles. La catégories des dg-S-modules et ses
morphismes est notée dg-S-Mod.

Le S-module I est considéré comme un S-module gradué, concentré en degré 0.
Soit Ks := (Ks, 0, 0, ...) le S-module concentré en degré 1. La suspension d’un S-
module gradué M est définie par sM := Ks ⊗M . De façon analogue, Ks−1 est le
même S-module, concentré en degré −1, et la désuspension est donnée par s−1M :=
Ks−1 ⊗M .

Définition 2.8. Soient (M,dM) et (N, dN) deux dg-S-modules, leur composition
M ◦N est un S-module gradué, qui est équippé de la différentielle

dM◦N := dM ◦ IdN + IdM ◦′ dN

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 36

Proposition 2.3. La catégorie (dg−S−Mod, ◦, I) est monoïdale.

Définition 2.9. Une opérade différentielle graduée est un monoïde dans la catégorie
(dg−S−Mod, ◦, I) tel que le produit de compostion et l’unité soient de degré 0.

Définition 2.10. Une dérivation d : T (E) → T (E) sur l’opérade libre sur le S-
module gradué E est une application linéaire telle que :

γ.(d ◦ Id+ Id ◦′ d) = d.γ

Où γ : T (E) ◦ T (E)→ T (E) est le produit.

Proposition 2.4. Soit E un S-module gradué. Une dérivation d : T (E) → T (E)
est exactement déterminée par sa restriction (S− linéaire) au sous-S-module E.

2.3 Adjonction cobar-bar opéradique

2.3.1 Morphismes tordants

Définition 2.11. Soit (C,∆, ε) une coopérade et (P , γ, η) une opérade, la collection
HomK(C,P) := {HomK(C(n), P (n)), n ∈ N} est munie d’une structure de S-module :

(f.σ)(x) := f(x.σ−1).σ

Proposition 2.5. Le S-module Hom(C,P) est une opérade, appelée opérade de convo-
lution. Si de plus C et P sont différentiels gradués, alors pour tout S-morphismef :
C → P de degré | f |, la dérivation

∂(f) := dP ◦ f − (−1)|f |f ◦ dC

fait de (Hom(C,P), ∂) une dg opérade.

Définition 2.12. Pour f, g ∈ HomS(C,P), leur produit de convolution f ∗ g ∈

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 37

HomS(C,P) est défini par :

f ∗ g := C
∆(1)→ C ◦(1) C

f◦(1)g→ P ◦(1) P
γ(1)→ P

L’équation de Maurer-Cartan (M.C) dans HomS(C,P) est :

∂(f) + f ∗ f = 0

Une solution de (M.C) de degré −1 est appelée morphisme tordant opéradique. Si
de plus C est coaugmentée par c et P est augmentée par u, il faut que u ◦ f = 0 et
f ◦ c = 0.

Lemme 2.6. Tout morphisme de dg-S-modules de degré −1, α : C → P induit une
dérivation drα : C ◦ P → C ◦ P, de carré nul si et seulement si α est un morphisme
tordant.

Dans ce cas, le complexe obtenu en tordant la différentielle dC◦P est noté

C ◦α P := (C ◦ P , dα := dC◦P + drα)

et appelé produit de composition tordu à droite de C et P .

2.3.2 Constructions cobar et bar

Pour une dg-opérade augmentée (P , γ, η, ε), la construction bar 4 de P est la
coopérade T c(sP̄), munie de la somme de la différentielle dext induite par le produit
de compostion infinitésimal γ(1) et de celle induite par la différentielle dP de P , notée
dint. Elle est notée

BP := (T c(sP̄), d := dext + dint)

De même, pour toute dg-coopérade conilpotent C, la construction cobar de C est
donnée par l’opérade

ΩC := (T (s−1C̄), d := dext + dint)
4. Qui est fonctorielle en P

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 38

Théorème 2.7. Pour toute dg-opérade augmentée P et toute dg-coopérade conilpo-
tente C, on a les isomorphismes naturels

Homdg−Op(ΩC,P) ' Tw(C,P) ' Homdg−conil−Op(C,BP)

2.4 Opérades quadratiques et dualité de Koszul

Une donnée quadratique opéradique est un couple (E,R) où E est un S-module
gradué et R ⊂ T (E)(2) un sous S-module gradué des éléments de poids 2 de T (E). Les
éléments de R sont appelés les relations. Un morphisme de données quadratiques est
la donnée d’un morphisme de S-modules f : E → E ′ tel que T (f)(R) ⊂ R′. On peut
alors, généraliser les constructions faites au premier chapitre pour obtenir l’opérade
quadratique P(E,R) := T (E)/(R) associée à la donnée quadratique (E,R), qui est
universelle parmi les opérades quotient T (E) � P telles que la composée R ↪→
T (E) � P soit nulle, ainsi que la coopérade quadratique C(E,R) ⊂ T c(E), vérifiant
la propriété universelle :

C T c(E) T c(E)/R

C(E,R)

0

∃!

Définition 2.13. Pour une opérade quadratique P = P(E,R), la coopérade duale
de Koszul de P est définie par :

P ¡ := C(sE, s2R)

et l’opérade duale de Koszul :

P ! := (Sc ⊗
H
P ¡)∗

CHAPITRE 2. COBAR-BAR POUR LES OPÉRADES ALGÉBRIQUES 39

Où ⊗
H

est le produit d’hadamard de coopérades et ∗ est la dualité graduée arité par
arité et Sc est la coopérade EndcsK [LV12] .

Proposition 2.6. Si P est quadratique, engendrée par un S-module réduit de dimen-
sion finie en chaque arité, alors on a

P ! = P(s−1S−1 ⊗
H
E∗, R⊥)

et
(P !)! ' P

Où R⊥ sera décrit dans la section sur les propérades.

Pour une donnée quadratique (E,R), on a P(E,R)(1) = E et C(E,R)(1) = E, on
définit alors le morphisme tordant κ : P ¡ → P comme la composée :

κ : C(sE, s2R) � sE
s−1
→ E ↪→ P(E,R)

Le complexe
P ¡ ◦κ P := (P ¡ ◦ P , dκ)

est appelé complexe de Koszul de l’opérade P . Une opérade quadratique est dite de
Koszul si son complexe de Koszul associé est acyclique.

Théorème 2.8. les énoncés suivants sont équivalents :

— Le complexe de Koszul droite P ¡ ◦κ P est acyclique.

— Le complexe de Koszul gauche P ◦κ P ¡ est acyclique.

— L’inclusion ι : P ¡ ↪→ BP est un quasi-isomorphisme.

— La projection π : ΩP ¡ � P est un quasi-isomorphisme.

40

Chapitre 3

Propérades

3.1 Introduction

Définition 3.1. Un S-bimodule P est une collection {P(m,n), (m,n) ∈ N2} deK[Sm]⊗K

K[Sopn]-modules à gauche. Un morphisme de S-bimodules f : P → Q est une collec-
tion de morphismes fm,n : P(m,n) → Q(m,n) de Sm ⊗ Sopn -modules. La catégorie
des S-bimodules et leurs morphismes est notée S−BiMod.

Exemple 3.1. — A tout K-espace vectoriel V est associé le S-bimodule

EndV := {HomK(V ⊗n, V ⊗m), (m,n) ∈ N2}

Où les actions des groupes symétriques sont données par permutation des en-
trées et sorties.

— Un S-moduleM = (M(n))n∈N peut-être considéré comme un S-bimodule concen-
tré en arités (1, n), n ∈ N. Ce qui fait de S−Mod une sous-catégorie pleine de
S−BiMod.

Définition 3.2. Un graphe orienté est un graphe non planaire où les orientations
des arrêtes sont données par un flot descendant et tel que les entrées et sorties de
chaque sommet soient numérotées par les entiers. On suppose aussi que les entrées
et sorties globales du graphe sont numérotées par les entiers. L’ensemble des graphes

CHAPITRE 3. PROPÉRADES 41

orientés est noté G. Si de plus les sommets d’un graphe g peuvent être répartis en
deux niveaux Ni, i ∈ {1, 2}, g est qualifié de graphe à deux niveaux, et l’ensemble
des graphes à deux niveaux est noté G2.

La composition −◦− des S-modules s’étend en une composition des S-bimodules
−�c − :

Définition 3.3. Pour deux S-bimodules P etQ, leur produit de composition connexe 1

Q�c P est donné par

Q�c P := (
⊕
g∈G2

c

⊗
ν∈N2

Q(| Out(ν) |, | In(ν) |)⊗K
⊗
ν∈N1

P(| Out(ν) |, | In(ν) |))/ ∼

Où G2
c est l’ensemble des graphes orientés à deux niveaux connexes, Out(ν) et In(ν)

sont les sorties et entrées d’un sommet ν, et ∼ est la relation d’équivalence engendrée
par :

ν
1 2 3

3
2

1

∼ τ−1νσ

σ(1) σ(2)
σ(3)

τ(3)
τ(2)

τ(1)

Autrement dit, les actions des groupes symétriques sur les sommets des graphes
sont données par permutations de ses entrés et sorties.

Proposition 3.1. Soit I = K le S-bimodule concentré en arité (1, 1), la catégorie
(S−BiMod,�c, I) est monoïdale.

Démonstration 3.1. L’associativité du produit �c provient de celle du produit ten-
soriel ⊗ dans K-Mod. Pour montrer la relation d’unité P �c I ' P, il suffit de
remarquer que la somme est en fait prise sur les graphes connexes à deux niveaux
dont le premier niveaux n’est composé que de sommets à une entrée et une sortie.
L’hypothèse de connexité assure que toutes les sorties sont reliées sur le même som-
met au niveau 2 et la relation d’équivalence assure qu’il n’y ait qu’une seule copie de
P(m,n) dans P�cI. Ainsi P�cI '

⊕
(m,n)
P(m,n) = P. L’isomorphisme I�cP ' P

se traite de la même façon.
1. Pour une formule algébrique, on renvoit à [Val07].

CHAPITRE 3. PROPÉRADES 42

Corollaire 3.1. les inclusions de catégories monoïdales suivantes sont pleines :

(Vect,⊗,K) ↪→ (S−Mod, ◦, I) ↪→ (S−BiMod,�c, I)

Contrairement aux S-modules, il est possible de composer horizontalement les
S-bimodules : pour f ∈ Hom(V ⊗n, V ⊗m) et g ∈ Hom(V ⊗k, V ⊗l), la concaténation
de f et g est donnée par leur produit tensoriel f ⊗ g ∈ Hom(V ⊗n+k, V ⊗m+l), et la
définition dans le cas général est :

Définition 3.4. Pour P et Q deux S-bimodules, leur produit de concaténation Q⊗P
est donné par

Q⊗P(m,n) :=
⊕

m′+m′′=m
n′+n′′=n

K[Sm]⊗Sm′×Sm′′ Q(m′, n′)⊗ P(m′′, n′′)⊗Sn′×Sn′′ K[Sn]

Le S-bimodule K concentré en arité (0, 0) induit une structure monoïdale symé-
trique sur la catégorie des S-bimodules munie du produit de concaténation.

Définition 3.5. Une Propérade est un monoïde dans la catégorie monoïdale (S−BiMod,�c, I)
et un morphisme de propérades est un morphisme de monoïdes. La catégorie des
propérades est notée Properads. De même, une copropérade est un comonoïde dans
(S−BiMod,�c, I).

Définition 3.6. Soient (P , µ) et (Q, ν) deux propérades, leur produit de Hadamard
P⊗
H
Q est la propérade définie par

({P
⊗
H

Q(m,n) := P(m,n)⊗Q(m,n)}, µ⊗ ν)

Remarquons que µ⊗ ν est un abus d’écriture qui utilise l’identification

(P
⊗
H

Q�c P
⊗
H

Q)(m,n) ' (P �c P)(m,n)⊗ (Q�c Q)(m,n)

Dans le cas gradué, les conventions de Koszul doivent être prises en compte.

CHAPITRE 3. PROPÉRADES 43

Exemple 3.2. EndV est une propérade. Le cas particulier où V = K est concentré
en degré 1 est noté s et appelé propérade signature, ou propérade suspension [Gan02].
le cas où K est concentré en degré −1 est noté s−1. Les collections Λ := {Λ(m,n) :=
s(m,n)[2− 2m]} et Λ−1 := {Λ−1(m,n) := s−1(m,n)[2m− 2]} sont aussi des propé-
rades.

Un autre exemple est donné par ce qui suit : le foncteur d’oubli U : Properads→
S−BiMod admet un adjoint à gauche F et pour un S-bimodule V , (F(V), iV : V →
F(V)) est appelé propérade libre sur V .

Construction 3.1. Soit V un S-bimodule, la propérade libre sur V est donnée par
la somme sur les graphes connexes Gc :

F(V) := (
⊕
g∈Gc

⊗
ν∈N

V (| Out(ν) |, | In(ν) |))/ ∼

La composition µ est induite de la composition des graphes orientés, et le morphisme
V → F(V) est induit par l’inclusion Gc,(1) ↪→ Gc.

L’application qui à un graphe lui associe son nombre de sommet(s) induit une
partition de l’ensemble des graphes orientés connexes : Gc = ⊔

n∈N
Gc,(n), et ainsi une

décomposition F(V) = ⊕
n∈N
F(n)(V).

Remarque 3.1. Pour la définition de copropérade colibre conilpotente (le coproduit
itéré suffisamment de fois de tout élément est nul) sur un S-bimodule V on renvoit
à [Val07].

Définition 3.7. Une donnée quadratique (V,R) dans la catégorie S-biMod est la
donnée d’un S-bimodule V et d’un sous-S-bimodule R de F(2)(V). A une telle donnée
quadratique est associée une propérade, qualifiée de quadratique :

F(V,R) := F(V)/(R)

Par extension, une propérade est dite quadratique si elle est isomorphe à une certaine
propérade F(V,R), et binaire quadratique si V est concentré en arité (1, 2) et (2, 1).

CHAPITRE 3. PROPÉRADES 44

Exemple 3.3. La propérade BiLie encodant les bialgèbres de Lie est quadratique
binaire, engendrée par le S-bimodule V ⊕W , avec V = V (1, 2) = m.K où le produit
m est anticommutatif et W = W (2, 1) = ∆.K où le coproduit ∆ est anticommutatif.
Et pour espace des relations R, l’espace engendré par

— R :=
1 2 3

+
2 3 1

+
3 1 2

— S :=
1 2 3

+
2 3 1

+
3 1 2

— D :=
1 2

1 2

−
1 2

1 2

+
2 1

1 2

−
1 2

1 2

+
2 1

1 2

3.2 Calculs de duaux

Dans toute cette section, les S-bimodules sont de dimensions finies en chaque
arité. Pour un S-bimodule P , son dual de Czech P∨ est défini par

P∨(m,n) := sgnSm ⊗K P(m,n)∗ ⊗K sgnSn

Et sa suspension sP est définie par

s⊗ P

où s est le S-bimodule concentré en arité (0, 0) et degré 1 : s(0, 0) := K.

Définition 3.8. Soit P = P(E,R) une propérade quadratique, sa copropérade duale
est définie par

P ¡ := F c(sE, s2R)

et sa propérade duale est définie par

P ! := Λ−1⊗
H

(P ¡)∗

Proposition 3.2. Soit E un S-bimodule (concentré en les arités (1, 2) et (2, 1)).

CHAPITRE 3. PROPÉRADES 45

L’inclusion E∨ = Λ−1sE∗ ↪→ Λ−1(F c(sE))∗ induit un unique isomorphisme de pro-
pérades au dessus de E∨ :

Φ : F(E∨)→ Λ−1(F c(sE))∗ [GK94]= F(E)∨

qui induit un isomorphisme encore noté Φ :

Φ : F(E∨)/(Φ−1(Λ−1s2R⊥))→ P !

Exemple 3.4. Soit E = V ⊕W un S-bimodule, où V est concentré en arité (1, 2)
et engendré par des produits , et W est concentré en arité (2, 1), engendré par

des coproduits . L’isomorphisme Φ est alors donné sur le sous-module de poids
2 en arité (2, 2), F(2)(E∨)(2, 2), par :

—
1 2

∗

∗

1 2

7→ −
1 2

∗

∗

1 2

= (
1 2

1 2

)∗

—
1 2

∗

∗

1 2

7→ +
1 2

∗

∗

1 2

= (
1 2

1 2

)∗

—
2 1

∗

∗

1 2

7→ −
2 1

∗

∗

1 2

= (
2 1

1 2

)∗

—
1 2

∗

∗

2 1

7→ −
1 2

∗

∗

2 1

—
2 1

∗

∗

2 1

7→
2 1

∗

∗

2 1

Et en arité (1, 3) par :

—
1 2 3

∗

∗

7→
1 2 3

∗

∗

= (
1 2 3

)∗

— ∀σ ∈ S3 :
σ(1) σ(2) σ(3)

∗

∗

7→ ε(σ)
σ(1) σ(2) σ(3)

∗

∗

CHAPITRE 3. PROPÉRADES 46

Pour V et W deux S-bimodules, on notera (I;W) �c (I;V) le sous-S-bimodule
de (I⊕W)�c (I⊕V) composé des graphes ayant exactement un sommet indexé par
une opération de V au niveau 1 et un sommet indéxé par une opération de W au
niveau 2.

Définition 3.9. Soient V et W deux S-bimodules, une règle de réécriture λ est un
morphisme de S-bimodules :

λ : (I;W) �c (I;V)→ (I;V) �c (I;W)

telle que si on note Dλ := Im((Id,−λ)) et si P := F(V ⊕W)/(R⊕Dλ⊕ S) est une
propérade avec R ⊂ F(2)(V), S ⊂ F(2)(W), l’application

F(V)/(R) �c F(W)/(S)→ P

est injective.

Lemme 3.2. Soit λ : (I;W) �c (I;V)→ (I;V) �c (I;W) une règle de réécriture et
Dλ le graphe de −λ. La règle de réécriture dans F(E∨) :

λ̃ := Φ−1
| ◦ −(Λ−1 (s2λ)∗) ◦ Φ| : (I;V ∨) �c (I;W∨)→ (I;W∨) �c (I;V ∨)

vérifie :
Dλ̃ = Φ−1(D⊥Λ−1s2λ)

Démonstration 3.2. On commence par rappeler les deux faits classiques suivants :

— Si f : A→ A est une application et φ : A ∼→ B est une bijection , alors

φ∗(Gr(f)) = Gr(φ ◦ f ◦ φ−1)

— Si f : A→ B est une application linéaire, en notant f ∗ : B∗ → A∗ l’application
transposée, on a

Gr(f)⊥ = Gr(−f ∗)

où A⊕B et B ⊕A sont identifiés canoniquement et Gr(f) est le graphe de f .

CHAPITRE 3. PROPÉRADES 47

On en déduit alors

Dλ̃ = Φ−1(D−Λ−1(s2λ)∗)

= Φ−1(Λ−1D⊥s2λ)

= Φ−1(D⊥Λ−1s2λ)

Notons que la dernière égalite est obtenue par finitude des dimensions et exactitude
de Λ−1 ⊗−.

Théorème 3.3 (proposition 8.2 [Val07]). Soit P une propérade de la forme F (V ⊕
W)/(R⊕

Dλ
⊕
S),

R ∈ F(2)(V), S ∈ F(2)(W) et Dλ ⊂ (I⊕W)�c (I⊕V) ⊕(I⊕V)�c (I⊕W) , définie
par une règle de réécriture λ, telle que la somme des dimensions de V ⊕

W soit finie.
Alors la propérade duale de P est donnée par

P ! ' F(W∨ ⊕ V ∨)/(S̃ ⊕Dλ̃ ⊕ R̃)

avec pour règle de réécriture λ̃ définie au lemme 3.2 et S̃ := Φ−1(Λ−1s2S⊥), R̃ :=
Φ−1(Λ−1s2R⊥).

Esquisse de démonstration 3.1. Il reste à vérifier que D̃λ = Dλ̃, c’est exactement
l’objet du lemme 3.2.

Exemple 3.5. La règle de réécriture pour la propérade BiLie = F(V ⊕W)/(R ⊕
D ⊕ S), avec V =< µ >K= .K et W =< ∆ >K= .K munis des actions par
signature, est donnée par

λ : (I;W) �c (I;V) = W ⊗K V → (I;V) �c (I;W)
1 2

1 2

7→
1 2

1 2

−
2 1

1 2

+
1 2

1 2

−
2 1

1 2

Calculons λ̃ :

— λ̃(
2 1

∗

∗

1 2

)() =
2 1

∗

∗

1 2

(−
2 1

1 2

) = +1

CHAPITRE 3. PROPÉRADES 48

i.e :

λ̃(
2 1

∗

∗

1 2

) = ()∗ = + ∗

∗

— λ̃(
2 1

∗

∗

1 2

)() =
2 1

∗

∗

1 2

(−
2 1

1 2

) = +1

i.e :

λ̃(
2 1

∗

∗

1 2

) = + ∗

∗

— λ̃(
1 2

∗

∗

1 2

) = + ∗

∗

— λ̃(
1 2

∗

∗

1 2

)() = + ∗

∗

Ce qui donne

Dλ̃ =< −
1 2

1 2

> ⊕ < −
2 1

1 2

>

⊕ < −
1 2

1 2

> ⊕ < −
2 1

1 2

>

Corollaire 3.4. La propérade duale de Koszul BiLie! de la propérade des bialgèbres
de Lie, BiLie, est donnée par BiLie! = F (V ⊕W)/(R⊕D⊕S) où V est engendré sur
K par un produit commutatif m en arité (1, 2) et W par un coproduit cocommutatif
∆ en arité et (2, 1). L’espace des relations, R⊕D ⊕ S, est engendré par

—
1 2 3

−
1 2 3

l’associateur.

—
1 2 3

−
2 3 1

le coassociateur .

— Dλ̃

—

CHAPITRE 3. PROPÉRADES 49

Démonstration 3.3. BiLie = F(V ⊕W)/(R⊕D⊕ S) avec V ⊕W = m.K⊕∆.K
et les relations ont été données dans l’exemple 3.3. D’après le théorème précédent,
BiLie! est engendrée par V ∨⊕W∨ = m∗.K⊕ ∆∗.K, avecm∗ un produit commutatif et
∆∗ un coproduit cocommutatif. Les relations R⊥ en arité (1, 3) sont l’orthogonal de la
relation de Jacobi : si eσ :=

σ(1) σ(2) σ(3)

, σ ∈ S3, alors une base de F(2)(V ⊕W)(1, 3)

est (eId, e(123), e(132)) et la relation de Jacobi s’écrit dans cette base eId+e(123) +e(132),
sont orthogonal est donc engendré par < e∗Id−e∗(123); e∗(123)−e∗(132) >=< e∗Id−e∗(123) >,
c’est à dire l’associateur. Le cas de l’arité (3, 1) est dual à celui-ci. En arité (1, 1)

l’orthogonal de 0 est donné par < >. En arité (2, 2), c’est Dλ̃ calculé à l’exemple

3.5.

50

Annexe A

Rappels

On commence par rappeler quelques résultats fondamentaux sur les représenta-
tions des groupes finis, sous l’hypothèse que la caractéristique du corps K ne divise
par l’ordre du groupe.

Définition A.1. Soit G un groupe et H ≤ G un sous groupe de G. Pour un H-
module à droite M , la représentation induite de G sur M est notée IndGHM , définie
par :

IndGHM := M ⊗H K[G]

où la multiplication à gauche H ×G→ G induit la structure de H-module à gauche
de K[G].

Théorème A.1 (Maschke). Toute représentation de G est somme directe de sous
représentations irréductibles.

Théorème A.2. Toute représentation irréductible de G est facteur direct dans la
représentation régulière.

Une conséquence de ces deux résultats est que tout K[G]-module est facteur direct
d’un module libre, i.e est projectif. On en déduit un lemme de non-annulation :

Lemme A.3. Soit B un Sn-module non réduit à 0, alors

B ⊗Sn (Kn)⊗n 6= 0

ANNEXE A. RAPPELS 51

Démonstration A.1. L’inclusion
i : K[Sn] ↪→ (Kn)⊗n

1 7→ e1 ⊗ ...⊗ en
induit la suite exacte

courte :
0→ K[Sn] i

↪→ (Kn)⊗n � Coker(i)→ 0

Par projectivité de B, on en déduit la suite exacte courte :

0→ B ⊗Sn K[Sn] ' B
i
↪→ B ⊗Sn (Kn)⊗n � B ⊗Sn Coker(i)→ 0

En particulier, B ⊗Sn(Kn)⊗n est non nul.

52

Remerciements

Je tenais, dans ces lignes, à remercier les quelques personnes sans qui ce mémoire
n’existerait pas.
Je remercie Salim Rivière pour avoir encadré ce mémoire avec dévouement et pa-
tience.
Je remercie également Friedrich Wagemann pour son dévouement, son humanité et
pour avoir toujours su répondre avec clarté à mes nombreuses questions.
Enfin, une pensée toute particulière pour Guillaume Roux et ces nombreuses heures
passées à discuter de topologie algébrique après les cours de géométrie affine. Ces
discussions, passionnées, ont très nettement influencées mes goûts mathématiques,
et je tenais à l’en remercier chaleureusement.

53

Bibliographie

[Gan02] Wee Liang Gan. Koszul duality for dioperads. arXiv preprint
math/0201074, 2002.

[GK94] Victor Ginzburg and Mikhail Kapranov. Koszul duality for operads. Duke
Math. J., 76(1) :203–272, 10 1994.

[Gro57] Alexander Grothendieck. Sur quelques points d’algèbre homologique, i.
Tohoku Math. J. (2), 9(2) :119–221, 1957.

[Hin97] Vladimir Hinich. Homological algebra of homotopy algebras. Communica-
tions in algebra, 25(10) :3291–3323, 1997.

[HMS74] Dale Husemoller, John C. Moore, and James Stasheff. Differential ho-
mological algebra and homogeneous spaces. Journal of Pure and Applied
Algebra, 5(2) :113 – 185, 1974.

[LV12] Jean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346.
Springer Science & Business Media, 2012.

[Mac] S MacLane. Categories for the working mathematician. 1972.

[Mil12] Joan Millès. The koszul complex is the cotangent complex. International
Mathematics Research Notices, 2012(3) :607–650, 2012.

[Val07] Bruno Vallette. A koszul duality for props. Transactions of the American
Mathematical Society, 359(10) :4865–4943, 2007.

BIBLIOGRAPHIE 54

[Val09] Bruno Vallette. Free monoid in monoidal abelian categories. Applied Ca-
tegorical Structures, 17(1) :43–61, 2009.

Cohomologie de Hochschild
des schémas

Lucas Darbas

1

Mémoire de M2

Mathématiques fondamentales et appliquées

Algèbre et Géométrie

Université de Nantes - 2020

Sous la direction de

Hossein Abbaspour

Friedrich Wagemann

2

pageblanche

3

La cohomologie de Hochschild est une théorie d’algèbre homologique concernant les
algèbres associatives. Elle apparait en 1945 dans les travaux de Gerhard Hochschild
et sera étudié durant le XXeme siècle par de nombreux mathématiciens. Gerstenhaber,
Schack, Loday, on encore Grothendieck contribueront à étendre cette théorie aux schémas
à travers plusieurs définitions. Le but de ce mémoire est d’étudier les travaux de Swan
pour comprendre ces différentes définitions.

Le cadre général est une algèbre associative A (non nécessairement unitaire) sur un
anneau commutatif k, et un bimodule M sur A, c’est à dire un A-module à droite et à
gauche satisfaisant les relations suivantes

λm = mλ

a(mb) = (am)b

pour tout m ∈M , λ ∈ k et a, b ∈ A. Lorsque A est unitaire, cela revient à considérer un
module sur l’anneau Ae = A⊗ Aop, où ⊗ = ⊗k, à travers la formule

(a⊗ b)m = amb

pour tout m ∈M et a, b ∈ A. Étant donné notre motivation à étudier des schémas, A sera
toujours unitaire et même commutative. On introduit ensuite le complexe de Hochschild

Cn(A,M) = M ⊗ A⊗n

dont la différentielle est définie par les applications k-linéaire suivantes

d =
n∑
i=0

(−1)idi : M ⊗ A⊗n →M ⊗ A⊗n−1

d0(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

di(m⊗ a1 ⊗ · · · ⊗ an) = m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an pour 0 < i < n

dn(m⊗ a1 ⊗ · · · ⊗ an) = anm⊗ a1 ⊗ · · · ⊗ an−1

Lorsque A est commutative, ces applications sont Ae-linéaires. On peut alors définir
l’homologie de Hochschild de A à valeurs dans M par

Hn(A,M) = Hn(C•(A,M))

Traditionnellement, on note C•(A) = C•(A,M) et HH•(A) = H•(A,M). Pour mieux
comprendre cette homologie, il est commode d’utiliser le complexe ”bar” de Ae-module

Bn(A) = A⊗ A⊗n ⊗ A

dont la différentielle est donnée par les applications Ae-linéaires

d′ =
n∑
i=0

(−1)id′i : A⊗ A⊗n ⊗ A→ A⊗ A⊗n−1 ⊗ A

d′i(a0 ⊗ · · · ⊗ an+1) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1

La multiplication dans A permet d’obtenir une résolution de Ae-module

B•(A)→ A

Si A est projective sur k, alors B•(A) est projectif sur Ae, et dans ce cas

Hn(A,M) = TorA
e

n (M,A) = TorA
e

n (A,M)

4

Pour définir la cohomologie de Hochschild de A à valeurs dans M , on s’inspire la situation
précédente en posant

Hn(A,M) = Hn(HomAe(B•(A),M))

de sorte que si A est projective sur k alors

Hn(A,M) = ExtnAe(A,M)

Puisque les schémas que nous considèrerons seront toujours basés sur un corps, les algèbres
que l’ont rencontrera seront toujours projectives. Ainsi, on préfèrera définir l’homologie et
la cohomologie de Hochschild à travers les foncteurs dérivés TorA

e

• (A,−) et Ext•Ae(A,−).

Dans son article ”Hochschild cohomology of quasiprojective schemes”, Swan intro-
duit trois définitions différentes de la cohomologie de Hochschild d’un schéma basé sur un
corps, puis il prouve que ces trois définitions cöıncident si le schéma est quasi-projectif. La
démonstration fait appel à différents concepts de géométrie algébrique et utilise des tech-
niques standard d’algèbre homologique telles que les suites spectrales. Notre objectif est
de comprendre cet article en détaillant les preuves de chacun des résultats intermédiaires
en apportant parfois des preuves alternatives ainsi que la démonstration générale. On
conservera le plan en dix parties de l’article original.

5

Sommaire

1 Cohomologie de Hochschild 7

2 Définition par l’hyper-ext 12

3 Définition de Gerstenhaber-Schack 18

4 Résolutions localement libres 22

5 Suites spectrales 27

6 Résolutions plates 33

7 Lemmes théoriques sur les faisceaux 39

8 Préfaisceau de faisceau 42

9 Technique de recollement de Čech 46

10 Preuve du théorème 49

6

1 Cohomologie de Hochschild

Rappelons la définition de la cohomologie de Hochschild d’une algèbre commutative
A sur un corps k. On considère Ae = A⊗ A avec ⊗ = ⊗k ainsi que la multiplication

ε : Ae → A

qui permet de regarder un A-module M comme un Ae-module que l’on notera Mε ou
simplement M si cela ne prête à aucune confusion. La cohomologie de Hochschild de A à
valeur dans un Ae-module M est définie par

H•(A,M) = Ext•Ae(A,M)

On peut calculer cette cohomologie en utilisant la résolution projective de Ae-module

B•(A)
ε→ A

où B•(A) est le complexe ”bar” de A [2, 1.1.12]. Très souvent, on souhaite calculer la
cohomologie de Hochschild deA à valeur dans unAe-moduleMε. Dans cette configuration,
on a l’identification

HomAe(B•(A),Mε) = HomA(A⊗Ae B•(A),M)

Combinée avec l’isomorphisme de complexe de A-module

A⊗Ae B•(A) ' C•(A)

où C•(A) est le complexe de Hochschild de A [2, 1.1.3], ce calcul donne

Hn(A,M) = Hn(HomA(C•(A),M))

pour tout A-module M .

Exemple (H0 & H1) : La différentielle C1(A)→ C0(A) est nulle car A est commutative

Ae // A

s⊗ t � // st− ts

Ceci montre que H0(A,M) = HomA(A,M) = M et H1(A,M) = Z1(HomA(C•(A),M)).
La différentielle C2(A)→ C1(A) donnée par

A⊗ Ae // Ae

s⊗ t⊗ r � // st⊗ r − s⊗ tr + rs⊗ t

et l’adjonction HomA(Ae,M) = Homk(A,M) permette d’interpréter les 1-cocycles de
HomA(C•(A),M) comme les dérivations de A dans M : H1(A,M) = Derk(A,M).

La première manière d’adapter cette définition à un schéma X sur un corps k est de
considérer avec × = ×k l’application diagonale

δ : X → X ×X

pour regarder chaque faisceau F de OX-module comme un faisceau de OX×X-module en
prenant δ∗F mais en notant simplement F à la place de δ∗F . On peut alors définir la
cohomologie de Hochschild de X à valeur dans un faisceau F de OX-module par

H•(OX ,F) = Ext•OX×X (OX ,F)

7

Cette définition généralise la cohomologie de Hochschild d’une algèbre, au sens où si
X = Spec A est affine et F = M∼ est quasi-cohérent alors

H•(OX ,F) = H•(A,M)

Ceci provient du fait que X ×X = Spec Ae, δ∗OX = Aε
∼ et δ∗F = Mε

∼, ce qui implique

Ext•OX×X (OX ,F) = Ext•Ae(A,M)

Cette définition arrive avec une suite spectrale de Grothendieck. De fait, le foncteur
HomOX×X (OX ,−) envoie les faisceaux de OX×X-module injectifs vers les faisceaux de
OX×X-module Γ-acyclique. Plus généralement, si O est un faisceau d’anneau sur un
espace topologique, F un faisceau de O-module et I un faisceau injectif de O-module
alors le faisceau HomO(F , I) est flasque : pour toute inclusion d’ouvert V ⊂ U et tout
morphisme de faisceau de O|V -module

F|V → I|V

correspond un morphisme de faisceau de O|U -module

(F|V)U → I|U

où (F|V)U désigne le faisceau F|V étendu par 0 sur U [1, Ch.II, Ex.1.19]. On obtient
alors un triangle commutatif

I|U

0 // (F|V)U //

::

F|U

OO

En ajoutant à cela que les faisceaux flasques sont Γ-acycliques [1, Ch.III, Prop.2.5], on
obtient la propriété recherchée. Ainsi, la composition de foncteur

HomOX×X (OX ,−) = Γ ◦ HomOX×X (OX ,−)

induit pour tout faisceau F de OX-module une suite spectrale de Grothendieck

Epq
2 = Hp(X ×X, ExtqOX×X (OX ,F))⇒ Extp+qOX×X (OX ,F)

Supposons X de type fini et séparé sur k. Les fibres de δ∗F sont alors données par

(δ∗F)δ(x) = Fx et (δ∗F)y = 0 si y /∈ δ(X)

pour tout faisceau F de OX-module. Puisque X × X est noethérien et δ∗OX cohérent,
ceci montre que le faisceau ExtqOX×X (OX ,F) est à support dans la diagonale δ(X) :

(ExtqOX×X (OX ,F))y = ExtqOX×X,y((δ∗OX)y, (δ∗F)y)

[1, Ch.III, Prop.6.8]. En conséquence, l’unité

ExtqOX×X (OX ,F)→ δ∗δ
−1ExtqOX×X (OX ,F)

est un isomorphisme. Puisque Γ◦δ∗ = Γ, la cohomologie du faisceau ExtqOX×X (OX ,F) sur

X×X cöıncide avec la cohomologie du faisceau δ−1ExtqOX×X (OX ,F) sur X. On préfèrera
donc écrire la suite spectrale de Grothendieck sous la forme

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)

8

en regardant ExtqOX×X (OX ,F) comme un faisceau sur X via δ−1. Ce dernier hérite d’une

structure de OX-module étant donnée que le morphisme de faisceau de δ−1OX×X-module

δ−1ExtqOX×X (OX ,F)→ δ∗ExtqOX×X (OX ,F)

est un isomorphisme. En effet, sur les fibres, on est ramené au morphisme

ExtqOX×X,δ(x)(OX,x,Fx)→ OX,x ⊗OX×X,δ(x) Ext
q
OX×X,δ(x)(OX,x,Fx)

Pour construire la réciproque, on part de la multiplication

OX,x × ExtqOX×X,δ(x)(OX,x,Fx)→ ExtqOX×X,δ(x)(OX,x,Fx)

induite par la structure de OX,x-module de Fx, puis on vérifie la bilinéarité sur OX×X,δ(x)

grâce au triangle commutatif donné par la co-unité

(δ∗OX)δ(x)

OX×X,δ(x)

δ[
δ(x) 33

δ]x
++ OX,x

où δ[: OX×X → δ∗OX et δ] : δ−1OX×X → OX . Par abus de notation, on parlera donc du
faisceau ExtqOX×X (OX ,F) sur X au lieux d’écrire δ∗ExtqOX×X (δ∗OX , δ∗F).

On peut préciser cette suite spectrale pour les schémas lisses. Commençons par rap-
peler une propriété élémentaire d’algèbre homologique qui nous servira également au para-
graphe 5 : si on se donne un complexe de R-module projectif

· · · // P2
// P1

// P0
// 0

tel que les homologies sont des R-modules projectifs, alors on a des isomorphismes

Hq(HomR(P•, N)) ' HomR(Hq(P•), N)

pour tout R-module N et tout q. Pour le démontrer, on note Zq = Zq(P•) les cycles et
Bq = Bq(P•) les bords de P• puis on utilise les suites exactes courtes

0 // Zq // Pq // Bq
// 0

0 // Bq+1
// Zq // Hq(P•) // 0

et la projectivité de l’homologie de P• pour obtenir les isomorphismes

Zq ' Hq(P•)⊕Bq+1

ce qui permet de prouver par récurrence sur q ∈ N

Pq ' Bq ⊕ Zq

de sorte que le complexe P• s’identifie au complexe

· · · // Bq ⊕ Zq // Bq−1 ⊕ Zq−1
// · · ·

(b, c) � // (0, b)

Dans cette configuration, le complexe HomR(P•, N) s’identifie au complexe

· · · // HomR(Bq, N)⊕HomR(Zq, N) // HomR(Bq+1, N)⊕HomR(Zq+1, N) // · · ·

(f, g) � // (g|Bq+1 , 0)

9

Les cocycles s’identifient alors à HomR(Bq, N) ⊕ HomR(Hq(P•), N) car les morphismes
Zp → N nuls sur Bq+1 correspondent aux morphismes Hq(P•) → N ; tandis que les
cobords s’identifient à l’image de HomR(Zq, N) par la restriction sur Bq+1, c’est à dire
HomR(Bq+1, N). En effet, la seconde suite exacte courte fournit une flèche Zq → Bq+1

qui est l’identité sur Bq+1 de sorte que la restriction sur Bq+1 est surjective. Ceci prouve
l’isomorphisme annoncé. Ce résultat peut être utilisé dans la situation suivante. Soient

S → R

un morphisme d’anneau, M un S-module et N un R-module. Les groupes

ExtqS(M,N) et TorSq (R,M)

sont naturellement munit d’une structure de R-module. Si on suppose pour tout q que
TorSq (R,M) est projectif sur R alors on a un isomorphisme de R-module

ExtqS(M,N) ' HomR(TorSq (R,M), N)

Pour le voir, on prend une résolution projective de S-module

P• →M

Le complexe R⊗S P• est alors projectif sur R et son homologie

Hq(R⊗S P•) = TorSq (R,M)

est par hypothèse projective sur R. On a alors un isomorphisme

Hq(HomR(R⊗S P•, N)) ' HomR(Hq(R⊗S P•), N)

et le résultat se déduit alors de l’adjonction

HomR(R⊗S P•, N) ' HomS(P•, N)

En particulier, lorsque A est lisse sur k, on peut appliquer ceci au morphisme d’anneau

ε : Ae → A

car le théorème de HKR fournit des isomorphismes naturels de A-module

TorA
e

q (A,A) ' Ωq
A

de sorte que TorA
e

q (A,A) est projectif sur A. On obtient un isomorphisme de A-module

ExtqAe(A,N) ' HomA(Ωq
A, N)

Exemple : SiX = Spec A et F = N∼ alorsHn(OX ,F) = ExtnAe(A,N) ' HomA(Ωn
A, N).

Supposons X lisse sur k. Pour tout ouvert affine U = Spec A de X, on dispose d’un
isomorphisme de faisceau de OU -module

ExtqOX×X (OX ,OX)|U = ExtqAe(A,A)∼ ' (Ωq
U)∨

[1, Ch.III, Prop.6.2 & Ex.6.7]. Ces isomorphismes naturels se recollent pour former un
isomorphisme de faisceau de OX-module

ExtqOX×X (OX ,OX) ' (Ωq
X)∨ '

∧q TX

10

où TX = (Ω1
X)∨ est le faisceau tangent de X, le deuxième isomorphisme étant donné par

le fait que Ω1
X est localement libre. Avant de conclure, énonçons une propriété générale

pour un faisceau d’anneau O arbitraire. Pour tout faisceau A, B et G de O-module et
tout ouvert U , l’application Γ(U,O)-bilinéaire

Γ(U,HomO(A,B))× Γ(U,G) // Γ(U,HomO(A,B ⊗ G))

(θ, s) � // (−⊗ s) ◦ θ

induit un morphisme de faisceau de O-module

HomO(A,B)⊗ G → HomO(A,B ⊗ G)

Lorsque A est projectif sur O et G est localement libre, c’est un isomorphisme :

HomOx(Ax,Bx)⊗Ox Gx '
⊕
i∈I
HomOx(Ax,Bx)

' HomOx(Ax,
⊕
i∈I
Bx) ' HomOx(Ax,Bx ⊗Ox Gx)

avec Gx '
⊕
i∈I
Ox. Puisque les faisceaux localement libres sont plats, on obtient en partic-

ulier pour tout faisceau localement libre F de OX-module des isomorphismes

ExtqOX×X (OX ,OX)⊗F ' ExtqOX×X (OX ,F)

On peut aussi appliquer cette propriété au faisceau canonique ωX = Ωd
X de X

(
∧q TX)⊗ ωX ' HomOX (Ωq

X ,OX)⊗ ωX ' HomOX (Ωq
X , ωX)

Et la multiplication des formes différentielles

Ωq
X ⊗ Ωd−q

X → ωX

induit par adjonction un isomorphisme

Ωd−q
X ' HomOX (Ωq

X , ωX)

ce qui peut se vérifier en utilisant la liberté sur OX,x des fibres Ωq
X,x = Ωq

OX,x . Le faisceau
ωX ⊗F étant localement libre, on peut résumer ce qui précède par l’isomorphisme

ExtqOX×X (OX , ωX ⊗F) ' Ωd−q
X ⊗F

où d = dim X. Ainsi la suite spectrale donnée par la cohomologie de Hochschild de X à
valeur dans ωX ⊗F s’écrit

Hp(X,Ωd−q
X ⊗F)⇒ Hp+q(OX , ωX ⊗F)

On verra au paragraphe 2 que si X est quasi-projectif sur un corps de caractéristique
nulle alors cette suite spectrale dégénère et induit une décomposition

Hn(OX , ωX ⊗F) '
⊕

p+q=n

Hp(X,Ωd−q
X ⊗F)

11

2 Définition par l’hyper-ext

La deuxième définition de la cohomologie de Hochschild d’un schéma X sur un corps
s’inspire d’avantage du calcul

Hn(A,M) = Hn(HomA(C•(A),M))

Soit C• le complexe de faisceau de OX-module associé au préfaisceau

U 7→ C•(Γ(U,OX))

La cohomologie de Hochschild d’un faisceau F de OX-module sur X peut être définie par

HH•(X,F) = Ext•OX (C•,F)

c’est à dire pour toute résolution injective F → I• de faisceau de OX-module

HHn(X,F) = Hn(HomOX (C•, I•))

L’objectif principal de l’article de Swan est de démontrer le théorème suivant :

Théorème 2.1 : Soit X un schéma quasi-projectif sur un corps. Il existe un isomorphisme
de δ-foncteur en F

H•(OX ,F) ' HH•(X,F)

On peut donner par exemple l’application suivante.

Corollaire 2.2 : Soit X un schéma projectif sur un corps. Pour tout faisceau cohérent
F de OX-module, HHn(X,F) est un espace vectoriel de dimension finie.

Preuve : Les faisceaux ExtqOX×X (OX ,F) sont cohérents donc les Hp(X, ExtqOX×X (OX ,F))
sont des espaces vectoriels de dimension finie [1, Ch.III, Th.5.5]. De plus, X est un espace
topologique noethérien de dimension N finie, donc Hp(X, ExtqOX×X (OX ,F)) = 0 pour
p > N [1, Ch.III, Th.2.7] et ainsi Hn(OX ,F) est une somme directe finie d’espace vecto-
riels de dimension finie. �

Dans l’article original [3], Swan remarque qu’on peut également définir la cohomologie
cyclique de X en considérant le complexe de faisceau D• associé au préfaisceau

U 7→ D•(Γ(U,OX))

où D•(A) désigne le complexe total du double complexe de Connes d’une algèbre A sur
un corps [2, 2.1.7] puis en posant

HC•(X,F) = Ext•OX (D•,F)

La suite exacte courte usuelle [2, 2.2.2]

0 // C•(A) // D•(A) // D•(A)[−2] // 0

induit une suite exacte courte de complexe de faisceau de OX-module

0 // C• // D• // D•[−2] // 0

et par suite une longue suite exacte cohomologique de Connes

· · · // HCn−2(X,F) // HCn(X,F) // HHn(X,F) // HCn−1(X,F) // · · ·

qui permet de généraliser par récurrence le corollaire 2.2 à la cohomologie cyclique de X.

12

La principale difficulté autour de cette définition réside dans le fait que C• n’est pas
quasi-cohérent en général. Néanmoins, tout comme la précédente, elle arrive avec une
suite spectrale.

Lemme 2.3 : Soit O un faisceau d’anneau sur un espace topologique. Pour tout complexe
de faisceau A• de O-module borné en bas et tout faisceau G de O-module, il existe une
suite spectrale

Epq
2 = ExtpO(Hq(A•),G)⇒ Extp+qO (A•,G)

Preuve : Soit G → I• une résolution injective de faisceau de O-module. Puisque A• est
borné en bas, la suite spectrale donnée en filtrant selon les colonnes le double complexe

...
...

· · · // HomO(Aq+1, Ip) //

OO

HomO(Aq+1, Ip+1) //

OO

· · ·

· · · // HomO(Aq, Ip) //

OO

HomO(Aq, Ip+1) //

OO

· · ·

...

OO

...

OO

converge vers la cohomologie totale Extp+qO (A•,G). On peut calculer la deuxième page :

Epq
0 = HomO(Aq, Ip)

Epq
1 = Hq(HomO(A•, Ip)) = HomO(Hq(A•), Ip)

Epq
2 = Hp

h(Hq
v(HomO(A•, I•))) = ExtpO(Hq(A•),G) �

Lorsque l’on prend O = OX , A• = C• et que l’on pose Hq = Hq(C•), on obtient

ExtpOX (Hq,F)⇒ HHp+q(X,F)

Pour comprendre le faisceau Hq, on a besoin d’une propriété importante concernant
l’homologie de Hochschild des algèbres commutatives. Pour tout morphisme plat d’algèbre

A→ B

le morphisme d’algèbre induit

Ae → Be

est également plat et on dispose alors d’une formule de changement de base

TorA
e

n (M,N) ' TorB
e

n (Be ⊗Ae M,N)

pour tout Ae-module M et tout Be-module N . Puisque B ⊗A A ' B, on obtient

B ⊗A TorA
e

n (M,A) ' TorA
e

n (M,B) ' TorB
e

n (Be ⊗Ae M,B)

⇒ B ⊗A Hn(A,M) ' Hn(B,Be ⊗Ae M)

13

En particulier, l’homologie de Hochschild commute avec la localisation :

(S−1A)e ⊗Ae A ' (S−1A)⊗A A⊗A (S−1A) ' S−1A

⇒ (S−1A)⊗A HHn(A) ' HHn(S−1A)

où HH•(A) = H•(A,A). On rencontrera les morphismes plats dans d’autres situations.
Par exemple, une immersion ouverte de schéma affine

Spec B ↪→ Spec A

induit sur les sections globales un morphisme plat

ϕ : A→ B

Pour s’en convaincre, il suffit de prouver que tout monomorphisme de A-module

0 //M
f // N

est envoyé par le foncteur B ⊗A − vers un monomorphisme

0 // B ⊗AM
1⊗f // B ⊗A N

Par hypothèse, ϕ induit pour tout q ∈ Spec B un isomorphisme d’anneau

Ap ' Bq

où p = ϕ−1(q). On a alors un carré commutatif

Bq ⊗B B ⊗AM
1⊗1⊗f // Bq ⊗B B ⊗A N

Ap ⊗AM 1⊗f
// Ap ⊗A N

Puisque Ap est plat sur A, le morphisme du bas est un monomorphisme. Par conséquent,

∀q ∈ Spec B, Bq ⊗B ker(1⊗ f) = 0

⇒ ker(1⊗ f) = 0

d’où le résultat. Donnons à présent un lemme important qui nous accompagnera jusqu’à
la démonstration du théorème 2.1.

Lemme 2.4 : Soit X un schéma de type fini sur un corps.
(1) Hq est un faisceau cohérent pour tout q.
(2) Γ(U,Hq) = HHq(Γ(U,OX)) pour tout ouvert affine U de X.
(3) Si X est lisse alors Hq ' Ωq

X .
(4) Si X = Spec A est affine alors on a un quasi-isomorphisme

δ∗B•
q.is.→ C•

où B• est le complexe de faisceau sur X ×X associé au complexe de Ae-module B•(A).

Preuve : La faisceautification est un foncteur exact, donc Hq est associé au préfaisceau

U 7→ HHq(Γ(U,OX))

14

Or, l’homologie de Hochschild commute avec la localisation. Donc si U est un ouvert
affine de X alors le préfaisceau

U ⊃ V 7→ HHq(Γ(V,OX))

correspond à la localisation du Γ(U,OX)-module HHq(Γ(U,OX)). En particulier,

Γ(U,Hq) = HHq(Γ(U,OX))

Puisque X est de type fini sur un corps, HHq(Γ(U,OX)) est de type fini sur Γ(U,OX) : si
A est une algèbre de type fini sur un corps k alors on a un morphisme d’algèbre surjectif

k[x1, . . . , xn]→ A

qui induit un morphisme d’anneau surjectif

A[x1, . . . , xn]→ A⊗ A

ce qui montre que Ae est Noethérien. Ainsi, A admet une résolution projective de Ae-
module de type fini et par conséquent TorA

e

q (A,A) est un Ae-module de type fini. Puisque
HHq(A) = TorA

e

q (A,A) est un A-bimodule symétrique, HHq(A) est un A-module de type
fini. Tout ceci prouve (1) et (2). Le point (3) découle directement du théorème de HKR.
Supposons X = Spec A affine. Sur les ouverts principaux de X×X, on a une composition

(Ae)f ⊗Ae B•(A)→ Aε(f) ⊗Ae B•(A) ' Aε(f) ⊗A C•(A)→ C•(Aε(f))

qui défini un morphisme de faisceau de OX×X-module

B• → δ∗C•

On obtient par adjonction un morphisme de complexe de OX-module

δ∗B• → C•

C’est un quasi-isomorphisme. Pour le voir, il suffit de calculer l’homologie sur les fibres
en chaque idéal premier p ∈ X :

(δ∗B•)p = Ap ⊗(Ae)q ((Ae)q ⊗Ae B•(A)) = Ap ⊗Ae B•(A) = Ap ⊗A C•(A)

où q ∈ X × X désigne l’image réciproque de p par la multiplication. Le morphisme de
complexe de Ap-module

Ap ⊗A C•(A)→ C•(Ap)

est un quasi-isomorphisme :

Hq(Ap ⊗A C•(A)) ' Ap ⊗A Hq(C•(A)) = HHq(A)p ' HHq(Ap) = Hq(C•(Ap)) �

Ce résultat permet de réécrire la suite spectrale précédente lorsque X est lisse :

ExtpOX (Ωq
X ,F)⇒ HHp+q(X,F)

On peut calculer ExtpOX (Ωq
X ,F) en utilisant la suite spectrale de Grothendieck

Eij
2 = H i(X, ExtjOX (Ωq

X ,F))⇒ Exti+jOX (Ωq
X ,F)

donnée par la composition de foncteur

HomOX (Ωq
X ,−) = Γ ◦ HomOX (Ωq

X ,−)

15

L’idée est que Ωq
X est localement libre de rang fini ce qui implique d’une part que

ExtjOX (Ωq
X ,F) = 0 pour tout j > 0 et par conséquent la pageE2 de la suite de Grothendieck

ne comporte qu’une seule ligne ce qui induit un isomorphisme

ExtpOX (Ωq
X ,F) ' Hp(X,HomOX (Ωq

X ,F))

et d’autre part que le morphisme de faisceau de OX-module

(Ωq
X)∨ ⊗F → HomOX (Ωq

X ,F)

introduit au premier paragraphe est un isomorphisme. En particulier,

HomOX (Ωq
X , ωX ⊗F) ' Ωd−q

X ⊗F

Ainsi la suite spectrale donnée par la cohomologie de Hochschild de ωX ⊗F sur X s’écrit

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

Ceci nous amène au deuxième théorème principal de l’article de Swan.

Théorème 2.5 : Soit X un schéma quasi-projectif sur un corps. Si Hq est localement
libre pour tout q alors les suites spectrales

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)

ExtpOX (Hq,F)⇒ HHp+q(X,F)

sont isomorphes. En particulier, si X est lisse alors les suites spectrales

Hp(X,Ωd−q
X ⊗F)⇒ Hp+q(OX , ωX ⊗F)

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

sont isomorphes.

Ce théorème nous permet de démontrer la décomposition de la cohomologie de Hochschild
annoncée à la fin du paragraphe 1.

Corollaire 2.6 : Soit X un schéma lisse et quasi-projectif sur un corps de caractéristique
nulle. La suite spectrale

Hp(X,Ωd−q
X ⊗F)⇒ Hp+q(OX , ωX ⊗F)

dégénère et induit un isomorphisme

Hn(OX , ωX ⊗F) '
⊕

p+q=n

Hp(X,Ωd−q
X ⊗F)

Preuve : Le théorème 2.5 nous ramène à la suite spectrale

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

L’idée est d’utiliser la λ-décomposition de l’homologie de Hochschild d’une algèbre com-
mutative A sur un anneaux contenant Q [2, 4.5.10] :

C•(A) =
⊕
i≥0

C
(i)
• (A)

où C
(i)
• (A) est un sous-complexe de C•(A) dont l’homologie HH

(i)
n (A) satisfait

HH0(A) = HH
(0)
0 (A)

HHn(A) =
⊕

0≤i≤n
HH

(i)
n (A), n ≥ 1

16

Lorsque A est lisse, on a HH
(i)
n (A) = 0 pour tout i 6= n [2, 3.4.4 & 4.5.12]. Ceci induit

une décomposition

C• =
⊕
i≥0

C(i)
•

de sorte que la suite spectrale

Hp(X,Ωd−q
X ⊗F)⇒ HHp+q(X,ωX ⊗F)

se décompose comme somme directe des suites spectrales associées aux doubles complexes
HomOX (C(i)

• , I•) où ωX ⊗F → I• est une résolution injective. La deuxième page

Epq
2 = ExtpOX (Hq(C(i)

•), ωX ⊗F)

consiste alors en une seule colonne q = i, ce qui montre la dégénérescence à la deuxième
page et donne ainsi le résultat. �

Exemple : Si A est un anneau Noethérien alors tous les faisceaux quasi-cohérents sur
X = Spec A sont Γ-acycliques [1, Ch.III, Th.3.5]. Ainsi, si A est une algèbre lisse sur un
corps de caractéristique nulle et si F est quasi-cohérent sur X alors le corollaire 2.6 donne

Hn(OX , ωX ⊗F) ' Γ(X,Ωd−n
X ⊗F)

Or, le théorème de HKR nous avait permis de démontrer au paragraphe 1 l’identité

Hn(OX , ωX ⊗F) ' HomA(Ωn
A,Ω

d
A ⊗AM)

où F = M∼. L’isomorphisme de A-module

HomA(Ωn
A,Ω

d
A ⊗AM) ' Ωd−n

A ⊗AM

nous permet alors d’interpréter le corollaire 2.6 comme une généralisation du théorème
de HKR aux schémas lisses et quasi-projectifs sur un corps de caractéristique nulle.

17

3 Définition de Gerstenhaber-Schack

Introduisons à présent la troisième définition de la cohomologie de Hochschild d’un
schéma X sur un corps. Dans ce paragraphe, tous les préfaisceaux sont définis sur la
sous-catégorie A ⊂ Top(X) des ouverts affines de X. Pour distinguer les faisceaux des
préfaisceaux, on notera O le faisceau d’anneau OX vu comme un préfaisceau d’anneau et

D• : U 7→ C•(Γ(U,OX))

le complexe de préfaisceau de O-module auquel C• est associé.

Considérons le préfaisceau d’anneau

Oe : U 7→ Γ(U,OX)⊗ Γ(U,OX)

La multiplication induit un morphisme de préfaisceau d’anneau

Oe → O

qui permet de regarder tous les faisceaux de OX-module comme des préfaisceaux de Oe-
module. Gerstenhaber et Schack définissent la cohomologie de Hochschild de X à valeur
dans un faisceau F de OX-module par

Ext•Oe(O,F)

Näıvement, on voudrait considérer le complexe de préfaisceau de Oe-module

B• : U 7→ B•(Γ(U,OX))

comme une résolution de préfaisceau de Oe-module

B• → O

et utiliser l’identification suivante

HomOX (C•,F) = HomO(D•,F) = HomO(O ⊗Oe B•,F) = HomOe(B•,F)

Le problème est que B• n’est en général pas projectif sur Oe. Par contre, chaque B•(U)
est projectif sur Oe(U), et cette propriété va nous permettre de construire une résolution
projective de préfaisceau de Oe-module convenable et de démontrer le théorème suivant.

Théorème 3.1 : Ext•Oe(O,F) ' HH•(X,F).

Le but est de construire une résolution projective de préfaisceau de Oe-module à partir
de B•, mais on peut la définir dans un cadre plus général. SoientA un préfaisceau d’anneau
et A−mod la catégorie des préfaisceaux de A-module. On dispose d’une adjonction

R : A−mod //
∏
U∈A
A(U)−mod

M � // (M(U))U∈A

L :
∏
U∈A
A(U)−mod // A−mod

M � // (U 7→
⊕
V⊃U
A(U)⊗A(V) MV)

18

dont on peut expliciter l’unité η et la co-unité ε :

(ηM)U : MU
//
⊕
V⊃U
A(U)⊗A(V) MV

m � //

{
1⊗m si V = U
0 si V 6= U

εM(U) :
⊕
V⊃U
A(U)⊗A(V)M(V) //M(U)

(aV ⊗mV)V⊃U
� //

∑
V⊃U

aV ·mV |U

On note P = LR et on définit un foncteur

Q : A−mod // A−mod

M � // ker(εM)

Ceci nous fournit pour tout préfaisceau M de A-module et tout ouvert U ∈ A une suite
exacte scindée de A(U)-module

0 // QM(U)
⊂ // PM(U)

εM(U) //M(U) //

s
kk

0

où s : m 7→ 1⊗m ∈ A(U)⊗A(V)M(U) ⊂ PM(U). En particulier, pour tout n ∈ N, on
pose PnM = PQnM et on a une suite exacte scindée de A(U)-module

0 // Qn+1M(U) // PnM(U) // QnM(U) //
jj

0

On a ainsi construit une résolution de préfaisceau de A-module

· · · // P2M // P1M // P0M //M // 0

Supposons que M(U) est projectif sur A(U) pour tout U ∈ A. Dans ce cas l’objet
RM = (M(U))U∈A est projectif dans

∏
U∈A
A(U)−mod. Puisque R est exact, L préserve les

projectifs et donc PM est projectif sur A. Les suites exactes scindées précédentes nous
permettent de démontrer par récurrence que chaque QnM(U) est projectif sur A(U),
de sorte que PnM est également projectif sur A. On a ainsi construit une résolution
projective de préfaisceau de A-module

P•M→M

Au besoin, on notera plutôt PAnM si l’on doit préciser le préfaisceau d’anneau A.
Avant de démontrer le théorème 3.1, on a besoin du lemme suivant.

Lemme 3.2 : Si A → B est un morphisme de préfaisceau d’anneau alors pour tout n ∈ N

B ⊗A PAnM' PBn (B ⊗AM)

Preuve : Pour tout U ∈ A, on a

(B ⊗A PAM)(U) = B(U)⊗A(U) (
⊕
V⊃U
A(U)⊗A(V)M(V))

'
⊕
V⊃U
B(U)⊗A(U) A(U)⊗A(V)M(V)

'
⊕
V⊃U
B(U)⊗B(V) B(V)⊗A(V)M(V) = PB(B ⊗AM)(U)

19

Puis on conclue par récurrence en utilisant le diagramme à lignes exactes

0 // B ⊗A QAM //

��

B ⊗A PAM // B ⊗AM //

=

��

0

0 // QB(B ⊗AM) // PB(B ⊗AM) // B ⊗AM // 0

et le lemme des cinq. L’exactitude de la première ligne est donnée par la présence d’une
section lorsque l’on évalue en chaque ouvert U ∈ A. �

Preuve du théorème 3.1 : On considère la résolution de préfaisceau de Oe-module

B• → O

et les résolutions projectives de préfaisceau de Oe-module

P•Bp → Bp
Si on filtre selon les colonnes le double complexe

...

��

...

��
· · · // PqBp //

��

PqBp−1
//

��

· · ·

· · · // Pq−1Bp //

��

Pq−1Bp−1
//

��

· · ·

...
...

on obtient la suite spectrale convergente suivante :

E1
pq =

{
Bp si q = 0
0 si q 6= 0

E2
pq =

{
O si (p, q) = (0, 0)
0 si (p, q) 6= (0, 0)

Le complexe total fournit ainsi une résolution projective de préfaisceau de Oe-module

P•B• → O

ce qui donne ExtnOe(O,F) = Hn(HomOe(P•B•,F)). Soit F → I• une résolution injective
de faisceau de OX-module. Si on regarde F comme un complexe concentré en 0, on a
alors un quasi-isomorphisme

HomOe(P•B•,F)
q.is.→ HomOe(P•B•, I•)

Pour le voir, on filtre selon les colonnes le double complexe

...
...

· · · // HomOe((P•B•)p, Iq+1) //

OO

HomOe((P•B•)p+1, Iq+1) //

OO

· · ·

· · · // HomOe((P•B•)p, Iq) //

OO

HomOe((P•B•)p+1, Iq) //

OO

· · ·

...

OO

...

OO

20

et on obtient par projectivité

Epq
1 = Hq(HomOe((P•B•)p, I•)) = HomOe((P•B•)p, Hq(I•))

d’où l’isomorphisme à la page E1. En utilisant l’adjonction et le lemme 3.2, on a

HomOe(P
Oe
• B•, I•) = HomO(O ⊗Oe PO

e

• B•, I•)
' HomO(PO• (O ⊗Oe B•), I•) ' HomO(PO• D•, I•)

Comme précédemment, on peut regarder D• comme un double complexe centré en la ligne
0 et obtenir un quasi-isomorphisme avec le complexe total

P•D•
q.is.→ D•

car lorsque l’on filtre selon les colonnes le double complexe

...

��

...

��
· · · // PqDp //

��

PqDp−1
//

��

· · ·

· · · // Pq−1Dp //

��

Pq−1Dp−1
//

��

· · ·

...
...

on obtient l’isomorphisme à la page E1 :

E1
pq =

{
Dp si q = 0
0 si q 6= 0

Puis l’injectivité donne un quasi-isomorphisme

HomO(P•D•, I•)
q.is.→ HomO(D•, I•)

ce qui se voit en filtrant selon les colonnes le double complexe

...
...

· · · // HomO(Dq+1, Ip) //

OO

HomO(Dq+1, Ip+1) //

OO

· · ·

· · · // HomO(Dq, Ip) //

OO

HomO(Dq, Ip+1) //

OO

· · ·

...

OO

...

OO

Epq
1 = Hq(HomO(D•, Ip)) = HomO(Hq(D•), Ip)

Notons que Ip est injectif comme préfaisceau de O-module car l’inclusion des faisceaux
de OX-module dans les préfaisceaux de O-module admet comme adjoint à gauche la
faisceautification, qui est exacte. Cette inclusion préserve donc les injectifs. On peut à
présent terminer la démonstration :

ExtnOe(O,F) = Hn(HomOe(P•B•,F))

' Hn(HomOe(P•B•, I•))
' Hn(HomO(P•D•, I•))
' Hn(HomO(D•, I•))

' Hn(HomOX (C•, I•)) = HHn(X,F) �

21

4 Résolutions localement libres

Pour démontrer les théorèmes 2.1 et 2.5, il nous faut établir un lien entre la coho-
mologie de Hochschild d’un schéma X et l’hyper-ext du complexe C•. Pour palier aux
difficultés concernant le complexe C•, on va se ramener dans un premier temps à con-
sidérer l’hyper-ext d’une résolution localement libre de δ∗OX . Dans ce paragraphe, on
va mettre en avant des propriétés de complexe de faisceau qui nous serviront jusqu’à la
démonstration du théorème général.

On commence par énoncer un résultat fondamental pour notre étude, que l’on peut
énoncer sous la généralité suivante. On considère O un faisceau d’anneau sur un espace
topologique X. Pour ne pas se soucier de la convergence des suites spectrales, tous les
complexes de faisceau seront, dans ce paragraphe, supposés bornés en bas.

Lemme 4.1 : Un quasi-isomorphisme de complexe de faisceau de O-module

A•
q.is→ B•

induit un isomorphisme entre les suites spectrales

ExtpO(Hq(A•),G)⇒ Extp+qO (A•,G)

ExtpO(Hq(B•),G)⇒ Extp+qO (B•,G)

pour tout faisceau G de O-module. Deux morphismes de complexe homotopes

A• ⇒ B•
induisent le même morphisme de suite spectrale.

Preuve : Soit G → I• une résolution injective. La première suite spectrale est donnée
en filtrant selon les colonnes le double complexe

...
...

· · · // HomO(Aq+1, Ip) //

OO

HomO(Aq+1, Ip+1) //

OO

· · ·

· · · // HomO(Aq, Ip) //

OO

HomO(Aq, Ip+1) //

OO

· · ·

...

OO

...

OO

Epq
0 = HomO(Aq, Ip)

Epq
1 = Hq(HomO(A•, Ip)) = HomO(Hq(A•), Ip)

Epq
2 = Hp

h(Hq
v(HomO(A•, I•))) = ExtpO(Hq(A•),G)

Tout morphisme de complexe A• → B• induit un morphisme de double complexe

HomO(B•, I•)→ HomO(A•, I•)
puis un morphisme entre les suites spectrales associées. On voit qu’un quasi-isomorphisme
induit un isomorphisme entre les pages E1 et par conséquent entre les suites spectrales
(Er)r≥2. De même, deux applications homotopes induisent le même morphisme sur la
page E1 et donc le même morphisme de suite spectrale (Er)r≥2. �

22

Lemme 4.2 : Soient L• un complexe de faisceau localement libre de O-module et

A•
q.is→ B•

un quasi-isomorphisme de complexe de faisceau deO-module. On a un quasi-isomorphisme

HomO(L•,A•)
q.is→ HomO(L•,B•)

Preuve : On dispose d’un morphisme de double complexe de faisceau de O-module

HomO(L•,A•)→ HomO(L•,B•)

En filtrant selon les colonnes le double complexe de faisceau

...
...

· · · //HomO(Lp,Aq+1) //

OO

HomO(Lp+1,Aq+1) //

OO

· · ·

· · · //HomO(Lp,Aq) //

OO

HomO(Lp+1,Aq) //

OO

· · ·

...

OO

...

OO

on obtient un isomorphisme à la page E1 :

Epq
1 = Hq(HomO(Lp,A•)) = HomO(Lp, Hq(A•))

Cette égalité de faisceau découle d’une identification des fibres

(Hq(HomO(Lp,A•)))x = Hq(HomOx(Lp,x,A•x))

= HomOx(Lp,x, Hq(A•x)) = (HomO(Lp, Hq(A•)))x

en utilisant que Lp,x est un Ox-module libre. Puisque les suites spectrales convergent, ceci
entraine un isomorphisme des cohomologies totales. �

Lemme 4.3 : Si F est un faisceau plat de O-module et G un faisceau injectif de O-module
alors le faisceau HomO(F ,G) est injectif.

Preuve : HomO(−,HomO(F ,G)) ' HomO(−,G) ◦ (F ⊗O −) �

Lemme 4.4 : Un quasi-isomorphisme de complexe de faisceau flasque de O-module

A• q.is→ B•

induit un quasi-isomorphisme de complexe de ΓO-module

ΓA• q.is→ ΓB•

Preuve : Soit M• le cône de A• → B•. Par hypothèse, M• est exacte. On a donc une
résolution flasque du faisceau nul

0→M•

et ainsi 0 = Hq(ΓM•) pour tout q. Puisque ΓM• est le cône de ΓA• → ΓB•, c’est le
résultat. �

23

Concentrons nous à présent sur le cas des schémas.

Lemme 4.5 : Si i : Y → X est un morphisme de schéma, A un faisceau de OX-module
et B un faisceau de OY -module alors on a un isomorphisme de faisceau de OX-module

HomOX (A, i∗B) ' i∗HomOY (i∗A,B)

Preuve : On commence par construire pour tout faisceau F de OX-module un isomor-
phisme naturel de faisceau de OY -module

i∗(F ⊗OX A) ' i∗F ⊗OY i∗A

Pour ce faire, on part de l’unité 1→ i∗i
∗ qui fournit un morphisme

F ⊗OX A → i∗i
∗F ⊗OX i∗i∗A

puis le morphisme OX → i∗OY donne

i∗i
∗F ⊗OX i∗i∗A → i∗i

∗F ⊗i∗OY i∗i∗A

que l’on compose par le morphisme

i∗i
∗F ⊗i∗OY i∗i∗A → i∗(i

∗F ⊗OY i∗A)

et on obtient par adjonction le morphisme voulu. C’est un isomorphisme, comme on peut
le constater sur les fibres :

(i∗(F ⊗OX A))y = OY,y ⊗OX,i(y) (Fi(y) ⊗OX,i(y) Ai(y))

' (OY,y ⊗OX,i(y) Fi(y))⊗OX,i(y) (OY,y ⊗OX,i(y) Ai(y)) = (i∗F ⊗OY i∗A)y

On démontre alors le lemme grâce au plongement de Yoneda :

HomOX (F ,HomOX (A, i∗B)) ' HomOX (F ⊗OX A, i∗B)

' HomOY (i∗(F ⊗OX A),B) ' HomOY (i∗F ⊗OY i∗A,B)

' HomOY (i∗F ,HomOY (i∗A,B)) ' HomOX (F , i∗HomOY (i∗A,B)) �

On arrive au dernier résultat du paragraphe, dont le corollaire est le premier pas vers
la démonstration du théorème général.

Proposition 4.6 : Soient i : Y ↪→ X une immersion fermée, L• un complexe de faisceau
localement libre de OX-module et S un faisceau de OY -module. On a un isomorphisme
de δ-foncteur en S

ExtnOX (L•, i∗S) ' ExtnOY (i∗L•,S)

Preuve : Soient S → I• et i∗S → J • deux résolutions injectives. Le fait que i soit une
immersion fermée entraine que le foncteur i∗ est exact :

(i∗F)i(y) = Fy et (i∗F)x = 0 si x /∈ i(Y)

24

En particulier, i∗S → i∗I• est une résolution et on a un triangle commutatif

i∗I•

q.is.

��
i∗S

55

)) J •

D’après le lemme 4.2, on obtient un quasi-isomorphisme

HomOX (L•, i∗I•)
q.is→ HomOX (L•,J •)

Or, d’après le lemme 4.5, on a un isomorphisme

HomOX (L•, i∗I•) ' i∗HomOY (i∗L•, I•)

et d’après le lemme 4.3, les faisceaux HomOX (L•,J •) et HomOY (i∗L•, I•) sont injectifs et
donc flasques. Par suite le faisceau i∗HomOY (i∗L•, I•) est flasque et le lemme 4.4 donne
un quasi-isomorphisme

Γ(X, i∗HomOY (i∗L•, I•))
q.is.→ Γ(X,HomOX (L•,J •))

c’est à dire

HomOY (i∗L•, I•)
q.is.→ HomOX (L•,J •)

ce qui donne l’isomorphisme recherché. Pour la naturalité, on choisit pour toute suite
exacte de faisceau de OY -module

0 // S ′ // S // S ′′ // 0

des suites exactes de résolutions injectives

0 // I ′• // I• // I ′′• // 0

0 // J ′• // J • // J ′′• // 0

rendant le diagramme à ligne exacte suivant commutatif

0 // i∗I ′• //

��

i∗I• //

��

i∗I ′′• //

��

0

0 // J ′• // J • // J ′′• // 0

Ceci induit un diagramme à ligne exacte commutatif

· · · // Hn(i∗I ′•) //

��

Hn(i∗I•) //

��

Hn(i∗I ′′•) //

��

Hn+1(i∗I ′•) //

��

· · ·

· · · // Hn(J ′•) // Hn(J •) // Hn(J ′′•) // Hn+1(J ′•) // · · ·

En reprenant le quasi-isomorphisme initial

HomOX (L•, i∗I•)
q.is→ HomOX (L•,J •)

25

la naturalité est donnée à la page E1

...
...

· · · //HomOX (Lp, i∗Iq+1) //

OO

HomOX (Lp+1, i∗Iq+1) //

OO

· · ·

· · · //HomOX (Lp, i∗Iq) //

OO

HomOX (Lp+1, i∗Iq) //

OO

· · ·

...

OO

...

OO

Epq
1 = Hq(HomOX (Lp, i∗I•)) = HomOX (Lp, Hq(i∗I•)) �

Corollaire 4.7 : Soient X un schéma séparé et L• un complexe de faisceau localement
libre de OX×X-module tel que H0(L•) = δ∗OX et Hp(L•) = 0 pour tout p 6= 0. Pour tout
faisceau F de OX-module, on a un isomorphisme de δ-foncteur en F

Hn(OX ,F) ' ExtnOX (δ∗L•,F)

Preuve : On part de l’isomorphisme donné par la proposition 4.6 appliquée à l’immersion
fermée δ : X ↪→ X ×X

ExtnOX×X (L•, δ∗F) ' ExtnOX (δ∗L•,F)

puis on applique le lemme 4.1 au quasi-isomorphisme

L•
q.is.→ δ∗OX

ce qui fournit un isomorphisme naturel en F

Hn(OX ,F) = ExtnOX×X (δ∗OX , δ∗F) ' ExtnOX×X (L•, δ∗F) �

26

5 Suites spectrales

Le corollaire 4.7 établie un lien entre la cohomologie de Hochschild d’un schéma X
séparé et de type fini sur un corps avec l’hyper-ext d’une résolution localement libre de
δ∗OX . On souhaite aller plus loin en comparant les suites suites spectrales associées
précédemment. Pour ce faire, on va utiliser les résolutions de Cartan-Eilenberg et les
techniques de convergence des suites spectrales. La référence original de Swan est

H. Cartan and S. Eilenberg, Homological Algebra (Princeton University Press,
Princeton, NJ, 1956).

Rappelons ici le vocabulaire introduit dans l’article [3]. On se place dans une catégorie
abélienne ayant assez d’injectif, et on suppose tous les complexes bornés en bas.

Un CE-monomorphisme i : A• → B• est un monomorphisme de complexe tel que
i∗ : H•(A•)→ H•(B•) est un monomorphisme. Une suite CE-exacte est une suite exacte

0 // C ′•
f // C•

g // C ′′• // 0

telle que im(f)→ C• est un CE-monomorphisme. Un complexe I• est CE-injectif si pour
tout CE-monomorphisme A• → B• et tout morphisme A• → I•, il existe une factorisation

A• //

!!

B•

��
I•

Enfin, une CE-résolution d’un complexe A• est une suite CE-exacte

0 // A• // C0• // C1• // C2• // · · ·

où Cp• est CE-injectif pour tout p ≥ 0. Les CE-résolutions existent toujours dans les
catégories ayant assez d’injectif. Une propriété importante pour la suite est que si C••

est une CE-résolution de A• et F un foncteur additif alors

Hq
v(F (C••)) = F (Hq

v(C••))

pour tout q ≥ 0. On va s’intéresser au cas des faisceaux avec F = Γ. On pourra alors
calculer l’hypercohomologie d’un complexe de faisceau en utilisant les CE-résolutions.

Lemme 5.1 : SoitM• un complexe de faisceau localement libre sur un schéma Y tel que
Hq(M•) est localement libre pour tout q. Pour tout faisceau S de OY -module, on a un
isomorphisme naturel

Hq(HomOY (M•,S)) ' HomOY (Hq(M•),S)

Preuve : Pour un foncteur contravariant F exact à gauche et un complexe C• arbitraires,
on peut construire un morphisme naturel

Hq(F (C•))→ F (Hq(C•))

Notons Z ′q le conoyau de la différentielle Cq+1 → Cq. Par hypothèse, F (Z ′q) est le noyau
de F (Cq)→ F (Cq+1) et par conséquent,

Hq(F (C•)) = coker(F (Cq−1)→ F (Z ′q))

27

On dispose d’une suite exacte

0 // Hq(C•) // Z ′q // Cq−1

qui induit une composition nulle

F (Cq−1)→ F (Z ′q)→ F (Hq(C•))

d’où la factorisation naturelle

F (Cq−1) // F (Z ′q) //

&&

Hq(F (C•))

��
F (Hq(C•))

Revenons au cas où F = HomOY (−,S) et C• =M•. Pour vérifier que l’on a un isomor-
phisme sur les fibres, on est ramené au cas où l’on applique HomR(−, N) à un complexe
de R-module projectif

· · · // P2
// P1

// P0
// 0

tel que les homologies sont des R-modules projectifs. Comme il a été remarqué au premier
paragraphe, cette configuration implique l’isomorphisme voulu

Hq(HomR(P•, N)) ' HomR(Hq(P•), N) �

Il faut remarquer l’utilisation de l’hypothèse ”localement libre” sur le complexe M•
et l’homologie H•(M•). En fait, lemme 5.1 reste vrai si l’on suppose seulement que les fi-
bresMq,y et Hq(M•)y = Hq(M•,y) sont desOY,y-modules projectifs. Cette démonstration
nous montre la grande maniabilité, liée au passage aux fibres, des faisceaux pour les ques-
tions homologiques.

Corollaire 5.2 : Sous les mêmes hypothèses, si

0 // F ′ f // F g // F ′′ // 0

est une suite exacte de faisceau de OY -module, alors la suite

0 //HomOY (M•,F ′)
f∗ //HomOY (M•,F)

g∗ //HomOY (M•,F ′′) // 0

est CE-exacte.

Preuve : La suite est exacte sur les fibres, car Mq,y est projective sur OY,y. Puisque f
est un monomorphisme, on a Hq(im(f∗)) ' Hq(HomOY (M•,F ′)) et le lemme 5.1 donne
un diagramme commutatif

Hq(im(f∗)) // Hq(HomOY (M•,F))

0 //HomOY (Hq(M•),F ′) f∗
//HomOY (Hq(M•),F)

Par hypothèse, les fibres de Hq(M•) sont projectives OY,y, donc la ligne inférieure est
exacte et notre suite est CE-exacte. �

On arrive ici à l’étude des suites spectrales annoncée en introduction. Rappelons ici
qu’une suite spectrale associée à un double complexe nul hors d’un quart de plan (par
exemple une CE-résolution) converge toujours vers la cohomologie totale. Cela justifie
que les complexes que l’on considère dans ce paragraphe sont supposés bornés en bas.

28

Lemme 5.3 : Sous les hypothèses du lemme 5.1, les suites spectrales

ExtpOY (Hq(M•),S)⇒ Extp+qOY (M•,S)

Hp(Y,Hq(HomOY (M•,S)))⇒ Hp+q(Y,HomOY (M•,S))

sont isomorphes.

Preuve : Soit S → I• une résolution injective. Le corollaire 5.2 montre que la suite

0 //HomOY (M•,S) //HomOY (M•, I0) //HomOY (M•, I1) // · · ·

est CE-exacte, donc si on choisit une résolution CE-injective HomOY (M•,S)→ J •• alors
il existe un morphisme f unique à homotopie près rendant le triangle suivant commutatif

HomOY (M•, I•)

f

��

HomOY (M•,S)

55

)) J ••

En appliquant Γ, on obtient un morphisme de double complexe

Γf : HomOY (M•, I•)→ Γ(J ••)

Lorsque l’on filtre selon les colonnes le double complexe

...
...

· · · // HomOY (Mq+1, Ip) //

OO

HomOY (Mq+1, Ip+1) //

OO

· · ·

· · · // HomOY (Mq, Ip) //

OO

HomOY (Mq, Ip+1) //

OO

· · ·

...

OO

...

OO

on obtient la première suite spectrale :

Epq
1 = Hq(HomOY (M•, Ip)) = HomOY (Hq(M•), Ip)

Epq
2 = ExtOY (Hq(M•),S)

Et lorsque l’on filtre selon les colonnes le double complexe

...
...

· · · // Γ(J p,q+1) //

OO

Γ(J p+1,q+1) //

OO

· · ·

· · · // Γ(J p,q) //

OO

Γ(J p+1,q) //

OO

· · ·

...

OO

...

OO

29

on obtient la deuxième suite spectrale :

Epq
1 = Hq(Γ(J p•)) = Γ(Hq(J p•))

Epq
2 = Hp

h(Γ(Hq
v(J ••))) = Hp(Y,Hq(HomOY (M•,S)))

Cette dernière égalité découle du fait que la CE-résolution HomOY (M•,S)→ J •• induit
des résolutions injectives Hq(HomOY (M•,S)) → Hq

v(J ••) pour tout p. Ainsi, il nous
reste à vérifier que notre morphisme Γf induit un isomorphisme sur la page E2. Sur la
page E1, Γf est donné en appliquant Γ au morphisme

HomOY (Hq(M•), I•)→ Hq
v(J ••)

Or par hypothèse, le lemme 4.3 nous dis que

HomOY (Hq(M•),S)→ HomOY (Hq(M•), I•)

est une résolution injective, tout comme

Hq(HomOY (M•,S))→ Hq
v(J ••)

Puisque les deux faisceaux HomOY (Hq(M•),S) et Hq(HomOY (M•,S)) sont isomorphes
d’après le lemme 5.1, ils ont donc la même cohomologie sur Y ce qui signifie que Γf est
un isomorphisme sur la page E2. �

Avant d’aboutir au résultat final de ce paragraphe, on a besoin d’un dernier lemme
que l’on peut énoncer sous une forme générale.

Lemme 5.4 : Soient i : Y ↪→ X une immersion fermée et A• un complexe de faisceau de
OY -module. Les suites spectrales

Hp(Y,Hq(A•))⇒ Hp+q(Y,A•)

Hp(X,Hq(i∗A•))⇒ Hp+q(X, i∗A•)

sont isomorphes.

Preuve : Soient A• → I•• et i∗A• → J •• deux CE-résolutions. Les double-complexes

Γ(Y, I••) ; Γ(X,J ••)

induisent alors les deux suites spectrales voulues. On construit un morphisme comme
suit. i∗ est exact donc i∗A• → i∗I•• est une résolution. Il existe ainsi un morphisme f
unique à homotopie près rendant le triangle suivant commutatif

i∗I••

f

��
i∗A•

55

)) J ••

En appliquant Γ(X,−), on obtient un morphisme de double complexe

Γ(X, f) : Γ(Y, I••)→ Γ(X,J ••)

qui correspond sur la page E2 à l’isomorphisme

Hp(Y,Hq(A•)) = Hp(X, i∗H
q(A•)) ' Hp(X,Hq(i∗A•)) �

30

Proposition 5.5 : Soient i : Y ↪→ X une immersion fermée et L• un complexe de
faisceau localement libre de OX-module tel que H0(L•) = T , Hq(L•) = 0 pour tout q 6= 0
et Hq(i

∗L•) est localement libre pour tout q. Pour tout faisceau S de OY -module, les
suites spectrales

ExtpOY (Hq(i
∗L•),S)⇒ Extp+qOY (i∗L•,S)

Hp(X, ExtqOX (T , i∗S))⇒ Extp+qOX (T , i∗S)

sont isomorphes.

Preuve : Soit i∗S → J • une résolution injective. La deuxième suite spectrale est donné
par l’hypercohomologie sur X du complexe de faisceau HomOX (T ,J •) [4, Th.5.8.3]. Si
on regarde T comme un complexe de faisceau concentré en 0, on dispose par hypothèse
d’un quasi-isomorphisme

L•
q.is.→ T

Par injectivité, on obtient un quasi-isomorphisme

HomOX (T ,J •) q.is.→ HomOX (L•,J •)

de sorte que la deuxième suite spectrale est donnée par l’hypercohomologie sur X du
complexe total de HomOX (L•,J •). Soit S → I• une résolution injective. Le foncteur i∗
est exact, donc i∗S → i∗I• est une résolution et on a un triangle commutatif

i∗I•

q.is.

��
i∗S

55

)) J •

En particulier, puisque les fibres de L• sont libres, on obtient un quasi-isomorphisme

HomOX (L•, i∗I•)
q.is.→ HomOX (L•,J •)

Or le lemme 4.5 donne un isomorphisme

HomOX (L•, i∗I•) ' i∗HomOY (i∗L•, I•)

En conséquence, la deuxième suite spectrale est donnée par l’hypercohomologie sur X du
complexe total de i∗HomOY (i∗L•, I•), qui est d’après le lemme 5.4 donnée par l’hypercoho-
mologie sur Y du complexe total de HomOY (i∗L•, I•). Mais si on regarde S comme un
complexe concentré en 0, on dispose d’un quasi-isomorphisme

S q.is.→ I•

et puisque les fibres de i∗L• sont libres, on obtient un quasi-isomorphisme

HomOY (i∗L•,S)
q.is.→ HomOY (i∗L•, I•)

Ainsi la deuxième suite spectrale est isomorphe à la suite spectrale

Hp(Y,Hq(HomOY (i∗L•,S)))⇒ Hp+q(Y,HomOY (i∗L•,S))

Cette dernière est, par le lemme 5.3, isomorphe à la première suite spectrale. �

31

Une conséquence immédiate de cette proposition est le cas où l’immersion fermée est
l’application diagonale δ d’un schéma séparé X et où T = δ∗OX :

Corollaire 5.6 : Soient X un schéma séparé et de type fini sur un corps et L• un complexe
de faisceau localement libre de OX×X-module tel que H0(L•) ' δ∗OX , Hq(L•) = 0 pour
tout q 6= 0 et Hq(i

∗L•) est localement libre pour tout q. Pour tout faisceau F de OX-
module, les suites spectrales

ExtpOX (Hq(δ
∗L•),F)⇒ Extp+qOX (δ∗L•,F)

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)

sont isomorphes.

32

6 Résolutions plates

Après avoir établi un lien entre la cohomologie de Hochschild d’un schéma X séparé
et de type fini sur un corps avec l’hyper-ext d’une résolution localement libre de δ∗OX ,
on va se ramener à considérer des résolutions plates et quasi-cohérentes de δ∗OX . Ceci
nous permettra en particulier de démontrer les théorèmes 2.1 et 2.5 dans le cas où X est
affine en utilisant la résolution

B• → δ∗OX

introduite au lemme 2.4 (4).

Dans ce paragraphe, tous les complexes de châınes sont supposés bornés en bas et X
désigne un schéma quasi-projectif sur un corps. Le résultat suivant justifie la présence de
cette dernière hypothèse.

Lemme 6.1 : Soit F → G un épimorphisme de faisceau quasi-cohérent sur X. Si G
est cohérent alors il existe un faisceau localement libre L de OX-module ainsi qu’un
morphisme de faisceau L → F tel que la composition

L → F → G

est un épimorphisme.

Preuve : Supposons X projectif sur un anneau Noethérien et F cohérent. Dans ce cas
il existe un faisceau localement libre L de OX-module ainsi qu’un épimorphisme

L → F

[1, Ch.II, Cor.5.18]. Si X est seulement supposé quasi-projectif sur un corps, alors F se
prolonge sur l’adhérence de X dans Pn [1, Ch.II, Ex.5.15] qui est un schéma projectif
sur un anneau Noethérien. On est alors ramené à la situation précédente. Enfin, si F
est seulement supposé quasi-cohérent, alors F est l’union de ses sous-faisceaux cohérents
[1, Ch.II, Ex.5.15.e] et l’un d’entre eux est envoyé sur G. En effet, la restriction de
l’épimorphisme F → G sur un ouvert affine de X est déterminée par une application
linéaire surjective M → N avec N est de type fini et se restreint donc sur un sous module
de type fini M ′ ⊂M en une surjection. Puisque X est quasi-compact, on peut construire
le faisceau cohérent F ′ ⊂ F voulu. D’après ce qui précède, il existe un faisceau localement
libre L de OX-module ainsi qu’un épimorphisme

L → F ′

On obtient ainsi une composition

L → F ′ ⊂ F → G

qui est un épimorphisme. �

Lemme 6.2 : Soit K• un complexe de faisceau quasi-cohérent sur X tel que chaque
Hi(K•) est cohérent. Il existe un complexe de faisceau localement libre L• de OX-module
et un quasi-isomorphisme

L•
q.is.→ K•

33

Preuve : On construit L• par récurrence sur p ∈ N. On initialise avec le lemme 6.1 qui
fournit un faisceau localement libre L0 de OX-module et un morphisme de faisceau

L0 → K0

tels que la composition

L0 → K0 → H0(K•)

est un épimorphisme. Supposons à présent que l’on dispose d’un complexe de faisceau
localement libre L• de OX-module

0 // Lp // Lp−1
// · · · // L1

// L0
// 0

et d’un morphisme de complexe de faisceau de OX-module

f : L• → K•

tel que le morphisme induit sur l’homologie

f∗ : Hi(L•)→ Hi(K•)

est un isomorphisme pour tout i < p et un épimorphisme pour i = p. Soit P le tiré-en-
arrière suivant

P d′ //

f ′

��

Zp(L•)
f

��
Kp+1 d

// Zp(K•)

On dispose d’un diagramme commutatif à lignes exactes

P d′ //

f ′

��

Zp(L•)
µ //

f

��

coker(d′) //

ϕ

��

0

Kp+1 d
// Zp(K•) ν

// Hp(K•) // 0

où ϕ est donné par la propriété universelle du conoyau de d′ :

(ν ◦ f) ◦ d′ = ν ◦ d ◦ f ′ = 0

Notre hypothèse de récurrence implique que ϕ ◦ µ = ν ◦ f = f∗ est un épimorphisme.
Donc ϕ est un épimorphisme. De plus, une chasse au diagramme sur les fibres permet de
montrer que ϕ est un monomorphisme : si ϕ(x) = 0 alors on choisit y tel que µ(y) = x

y � µ //
_

f

��

x
_

ϕ

��
· � ν

// 0

puis on choisit z tel que dz = f(y)

(z, y) � d′ //
_

f ′

��

y � µ //
_

f
��

x
_

ϕ

��
z �

d
// dz �

ν
// 0

34

et on obtient x = µ ◦ d′(z, y) = 0. Ceci prouve que coker(d′) ' Hp(K•) est un faisceau
cohérent. Par conséquent, im(d′) = ker(µ) est un faisceau cohérent [1, Ch.II, Prop.5.7].
Utilisons à nouveau le lemme 6.1 : d’une part, on peut trouver un faisceau localement
libre L′p+1 sur X et un morphisme

α : L′p+1 → P

tels que im(d′ ◦ α) = im(d′) ; et d’autre part un faisceau localement libre L′′p+1 sur X et
un morphisme

β : L′′p+1 → Zp+1(K•)

dont la composition par la projection Zp+1(K•) → Hp+1(K•) est un épimorphisme. On
pose alors Lp+1 = L′p+1 ⊕ L′′p+1, puis on définit une différentielle

(d′ ◦ α)⊕ 0 : Lp+1 → Zp(L•)

et un morphisme

(f ′ ◦ α)⊕ β : Lp+1 → Kp+1

Par construction, on obtient un morphisme de complexe

0 // Lp+1
(d′◦α)⊕0//

(f ′◦α)⊕β
��

Lp //

f

��

· · · // L1
//

f

��

L0
//

f

��

0

· · · // Kp+1
// Kp // · · · // K1

// K0
// 0

Puisque im(d′ ◦ α) = im(d′) = ker(µ) = ker(ϕ ◦ µ) = ker(ν ◦ f), ce morphisme induit en
homologie un isomorphisme

Hp(L•) ' Hp(K•)

Enfin, la construction de β implique que ce morphisme induit en homologie un épimorphisme

Hp+1(L•)→ Hp+1(K•)

car L′′p+1 ⊂ Zp+1(L•) = Hp+1(L•). On peut donc répéter cette construction à l’infini. �

Lemme 6.3 : Sous les mêmes hypothèses, supposons L′• et L′′• deux complexes de
faisceau localement libre de OX-module quasi-isomorphes à K• :

L′•
q.is.→ K• ; L′′•

q.is.→ K•

Il existe un complexe de faisceau localement libre L• de OX-module et un diagramme
commutatif à homotopie près

L•
q.is. //

q.is
��

L′•
q.is.

��
L′′• q.is.

// K•

Preuve : Soit M• le cône de l’identité de K•[1]. Il arrive avec un épimorphisme

M• → K•

Soit G• le noyau du morphisme

L′• ⊕ L′′• ⊕M• → K•

35

La suite exacte courte

0 // G• // L′• ⊕ L′′• ⊕M• // K• // 0

induit une longue suite exacte homologique

· · · // Hn(G•) // Hn(L′•)⊕Hn(L′′•) // Hn(K•) ∂ // Hn−1(G•) // · · ·
Par hypothèse, le morphisme

Hn(L′•)⊕Hn(L′′•) // Hn(K•)

est surjectif et son noyau est canoniquement isomorphe à Hn(L′•) de telle sorte que le
morphisme connectant ∂ est nul et que la composition par la projection canonique

G• → L′• ⊕ L′′• ⊕M• → L′•
est un quasi-isomorphisme. Le lemme 6.2 permet de trouver un complexe de faisceau
localement libre L• de OX-module et un quasi-isomorphisme

L•
q.is.→ G•

En utilisant les projections canoniques

L′• ⊕ L′′• ⊕M• → L′• ; L′• ⊕ L′′• ⊕M• → L′′• ⊕M•

on construit un carré commutatif

L•
q.is. //

q.is

��

L′•

q.is.

��
L′′• ⊕M• q.is.

// K•

Enfin, en utilisant l’inclusion composée à la projection

L′′• ⊕M• → L′′• → L′′• ⊕M•

on obtient le carré commutatif à homotopie près recherché

L•
q.is. //

q.is
��

L′•
q.is.

��
L′′• q.is.

// K•

Pour le voir, il suffit de vérifier que le morphisme de complexe

L• → G• → L′• ⊕ L′′• ⊕M• → L′• ⊕ L′′• → K•
est homotope à l’application nulle. Pour ce faire, on utilise la contractibilité du côneM•
qui fournit une homotopie s

· · · //Mp+1
//

1
��

s

zz

Mp
//

1
��

s

zz

Mp−1
//

1
��

s

zz

· · ·
s

zz
· · · //Mp+1

//Mp
//Mp−1

// · · ·

et on obtient une homotopie S

· · · // Lp+1
//

1

��

S

{{

Lp //

1

��

S

{{

Lp−1
//

1

��

S

{{

· · ·
S

{{
· · · // Kp+1

// Kp // Kp−1
// · · ·

en prenant S : Lp →Mp
s→Mp+1 → Kp+1. �

36

Lemme 6.4 : SoientA → B un morphisme de faisceau d’anneau sur un espace topologique
et f : F• → G• un morphisme de complexe de faisceau plat de A-module. Si f est un
quasi-isomorphisme alors

1⊗ f : B ⊗A F• → B ⊗A G•

est un quasi-isomorphisme.

Preuve : Soit M• le cône de f . Par hypothèse, M• est exact et se décompose en suites
exactes courtes

0 // Z1
//M1

//M0
// 0

0 // Zp //Mp
// Zp−1

// 0

pour tout p > 1. Aussi, M• est plat sur A, donc Zp est plat sur A pour tout p > 0 [4,
Ex.3.2.2]. Ainsi, TorA1 (B,Zp) pour tout p > 0 et on a des suites exactes courtes

0 // B ⊗A Z1
// B ⊗AM1

// B ⊗AM0
// 0

0 // B ⊗A Zp // B ⊗AMp
// B ⊗A Zp−1

// 0

pour tout p > 1, de sorte que B ⊗AM•, le cône de (1⊗ f), est exact. �

On arrive au résultat le plus important de ce paragraphe. En corollaire, on obtiendra
les théorèmes 2.1 et 2.5 dans le cas affine, mais on utilisera également ce résultat pour le
cas général.

Proposition 6.5 : (1) Soit G• un complexe de faisceau plat et quasi-cohérent de OX×X-
module tel que H0(G•) = δ∗OX et Hq(G•) = 0 pour tout q 6= 0. Pour tout faisceau F de
OX-module, on a un isomorphisme de δ-foncteur en F

Hn(OX ,F) ' ExtnOX (δ∗G•,F)

(2) Si de plus Hq(δ∗G•) est localement libre pour tout q, alors les suites spectrales

ExtpOX (Hq(δ
∗G•),F)⇒ Extp+qOX (δ∗G•,F)

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F)

sont isomorphes.

Preuve : (1) Le lemme 6.2 donne un complexe de faisceau localement libre L• de OX-
module et un quasi-isomorphisme

L•
q.is.→ G•

Le foncteur δ−1 est exact et δ∗ = (OX ⊗δ−1OX×X −) ◦ δ−1. D’après le lemme 6.4, on a un
quasi-isomorphisme

δ∗L•
q.is.→ δ∗G•

En utilisant le corollaire 4.7 et le lemme 4.1, on obtient un isomorphisme naturel en F

Hn(OX ,F) = ExtnOX (δ∗L•,F) ' ExtnOX (δ∗G•,F)

qui, d’après le lemme 6.3, ne dépend pas du choix de

L•
q.is.→ G•

37

(2) Plus précisément, le lemme 4.1 donne un isomorphisme entre les suites spectrales

ExtpOX (Hq(δ
∗G•),F)⇒ Extp+qOX (δ∗G•,F)

ExtpOX (Hq(δ
∗L•),F)⇒ Extp+qOX (δ∗L•,F)

Cette dernière est, par le corollaire 5.6, isomorphe à la suite spectrale

Hp(X, ExtqOX×X (OX ,F))⇒ Hp+q(OX ,F) �

On peut à présent démontrer les théorèmes 2.1 et 2.5 dans le cas où X = Spec A
est un schéma affine sur une algèbre de type fini sur un corps. La résolution plate (car
projective) de Ae-module

B•(A)→ A

induit une résolution de faisceau plat quasi-cohérent de OX×X-module

B• → δ∗OX

On peut lui appliquer la proposition 6.5. Pour conclure, il suffit de constater par le lemme
2.4 (4) et le lemme 4.1 que les suites spectrales

ExtpOX (Hq(δ
∗B•),F)⇒ Extp+qOX (δ∗B•,F)

ExtpOX (Hq,F)⇒ HHp+q(X,F)

sont isomorphes.

38

7 Lemmes théoriques sur les faisceaux

Pour pouvoir aborder le théorème dans sa généralité, il nous faut aller plus loin dans
les considérations géométriques. Dans ce paragraphe, on va mettre à profit la propriété de
séparation des schémas, satisfaite en particulier par les schémas quasi-projectifs. L’idée
principale est la suivante. Dans un schéma X séparé sur un schéma affine, l’intersection
de deux ouverts affines est encore un ouvert affine [1, Ch.II, Ex.4.3]. Une conséquence
importante est que pour tout ouvert affine U de X, l’inclusion U ↪→ X est un morphisme
affine. Ce que l’on va constater, c’est que les morphismes affines ont les bonnes propriétés
concernant les faisceaux quasi-cohérents et, s’ils sont plats, envoient par poussé-en-avant
les faisceaux plats quasi-cohérents vers des faisceaux plats quasi-cohérents.

Commençons par une propriété des faisceaux associés aux préfaisceaux de module :

Lemme 7.1 : Soient R un préfaisceau d’anneau sur un espace topologique X, R son
faisceau associé, M un préfaisceau de R-module et M son faisceau associé. Si pour tout
ouvert U de X, M(U) est plat sur R(U), alors M est plat sur R.

Preuve : PuisqueM⊗R− est toujours exact à droite, on doit s’assurer que si f : F → G
est un monomorphisme de faisceau de R-module alors 1⊗ f :M⊗RF →M⊗RG est un
monomorphisme de faisceau de R-module. Par hypothèse, le morphisme de préfaisceau
1 ⊗ f : M⊗RF → M⊗RG est un monomorphisme. On a donc des monomorphismes sur
les fibres. Le fait est que M⊗RF et M⊗RF ont les mêmes fibres quelque soit F . Ainsi,
le morphisme 1 ⊗ f : M⊗RF → M⊗RG est un monomorphisme sur les fibres et par
conséquent un monomorphisme de faisceau de R-module. �

Intéressons-nous à présent aux morphismes affines de schéma :

Lemme 7.2 : Soit f : X → Y un morphisme plat et affine de schéma. Si F est un
faisceau plat et quasi-cohérent sur X alors f∗F est plat et quasi-cohérent sur Y .

Preuve : La question étant locale en Y , on est ramené à traiter le cas où Y = Spec A
est affine, et par hypothèse sur f , où X = Spec B est affine. f est alors donné par un
morphisme plat d’anneau ϕ : A → B, et F est associé à un B-module plat M . Dans ce
cas, f∗F est associé au A-module M (dont la loi externe est donnée par ϕ), ce dernier
étant plat sur A étant donné les isomorphismes de foncteur

M⊗A− ' (M⊗BB)⊗A− ' (M⊗B−) ◦ (B⊗A−) �

Lemme 7.3 : Soit f : X → Y un morphisme affine de schéma. Le foncteur

f∗ : q − Coh(X)→ q − Coh(Y)

est bien défini et exact.

Preuve : La question étant locale en Y , on est ramené une nouvelle fois au cas où
Y = Spec A est affine puis par hypothèse sur f , où X = Spec B est affine. Dans cette
configuration, les catégories q −Coh(X) et q −Coh(Y) sont respectivement équivalentes
aux catégories B −mod et A−mod, et f∗ correspond alors au foncteur

B −mod→ A−mod

qui envoie un B-module M vers le A-module M induit, lequel est exact. �

39

Lemme 7.4 : Pour tout carré cartésien de schéma

X ′
g′ //

f ′

��

X

f
��

S ′ g
// S

tel que f est affine, il existe un isomorphisme de foncteur

g∗f∗ ' f ′∗g
′∗ : q − Coh(X)→ q − Coh(S ′)

Preuve : La transformation naturelle g∗f∗ → f ′∗g
′∗ existe dès que l’on a un tel carré

commutatif. Pour la construire, on part de la co-unité puis on utilise l’adjonction :

1→ g′∗g
′∗

f∗ → f∗g
′
∗g
′∗ = g∗f

′
∗g
′∗

g∗f∗ → f ′∗g
′∗

Pour prouver l’isomorphisme, on commence par le cas où S = Spec A et S ′ = Spec A′

sont des schémas affines. Alors par hypothèse sur f , X = Spec B est un schéma affine
et puisque le carré est cartésien, X ′ = Spec A′ ⊗A B est également un schéma affine.
Dans cette configuration, les catégories q − Coh(X) et q − Coh(S ′) sont respectivement
équivalentes aux catégories B −mod et A′ −mod et la transformation naturelle

g∗f∗ → f ′∗g
′∗

correspond à l’isomorphisme de foncteur

A′ ⊗A − ' (A′ ⊗A B)⊗B − : B −mod→ A′ −mod

Pour le cas général, on remarque que pour tout faisceau F de OX-module, tout ouvert U
de S et tout ouvert U ′ de S ′ tel que g(U ′) ⊂ U , on a g′(f ′−1(U ′)) ⊂ f−1(U) et les deux
identifications suivantes

(g∗f∗F)|U ′ = (g|U ′)∗(f |f−1(U))∗(F|f−1(U))

(f ′∗g
′∗F)|U ′ = (f ′|f ′−1(U ′))∗(g

′|f ′−1(U ′))
∗(F|f−1(U))

La première identification découle du fait que (g−1f∗F)|U ′ et (g|U ′)−1(f |f−1(U))∗(F|f−1(U))
sont deux faisceaux associés au même préfaisceau

U ′ ⊃ V 7→ colim
W⊃g(V)

Γ(f−1(W),F) = colim
U⊃W⊃g(V)

Γ(f−1(W),F|f−1(U))

La deuxième identification provient du même raisonnement : pour tout ouvert V de U ′,

Γ(V, (f ′∗g
′∗F)|U ′) = Γ(f ′−1(V), g′∗F)

Γ(V, (f ′|f ′−1(U ′))∗(g
′|f ′−1(U ′))

∗(F|f−1(U))) = Γ(f ′−1(V), (g′|f ′−1(U ′))
∗(F|f−1(U)))

et les deux faisceaux g′−1F et (g′|f ′−1(U ′))
−1(F|f−1(U)) sont associés au même préfaisceau

f ′−1(U ′) ⊃ V 7→ colim
W⊃g′(V)

Γ(W,F) = colim
f−1(U)⊃W⊃g′(V)

Γ(W,F|f−1(U))

40

Ceci étant dit, si on fixe un ouvert affine U de S, alors pour tout ouvert affine U ′ de S ′

tel que g(U ′) ⊂ U , on a un carré cartésien de schéma

f ′−1(U ′)
g′|
f ′−1(U′) //

f ′|
f ′−1(U′)

��

f−1(U)

f |f−1(U)

��
U ′

g|U′
// U

On se retrouve alors dans la première situation considérée et on obtient l’isomorphisme
des faisceaux restreints sur U ′ :

(g∗f∗F)|U ′ ' (f ′∗g
′∗F)|U ′

Pour conclure, on choisit un recouvrement U de S par des ouverts affines, puis on recouvre
g−1(U) par des ouverts affines de S ′ pour tout U ∈ U . On obtient alors un recouvrement
U ′ de S ′ par des ouverts affines tels que l’image de chaque U ′ ∈ U ′ par g est contenu dans
un U ∈ U . On a ainsi l’isomorphisme sur un recouvrement de S ′ et donc sur S ′. �

On termine ce paragraphe par un résultat élémentaire qu’on pourrait aussi énoncer
dans la catégorie des espaces topologiques :

Lemme 7.5 : Soient f : X → S un morphisme de schéma et U un ouvert de X. On
considère le carré cartésien

f−1(U)
j //

g

��

X

f
��

U
i

// S

où i et j sont les inclusions et g = f |f−1(U). Pour tout faisceau F de OX-module,

i∗f∗F = g∗j
∗F

Preuve : Puisque i et j sont des inclusions, les foncteurs i∗ et j∗ correspondent aux
restrictions. En fait, la restriction sur U cöıncide avec le foncteur i−1 et on a

i∗ = (OU ⊗i−1OX −) ◦ i−1

OU = OX |U = i−1OX

Ainsi, pour tout ouvert V de U , on a

Γ(V, i∗f∗F) = Γ(f−1(V),F) = Γ(g−1(V),F) = Γ(V, g∗j
∗F) �

41

8 Préfaisceau de faisceau

L’objectif de ce paragraphe est d’introduire le complexe de Čech associé à un préfais-
ceau de faisceau. Dans certaines configurations topologiques et algébriques, la cohomolo-
gie de Čech cöıncide avec la cohomologie des faisceaux [1, Ch.III, Th.4.5]. Nous allons lui
trouver un intérêt dans ce qu’il nous permettra de recoller, à quasi-isomorphisme près,
une famille de complexe de faisceau indexée sur les ouverts affines de notre schéma en un
double complexe de faisceau. Pour pouvoir utiliser les propriétés du complexe de Čech à
plusieurs reprises et dans des situations différentes, on préfèrera dans un premier temps
travailler avec un préfaisceau à valeurs dans une catégorie abélienne arbitraire.

Soient X un espace topologique, A une catégorie abélienne (complète) et Q un préfais-
ceau sur X à valeurs dans A dont les restrictions seront toutes notées par ρ. A tout
recouvrement ouvert U = (Ui)i∈I de X, on associe un complexe de cochaine de A, noté
C•(U , Q) comme suit. On choisit un bon ordre ≤ sur I, et on considère pour tout entier
naturel n le produit

Cn(U , Q) =
∏

i0<···<in
Q(Ui0···in)

où Ui0···in = Ui0 ∩ · · · ∩ Uin . Considérons les projections canoniques

pi0···in : Cn(U , Q)→ Q(Ui0···in

et définissons pour tout entier ν compris entre 0 et n+ 1 les applications

δν : Cn(U , Q)→ Cn+1(U , Q)

par pi0···in+1 ◦ δν = ρ ◦ pi0···îν ···in+1
. On peut alors définir les différentielles

d =
n+1∑
ν=0

(−1)νδν : Cn(U , Q)→ Cn+1(U , Q)

On dispose aussi d’une application définie à partir des restrictions

ε : Q(X)→ C0(U , Q)

c’est à dire pi ◦ ε = ρ. On peut vérifier que l’on obtient bien un complexe dans A

0 // Q(X) ε // C0(U , Q) d // C1(U , Q) d // C2(U , Q) d // · · ·

On voudrait s’assurer que ce complexe est indépendant du choix de l’ordre sur I. Pour
ce faire, on étend les projections en posant

pi0···in = 0

si pour deux indices µ 6= ν on a iµ = iν et

pσ(i0)···σ(in) = sgn(σ)pi0···in

pour toute permutation σ de {i0, · · · , in}. Alors si on se donne un raffinement V = (Vj)j∈J
de U , on peut choisir une application α : J → I telle que Vj ⊂ Uα(j) pour ensuite définir
un morphisme de complexe qui commute avec ε

α∗ : C•(U , Q)→ C•(V , Q)

par pj0···jn ◦ α = ρ ◦ pα(j0)···α(jn) Lorsque V = U avec un autre ordre, on peut prendre
α = idI et α∗ est alors un isomorphisme.

42

On énonce à présent un résultat qui justifiera plus tard la généralité choisie pour notre
construction du complexe de Čech.

Lemme 8.1 : Si X ∈ U alors le complexe

0 // Q(X) ε // C0(U , Q) d // C1(U , Q) d // C2(U , Q) d // · · ·

est exact.

Preuve : On choisit sur I un ordre tel que min I = 0 et X = U0. On peut alors expliciter
une homotopie S entre l’identité et l’application nulle

0 // Q(X) ε //

1
��

C0(U , Q) d //

1
��

S

xx

C1(U , Q) d //

1
��

S

xx

C2(U , Q) d //

1
��

S

xx

· · ·
S

xx
0 // Q(X) ε

// C0(U , Q)
d
// C1(U , Q)

d
// C2(U , Q)

d
// · · ·

définie par pi1···in ◦ S =

{
0 si i1 = 0
p0i1···in si i1 > 0

pour tout n ≥ 1 et S = p0 pour n = 0. �

Ce lemme va s’avérer très utile lorsque A sera la catégorie des faisceaux ou des com-
plexes de faisceau sur un schéma. Le fait que l’exactitude d’une suite de faisceau peut
s’étudier localement va nous permettre de s’y ramener en permanence. Quittons les
généralités et concentrons-nous à présent sur les faisceaux.

Soit F un faisceau sur X. On construit un préfaisceau PXF sur X à valeurs dans les
faisceaux sur X en posant pour tout ouvert U de X, PXF(U) = i∗(F|U) où i : U ↪→ X
désigne l’inclusion. Les restrictions sont données pour toute inclusion V ⊂ U et tout
ouvert W par

Γ(W,PXF(U)) = Γ(W ∩ U,F)→ Γ(W ∩ V,F) = Γ(W,PXF(V))

Lemme 8.2 : Pour tout ouvert U et V de X, PXF(U)|V = PVF(U ∩ V).

Preuve : On applique le lemme 7.5 au carré cartésien d’inclusion

U ∩ V j //

g
��

U

f
��

V
i
// X

et on obtient PXF(U)|V = i∗f∗f
∗F = g∗j

∗f ∗F = PVF(U ∩ V). �

Supposons à présent que U est fini. Avec cette hypothèse, le complexe de Čech
C•(U , Q) est toujours borné en haut, car Cn(U , Q) est un produit vide pour tout n ≥ |U|.

Corollaire 8.3 : Pour tout ouvert V de X, C•(U , PXF)|V = C•(U ∩ V, PVF).

Preuve : On a vu au lemme 7.5 que la restriction sur V est donnée par le foncteur adjoint
à gauche i∗ où i : V ↪→ X désigne l’inclusion. Cette opération commute donc avec toutes
les colimites et en particulier avec les produits finis d’une catégorie abélienne. Ainsi,

Cn(U , PXF)|V =
∏

i0<···<in
PXF(Ui0···in)|V =

∏
i0<···<in

PVF(Ui0···in ∩ V) = Cn(U ∩ V, PVF) �

43

Lemme 8.4 : Le complexe de faisceau

0 // F // C0(U , PXF) // C1(U , PXF) // C2(U , PXF) // · · ·

est exact.

Preuve : L’exactitude d’un complexe de faisceau est équivalente à l’exactitude locale sur
un recouvrement. Puisque U recouvre X, on peut vérifier l’exactitude seulement sur les
ouverts V ∈ U . Le fait est que V ∈ U ∩ V , donc le lemme 8.1 nous dis que le complexe

0 // PVF // C0(U ∩ V, PVF) // C1(U ∩ V, PVF) // C2(U ∩ V, PVF) // · · ·

est exact. Mais PVF = F|V donc le résultat découle du corollaire 8.3. �

Corollaire 8.5 : Si F• est un complexe de faisceau sur X alors

ε : F• → C•(U , PXF•)

est un quasi-isomorphisme.

Preuve : En regardant F• comme un double complexe concentrée dans la ligne indicée
par 0, les morphismes ε : Fp → C•(U , PXFp) induisent un morphisme de double complexe

ε : F• → C•(U , PXF•)

Puisque U est fini, le double complexe C•(U , PXF•) est borné (i.e. ses diagonales n’ont
qu’un certain nombre d’objet non nul) et on peut calculer sa cohomologie à partir de suite
spectrale. Lorsque l’on filtre le double complexe

...
...

· · · // Cq+1(U , PXFp) //

OO

Cq+1(U , PXFp+1) //

OO

· · ·

· · · // Cq(U , PXFp) //

OO

Cq(U , PXFp+1) //

OO

· · ·

...

OO

...

OO

selon les colonnes, on obtient un isomorphisme à la page E1 d’après le lemme 8.4, car la
cohomologie verticale est celle du complexe de Čech C•(U , PXFp). �

On termine ce paragraphe par un résultat que l’on utilisera lors de la démonstration
du théorème générale :

Lemme 8.6 : Soit M• → N• un morphisme de complexe de préfaisceau sur X. Si pour

tout ouvert U de X, c’est un quasi-isomorphisme sur les sections M•(U)
q.is.→ N•(U) alors

le morphisme de double complexe induit est un quasi-isomorphisme :

C•(U ,M•)
q.is.→ C•(U , N•)

44

Preuve : Lorsqu’on filtre selon les colonnes le double complexe

...
...

· · · // Cp(U ,M q+1) //

OO

Cp+1(U ,M q+1) //

OO

· · ·

· · · // Cp(U ,M q) //

OO

Cp+1(U ,M q) //

OO

· · ·

...

OO

...

OO

on obtient un isomorphisme à la page E1 : puisque U est fini, les produits sont finis et
commutent avec la cohomologie, et ainsi la cohomologie verticale est

Hq
v(Cp(U ,M•) =

∏
i0<···<in

Hq(M•(Ui0···ip)) = Cp(U , Hq(M•) �

45

9 Technique de recollement de Čech

Soit X un schéma quasi-compact et séparé sur un corps. Pour chaque ouvert affine
U de X, on se donne un complexe S•U de faisceau de OU -module. Supposons que pour
chaque inclusion V ⊂ U d’ouverts affines de X, on dispose d’un morphisme de complexe
de faisceau de OV -module

ρUV : S•U |V → S•V

satisfaisant pour tout ouvert affine W ⊂ V ⊂ U de X les relations suivantes :

ρUU = idS•U
ρUW = ρVW ◦ (ρUV)|W

Concrètement, c’est une donnée de recollement de faisceau, au fait près que les ρUV ne
sont à priori pas des isomorphismes. Si chaque ρUV est un isomorphisme, alors il existe
un complexe S• de faisceau de OX-module et des isomorphismes de complexe

σU : S•|U → S•U

tels que ρU,U∩V ◦σU = ρV,U∩V ◦σV sur U ∩V pour tout ouvert affine U et V de X [1, Ch.II,
Ex.1.22]. Plus généralement, en supposant que chaque ρUV est un quasi-isomorphisme,
on va construire des préfaisceaux PUS• de complexe de faisceau tel que pour tout re-
couvrement fini U de X par des ouverts affines et tout ouvert affine V de X, on a des
quasi-isomorphismes

S•V
q.is.→ C•(U ∩ V, PV S•)

q.is.← C•(U , PXS•)|V

Le faisceau C•(U , PXS•) jouera alors le rôle de recollement à quasi-isomorphisme près.
Cette construction, appliquée au cas particulier S•U = C•(Γ(U,OU))∼, nous permettra de
démontrer le théorème général.

Pour tout ouvert affine U de X, soit PXS•(U) = j∗S•U où j : U ↪→ X désigne
l’inclusion. Si on a deux ouverts affines V ⊂ U , on peut définir une restriction

PXS•(U)→ PXS•(V)

donnée pour tout ouvert W de X par

Γ(W,PXS•(U)) = Γ(W ∩U,S•U)→ Γ(W ∩V,S•U |V)
ρUV→ Γ(W ∩V,S•V) = Γ(W,PXS•(V))

Ceci fait de PXS• un préfaisceau sur X de complexe de faisceau de OX-module. En fait,
si les complexes S•U proviennent d’un même complexe S•, c’est-à-dire si S•U = S•|U , et si
les ρUV correspondent aux restrictions de S•, alors cette construction correspond à celle
du paragraphe précédent. On va pouvoir adapter les énoncés à cette situation.

Lemme 9.1 : Si chaque S•U est quasi-cohérent et si chaque ρUV est un quasi-isomorphisme
alors on a des quasi-isomorphismes naturels

PXS•(U)|V
q.is.→ PV S•(U ∩ V)

Preuve : Le lemme 7.5 appliqué au carré cartésien d’inclusion

U ∩ V i′ //

j′

��

U

j
��

V
i
// X

46

permet d’obtenir fonctoriellement le morphisme suivant

PXS•(U)|V = i∗j∗S•U = j′∗i
′∗S•U = j′∗(S•U |U∩V)

j′∗ρU,U∩V−→ PV S•(U ∩ V)

L’hypothèse de séparation sur X montre que j′ est un morphisme affine de schéma. Ainsi,
d’après le lemme 7.3, j′∗ est exact et j′∗ρU,U∩V est un quasi-isomorphisme. �

Soit U un recouvrement fini de X par des ouverts affines. Cette propriété de fini-
tude permet d’utiliser les suites spectrales pour calculer l’homologie du double complexe
C•(U , PXS•) :

Corollaire 9.2 : Sous les mêmes hypothèses, on a un quasi-isomorphisme naturel

C•(U , PXS•)|V
q.is.→ C•(U ∩ V, PV S•)

Preuve : Le morphisme est donné par le lemme 9.1 :

Cn(U , PXS•)|V =
∏

i0<···<in
PXS•(Ui0···in)|V

q.is.→
∏

i0<···<in
PV S•(Ui0···in ∩ V) = Cn(U ∩ V, PV S•)

Si on filtre le double complexe

...

��

...

��
· · · // Cp(U , PXSq)|V //

��

Cp+1(U , PXSq)|V //

��

· · ·

· · · // Cp(U , PXSq−1)|V //

��

Cp+1(U , PXSq−1)|V //

��

· · ·

...
...

selon les colonnes, on obtient un isomorphisme à la page E1, car l’homologie verticale est

Hv
q (Cp(U , PXS•)|V) =

∏
i0<···<in

Hq(PXS•(Ui0···in)|V) �

Pour chaque ouvert affine V de X, on dispose d’une augmentation

ε : PV S•(V) = S•V → C•(U ∩ V, PV S•)

introduite au paragraphe précédent. On se retrouve alors dans une situation analogue à
celle du lemme 8.4, où l’on avait construit une résolution de faisceau.

Lemme 9.3 : Sous les mêmes hypothèses, on a une résolution de complexe de faisceau

0 // S•V // C0(U ∩ V, PV S•) // C1(U ∩ V, PV S•) // · · ·

Preuve : Puisque l’on travail avec des faisceaux, on peut vérifier l’exactitude seulement
sur un recouvrement, typiquement sur chaque W ∈ U∩V . On a alors un carré commutatif

S•V |W //

q.is.

��

C•(U ∩ V, PV S•)|W
q.is.

��
S•W // C•(U ∩W,PWS•)

47

de sorte que l’exactitude du complexe

0 // S•V |W // C0(U ∩ V, PV S•)|W // C1(U ∩ V, PV S•)|W // · · ·

est équivalente à l’exactitude du complexe

0 // S•W // C0(U ∩W,PWS•) // C1(U ∩W,PWS•) // · · ·

Ce dernier est exact d’après le lemme 8.1, car W ∈ U ∩W et PWS•(W) = S•W . �

Considérons à présent le cas où S•U est le faisceau quasi-cohérent sur U associé au
complexe de Γ(U,OU)-module C•(Γ(U,OU)). Les ρUV sont donnés par les applications

Γ(V,OV)⊗Γ(U,OU) C•(Γ(U,OU))→ C•(Γ(V,OV))

Ce sont des quasi-isomorphismes, comme cela a pu être remarqué au paragraphe 2 : une
immersion ouverte de schéma affine V ↪→ U induit un morphisme plat

Γ(U,OU)→ Γ(V,OV)

Grâce aux propriétés de l’homologie de Hochschild, on obtient

Hn(Γ(V,OV)⊗Γ(U,OU) C•(Γ(U,OU))) ' Γ(V,OV)⊗Γ(U,OU) Hn(C•(Γ(U,OU)))

= Γ(V,OV)⊗Γ(U,OU) HHn(Γ(U,OU)) ' HHn(Γ(V,OV)) = Hn(C•(Γ(V,OV)))

On peut donc utiliser les résultats précédents à ce cas particulier. En fait, ces faisceaux
S•U ressemblent aux faisceaux restreins C•|U . Plus précisément, on a un morphisme

S•U → C•|U
donné sur les ouverts principaux par les applications canoniques

Γ(U,OU)s ⊗Γ(U,OU) C•(Γ(U,OU))→ C•(Γ(U,OU)s)

pour tout s ∈ Γ(U,OU). C’est un quasi-isomorphisme, comme le montre le lemme 2.4 (4)
appliqué à U , en constatant que l’isomorphisme de complexe de Γ(U,OU)-module

Γ(U,OU)⊗Γ(U,OU)e B•(Γ(U,OU)) ' C•(Γ(U,OU))

induit un isomorphisme de faisceau quasi-cohérent

δU
∗(B•(Γ(U,OU))∼) ' S•U

Tout ceci nous amène au dernier résultat de ce paragraphe.

Lemme 9.4 : C•(U , PXS•)
q.is.→ C•(U , PXC•)

Preuve : Puisqu’il s’agit d’un morphisme de faisceau, on peut démontrer l’énoncé sur un
recouvrement, à savoir sur chaque V ∈ U . On a alors le diagramme commutatif suivant

C•(U , PXS•)|V //

q.is.

��

C•(U , PXC•)|V
=

��
C•(U , PXS•)|V // C•(U , PXC•)|V

S•V q.is.
//

q.is.

OO

C•|V

q.is.

OO

L’égalité et les quasi-isomorphismes verticaux se justifient respectivement (de gauche à
droite puis de haut en bas) par le corollaire 9.2, le lemme 8.2, le lemme 9.3 et le corollaire
8.5. On obtient le résultat voulu. �

48

10 Preuve du théorème

Soit X un schéma quasi-projectif sur un corps. Pour chaque ouvert affine U = Spec A
de X, on peut considérer B•U le faisceau quasi-cohérent sur U × U = Spec Ae associé au
complexe de Ae-module B•(A). On peut aussi considérer S•U le faisceau quasi-cohérent
sur U associé au complexe de A-module C•(A). Comme il a été remarqué précédemment,
ces deux objets sont liés par un isomorphisme de complexe de faisceau de OU -module

S•U ' δU
∗B•U

On va définir un préfaisceau E• sur les ouverts affines de X à valeurs dans les faisceaux
quasi-cohérents de OX×X-module.

Pour tout ouvert affine U de X, on note E•(U) = i∗B•U où i : U×U ↪→ X×X désigne
l’inclusion. Pour tout ouvert affine V ∈ U , on dispose d’une restriction

Γ(U,OU)→ Γ(V,OV)

qui induit canoniquement un morphisme de complexe de Γ(U,OU)-module

B•(Γ(U,OU))→ B•(Γ(V,OV))

et qui par suite induit un morphisme de faisceau de OU×U -module

B•U → i′∗B•V

où i′ : V × V ↪→ U × U désigne l’inclusion. En appliquant i∗ on obtient une restriction

E•(U) = i∗B•U → i∗i
′
∗B•V = E•(V)

qui fait de E• un préfaisceau.

Choisissons un recouvrement fini U de X par des ouverts affines. Considérons ensuite
F•• = C•(U , E•) et F• son complexe total, qui est borné en bas. Chaque B•U est un
complexe de faisceau quasi-cohérent et plat de OU×U -module. D’après le lemme 7.2,
chaque E•(U) = i∗B•U , et par suite F•, est un complexe de faisceau quasi-cohérent et plat
de OX×X-module. Enfin, la résolution de Ae-module

B•(A)→ A

induit une résolution de faisceau quasi-cohérent de OU×U -module

B•U → δU∗OU

et en appliquant i∗, le lemme 7.3 montre que l’on obtient un quasi-isomorphisme

E•(U)
q.is.→ i∗δU∗OU = δ∗j∗OU = δ∗PXOX(U)

où j : U ↪→ X désigne l’inclusion et où l’on regarde δ∗PXOX(U) comme un complexe
concentré en 0. D’après le lemme 8.6,

F•• = C•(U , E•)
q.is.→ C•(U , δ∗PXOX)

En appliquant le foncteur exact δ∗ à la résolution fournie par le lemme 8.4, on obtient
une résolution de faisceau de OX×X-module

δ∗OX → δ∗C
•(U , PXOX) = C•(U , δ∗PXOX)

49

Ceci permet d’obtenir les isomorphismes

H0(F•) ' H0(C•(U , δ∗PXOX)) ' δ∗OX

Hq(F•) ' Hq(C
•(U , δ∗PXOX)) = 0

pour tout q 6= 0. On peut ainsi appliquer la proposition 6.5 (1) qui fournit pour tout
faisceau M de OX-module l’isomorphisme de δ-foncteur en M

Hn(OX ,M) ' ExtnOX (δ∗F•,M)

Pour utiliser ce résultat, on va comparer δ∗F• et C•. Si on applique le lemme 7.4 au
carré cartésien

U
δU //

j
��

U × U
i
��

X
δ
// X ×X

alors on obtient un isomorphisme de faisceau de OX-module

PXS•(U) = j∗S•U ' j∗δU
∗B•U ' δ∗i∗B•U = δ∗E•(U)

En remarquant que δ∗ commute avec les sommes et les produits finis, le lemme 9.4 nous
fournit un quasi-isomorphisme

δ∗F•• = C•(U , δ∗E•) ' C•(U , PXS•)
q.is.→ C•(U , PXC•)

Or, d’après le corollaire 8.5, on dispose également d’un quasi-isomorphisme

C•
q.is.→ G•

où G• désigne le complexe total de C•(U , PXC•). Ainsi, d’après le lemme 4.1,

ExtnOX (δ∗F•,M) ' ExtnOX (G•,M) ' ExtnOX (C•,M)

ce qui prouve l’isomorphisme naturel en M

Hn(OX ,M) ' HHn(X,M)

Supposons à présent que chaque Hq est localement libre. D’après ce qui précède,

Hq(δ
∗F•) ' Hq(G•) ' Hq(C•) = Hq

D’après la proposition 6.5 (2), les suites spectrales suivantes sont isomorphes

ExtpOX (Hq(δ
∗F•),M)⇒ Extp+qOX (δ∗F•,M)

Hp(X, ExtqOX×X (OX ,M))⇒ Hp+q(OX ,M)

Par le lemme 4.1, la première suite spectrale est isomorphe à la suite spectrale

ExtpOX (Hq,M)⇒ HHp+q(X,M)

C’est le résultat annoncé.

50

On peut vérifier que l’isomorphisme ne dépend pas du recouvrement U choisi. Si U ′
est un recouvrement fini de X par des ouverts affines alors

V = {U ∩ U ′ : U ∈ U , U ′ ∈ U ′}

est un recouvrement fini de X par des ouverts affines qui raffine U . Les restrictions
induisent alors un morphisme de complexe

C•(U ,−)→ C•(V ,−)

rendant le diagramme suivant commutatif

δ∗C•(U , E•) //

��

C•(U , PXC•)

��

C•εoo

=

��
δ∗C•(V , E•) // C•(V , PXC•) C•ε

oo

On obtient ainsi le diagramme commutatif suivant

ExtnOX (δ∗F•,M)

��

ExtnOX (G•,M)

��
Hn(OX ,M) HHn(X,M)

ExtnOX (δ∗F ′•,M) ExtnOX (G ′•,M)

où F ′• et G ′• désignent respectivement les complexes totaux de C•(V , E•) et C•(V , PXC•).

51

Lexique des notations

X ×S Y iii i produit des schémas X et Y fibré sur un schéma S

δX iiiiii i application diagonale d’un schéma X sur un schéma de base

f∗F i ii i pushforward d’un faisceau F par une application continue f : X → Y

f−1G ii i pullback d’un faisceau G par une application continue f : X → Y

f ∗G i ii i faisceau OY ⊗f−1OX f
−1G si f : X → Y est un morphisme de schéma

M∼ i ii i faisceau quasi-cohérent sur Spec A associé à un A-module M

HomO(F ,G) i i faisceau U 7→ HomO|U (F|U ,G|U)

Ext•O(F ,−) iii i foncteur dérivé du foncteur HomO(F ,−)

Fx i i fibre d’un faisceau F en un point x

Ωq
A i i module des q-formes différentielles de Kähler sur une algèbre A

Ωq
X/S i i i faisceau des q-formes différentielles relatives sur un S-schéma X

M∨ i i i i module dual HomA(M,A) d’un A-module M

F∨ ii i i i faisceau dual HomO(F ,O) d’un faisceau de O-module F

Γ(U,F) i i i i i i sections F(U) d’un faisceau F sur un ouvert U

Hv
• (C••) iiiiiii i i homologie en la première variable du double complexe C••

Hh
• (C••) iiiiiii i i homologie en la seconde variable du double complexe C••

S−1A ii i i anneaux des fractions à numérateur dans A et à dénominateur dans S

As ii i anneaux des fractions pour s ∈ A et S = {sn : n ∈ N}

Ap ii i anneaux des fractions pour p ∈ Spec A et S = A \ p

q.is.→ iiiiiquasi-isomorphisme

52

Bibliographie

[1] R. Hartshorne, Algebraic Geometry (Springer, Berlin, 1977)

[2] J.-L. Loday, Cyclic Homology, Second Edition (Springer, Berlin, 1998)

[3] R.G. Swan, Hochschild cohomology of quasiprojective schemes, Journal of Pure
i i and Applied Algebra 110 (1996) 57-80

[4] C.A. Weibel, An Introduction to Homological Algebra (Cambridge University Press,
i i Cambridge, 1994)

53

Année Universitaire 2019-2020

Master 2 Mathématiques Fondamentales et Appliquées
Parcours Algèbre et Géométrie

Décomposition des transformations
birationnelles du plan projectif complexe

Par : Thibault Chailleux

 Sous la direction de : Susanna Zimmermann

Date de soutenance : 07/07/2020

Université de Nantes

Faculté des Sciences et des Techniques

Introduction

L’étude du groupe de Cremona consiste à regarder les applications birationnelles de P2(C) dans lui-même,
appelées transformations birationnelles de P2(C).
Une telle transformation peut s’écrire via des polynômes homogènes de même degré f0, f1, f2 sous la forme :

f : [x : y : z] 99K [f0(x, y, z) : f1(x, y, z) : f2(x, y, z)]

Elle est alors bien définie sauf sur un nombre fini de points 1, correspondant aux racines communes des
polynômes f0, f1, f2. A l’inverse, elle contracte des courbes sur les points-base de la transformation f−1.

Un autre point de vue de la géométrie birationnelle est encore de regarder les points-base de f et leur
multiplicité pour caractériser une telle transformation (à automorphisme près).

On s’intéresse ici au cas particuliers des transformations quadratiques, c’est à dire les transformations
birationnelles de degré 2. Ces transformations possèdent trois points-base, chacun avec multiplicité 1, et le
théorème de Noether-Castelnuovo 2 affirme qu’avec les automorphismes, ces transformations engendrent le
groupe de Cremona :

Théorème 0.1 (Noether-Castelnuovo [3])
Les transformations birationnelles de P2(C) peuvent être décomposées en transformations quadratiques et en
automorphismes.

En 1915, J.W. Alexander rédigea une preuve courte de ce théorème dans un article "On the factorization
of the Cremona plane transformations" [1], sous forme d’un algorithme permettant de décomposer progres-
sivement la transformation. Il consiste à regarder les points-base de la transformation et leur multiplicité, et
à précomposer par des inverses de transformations quadratiques bien choisies.

Ces transformations quadratiques modifient les points-base de f , qui voient alors leur multiplicité baisser,
jusqu’à ce que la composition soit elle-même une transformation de degré 2. On obtient ainsi une décompo-
sition de f en transformations quadratiques.

Il arrive cependant que l’application f ne soit pas aussi simple, et possède des points-base qui ne sont pas
directement dans P2(C), et qui n’apparaissent qu’après avoir éclaté P2(C) en certain points. Ce phénomène
complexifie l’algorithme, mais une telle décomposition est encore possible, et sous réserve de quelques pré-
compositions quadratiques supplémentaires, on peut se ramener au premier cas.

L’objectif de ce mémoire est d’étudier cet algorithme et d’en donner une formulation moderne afin de
pouvoir l’appliquer et, à terme, l’implémenter informatiquement.

Le premier chapitre fournit les définitions permettant d’aborder la démonstration du théorème : les
notions d’applications régulières et rationnelles, les diviseurs et leurs propriétés, le produit d’intersection
et les éclatements y seront rappelés, et on donnera également un théorème dû à Zariski sur la factorisation
des applications birationnelles comme suite d’éclatements.

Dans le second chapitre, on démontrera les équations de conditions qui fournissent des contraintes qui
permettent entre autre de compter les multiplicités possibles pour une transformation birationnelle de degré

1. Ce sont des cas particuliers de points-base de f que l’on définira de manière plus générale.
2. Énoncé et démontré partiellement par Max Noether ; démontré complètement par Guido Castelnuovo en 1901 [3].

2

donné. On exprime ensuite le degré de la composition d’une transformation birationnelle avec une transfor-
mation quadratique, ainsi que les points-base et leur multiplicité afin de caractériser de telles compositions.

Le troisième chapitre consiste en la démonstration du théorème de Noether-Castelnuovo donnée par
J.W. Alexander par induction sur la complexité d’une transformation birationnelle, définie comme 2j =
deg(f)−mf (O0) où O0 est le point-base de plus grande multiplicité de f .

On effectue ensuite quelques calculs de décompositions en appliquant l’algorithme à des transformations
plus ou moins complexe, et on donnera également une preuve du test de Hudson [2, p.225] qui utilise cette
décomposition algorithmique pour déterminer si des nombres qui vérifient les équations de conditions pour
le degré d sont des données de multiplicités valides pour une transformation birationnelle de degré d.

Enfin, on donnera une explication de l’implémentation informatique en Python de l’algorithme de décom-
position.

Vassily Kandinsky (1925) - Free Curve to the Point.

Je tiens à exprimer toute ma reconnaissance à mon encadrante, Susanna Zimmermann, pour m’avoir
accompagné chaque semaine pendant ces trois mois de stage – malgré les conditions sanitaires contraignantes
– avec une rigueur et une pédagogie remarquable, ainsi que pour m’avoir fait découvrir le domaine de la
géométrie birationnelle.

Je remercie également les enseignants du Master de Mathématiques Fondamentales et Appliquées qui
m’ont permis de développer mes connaissances mathématiques dans les domaines de l’algèbre et de la géo-
métrie.

Je tiens à remercier mes parents et Agnès pour m’avoir soutenu et aidé avec persévérance durant toute
cette année, ainsi que pendant mes études. Leur aide a grandement contribué à l’élaboration de ce mémoire.

Je souhaite aussi remercier mes amis du Master de Mathématiques Fondamentales et Appliquées, Thomas,
Jean, et Clovis, ainsi que mes camarades du CRDM pour leur soutien et leurs encouragements. Conséquem-
ment, je remercie Claude et Anh pour leur sympathie et pour avoir patiemment supporté nos incessantes
élucubrations – entre autres mathématiques.

Enfin, je tiens à remercier tous mes amis non mathématiciens qui, à travers leurs connaissances philoso-
phique, artistique ou scientifique, ont pu apporter d’autres points de vue à ma vision des mathématiques.

3

Table des matières

Introduction 2

1 Rappels 5
1.1 Applications rationnelles et régulières . 5

1.1.1 Définitions . 5
1.2 Diviseurs . 6

1.2.1 Définitions . 6
1.2.2 Propriétés des diviseurs . 7
1.2.3 La classe de diviseurs canonique . 7

1.3 Produit d’intersection . 9
1.4 Éclatements . 10
1.5 Théorème de Zariski . 12

1.5.1 Systèmes linéaires . 13

2 Propriétés des transformations de P2 14
2.1 Équations de condition . 15
2.2 Composition des tranformations . 16

3 Théorème de Noether-Castelnuovo 20
3.1 Introduction de la preuve . 20
3.2 Preuve du théorème de Noether-Castelnuovo . 21

4 Applications du théorème de Noether-Castelnuovo 27
4.1 Transformations quadratiques . 27

4.1.1 Deux points-base dans P2 et un point-base infiniment proche 27
4.1.2 Trois points-base infiniment proches . 28

4.2 Transformation de degré 3 . 30
4.3 Transformation de degré 5 . 30
4.4 Test de Hudson . 31

5 Annexe : Implémentation de l’algorithme 33
5.1 Classes d’objets : points-base et transformation birationnelle 33
5.2 La fonction transfo_deg . 36
5.3 La fonction compose_quad . 39
5.4 La fonction make_transfo_disjoint . 40
5.5 La fonction decomp_transfo . 40
5.6 Exemples et applications . 43

Bibliographie 46

4

Chapitre 1

Rappels

Dans tout le mémoire, on se place sur le corps des nombres complexes C. En particulier, P2 désignera le
plan projectif complexe P2(C).

1.1 Applications rationnelles et régulières
1.1.1 Définitions

On rappelle ici les définitions et propriétés de base en rapport avec les applications régulières et ration-
nelles.

Définition 1.1 (Variété quasiprojective ([6] p.46))
On appelle variété quasiprojective un ouvert d’un fermé de Pn pour un certain n (i.e. l’intersection d’un
ouvert et d’un fermé de Pn).
Une sous-variété d’une variété quasiprojective X est un sous-ensemble Y ⊂ X qui est une variété quasipro-
jective.

Définition 1.2 (Fonctions et applications régulières ([6] p.48))
Soit X ⊂ Pn une variété quasiprojective irréductible.
Soit x ∈ X. Une fonction régulière en x est une fonction définie au voisinage de x et à valeur dans C
qui est le quotient de deux polynômes homogènes de même degré P,Q ∈ C[T1, . . . , Tn], avec Q(x) 6= 0. Une
fonction régulière sur X est une fonction définie sur X et régulière au voisinage de tout x ∈ X.
On note C[X] l’anneau des fonctions régulières sur X.
Une application régulière f : X → Pm est la donnée de m + 1 polynômes F0, . . . , Fm ∈ C[T1, . . . , Tn]
homogènes et de même degré et tels que pour tout x ∈ X, un des Fi soit non nul en x. On note pour un
x ∈ X, f(x) = [F0(x) : . . . : Fm(x)].

Soit X ⊂ Pn une variété quasiprojective irréductible. On peut considérer le sous-anneau OX des fractions
rationnelles C(T1, . . . , Tn) constitué des quotients P/Q tels que P et Q soient homogènes de même degrés et
que Q n’est pas toujours nul sur X.
Le sous-ensemble des fractions P/Q telles que P est toujours nul sur X en forme un idéal maximalMX .

Définition 1.3 (Fonctions et applications rationnelles ([6] p.50))
Soit X ⊂ Pn une variété quasiprojective irréductible.
Le corps des fonctions rationnelles sur X est le corps des fractions de C[X], ou de manière équivalente,
le corps OX/MX . Une telle fonction f est dite régulière en x ∈ X s’il existe en existe un représentant P/Q
tel que Q(x) 6= 0. On définit alors f(x) = P (x)/Q(x).
Une application rationnelle f : X 99K Pm est la donnée de m + 1 polynômes F0, . . . , Fm ∈ C[T1, . . . , Tn]
homogènes et de même degré dont l’une d’entre elle n’est pas toujours nulle sur X. On quotiente par la

5

relation d’équivalence :
f = g ⇐⇒ ∀i, j ∈ {0, . . . ,m}, FiGj = FjGi

On notera alors f = [F0 : . . . : Fm].

Remarque
Une application rationnelle f : X → Pm définit la donnée de m + 1 fonctions rationnelles en quotientant
par un des polynôme non toujours nul sur X. On dit alors qu’une application rationnelle est régulière en
x ∈ X si elle définit des fonctions rationnelles régulières en x et non toutes nulles en x. On note alors
f(x) = [F0(x) : . . . : Fm(x)].
Étant donnée Y ⊂ Pm une variété quasiprojective, on dit que f envoit X vers Y s’il existe un ouvert U de
X sur lequel f est régulière et tel que f(U) ⊂ Y . L’image de X dans Y par f est alors l’image de l’union de
tous les ouverts vérifiant cela. On note f : X → Y une telle application.
Une application rationnelle entre deux variétés quasiprojectives f : X 99K Y est dite birationnelle si l’image
de X dans Y par f est dense et s’il existe une application rationnelle f ′ : Y 99K X telle que f ◦ f ′(y) = y et
f ′ ◦ f(x) = x lorsque les images sont bien définies.

Par la suite, on appellera transformation birationnelle (du plan projectif) toute application bira-
tionnelle de P2 dans P2. On peut montrer [6, Theorem 3 p.109] qu’une telle application n’est pas régulière
seulement en un nombre fini de points.

On définit le degré de f comme étant le degré minimal des polynômes définissant la transformation, c’est
à dire le degré des polynômes quand ils n’ont pas de facteurs communs.

On fournit également la notion de multiplicité d’une courbe en un point : étant donnée S une surface
quasiprojective, p ∈ S, on peut considérer l’anneau local des germes de fonctions régulières en p : OS,p, d’idéal
maximal mS,p.

Alors il existe un unique k ∈ N tel que, si f est une équation locale de C en p, f ∈ mk\mk+1, que l’on
définit comme la multiplicité de C en p. [4, p.16]

1.2 Diviseurs
1.2.1 Définitions
Définition 1.4 (Diviseur ([6] p.151))

Étant donné une variété quasiprojective irréductible X, on appelle diviseur premier sur X un sous-ensemble
algébrique fermé irréductible de X de codimension 1.
On note Div(X) le groupe abélien libre engendré par les diviseurs premiers sur X. Un élément de Div(X)
est appelé diviseur sur X.

On note (Ci)i∈I l’ensemble des diviseurs premiers sur X. Si D =
∑
i∈I kiCi ∈ Div(X), l’union des Ci tels

que ki 6= 0 est appelé support de D. Un diviseur
∑
kiCi, est dit effectif si ki ≥ 0 pour tout i.

À chaque fonction rationnelle f ∈ k(X) non nulle, on peut associer un diviseur div(f) de la manière suivante :
on peut montrer qu’il n’existe qu’un nombre fini de diviseurs premiers en lesquels la multiplicité de f est non
nulle [6, p.153]. On peut donc considérer le diviseur :

div(f) =
∑
i∈I

νCi(f)Ci

Un diviseur obtenu comme cela est appelé diviseur principal. L’ensemble des diviseurs principaux forment
un sous-groupe de Div(X), par les relations [6, p.153] :{

div(f.g) = div(f) + div(g)
div(1/f) = −div(f) et div(c) = 0

6

pour c fonction constante non nulle.
En quotientant par ce sous-groupe, on obtient le groupe Cl(X) des classes de diviseurs sur X. Deux divi-
seurs de la même classe sont dits linéairement équivalents.
Dans le cas de P2, on peut classifier les diviseurs par leur degré, en définissant le degré d’un diviseur linéai-
rement par rapport au degré des diviseurs premiers qui le constituent, le degré d’un diviseur étant nul si, et
seulement si, il est principal. Ainsi, Cl(P2) ' Z. [6, p.154].

Soit X une variété quasiprojective irréductible régulière et D =
∑n
i=1 kiCi un diviseur. Comme X est

régulière, il existe un ouvert U sur lequel chaque Ci est décrit par une équation locale πi = 0. En posant
alors f = πk1

1 . . . πkn
n , on dit alors que D = div(f) sur U . Réciproquement, la donnée d’ouverts Ui recouvrant

X et de fonctions rationnelles fi : Ui → C formant un système compatible, i.e. telles que sur Ui ∩ Uj , les
fonctions fi, fj ne valent jamais 0 et fi/fj est régulière, définit un diviseur D sur X. [6, p.155]

1.2.2 Propriétés des diviseurs
On a besoin pour travailler avec les diviseurs de donner une propriété importante : étant donné un nombre

fini de points x1, . . . , xn de X et un diviseur D, alors D est linéairement équivalent à un diviseur D′ dont le
support ne contient pas x1, . . . , xn.

Cela permet de définir le tiré-en-arrière d’une classe de diviseur par une application régulière.

Théorème 1.5 (Déplacement des diviseurs ([6] Theorem 1 p.158))
Soit D un diviseur d’une variété quasiprojectives irréductible régulière X, et x1, . . . , xn ∈ X. Il existe un
diviseur D′ linéairement équivalent à D et dont le support ne contient aucun des xi.

Soient X,Y des variétés irréductibles quasiprojective régulières. Étant donné un diviseur D sur Y et une
application régulière φ : X → Y , on peut définir un diviseur φ∗(D) sur X à la condition que φ(X) 6⊂ Supp(D)
en considérant un certain système compatible de fonctions rationnelles sur des ouverts de X[6, p.155-156].
On peut, plus généralement, définir le tiré-en-arrière d’une classe de diviseurs sur Y , par le théorème précé-
dent : soit D un diviseur tel que φ(X) ⊂ Supp(D), et x ∈ φ(X). Alors il existe un diviseur D′ linéairement
équivalent à D et dont le support ne contient pas x, de sorte que φ(X) 6⊂ Supp(D′), et on peut définir
φ∗(D′).
On a donc une fonction φ∗ : Cl(Y) → Cl(X) bien définie (en vérifiant que deux diviseurs linéairement
équivalents sont envoyés dans la même classe) et qui est un morphisme de groupe.

1.2.3 La classe de diviseurs canonique
On va définir, sans s’étendre trop sur leur propriétés, les formes différentielles régulières et rationnelles

sur une variété quasiprojective irréductible régulière X.

Quelques rappels sur la différentielle d’une fonction régulière

Soit X une variété quasiprojective. On rappelle la définition de l’espace tangent de Zariski : soit x ∈ X,
l’espace tangent de Zariski en x est le C-espace vectoriel TxX = (mx/m2

x)∨ où mx = {f ∈ C[X] | f(x) = 0}.
On note T ∗X le fibré tangent de X, c’est à dire l’union disjointe des (TxX)∨ = mx/m

2
x.

A une application régulière f : X → Y on peut associer sa différentielle en x ∈ X [6, p.88]. En effet, f induit
une application entre les ensembles de fonctions régulières des deux variétés :

f∗ : C[Y] −→ C[X]
g 7−→ g ◦ f

De plus, on a bien, f∗(mf(x)) ⊂ mx et f∗(m2
f(x)) ⊂ m2

x, donc f∗ se restreint et passe au quotient. Finalement
la transposée de cette nouvelle application f∗ fournit la différentielle de f en x, dxf : TxX → Tf(x)Y .

7

En prenant Y = AC
1 , on définit la différentielle d’une fonction régulière f . Cette différentielle est à valeur

dans C, 1 Donc dxf ∈ (TxX)∨. On a finalement une application appelée différentielle de f , df : X → T ∗X.

Formes différentielles régulières et rationnelles

On considère ici une variété quasiprojective irréductible régulière X de dimension n. On note Φr[X] le
C[X]-module des fonctions X →

∧r
T ∗X qui envoient x vers un élement de

∧r(TxX)∗.

Définition 1.6 (Forme différentielle régulière ([6] p.195))
Une r-forme différentielle régulière sur X est une fonction φ ∈ Φr[X] qui est localement le produit
extérieur de différentielles de fonctions régulières :
pour tout x ∈ X, il existe un voisinage U de x tel que φ |U soit dans le sous-C[U]-module de Φr[U] engendré
par les df1 ∧ · · · ∧ dfr pour f1, . . . , fr ∈ C[U].
On note Ωr[X] le sous-k[X]-module de Φr[X] des r-formes différentielles régulières sur X.

Définition 1.7 (Forme différentielle rationnelle ([6] p.202))
On note Ωr(X) le quotient de l’ensemble{

(U, ω) ∈ O(X)×
∐
V⊂X

Ωr[V] | ω ∈ Ωr[U]
}

par la relation d’équivalence :

(U, ω) ∼ (U ′, ω′) ⇐⇒ ∃V ⊂ U ∩ U ′ ouvert non vide, ω |V = ω′ |V

Un élément ω̃ de Ωr(X) est une r-forme différentielle rationnelle.
Si ω̃ contient un couple (U, ω), on dit que ω est régulière sur U . On appelle domaine de régularité de ω̃
l’ouvert Uω̃ =

⋃
(U,ω)∈ω̃ U .

On notera abusivement par la suite ω = ω̃.

Remarque
On observe que Ω0(X) = C(X) [5, p.176, Proposition-définition 1.1], ce qui fait de Ωr(X) un C(X)-espace
vectoriel, via l’opération produit extérieur.
Ωr(X) = Ωr(U) pour U un ouvert de X, par définition de la relation d’équivalence : on a autant de classes
dans l’un que dans l’autre, même si les classes sont plus petites dans le second.
Par cette remarque, on peut montrer que Ωr(X) est un C(X)-espace vectoriel de dimension

(
n
r

)
, en utilisant

le résultat sur le rang du C[U]-module Ωr[U] pour U un ouvert assez petit de X [6, p.200 Theorem 2] et le
fait qu’une fonction régulière sur un ouvert de X définit une fonction rationnelle sur X [6, p.203 Theorem 3].
Par ailleurs, on a pour un voisinage assez petit d’un point x ∈ X, une base de Ωr[U] sur C[U] donnée par
(dui1 ∧ . . . duir)i1≤···≤ir pour u1, . . . , un ∈ C[U] des fonctions régulières données 2.

En particulier, Ωn(X) est de dimension 1 sur kC(X).

La classe de diviseurs canonique

Soit X une variété quasiprojective régulière irréductible de dimension n.
En considérant le cas particulier des n-formes différentielles rationnelles sur X, on peut obtenir une classe de
diviseurs particuliers sur X :
Soit ω ∈ Ωn(X). On peut recouvrir X par un nombre fini d’ouverts affines (quitte à les intersecter avec
un recouvrement affine) Ui sur lesquels ω = g(i)du

(i)
1 ∧ · · · ∧ du

(i)
n . Les fonctions g(i) : Ui 99K C forment un

1. Puisque C[AC
1] est isomorphe comme C-espace vectoriel à l’anneau des polynômes à une variable C[t] par définition. Dès

lors, mx/m2
x est isomorphe au quotient du sous-anneau des polynômes sans coefficients constants par (t2), lui même isomorphe

à C.
2. vérifiant que ∀y ∈ U, (dyu1, . . . , dyun) forme une base de (TyX)∨ [6, p.200 Theorem 2].

8

système compatible de fonctions rationnelles [6, p.209] qui définit donc un diviseur div(ω) sur X.

Ces diviseurs vérifient la relation div(fω) = div(f) + div(ω). En particulier, tous ces diviseurs sont dans
une même classe KX appelée classe canonique associée à X, puisque Ωn(X) est de dimension 1 sur C(X).

Exemple 1 (Calcul de KP2)
Pour calculer KP2 , il suffit de déterminer une 2-forme différentielle rationnelle sur P2. On va partir d’une
forme différentielle régulière sur un des ouverts affines classiques (par exemple U0) de P2 et la prolonger aux
autres ouverts, d’abord sur l’intersection, puis en une forme différentielle rationnelle sur P2, et calculer au
passage l’expression locale du diviseur associé.
On considère U0, U1, U2 les ouverts affines de P2 donnés par :

Ui =
{

(x0 : x1 : x2) ∈ P2 | xi 6= 0
}

Sur U0, on pose yi = xi

x0
, avec i = 1, 2. Les fonctions yi sont bien définies sur U0 et forment bien une base de

Ω2[U0] comme k[U0]-module, donnée par la forme ω = dy1 ∧ dy2. Cette forme fournit un diviseur div(ω), qui
est nul sur U , puisque div(ω) = div(1) sur U . Etudions alors la valeur de cette forme hors de U0.
Sur U1, on a cette fois pour coordonnées locales z1 = x0

x1
, z2 = x2

x1
. En particulier, z1 = 1

y1
, z2 = y2

y1
sur U0∩U1

(cela correspond aux changements de cartes habituels de P2).
Donc sur U0∩U1, on a via la différentielle d’une composée, dy1 = −dz1

z2
1
, dy2 = z1dz2−z2dz1

z2
1

. Ainsi, sur U0∩U1,
on a :

ω = dy1 ∧ dy2 =
(
−dz1

z2
1

)
∧
(
z1dz2 − z2dz1

z2
1

)
= − 1

z3
1
dz1 ∧ dz2

On peut ainsi prolonger ω sur U1. Notons que similairement au premier cas, la forme ω′ = dz1 ∧ dz2 est une
base de Ω2[U1]. Cette forme fournit un diviseur nul sur U1. Ainsi, on peut calculer div(ω) sur U1 :

div(ω) = div

(
− 1
z3

1
ω′
)

= div

(
− 1
z3

1

)
+ div(ω′) = −3 · div(z1)

De même, sur U2, si on note t1 = x0
x2
, t2 = x1

x2
, alors on a encore div(ω) = −3 · div(t1) sur U2.

Ces deux derniers diviseurs sont les expressions locales du diviseur div(x0). En effet, géométriquement,
div(x0) = {(0 : x1 : x2) ∈ P2}, qui est un diviseur premier. Sa restriciton à U1 (resp. U2) correspond
exactement au lieu des zéros de z1 = x0

x1
(resp. t1 = x0

x2
), avec la même multiplicité. On a donc div(x0) =

div(z1) sur U1, et div(x0) = div(t1) sur U2.
En remontant, on a donc sur P2, div(ω) = −3 ·div(x0) puisque cette égalité est vraie localement. Ceci fournit
la classe canonique de P2 : puisque div(x0) est linéairement équivalent à une droite générale L,

KP2 = −3 · L

1.3 Produit d’intersection
On définit le produit d’intersection sans rappeler sa contruction (ce sont en particulier ses propriétés qui

seront utiles) :

Définition 1.8 (([4] p.14), ou ([6] p.223-232) pour la construction)
Soit S une surface quasiprojective irréductible régulière.
Il existe une unique opération :

· : Div(S)×Div(S) −→ Z

vérifiant que :
— Si deux diviseurs C et D sont en position générale [6, p.223], alors C ·D = #(C ∩D).
— Si C,C ′ sont linéairement équivalents et D,D′ aussi, alors C ·D = C ·D′ = C ′ ·D = C ′ ·D′.

9

Étant donnée une droite L dans P2, son intersection avec elle-même L2 vaut 1 puisque L est équivalent à
L′, L′′, deux droites en position générale, qui ne se coupent qu’en un point.
De plus, comme Cl(P2) ' Z, si C,D sont des diviseurs quelconques sur P2, ils sont linéairement équivalents
à deg(C)L et deg(D)L avec L une droite de P2. On a alors une formulation du théorème de Bézout :

Théorème 1.9 (Bézout ([6] p.236))
Soient C,D des diviseurs sur P2, alors

C ·D = deg(C) deg(D)

1.4 Éclatements
Définition 1.10 (Éclatement d’une surface quasiprojective régulière ([4] p.15))

Soit S une surface quasiprojective régulière irréductible, et soit p ∈ S.
Une application régulière π : Y → S (avec Y variété quasiprojective régulière) est un éclatement de S en
p si π est un isomorphisme régulier de Y \π−1(p) vers S\{p}.
Cet éclatement est unique à isomorphisme près, et on notera souvent Y = Blp(S).

Exemple 2
L’éclatement de P2 en le point [0 : 0 : 1] est donné par :

Bl[0:0:1](P2) =
{

([x : y : z], [u : v]) ∈ P2 × P1 | xv = yu
}

qui forme une sous-variété quasiprojective régulière irréductible de P2 × P1.
Pour une surface quasiprojective irréductible régulière S, on peut considérer un ouvert affine U ⊂ S avec ses
coordonnées locales u1, u2 : U → C pour lesquelles p = (0, 0) (i.e. u1(p) = u2(p) = 0). L’image réciproque de
U par l’éclatement de S en p est alors isomorphe à l’ouvert : [6, p.116]{

(x, [t1 : t2]) ∈ U × P1 | u1(x)t2 = u2(x)t1
}

On peut décomposer cet ouvert en deux ouverts affines {t1 6= 0} et {t2 6= 0}, affines via les cartes (x, [t1 :
t2]) → (u1(x), t2/t1) et (x, [t1 : t2]) → (u2(x), t1/t2). Dans la première carte par exemple, que l’on note via
les coordonnées locales v1, v2, on a pour tout x ∈ {t1 6= 0} :

π(v1(x), v2(x)) = (v1(x), v1(x)v2(x))

On peut ainsi exprimer le tiré-en-arrière des fonctions coordonnées sur un de ces ouverts affines : π∗u1(x) =
v1(x) et π∗u2(x) = v1(x)v2(x).

Comme vu plus tôt, étant donnée une courbe irréductible sur S, on peut considérer son image réciproque
par π, π∗C = π−1(C). On définit sa transformée stricte C̃ = π−1(C\{p}).
L’image réciproque de p par π, dans Blp(S) correspond à une droite E appelée diviseur exceptionnel
associé à p. On notera souvent cette droite Ep ou Fp. On peut alors exprimer l’image réciproque par π
d’une courbe irréductible de S :

Lemme 1.11 ([4] p.17)
Soit C une courbe irréductible de S, alors :

π∗(C) = C̃ +mC(p)E

Démonstration. Soit C une courbe irréductible de S. On considère un ouvert affine U de S, avec pour
coordonnées les fonctions régulières u1, u2 : U → C pour lesquelles u1(p) = u2(p) = 0.
Dès lors, C a une expression locale dans U en fonction des coordonnées : il existe Pk, Pk+1, . . . , Pr ∈ C[T1, T2]
des polynômes homogènes de degrés respectifs k, k + 1, . . . , r, avec k = mC(p), tels que :

∀x ∈ U, x ∈ C ⇐⇒
r∑
i=k

Pi(u1(x), u2(x)) = 0

10

Le tiré-en-arrière de C par π est alors donné localement via les coordonnées π∗ui :

∀x ∈ π−1(U), π(x) ∈ C ⇐⇒
r∑
i=k

Pi(π∗u1(x), π∗u2(x))

Comme vu plus tôt, on a alors pour v1, v2 un système de coordonnées locales dans un ouvert affine V ⊂
π−1(U) :

∀x ∈ V, π(x) ∈ C ⇐⇒
r∑
i=k

Pi(v1(x), v1(x)v2(x)) = 0 ⇐⇒ vk
r∑
i=k

v1(x)i−kPi(1, v2(x))

Finalement, cela fournit une expression du tiré-en-arrière de C en tant que diviseur : π∗C = k · E + C̃.

On a aussi les résultats d’intersection suivants :

Proposition 1.12 ([4] p.17)
Soit C,D deux diviseurs sur S. Alors :

— π∗C · π∗D = 0.
— π∗C · E = 0.
— E2 = −1.

De plus, si C est une courbe irréductible, on a :
— C̃2 = C2 −mC(p)2.
— C̃ · E = mC(p).

On exprime enfin la classe de diviseur canonique dans l’éclatement KBlp(S) :

Lemme 1.13

KBlp(S) = π∗KS + E

Démonstration. On considère un ouvert affine U ⊂ S contenant p, et u1, u2 : U → C des fonctions régulières
sur U valant 0 en p et formant un système de coordonnées locales sur U .
Soit ω une 2-forme différentielle rationnelle sur U : ω = fdu1 ∧ du2. On peut considérer son tiré en arrière
par π : Blp(S)→ S :

π∗ω = π∗fd(π∗u1) ∧ d(π∗u2)

On peut déterminer ces deux nouvelles coordonnées locales en utilisant l’expression de l’éclatement sur U :
{(x, [t1 : t2]) ∈ U × P1 | u1(x)t2 = u2(x)t1}. En effet, les cartes locales de cet éclatement sont par exemple
données par {t1 6= 0} :

(x, [t1 : t2])→ (u1(x), t2/t1)

Et on peut alors exprimer π sur cette carte locale : π(x, y) = (x, xy). Finalement, cela donne l’expression
des fonctions rationnelles π∗u1, π

∗u2 sur l’ouvert {t1 6= 0} de U : π∗u1(x, y) = x et π∗u2(x, y) = xy. En
remplaçant dans le tiré-en-arrière :

π∗ω = π∗fdx ∧ d(xy) = π∗fdx ∧ (x · dy + y · dx) = π∗f · x · dx ∧ dy

Ainsi, en terme de diviseurs, div(π∗ω) = div(π∗f · x) = div(π∗f) + div(x) = π∗div(ω) + E, et donc :

KBlp(S) = π∗KS + E

11

1.5 Théorème de Zariski
Dans cette dernière section de rappels, on donne l’énoncé du théorème de Zariski, qui permet de décom-

poser une transformation birationnelle entre deux surfaces projectives régulières en une suite d’éclatements
et d’effondrements, ainsi que la définition du système linéaire associé à une tranformation birationnelle.

Théorème 1.14 (de Zariski ([6] p.256))
Soient X,Y deux surfaces projectives régulières, et f : X 99K Y . Alors il existe deux suite d’éclatements
π : Z → X et η : Z → Y tels que f = η ◦ π−1 :

Z

π

~~

η

��
X

f
// Y

On appelle cette donnée de deux suites d’éclatements une résolution de f par le théorème de Zariski.
Une résolution Z est diteminimale si pour tout autre résolution Z ′, on a une application régulière φ : Z ′ → Z
telle que le diagramme commute :

Z ′

π′

��

η′

��

φ

��
Z

π~~ η

X
f

// Y

On peut vérifier que cette résolution minimale est unique à isomorphisme et ordre près.
On définit alors un point-base d’une transformation birationnelle f comme étant un des points éclaté

par π dans une résolution minimale de f par le théorème de Zariski. Les points éclatés par η sont alors les
points-base de f−1. Ainsi, dans une résolution minimale, π éclate les points-base de f et η contracte des
droites sur les points-base de f−1, et ces droites correspondent à celles qui sont contractées par f , à éclate-
ment près.

Soient A et B deux points-base de f : X 99K Y . On considère une résolution minimale Z de f par le
théorème de Zariski avec les mêmes notations que précédemment, et on décompose π : Z → X en éclatements :

Z = Xn
πn // Xn−1

πn−1 // . . .
π2 // X2

π1 // X1 = X

Soit alors i ∈ {1, . . . , n} tel que B est éclaté par πi. On dit alors que A est infiniment proche de B si
A ∈ π−1

i (B), autrement dit, si A est sur le diviseur exceptionnel associé à B.

Exemple 3

12

On considère la transformation birationnelle appelée involution quadratique standard, et donnée par :

inv : [x : y : z] 99K [yz : xz : xy]

Elle n’est pas définie en les points O0 = [1 : 0 : 0], O1 = [0 : 1 : 0] et O2 = [0 : 0 : 1]. Ces points correspondent
aux points-base de inv. En effet, on obtient inv en éclatant P2 en ces trois points, puis en contractant les
droites passant par deux des points sur le troisième, comme dans la figure ci-dessus.

On verra dans le chapitre 4 des exemples de transformations birationnelle dont les points-base ne sont
pas tous dans P2.

1.5.1 Systèmes linéaires
Définition 1.15 (Système linéaire d’une transformation birationnelle ([4] p.19))

Soit f : P2 99K P2 une transformation birationnelle.
Le système linéaire associé à f , noté Λf est l’ensemble des préimages des droites de P2 :
Si f = [f0 : f1 : f2], avec les fi sans facteurs communs, un élément du système linéaire est donc de la forme
{[x : y : z] | a0f0(x, y, z) + a1f1(x, y, z) + a2f2(x, y, z) = 0} pour [a0 : a1 : a2].

Remarque
On définit un élément général du système linéaire associé à f comme la préimage d’une droite générale
dans le contexte qui nous intéresse, c’est à dire d’une droite ne passant pas par les points-base de f et de f−1

qui sont en nombre fini. Tout élément général du système linéaire de f est une courbe irréductible passant par
les points-base de f avec même multiplicité [4, p.19]. On peut alors définir la multiplicité d’une transformation
birationnelle en un point P comme étant la multiplicité d’un élément général du système linéaire associé à
ce point dans le cas où P est un point-base de f , et 0 sinon.

13

Chapitre 2

Propriétés des transformations de P2

Dans ce chapitre, on établit plusieurs propriétés des transformations de P2 qui seront utiles dans la
démonstration par J.W. Alexander du théorème 0.1, de Noether-Castelnuovo.

On montre en premier lieu les équations de condition qui permettent entre autres de classifier les trans-
formations d’un degré donné, puisqu’elles fournissent une contrainte sur les points-base de celles-ci.

L’objet de la seconde partie est la caractérisation de la composition d’une transformation birationnelle avec
une transformation quadratique ayant tous ses points-base dans P2. On en calcule le degré et la multiplicité
aux points-base. On utilisera ces formules dans la preuve du théorème, puisque la méthode employée consiste
à précomposer la transformation considérée par une transformation quadratique afin de la simplifier.

On commence par établir un lemme qui sera utile dans les preuves suivantes :

Lemme 2.1
Soit f : P2 99K P2 une transformation birationnelle de points-bases O1, . . . , Ok, f−1 ayant pour points-bases
Q1, . . . , Ql. On considère une résolution minimale de f par le théorème de Zariski : il existe deux suites
d’éclatements π, η : S → P2 tels que le diagramme suivant commute :

S

π

��

η

��
P2

f
// P2

Soit maintenant D une courbe irréductible fermée de P2 qui n’est pas contractée par f−1 et C l’image de
D par f−1. Alors la transformée stricte D̃(η) = η−1(D\{Q1, . . . , Ql}) de D par η est égale à la transformée
stricte C̃(π) de C par π.

Démonstration. On considère les diviseurs exceptionnels E1 = π−1(O1), . . . , Ek = π−1(Ok) (resp. F1 =
η−1(Q1), . . . , Fl = η−1(Ql)) de π (resp. η) associés respectivement aux points O1, . . . , Ok (resp. Q1, . . . , Ql).

En tant que suites d’éclatements, π et η induisent des isomorphismes π̃ : S\(E1∪· · ·∪Ek)→ P2\{O1, . . . , Ok}
et η̃ : S\(F1 ∪ · · · ∪ Fl)→ P2\{Q1, . . . , Ql}.

Montrons l’égalité des transformées strictes par double inclusion :

Inclusion ⊃ : Soit x ∈ C̃(π). On suppose que x /∈ E1∪· · ·∪Ek∪F1∪· · ·∪Fl. Dès lors, l’image de x par π̃
n’est pas un point-base de f et on peut considérer f ◦ π̃(x) ∈ D. Comme D est une courbe générale, f ◦ π̃(x)
n’est pas un point-base de f−1 et on peut donc prendre son image par η̃−1, qui vaut x par commutativité du
diagramme.
Ainsi, π−1(D\{O1 . . . , Ok} ⊂ D̃(η), et donc c’est encore vrai pour la fermeture.

Inclusion ⊂ : Par symétrie, en appliquant l’inclusion pécédente à f−1

14

2.1 Équations de condition
Théorème 2.2 (Équations de condition)

Soit f : P2 99K P2 une transformation birationnelle. On note O1, . . . , Ok les points-bases de f . Alors :

k∑
i=1

mf (Oi)2 = deg(f)2 − 1

k∑
i=1

mf (Oi) = 3(deg(f)− 1)

Démonstration. On note Q1, . . . , Ql les points-base de f−1.
On considère une résolution minimale de f par le théorème de Zariski : il existe deux suites suites d’éclatements
π, η : S → P2 tels que π éclate les points-bases de f et η ceux de f−1, et que le diagramme suivant commute :

S

π

��

η

��
P2

f
// P2

On note E1, . . . , Ek les diviseurs exceptionnels associés à π et F1, . . . , Fl ceux associés à η. Soient mainteant
L,L′ deux droites générales de P2. On considère les éléments généraux de Λf associés C = (f−1)(L), C ′ =
(f−1)(L′) par f . On a alors mf (Oi) = mC(Oi) = mC′(Oi) par définition, et :

1 = L · L′ = η∗L · η∗L′ = L̃(η) · L̃′
(η)

(L,L′ générales)

1 = C̃(π) · C̃ ′
(π)

(lemme 2.1)

1 =
(
π∗C −

k∑
i=1

mC(Oi)Ei

)(
π∗C ′ −

k∑
i=1

mC′(Oi)Ei

)
(lemme 1.11)

1 = C · C ′ −
k∑
i=1

mC(Oi)mC′(Oi) (proposition 1.12)

1 = deg(f)2 −
k∑
i=1

mf (Oi)2 (C · C ′ = deg(f)2 par Bézout)

Démontrons maintenant la seconde formule : si on considère à nouveau une droite générale L et C ∈ Λf
l’élément général associé à L, on peut alors calculer le produit d’intersection L · KP2 = L · (−3H) = −3.
D’autre part :

L ·KP2 = η∗L · η∗KP2 = L̃(η) ·

KS −
l∑

j=1
Fj

 (par itération du lemme 1.13)

−3 = L̃(η) ·KS = L̃(η) ·

(
π∗KP2 +

k∑
i=1

Ei

)
(mL(Qi) = 0 car L générale)

−3 = C̃(π) ·

(
π∗KP2 +

k∑
i=1

Ei

)
(L̃(η) = C̃(π) par le lemme 2.1)

15

−3 =
(
π∗C −

k∑
i=1

mC(Oi)Ei

)(
π∗KP2 +

k∑
i=1

Ei

)
(lemme 1.11)

−3 = C ·KP2 +
k∑
i=1

mC(Oi) (proposition 1.12)

−3 = −3 deg(f) +
k∑
i=1

mf (Oi) (Bézout)

2.2 Composition des tranformations
Proposition 2.3

Soient f, g des transformations birationnelles de degré ν et µ. On a la formule :

deg(f ◦ g−1) = νµ−
k∑
i=1

mf (Oi)mg(Oi)

avec O1, ..., Ok les points-base de g.

Démonstration. On cherche à calculer deg(f ◦ g−1). Soit L ⊂ P2 une droite générale et C = (g ◦ f−1)(L) ∈
Λf◦g−1 .

On considère alors une résolution minimale de g par le théorème de Zariski :
S

π1

��

π2

��
P2 P2

g
oo

f
// P2

Soit H une droite générale de P2. Par le théorème de Bézout, deg(f ◦ g−1) = C ·H et en tirant en arrière
les diviseurs, on a deg(f ◦ g−1) = π∗1C · π∗1H = π∗1C · H̃(π1) puisque H est une droite générale, qui ne passe
par aucun des points-bases Q1, . . . , Ql de g−1, éclatés par π1.

Comme π2 (resp. π1) éclate les Oi (resp. Qj). On note également Ei (resp. Fj) le diviseur exceptionnel
dans S associé à Oi (resp. Qj). En exprimant le tiré-en-arrière de C, on obtient :

deg(f ◦ g−1) =

C̃(π1) +
l∑

j=1
mC(Qj)Fj

 · H̃(π1) = C̃(π1) · H̃(π1) +
l∑

j=1
mC(Qj)Fj · H̃(π1)

Or, H ne passe pas par Q1, . . . , Ql, donc son produit d’intersection avec les diviseurs exceptionnels de π1
est nul.

De plus, si on note D (resp. G) la préimage de L (resp. H) par f−1 (resp. g−1), on a en adaptant le
lemme 2.1 au cas de C :

deg(f ◦ g−1) = C̃(π1) · H̃(π1) = D̃(π2) · G̃(π2)

On développe alors l’expression :

deg(f ◦ g−1) =
(
π∗2D −

k∑
i=1

mD(Oi)Ei

)
·

(
π∗2G−

k∑
i=1

mG(Oi)Ei

)
= π∗2D · π∗2G−

k∑
i=1

mD(Oi)mG(Oi)

16

Or, π∗2D · π∗2G = D ·G = deg(g) deg(f) par le lemme de Bézout. Finalement :

deg(f ◦ g−1) = deg(g) deg(f)−
k∑
i=1

mg(Oi)mf (Oi)

Proposition 2.4
Soit inv : P2 99K P2 l’involution standard donnée par : inv : [x : y : z] 99K [yz : xz : xy], et α, β : P2 → P2

deux automorphismes de P2. On pose h = β ◦ inv ◦ α. La transformation h a donc pour points-base O1 =
α−1([1 : 0 : 0]), O2 = α−1([0 : 1 : 0]), O3 = α−1([0 : 0 : 1]), et si on considère les droites Li,j passant par
les points Oi, Oj (i.e. l’ensemble des points dont la k-ème coordonnée est nulle, avec k ∈ {1, 2, 3}\{i, j} la
coordonnée restante), alors elles sont contractées sur Qk = β(Ok) :

— L1,2 est contractée par h sur Q3 = β([0 : 0 : 1]).
— L1,3 est contractée par h sur Q2 = β([0 : 1 : 0]).
— L2,3 est contractée par h sur Q1 = β([1 : 0 : 0]).

Soit f : P2 99K P2 une transformation birationnelle de degré au moins 2. On note S1, . . . , Sr les points-base
de f .
Alors les points-base de f ◦ h−1 sont d’une part les Qi, avec pour multiplicité :

mf◦h−1(Qi) = deg(g)−mg(Oj)−mg(Ok)

pour {i, j, k} = {1, 2, 3}, et d’autre part les h(Sj) avec 1 ≤ j ≤ r tel que Sj n’est pas un point-base de h avec
multiplicité mg◦h−1(h(Sj)) = mg(Sj). 1

Démonstration. On considère tout d’abord la résolution de h par le théorème de Zariski : il existe π1, π2 :
S 99K P2 deux suites d’éclatements du plan projectif tels que h = π2 ◦ π−1

1 . Les points éclatés par π2 sont
ceux de h, c’est à dire O1, O2, O3 et ceux de π1 sont ceux de h−1, c’est à dire Q1, Q2, Q3. Pour i ∈ {1, 2, 3},
on note Fi (resp. Ei) le diviseur exceptionnel de π1 (resp. π2) associé à Qi (resp. Oi).

S
π1

��

π2

��
P2 P2

h
oo

f
// P2

Soit L une droite générale de P2. On considère C = (h ◦ f−1)(L) ∈ Λf◦h−1 . On peut donner via le lemme
1.12 une expression de la multiplicité de f ◦ h−1 en les Qi comme produit d’intersection.
Faisons le cas i = 1 par exemple :

C̃(π1) · F1 =
(
π∗1C −

3∑
i=1

mC(Qi)
)
· F1 = mf◦h−1(Q1)

En appliquant le lemme 2.1 à C, et en notant G = (h−1)(C) = (f−1)(L), on a G̃(π2) = C̃(π1). Donc on
peut calculer le produit d’intersection :

mf◦h−1(Q1) = G̃(π2) = (π∗2G−mf (O1)E1 −mf (O2)E2 −mf (O3)E3) · F1 (lemme 1.11)

= (π∗2G−mf (O1)E1 −mf (O2)E2 −mf (O3)E3) · L̃2,3
(π2)

(F1 = L̃2,3
(π2)

)

1. Cela fonctionne si Sj est dans P2, mais dans le cas où Sj est sur le diviseur exceptionnel associé à Sk, il faut éclater h(Sj)
pour retrouver un nouveau point-base noté abusivement h(Sk).

17

= (π∗2G−mg(O2)E2 −mg(O3)E3) · (π∗2L2,3 − E2 − E3) (multiplicités de L2,3)

= G · L−mg(O2)−mg(O3) = deg(g)−mg(O2)−mg(O3) (proposition 1.12 et Bézout)

On a le résultat similairement pour Q2, Q3.
Maintenant, un point-base de f ◦ h−1 est nécessairement :

1. Soit un Qi.
2. Soit l’image h(Sj) d’un point-base Sj de f qui est dans P2 et tel que Sj /∈ {O1, O2, O3}.
3. Soit un point situé sur le diviseur exceptionnel associé à un des points-base précédents.
Le premier cas vient d’être traité.

Pour le second cas, il faut remarquer que la transformée stricte d’un élément général du système linéaire de
f passe par le diviseur exceptionnel associé à Sj exactement mf (Sj) fois, et que h−1 ne change pas cette
propriété. Pour le dernier cas, on peut montrer qu’il n’y a un tel point-base qu’au dessus des images des
h(Sj), et uniquement dans le cas où il y a déjà un point-base Sk au dessus de Sj , et que les multiplicités sont
conservés :

— La première assertion revient à montrer que f ◦ h−1 est toujours bien définie au dessus des Qi qui ne
sont pas des h(Sj). Pour simplifier les notations, on le montre pour i = 1 : le diviseur exceptionnel
associé à Q1 est envoyé sur la droite L2,3. 2 On suppose alors par l’absurde qu’il existe un x sur le
diviseur exceptionnel associé à Q1 tel que f ◦ h−1 ne soit pas définie en x.
Ainsi, l’image de x sur L2,3 est un point-base de f puisque sinon f ◦ h−1 serait définie en x, donc ce
serait un Sj . Or, c’est absurde car on a supposé que Q1 n’était pas un h(Sj), et h contracte L2,3 sur
Q1. On a donc démontré la première assertion.

— Dans le cas où le point considéré est un h(Sj) avec Sj qui n’est pas un point-base de h, il faut remarquer
qu’en éclatant Sj via π : S → P2 d’un côté et en contractant ESj sur h(Sj) via η : S → P2 de l’autre,
on obtient un diagramme commutatif :

S
η

��

π

��
P2 P2

h
oo

Ainsi, un point-base de f qui était au dessus de Sj se retrouve bien au dessus de h(Sj), et par
commutativité du diagramme c’est encore un point-base de f ◦ h−1.

On peut en fait montrer que les transformations quadratiques ayant leurs points-base dans P2 sont toutes
des transformations quadratiques standard, c’est à dire de la forme α ◦ inv ◦ β comme ci-dessus :

Lemme 2.5
Les transformations quadratiques ayant tous leur points-base dans P2 sont toutes les mêmes à automorphisme
près.

Démonstration. Soit g : P2 99K P2 une transformation quadratique dont les trois points-base A,B,C sont
dans P2.
En particulier, le théorème de Bézout contraint A,B,C à ne pas être colinéaires, puisque sinon, on aurait
pour une courbe D du système linéaire de P2 :

2 = deg(D) deg(LAB) = mD(A) +mD(B) +mD(C) +
∑
G

mD(G)mLAB
(G) ≥ 3

De même pour les points-base A′, B′, C ′ de f−1, qui sont également tous dans P2. Donc on peut composer g
par les automorphismes α, β : P2 → P2 qui vérifient :

2. Similairement à ce qu’on a vu dans la résolution de Zariski de l’involution standard, et c’est ainsi que l’on calcule f ◦ h−1

pour un élément sur le diviseur exceptionnel de Q1 : en prenant l’image par f de son image dans L2,3.

18

— α([1 : 0 : 0]) = A et β([1 : 0 : 0]) = B′.
— α([0 : 1 : 0]) = B et β([0 : 1 : 0]) = C ′.
— α([0 : 0 : 1]) = C et β([0 : 0 : 1]) = A′.
La transformation f = β−1 ◦ g ◦ α a alors les mêmes points-base avec même multiplicité que l’involution

standard :
P2 99K P2

[x : y : z] 7→ [yz : xz : xy]

Par la formule sur les composée d’une transformation birationnelle avec une transformation quadratique, on
calcule alors que f ◦ inv a pour degré 4−1−1−1 = 1 et aucun point-base. Il s’agit donc d’un automorphisme
γ : P2 → P2.
Ainsi, on a f ◦ inv = γ, c’est à dire (γ−1 ◦ f) ◦ inv = id, et donc (β ◦ γ)−1 ◦ g ◦ α = γ−1 ◦ f = inv.

En particulier, par la proposition 2.4, on peut connaître la multiplicité aux points-base la composée d’une
transformation birationnelle de P2 avec n’importe quelle transformation quadratique ayant ses points-base
dans P2.

Dans la suite, on supposera par défault que "l’involution quadratique standard de points-base A,B,C ∈
P2" désigne une transformation quadratique ayant pour points-base A,B,C (unique à automorphisme près)
et vérifiant :

— LAB est contractée sur C
— LAC est contractée sur B
— LBC est contractée sur A
En particulier, on peut regrouper toutes les informations des propositions 2.3 et 2.4 en les appliquant à

ces transformations que l’on utilisera dans la preuve :

Corrollaire 2.6
Soit f : P2 99K P2 une transformation birationnelle de degré n et de points-base Q1, . . . , Qk.
Soit g : P2 99K P2 l’involution quadratique standard de points-base A,B,C.
Alors h = f ◦ g−1 a pour degré :

2n−mf (A)−mf (B)−mf (C)

et ses points-base sont :
— A,B,C avec pour multiplicité : mh(A) = n−mf (B)−mf (C)

mh(B) = n−mf (A)−mf (C)
mh(C) = n−mf (A)−mf (B)

— Les g(Qi) tels que Qi 6= A,B,C, avec pour multiplicité :

mh(g(Qi)) = mf (Qi)

19

Chapitre 3

Théorème de Noether-Castelnuovo

3.1 Introduction de la preuve
On veut démontrer dans ce chapitre le théorème 0.1.
Comme la démonstration est claire pour les transformations de degré 1, on le montre pour les transfor-

mations de degré supérieur ou égal à 2.
Commençons par introduire quelques définitions qui serviront par la suite :

Définition 3.1
Soit f : P2 99K P2 une transformation birationnelle du plan projectif de degré n ≥ 2. On note O0, . . . , Ok ses
points-bases, classés par multiplicité décroissante α0 ≥ α1 ≥ · · · ≥ αk.

— On note 2jf la complexité de f , définie par :

jf = n− α0

2 ⇐⇒ 2j = n− α0

— On note Bf l’ensemble des points-base différents de O0 et ayant une multiplicité supérieure à jf . On
définit par ailleurs hf = |Bf |, de sorte qu’ici,

Bf = {O1, . . . , Ohf
}

On notera jf = j et hf = h lorsqu’il n’y a pas de confusion possible. En combinant les deux équations de
conditon du théorème 2.2, on obtient l’équation suivante dont on se servira par la suite : ∀j ∈ Q,

k∑
i=0

αi(αi − j) = (n− 1)(n− 3j + 1) (3.1)

On peut alors donner quelques propriétés sur la complexité 2j et l’ensemble Bf d’une transformation f
de degré supérieur à 1 :

— On note d’abord que 2j ≥ 1, puisque deg(f) ≥ 2. En effet, par le théorème de Bézout, une droite
passant par O0 coupe forcément une courbe générale du système linéaire de C en au moins deux
points, et donc :

n = α0 +
∑
p

mp(C) > α0

— De plus, on peut borner les multiplicité des points de Bf : par le théorème de Bézout appliqué à la
droite L0,1 = LO0O1 et un élément C du système linéaire de f , on a :

deg(L0,1) deg(C) = n = C · L0,1

20

Or, C · L0,1 = α0mL0,1(O0) + α1mL0,1(O1) +
∑
pmC(p)mL0,1(p) = α0 + α1 +

∑
pmC(p). Ainsi,

2j = n− α0 = α1 +
∑
p

mC(p) ≥ α1

Finalement, on obtient les bornes voulues :

2j ≥ α1 ≥ · · · ≥ αh > j (3.2)

On a de plus une condition sur hf , qui montre que Bf n’est jamais vide :

Lemme 3.2
Soit f : P2 99K P2 une transformation birationnelle de degré n ≥ 2. Alors hf est toujours strictement plus
grand que 1.

Démonstration. On soustrait à l’équation (3.1) 3j − 1 > 0 à droite et
∑k
i=hf +1 αi(αi − j) ≤ 0 à gauche, de

sorte qu’on a l’inégalité :
hf∑
i=0

αi(αi − j) > (n− 1)(n− 3j + 1)− (3j − 1) = n(n− 3j)− (n− 3j) + n− 1− 3j + 1 = n(n− 3j)

Or, n− 3j = n− 2j − j = α0 − j, donc :
hf∑
i=0

αi(αi − j) > n(α0 − j)

> n(α0 − j)− α0(α0 − j)
> (n− α0)(α0 − j)
> 2j(α0 − j)

Par (3.2), on obtient en majorant les αi à gauche puis en simplifiant :

2j
hf∑
i=1

(αi − j) > 2j(α0 − j)

hf∑
i=1

(αi − j) > α0 − j (3.3)

Ceci n’est pas possible si l’on a pas hf ≥ 2 puisque α1 ≤ α0.

Exemple 4 (Transformations de De Jonquières)
On peut étudier le cas spécial où f est une transformation birationnelle de complexité 2j = 1. Une transfor-
mation de ce type s’appelle transformation de De Jonquières.
O0 a alors pour multiplicité deg(f) − 1 par définition de la complexité. Et les autres points sont simples
puisque leur multiplicité est bornée par 1

2 et 1 par les inégalités 3.2. La première équation de condition
fournit alors :

deg(f)− 1 + |{Points-base simples de f}| = 3(deg(f)− 1)
Et ainsi, f a un point-base de multiplicité deg(f)− 1 et 2(deg(f)− 1) points-base simples.

3.2 Preuve du théorème de Noether-Castelnuovo
Soit f une transformation birationnelle de P2 de degré n ≥ 2. Montrons dans un premier temps que

si les points O0, . . . , Oh de Bf ne sont pas tous dans P2, on peut précomposer f par des transformations
quadratiques pour les rendre ramener dans P2 :

21

Proposition 3.3
Soit f une transformation birationnelle de P2 de degré n ≥ 2. On reprend pour les points-base de f les
notations précédentes.
Alors il existe des involutions quadratiques standardes p1, . . . , pm telles que f ′ = f ◦ p−1

1 ◦ · · · ◦ p−1
m vérifie :

— 2jf ′ = 2jf
— hf ′ = hf + 2
— O0 est le point-base de plus grande multiplicité de f ′ et tous les points de Bf ′ sont dans P2.

Démonstration. La preuve s’effectue en deux étapes :
Séparation des points-base en O0 : Soient A,B deux points de P2 distincts des points-base de f , tels que

O0, A,B soient en position générale. On considère alors l’involution quadratique standard p1 de points-base
O0, A,B. Par le théorème 2.6, on a alors le degré et les nouvelles multiplicité de f ′ = f ◦ p−1

1 aux points-base
O0, A,B : 

deg(f ′) = 2n− α0 = n+ 2j > n
mf ′(O0) = n = 2j + α0
mf ′(A) = n− α0 = 2j
mf ′(B) = n− α0 = 2j

Ainsi, la multiplicité de O0 augmente et reste la plus grande, et deux nouveaux points-base sont introduit,
de multiplicité 2jf > jf . f ′ a encore 2jf pour complexité, puisque 2jf ′ = deg(f ′)−mf ′(O0) = 2n−α0−n =
n− α0 = 2jf . Donc par le calcul des nouvelles multiplicités, hf ′ = hf + 2.
De plus, si 1 ≤ l ≤ hf est tel que Ol est infiniment proche de O0, son image par p−1

1 notée encore Ol est alors
sur la droite AB, par la résolution de p1 par le théorème de Zariski :

Donc tous les points qui étaient infiniment proches de O0 sont désormais dans P2.

Séparation des autres points-base : On note à nouveau n = deg(f ′). Soient O′ = Oi ∈ Bf qui est tel
qu’un autre point-base O′′ est infiniment proche de O′. On considère l’involution quadratique standard p2 de
points-base O0, O

′, C, avec C en position générale. Encore par le théorème 2.6, la transformation f ′′ = f ′◦p−1
2

a alors pour degré et pour multiplicité aux points-base O0, O
′, C :

deg(f ′′) = 2n− α0 − αi = n+ 2j − αi > n
mf ′′(O0) = n− αi
mf ′′(O′) = n− α0 = 2j
mf ′′(C) = n− α0 − αi

O0 est encore le point de multiplicité la plus grande, puisque par (3.2), n−αi ≥ n− 2j = α0, et donc comme
précédemment, 2jf ′′ = 2jf . De plus, C /∈ Bf ′′ , puisque n − α0 − αi = 2jf − αi < 2jf − jf < jf . Donc

22

hf ′′ = hf ′ .
D’autre part, soit O′′ = Oj ∈ Bf ′ , puisque la droite L0,j est contractée sur C, il faut vérifier deux choses afin
d’éviter que d’autres points-bases ne soient infiniment proches à la suite de cette transformation :

— Que O′′ ne peut pas être sur la droite L0,j
— Que, si O′′ est infiniment proche de O′, O′′ ne soit pas sur la droite L0,j dans la variété S de la

résolution de p2 donnée par le théorème de Zariski (i.e. que O′′ ne soit pas l’intersection de du diviseur
exceptionnel EO′ associé à O′ et de L̃0,j

(π2)
= π−1

2 (L0,j\{O0, O′}) dans S) :
S

π2

��

π1

��
P2 p2 // P2

Le théorème de Bézout empêche ces deux cas d’arriver, puisque dans les deux cas, le produit d’intersection
de la droite L0,j et d’un membre général C ′ du système linéaire de f ′ donnerait :

n = L0,j · C ′ = α0 + αi + αj +
∑
p

mf ′(p)

Donc 2j > αi + αj , et par (3.2), on obtiendrait 2j > j + j.
Ainsi, ces situations particulières ne peuvent pas arriver, et donc les points-bases qui ne sont pas concernés
par p2 restent inchangés pendant que O′ et O′′ sont séparés par p2 comme le montre le diagramme suivant :

En itérant cette seconde étape pour tous les points-base de multiplicité supérieure à j qui sont infiniment
proches, on peut les séparer un par un, et puisque C est en position générale, les autres points-base ne
changent pas.

Finalement, la transformation obtenue a tous ses points-base de multiplicité supérieure à j dans P2.

Lemme 3.4
Soit f une transformation birationnelle de P2 de degré n ≥ 2 telle que tous les points de Bf sont dans P2.
On note h = hf et j = jf , et on reprend les notations précédentes pour les points-base de f .
Alors, il existe une involution quadratique standard p de P2 telle que f ′ = f ◦ p−1 vérifie la disjonction
suivante :

1. Si O0 est encore le point-base de f ′ de plus grande multiplicité, alors tous les points de Bf ′ sont dans
P2, 2jf ′ = 2j et hf ′ = h− 2.

23

2. Sinon, jf ′ < j.

Démonstration. Soient Oi, Oj ∈ Bf . Alors, O0, Oi, Oj ne sont pas alignés dans P2 :
En effet si ce n’était pas le cas, on aurait par le théorème de Bézout appliqué à la droite O0Oi et à une courbe
C du système linéaire de f :

n = α0 + αi + αj +
∑
p

mC(p) ≥ α0 + αi + αj

Et donc 2j ≥ αi + αj > j + j = 2j, ce qui est absurde.

On peut donc considérer l’involution quadratique standard g de P2 de points-base O0, Oi, Oj , et la trans-
formation f ′ = f ◦ g−1. Le théorème 2.6 fournit le degré et les nouvelles multiplicités aux points concernés :

deg(f ′) = 2n− α0 − αi − αj = n+ 2j − αi − αj < n
mf ′(O0) = n− αi − αj
mf ′(Oi) = j − αj
mf ′(Oj) = j − αi

la multiplicité des autres points-base restant inchangée. On a alors la disjonction suivante :
— Si O0 est le point-base de plus grande multiplicité de f ′, alors la complexité de f ′ est donnée par :

2jf ′ = deg(f ′)−mf ′(O0) = (2n− α0 − αi − αj)− (n− αi − αj) = n− α0 = 2j

Donc f ′ a encore 2j pour complexité, et donc Oi et Oj ne sont plus des points de multiplicité supérieure
à jf ′ = j. On en déduit que Bf ′ a deux points en moins par rapport à f .

— Sinon, alors soit Ol le point-base de multiplicité la plus grande, on a alors mf ′(Ol) > mf ′(O0), et
donc :

2jf ′ = deg(f ′)−mf ′(Ol) < deg(f ′)−mf ′(O0) = 2j

La complexité de f ′ est donc inférieure à celle de f .

On peut alors combiner la proposition 3.3 et le lemme 3.4 :

Proposition 3.5
Soit f une transformation birationnelle de P2 de degré n ≥ 2. On note h = hf et j = jf , et on reprend pour
les points-base de f les notations précédentes.
Alors, il existe une composée g d’involutions quadratiques standardes de P2 telles que la transformation
f ′ = f ◦ g−1 vérifie la disjonction :

1. Si O0 est encore le point-base de f ′ de plus grande multiplicité, alors jf ′ = j et hf ′ = h− 2.
2. Sinon, 2jf ′ < 2j.

Démonstration. On applique tout d’abord la proposition 3.3 à f : il existe une composée de transformations
quadratique q1 telle que f1 = f ◦ q−1

1 possède encore O0 comme point-base de plus grande multiplicité, et
vérifie 2jf1 = 2j et hf1 = h+ 2.
On applique alors une première fois le lemme 3.4 à f1 : on obtient la transformation f2 = f1 ◦ q−1

2 . On a alors
la disjonction du lemme :

— Dans le deuxième cas du lemme 3.4, f2 a une complexité inférieure à 2j, et donc la transformation
f2 = f ◦ (q1 ◦ q2)−1 vérifie le deuxième cas de la proposition.

— Dans le premier cas du lemme 3.4, 2jf2 = 2j et hf2 = hf1 − 2 = h, tous les points de Bf2 étant dans
P2. On applique alors à nouveau le lemme 3.4 à f2, et la transformation obtenue f3 = f2 ◦ q−1

3 =
f ◦ (q3 ◦ q2 ◦ q1)−1 vérifie bien la proposition.

On peut mainteant rassembler ces résultats pour obtenir la démonstration du théorème 0.1 :

24

Démonstration du théorème de Noether-Castelnuovo. On va procéder par double récurrence, sur la com-
plexité et sur le nombre de points-base de multiplicité supérieure à cette complexité pour démontrer le
théorème.
On pose l’hypothèse de récurrence :

H2j,h = "Toute transformation birationnelle du plan projectif vérifiant 2jf = 2j et hf = h se décompose
en une composée de transformée quadratiques et d’automorphismes".

— Initialisation en j : Montrons que pour tout h ≥ 2, on a bien H1,h (i.e. que les transformations de
De Jonquières, vues dans l’exemple 4, se décomposent en transformations quadratiques. On effectue
pour cela une récurrence sur h :

— Initialisation en h : Il s’agit de montrer vérifier H1,2. Soit f une transformation de De Jonquières
avec hf = 2. Comme une telle transformation a 2(deg(f) − 1) points-base simples, on en déduit
que deg(f) = 2, et donc f est une transformation quadratique.

— Hérédité en h : Soit h > 2. On suppose H1,h−1 et on veut montrer H1,h. Soit f une transformation
de De Jonquières avec h points-base simples. On applique la proposition 3.5 à f et on obtient une
transformation f ′ = f ◦ g−1 qui est encore de De Jonquières, et a h − 2 points-base simples. Par
l’hypothèse H1,h−1, f ′ se décompose alors en une composée de transformations quadratiques, et
donc f également.

— Hérédité en j : Soit 2j < 1 fixé. On suppose qu’on a pour tout h ≥ 2, H2(j−1),h. Montrons qu’on a
encore pour tout h ≥ 2, H2j,h. Pour cela, on démontre encore la récurrence en h :

— Initialisation en h : Montrons qu’on a bien H2j,2.
Soit f une transformation birationnelle de P2 de complexité 2j telle que hf = 2. On reprend pour
les points-base de f les notations précédentes.
En appliquant la proposition 3.5 à f , on obtient une transformation f ′ = f ◦ g−1 qui a une com-
plexité inférieure à 2j, puisque h < 3. 1 Par l’hypothèse H2(j−1),h′ pour h′ assez grand, f ′ est bien
une composée de transformation quadratiques, et donc f également puisque f = f ′ ◦ g−1.

— Hérédité en h : Soit h > 2. On suppose H2j,h−1. Montrons alors H2j,h.
Soit f une transformation birationnelle de P2 de complexité 2j telle que hf = h. On reprend pour
les points-base de f les notations précédentes.
On applique encore la proposition 3.5 à f et on obtient la transformation f ′ = f ◦ g−1 vérifiant la
disjonction de la proposition :
1. Soit f ′ a la même complexité que f et hf ′ = h−2. Par l’hypothèse H2j,h−1, f ′ est une composée

de transformations quadratiques, et donc f = f ′ ◦ g−1 l’est également.
2. Soit 2jf ′ < 2j, et donc par l’hypothèse H2(j−1),h′ pour h′ assez grand, f ′ est une composée de

transformations quadratiques et c’est encore le cas pour f .

Finalement, on a montré que pour tout h ≥ 2, H2j,h, ce qui démontre l’hérédité en j.
Ainsi, on a démontré la double récurrence, et donc toute transformation birationnelle se décompose en

transformations quadratiques.

Remarque
On a en fait montré un résultat un peu plus fort que celui donné par le théorème 0.1, puisque l’on utilise ici que
des involutions quadratiques standardes 2 ayant tous leur points-base dans P2, qui sont égales à l’involution

1. En effet, sinon cette transformation vérifierait hf ′ = 1, ce qui contredit le lemme 3.2.
2. Dans l’initialisation de h, si jamais la transformation quadratique obtenue à la fin n’est pas une involution quadratique

standard, on peut encore la décomposer, comme on le fera au chapitre suivant.

25

standard à automorphisme près par le lemme 2.5 :

[x : y : z] 99K [yz : xz : xy]

Le résultat que l’on a finalement montré est que l’involution standard et les automorphismes engendrent les
transformations birationnelles de P2.

26

Chapitre 4

Applications du théorème de
Noether-Castelnuovo

Le caractère algorithmique de la preuve de J.W. Alexander permet de décomposer facilement une trans-
formations de P2 en connaissant ses points-base avec multiplicité.
Dans ce chapitre, on applique l’algorithme à certaines transformations, d’abord de manière calculatoire, puis
en décrivant ces transformations uniquement avec leurs points-base et multiplicités, les calculs devenant ra-
pidement compliqués.

On appliquera donc d’abord l’algorithme de manière numérique pour les transformations quadratiques,
puis de manière abstraite pour les transformations de degrés 3 et 5.
Enfin, on parlera du test de Hudson, qui permet de connaître exactement, étant donné un entier positif,
le nombre de points-base avec multiplicité possible pour une transformation birationnelle de ce degré. On
utilisera ce test dans l’implémentation informatique de l’algorithme de J.W. Alexander, donnée en annexe.

4.1 Transformations quadratiques
On a étudié précédemment les transformations quadratiques ayant tous leurs points-base dans P2, mais

ces derniers peuvent également être infiniment proches comme on l’a vu dans l’algorithme, et accessibles
seulement par éclatement d’un autre point-base.
Les équations de condition appliquée à une transformation quadratique permet de dire que toute trans-
formation quadratique a exactement trois points-base simples 1. Il s’agit donc de voir où se trouvent ces
points-base :

4.1.1 Deux points-base dans P2 et un point-base infiniment proche
On cherche une transformation ayant pour points-base [1 : 0 : 0] et [0 : 1 : 0] dans P2 et contractant la

droite passant par ces deux points. Considérons la transformation :

f : [x : y : z] 99K [xz : y(z − x) : z(z − x)]

Cette transformation a bien pour points-base [1 : 0 : 0], [0 : 1 : 0] dans P2. On considère l’éclatement de P2

en [0 : 1 : 0] : π : Bl[0:1:0]P2 → P2 avec

Bl[0:1:0]P2 = {([x : y : z], [u : v]) ∈ P2 × P1 | xu = zv}

Le diviseur exceptionnel est π−1([0 : 1 : 0]) = {([0 : 1 : 0], [u : v]) ∈ P2 × P1}.
f ◦π est alors définie sur le diviseur exceptionnel, excepté sur un point : on regarde l’ouvert {u 6= 0} = {([zv :

1. 4− 1 =
∑k

i=1 α
2
i , avec αi ≥ 1, d’où le résultat.

27

y : z], [1 : v]) ∈ P2 × P1}. Sur cet ouvert, on a :

f ◦ π([zv : y : z], [1 : v]) = f([zv : y : z]) = [z2v : zy(1− v) : z2(1− v)] = [zv : y(1− v) : z(1− v)]

On observe alors que f n’est pas définie sur un point de l’ouvert intersecté avec la droite {z = 0}, le point
([0 : 1 : 0], [1 : 1]), qui est sur le diviseur exceptionnel E. C’est le troisième point-base de la transformation.
Cette transformation est donc bien du type voulu.

On peut maintenant appliquer l’algorithme pour décomposer f : on choisit O0 = [1 : 0 : 0], O1 = [0 : 1 :
0], O2 = ([0 : 1 : 0], [1 : 1]).
En précomposant avec la transformation quadratique standard, puisque O0, O1, O3 = [0 : 0 : 1] sont en
position générale, on obtient la transformation :

h : [x : y : z] 99K f([yz : xz : yx]) = [y2zx : xz(yx− yz) : yx(yx− yz)] = [yz : z(x− z) : y(x− z)]

Cette transformation a pour points-base les points O0, O1 et un point sur la droite O0O3 dispersé par l’invo-
lution, que l’on reconnaît comme étant le point [1 : 0 : 1].
Comme les points O0, O1, O3 ne sont pas colinéaires, on a décomposé f en une composée de deux transfor-
mations quadratiques à points-base dans P2 : f = h ◦ inv.

4.1.2 Trois points-base infiniment proches
On veut cette fois une transformation possédant un seul point-base dans P2. La contrainte sur les mul-

tiplicités permet de dire que ces trois points-base ne sont pas alignés, et donc il faut nécessairement deux
éclatements pour les révéler.
Il faut donc chercher une transformation ayant un point-base O0 dans P2, un point-base O1 sur le diviseur
exceptionnel EO0 dans BlO0P2 et un point-base O2 sur le diviseur exceptionnel EO1 dans BlO1(BlO0P2).
On considère la transformation :

f : [x : y : z] 99K [xz : yz − x2 : z2]

Elle possède un seul point-base dans P2 : O0 = [0 : 1 : 0]. On vérifie que la transformation possède bien les
propriétés mentionnées.
En éclatant P2 en ce point :

Bl[0:1:0]P2 = {([x : y : z], [u : v]) ∈ P2 × P1 | xu = zv}

f ◦π1 est définie sur le diviseur exceptionnel EO0 sauf sur un point. Dans l’ouvert {v 6= 0} = {([x : y : xu], [u :
1] ∈ P2 × P1}, on a :

f ◦ π1([x : y : xu], [u : 1]) = f([x : y : xu]) = [x2u : xyu− x2 : x2u2] = [xu : yu− x : xu2]

On remarque que le point O1 = ([0 : 1 : 0], [0 : 1]) est un point-base de f ◦ π1 présent dans cet ouvert. On
peut le regarder dans la carte affine de Bl[0:1:0]P2 définie par {v 6= 0, y 6= 0}. Cette carte est isomorphe au
plan affine via :

([x : 1 : z], [u : 1]) → (x, u)
([x, 1, xu], [1, v]) ← (x, u)

Et donc O1 correspond dans cette carte au point (0, 0) et la droite V ect((0, 1)) correspond au diviseur ex-
ceptionnel EO0 . On définit alors la fonction f sur le plan affine via l’isomorphisme de celui-ci avec la carte
pour simplifier les calculs :

f̃(x, u) := f([x : 1 : xu]) = [xu : u− x : xu2]

On effecture alors l’éclatement local de A2 en (0, 0) :

Bl(0,0)A2 = {((x, y), [s : t]) ∈ A2 × P1 | xs = yt}

28

Dans l’ouvert affine {t 6= 0}, on a alors

f̃ ◦ π((x, xs), [s : 1]) = f̃(x, xs) = [x2s : xs− x : x3s2] = [xs : s− 1 : x2s2]

On observe alors que le point ((0, 0), [1 : 1]) est un point-base de f̃ , qui est présent sur le diviseur exceptionnel
EO1 . On a donc finalement trouvé trois points-base infiniment proches pour f . Cette transformation est donc
bien du type voulu.

On peut alors appliquer l’algorithme à cette transformation :

Il faut commencer par disperser les points-bases qui sont infiniment proches du premier point O0. Comme
dans la preuve vue avant, on prend deux autres points A et B tels que O0, A,B soient en position générale,
disons A = [0 : 0 : 1] et B = [1 : 0 : 1], de sorte que O1 ne soit pas envoyé sur A ou B, mais bien entre les
deux. Cette involution est donnée par :

g0 : [x : y : z] 99K [x : y : z + x] ◦ [yz : xz : xy] ◦ [x : y : z − x] = [y(z − x) : x(z − x) : yz]

On peut alors calculer la nouvelle transformation, qui devrait avoir quatre points-base dans P2 :

f ′ = f ◦ g0 = [xz : yz − x2 : z2] ◦ [y(z − x) : x(z − x) : yz]
= [y2z(z − x) : xyz(z − x)− y2(z − x)2 : y2z2]
= [yz(z − x) : xz(z − x)− y(z − x)2 : yz2]

Cette transformation est bien de degré 3 et a quatre points-base dans P2 : [0 : 1 : 0], [0 : 0 : 1], [1 : 0 : 1]
et [1 : 0 : 0]. Les trois points [0 : 0 : 1], [1 : 0 : 1] et [1 : 0 : 0] sont des points-base simples et O0 = [0 : 1 : 0]
est un point-base double, puisque si L est une droite générale de P2 correspondant aux coefficients [a : b : c],
le tiré-en-arrière de L est donné par la cubique ayz(z − x) + b(xz(z − x)− y(z − x)2) + cyz2 = 0, qui a bien
les multiplicités voulues aux points-base de f ′.
De plus le dernier point correspond au point qui était sur le diviseur exceptionnel associé à O0, puisqu’il
n’était pas présent dans les points-base de g (corollaire 2.6). Le dernier point-base est donc sur ce point,
comme on l’a vu au paragraphe précédent.

On va donc à nouveau composer avec une involution quadratique standard de points-base [0 : 1 : 0], [1 :
0 : 0] et un point en position générale, disons [1 : 2 : 3]. Une telle involution est donnée par la composition
[x+ z : y + 2z : 3z] ◦ [yz : xz : xy] ◦ [3x− z : 3y − 2z : z], c’est à dire :

g1 : [x : y : z] 99K [x(3y − 2z) : (2y − z)(3x− z) : (3x− z)(3y − 2z)]

On calcule alors la nouvelle transformation :

f ′′ = f ′ ◦ g1 = [yz(z − x) : xz(z − x)− y(z − x)2 : yz2] ◦ [x(3y − 2z) : (2y − z)(3x− z) : (3x− z)(3y − 2z)]
= [(2y − z)(3x− z)(2x− z) : x(3y − 2z)(2x− z)− (2y − z)(2x− z)2 : (2y − z)(3x− z)2]

C’est une transformation de degré 3, ayant pour points-base :
— [0 : 1 : 0], [1 : 0 : 0] comme points-base de g1 ([1 : 2 : 3] étant directement dispersé).
— [1 : 3 : 3] comme nouveau point-base correspondant à celui qui était sur le diviseur exceptionnel associé

à [1 : 0 : 0]. 2

— g1([0 : 0 : 1]) = [0 : 1 : 2] et g1([1 : 0 : 1]) = [1 : 1 : 2]
Le point [0 : 1 : 0] est de multiplicité 2 et les autres sont de multiplicité 1. Comme c’est le seul type

homaloïdal pour une transformation de degré 3, tous les points-base sont bien dans P2.
On traite, dans la section suivante, de la décomposition des transformations birationnelles de degré 3.

Remarque
Ici on aurait aussi pu décomposer, à partir du deuxième stade, avec l’involution standard, et on se serait
retrouvé dans le cas d’une transformation quadratique avec deux points-base dans P2, que l’on a vu à la
section précédente.

2. Pour le trouver, on le cherche sur la droite z = 3x passant par [0 : 1 : 0] et [1 : 2 : 3], et donc de la forme [x : y : 3x]. On
remplace alors dans l’équation de f ′′.

29

4.2 Transformation de degré 3
Soit f une transformation de degré 3. On regarde quelles sont les possibilités de points-base pour f :
— La première équation de condition fournit que la somme des carrés des multiplicités vaut 8.
— La second fournit que la somme des multiplicités vaut 6.

La seule possibilité est donc un point-base de multiplicité 2 et quatre points-base simples.
On suppose dans un premier temps qu’ils sont tous dans P2 et on les note O0, . . . , O5, classés par multiplicité
décroissante.
Cette transformation a pour complexité 2jf = 2. En appliquant l’algorithme, on peut alors regarger l’invo-
lution quadratique standard g de points-base O0, O4, O5. Les multplicités obtenues après composition pour
h = f ◦ g−1 :

— mh(O0) = 3− 1− 1 = 1
— mh(O4) = 3− 2− 1 = 0
— mh(O5) = 3− 2− 1 = 0

Les autres multiplicités restant les mêmes.
On observe que la nouvelle transformation h a trois points-base de multiplicité 1 dans P2. C’est donc une
transformation quadratique de la forme voulue.
Finalement, on a décomposé cette transformation de degré 3 en une composée de deux transformations qua-
dratiques.

On peut maintenant regarder ce qu’il se passe lorsqu’un point-base est infiniment proche d’un autre.
Imaginons par exemple que le point-base O5 est infiniment proche du point-base O0.
Comme dans l’algorithme, on considère deux points O6 et O7 de P2 tels que O0, O6, O7 soient en position
générale.
On effectue l’involution quadratique standard g1 de points-base O0, O6, O7 et on note f1 = f ◦ g−1.
Avec les formules, f1 est de degré 4 et a pour nouvelle multiplicité en O0, O6, O7 :

— mf1(O0) = 3
— mf1(O6) = 3− 2 = 1
— mf1(O7) = 3− 2 = 1

On a à nouveau une complexité 2jf1 = 2, et deux nouveaux points-base simples. On poursuit alors l’algorithme
jusqu’à décomposer la transformation :
On précompose f1 avec l’involution quadratique standard g2 de points-base O0, O6, O7, et les nouvelles
multiplicités de f2 = f1 ◦ g−1

2 est une transformation de degré 3 ayant pour nouvelles multiplicités aux points
O0, O6, O7 :

— mf2(O0) = 4− 1− 1 = 2
— mf2(O6) = 4− 3− 1 = 0
— mf2(O7) = 4− 3− 1 = 0

On a donc deux points-base en moins, et on obtient donc que f2 est une transformation de degré 3 ayant tous
ses points-base dans P2. On peut donc appliquer la décomposition ci-dessus pour avoir que f2 se décompose en
une composée de deux transformations quadratiques ayant leurs points-base dans P2 : f2 = g3◦g4. Finalement,
on a décomposé f en une composée de quatre transformations quadratiques ayant leurs points-base dans P2.

4.3 Transformation de degré 5
On considère une transformation f de degré 5 ayant tous ses points-base dans P2. Appliquons l’algorithme

pour la décomposer en transformations quadratiques.
Déterminons d’abord les multiplicités possibles pour f :

— La première équation de condition fournit que la somme des carrés des multiplicités vaut 24.
— La second fournit que la somme des multiplicités vaut 12.

On a donc les possibilités suivantes :
1. Un point-base de multiplicité 4 et huit points-base simples.
2. Deux points-base de multiplicité 3 et six points-base simples.
3. Un point-base de multiplicité 3, trois points-base de multiplicité 2 et trois points-base simples

30

4. Six points-base de multiplicité 2.
Décomposons la dernière transformation.

Tout d’abord, sa complexité est 2jf = 3. On note g1 l’involution quadratique standard de points-base
O0, O1, O2, et f1 = f ◦ g−1

1 . C’est une transformation de degré 4 ayant et ayant 1 pour nouvelles multi-
plicité aux points-base O0, O1, O2. O0 n’est plus le point-base de plus grande multiplicité et la complexité a
donc baissé :

2jf1 = 2

On applique alors l’involution quadratique standard g2 de points-base O3, O4, O5. On obtient une transfor-
mation f2 = f1 ◦ g−1

2 de degré 2, ayant 0 pour nouvelle multiplicité en ces points, qui ne sont donc plus des
points-base de f2.
f2 est une transformation quadratique ayant ses points-base O0, O1, O2 dans P2 avec multiplicité 1.
On a donc décomposé f en une composée de trois transformations quadratiques ayant leur points-base dans
P2.

4.4 Test de Hudson
Comme le montrent les exemples précédents, pour désigner et manipuler une transformation rationnelle

de grand degré, il peut-être préférable de la désigner par ses points-base et leur multiplicité, ainsi que par les
courbes qu’elle contracte, ce qui les caractérisent à automorphisme près.
Dans le cadre de l’algorithme de J.W. Alexander, les points-base d’une transformation birationnelle et leur
muliplicité forment des éléments intéressants pour classifier les transformation birationnelles du plan projec-
tif en familles qui auront presque la même décomposition par l’algorithme puisque les multiplicités sont des
quantités numériques, qui peuvent être calculées par les équations de condition.

On peut alors considérer le problème inverse : étant donnée un degré et une liste de multiplicités calculée
avec les équations de condition, ces quantités définissent-elles une famille de transformations birationnelles,
et comment le savoir ?

L’algorithme de J.W Alexander fournit une réponse à cette question : il suffit de supposer qu’il existe
une transformation birationnelle du plan projectif qui a le degré voulu et le nombre de points-base avec
multiplicité voulu, et si on arrive à la décomposer via l’algorithme, alors c’est qu’elle existait bien au départ
(il suffit de recomposer les transformations quadratiques – dont on sait bien qu’elles existent – pour l’obtenir).

Le test de Hudson, bien que sa preuve soit plus compliquée que cela, introduit un moyen de vérification
proche de cette intuition. C’est un test purement numérique que l’on peut donc facilement implémenter en
programmation. On peut trouver une démonstration de la proposition 4.2 qui énonce l’exactitude du test
dans l’article de Jérémy Blanc et Alberto Calabri [2].

Définition 4.1 (Type homaloïdal)
On appelle type homaloïdal un couple (d, (m0, . . . ,mk)) ∈ N × Zk+1 avec m0 ≥ · · · ≥ mk vérifiant les
équations de condition :

k∑
i=0

mi = 3(d− 1)

k∑
i=0

m2
i = d2 − 1

Un type homaloïdal (d, (m0, . . . ,mk)) est dit propre s’il existe une transformation birationnelle de P2 de
degré d et ayant k+ 1 points-base de multiplicités respectives m0, . . . ,mk. Il est dit impropre si ce n’est pas
le cas.

Le problème consiste donc à trouver une méthode permettant de dire si un type homaloïdal est propre
ou impropre. Le test de Hudson permet de simplifier les types homaloïdaux jusqu’à obtenir un type connu.

31

L’intuition de ce test est justement celle rencontrée lors que la preuve de l’algorithme de J.W. Alexander :
si on a une transformation birationnelle (ayant tous ses points-base dans P2), on peut la composer avec
des involutions quadratiques standardes jusqu’à diminuer la complexité suffisamment pour reconnaître une
transformation connue, et en vertu du théorème 0.1, si cette méthode échoue c’est que la transformation
birationnelle de départ n’existait pas.

Le test de Hudson consiste justement à faire subir au type homaloïdal une "involution quadratique stan-
dard" purement numérique, en modifiant le degré et les multiplicités du type homaloïdal, jusqu’à obtenir un
automorphisme :

1. Étant donné un type homaloïdal (d, (m0, . . . ,mk)), on vérifie qu’il ne contient pas de multiplicité
négative. Si c’est le cas, le test échoue. Si d = 1 le test est véfrifié.

2. On pose ε = m0 +m1 +m2 − d. Et on trie les valeurs de (d− ε, (m0 − ε,m1 − ε,m2 − ε, . . . ,mk)). On
applique encore l’étape 1 à ce dernier type homaloïdal.

On a de plus la caractérisation suivante (démontrée dans l’article [2]), qui sera utile pour l’implémentation
informatique de l’algorithme de J.W. Alexander :

Proposition 4.2
Un type homaloïdal est propre si, et seulement si il vérifie le test de Hudson.

32

Chapitre 5

Annexe : Implémentation de
l’algorithme

Le but de ce chapitre est de fournir une explication de l’implémentation en Python de l’algorithme de
J.W. Alexander.

On commence par introduire les convention utilisées pour les objets à manipuler (points-base et transfor-
matione birationnelles), puis on donnera une descritption des fonctions utilisées, sans entrer dans le détail
du code. Le but est de fournir une documentation pour expliquer comment manipuler l’algorithme.

En premier lieu, on introduit les classes d’objets utilisés par l’algorithme pour coder les informations
abstraites que sont les points-base et les transformations birationnelles (vues ici comme une collection de
points-base et d’une multiplicité pour chaque point-base).

Ensuite, on donne le fonctionnement de quelques fonctions auxiliaires dont l’utilité consiste à aider à la
création de transformation birationnelles respectant les contraintes des équations de condition (théorème 2.2)
et le test de Hudson (section 4.4), et à permettre la composition d’une transformation birationnelle avec une
involution quadratique.

Enfin, on précise le fonctionnement de l’implémentation de l’algorithme de J.W. Alexander.

Il faut noter deux choses importantes quant à l’implémentation de la méthode :
— Après avoir composé une transformation birationnelle f avec une involution quadratique g, on devrait

avoir comme point-base pour la composée les points-base de g et les images par g des points-base P
de f : g(P), en vertu du corollaire 2.6. Pour des raison de lisibilité dans l’algorithme, qui peut vite
devenir compliqué, on notera ces derniers comme pour f : g(P) sera noté simplement P . Il faut garder
cela en tête lorsqu’on lit la décomposition de chaque fonction.

— Les points sont toujours supposés le plus général possible, même lorsque ce n’est pas censé être le
cas : par exemple lorsque l’on a un point O1 sur le diviseur associé à O0 comme dans la preuve de
la proposition 3.3, on compose f avec l’involution quadratique de points-base O0, A,B, avec A,B en
position générale (toutes ces opérations sont effectuées dans la fonction make_transfo_disjoint).
Le point-base O1 est alors transporté sur un point de la droite (AB) et les points-base O1, A,B ne
sont alors plus en position générale dans ce cas précis, précisément parce qu’il est sur un diviseur
exceptionnel au départ.
Cependant comme tous ces points-base sont dans P2, l’algorithme considérera qu’ils sont en position
générale, et on ne pourra donc pas recomposer par la transformation quadratique pour retrouver des
points-base infiniment proches.
La décomposition fonctionne donc bien dans ce cas précis, mais on ne peut pas recomposer en arrière. 1

5.1 Classes d’objets : points-base et transformation birationnelle
On commence par définir deux nouvelles classes d’objets : la classe point et la classe transfo_plane

1. Je prévois de corriger ce phénomène en essayant d’introduire une notion d’alignement dans la classe point.

33

Classe point
Cette classe possède 3 attributs et 2 méthodes. Elle a pour but de représenter les points abstraits que l’on

trouve dans l’algorithme de J.W. Alexander : en effet, comme il est possible qu’une transformation biration-
nelle aie des points-base qui ne soit pas dans P2 directement, il faut définir une classe qui contienne à la fois
les points dans P2 et dans l’éclatement sans différencier leur nature.
Pour cela on ajoute aux caractéristiques d’un point B la possibilité d’avoir un autre point A comme "parent",
dans le cas où B est sur le diviseur exceptionnel associé à A.

Liste des attributs de la classe point :
— name (string) : le nom qui sera utilisé pour le point.
— parent (point ou None) : dans le cas où le point est situé sur le diviseur exceptionnel d’un autre

point, on le stocke ici.
— descr (string) : Une brève description du point (son nom et où il se trouve).

Liste des méthodes de la classe point :
— change_name ayant pour argument :

— name (string)
Remplace le nom du point par name.

— parentize ayant pour argument :
— P (point/None)
Remplace le parent du point par le point P.

Pour déclarer un nouveau point, on écrit point(name,parent) (ou éventuellement point(name) s’il est
dans P2) avec :

— name (string) : le nom du nouveau point.
— parent (point/None) : le parent du nouveau point.

Remarque
Lorsque l’on affiche un point avec print, la console affichera la description descr du point. En revanche, si
l’on affiche un point indirectement, par exemple dans une liste ou dans un tuple, la console affichera seulement
le nom du point. Par exemple :

>>> A = point("A")
>>> B = point("B",A)
>>> print(A)
A in Pˆ2
>>> print(B)
B in E_{A}
>>> print((A,B))
(A,B)

Le diviseur exceptionnel associé à un point A sera toujours noté EA dans cet algorithme.

Classe transfo_plane
Cette classe possède 6 attributs et 2 méthodes. Le but de cette classe est de coder les propriétés d’une

transformation birationnelle. Pour cela, on utilise le fait que les points-base et les multiplicités d’une transfor-
mation birationnelle identifient cette dernière à automorphisme près. On va ainsi coder une transformation
birationnelle comme la donnée de points et de multiplicités associés à ces points, à travers la classe point
définie précédemment.

Liste des attributs de la classe transfo_plane :
— name (string) : le nom qui sera utilisé pour le la transformation birationnelle.
— degree (int) : le degré de la transformation.
— base_points (list de point) : la liste des points-base de la transformation, classée par multiplicité

34

décroissante.
— multiplicities (list de int) : la liste des multiplicités des points-base de la transformation,

classée par ordre décroissant.
— complexity (int) : la complexité 2j de la transformation.
— h (int) : l’indice du dernier point dans la liste base_points qui soit de multiplicité strictement

supérieure à j.
— descr (string) : une brève description de la transformation, qui fournit son degré et ses points-base

classés par ordre de multiplicité.

Liste des méthodes de la classe transfo_plane :
— change_name ayant pour argument :

— name (string)
Remplace le nom de la transformation par name.

— parentize ayant pour argument :
— i (unsigned int)
— j (int)
Met le i-ème point-base de base_points sur le diviseur exceptionnel du j-ème point-base de
base_points. En particulier, on requiert que i > j puisque base_points est classée par mul-
tiplicité croissante.
On autorise le cas particulier j < 0, et la fonction replace alors le i-ème point de base_points dans
P2 (i.e. donne la valeur None à son parent).

Pour déclarer une nouvelle transformation birationnelle, on écrit transfo_plane(name,degree,l_f,mult)
avec :

— name (string) : le nom de la nouvelle transformation.
— degree (int) : le degré de la nouvelle transformation.
— l_f (list de point) : la liste des points-base de la transformation.
— mult (list de int) : la liste des multiplicité correspondant aux points-base de la transformation.

En particulier, on demande que l_f et mult soient de la même taille, et que mult soit classée par ordre
décroissant. On supposera alors que la i-ème case de mult correspondera à la multiplicité du i-ème élément
de l_f.

Remarque
Comme précédemment, lorsque l’on affiche une transformation avec print, la console affichera la description
descr de la transformation. En revanche, si l’on affiche cette transformation indirectement, par exemple dans
une liste ou dans un tuple, la console affichera seulement le nom name de la transformation. Par exemple :

>>> f = transfo_plane("f",2,[point("A"),point("B"),point("C")],[1,1,1])
>>> print(f)
f birationnal transformation of Pˆ2 of degree 2 with basepoints:
A in Pˆ2 with multiplicity 1
B in Pˆ2 with multiplicity 1
C in Pˆ2 with multiplicity 1
>>> print([f,f.base_points[0]])
[f,A]

Remarque
Avec ce qui a été vu précédemment dans le mémoire, on sait qu’une transformation birationnelle d’un certain
degré ne peut pas avoir n’importe quel type homaloïdal associé. Afin de résoudre ce problème, on introduira
d’ici deux section une fonction permettant de calculer les types homaloïdaux propres associés à un certain
degré et qui crée la transformation birationnelle pour le type choisi.
Il n’est cependant pas interdit de faire des "parentages" absurdes (par exemple de mettre les points-base
d’indice 1 et 2 sur le diviseur exceptionnel de celui d’indice 0 : on a vu qu’aucune transformation birationnelle
ne pouvait vérifier cela), mais nous laissons la cohérence du parentage à la discrétion de l’utilisateur.

35

La fonction mult

En plus de ces deux classes, on introduit une fonction mult servant à calculer la multiplicité d’une trans-
formation birationnelle en un point.

Liste des entrées de la fonction mult :
— transfo (transfo_plane) : la transformation birationnelle considérée.
— p (point) : le point en lequel on veut calculer la multiplicité de transfo.

La fonction renvoit :
— transfo.multiplicities[i] si p et transfo.base_points[i] coïncident.
— 0 si p ne correspond à aucun des éléments de transfo.multiplicities.

5.2 La fonction transfo_deg

L’objectif de la fonction transfo_deg est de calculer, pour un degré donné, tous les types homaloïdaux
propres pour ce degré là, de les présenter à l’utilisateur pour qu’il en choississe un, et de renvoyer l’objet
transfo_plane correspondant.

Elle permet en particulier d’être certain de la validité de la transformation obtenue, et évite de devoir
créer les fonctions à la main.

Néanmoins, la complexité de cette fonction est élevée, et pour un degré trop grand, elle mettra beaucoup de
temps à calculer les possibilités. La seule solution est alors de créer un objet transfo_plane, correspondant
au type homaloïdal voulu, à la main.

La fonction partition_sq

Cette fonction permet de réduire les possibilités de types homaloïdaux à ceux vérifiant les équations de
conditions démontrées dans le théorème 2.2, qui fournissent une condition nécessaires pour être un type
homaloïdal propre. Il s’agit d’une fonction récursive.
Étant donnés deux nombres s1, s2, le premier correspondant dans le théorème 2.2 à 3(deg(f)−1) et le second
à deg(f)2 − 1, on veut trouver récursivement les solutions (α1, . . . , αn) au problème :{

s1 =
∑n
i=1 αi

s2 =
∑n
i=1 α

2
i

Pour cela, on veut retirer peu à peu des αi potentiels à s1 et α2
i à s2, et refaire le problème avec les

nombres obtenus jusqu’à obtenir (s1, s2) = (0, 0) auquel cas on retient la suite de nombres soustraits. Si on
obtient s1 < 0 ou s2 < 0, la suite de nombres soustraits n’est pas valide, et on ne la retient pas.
Le fonctionnement de partition_sq est décrit par la figure 5.1.

Liste des entrées de la fonction partition_sq :
— s_1 (int) : le nombre dont on veut la partition en nombres entiers.
— s_2 (int) : le nombre dont on veut la partition en carrés d’entiers.
— m (int) : une borne supérieure pour les nombres à soustraire. Par exemple √s2.
— l_tmp (list de int) : une liste contenant les éléments de la partition qui est en train d’être testée.
— l (list de list de int) : une liste contenant les partitions qui vérifient le problème.

36

Début

Pour a allant de m à 0 :

On ajoute ltmp + a à l

On relance partition_sq avec :
s1 ← s1 − a
s2 ← s2 − a2

m = a
et les listes inchangées.

FinBoucle

Si ltmp est non vide, on supprime son dernier élément.

Retourner l.

Fin

(s1, s2) = (0, 0)

s1 > 0 et s2 > 0

Sinon

Figure 5.1 – Fonctionnement de partition_sq.

La fonction transfo_deg

Pour le fonctionnement de transfo_deg, voir figure 5.2.

Liste des entrées de la fonction transfo_deg :
— n (int) : le degré de la transformation voulue.
— choice_input (int) : le choix de l’utilisateur dans la liste des types homaloïdaux calculés. Cette

variable est facultative et évite simplement à l’utilisateur de choisir (elle vaut −1 par défaut, et si elle
a cette valeur, le choix se déclenchera).

On introduit également en figure 5.3 l’évolution du temps de calcul de transfo_deg afin de donner à
l’utilisateur une vision de son utilisation. En effet, il devient supérieur à 1 min à partir du degré 26, et la
complexité augmente exponentiellement.

À partir d’un certain degré, il convient donc de créer les transformations à la main, en connaissant déjà le
type homaloïdal voulu, ou même en le vérifiant par l’algorithme de J.W. Alexander : si l’algorithme termine
pour une transformation avec tous ses points-base dans P2, c’est que le type homaloïdal est valable.

37

Début f ← transfo_plane("f",1,[],[])
n = 1

l_1 ← partition_sq(3(n− 1), n2 − 1, b
√

(n2 − 1)c)

Sinon

On garde dans une liste l toues les sous-listes
de l_1 qui vérifient le test de Hudson

Entrer choice ∈ {1, . . . ,len(l)}

choice_input= −1

choice ← choice_input

choice_input 6= −1

l_f ← [point("O_i")] pour i allant de 0 à len(l[choice-1])-1

f ← transfo_plane("f",n,l_f,l[choice-1])

Retourner f

Fin

Figure 5.2 – Fonctionnement de transfo_deg.

Figure 5.3 – Complexité de la fonction transfo_deg.

38

5.3 La fonction compose_quad

On introduit une fonction permettant de composer une transformation birationnelle de degré quelconque
avec une transformation quadratique, en utilisant les résultats du chaptire 2, section 2.
Par abus de notation, et comme précisé dans l’introduction de cet annexe, afin d’éviter de complexifier les
notations, on redonnera encore le même nom Sj aux points-base de la composée f ◦ h−1 qui sont de la forme
h(Sj) (cf. corollaire 2.6).
Cette fonction crée une nouvelle transformation à partir des points-base des deux précédentes, en respectant
le résultat du corollaire 2.6.
Son fonctionnement est donné à la figure 5.4.

Liste des entrées de la fonction compose_quad :
— f (transfo_plane) : la transformation birationnelle de degré quelonque.
— g (transfo_deg) : la transformation quadratique avec laquelle on composera f. Elle est supposée

de degré 2 et avec tous ses points-base dans P2.
— name (string) : le nom à donner à la composée des deux transformations.

Début Erreur
g.degree 6= 2

O,O_tmp,alpha,alpha_tmp ← []

g.degree = 2

Ajout simultané à O et alpha des éléments de f.base_points qui ne
sont pas dans g.base_points, et de leur multiplicité pour f

Ajout simultané à O_tmp et alpha_tmp des éléments de g.base_points et de
leur nouvelles multiplicités données par le théorème 2.6

Insertion simultanée des éléments de O_tmp (resp. alpha_tmp) dans O
(resp. alpha) de sorte que alpha soit décroissante

deg ← 2(f.degree)−
∑3
i=0 (mult(f,g.base_points[i]))

h ← transfo_plane(name,deg,O,alpha)

Retourner h

Fin

Figure 5.4 – Fonctionnement de compose_quad.

39

5.4 La fonction make_transfo_disjoint

La fonction make_transfo_disjoint prend en entrée une transformation birationnelle f et sépare
les points-base infiniment proches de f qui sont de multiplicité supérieure à jf , en suivant la preuve de la
proposition 3.3. Pour cela, l’algorithme regarde parmi les points O1, . . . , Oh lesquels sont infiniment proches
d’un autre, ou de O0. S’il en existe, on les sépare comme dans la preuve, en composant avec :

— Une transformation de points-base O0, A,B s’il y a des points-base infiniment proches de O0 (avec
A,B en position générale par rapport à tous les points-base).

— Des transformations de points-base O0, Oi, C si le point-base Oi est infiniment proche d’un autre Oj
(avec C en position générale par rapport à tous les autres points-base).

Au bout d’un certain nombre de compositions, la transformation f a la propriété voulue, et on la renvoie
ainsi qu’une liste list_comp des transformations quadratiques appliquées (celles mentionnées ci-dessus), et
un compteur count qui indique le nombre de fois où la fonction a été lancée (et qui sert uniquement pour
numéroter les points généraux introduits, afin de ne pas les confondre entre eux d’une itération sur l’autre).
Pour le fonctionnement de make_transfo_disjoint, voir la figure 5.6.

Liste des entrées de la fonction make_transfo_disjoint :
— f_input (transfo_plane) : la transformation birationnelle de degré quelonque à traiter.
— count (int) : un compteur du nombre de fois où on a lancé la fonction en séparant effectivement des

points-base (reste constant s’ils sont déjà séparés).
— l (list de transfo_plane) : liste contenant les transformations quadratiques déjà effectuées pour

simplifier la transformation. Par défaut, elle est vide.

5.5 La fonction decomp_transfo

Cette fonction effectue l’algorithme de J.W. Alexander en combinant les fonctions vues jusqu’à mainte-
nant. Elle se décline en deux fonctions :

— La fonction decomp_transfo_rec, qui est une fonction récursive et qui applique purement l’algo-
rithme.

— La fonction decomp_transfo, qui applique la fonction précédente et met en forme les résultats
obtenus.

La fonction decomp_transfo_rec

Comme mentionné ci-dessus, cette fonction applique l’algorithme à la transformation :
— On sépare d’abord les points-base de f_input. Et on regarde ensuite le degré de f. Si elle est de

degré 2 ou 1, on a fini.
— Sinon, on précompose f avec l’involution quadratique de points-base O0, O1, O2 et on recommence

avec la composée.
On garde en mémoire dans une liste les transformations quadratiques par lesquelles on a déjà composé, de
sorte qu’à la fin, on obtient : (f, count,l) pù f est la dernière transformation (quadratique) avant la
sortie de l’algorithme, et l est la liste des transformations quadratiques effectuées depuis le début. Pour
obtenir toutes ces transformations dans le bon ordre, il faudra donc ajouter f à la liste et inverser cette
dernière, ce qui sera le rôle de la fonction decomp_transfo.

Liste des entrées de la fonction decomp_transfo_rec :
— f (transfo_plane) : la transformation birationnelle de degré quelonque à décomposer.
— count (int) : un compteur pour la fonction make_transfo_disjoint. Par défaut, il vaut 0.
— l (list de transfo_plane) : liste contenant les transformations quadratiques déjà effectuées pour

simplifier la transformation. Par défaut elle est vide.

Pour le fonctionnement de decomp_transfo_rec, voir figure 5.5.

40

Début

(f,count,l) ← make_transfo_disjoint(f_input,count,l_input)

On ajoute à l, glen(l), de points-base :
f.base_points[0],f.base_points[1],f.base_points[2]

f.degree > 2

f ← compose_quad(f,glen(l),"flen(l)")

(f,count,l) ← decomp_transfo_rec(f,count,l)

Retourner (f,count,l).

Sinon

Fin

Figure 5.5 – Fonctionnement de decomp_transfo_rec.

La fonction decomp_transfo

La fonction decomp_transfo reprend la fonction récursive précédente, réorganise la liste des transfor-
mations quadratiques effectuées, et renvoie cette liste. C’est cette fonction qu’il faut utiliser pour décomposer
une transformation birationnelle en transformations quadratiques.

Liste des entrées de la fonction decomp_transfo :
— f_input (transfo_plane) : la transformation birationnelle de degré quelonque à décomposer.

Fonctionnement de decomp_transfo :

La fonction effectue l’opération (f,count,l) ← decomp_transfo_rec(f). Elle ajoute ensuite f à
la fin de l et renvoie la liste dans l’ordre inverse. La liste correspond à la décomposition quadratique de f.

41

Début

Test : on regarde dans f.base_points :
s’il y a des points avec parent 6= None.

Retourner
(f,count,list_comp)

Non

Test : on regarde dans f.base_points :
s’il y a des points avec parent = f.base_points[0].

Oui

On ajoute à list_comp, glen(list_comp),
de points-base : Acount,Bcount,f.base_points[0]
avec (Acount,Bcount généraux).

Oui

On déparente les points tels que parent = f.base_points[0].

f ← compose_quad(f,glen(list_comp),"flen(list_comp)")

Tant qu’il reste des points avec parent 6= None :

Non

j ← premier indice trouvé.

On ajoute à list_comp, glen(list_comp),
de points-base : Ccount,f.base_points[j], f.base_points[0]
avec (Ccount général).

On déparente le point f.base_points[j].

f ← compose_quad(f,glen(list_comp),"fcount,len(list_comp)")

Fin Boucle

Retourner
(f,count+1,list_comp) Fin

Figure 5.6 – Fonctionnement de make_transfo_disjoint.

42

5.6 Exemples et applications
Parmi les fonctions introduites plus tôt, on peut faire une distinction entre les fonctions techniques, qui ne

servent que pour définir les fonctions utiles ; parmi toutes les fonctions introduites, l’utilisateur aura surtout
à utiliser :

— La fonction transfo_deg, pour créer une nouvelle transformation de degré arbitraire sans connaître
les types homaloïdaux valides pour ce degré.

— La fonction compose_quad pour composer une transformation avec une transformation quadratique.
— La fonction decom_transfo pour avoir la décomposition en involutions quadratiques d’une trans-

formation quadratique.
Ainsi que les initialisations des classes point et transfo_plane lorsqu’il souhaite manipuler directement
ce type d’objet.

Voici un exemple d’utilisation de ces trois fonctions, qui reprend la décomposition des transformations de
degré 5 que l’on a effectué à la main dans la section 4.3 :

1. On crée une transformation quadratique de degré 5 ayant 6 points-base de multiplicité 2.
2. On décompose cette transformation en involutions quadratiques.
3. On affiche un à un les éléments de la liste obtenue.
4. On recompose un à un les éléments de la liste, et on affiche la composition obtenue.

>>> f=transfo_deg(5)

1 - [4, 1, 1, 1, 1, 1, 1, 1, 1]
2 - [3, 2, 2, 2, 1, 1, 1]
3 - [2, 2, 2, 2, 2, 2]
Choose a decomposition of multiplicities among those calculated above (type : int
between 1 and 3): 3
>>> l=decomp_transfo(f)
>>> for i in range(len(l)):
print(l[i])
print("---------")

f_2 birational transformation of Pˆ2 of degree 2 with basepoints:
O_0 in Pˆ2 with multiplicity 1,
O_1 in Pˆ2 with multiplicity 1,
O_2 in Pˆ2 with multiplicity 1.

g_1 birational transformation of Pˆ2 of degree 2 with basepoints:
O_3 in Pˆ2 with multiplicity 1,
O_4 in Pˆ2 with multiplicity 1,
O_5 in Pˆ2 with multiplicity 1.

g_0 birational transformation of Pˆ2 of degree 2 with basepoints:
O_0 in Pˆ2 with multiplicity 1,
O_1 in Pˆ2 with multiplicity 1,
O_2 in Pˆ2 with multiplicity 1.

>>> g=l[0]
>>> for i in range(1,len(l)):
g=compose_quad(g,l[i],"g")

>>> print(g)

43

g birational transformation of Pˆ2 of degree 5 with basepoints:
O_3 in Pˆ2 with multiplicity 2,
O_4 in Pˆ2 with multiplicity 2,
O_5 in Pˆ2 with multiplicity 2,
O_0 in Pˆ2 with multiplicity 2,
O_1 in Pˆ2 with multiplicity 2,
O_2 in Pˆ2 with multiplicity 2.

On effectue un autre exemple avec une transformation birationnelle qui possède des points-base infiniment
proches. Comme mentionné dans l’introduction de ce chapitre, on ne peut pas recomposer les transformations
une fois la décomposition effectuée.

1. On crée une transformation birationnelle f de degré 6 avec 2 points-base de multiplicité 3, 4 points-base
de multiplicité 2, et un point-base de multiplicité 1.

2. On place O1 sur le diviseur exceptionnel EO0 associé à O0, et on place O3 sur EO1 avec la fonction
parentize.

3. On décompose f et on affiche la décomposition.

>>> f=transfo_deg(6)

1 - [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
2 - [4, 2, 2, 2, 2, 1, 1, 1]
3 - [3, 3, 3, 2, 1, 1, 1, 1]
4 - [3, 3, 2, 2, 2, 2, 1]
Choose a decomposition of multiplicities among those calculated above (type : int
between 1 and 4): 4
>>> f.parentize(1,0)
>>> f.parentize(3,1)
>>> print(f)
f birational transformation of Pˆ2 of degree 6 with basepoints:
O_0 in Pˆ2 with multiplicity 3,
O_1 in E_O_0 with multiplicity 3,
O_2 in Pˆ2 with multiplicity 2,
O_3 in E_O_1 with multiplicity 2,
O_4 in Pˆ2 with multiplicity 2,
O_5 in Pˆ2 with multiplicity 2,
O_6 in Pˆ2 with multiplicity 2.
>>> l=decomp_transfo(f)
>>> for i in range(len(l)):
print(l[i])
print("-----------")

f_5 birational transformation of Pˆ2 of degree 2 with basepoints:
O_6 in Pˆ2 with multiplicity 1,
O_1 in Pˆ2 with multiplicity 1,
O_0 in Pˆ2 with multiplicity 1.

g_4 birational transformation of Pˆ2 of degree 2 with basepoints:
O_3 in Pˆ2 with multiplicity 1,
O_4 in Pˆ2 with multiplicity 1,
O_5 in Pˆ2 with multiplicity 1.

g_3 birational transformation of Pˆ2 of degree 2 with basepoints:

44

O_1 in Pˆ2 with multiplicity 1,
O_0 in Pˆ2 with multiplicity 1,
O_2 in Pˆ2 with multiplicity 1.

g_2 birational transformation of Pˆ2 of degree 2 with basepoints:
O_0 in Pˆ2 with multiplicity 1,
A_0 in Pˆ2 with multiplicity 1,
B_0 in Pˆ2 with multiplicity 1.

g_1 birational transformation of Pˆ2 of degree 2 with basepoints:
O_0 in Pˆ2 with multiplicity 1,
O_1 in Pˆ2 with multiplicity 1,
C_0,1 in Pˆ2 with multiplicity 1.

g_0 birational transformation of Pˆ2 of degree 2 with basepoints:
O_0 in Pˆ2 with multiplicity 1,
A_0 in Pˆ2 with multiplicity 1,
B_0 in Pˆ2 with multiplicity 1.

45

Bibliographie

[1] James W. ALEXANDER, On the factorization of the Cremona plane transformations. 1915,
Transaction of American Mathematical Society 17 (1916), 295-300.

[2] Jérémy BLANC, Alberto CALABRI, On degenerations of plane Cremona transformations. 2015,
Mathematische Zeitschrif 282 (2016), 223-245.

[3] Guido CASTELNUOVO, Le trasformationi generatrici del gruppo cremoniano nel piano. 1901,
Atti della R. Accad. delle Scienze di Torino 36 (1901), 861-874.

[4] Julie DESERTI, Some properties of the Cremona Group. 2012, Sociedade Brasileira de Matematica,
vol. 21.

[5] Daniel PERRIN, Géométrie algébrique, Une introduction. 1995, InterÉditions / CNRS Éditions.
[6] Igor SHAFAREVICH, Basic Algebraic Geometry 1 : Varieties in Projective Space. 1988,

Springer-Verlag, 2e édition.

46

Mahmoud Elimam

Lagrangian Cobordisms And
Surgery

Master Thesis

Le Laboratoire de Mathematiques Jean Leray
Universite de Nantes

Supervision

Prof. Baptiste Chantraine

Abstract

This document consists of three chapters. The first chapter introduce basic concepts
and definitions in symplectic geometry and contact geometry. In the second
chapter we define Lagrangian cobordism between two legenedrian submanifolds of a
contact manifold, and prove that legendrian isotopy is realized by such cobordism.
We also study gf-compatible Lagrangian cobordisms and prove a gf version of such
realization. In the third chapter we give two descriptions of Lagrangian surgery, the
second of which applies to exact symplectic manifolds and exact Lagrangians and
is realized by Lagrangian cobordism from the lift of the Lagrangian submanifold
before surgery to the lifting of Lagrangian submanifold after surgery.

.

1

Contents

Abstract 1

Dedication 1

1 Symplectic and Contact Geometry 4

1.1 Symplectic Manifolds . 4

1.1.1 Skew Symmetric Bilinear forms 4

1.1.2 Basic concepts for symplectic manifolds 6

1.1.3 Moser-type theorems . 9

1.2 Contact Manifolds . 16

1.2.1 Basic concepts for contact manifolds 17

1.2.2 Symplectization and Contactisation 25

1.2.3 Moser type theorems . 28

1.2.4 Generating families . 29

2

2 Lagrangian cobordism 31

2.0.1 Definition and compatible generating functions 31

2.0.2 Isotopy is realised by lagrangian cobordism 33

2.0.3 Some results on gf-compatible lagrangian cobordisms 36

3 Lagrangian Surgery 40

3.1 First Description . 41

3.2 Second Discritption via cobordism 47

Bibliography 51

3

Chapter 1

Symplectic and Contact Geometry

In this chapter we introduce basic concepts of symplectic and contact geometries.

1.1 Symplectic Manifolds

1.1.1 Skew Symmetric Bilinear forms

In this section we will review symplectic linear algebra

Definition 1.1.1. Let V be an m-dimensional vector space over R. A Bilinear
form Ω : V × V → R is skew symmetric if Ω(x, y) = −Ω(y, x) for all x, y ∈ V .

We have standard form of such forms.

Proposition 1.1.1. Let Ω be a skew-symmetric form on V . Then there is a basis
u1, · · · , uk, e1, · · · , en, f1, · · · , fn such that

Ω(ui, ·) = 0 , Ω(ei, ej) = Ω(fi, fj) = 0 , Ω(ei, fj) = δij

4

Proof. Let U = ker Ω = {u ∈ V |Ω(u, ·) = 0. Choose a basis u1, · · · , uk of U , and
let W be complementary space of U , that’s V = U ⊕W . Let e1 ∈ W , then there
is f1 such that Ω(e1, f1) = 1. We let

W1 = span{e1, f1} , WΩ
1 = {w ∈ W |Ω(w, v) = 0 for all v ∈ W1}

We have

• W1 ∩WΩ
1 = {0}: For let v = ae1 + bf1 ∈ W1 ∩WΩ

1 , then 0 = Ω(v, e1) = −b
and 0 = Ω(v, f1) = a. Hence v − 0.

• W = W1⊕WΩ
1 : For let v ∈ W , and suppose that Ω(v, e1) = c and Ω(v, f1) =

d. Then
v = (−cf1 + de1) + (v + cf1 − de1),

where we note that −cf1 + de1 ∈ W1 and v + cf1 − de1 ∈ WΩ
1

We continue the process by picking up 0 6= e2 ∈ WΩ
1 , then there is f2 ∈ WΩ

1 such
that Ω(e2, f2) = 1. We let

W2 = span{e2, f2} , W
Ω|
WΩ

1
2 = {w ∈ WΩ

1 |Ω(w, b) = 0 for all v ∈ W2}

We get again WΩ
1 = W2 ⊕WΩ

2 , continuing in this way we get W
Ω|Wn−1
n = 0 for

some n (as dimV <∞, and hence

V = U ⊕W1 ⊕ · · · ⊕Wn,

where Wi = span{ei, fi} and all summands are orthogonal with respect to Ω.

We say Ω is non-degenerate(or symplectic) if the map Ω̃ : V → V ∗ defined
by Ω̃(u) = Ω(u, ·) is isomorphism. The kernel of this map is U constructed in
the proof above, so Ω is non-degenerate if and only if U = {0}. In this case we
say (V,Ω) a symplectic vector space. Note that by the above proposition V is

5

even dimensional. A basis e1, · · · , en, f1, · · · , fn as in the proposition is called a
symplectic basis.

Corollary 1.1.2. Let V be a vector space of dimension n, Ω is non-degenerate if
and only if Ωn 6= 0. (Here Ωn = Ω ∧ · · ·Ω)

The following proposition follows easily from definitions

Proposition 1.1.3. Let (V,Ω) be a symplectic vector space. Let W ⊂ V be
a subspace, then dimY + dimY Ω = dimV , where Y Ω = {v ∈ V |Ω(v, u) =

0 for all u ∈ W}

We say W ⊂ (V,Ω) an isotropic subspace if W ⊂ WΩ. It follows from above
proposition that dimW ≤ 1

2
dimV . If W == WΩ we say W is Lagrangian, it

follows in this case that dimW = dimWΩ = 1
2

dimV .

1.1.2 Basic concepts for symplectic manifolds

We begin with the definition of symplectic manifolds.

Definition 1.1.2. Let M be a manifold. A 2-form ω which is closed and ωp :

Tp × TpM → R is symplectic for all p is called symplectic form. The pair (M,ω)

is then called symplectic manifold. If ω = dθ, then M is called exact symplectic
manifold.

A submanifold L ⊂ M is called lagrangian if TxL is lagrangian subspace of
TxM for each x ∈ L, so dimL = 1

2
dimM , and immersion i : L→M is lagrangian

if di(x)(TxL) is lagrangian subspace of TxM for each x ∈ L or equivalently i∗ω = 0.
Now we give the definiton of symplectomorphisms

Definition 1.1.3. Let (M1, ω1) and (M2, ω2) be 2n- dimensional symplectic manifolds
and let ϕ : M1 → M2 be a diffeomorphism. Then ϕ is symplectomorphism if
ϕ∗ω2 = ω1.

6

We give the important examples

Example 1.1.1. 1. LetM = R2n with coordinates q1, · · · , qn, p1, · · · , pn. Then
the form

ωstd =
n∑
i=1

dqi ∧ dpi

is symplectic. So (R2n, ωstd) is symplectic manifold.

2. (Important example) Let X be a manifold, and M = T ∗X be its cotangent
bundle, we have a canonical symplectic form ωcan defined on M defined as
follows: We first define canonical 1-form λcan. Denote by π : M → X the
projection and let p = (x, α) ∈ TxX, define λcan|(x,α)(v) = α(dπ(x, α)(v)).
To check smoothness, we compute λcan in coordinates. Let (U, q1, · · · , qn)

be coordinate chart of M , and (T ∗U, q1, · · · , qn, p1, · · · , pn) be the associated
coordinate chart of T ∗M (which means that for p = (x, α) ∈ T ∗U , we have
α =

∑
i pi(p)(dqi)x). It is easily seen that

λcan =
n∑
i=1

pidqi

which is smooth. Define
ωcan = −dλcan,

this is trivially closed, and in local coordinates

ωcan =
∑
i

dqi ∧ dpi.

So ωcan is symplectic, we call it the canonical symplectic form.For future
reference, it can be checked that considering the natural identification T(x,0)T

∗X ≡
TxX ⊕ T ∗xX, we have

ωcan|(x,0)(v, w) = w∗1(v0)− v∗1(w0)

for v = (v0, v
∗
1), w = (w0, w1) ∈ T(x,0)T

∗X

7

Given a diffeomorphism f : M1 → M2, we can lift it to a symplectomorphism
f# : (T ∗M1, ω1) → (T ∗M2, ω2), where ω1 and ω2 are the corresponding canonical
symplectic forms. Define

f#(x1, α1) = (f(x), ((dfx)
∗)−1α1),

In fact f# turns out to be exact symplectomorphism in the sense of the following
claim
Claim. f ∗#λ2 = λ1, where λi is the canonical 1-form of T ∗Mi so that ωi = −dλi.

Proof. let p1 = (x1, α1) ∈ T ∗M1 and p2 = (x2, α2) = f#(p1), then we have to show
that

(df#)∗p1
(λ2)p2 = (λ1)p1 (1.1)

We have the following facts

• (dfx1)∗α2 = α1 and x2 = f(x1) (by definition of f#)

• (λ1)p1 = (dπ1)∗α1 and (λ2)p2 = (dπ2)∗α2 where πj is the projection T ∗Mj →
Mj.

• π2 ◦ f# = f ◦ π1

The proof of 1.1 is

(df#)∗p1
(λ2)p2 = (df#)∗p1

(dπ2)∗α2 = (d(f# ◦ π2))∗p1
α2

= (d(f ◦ π1))∗p1
α2 = (dπ1)∗p1

(df)∗x1
α2

= (dπ1)∗p1
α1 = (λ1)p1

An important class of symplectomorphisms is the class of hamiltonian differemorphisms.
To define it we have to define the Hamiltonian vector field. Fix a sympelctic

8

manifold (M,ω). We say that a vector field X : M → TM is Hamiltonian vector
field if there is a function (called Hamiltonian function) such that

ιXω = dH

We denote X by XH . A diffeomrophism φ : M → M is hamiltonian if there is
isotopy

[0, 1]×M →M , (t, x) 7→ ψt(x)

such that ψt is generated by time dependent Hamitonian vector field XHt where Ht

is smooth family of Hamiltonians and φ = ψ1. We can see that φ is symplectomorphism,
for

d

dt
ψ∗tω = ψ∗t (LXHt) = ψ∗t (dιXHtω) + ιXHtdω = ψ∗t (ddHt) = 0,

so ψ∗tω = ψ∗0ω = ω.

1.1.3 Moser-type theorems

One of the fundamental techniques in symplectic geometry is Moser’s argument.
Given smooth family of symplectic forms ωt on M , with the property

d

dt
ωt = dσt (1.2)

The goal of Moser argument is to construct smooth family of diffeomorphisms ψt
such that

ψ∗tωt = ω (1.3)

The idea is to construct ψt as flows of (to be determined) time dependent vector
field Xt. That’s

d

dt
ψt = Xt ◦ ψt (1.4)

9

If this is the case then taking the derivative of 1.3 with respect to t, we get

φ∗t (
d

dt
ωt + LXtωt) = 0

By 1.7 and Cartan formula,

0 = dσt + d(ιXtωt) + ιXt(dωt) = dσt + d(ιXtωt)

This equation is satisfied if
σt = ιXtωt

But by non-degeneracy of ωt, we get a unique time dependent vector field Xt. It
follows that ψt is determined by 1.4. Using this argument, we prove the following:

Theorem 1.1.4. [Moser isotopy theorem] Let (M2n, ω) be symplectic manifold,
and S ⊂M be a submanifold (not necessarily compact). Suppose ω0, ω1 be symplectic
forms such that for all x ∈ X, ω0|x and ω1|x are equal. Then there exist neighborhoods
U0,U1 of S in M and diffeomorphism ψ : U0 → U1 such that

ψ|S = id , ψ∗ω1 = ω0

Proof. We use Moser argument above. We find a neighborhood U0 of S such that
there is σ ∈ Ω1(U0) satisfying

σx = 0 for all x ∈ S , dσ = ω1 − ω0

We endow M with riemmannian metric. We know by (Tubular neighborhood
theorem) that there exists function ε : S → R+ such that the restriction of
exp : TS⊥ →M to

Uε = {(x, v)|x ∈ S, v ∈ TS⊥, |v| < ε(x)}

10

is embedding, we denote the image by U0. For 0 ≤ t ≤ 1, define φt : U0 → U1 by

φt(exp(p, v)) = exp(p, tv)

Clearly φ0(U0) ⊂ S and φt is embedding whenever t > 0, with φt|S = id. Letting
τ = ω1 − ω0, we get

φ∗0(τ) = 0 , φ∗1τ = τ

Define
Yt = (

d

dt
φt) ◦ φ−1

t

This vector field may be singular at t = 0. However, we have

d

dt
φ∗t τ = φ∗t (LYtτ) = φ∗t (d(ιYtτ) + ιYtdτ) = d(φ∗t (ιYtτ)),

where σt is smooth family of 1-forms φ∗t (ιYtτ). Note that for v ∈ TxU0 we have

σt|x(v) = (φ∗t (ιYtτ)(v))x = (ιYtτ)φt(x)(dφt(x)(v) = τφt(x)(Yt(φ(x)), dφt(x)(v))

which is smooth at t = 0, and it vanishes on S. Putting σ =
∫ 1

0
σt dt (note that

σx =
∫ 1

0
σt|x dt = 0 for x ∈ X, we get

τ = φ∗1τ − φ∗0τ =

∫ 1

0

d

dt
(φ∗t τ) dt =

∫ 1

0

dσt dt = dσ

Now we start Moser argument, let ωt = (1 − t)ω0 + tω, since ωt|x = ω0|x for all
x ∈ S, then by a compactness argument it follows that by shrinking U0, ωt is
nondegenerate on U0. By nondegenracy we find time dependent vector field Xt on
U0 by

ιXtω + σ = 0,

Because σx = 0 for all x ∈ S, it follows that Xt = 0 on S. Now we have to show
that by shrinking U0 if necessary, the family of maps ψt defined as solution to the
initial value problem

d

dt
ψt = Xt ◦ ψt , ψ0 = id,

11

is defined on U0 for all t ∈ [0, 1]. It suffices to show that for every x ∈ S, there is
a neighborhood Vx of x, such that for the integral curve θ(t) starting at y ∈ Vx is
defined for t ∈ [0, 1], where then we can replace U0 by U0 ∩

⋃
x∈S Vx. Translating

the claim to local neighborhood we find that we need to show

Claim. Let F : [0, 1] × B(0, ε) → Rn be continuous and lipschitz in the second
argument uniformaly with respect to the first argument. Suppose that F (t, 0) = 0,
then there exist δ < ε such that for any x0 ∈ B(0, δ), the solution θ of initial value
problem

θ′(t) = F (t, θ(t)) , θ(0) = x0,

is defined on [0, 1]

To prove this claim, we find an apriori estimate on the solution. Because of
lipschitz condition in the claim, there is constant C such that

|F (t, x)| = |F (t, x)− F (t, 0)| ≤ C|x|

Suppose θ is solution of the initial value problem in the claim, then

|θ′(t)| = |F (t, θ(t))| ≤ C|θ(t)|,

hence by Gronwall inequality, we get

|θ(t)| ≤ |x0|eCt (1.5)

We let δ = 1
2
e−Cε < ε, suppose x0 ∈ B(0, δ). If θ (the solution of the initial value

problem) has maximal interval [0, η), then by ODE theory |θ(t)| → ε as t → η−.
But from 1.5 we get

|θ(t)| < δeCη <
1

2
eCη−Cε <

1

2
ε

which is a contradiction. So θ is defined on [0, 1] for any x0 ∈ B(0, δ). This proves
the claim.

12

Finally let U1 = ψ1(U0), then ψ1 : U0 → U1 is the desired diffeomorphism. Note
that ψ|S = id because Xt = 0 on S.

We have a corollary

Corollary 1.1.5 (Darboux theorem). Every symplectic form is locally diffeomorphic
to ωstd on R2n.

Proof. Follows from 1.1.4 and 1.1.1 by setting L = {pt} and

A coordinate chart (U , (q1, · · · , qn, p1, ·, on)) of symplectic manifold (M,ω) is
called Darboux coordinate chart, if

ω =
n∑
i=1

dqi ∧ dpi

The corollary states that there is Darboux coordinates around any point of M .

Theorem 1.1.6 (Weinstein-Darboux Theorem). Let (M2n, ω) be symplectic manifold,
and i : L ↪→ M be Lagrangian submanifold, then there exist a neighborhood U0

of the zero section L0 in T ∗L and neighborhood U of L and diffeomorhphism
ψ : U0 → U such that

i = ψ ◦ i0 , ψ∗ω = ωcan

Proof. Since L is Lagrangian, then for x ∈ L the map

β : TxM → T ∗xL ; u 7→ Ω(u, ·)

descends to map

β̃x : NxL = TxM/TxL→ T ∗xL ; [u] 7→ Ω(u, ·),

13

in fact β̃x’s give isomorphism β̃ : NL→ T ∗L. We have the following easy to prove
claim

Claim. If J is a compatible almost complex structure on (M,ω), then JTLx

is Lagrangian subspace of TxM and in fact with respect to the riemannian metric
gJ , the bundle JTL is orthogonal to TL.

Fix an almost complex structure J , by the claim we can identify JTL with NL

by the isomorphism v 7→ [v], so we can consider β̃ : JTL → T ∗L. Fix the
riemannian metric gJ and recall that there is a neighborhood V0 of 0-section of
JTL and neighborhood U ′ of L in M such that the map V0 → U ′ defined by
(x, v) 7→ expx(−v) is difeomorphism. Composing the later map with β̃−1, we get
a diffeomorhpism

φ : U ′0 → U ′ ; (x, α) 7→ expx(−β̃−1α)

where U ′0 is a neighborhood of the zero section. We have to check that φ∗ω and
ωcan agree on the zero section. Indeed, for (v0, v

∗
0) ∈ T(x,0)T

∗L = TxL ⊕ T ∗xL, we
have

dφ(v0, v
∗
0) = v0 − β̃−1(v∗0)

hence for v = (v0, v
∗
0) and w = (w0, w

∗
0) lying in T ∗(x,0)L

φ∗ω(x,0)(v, w) = ωq(dφ(x,0)(v), dφ(x,0)(w))

= ωq(dφ(x,0)(v), dφ(x,0)(w))

= ωq(v0 − β̃−1(v∗0), w0 − β̃−1(w∗0))

= ωq(β
−1(w∗0), v0)− ωq(β−1(v∗0), w0)

= w∗0(v0)− v∗0(w0)

= ωcan|(q,0)(v, w)

Now by Moser stability theorem, we can find neighborhoods U0,U ′′0 ⊂ U ′0 of the
zero section of T ∗L and diffeomorphism ϕ : U0 → U ′′0 which is identity on the zero-
section and satisfies ϕ∗(φ∗ω) = ωcan. It follows that ψ = φ ◦ ϕ : U0 → φ(U0) =: U

14

is the required map.

We have the following easy corollary

Corollary 1.1.7. Let (M2n, ω) be a symplectic manifold and let L be a Lagrangian
submanifold of M . Then around each point of L, there is Darboux coordinate chart
(U , q1, · · · , qn, p1, · · · , pn) such that

L ∩ U = {x|p1(x) = · · · = pn(x) = 0}

Proof. Pick a point x0 ∈ L. ByWeinstein-Darboux theorem, we can find neighborhoods
U1,U0 of L and the zero section of T ∗L respectively, such that there is symplectomorphism
ψ : U0 → U1 satisfying

ψ∗(ω) = ωcan , ψ ◦ i0 = i

Let (V, q1, q2, · · · , qn) be coordinate chart in L centered at x0, let (π−1(V), ϕ =

(q1, · · · , qn, p1, · · · , pn)) be the associated coorindates on T ∗L1, then by composing,
φ = ϕ ◦ ψ−1 : U → R2n gives coordinate chart of M centered at x0, we abuse
notation and denote again φ = (q1, · · · , qn, p1, · · · , pn). We get clearly,

ω =
∑
i

dqi ∧ dpi , L ∩ U = {p|p1(x) = · · · = pn(x) = 0}

Theorem 1.1.8. Let (M2n, ω) be a symplectic manifold. Let L1, L2 be Lagrangian
submanifolds intersecting transversely at x0, then there is Darboux coordinates
(U , q̃1, · · · , q̃n, p̃1, · · · , p̃n) around x, such that

L1∩U = {x ∈M |p̃1(x) = · · · = p̃n(x) = 0} , L2∩U = {y ∈M |q̃1(x) = · · · = q̃n(x) = 0}

Proof. (Sketch) The problem is local, so we can assume that L1, L2 are Lagrangian
submanifolds of (R2n, ωstd) interescting transversally at the origin. By the above
corollary, we can further assume that L1 = Rn × {0}. It follows by transversality

15

that near the origin, L2 coincides with a graph of function f : Rn → Rn, that’s L2

coincides with {(f(p), p)|p ∈ Rn} near the origin. In other words, L2 is defined by
equations qi = fi(p1, · · · , pn) near 0, where fi is the i-th component of fi. Because
L2 is Lagrangian, we should have

∑
i

dfi ∧ dpi = 0 (1.6)

Now we set
q̃i = qi − fi(p1, · · · , pn) , p̃i = pi

and restrict to a small neighborhood around zero. It follows that

• L2 is the set of all points satisfying q̃1 = · · · = q̃n

• q̃1, · · · , q̃n, p̃1, · · · , p̃n are Darboux coordinates:

ωstd =
∑
i

dqi ∧ dpi

=
∑
i

d(q̃i + fi) ∧ dpi

=
∑
i

dq̃i ∧ dp̃i + dfi ∧ dpi

=
∑
i

dq̃i ∧ dp̃i

where the last equality follows by equation

1.2 Contact Manifolds

Throughout M is a manifold.

16

1.2.1 Basic concepts for contact manifolds

Definition 1.2.1. A k-dimensional Distribution onM is a choice of k-dimensional
linear subspace ξp ⊂ TpM for each p ∈ M . This distribution is smooth if ξ :=⋃
p∈M ξp ⊂ TM is smooth sub-bundle. In this case we say ξ is a smooth distribution

on M .

We have the following "local frame" criterion of smooth distributions

Proposition 1.2.1. Let ξp ⊂ TpM constitute a k-dimensional distribution on M .
Then ξ =

⋃
p∈M ξp ⊂ TM is smooth distribution on M if and only if every point

p ∈M has a neighborhood U on which there are smooth vector fields X1, · · · , Xk ∈
Γ(U, TM) such that X1|q, · · · , Xk|q form a basis of ξq for every q ∈ U .

We also have the the following 1-form criterion of smooth distributions

Proposition 1.2.2. Let ξp ⊂ TpM constitute a k-dimensional distribution on M .
Then ξ =

⋃
p∈M ξp ⊂ TM is smooth distribution on M if and only if every point

p ∈ M has a neighborhood U on which there are smooth 1−forms α1, · · · , αn−k

such that
ξq = kerα1

q ∩ · · · ∩ kerαn−kq (1.7)

Proof. Suppose α1, · · · , αn−k are 1-forms satisfying equation (1.7) on neighborhood
of p. We can extend them on possibly smaller neighborhood to smooth coframe
(α1, · · · , αn). Let (E1, · · · , En) be the dual frame. Then by (1.7) it follows that ξ
is spanned by En−k+1, · · · , En on neighborhood of p. It follows by 1.2.1 that ξ is
smooth distribution.
Conversely, suppose ξ is smooth. Then by 1.2.1 there is a neighborhood of any
p ∈M on which there are smooth vector field X1, · · · , Xk spanning ξ. On possibly
smaller neighborhood of p, these can be extended to smooth frame (X1, · · · , Xn).
Let (ε1, · · · , εn) be the dual coframe, then it is easy to see

ξq = ker εk+1
q ∩ · · · ∩ ker εnq

17

A particular case of the above proposition is the case of codimension 1 smooth
distributions, for which at every point p ∈M there exist 1-form α on neighborhoood
U of p such that kerα = ξ on U . We say α is local defining form of ξ near p. One
observes by basic linear that if α and α′ are two local defining forms of ξ on U and
U ′ respectively, then α′ = fα on U ∩ U ′ for some smooth non-vanishing function
f : U ∩ U ′ → R.

Definition 1.2.2. A contact structure onM is a smooth distribution ξ of codimension
1 on M such that for every p there is a local defining form α near p such that dα|ξ
is non-degenrate (i.e symplectic). The pair (M, ξ) is called contact manifold, and
any local defining form α with the above property is called (local) contact form.
If α is defined on all of M , we say α is a global contact form.

Remark 1.2.1. In fact it follows that any local defining form of contact structure
ξ is contact form. Indeed, let α′ be local defining form on U , pick q ∈ U and let
α be contact form on neighborhood U ′ of q. Then on U ∩ U ′ we have α′ = fα.
Taking differentials,

dα′ = df ∧ α + fdα

By restricting to ξ (noting that α|ξ = 0), we get dα′|ξ = fdα|ξ. Hence dα′|ξ is
non-degenerate on U ∩ U ′.

Remark 1.2.2. It follows from non-degeneracy that rankξ = 2n, and hence M has
odd dimension 2n+ 1

From now on (M, ξ) is a contact manifold. We have the following obvious proposition
of symplectic linear algebra.

Proposition 1.2.3. Let V be vector space and Ω : V ×V → R be skew symmetric
bilinear map, such that Ω|W×W is non-degenerate where W is subspace of V of
codimension 1, then V = W ⊕ ker Ω

18

Accordingly, given local contact form α on contact manifold (M, ξ). we get

TpM = kerαp ⊕ ker dαp

We have the following characterization of contact structures

Proposition 1.2.4. ξ is contact structure on M if and only if α ∧ (dα)n 6= 0 for
any local defining 1-form.

Proof. Take a basis {e1, f1, · · · , en, fn, r} of TpM such that span{e1. · · · , fn} =

ξp = kerαp and span{r} = ker dαp, then

αp ∧ (dαp)
n(r, e1, f1, · · · , en, fn) = αp(r)(dαp)

n(e1, f1, · · · , en, fn)

Here we used the formula

ω ∧ η(X1, · · · , Xn) =
∑

(k,l) shuffles σ

ω(Xσ(1), · · · , Xσ(k))η(Xσ(k+1), · · · , Xσ(k+l))

and the observation (dαp)
n(· · · , r, · · ·) = 0. As αp(r) 6= 0, we conclude αp ∧

(dαp)
n 6= 0 if and only if (dαp)

n(e1, f1, · · · , en, fn) 6= 0 if and only if (dαp)
n|ξp if

and only if (dαp)|ξp is non-degenerate by corollary 1.1.2

Perhaps a natural question is when we can find a global contact, we have the
following proposition.

Proposition 1.2.5. A contact manifold (M, ξ) has a global contact form if and
only if ξ is coorientable (that’s TM/ξ is orientable).

If a contact manifold (M, ξ) is given global contact form, we say (M,α) is contact
manifold. We have the following definition.

Definition/Proposition 1.2.6. Given a contact manifold (M,α), there is a

19

unique vector field Rα satisfying

α(Rα) = 1 (1.8)

ιRαdα = 0 (1.9)

This vector field is called Reeb vector field determined by α. The contact form is
invariant under the flow of Rα

Proof. ker dα ' TM/ξ is a trivial bundle line bundle, hence there is a nowhere
vanishing vector field R̃ such that R̃p ∈ ker dαp, so α(R̃). It follows that Rα = R̃

α(R̃)

satisfies 1.8 1.9. Uniqueness is clear. The last statement follows directly from
Cartan formula of lie derivatives.

Definition 1.2.3. A submanifold L of M is called isotropic if TxL ⊂ ξx for all
x ∈ L

We have dimensional constraint on L

Definition/Proposition 1.2.7. Suppose L ↪→ (M2n+1, ξ) is isotropic, then dimL ≤
n. If dimL = n, then L is called Legendrian submanifold.

Proof. If L is isotropic, then α|L = 0. This implies (dα)|L = d(α|L) if Tx ⊂
(ξx, dαx) is isotropic, hence dim(TxL) ≤ 1

2
dim(ξx) = n

Now we define contactomorphism of contact manifolds

Definition 1.2.4. Two contact manifolds (M1, ξ1) and (M2, ξ2) are said to be
contactomorphic if there is diffeomorphism f : M1 →M2 such tha Tf(ξ1) = ξ2. If
ξi = ker αi, then this is equivalent to f ∗α2 = λα, where λ : M1 → R \ {0}

Let (M, ξ = kerα) be a contact manifold. A contact isotopy is a smooth family
ψt of contactomorphisms with ψ0 = id, then ψ∗tα = λtα. Because λ0 = 1 > 0, then

20

λt. Suppose that Xt is the generating time-dependent vector field. That’s

d

dt
ψt = Xt ◦ ϕt

Then
d

dt
ψ∗tα = λ̇tα = ψ(µtα),

where µt = λ̇t ◦ ψ−1
t . Because ψ∗tLXtα = d

dt
ψ∗tα, it follows that

LXtα = µtα

Conversely, given Xt satisfying this condition, we get

d

dt
ψ∗tα = (µt ◦ ψt)ψ∗tα,

hence ψtα = e
∫ t
0 µsψs dsα. A vector field X on M is called contact vector field. The

discussion above illustrates that the lie algebra of group of contactomorphisms is
the space of contact vector fields

Proposition 1.2.8. Let (M, ξ = kerα) be a contact manifold. Then there is a
one-to-one correspondance between contact vector fields and functions H : M → R
given by

• X → HX = α(X)

• X → XH , defined uniquely by

α(XH) = H ; ιXHdα = dH(Rα)α− dH

Example 1.2.1.

(1) On R2n+1 with coordinates (x1, y1, · · · , xn, yn, z), define α1 = dz −
∑n

i=0 yidxi.
Let’s compute compute α1 ∧ (dα1)n:

dα1 =
∑
i

dxi ∧ dyi =⇒ (dα1)n = n!dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

21

Hence
α1 ∧ dα1 = n!dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn 6= 0.

α1 is sometimes denoted by αstd. The reeb vector field is Rαstd = ∂
∂z

(2) Another contact structure on R2n+1 is defined by the form

α2 = dz +
n∑
j=1

(xjdyj − yjdxj) = dz +
n∑
j

r2
jdθj,

where (rj, θj) is the polar coordinates in (xj, yj)−plane j = 1, · · · , n. It follows
that (R2n+1, α1) is strictly contactomorphic to (R2n+1, α2. Indeed, let

f(x1, y1, · · · , xn, yn, z) = (
y1 − x1

2
,
−x1 − y1

2
, · · · , yn − xn

2
,
−xn − yn

2
, z−1

2

∑
j

xjyj)

Then f is diffeomorphism and

f ∗α2 = d(z − 1

2

∑
j

xjyj) +
1

4

∑
j

(yj − xj)d(−xj − yj) + (xj + yj)d(yj − xj)

= dz − 1

2

∑
j

(xjdxj + yjdyj) +
1

4

∑
j

xjdxj + xjdyj − yjdxj − yjdyj + xjdyj − xjdyj + yjdyj − yjdxj

= dz −
∑
j

yjdxj = α1

(3) Regard S2n+1 as the set of unit vectors

{(x1, y1, · · · , xn+1, yn+1)|r =
n+1∑
i

(x2
i + y2

i) = 1}

We let i : S2n+1 ↪→ R2n+1 be the inclusion. Let σ = 1
2

∑
i(xidyi − yidxi). We have

22

(d(σ))n−1 =

(∑
i

dxi ∧ dyk − dyk ∧ dxk

)n−1

= 2n

(∑
k

dxk ∧ dyk

)
= 2n(n− 1)!

∑
k

dx1 ∧ dyn ∧ · · · ∧ ̂dxk ∧ dyk ∧ · · · ∧ dxk ∧ dyk

and

rdr ∧ σ =
1

2

(∑
i

(xidxi − yidyi)

)
∧

(∑
j

(xjdyj − yjdxj)

)

=
1

2

∑
i

∑
j

xixjdxi ∧ dyj + yixjdyi ∧ dyj − xiyjdxi ∧ dxj − yiyjdyi ∧ dxj

As can be easily seen, the wedge of each term on the right side of this equation
with i 6= j against (dσ)n−1 is zero, hence rdr ∧ σ ∧ (dσ)n−1 is

2n−1(n− 1)!

(∑
i

(x2
i + y2

i)dxi ∧ dyi

)
∧

(∑
k

dx1 ∧ dy1 ∧ · · · ∧ dxk ∧ dyk ∧ · · · ∧ dxn+1 ∧ dyn+1

)

which is clearly equal to

2n−1n!r2dx1 ∧ dy1 ∧ · · · dxn+1 ∧ dyn+1

which is not equal to 0 whenever r 6= 0. As S2n+1 is level surface of S2n+1 of r,
then α = i∗σ is defines contact structure on S2n+1.

(4) Let X be a manifold of dimension n, then the jet space J1(X) := T ∗X × R is
contact manifold with contact form α = dz − λcan, where z is the real coordinate.

23

Indeed,
α ∧ (dα)n = (dz − λcan) ∧ (−dλcan)n = (−1))ndz ∧ dλcan

The reeb vector field is Rα = ∂
∂z
, and for any function f : X → R. The submanifold

{(q, df(q), f(q)|q ∈ X} ⊂ J1M

is Legendrian.

Now we describe how contact manifolds arise from symplectic manifolds, but first
let’s give a definition

Definition 1.2.5. Let (W 2n+2, ω) be symplectic manifold. A vector field X on W
is called Liouvelle vector field if LXω = ω.

Remark 1.2.3. If (W,ω) has liouvelle vector field, then it is exact. Indeed by
Cartan formula ω = LXω = d(ιXω) + ιXdω = d(ιXω)

We have the required proposition

Proposition 1.2.9. Let X be a liouvelle vector field on (W,ω). Let M ↪→ W be
a hypersurface (i.e submanifold of codimension 1). If X is transverst to M (i.e
Xp 6∈ TpM for all p ∈M), then (M, ιXω|M) is contact manifold.

Proof. let α̃ = ιXω, we have

α̃ ∧ (dα̃)n = (ιXω) ∧ (dιXω)n = (ιXω) ∧ ωn =
1

n+ 1
ιX(ωn+1)

where in the last equality we used the antiderivation property of interior multiplication.
Because ωn+1 is volume form on W , it follows that α̃ ∧ (dα̃)n restricted to M is
volume form, for if v1, · · · , v2n+1 span TpM , then v1, · · · , v2n+1, Xp span TpW ,
Hence

α̃p ∧ (dα̃p)
n(v1, · · · , v2n+1) = ωn+1

p (Xp, v1, · · · , v2n+1) 6= 0

24

In fact every contact manifold arises in this way, as we will see after defining
symplectization.

1.2.2 Symplectization and Contactisation

Symplectization

Definition/Proposition 1.2.10. Let (M2n+1, ξ) and (N2n+1, ξ) be contact manifolds.
Then

(1) The following set

W = {(x, β)|x ∈M, β ∈ T ∗pM s.t ker(β) = ξp}

is symplectic submanifold of (T ∗M,ωcan) and is called the symplectization of (M, ξ).

(2) If ξ is cooriented and α is global form giving the coorientation, then the map

Φα : R∗ ×M → W, ; (t, x) 7→ tαx

is symplectomorphism from (R∗ ×M,d(tπ∗2α)) to (W,ωcan). In this case we call
the component (W0 = Φα(R+ ×M), ωcan|W0) the intrinsic symplectization of M
(It doesn’t depend on choice of α). Given α, we call (R×M,d(esα)) the extrinsic
symplectization. It is symplectomorphic to W0 via composition of (s, x) 7→ (es, x)

and Ψα.

(3) let f : M → N be a diffeomorphism. Then, denoting by W and X the
symplectizations of M and N respectively, f is contactmorphism if and only if
f#(W) = X in which case f#|W : W → X is symplectomorphism. If M,N are
cooriented by contact forms α, β, then the same assertion holds with W replaced
with W0 given that f preserves coorientations. If f is strict contactomorphism,

25

then under identification above of intrinsic symplectizations R ×M and R × N

with W0 and X0, f# is given by (s, x) 7→ (s, f(x)).

Proof.

(1) We begin by showing W is submanifold of dimension 2n + 2. We let α be
local defining form of ξ near p, we extend to local coframe α1 = α, α2, · · · , αn
defined on V 3 p. Let (U, x1, · · · , xn) be a coordinate chart around p. We let
for each γ ∈ T ∗xU , we let yi(γ) be the i-th component of γ, with respect to the
above frame, that’s γ =

∑
i y

i(γ)αi|x. Defining xi = xi ◦ π : T ∗U → R, we get
coordinate chart of (T ∗U, x1, · · · , xn, y1, · · · , yn) of T∗M . Note thatW ∩T ∗U is the
intersection of T ∗M \ {0} and the set {y2 = · · · = yn = 0}, which is submanifold
of T ∗U . It follows that W is submanifold of T ∗M . Now we check it is symplectic,
that is dλcan|W is symplectic. Let α be local defining form defined on U , and let
φ : R∗ × U → W be defined by φ(t, x) = tαx. We observe that φ∗(λcan|W) = tα.
But as dimW = 2n+ 1 and

(d(tα))n+1 = (dt ∧ α + tdα)n+1 = (n+ 1)tndt ∧ α ∧ (dα)n

But the latter is non-zero, so φ∗(ωcan|W) = φ∗(dλcan|W) is non-degenerate. This
proves (1)

(2) follows from last part of the previous argument.

(3) Clear from the definitions.

Now we make an important observation. Keeping the notation of the above
proposition. If ψt : M → M is contact isotopy, then the the lift ψ̃t : W → W

Hamiltonian isotopy. Indeed, let X̃t be the vector field generating ψ̃ and observe
that

ψ∗t (λcan|W) = λcan|W =: θ

26

Differentiating this equation with respect to t, we get

0 = LX̃tθ = d(θ(X̃t)) + ιX̃tdθ

which proves X̃t is Hamiltonian.

Contactisation

Let (M,dθ) be exact symplectic manifold. We define its contactisation to be (W,β)

where W = M × R with coordinate z on R and β = dz + θ. It is obvious that β
is indeed a contact form, for

β ∧ (dβ)n = (dz + θ) ∧ (dz + θ)n = dz ∧ (dθ)n

which is non-degenerate. The Reeb vector field is R = ∂
∂z
.

Now we say (L, ι) is a nice exact Lagrangian immersed submanifold in (M,dθ) if
it is a generic immersed submanifold (in the sense that all self intersections are
double, transversal and isolated) and ι∗θ = df such that for every self-intersection
point p the values of the potential f at the two preimages of p are distinct.
Any nice exact Lagrangian submanifold (L, ι) ofM with potential f defines Lagrangian
embedding

ι+ : L→ W , x→ (ι(x),−f(x))

The image of ι+ is called Legendrian lift of (L, ι), it is indeed legendrian (ι+)∗(dz+

θ) = −df + ι∗θ = 0. On the other hand any Legendrian submanifold ofW projects
to Lagrangian immersed sumbanifold of M via the projection (x, z) 7→ x. Points
of self intersection of L corresponds to Reeb chords of L+.

27

1.2.3 Moser type theorems

First of all we have the following theorem of Gray, which roughly states that there
is not non-trivial deformations of contact structure.

Theorem 1.2.11. If {ξt}t∈[0,1] is smooth family of contact structures on compact
M . Then there is isotopy {φt : M →M}t∈[0,1] such that (φt)∗(ξ0) = ξt

Proof. Let αt be smooth family of 1-forms such that kerαt = ξt. We want to find
φt, such that

φ∗tαt = ftα0 (1.10)

for some non-vanishing functions ft : M → R − {0}. We find ψt as flow of time
dependent vector Xt, that’s

d

dt
ψt = Xt ◦ ψt , ψ0 = id

Differentiating 1.10, we get

ψ∗t (
d

dt
ψt + LXtαt) =

1

ft

dft
dt
ψ∗tαt = ψ∗t (gtαt),

where gt = (1
ft

dft
dt

) ◦ ψt. If we choose Xt to lie in kerαt = ξt, then the equation is
satisfied if

ψ∗t (
d

dt
αt + ιXtdαt) = gtαt (1.11)

Plugging the Reeb vector field Rt in 1.11, we get

d

dt
αt(Rt) = gt

We use this to define gt. By the non-degenracy of dαt|ξt , and the fact Rt ∈
ker(gtαt − d

dt
αt), there is a unique vector field Xt satisfying 1.11.

Theorem 1.2.12. Let (M2n+1, α) be a contact manifold. For any p ∈M , there is

28

a coordinate (x1, y1, · · · , xn, yn, z) around p in which α is standard form, that’s

α = dz −
n∑
i=1

yidxi

Proof. Let (U, (u1, · · · , u2n)) be coordinate cube, such that R = Rα = ∂
∂u1

. Let S
be the the submanifold defined by u1 = 0. Since S is trasversal to R, then dθ|S
is symplectic, hence after shrinking U and S if necessary, we can find Darbouc
coordinates (x1, y1, · · · , xn, yn) for S and extend it to U by being constant on
integral curves of R. Let θ be the 1-form

∑
i yidxi on U , so dα|S = −dθ|S. But

as ιRdα = ιRdθ, it follows that dθ + dα = 0 at points of S. Then LRθ = LRα = 0

which implies d(θ+α) is invariant under the flow of R, hence d(θ+α) = 0 on U . By
Poincare lemma, there is smooth function z : U → R such that dz = θ+α, we can
assume that z(p) = 0. Since dzp(Rp) = 1, we have {dxi|p, dyi|p, dzp} are linearly
independent, so there is neighborhood around p on which (x1, y1, · · · , xn, yn, z) are
coordinates.

Theorem 1.2.13. Let L ⊂ (M, ξ) be Legendrian submanifold, then there exists
neighborhood U of L and neighborhood U0 of the zero section of J1(L) such that
there exist contactomorphism ψ : U0 → U such that ψ(L0) = L, where L0 is the
zero section of L in J1(L) (in otherwords L0 = L× {0}

1.2.4 Generating families

LetM be a manifold, and let f : M×RN → RN be a smooth map, whereM×RN

has coordinates (x, ξ). Suppose that 0 is regular value of ∂ξf : M × RN → RN .
The submanifold (∂ηf)−1(0) is called the fiber critical set and denote it by Σf .
Define

if : Σf → T ∗M ; (x, η) 7→ (x, ∂xf(x, η)),

and
jf : Σf → J1M ; (x, η) 7→ (x, ∂xf(x, η), f(x, η)),

29

it can be checked that if and jf are immersions. The image L of if is immersed
Lagrangian submanifold; the image λ of jf is immersed Legendrian submanifold.
We say that f generates L and Λ or that f is generating family. It is important to
note that the Reeb chords of Λ are in bijective correspondence with critical points
of δ(x, ξ, ξ′) = f(x, ξ)− f(x, ξ′) with positive critical value.

We say a generating family f is linear at infinity, if there is a linear function
A : RN → R such that f(x, ξ) = A(ξ) outside a compact set.

30

Chapter 2

Lagrangian cobordism

2.0.1 Definition and compatible generating functions

Definition 2.0.1. Let Λ− and Λ+ be two legendrian submanifolds of (M, ξ =

ker(α)), then a lagrangian cobordism between Λ− and λ+ is a lagrangian submanfiold
of the symplectisation (R×M,d(etα)) such that there exists T with

L ∩ ((−∞,−T]×X) = (−∞, T]× Λ−

L ∩ ([T,∞)×X) = [T,∞)× Λ+.

That cobordism is denoted by Λ− ≺ Λ+.

We will be mainly concerned with lagrangian cobordisms of legendrian submanifolds
in (J1M,dz − λ). To use generating families to study them, we need to identify
its symplectisation with cotangent bundle.

Proposition 2.0.1. Let M be a manifold, then then the symplectisation (R ×
J1M,d(etα)) of (J1M,α = dz − λ) is symplectomorphic to (T ∗(R+ ×M), ωcan).

31

In fact the symplectomorphism is given by

θ : R× J1M → T ∗(R+ ×M) ; (s, q, p, z) 7→ (es, q, z, esp)

Proof. Suppose that a point in T ∗(R+ ×M) has coordinates (t, x, z, y), then

θ∗(ωcan) = θ∗(−d(zdt+ ydx))

= −d(zd(es) + espdq)

= −d(−esdz + espdq) = d(esα)

So the lagrangian cobordism L can be viewed as Lagrangian submanifold of
T ∗(R+ ×M), and hence may be constructed by generating function. We will be
interested in the case, we have a generating function compatible with those of
given ones for Λ− and Λ+

Definition 2.0.2. Let f± : M × RN and F : (R+ ×M) × RN be functions. We
say (F, f−, f+) is compatible if for some S > 1, get

f(t, x, ξ) =

tf−(x, ξ) t ≤ 1/S

tf+(x, ξ) t ≥ S

A gf-compatible lagrangian cobordism consists of a lagrangian cobordism Λ− ≺L
Λ+ and a compatible triple of generating functions (F, f−, f+) of θ(L) ⊂ T ∗(R+ ×
M), Λ−,Λ+ ⊂ J1M respectively. A gf-compatible lagrangian cobordism is denoted
by

(Λ−, f−) ≺(L,F) (Λ+, f+)

We should note that if we are given compatible triple (F, f−, f+) with 0 being
a regular value of ∂ξf−, ∂ξf+, ∂ξF , then F determines an immersed lagrangian
cobordism from λ− to Λ+. We call the resulting immersed cobordism together
with the triple a gf-compatible immersed lagrangian cobordism.

32

2.0.2 Isotopy is realised by lagrangian cobordism

The aim of this section is to prove the following theorem which is due to Chantraine
[3]

Theorem 2.0.2. [legendrian isotopy gives "cylinderical" cobordism] Let (M, ξ =

kerα) be a compact contact manifold, and jt : Λ → M be isotopy of legendrian
embeddings into M . Then there is a lagrangian cobordism from Λ0 = jt(Λ) to
Λ1 = j1(Λ)

We need to prove isotopy extension theorem, which says that an isotopy of
isotropic submanifolds can be realized by ambient contact isotopy. First we need
the following lemma

Lemma 2.0.3. Let M be a manifold, and S be a submanifold of M . Suppose
that f : S → R is smooth function, and λ is one form in N along S (that’s
λ ∈ Γ(S, T ∗M |S)). If

dfp(v) = λp(v) for v ∈ TpS,

then there is F : M → R such that

• F |S = f

• dFp = λp for all p ∈ S

If S is compact, then we can choose F to be compactly supported.

We illustrate the lemma by proving the case M = Rm × Rn, S = Rm ↪→ M is
submaninfold by inclusion of the first coordinate. So we have as given f : Rm → R
and smooth family of linear maps αx : Rm×Rn → R parametrized by x ∈ S, such
that αx((v, 0)) = dfx(v). We construct F by the formula

F (x, y) = f(x) + αx((0, y))

33

We see that

• F (x, 0) = f(x)

• dF(x,0)(v1, v2) = dfx(v1) + αx((0, v2) = αx((v1, v2))

This construction can be adapted to the general case by use of tubular neighborhood
and cuf off function.

Theorem 2.0.4 (isotopy extension theorem). Let jt : L → (M, ξ = ker(α)) be
an isotopy of isotropic embeddings of a closed manifold L in a contact manifold.
Then there exist compactly supported contact isotopy ψt of (M, ξ)

Proof. Define time-dependent vector field Xt along jt(L) by

Xt ◦ jt =
d

dt
jt

Assume L is submanifold of M and j0 the inclusion L ⊂ M . We want to find
compactly supported smooth function H̃t : M → R whoose hamiltonian vector
field X̃t equals Xt along jt(L), this will prove the theorem. X̃t is defined in terms
of H̃t by

α(X̃t) = H̃t , ιXtdα = dH̃t(Rα)α− dH̃t

We need
α(Xt) = H̃t , ιXtdα = dH̃t(Rα)α− dH̃t along jt(L) (2.1)

We use the lemma above to construct H̃t with 2.1 satisfied. Define Ht : jt(L)→ R
by Ht = α(Xt), and let λt be the one form along jt(L) defined by

λt = −ιXtdα

In particular λ(Rα) = 0. So, what we need is H̃t such that

• H̃t = Ht along jt(L)

34

• dH̃t = λ along jt(L)

By lemma, we need only to show that

dHt(v) = λt(v) for v ∈ T (jt(L))

That’s
d(ιXtα)(v) = −ιXtdα(v) for v ∈ T (jt(L))

This is equivalent to
j∗t (ιXtdα) + j∗t d(ιXtα) ≡ 0

which is in turn equivalent to

0 = j∗t (LXt) =
d

dt
(j∗t α)

but this is automatically true as jt is isotropic embedding.

Now we sketch the proof of theorem 2.0.2. We let jt be such isotopy, then
we extend jt to compactly supported contact isotopy ψt. This in turn lift to
ψ̃t : M̃ → M̃ . As we have already seen in subsection 1.2.2, ψ̃t is generated by
Hamiltonian vector field XHt for function Ht : M̃ → R. Pick S > 0 We define
Hamiltonian H ′t : M̃ → R by

H ′t(s, x) =

Ht(s, x) s > S

0 s < −S
,

and let φt be its Hamiltonian flow, that’s the one generated by XH′t
. The following

properties of φt are clear

• φt(s, x) = ψ̃t(s, x) = (s, ψt(x)) for s > S

• φt(s, x) = (s, x) for s < −S.

35

Let T be large enough so that φt([−S, S]×M) ⊂ (−T, T)×M . Denote by L the
lagrangian submanifold φ1(R×Λ−) (note that φ1 is hamiltonian diffeomorphism).
Then by the properties above we get

• L ∩ ([T,∞) × M) = [T,∞) × Λ+ : By choice of T and properties of φt
above, we note that φ1(s, x) lies in [T,∞)×M if and only if s ≥ T . So the
intersection on the left hand side is φ1([T,∞) × Λ−) = (id × ψ1)([T,∞) ×
Λ−) = [T,∞)× Λ+ as required.

• L ∩ ((−∞,−T]×M) = (−∞, T]× Λ−: Similar.

2.0.3 Some results on gf-compatible lagrangian cobordisms

Theorem 2.0.5. Let Λ ⊂ J1M be a legendrian submanifold with linear-at-infinity
genergating function f , then there exist an immersed gf-compatible lagrangian
cobordism ∅ ≺(L,F) (Λ, f)

Proof. The idea is to deform the f to linear function. First let f agree with liner
function A outside a compact subset of M ×RN . We have to construct a function
F : R+ ×M × RN → R satisfying

1. for all t, F (t, x, ξ) = Bt(ξ) outside a compact set of {t} ×M ×RN for some
non-zero linear function Bt

2. There exists T > 0 such that F (t, x, ξ) equals Bt(ξ) for t < 1/T and tf(x, ξ)

for all t > T .

3. 0 is regular value of ∂ξF

The construction of a function G : R+ ×M × RN → R satisfying (1) and (2) is
simple. Just let ρ : R+ → R which is 0 on (0, 1] and 1 on [2,). Define G by

G(t, x, ξ) = t(σ(t)f(x, ξ) + (1− σ(t))A(ξ)).

36

For any T > 2 to see that (1) and (2) are satisfied. Moreover there for t < 1/T ,
G(t, x, ξ) agrees whith tA(ξ) outside a compact set of {t } ×M × RN . Now we
need to modify G to F to get the final property (3) satisfied. The modification
is quite standard, we perturbate be adding ε · ξ for well chosen ε. Note that as f
is linear-at-infinity and the set of critical p, there exist a open and oints convex
ball U around 0 which consists entirley of regular values of ∂ξ. There exists ε ∈ U
which is regular value of ∂ξG and such that ε · ξ 6== tA(ξ) for all t. Choose a
smooth path σ : R+ → U such that σ(t) = ε for t < 2 and σ(t) · ξ 6= tA(ξ) for
t ∈ [2, T] and σ(t) = 0 for t ∈ [T,). We define F to be

F (t, x, ξ) = G(t, x, ξ)− ε(t) · ξ =


G(x, t, ξ)− ε · ξ t ≤ 2

tf(x, ξ)− σ(t) · ξ t ∈ [2, T]

tf(x, ξ) t ≥ Tx

The properties (1) and (2) are clearly satisfied for G. Now we prove (3). One one
hand ε is regular value of ∂ξG, so 0 is regular value of ∂ξF = ∂ξG− ε for t ≤ 2. On
the other hand we have for t ≥ 2, ∂ξf(t, x, ξ) = 0 if and only if ∂f(x, ξ) = σ(t)/t,
but by convexity of U , σ(t)/t is regular value of ∂f(x, ξ). It follows immediately
that 0 is regular value of ∂ξF as d(∂ξF)(t, x, ξ) : R⊕ (TxM ⊕ RN)→ RN is(

∂ξf(t, ξ)− σ′(t) t · d(∂ξf)(x, ξ)
)

We need a lemma

Lemma 2.0.6. Let (ft : M × RN → R)t∈R+ be a smooth one parameter family of
generating functions. Let F : R+ ×M × RN → RN be defined

F (t, x, ξ) = tft(x, ξ)

Suppose that

37

• 0 is regular value of F

• for all (x, ξ, ξ′) in the fiber critical set of δt(x, ξ, ξ′) = ft(x, ξ)− ft(x, ξ′), we
have

∂xδt(x, ξ, ξ
′) =⇒ δt(x, ξ, ξ

′) 6= −t∂tδt(x, ξ, ξ′),

then F generates an embedded submanifold in T ∗(R+ ×M)

Proof. Since 0 is regular value of ∂ξF , then F generates an immersed lagrangian

L = {(t, x, ft(x, ξ) + t∂tft(x, ξ), t∂xf(x, ξ))|∂ξf(x, ξ) = 0}.

We need to find double points... So, double points are in bijective correspondence
with points (t, x, ξ, ξ′) with ξ 6= ξ′ satisfying

• (x, ξ, ξ′) is in the fiber critical set of λt

• ∂xδt(x, ξ, ξ
′) = 0

• δtf(x, ξ, ξ′) = −tδtf(x, ξ, ξ′)

The lemma clearly follows.

We have the following version of 2.0.2 with gf-compatible cobordisms.

Theorem 2.0.7. Suppose that Λ− is legendrian submanifold of J1M with linear-
at-infinity generating function f−, and that Λ− is legendrian isotopic to Λ+ with
linear-at-infinity generating function f+. Then there is a gf-compatible cobordism
(Λ−, f−) ≺(L,F) (Λ+, f+)

Proof. (Sketch.) Let (jt : Λ → M)t∈R+ be the legendrian isotopy. Denote Λt =

jt(Λ) such that Λt = Λ− for t ≤ 1/T and Λt = Λ+ for t ≥ T . There is a one-
parameter family of generating functions linear-at-infinity ft that generates Λt.

38

We will reparametrize the one-parameter family ft, so that F (t, x, ξ) = tft(x, ξ)

satisfies lemma 2.0.6. Since 0 is regular value of ∂ξft for all t, then 0 is regular
value of ∂ξF . Observe that ∂xδt(x, ξ, ξ′) = 0 if (x, ξ) and (x, ξ′) are endpoints of
reeb chord, where then the length of the reeb chord is |δt(x, ξ, ξ′)|. Let h > 0 be
the minimum length of reeb chords of all of the legendrians Λt of the legnedrian
isotopy. It suffices to show that for every (x, ξ, ξ′) in the fiber critical set of δt

|∂tδt(x, ξ, ξ′)| <
h

t
.

Since the fiber critical set of δt is compact for each t, and ∂tδt vanishes outside a
compact interval, then ∂tδt is bounded as function of (t, x, ξ, ξ′) where (x, ξ, ξ′) lies
in the fiber critical set of δt. Choose ρ : R+ → R+ such that

0 < ρ′(t) <
h

tmax |∂tδt|
,

then letting f̃t = fρ(t), δ̃t(x, ξ, ξ′) = f̃t(x, ξ)− f̃t(x, ξ′) we get

|∂tδ̃t(x, ξ, ξ′)|t=t0| = ρ′(t0)|∂tδt(x, ξ, ξ′)|t=ρ(t0)| <
h

t0 max |∂tδt|
·|∂tδt(x, ξ, ξ′)|t=ρ(t0)| <

h

t0

39

Chapter 3

Lagrangian Surgery

Recall that an immersed submanifold of M is a pair (L, ι) of manifold L and
immersion ι : L → M . In this chapter all immersed submanifolds are considered
to be generic. That’s all points of self intersections are double,transversal and
isolated. So if x is a point of self intersection, then the pre-image of ι consists of
two points {x1, x2} and there is open neighborhood U ⊂M of x containing no other
self intersection such that ι−1(U) is union of disjoint open neighborhoods U1, U2 of
x1, x2 respectively and ι|Ui is embedding, in particular U ∩ ι(L) = ι(U1)∪ ι(U2) and
ι(U1) intersect ι(U2) transversally at x. An equipment of (L, ι) at x, is an order of
tangent spaces Txι(U1) and Tx(ι(U2)). We say (L, ι) oriented if L is oriented.

Throughout P n = Sn−1 × S1 and Qn the manifold obtained from Sn−1 × I by
identifying (x, 1) with (τ(x), 0) where τ : Sn−1 → Sn−1 is the standard orientation
reversing involution (given by reflection).

All symplectic manifolds are oriented by its symplectic structure, that’s (M,ω)

is oriented by ωn.

40

3.1 First Description

Lagrangian handles

Let (R2n, ωstd) be the standard symplectic manifold, suppose it is oriented by the
form ωn. Denote by Lx and Ly the Lagrangian submanifolds Rn×{0} and {0}×Rn

respectively. We have the following definition

Definition 3.1.1. Let ε > 0 and σ : Sn−1×R→ R2n be a Lagrangian embedding
satisfying:

• σ(Sn−1 × (−ε, ε)) ⊂ B(0, ε)

• σ(z, t) = −tz for (z, t) ∈ Sn−1 × (−∞,−ε]

• σ(z, t) = tz for (z, t) ∈ Sn−1 × [ε,∞).

So in particular, denoting the two n−dimensional discs of radius ε containing 0 by
Bx ⊂ Lx and By ⊂ Ly respectively, we get

σ(Sn−1 × (−∞,−ε]) = Lx \Bx ; σ(Sn−1 × [ε,∞)) = Ly \By

σ or its image is called an ε-Lagrangian handle. If Γ denotes this image and Lx and
Ly are oriented, then we say the Lagrangian handle is positive (denoted sgn Γ = 1)
if Lx \ Bx ↪→ Γ and Ly \ By ↪→ Γ induce the same orientations on Γ and negative
(denoted sgn Γ = −1) if these orientations are different.

Lagrangian handles exist by the following theorem

Theorem 3.1.1. Suppose that Lx and Ly are oriented and let ε > 0. Then there
exists an ε-Lagrangian handle Γ with sgn Γ = (−1)

n(n−1)
2

+1Lx · Ly

Proof. Let f and g be functions R→ R+ such that

41

• f(t) = t for t ≥ ε and f(t) = 0 for t ≤ −ε

• g(t) = −t for t ≤ −ε and g(t) = 0 for t ≥ ε

• t 7→ (f(t), g(t)) is embedding R→ R2

•
√
f(t)2 + g(t)2 ≤ ε for t ∈ (−ε, ε)

Define σ : Sn−1 × R→ R2n by

σ(z, t) = (f(t)z, g(t)z).

We have

1. σ∗ωstd = 0: Let ι : Sn−1×R ↪→ Rn×R be the inclusion, and define σ̃ : Rn×R
by σ̃(z, t) = (f(t)z, g(t)z), with coordinates of first factor Rn be z1, · · · zn.
We have σ = σ̃ ◦ ι, and

σ̃∗ωstd =
∑
i

(f ′(t)zidt+ f(t)dzi) ∧ (g′(t)zidt+ g(t)dzi)

=
∑
i

(f(t)g′(t)− g′(t)f(t))zidzi ∧ dt

and it follows that

σ∗ωstd =
∑
i

(f(t)g′(t)− g′(t)f(t))(zi ◦ ι)d(zi ◦ ι) ∧ dt = 0,

because
∑

i(zi ◦ ι)2 = 1 =⇒
∑

i(zi ◦ ι)d(zi ◦ ι) = 0.

2. σ is immersion: We compute the differential, let (v, s) ∈ T(t,z)(Sn−1 × R) =

TzS
n−1 × TtR = TzS

n−1R, we have

dσ(z, t)(v, s) = (f ′(t)sz + f(t)v, g′(t)sz + g(t)v)

42

As {z, v} = 0, then z and v are linearly independent unless v = 0. Hence for
(v, s) 6= (0, 0)

dσ(z, t)(v, s) = 0 =⇒ f ′(t) = g′(t) or f(t) = g(t)

But this is impossible by choice of f and g

3. σ is injective: This follows by positivity of f and g and the last property of
f and g.

4. σ is proper: clear from the construction.

It follows that σ is Lagrangian embedding. It is clear that conditions in definition
of handle are satisfied, by choice of f and g. So σ is ε-lagrangian handle. The
statement about sign is straightforward.

Construction of Lagrangian surgery

Next we turn to the construction of surgery of an immersed Lagrangian submanifold.
Let (M,ω) be a symplectic manifold and (L, ι) be an immersed Lagrangian submanifold,
and let x be a point of self-intersection of L, write ι−1(x) = {x1, x2}. Suppose that
L is equipped at x by equipment (l1, l2). Pick a neighborhood U ⊂ M of x small
enough so that

• There is open neighborhood U ⊂M of x containing no other self intersection
such that ι−1(U) is union of disjoint open neighborhoods U1, U2 of x1, x2

respectively and ι|Ui is embedding, in particular U ∩ ι(L) = ι(U1) ∪ ι(U2).
Denoting ι(Ui) = Li, we get L1 intersecting L2 transversally at x. We assume
TxL1 = l1 and TxL2 = l2

• There is symplectomorphism ϕ : (U, x) → (B(0, ε), 0) such that ϕ−1(Lx) =

L1 and ϕ−1(Ly) = L2.

43

This possible by theorem 1.1.8. Now we let σ : Sn−1 × R→ R2n be a Lagrangian
ε/3-handle with image Γ. Let V = ϕ−1(B(0, 2ε/3))

L̃ = (L \ ι−1(V)) ∪ (Sn−1 × (−ε, ε))/ ∼

where ∼ is the equivalence class generated by (z, t) ∼ ι−1ϕ−1σ(z, t) for t ∈
(−ε,−2ε/3) ∪ (2ε/3, ε). There is a unique manifold structure on L̃ such that the
inclusions

i1 : L \ ι−1(V) ↪→ L̃ , i2 : Sn−1 × (−ε, ε) ↪→ L̃

are open embeddings. We define

ι̃ : L̃→M

by

ι̃(p) =

ι(x) if p = [x] , x ∈ L \ ι−1(V)

ϕ−1σ(z, t) if p = [z, t] , (z, t) ∈ Sn−1 × (−ε, ε)

This is clearly well defined and is smooth Lagrangian immersion because the
composition with i1 and i2 are smooth Lagrangian immersions. It is seen that the
image of this immersion coincides with ι(L) outside V and has one self intersection
removed. The image is exactly (L \ U) ∪ ϕ−1(Γ). We call (L̃, ι̃) a result of
Lagrangian surgery at point x. It is a generic immersed submanifolds, because self
intersections happen outside U , where the new immersion coincides with the old
one. If L is oriented, then L1 and L2 inherits orientation and we say the surgery is
positive(negative) if the handle Γ is positive(negative) with respect to orientations
on Lx and Ly induced by those of L1 and L2 respectively. So the surgery sign
depends on the equipment in fact the sign is exactly (−1)n(n−1)/2+1l1 · l2. By
changing eqquipment, we can control the sign as in following proposition which is
clear

Proposition 3.1.2. Let (L, ι) be an oriented immersed Lagrangian submanifold
with point of self intersection x

44

1. If n is odd, then there exists a Lagrangian surgery of any sign at point x.

2. If n is even, then there exists Lagrangian surgery of sign (−1)n(n−1)/2+1ind(x).

Remark 3.1.1. If (L, ι) is oriented and the surgery is positive, then (L̃, ι) inherits
natural orientation which agrees with orientation of L under embdedding i1 :

L \ ι−1(V) ↪→ L̃.

The following two propositions will follow directly from constructions:

Proposition 3.1.3. Let (L, ι) be immersed Lagrangian with L connected and let
x be a point of self intersection. Let (L̃, ι̃) be a result of Lagrangian surgery at x.

1. If L is oriented, Then L̃ ∼= L#P if the surgery is positive and L̃ ∼= L#Q if
the surgery is negative.

2. If L is non-orientable, then L̃ ∼= L#Q ∼= L#P .

On the other hand if (L = L1 t L2, ι) is immersed submanifold where L1 and L2

are connected and x is a point of self-intersection, then denoting by (L̃, ι̃) a result
of Lagrangian surgery at x, we have L̃ ∼= L1#L2

Proposition 3.1.4. Let (L, ι) be a closed immersed Lagrangian submanifold of
(M2n, ω), and let (L̃, ι̃) be a result of Lagrangian surgery.

1. ι∗([L]) and ι̃∗([L̃]) are homologous (mod 2)

2. if L is oriented and the surgery is positive, then ι∗([L]) and ι̃∗([ι̃]) are homologous,
where L̃ is given the natural orientation of remark.

Now we give an application to the surgery construction on embedding problems:

Theorem 3.1.5. 1. Let L1 and L2 be closed connected manifolds with Lagrangian
embedding into R2n. Then there is a Lagrangian embedding of L1#L2#Q into
R2n. If n is odd, then L1,#L2#P admits Lagrangian embedding into R2n.

45

2. Let L be a closed connected manifold having Lagrangian immersion into R2n.
Then there is a Lagrangian embedding of L#kQ into R2n for some k. If n
is odd, then there is Lagrangian embedding of L#kP .

Proof. To prove (1) Let ij : Lj ←↩ R2n denote the Lagrangiann embeddings.
By linear map and perturbation we can assume that i1(L1) and i2(L2) intersect
transversaly at exactly two points x1 and x2. Let (L̃ = L1 t L2, ι̃) be defined by
ι(x) = ij(x) if x ∈ Lj. Then (L̃, ι̃) is immersed Lagrangian submanifold with two
points of self intersections x1, x2. We perform Lagrangian surgery at x, to get an
immersed Lagrangian submanifold (L̃(1), ι̃(1)). By proposition 3.1.3, L̃(1) ∼= L1#L2.
If one of L1 or L2 is non-orientable, then L̃(1) is non-orientable, and by the same
proposition after applying a surgery at x2 we get a generic immersed submanifold
(L̃2, ι̃(2)) such that L̃2 ∼= L̃(1)#Q ∼= L1#L2#Q. But this immersed submanifold
has no self interections and generic, so we get embedding L1#L2#Q ↪→ R2n. Now
assume that both L1 and L2 are oriented, and fix a choice of orientations. We have
two cases

• Let n be odd, then L̃(2) is L̃(1)#Q or L̃(2)#P according to the choice of sign
of surgery, so we get embeddings L1#L2#P ↪→ R2n and L1#L2#Q ↪→ R2n.

• Let n be even. Suppose that ind(x1) = (−1)
n(n−1)

2
+1. Then the first surgery

is positive and we get the natural orientation on (L̃(1), ι̃(1)), because of
compatibility of this orientation with that of (L̃, ι), we get the new index
at x2 the same as old index at the same point which is −ind(x1), so the
second surgery is negative, and we get L̃(2) = L̃(1)#Q. So we get embedding
ι̃(2) : L̃(2) ∼= L1#L2#Q ↪→ R2n

Proving (2) is similar by performing surgery k times.

Another application is

Theorem 3.1.6. Let (M2n, ω) be a symplectic manifold. Suppose that G = Z
when n is odd and G = Z2 when n is even. Let α ∈ Hn(M,G) be represented by

46

Lagrangian immersion (that’s there is a G-oriented Lagrangian immersed submanfold
(L, ι) such that ι∗([L]) = α). Then α can be represented by a Lagrangian embedding.

Proof. Let α be represented by (L, ι), we know that ι is homotopicc to ι′ which is
generic. ι′ also represents α. We can apply successive Lagrangian surgeries to get
embedded submanifold (L̃, ι̃′). If L is oriented and n is odd, then we can demand
the surgeries to be positive. The theorem follows by proposition 3.1.4.

3.2 Second Discritption via cobordism

Basically I will reproduce section 8.2 of the paper [4] here. In exact symplectic
manifold, we construct surgery of lagrangian submanifold obtained by first lifting
the submanifold to the contactization, and then remove reeb chords, and then
projecting back. There is lagrangian cobordism from the lift before surgery to
that after surgery.

Local model of Lagrangian surgery

Let η, δ > 0, and consider the open subset

Vη,δ = {(q, p, z)||q| < η , |p| < 2δ , z ∈ R}

let ζ > 0, and denote by Λ+
η,δ,ζ the submanifold given by the two sheets

{(q,±dfη,δ,ζ(|q|),±fη,δ,ζ(|q|))||q| ≤ η)} where fη,δ,ζ(s) =
δ

2η
s2 +

ζ

2

47

which is legendrian as we have seen in Chapter 1. More explicitly,

Λ+
η,δ,ζ = {(q,±δ

η
q,± δ

2η
|q|2 ± ζ

2
)||q| < η}

It is seen that it has one Reeb chord of length ζ, namely the one joining (0, 0,− ζ
2
)

to (0, 0, ζ
2
. We note that Λη,δ,ζ can be given by generating function

F+
η,δ,ζ : B(0, η)× R→ R , (q, ξ) 7→ ξ3

3
− g+

η,δ,ζ(|q|)ξ,

where

g+(s) =

(
3

2
fη,δ,ζ(s)

)3/2

Now let g−η,δ,ζ : R+ → R be a function such that

• g−η,δ,ζ(s) =
(

3
2
fη,δ,ζ(s)

)3/2 for s > 3η
4

• g−η,δ,ζ(s) < 0 for s < η
2

• 0 < (g−η,δ,ζ)
′(s) < 2δη

δη+ζ

The last condition can be acheived if ζ < 7δη
16

. Let Λ−η,δ,ζ ⊂ J1B(0, η) be the
legendrian submanifold generated by

F−η,δ,ζ : B(0, η)× R→ R , (q, ξ) 7→ ξ3

3
− g−η,δ,ζ(|q|)ξ

By the last condition Λ−η,δ,ζ is subset of Vη,δ,ζ . Also we should note that Λ+
η,δ,ζ agrees

with Λ+
η,δ,ζ in {(q, p, z)|3η/4 < |q| < η , |p| < 2δ, z ∈ R}.

Constuction of Surgery and cobordism

Fix an exact symplectic manifold (M, θ). Let L be a generic nice exact Lagrangian
immersed submanifold with self intersection points x1, · · · , xn and let L+ be the

48

legendrian lift to the contactization (W,β). The self intersection point xi corresponds
to a Reeb chord which we denote by ai.

Definition 3.2.1. With the above notation, the set of Reeb chords {a1, · · · , an}
is called contractible if there are disjoint neighborhoods Ui of ai such that there
is a strict contactomorphism (Ui, Ui ∩ ι+(L+)) ∼= (Vηi,δi,ζi ,Λ

+
ηi,δi,ζi

) for ηi, δi, ζi > 0

with ζi < 7δiηi
16

.

We let {a1, · · · , an} be a set of contractible Reeb chords. Denote by φi :

(Ui, Ui ∩ ι+(L+)) → (Vη,δ,ζ ,Λ
+
η,δ,ζ) a strict contactomorphism as in definition. Let

L+(a1, · · · , an) be the legendrian submanifold (L+ \
⋃
i(Ui)) ∪

⋃
i Λ
−
ηi,δi,ζi

. This
is indeed a legendrian submanifold by the fact that Λ+

η,δ,ζ agrees with Λ+
η,δ,ζ in

{(q, p, z)|3η/4 < |q| < η , |p| < 2δ, z ∈ R} ⊂ Vηi,δi,ζi , and that φi is strict
contactomorphism.

Denote by L(x1, · · · , xn) the Lagrangian projection of L+(x1, · · · , xn), then L(a1, · · · , an)

agrees with L outside neighborhoods of xi and has k self intersections removed.
The latter fact follows because ζi can be made arbitrarily small, so no Reeb chord
is created when passing from Λ+ηi,δi,ζi to Λ−ηi,δi,ζi .

Next we construct Lagrangian cobordism from L+(a1, · · · , an) to L+, but first
we construct a Lagrangian cobordism from Λ−η,δ,ζ to Λ+

η,δ,ζ in R×J1B(0, η). In fact
we construct a gf-compatible cobordism. Define Gη,δ,ζ : R+ → R to be a function
satisfying for S > 1 the following properties

• Gη,δ,ζ(t, s) = g−η,δ,ζ(s) for s < 1/S

• Gη,δ,ζ(t, s) = g+
η,δ,ζ(s) for s > S

• ∂
∂t
G(t, 0) > 0

• Gη,δ,ζ(t, s) = g+
η,δ,ζ(s) = g−η,δ,ζ(s) for s > 3η/4

49

We define

Fη,δ,ζ : (R+ ×B(0, η))× R→ R , (t, x, ξ) 7→ t ·
(
ξ3

3
+Gη,δ,ζ(t, |q|)

)
According to Chapter 2, thi gives immersed Lagrangian cobordism Ση,δ,ζ in R ×
J1B(0, η) from Λ−η,δ,ζ to Λ+

η,δ,ζ with points of self intersection possibly corresponding
to critcal points of

δFη,δ,ζ(t, q, ξ1, ξ2) = Fη,δ,ζ(t, q, ξ1)− Fη,δ,ζ(t, q, ξ2)

with positive values, But the third property of G eliminates this possibility. Thus
the cobordism is embedded.

In the trivial cobordism R×L+, we replace R×(Ui∩L+) with the (id×φi)−1(Σηi,δi,ζi).
This can be glued to yield smooth embedded submanifold R ×W because of the
fourth property of G, and it is Lagrangian because id×φi : R×W → R×J1B(0, ηi)

is symplectomorphism. So we have obtained cobordism from L+(a1, · · · , an) to
L+.

50

Bibliography

[1] Frederic Bourgeois, Joshua M Sabloff, and Lisa Traynor. Lagrangian cobordisms
via generating families: Construction and geography. Algebr. Geom. Topol.,
Volume 15, Number 4 (2015), 2439-247.

[2] Robert Bryant. https://mathoverflow.net/questions/332965/lagrangian-
surgery.

[3] Baptiste Chantraine. Lagrangian concordance of legendrian knots. Algebr.
Geom. Topol., 10(1):63–85, 2010.

[4] Baptiste Chantraine, Georgios Dimitroglou Rizell, Paolo Ghiggini, and Roman
Golovko. Geometric generation of the wrapped Fukaya category of Weinstein
manifolds and sectors. arXiv:1712.09126.

[5] H.Geiges. An Introduction to Contact Topology. Cambridge University Press,
2008.

[6] Dusa Macdoff and Dietmer Salamon. Introduction to Symplectic Topology .
Oxford University Press, 1999.

[7] L. Polterovich. The surgery of lagrange submanifolds. Geometric & Functional
Analysis GAFA, 1991.

51

Année Universitaire 2019-2020

Master 2 Mathématiques Fondamentales et Appliquées
Parcours Algèbre et Géométrie

Existence d’un 3-filet géodésique
stationnaire sur une 2-sphère

Par : Jean Chartier

Sous la direction de : Laurent Hauswirth et Samuel Tapie

Date de soutenance : 07/07/2020

Université de Nantes

Faculté des Sciences et des Techniques

Introduction

Le présent mémoire vient à la fois clore un cycle d’études à l’Université de Nantes et ouvrir une perspective
de recherche en mathématiques. En effet, le Master de Mathématiques Fondamentales et Appliquées (MFA)
proposé à Nantes, prévoit en deuxième année l’écriture d’un mémoire, sous la direction d’un chercheur en
mathématiques. L’objet de ce travail peut être une analyse d’article de recherche récent, ou la résolution d’un
problème ouvert raisonnable. J’ai travaillé sous la direction de Laurent Hauswirth, Professeur à l’Université
de Marne la Vallée et Samuel Tapie, Maître de Conférences à l’Université de Nantes. Je les remercie cha-
leureusement pour l’aide qu’ils m’ont apportée, dans des circonstances de confinement délicates. Les objets
étudiés et les outils utilisés dans ce mémoire sont préalables à un futur travail de recherche en thèse, dirigé par
Laurent Hauswirth et Arnaud de Mesmay. Il s’agira de montrer l’existence, dans une 3-sphère riemannienne,
de doubles bulles stationnaires qui divisent la courbure totale de la sphère en trois parts égales. Pour l’heure
nous tentons de résoudre un problème analogue, en plus basse dimension : l’existence d’un 3-filet géodésique
stationnaire à la surface d’une 2-sphère riemannienne, qui divise la courbure totale de la sphère en trois
parts égales. Nous nous appuyons sur des techniques de balayages introduites par Birkhoff et reprises dans
un article de Colding et Minicozzi, Min-Max for sweepouts by curves, écrit en 2007. Le Chapitre 1 donne
une caractérisation de l’objet étudié. Les Chapitres 2 et 3 décrivent les approches de plusieurs chercheurs qui
ont franchi des étapes décisives dans ce domaine. Dans les chapitres 4 et 5 enfin, nous esquissons une preuve
d’existence dans un cas particulier de sphères et donnons des résultats qui pourraient aider notre recherche
à venir.

Figure 1 – Jacques Lipchitz - The Rescue, 1945

2

Chapitre 1

Filets géodésiques stationnaires.

Considérons une variété Riemannienne M et un multi-graphe G. Un filet F sur M modelé par G est
un plongement C1 par morceaux de G dans M . Les sommets et arêtes du graphe sont ainsi envoyés sur les
sommets et arêtes du filet - ou net suivant l’usage anglais. Un filet est dit géodésique si chacune de ses arêtes
sont des géodésiques. En outre, un filet est dit stationnaire si, pour tout flot Φt de difféomorphismes de
M , la fonctionnelle de longueur L(Φt(F)) admet un point critique en zéro. Il ne s’agit pas nécessairement
d’un extremum local ; cela complique sérieusement la recherche d’un tel filet. Le théorème suivant montre
en particulier qu’un filet non géodésique ne saurait être stationnaire. C’est pourquoi un filet stationnaire
sera souvent appelé filet géodésique stationnaire. Un filet géodésique minimisant peut être deux choses dis-
tinctes en général. Soit un filet géodésique stationnaire, critique en tant que minimum pour la fonctionnelle
de longueur. Soit un filet géodésique stationnaire dont les arêtes réalisent la distance (cf. Ian Adelstein). Ces
conditions ne sont ni nécessaires ni suffisantes l’une pour l’autre.

Exhibons maintenant une caractérisation utile - qui chez certains auteurs fait office de définition - du filet
stationnaire.

Theorème 1.1
Soit F un filet sur une variété Riemannienne M . Une condition nécessaire et suffisante pour que F soit
stationnaire est qu’en chacun de ses sommets, la somme des vecteurs unitaires tangents aux arêtes soit nulle
- cela correspond, pour les sommets de valence trois, à une trisection angulaire - et qu’il soit géodésique.

Démonstration. Pour simplifier l’écriture, nous supposons que F est constitué de deux sommets A et B,
reliés par n arêtes, disjointes en dehors de A et B. Cette restriction n’est que combinatoire et n’affecte pas
l’essentiel de la preuve. Supposons d’abord que les arêtes c1, . . . , cn de F sont des géodésiques paramétrées
par longueur d’arc comme suit :

∀i ∈ {1, . . . , n}, ci : [0, li] −→M

Avec les rencontres suivantes : ci(0) = A et ci(li) = B.
Supposons aussi la condition aux sommets :

n∑
i=1

c′(0) = 0 et
n∑
i=1

c′(li) = 0

Soit maintenant un groupe C1 de difféomorphismes à un paramètre Φt.
On pose, pour u ∈ [0, li] et i ∈ {1, . . . , n} :

Vi(u) =
d

dt
Φt(ci(u))|t=0

On veut dériver en zéro la fonctionnelle de longueur totale :

L(t) =

n∑
i=1

∫ li

0

∣∣∣∣ ∂∂uΦt(ci(u))

∣∣∣∣ du
3

La première formule variationnelle (?) donne :

L′(0) =

n∑
i=1

(
< c′i, Vi > |

li
0 −

∫ li

0

< ∇c′ic
′
i(u), Vi(u) > du

)

Or ∀i ∈ {1, . . . , n}, c′′i = 0 et V1(0) = · · · = Vn(0) et V1(l1) = · · · = Vn(ln). Donc :

L′(0) =<

n∑
i=1

c′i(li), Vi(li) > − <
n∑
i=1

c′i(0), Vi(0) >

Ainsi, sous nos hypothèses, L′(0) = 0, i.e. F est stationnaire.

Réciproquement, nous devons montrer une formule de la forme P =⇒ (Q ∧ R). Une table de vérité montre
qu’elle est équivalente à la formule P =⇒ Q ∧ (¬R ∧Q) =⇒ ¬P . Montrons d’abord qu’un filet stationnaire
est nécessairement géodésique. Supposons que L′(0) donnée par (?) est nulle, pour tout flot Φt de M . En
particulier, pour un champ vectoriel V sur M , restreint à F , nul en 0 et en li, on a :

n∑
i=1

∫ li

0

< ∇c′ic
′
i(u), Vi(u) > du = 0

Si de plus Vi est positivement colinéaire à ∇c′ic
′
i le long de ci et ∀j 6= i, Vj = 0, alors il vient :∫ li

0

< ∇c′ic
′
i(u), Vi(u) > du = 0 avec ∀u ∈ [0, li], < ∇c′ic

′
i(u), Vi(u) >= k(u)||∇c′ic

′
i(u)||2 ≥ 0

D’où nécessairement : ∇c′ic
′
i = 0.

Nous n’avons pas formulé d’hypothèses sur i, donc toutes les arêtes de F sont des géodésiques.

Montrons ensuite qu’un filet géodésique qui ne satisfait pas la condition de somme nulle aux sommets ne
peut être stationnaire. Supposons qu’en A, on ait Σ =:

∑n
i=1 c

′
i(0) 6= 0 ∈ TAM .

On transporte Σ parallèlement le long de chaque ci en Σi(u). En particulier, ∀i ∈ {1, . . . , n}, Σi(0) = Σ.
On construit i champs de vecteurs le long de c1, . . . , cn en réduisant quadratiquement les Σi dans un rayon
géodésique r suffisament petit devant F :

Vi(u) = 0 pour u > r et Vi(u) = Σi(u)

(
u− r
r

)2

pour u ∈ [0, r[

On construit une variation de F autour de A, raccordée à l’identité au-delà, de manière C1 :

∀i ∈ {1, . . . , n},∀u ∈ [0, r[,∀t ∈ [−ε, ε], cti(u) = expci(u) (tVi(u))

On construit un flot Φt surM qui est l’identité à l’extérieur du disque géodésique D(A, r) et qui, à l’intérieur
du disque, se comporte le long de F∩D(A, r) comme la variation précédente. Ainsi obtient-on par définition :

∀j ∈ {1, . . . , n},∀u ∈ [0, li],
d

dt
Φt(ci(u))|t=0 = Vi(u)

La première formule variationnelle donne :

L′(0) = −
n∑
i=1

< c′i(0), Vi(0) >= −

〈
n∑
i=1

c′i(0),Σi(0)

〉
= − < Σ,Σ > 6= 0

Donc F n’est pas stationnaire.

Enfin, la formule de Gauss-Bonnet implique qu’un filet géodésique stationnaire, dont les sommets sont
tous de degré 3 et les faces bordées par le même nombre d’arêtes, découpe la sphère en portions de courbures
totales égales. C’est le cas pour un filets modelé sur le Θ-graphe : 2 sommets et trois arêtes.

4

Chapitre 2

Preuves d’existence des filets géodésiques
stationnaires : un balayage historique, de
Poincaré à Hass & Morgan.

Le graphe élémentaire - consistant en un unique sommet bordant une unique arête fermée - modèle
le lacet simple dans M . Il est clair qu’un tel lacet pointé, géodésique et stationnaire (i.e. sans angle au
sommet) n’est autre qu’une géodésique fermée et simple. Ainsi, les premières preuves d’existence de filets
géodésiques stationnaires coïncident avec les premières constructions de géodésiques périodiques sans points
d’auto-intersection. Le 20e siècle est riche de développements autour de ces problèmes d’existence. Nous en
parcourons un chemin chronologique.

2.1 La preuve incomplète de Poincaré
Les travaux mené par Henri Poincaré en 1892 dans l’Analysis Situs, autour du Groupe Fondamentale

des variétés, permettent de construire des géodésiques fermées dans les surfaces riemanniennes dont le π1

est non trivial. En effet, dans une classe d’homotopie non-triviale, on désigne une suite minimisante pour la
longueur, qui converge dans l’espace des courbes C1, vers une géodésique fermée, ayant la même régularité
que la métrique. La difficulté demeure, comme dans le cas de la 2-sphère, quand π1(M) = 0. Dans un article
de 1905 intitulé Sur les lignes géodésiques des surfaces convexes, Poincaré propose une preuve de l’existence
d’une géodésique fermée et simple dans la 2-sphère en toute courbure. Il considère d’abord un certain espace
de lacets divisant la 2-sphère en deux hémisphères de courbures totales égales.

Figure 2.1 – Recherche d’un lacet divisant en deux parts égales la courbure totale de S.

5

Cet espace n’est certes pas vide. Pour en construire un élément, il suffit d’envoyer la 2-sphère S considérée
vers une 2-sphère ronde S◦ via un difféomorphisme Φ, de balayer S avec les images réciproques des parallèles
de de S◦ et d’appliquer le Théorème des valeurs intermédiaires. La deuxième idée de Poincaré est de considérer
le minimum des longueurs des lacets de cet espace. Il suppose que ce minimum est réalisé par un lacet γ, dont
il démontre enfin le caractère géodésique. Son ellipse réside dans l’affirmation qu’un lacet de l’espace doit
réaliser le minimum de longueur ; cet argument est donné par Christopher Croke en 1982, dans Poincaré’s
problem and the lenght of the shortest closed geodesic on a convex hypersurface.

2.2 L’idée de Birkhoff
En 1917, George David Birkhoff expose dans un article intitulé Dynamical systems with two degrees of

freedom, un protocole de recherche d’une géodésique fermée et simple dans une 2-sphère S de courbure
quelconque. Il y décrit comment envoyer une 2-sphère de paramètres dans la 2-sphère S via une application
B : S2 −→ S, continue et de degré 1 (homotope à un homéomorphisme), appelée balayage 1. Il considère
ensuite la classe d’homotopie Ω0 d’un tel balayage B0 et définit la largueur de S, relativement à Ω0, comme
le nombre positif :

W =: min
B∈Ω0

max
t∈[0,1]

E(B(., t))

Où E est l’énergie de la fibre B(., t). Le degré de B empêcheW d’être nul. On construit une suite de balayages
dont les pics d’énergie convergent vers W . On ne sait pas encore à ce stade si la suite des fibres maximales
converge vers une certain lacet. Birkhoff introduit alors un nouvel outil : le resserrement des courbes. Cette
application est homotope à l’identité, elle agit sur un espace approprié de lacets sur S et satisfait entre autres
deux propriétés : elle diminue la longueur et discrimine les courbes presque géodésiques, sur lesquelles elle
a un faible effet. Cela permet en particulier de resserrer continûment chacun des balayages de la suite et
d’obtenir une suite Bj(., tj) qui converge vers G, l’ensemble des géodésiques fermées et simples de S. G est a
priori non vide, puisqu’il contient les points, mais notre limite ne saurait être un point : elle réalise W . C’est
ainsi la première preuve d’existence d’au moins une géodésique fermée sur toute sphère.

2.3 Un Théorème optimal de Lyusternik et Schnirelmann
En 1929, Lazar Lyusternik and Lev Schnirelmann démontrent dans une note publiée au Comptes Rendus

de l’Académie des Sciences de Paris, le théorème suivant :

Theorème 2.1
Toute variété riemannienne homéomorphe à la sphère possède au moins trois géodésiques fermées non tri-
viales, distinctes et simples. 2

2.4 Un Théorème de Hass et Morgan en courbure positive
À l’instar de Poincaré et Croke, Joël Hass et Frank Morgan ont utilisé des arguments de minimisation

sur un espace de filets divisant en parts égales la courbure totale d’une sphère. Ils l’ont fait pour montrer
l’existence d’un 3-filets géodésique stationnaire sur toute sphère riemannienne de courbure positive 3. Un
3-filet divise la sphère en trois zones. Il peut-être modelé sur trois topologie de graphes :

— Le Θ-graphe (2 sommets et trois arêtes).
— Le graphe en 8 (1 sommet et 2 arêtes en lacets).
— La paire de lunette (2 sommets joints par une arête et deux arêtes en lacets supplémentaires).

1. La source peut-être transformée en [0, 1] × [0, 1], pourvu qu’on impose d’une part : ∀t ∈ [0, 1],B(0, t) = B(1, t), d’autre
part : ∀s ∈ [0, 1],B(s, 0) = A et B(s, 1) = B. C’est le point de vue que nous adoptons.

2. Ce résultat est optimal dans le sens où certaines variétés sphériques, dont les ellipsoïdes, n’admettent que trois géodésiques
fermées et simples.

3. Rappelons le Théorème de plongement d’Alexandrov : Une 2-sphère riemannienne a une courbure positive si et
seulement si elle est isométrique au bord d’un convexe de R3 muni de la métrique induite.

6

Figure 2.2 – Trois modèles de graphes pour les 3-filets

Leur preuve repose fondamentalement sur un théorème que Morgan démontre en 1994 dans un article
intitulé Soap bubbles in R2 and surfaces et qui permet de déformer un graphe donné pour amener chaque
zone qu’il délimite vers une zone d’aire donnée.

Theorème 2.2 (Frank Morgan - Soap bubbles in R2 and surfaces - Théorème 3.2)
Soit M une surface riemannienne lisse, compacte et connexe. Soit G0 un graphe plongé dans M , avec m
faces F0, . . . , Fm Soient A1, . . . , Am > 0, avec

∑
iAi < aire M . Il y a une déformation continue ft de M

telle que f0 = Id, ft injective pour 0 ≤ t < 1, A(f1(Fi)) = Ai et G = f1(G0) minimise la longueur parmi tous
les graphes dont les faces atteignent ces aires cibles. G consiste en la rencontre d’arcs de courbure constante,
disjoints ou coïncidant. De plus, aux sommets de G, les vecteurs unitaires tangents sont de sommes nulles.

Morgan ajoute en fin d’article (Paragraphe 3.4 - page 360) que
la mesure d’aire peut être remplacée par n’importe quelle inté-
grale d’une fonction réelle positive définie sur M . Aussi adaptent-
ils ce théorème en prenant la fonction courbure sur une sphère
convexe et en considérant les trois graphes qui modèlent les 3-
filets sur la sphère. Ils parviennent ainsi à construire sur une
sphère convexe un 3-filets qui partage la courbure totale sui-
vant une prescription et qui minimisant pour cette propriété. Dans
leur article intitulé Geodesic nets on the 2 sphere (1997), Frank
et Morgan vérifient enfin que les arêtes de ce filet sont néces-
sairement des géodésiques. Ainsi démontrent-ils l’existence de 3-
filets géodésiques stationnaires sur les sphères de courbure posi-
tive.

On commence par définir la classe des filets admissibles sur laquelle on pourra déterminer un filet mini-
misant. Considérons un filet G parmi les trois modèles de 3-filets et assignons à chaque angle, selon la valence
du sommet, une valeur cible :

— Pour un sommet de valence trois : ti = 2π/3.
— Pour un sommet de valence quatre : π/3 ≤ ti ≤ 2π/3 et ti = tj pour les angles opposés par le sommet.

Assignons à chaque face Fj ⊂ S2 −G une courbure totale cible Kj , par la formule :

Kj = 2π −
∑

(π − ti),

où la somme est prise sur tous les angles cibles contenus dans Fj . Rappelons la formule de Gauss Bonnet
appliquée à une face Fj : ∫

Fj

R+

∫
∂Fj

k +
∑

(π − si) = 2π,

où R est la courbure de Gauss 4, k est la courbure géodésique - c’est-à-dire la composante normale du vecteur
de courbure ∇c′c′ - et où si est l’angle actuel du i-ème sommet de Fj . Si toutes les arêtes de G sont des

4. Dans une variété Riemannienne, la courbure sectionnelle en un point x, dans la direction d’un plan P de l’espace tangent,
correspond à la courbure de Gauss en x du morceau de surface engendré par le disque unitaire de P , via l’application exponentielle.
En dimension deux, courbure sectionnelle et courbure de Gauss sont une même chose. On rappelle que la courbure de Gauss

7

géodésiques et si les angles si de chaque face correspondent aux angles cibles ti, alors la courbure totale des
Fj est égale à la courbure totale cible :∫

Fj

R = 2π −
∑

(π − si) = 2π −
∑

(π − ti) = Kj

Bilan : pour chaque région du 3-filet modelé sur le θ-graphe, la courbure totale cible est 4π/3. Les mono-
gones du 3-filet modelé sur le graphe à lunettes ont une courbure totale cible égale à 5π/3, tandis que le
quadrilatère a une courbure totale cible égale à 2π/3. Enfin, le 3-filet en huit délimite deux monogones dont
les courbures totales cibles sont égales et comprises entre 4π/3 et 5π/3, ainsi qu’un 2-gones dont la courbure
totale cible est comprise entre 2π/3 et 4π/3. On appelle filets admissibles sur la 2-sphère les 3-filets qui at-
teignent effectivement ces trois répartitions de la courbure totales, avec possiblement des écrasements d’arêtes.

On note G0 le 3-filet mnimisant dans cette classe de filets admissibles, comme annoncé. Si l’une des ré-
gions Fj de G0 est bordée par les angles si, alors la formule de Gauss-Bonnet implique que la courbure
géodésique à la frontière de Fj satisfait :

(?) 5
∫
δFj

k =
∑

(si − ti)

Considérons un chemin fermé γ traversant G0 transversalement. La première formule de variation de la
longueur d’une courbe C2 implique que la dérivée de la longueur de la courbe, lorsqu’elle est perturbée dans
la direction d’un vecteur W ∈ TxM , où x = c(u) est assez loin des bords, est donnée par le produit scalaire
de W et du vecteur de courbure de la courbe :

L′(0) = −
∫ u+ε

u−ε
< ∇c′c′,W >

En réalité, on considère un champ de vecteur le long de la courbe qui vaut W dans un petit voisinage de x
et s’annule brusquement au-delà, via une approximation de l’identité. On néglige le régime transitoire de la
variation. Par ailleurs, la dérivée de la courbure totale d’une face jouxtant une courbe soumise à une telle
perturbation est donnée par le produit de R et de la partie normale de W :

d

dt
|t=0

∫
D(t)

RdV =

∫
∂D

R < W,ns > du,

où ns est la normale sortante. Montrons d’abord que le long d’une arête de c ∈ G0 le produit kR est constant.
On sait déjà par le Théorème 2.2 que k est constant le long des arêtes de G0. Le scalaire k est signé et dépend
de la normale à c choisie. On prend soin de considérer le long de c une normale qui ne change pas d’orientation.
Soient x et y deux points distincts de c. On pousse c en x dans le sens de la normale avec un coefficient α1

et y dans le sens opposé à la normale avec un coefficient α2. On obtient d’une part L′(0) = 2εk(α2 − α1) et
d’autre part :

d

dt
|t=0

∫
D(t)

RdV = 2εk(R1α1 −R2α2),

où D(t) est le domaine délimité par c pour lequel la normale à c est la normale sortante. On veut absolument
préserver les courbures totales des faces adjacentes en c. C’est pourquoi on impose R1α1 = R2α2, c’est-à-dire
α1 = R2α2/R1. Cette condition implique :

L′(0) = 2εk

(
α2(R2 −R1)

R1

)
est en particulier le produit des courbures principales, c’est-à-dire les courbures planes - minimale et maximale - des sections
orthogonales au plan tangent. On rappelle enfin, dans un cadre abstrait, la définition de la courbure sectionnelle, où R est le
tenseur de Riemann associé à une variété (M,<,>), x est un point de M et u, v sont des vecteurs de TxM :

Kx(u, v) =
< R(u, v)v, u >

< u, u >< v, v > − < u, v >2

5. Détail :
∫
δFj

k = 2π −
∑

(π − si)−
∫
Fj
R = 2π −

∑
(π − si)−Kj = 2π −

∑
(π − si)− 2π +

∑
(π − ti) =

∑
(si − ti)

Seuls les sommets de degré 4 donnent une contribution non nulle, car pour un sommet de degré 3, on a si = ti = 2π
3
.

8

Si R1 6= R2, on pourrait avoir L′(0) < 0 en choisissant convenablement le signe de α2. Cela est impossible. En
effet, on ne peut obtenir par variation de G0 aucun graphe de plus petite longueur qui conserve les courbures
totales de ses faces. Conclusion : R1 = R2 et le produit kR est constant le long de c.

Un raisonnement similaire permet de montrer qu’on a nécessairement
∑
i kiRi = 0, où la somme est prise

sur l’ensemble des points d’intersection de γ avec G0 et où les normales permettant de définir k sont prises
dans le sens de la marche 6. En effet, dans le cas contraire, on devrait être en mesure de construire une poussée
infinitésimale de G0 dans la direction de γ qui occasionnerait un nouveau graphique de plus petite longueur
et divisant S2 en régions de mêmes courbures totales, ce qui est impossible. On peut donc définir une fonction
de pression p à valeur réelle sur l’ensemble des régions avec la propriété que la différence des pressions de
deux régions séparées par un arc g0 de G0 ayant une courbure k est donnée par ∆p = kR. La fonction p
est définie comme étant nulle sur une région arbitraire et donnée par la formule ∆p = kR, successivement
sur des régions adjacentes séparées par un arc de multiplicité un. Pour deux régions adjacentes séparées par
un arc de multiplicité m, nous utilisons la formule ∆p = mkR. Notez que si deux régions voisines ont la
même pression, alors l’arête du graphique qui les sépare vérifie k = 0 (car R > 0, par hypothèse) et sont des
géodésiques, du moins là où elles ne se heurtent pas à d’autres arêtes.

Nous considérons maintenant chacun des trois types combina-
toires de graphes admissibles. Supposons d’abord que G0 soit un
Θ-graphe qui ne s’est pas effondré en huit. Si toutes les pressions
sont égales, alors G0 donne un filet géodésique. C’est ce que nous
allons montrer. Soit Fj une région de pression maximale. On a :

pj − pj−1 = kjRj et pj ≥ pj−1

Donc kjRj ≥ 0, i.e. kj ≥ 0. De même on montre que kj+1 ≤ 0.
En signant chaque courbure géodésique des arêtes bordant Fj vers
l’intérieur de la face, on arrive à k ≥ 0 partout au bord de Fj . La
formule (?) dans le cas du theta donne :∫

δFj

k = 0

Il vient k ≡ 0. Cela implique que la pression dans les deux autres régions est égale à celle de Fj de sorte que
les trois régions ont une pression égale. Étant donné que les arcs de délimitation ne se heurtent pas près d’un
sommet (condition au sommets, voir Théorème 2.2), ils commencent comme des géodésiques et ne se heurtent
jamais. Par conséquent, tous les arcs de frontière sont des géodésiques. Finalement, si G0 ne dégénère pas en
huit, il doit former un réseau géodésique modelé sur le Θ-graphe.

Un argument similaire s’applique au graphes à lunettes. Soit encore Fj une région de pression maximale.
On a k ≥ 0 à la frontière et par (2) : k ≡ 0. Si Fj est le 4-gone, cela implique que toutes les pressions sont
égales puisque les deux autres régions sont adjacentes à Fj . Si Fj est un monogone, alors le 4-gone a la même
pression maximale et encore une fois toutes les pressions sont égales. Ainsi, si G0 ne dégénère pas en huit,
il forme alors un réseau géodésique. Le dernier cas est plus délicat à traiter. Nous renvoyons à la preuve du
Claim 1, dans Hass et Morgan (1997), page 3847.

Dans cette approche, l’hypothèse de convexité est décisive. Nous espérons, à l’issue de ce mémoire, pouvoir
démontrer l’existence de 3-filets géodésiques stationnaires sur les 2-sphères riemannienne en toute courbure.
Pour cela, nous allons privilégier les stratégies de balayages et de rétrécissement des courbes propres à
Birkhoff. Nous aurons recours à la formulation moderne donnée par Tobias Colding et William Minicozzi.

Remarque 2.1. Sur un ellipsoïde d’équation ax2 + by2 + cz2 = 1, les symétries facilitent la recherche d’un
Θ-filet. Considérons l’une des trois géodésiques fermées et simples. Le long de l’une des deux autres - dans
un plan perpendiculaire à la première - on fait glisser un point P d’où partent deux arcs géodésiques dans les
deux directions parallèles au plan de la première géodésique. Ces deux arcs rencontrent la première géodésique
en deux points. La continuité du flot géodésique permet de désigner P de telle sorte que la rencontre se fasse
avec un angle de 2π/3. Un raisonnement symétrique dans l’hémisphère opposé achève la construction.

6. Au point x ∈ G0 ∩ γ, on s’assure que < c′, n > soit positif.

9

Minimiser la longueur sur un espace de filets qui séparent la courbure totale d’une sphère en parts égales est
un principe standard. Il faut néanmoins s’assurer que l’espace sur lequel on minimise est non vide.

Theorème 2.3
Soit S une 2-sphère riemannienne. Il existe un filet lisse sur S, modelé sur le Θ-graphe, qui divise la courbure
totale de Sen trois parts égales.

Démonstration. Il existe par définition un difféomorphisme Φ qui envoie S sur la sphère ronde unitaire de
R3. Considérons γ une géodésique fermée et simple de S. On peut choisir Φ de telle sorte qu’il envoie γ sur
l’équateur c. On fixe A et B diamétralement opposés sur Φ(γ) avec θ =: (

−→
Ox,
−−→
OB). Soit α ∈ [0, π].

On construit le demi-plan :

ΠN,α = vect

cos(θ)sin(θ)
0

 ,

sin(θ)cos(α)
cos(θ)cos(α)

sin(α)

 ∩ {z ≥ 0} = vect(
−−→
OB,−→v) ∩ {z ≥ 0}

Quand α balaye]0, π[, ΠN,α ∩ S2 balaye une famille de demi-grands-cercles de S2.
De même on construit ΠS,α en remplaçant α par −α et {z ≥ 0} par {z ≤ 0}.
On considère :

αN = min
]0,π[

{
α |

∫
Φ−1{ΠN,σ∩S2|σ≤α}

Rds =
4π

3

}

αS = max
]−π,0[

{
α |

∫
Φ−1{ΠS,σ∩S2|σ≥α}

Rds =
4π

3

}
En effet, l’intégrale de courbure qui intervient dans le définition de αN et αS est une fonction continue de α :
elle vaut 0 quand α tend vers 0 et 2π quand α tend vers π, conséquence de la formule de Gauss-Bonnet et
du fait que γ est géodésique. Cette intégrale atteint 4π/3 en vertu du Théorème des valeurs intermédiaires.
On regarde le Θ-filet sur S :

Gθ = Φ−1(ΠN,αN ∩ S2) ∪ Φ−1(ΠS,αS ∩ S2) ∪ Φ−1(c ∩ {y ≤ tan(θ)x})

Conclusion : Gθ scinde S en trois zones de courbures totales égales à 4π/3.

Remarque 2.2. Dans l’espace métrique où nous regardons les Gθ 7, l’application θ 7−→ Gθ n’est pas continue.
En revanche, nous pensons qu’il existe d’autres constructions de balayages qui la rendent continue.

Figure 2.3 – Construction d’un Θ-filet divisant S en 3 zones de courbures totales égales.

7. Espace des applications [0, 1] × {1, 2, 3}/R −→ S2, de carré intégrable, presque partout dérivable et de dérivée au carré
intégrable. R est la relation d’équivalence définie par (0, 1)R(0, 2)R(0, 3) et (1, 1)R(1, 2)R(1, 3).

10

Chapitre 3

Colding & Minicozzi :
Une relecture de Birkhoff.

Dans cette partie, nous nous reportons à l’article Min-Max for sweepouts by curves de Tobias Colding et
William Minicozzi écrit en 2007. Nous présentons les objets et techniques utilisées, puis détaillons les preuves
de deux résultats clés. L’enjeux est de définir le bon espace de courbes sur lequel doit s’appliquer le pull
tight introduit par Birkhoff. On introduit dans ce but l’espace Λ des applications géodésiques par morceaux
de S1 dans M avec exactement L angles (éventuellement des angles plats) telles que la longueur de chaque
géodésique ne dépasse pas 2π, paramétrée par un multiple constant de longueur d’arc. De telles courbes,
parcourues à vitesse 1, sont L-Lipschitz (conséquence immédiate de l’inégalité triangulaire). L’espace Λ est
inclus dans l’espace de Sobolev W 1,2 des applications de S1 dans M , qui lui confère une topologie induite.
La norme dans W 1,2, donnée par

∫
S1 |f |2 + |f ′|2, dépend du plongement de M choisi. Des conditions sur ce

plongement son données dans l’article de Colding & Minicozzi 1. Attention : cette norme confère à Λ, non pas
une structure d’espace normé - car la norme de Sobolev est définie dans un espace vectoriel de chemins vivant
dans l’espace du plongement de M - mais une structure induite d’espace métrique. Dans tout ce chapitre,
nous reprenons les notations introduites dans la section 2.2.

3.1 Raccourcissement de courbes
Le raccourcissement de courbes - ou pull tight - est une application Ψ : Λ −→ Λ telle que :

(1) Ψ(γ) est homotope à γ et L(Ψ(γ)) ≤ L(γ).
(2) Ψ(γ) dépend continûment de γ.
(3) Il existe une fonction continue φ : [0,∞) −→ [0,∞) avec φ(0) = 0 et telle que :

dist2(γ,Ψ(γ)) ≤ φ
(
L2(γ)− L2(Ψ(γ))

L2(Ψ(γ))

)
.

(4) Étant donné ε > 0, il existe δ > 0 tel que, si γ ∈ Λ avec L(γ)− L(Ψ(γ)) < δ, alors dist(γ,G) < ε.

Il existe une telle application : on en trouvera une construction explicite dans [Co Mi]. On notera que
cette construction permet de définir Ψ sur W 1,2 tout entier. En revanche, les propriétés qui viennent d’être
énoncées nécessite la compacité de Λ. La propriété (4) met en évidence l’atout discriminatoire de Ψ, au sens
où son action a d’autant moins d’effet sur une courbe γ ∈ Λ que celle-ci se trouve proche de G au sens
de la norme W 1,2 sur Λ. Elle découle à la fois de la compacité de Λ, de la continuité de Ψ et d’une

1. Notons qu’il est possible de définir une norme intrinsèque sur Λ. Le recours naturel au plongement permet de simplifier
certaines preuves. Composer un plongement avec une homothétie n’affecte pas les propriétés variationnelles de la variété. C’est
pourquoi Colding et Minicozzi proposent une dilatation deM qui rende sa courbure suffisamment petite et son rayon d’injectivité
suffisamment grand. Cela se traduit par trois exigences :

— (M1) supM |A| ≤ 1/16 où A est la seconde forme fondamentale de M .
— (M2) Rinj(M) ≥ 8π et R ≤ 1/64, de sorte que toute boule géodésique de rayon ≤ 4π dans M est strictement convexe.
— (M3) ∀x, y ∈M, |x− y| ≤ 1 =⇒ distM (x, y) ≤ 2|x− y|.

11

Figure 3.1 – Raccourcissement d’une courbe dans Λ.

propriété propre à la construction décrite dans [Co Mi] : les points fixes de Ψ sont exactement les éléments
de G. Montrons cette propriété (4), via un raisonnement par l’absurde. S’il existe ε > 0 et une suite γj de
Λ telle que pour tout j, L(γj) − L(Ψ(γj)) < 1/j, avec pourtant dist(γj , G) ≥ ε. Puisque Λ est compacte, il
existe une sous suite γjn qui converge dans Λ vers γ. Par hypothèse, la sous suite Ψ(γjn) converge aussi vers
γ. Or, par continuité de Ψ, cette limite est aussi Ψ(γ), d’où Ψ(γ) = γ. En tant que point fixe de Λ, on a
nécessairement γ ∈ G. Cela qui contredit l’hypothèse selon laquelle les γj restent à distance non nulle de G.
Le Lemme suivant permet de démontrer le Théorème de la section 3.

Lemme 3.1 (Colding & Minicozzi - Min-Max for sweepouts by curves - Lemme 1.4)
Soient W ≥ 0 2 et ε > 0. Il existe δ > 0, qui tend vers zéro avec ε, tel que si γ ∈ Λ et

(?) 2π(W − δ) < L2(Ψ(γ)) ≤ L2(γ) < 2π(W + δ),

alors dist(Ψ(γ), G) < ε.

Démonstration. Soient W ≥ 0 et ε > 0. Soit η1 > 0, donné par (3), tel que ∀δ > 0, δ ≤ η1 =⇒ φ(δ) < ε2/4.
On rappelle que φ est continue positive, avec φ(0) = 0. Soit η2 > 0, donné par (4), tel que L(γ)−L(Ψ(γ)) <
η2 =⇒ dist(γ,G) < ε/2, où γ ∈ Λ.

On pose δ̂ = min(η1, η2) et δ = δ̂/4π.
Supposons que l’on ait 2π(W − δ) < L2(Ψ(γ)) ≤ L2(γ) < 2π(W + δ).
Il vient d’une part :

L2(γ)− L2(Ψ(γ)) < 4πδ

L(γ)− L(Ψ(γ)) <
4πδ

L(γ) + L(Ψ(γ))
< δ̂ ≤ η2

Donc dist(γ,G) < ε/2.
Il vient d’autre part :

L2(γ)− L2(Ψ(γ))

L2(Ψ(γ))
< δ̂ ≤ η1

Donc dist2(Ψ(γ), γ) = φ
(
L2(γ)−L2(Ψ(γ))

L2(Ψ(γ))

)
< ε2/4, i.e. dist(Ψ(γ), γ) < ε/2.

L’inégalité triangulaire donne, pour tout g ∈ G :

dist(Ψ(γ), g) ≤ dist(Ψ(γ), γ) + dist(γ, g)

En minimisant sur G à droite et à gauche, on arrive à la conclusion :

dist(Ψ(γ), G) ≤ dist(Ψ(γ), γ) + dist(γ,G) < ε

2. Si aucune hypothèse n’accompagne a priori le réel W , il se trouve que la prémisse (?) pourra être satisfaite si l’on prend
pour W la largeur de M et pour γ, une courbe suffisament proche de son image par Ψ, à la mesure de δ.

12

3.2 Une bonne suite de balayages.
Soit Ω l’ensemble des applications continues B : S1 × [−1, 1] −→ M telles que pour tout t, l’application

B(., t) est dans W 1,2, l’application t 7−→ B(., t) est continue de [−1, 1] vers W 1,2 et enfin, B envoie S1×{−1}
sur des points. Étant donnée une application B̂ ∈ Ω, la classe d’homotopie ΩB̂ est définie comme l’ensemble
des application B ∈ Ω qui sont homotopes à B̂ à travers des applications de Ω. Fixons désormais une classe
d’homotopie non triviale de balayages et notons-là simplement Ω pour plus de lisibilité. Choisissons une suite
d’applications Bj ∈ Ω (cf. 2.2) avec :

max
t∈[−1,1]

E(Bj(., t)) < W +
1

j
(??)

On trouvera dans [Co Mi] une construction d’une nouvelle suite de balayages σj ∈ Ω, homotopes à Bj et dont
les fibres, en plus de vérifier l’inégalité (??), appartiennent à Λ. Sur chaque fibre de ces nouveaux balayages,
s’applique le rétrécissement des courbes. On obtient ainsi une troisième suite de balayages γj ∈ Ω, homotopes
à σj et définis par : γj(., t) = Ψ(σj(., t)).

3.3 Presque maximal implique presque critique
Theorème 3.1 (Colding & Minicozzi - Min-Max for sweepouts by curves - Théorème 1.9)

Soient W ≥ 0 et ε > 0 ; il existe δ > 0 tel que, si j > 1/δ et pour un certain t0 :

2πE(γj(., t0)) = L2(γj(., t0)) > 2π(W − δ),

alors pour ce j nous avons dist(γj(., t0), G) < ε.

Démonstration. Précisons que sur Λ, l’énergie n’est autre que la longueur au carré, divisée par 2π.
Cela dit, soit W ≥ 0 et ε > 0. Soit encore δ > 0, donné par le Lemme 3.1.1, tel que :(

σ ∈ Λ et 2π(W − δ) < L2(Ψ(σ)) ≤ L2(σ) < 2π(W + δ)
)

=⇒ dist(Ψ(σ), G) < ε

Supposons que j > 1/δ et qu’il existe t0 tel que :

L2(γj(., t0)) > 2π(W − δ)

Comme γj(., t0) = Ψ(σj(., t0)) avec L(Ψ(σj(., t0))) < L(σj(., t0)), il vient :

2π(W − δ) < L2(Ψ(σj(., t0))) < L2(σj(., t0))

Or, par (??), L2(σj(., t0)) = 2πE(σj(., t0)) < 2π(W + 1/j) < 2π(W + δ).
En vertu des qualités conférées à δ, il vient : dist(γj(., t0), G) < ε.

Appliquons enfin le théorème 3.3.1 à la largeur W de M (relativement à un balayage canonique non
trivial) et à ε > 0, aussi petit que l’on veut. Prenons j > 1/δ où δ est donné par le Théorème. Ainsi a-t-on :

W ≤ max
t∈[0,1]

E(γj(., t))

Soit t0 le paramètre qui réalise le maximum. On a E(γj(., t0)) > W−δ. Cela implique que dist(γj(., t0), G) < ε.
Nous pouvons donc construire une sous-suite de fibres qui converge dans Λ compact, vers une limite γ, tout
en s’approchant toujours plus de G. Comme G est fermé, si γ n’appartenait pas à G, les fibres de la sous-suite
finiraient par s’accumuler dans un voisinage ouvert de γ distinct de G, c’est-à-dire à une distance minimum
de G : Impossible ! Donc γ ∈ G.

13

Chapitre 4

Traque d’un 3-filet géodésique
stationnaire dans une 2-sphères à
pantalon, par balayage tripodal.

L’article de Joël Hass What is an almost normal surface montre l’existence d’un découpage de la 2-sphère
le long d’un ensemble saturé maximal G de géodésiques fermées et simples - saturé au sens où toute autre
géodésique fermée et simple doit couper un élément de l’ensemble ; maximal au sens du cardinal 1 - découpage
qui, à défaut d’être unique, dresse une liste exhaustive de constituants topologiques permettant de décrire
une 2-sphère : le pantalon, la nasse, le bonnet. Le premier est une sphère privée de trois disques disjoints
délimités par des éléments stables de G. La nasse est un anneau bordé par deux éléments de G, l’un stable,
l’autre instable. Le bonnet est un disque bordé par une géodésique instable de G. La présence d’un pantalon
étant salutaire pour la recherche que nous faisons, nous classons les 2-sphères de la façon suivante :

— Les sphères portant au moins un pantalon.
— Les double-bonnets, dont les sphères convexes.
— Les concaténations de nasses par paires renversées, se refermant sur des bonnets.

Figure 4.1 – Familles saturées maximales de géodésiques fermées sur des 2-sphères

Notre objectif dans cette section, est de prouver l’existence d’un 3-filet géodésique stationnaire au niveau
des pantalons. Ne suivent pour le moment que des esquisses de preuves. Nous allons élaborer une procédure
de min-max adaptée à la topologie du pantalon et à celle de la cible : le 3-filet. Nous nous inspirons du
formalisme de Colding et Minicozzi. Il faut pourtant définir une nouvelle procédure de rétrécissement, plus
délicate à manier. Le balayage standard que nous proposons consiste à accrocher trois anneaux aux bords du
pantalon et de les faire se nouer au centre, le long d’un 3-filet. Détaillons maintenant cette construction.

1. Cardinal éventuellement infini si la sphère contient un tronçon annulaire plat ou torique.

14

4.1 Balayage tripodal d’un pantalon.
Soient P ⊂ M un pantalon de bords γ1, γ2, γ3 (géodésiques) et Ω l’ensemble des applications continues

B : S1 × {1, 2, 3} × [0, 1] −→ P , injectives sur S1 × {1, 2, 3} × [0, 1[où, ∀i,∀t,B(., i, t) est dans W 1,2. On
demande, pour i = 1, 2, 3, le raccord aux bords : S1 × {i} × 0 7−→ Im(γi). À i et t fixés, on rappelle que es
applications s 7−→ B(s, i, t) sont munies de la norme de Sobolev donnée par :

‖B(., i, t)‖ =

∫
S1

(|B|2 + |B′|2)

De plus, on exige en t = 1 une rencontre des trois manches en un 3-filet F :

A =: B(0, 1, 1) = B(0, 2, 1) = B(0, 3, 1) et B =: B(0.5, 1, 1) = B(0.5, 2, 1) = B(0.5, 3, 1).
∀s ∈ [0, 0.5],B(s, 1, 1) = B(s, 3, 1), B(s, 2, 1,) = B(s+ 0.5, 3, 1) et ∀s ∈ [0.5, 1],B(s, 1, 1) = B(s, 2, 1).

La réunion des courbes t 7−→ B(0, i, t), i = 1, 2, 3 d’une part, des courbes t 7−→ B(0.5, i, t), i = 1, 2, 3 d’autre
part, forme deux tripodes TA et TB qui sont la colonne vertébrale de notre balayage.

Figure 4.2 – Balayage tripodal d’un pantalon

4.2 Largeur tripodale d’un pantalon.

Étant donné une application B̂ ∈ Ω, la classe d’homotopie Ω(B̂) est définie comme l’ensemble des appli-
cations B ∈ Ω homotopes à B̂ à travers des applications de Ω. À toute classe d’homotopie Ω(B̂), on associe
la largeur W = W (B̂), définie en prenant l’infimum du maximum des énergies des tranches B(., {1, 2, 3}, t) :

W = inf
B∈Ω(B̂)

max
t∈[−1,1]

E(B(., {1, 2, 3}, t))

où l’énergie est donnée par E(B(., {1, 2, 3}, t)) =
∑3
i=1

∫
S1 |∂s(s, i, t)|2ds.

La topologie de P et les hypothèses sur Ω impliquent 2 qu’il existe un réel strictement positif qui minore
l’énergie de toute fibre B(., i, t). C’est pourquoi la largeur W est nécessairement strictement positive.

4.3 Procédure de resserrement du balayage
Soit B ∈ Ω. À l’instar de Birkhoff, nous allons définir une procédure de rétrécissement de B. Le paragraphe

suivant résume une fausse piste que nous avons empruntée et dont on a tiré des leçons.

2. Ce point est à détailler.

15

Figure 4.3 – Point de Fermat

Remarque 4.1 (Fausse piste). Pour augmenter nos chances qu’une suite décroissante de balayages converge
vers un filet stationnaire, nous avons eu l’idée de redresser chaque balayage en ses deux sommets de sorte que
le 3-filet central satisfasse la condition au angle du Théorème 1.1. Malheureusement, l’angle formé par deux
arêtes n’est pas une fonction continue sur l’espace des paires jointes d’arêtes W 1,2. En témoigne la figure 4.4
ci-dessous. Voici le détail de cette construction. Il s’agit de redresser le 3-filet F (t = 1) au niveau de ses
deux sommets, ainsi que les fibres de B pour t proche de 1. Nous détaillons le protocole pour le point A. Soit
r > 0 suffisamment petit mais maximal, pour que D(A, r) et D(B, r) satisfassent trois conditions : Il doivent
être convexes, contenus dans les disques d’injectivité de chacun de leurs points et leurs frontières ne doivent
ni se toucher, ni couper les fibres de B en plus de deux points. On note E,F,G les points d’intersection de
C(A, r) et F . On note également H1, H2, H3 les points d’intersections de C(A, r) et du tripode TA (s = 0).
Il existe trois réels ε1, ε2, ε3 dans [0, 1] tels que Hi = B(0, i, 1 − εi) pour i = 1, 2, 3. Soit A′ le point de Fer-
mat 3 du triangle EFG. On remplace le 3-filet, entre A et E,F,G, par des arcs géodésiques issus de A’. On
remplace le tripode TA, entre A et H1, H2, H3 par des arcs géodésiques issus de A′. Enfin, pour i = 1, 2, 3 et
t ∈]1− εi, 1[, la courbe B(., i, t) rencontre le cercle C(A, r) en deux points et le nouvel arc géodésique A′Hi en
un point situés entre les deux premiers. On interpole alors ces trois points par deux géodésiques. On obtient
un nouveau balayage tripodale B̂ ∈ Ω. On pourra vérifier sa continuité en t.

Figure 4.4 – Non continuité de l’angle

D’abord, transformons chaque demi-fibre 4 de B̂ en une application géodésique par morceaux. Cette opé-
ration, continue en t, consiste à scinder les intervalles [0, 0.5] et [0.5, 1] en intervalles conjoints sur lesquels on
remplace la fibre par un tronçon de géodésique 5. Le nombre d’intervalles doit être pair et suffisamment grand

3. Le point de Fermat d’un triangle ABC dans le plan - dont les angles n’excèdent pas 120◦ - est l’unique point F tel que
(FA,FB) = (FB,FC) = 2π/3. De plus, la somme des distances FA, FB et FC est minimisante. L’énoncé est transposable sur
une surface riemannienne, à condition que le triangle se trouve à l’intérieur du disque d’injectivité de chacun de ses sommets :
il existe un point F et trois géodésiques [FA], [FB] et [FC] qui se rencontrent en F suivant un angle de 2π/3 et telles que la
somme de leurs longueurs est minimisante. En revanche, si l’un des sommets forme un angle de plus de 120◦, alors le point de
Fermat n’est autre que ce sommet.

4. Pour 0 < s < 1/2 et 1/2 < s < 1.
5. On vérifiera qu’au bord des manches du pantalon, cette procédure est bien définie. Cela tient au fait que le voisinage des

bords est géodésiquement convexe.

16

pour que l’interpolation soit bien définie. Elle permet de regarder les nouvelles demi-fibres dans l’espace Γ
défini ci-après, sur lequel s’applique la procédure de rétrécissement introduite dans la définition 4.1.

Soit ΓL[a,b], ou simplement Γ s’il n’y a pas d’ambiguïté, l’espace des chemins c : [a, b] −→ P géodésiques par
morceaux avec L angles, éventuellement plats, correspondant à une partition de la source, propre à chaque
chemin :

[a, b] =

L⋃
i=0

[xi, xi+1], où a = x0 < · · · < xL+1 = b

Sur chaque morceaux, on demande que c soit l’unique plus courte géodésique de xi à xi+1. On remarque que
L doit être impair et suffisamment grand pour que ((L+ 1)Rinj(P))2 >> 2πW . L’espace Γ est métrique pour
la norme W 1,2. On vérifiera qu’il est compact. Nous définissons maintenant une application de resserrement
des fibres du balayage, qui se veut un analogue dans notre situation à celle de Colding-Minicozzi que nous
avons utilisée à la section 3.1.

Définition 4.1
Soit (x0, . . . , xL+1) un découpage de [a, b] en L+ 1 intervalles et soit γ ∈ ΓL[a,b]. On précise que les angles de
γ ne sont pas nécessairement situés en (x0, . . . , xL+1).
— On remplace γ par une géodésique sur chaque intervalle [x2k, x2k+2]k=0,...,(L−1)/2 pour obtenir γ̃.
— On remplace γ̃ par une géodésique sur chaque intervalle [x2k+1, x2k+3]k=0,...(L−3)/2, pour obtenir γ̂.
— On re-paramétrise γ̂ pour obtenir une courbe à vitesse constance, en tout point de dérivabilité.

On note Π(γ) la nouvelle application [a, b] −→ P .

Figure 4.5 – Application Π

Proposition 4.1 (Non démontrée - Jugée raisonnable, à l’aune de la section 3.1)
L’opérateur Π : Γ −→ Γ de la précédente définition vérifie quatre propriétés, semblables à celles de Ψ :

(1) Π(γ) est homotope à γ et L(Π(γ)) ≤ L(γ).
(2) Π(γ) dépend continûment de γ.
(3) Il existe une fonction continue φ : [0,∞) −→ [0,∞) avec φ(0) = 0 et telle que :

dist2(γ,Π(γ)) ≤ φ
(
L2(γ)− L2(Π(γ))

L2(Π(γ))

)
.

(4) Étant donné ε > 0, il existe δ > 0 tel que, si γ ∈ Γ avec L(γ)− L(Π(γ)) < δ, alors dist(γ, Ĝ) < ε, où Ĝ
est l’espace fermé des géodésiques à deux bords.

17

4.4 Vers une preuve d’existence.
Soit Bj une suite de balayages qui satisfait :

max
t∈[0,1]

E(B(., {1, 2, 3}, t)) < W +
1

j

Soit Γ3,2 l’ensemble des triplets de paires de chemins dans Γ joints en leurs extrémités. Plus précisément, c’est
l’ensemble des applications : T : [0, 1]×{1, 2, 3, 4, 5, 6} −→ P où ∀i = 1, . . . , 6 : T (., i) ∈ Γ et T (0, 1) = T (0, 2) ;
T (0, 3) = T (0, 4) ; T (0, 5) = T (0, 6) (idem pour T (1,−)). On munit Γ3,2 d’une structure d’espace normé où
la norme d’un élément T est la somme des normes de ses 6 arêtes dans Γ (idem pour la longueur). Les arêtes
jointes le demeurent à la limite, c’est pourquoi Γ3,2 est fermé. Ci-après deux résultats dans Γ3,2. Ce sont des
analogues du Lemme et du Théorème de la partie 3. On note Π(T), pour T ∈ Γ3,2, l’élément de Γ3,2 tel que
∀i = 1, . . . , 6 : Π(T)(., i) = Π(T (., i)). Comme Π fixe les extrémités, on a bien Π(T)) ∈ Γ3,2. On note G3,2

l’ensemble des triplets de paires de géodésiques dans Ĝ jointes en leurs extrémités.

Lemme 4.1
Soient W ≥ 0 et ε > 0. Il existe δ > 0 tel que, si T ∈ Γ3,2 et

(?) 2π(W − δ) < L2(Π(T)) ≤ L2(T) < 2π(W + δ),

alors dist(Π(T), G3,2) < ε.

Démonstration. Soient W ≥ 0 et ε > 0. Soit η0 > 0, donné par (3), tel que ∀δ > 0, δ ≤ η0 =⇒ φ(δ) < ε2/144.
On rappelle que φ est continue positive, avec φ(0) = 0. Soit, pour i = 1, . . . , 6, ηi > 0, donnés par (4), tels
que L(ci) − L(Π(ci)) < ηi =⇒ dist(ci, Ĝ) < ε/12, où les ci sont les arêtes d’un T ∈ Γ3,2, jointes deux par
deux en leurs extrémités. Si L(T)− L(Π(T)) < min ηi, alors dist(T , G3,2) < ε/2.

On pose δ̂ = min(η0, ηi) et δ = δ̂/4π.
Supposons que l’on ait 2π(W − δ) < L2(Π(T)) ≤ L2(T) < 2π(W + δ).
Il vient d’une part :

L2(T)− L2(Π(T)) < 4πδ

L(T)− L(Π(T)) <
4πδ

L(T) + L(Π(T))
< δ̂ ≤ min ηi

Donc dist(T , G3,2) < ε/2.
De même, on montre que dist(Π(T), T) < ε.

L’inégalité triangulaire donne :

dist(Π(T), G3,2) ≤ dist(Π(T), T) + dist(T , G3,2) < ε

Theorème 4.1 (Voir Théorème 3.1)
Soient W ≥ 0 et ε > 0 ; il existe δ > 0 tel que, si k > 1/δ et pour un certain t0 :

2πE(Zk(., {1, 2, 3}, t0)) = L2(Zk(., {1, 2, 3}, t0)) > 2π(W − δ),

alors pour ce k nous avons dist(Zk(., {1, 2, 3}, t0), G3,2) < ε.

18

Dans l’état actuel de nos recherches, nous aboutissons à deux conjectures, sous la forme d’un porisme :

Conjecture 4.1.

Si 1 est valeur d’adhérence des temps de réalisation des maximums d’énergie, alors on considère une sous-suite
de tranches Bk(., {1, 2, 3}, tk) telle que :

max
t∈[0,1]

E(Bk(., {1, 2, 3}, t) = E(Bk(., {1, 2, 3}, tk) < W +
1

k
avec tk −→ 1

On redresse chaque balayage Bk pour construire un balayage B̂k dont les tranches B̂k(., {1, 2, 3}, t) sont dans
Γ3,2. On applique enfin l’opérateur Π à toutes les demi-fibres de B̂k, pour obtenir un troisième balayage noté
Zk, homotope à Bk. On a : ∀t ∈ [0, 1],Zk(., {1, 2, 3}, t) = Π(B̂k(., {1, 2, 3}, t)). Le théorème 4.1 précédent
s’applique alors et une certaine suite de tranches Zk(., {1, 2, 3}, t′k) doit converger vers trois paires de demi-
fibres géodésiques. Comme tk −→ 1, et bien qu’en général tk 6= t′k, nous pensons que cette limite est un 3-filet
géodésique stationnaire.

Conjecture 4.2.

Si 1 n’est pas valeur d’adhérence des temps de réalisation des maximums d’énergie, alors redresse chaque
balayage Bk comme précédemment. Il existe h tel que pour tout s ∈ [1 − h, 1], s n’est pas non plus valeur
d’adhérence des temps de réalisation des maximums d’énergie. On sait que Ψ est homotope à l’identité. On
construit une famille continue d’opérateurs Ψs, pour s ∈ [0, 1] telle que Ψs = Ψ pour tout s ∈ [0, 1 − h] et
Ψ1 = Id. Cette homotopie, dont on trouve une description dans Croke 6, est telle que s < t =⇒ (L(γ) −
L(Ψt(γ))) ≤ (L(γ) − L(Ψs(γ))). On applique, pour tout s ∈ [0, 1], l’opérateur Ψs aux trois fibres Bk(., i, s)
pour obtenir un troisième balayage noté Zk. Il s’agira de montrer que Zk est continu en t et homotope à Bk.
Nous pensons pouvoir conclure qu’il existe une suite de tranches de Zk qui converge vers trois géodésiques
fermées, simples et disjointes.

Supposons que ces conjectures soient vraies. Dans un pantalon, trois géodésiques fermées, simples et
disjointes ne peuvent être que les trois bords γ1, γ2 et γ3. La situation de la deuxième conjecture est donc
impossible, puisqu’en courbure négative, ces bords ne sauraient ni réaliser un maximum d’énergie, ni mini-
miser une suite de maximums d’énergie. Donc, seule la situation de la première conjecture a lieu et il existe
un 3-filet géodésique stationnaire dans P .

4.5 Autre esquisse de preuve - où l’on n’utilise pas de balayage
Soit Γ l’espace des chemins c : [0, 1] −→ P géodésiques par morceaux avec L angles, éventuellement plats,

correspondant à une partition de la source, propre à chaque chemin :

[0, 1] =

L⋃
i=0

[xi, xi+1], où 0 = x0 < · · · < xL+1 = 1

Sur chaque morceaux, on demande que c soit l’unique plus courte géodésique de xi à xi+1. On remarque que
L doit être impair et suffisamment grand pour que ((L+ 1)Rinj(P))2 >> 2πW . L’espace Γ est compact.

Soit H la classe d’homotopie - dans l’espace des Θ-filets sur P avec arêtes c1,2,3 dans Γ - d’un Θ-filet
canonique tel que ∀i ∈ Z/3Z, la concaténation de ci et ci+1 est homotope à γi+2. Nous pensons qu’un tel
représentant existe (cf. figure 4.5). Par ailleurs, étant donnée une suite de Θ-filets dans H, les suites induites
d’arêtes (cni)n∈N ne peuvent converger dans Γ que pour former un Θ-filet limite ou un graphe en huit. En
effet, pour i 6= j, on montre qu’il ne peut y avoir convergence des deux suites (cni) et (cnj), ni vers deux points
(nécessairement confondus), ni vers une même arête. Supposons que (cni) et (cnj) convergent 7 vers un même
chemin constant. Pour tout n, il existe par hypothèse une homotopie hni : [n, n+ 1]× [0, 1] −→ P entre cni et
cn+1
i , ainsi qu’une homotopie hnj : [n, n+ 1]× [0, 1] −→ P entre cnj et cn+1

j , toutes deux issues de l’homotopie
dans H entre les deux Θ-filets dont on a extrait les arêtes cni et cnj d’une part, cn+1

i et cn+1
j d’autre part. On

6. Area and the lengthof the shortest closed geodesic, 1986 - Pages 4 et 5.
7. On pourra observer qu’une suite de paires accrochées d’éléments de Γ ne peut converger que vers une paire accrochée

d’éléments de Γ, qui est compact.

19

a pour tout t et pour tout n : hni (t, 0) = hnj (t, 0) et hni (t, 1) = hnj (t, 1). On construit deux homotopies qui
relient chaque terme des suites (cni) et (cnj) :

hi : [0, 1[×[0, 1] −→ P telle que hi(t, s) = h
bf(t)c
i (f(t), s) où f(t) =

1

1− t
− 1

hj : [0, 1[×[0, 1] −→ P telle que hj(t, s) = h
bf(t)c
j (f(t), s) où f(t) =

1

1− t
− 1

On prolonge ces homotopies en 1 en posant hi(1, .) = lim
n−→∞

(cni) et hj(1, .) = lim
n−→∞

(cnj).

On a pour tout t : hi(t, 0) = hj(t, 0) et hi(t, 1) = hj(t, 1). Ainsi la concaténation de c0i et c0j forme un
lacet homotope à un point, à travers des lacets de P . Or, par hypothèse, elle est aussi homotope à l’une des
trois composantes de bord de P . Le lemme suivant montre qu’il n’est pas possible qu’une composante de
bord de P soit homotope à un point.

Lemme 4.2
Une variété topologique compacte connexe à bord, de dimension 2, dont l’une des composantes de bord est un
cercle homotope à 0, est nécessairement un disque.

Ainsi, (cni) et (cnj) ne peuvent s’écraser en un seul point. On montre de même qu’elles ne peuvent s’écraser
l’une contre l’autre sur toute leur longueur. On pose :

W = min
H

E(F)

En vertu du raisonnement précédent, on a nécessairement W > 0.
On extrait dans H une suite de Θ-filets telle que : W < E(F j) < W + 1/j (?).
On note Π(F) ∈ H le filet obtenu en appliquant Π aux trois arêtes de F . On a pour tout j :

W ≤ E(Π(Fj)) ≤ E(F j) < 1/j

Cela implique :

0 ≤
3∑
i=1

E(Π(cji))−
3∑
i=1

E(cji) <
1

j

0 ≤
3∑
i=1

(
E(Π(cji))− E(cji)

)
<

1

j

Pour i = 1, 2, 3, il vient :

0 ≤ E(Π(cji))− E(cji) <
1

j

L(Π(cji))− L(cji) <
2π

j(L(Π(cji)) + L(cji))
<

2π

j

Soit ε > 0 et soit δ prescrit par la propriété (4) de la Proposition 4.3.1. Soit enfin j > 2π/δ. D’après cette
même propriété (4), L(cji) < ε pour i = 1, 2, 3. Ainsi la suite F j converge-t-elle vers un 3-filet géodésique
N . Une des arêtes peut converger vers un point ; il s’agit alors d’un 3-filet géodésique modelé sur le graphe
en 8. Nous savons en outre que E(N) = W , de sorte que toute variation de N augmente son énergie et sa
longueur totale. C’est donc un 3-filet géodésique stationnaire.

Conclusion : Notre procédure de minimisation sur une famille de Θ-filets conduit à l’existence d’un 3-filet
stationnaire sur les pantalons, modelé sur le Θ-graphe ou le graphe en 8. Néanmoins, une procédure de mi-
nimisation sur un espace convenable de 3-filets modelés sur le graphe en 8, décrits comme images de S1 dans
un pantalon géodésiquement convexe, où l’on impose un point de contact, donne déjà depuis Poincaré une
géodésique fermée qui s’auto-intersecte une fois, c’est-à-dire un cas particulier de huit stationnaire. Ainsi,

20

Figure 4.6 – Dégénérescence du Θ-filet

notre preuve n’est-elle peut-être pas satisfaisante, dans le sens où elle ne garantit pas l’existence d’un objet
nouveau. Nous aimerions savoir par exemple s’il existe toujours un 3-filet stationnaire modelé sur le Θ-graphe
dans un pantalon - c’est précisément l’enjeu de la partie précédente, demeurée au stade de la conjecture. Par
ailleurs, si un 8 limite est minimisant parmi les 8 et les Θ, il ne l’est pas parmi tous les 3-filets. En effet,
un graphe à lunettes pourrait modeler un 3-filet stationnaire optimal. La topologie particulière du pantalon
nous invite à rechercher un résultat plus fort que la stationnarité, à savoir être minimisant.

Calendrier de recherche : Dans un premier temps, nous nous attacherons à prouver les deux conjectures
du chapitre 4, nous aurons alors montré l’existence de Θ-filets stationnaires dans les pantalons. Si le cas du
pantalon présente des avantages topologiques, les deux autres types de 2-sphères - à savoir les doubles bonnets
et les concaténations de nasses - charrient de nouveaux problèmes. Nous privilégierons deux approches pour
tenter de construire des 3-filets stationnaires sur n’importe quelle 2-sphère. La première sera quantitative : Le
chapitre suivant nous donne des estimations pour balayer une sphère avec des cercles de longueur limité, qui
doivent s’articuler autour de Θ-filets. Une traque de type algorithmique pourrait nous permettre de resserrer
le filet sur notre proie. La deuxième est qualitative : nous essaierons de balayer la sphère directement avec des
Θ-filets. Il s’agira de décrire un représentant de classe convenable pour qu’un procédure de min-max puisse
aboutir. L’avantage de cette procédure est que la procédure de min-max ne peut qu’aboutir à un Θ-filet.

21

Chapitre 5

Un nouvel horizon :
L’article de Yevgeny Liokumovich

Dans son article de 2014 Slicing a 2-sphère, Yevgeny Liokumovich tente de séparer la 2-sphère en zones d’aires
maximales, avec des lacets de longueurs minimales. Par ailleurs, il décrit comment envoyer une sphère dans
un arbre trivalent, de telle sorte que les pré-images des sommets trivalents soient des Θ-filets de longueur
contrôlée. Nous rapportons ici quelques résultats qui nous semblent pouvoir éclairer notre recherche à venir
sur les filets.

Il y a une obstruction à la division d’une 2-sphère M en deux hémisphères d’aires grandes par une courbe
simple et fermée petite. En effet, si M est une pieuvre aux tentacules suffisamment minces et longues, alors
pour tout r > 1

3 , la longueur de la courbe fermée simple la plus courte subdivisant M en deux régions d’aire
≥ r|M | peut être arbitrairement grande. Alexander Nabutovsky pose la question suivante : quelle est la
valeur maximale de r ∈ [1

4 ,
1
3] telle que pour un certains c(r), chaque 2-sphère riemannienne d’aire 1 peut

être subdivisée en deux disques d’aire ≥ r par une simple courbe fermée de longueur ≤ c(r) ? 1

Un premier résultat apporte une réponse à cette question.

Theorème 5.1 (Slicing a 2-sphère, Theorem 1, page 2)
Il existe une simple courbe fermée γ de longueur inférieure à 26

√
|M | qui subdivise M en deux sous-disques

d’aire supérieure à 1
3 |M |.

Theorème 5.2 (Slicing a 2-sphère, Theorem 2, page 2)
Il existe une application f deM dans un arbre trivalent T , telle que les fibres de f ont une longueur ≤ 26

√
|M |

et une topologie contrôlée : la pré-image de chaque point intérieur est une simple courbe fermée, la pré-image
de chaque sommet terminal est un point et la pré-image de chaque sommet de degré 3 est homéomorphe au
Θ-graphe.

Theorème 5.3 (Slicing a 2-sphère, Theorem 3, page 2)
Il existe une fonction de Morse f : M −→ R dont les fibres ont une longueur qui n’excède pas 52

√
|M |.

Définition 5.1 (Slicing a 2-sphère, Definition 9, page 8)
Une application f de Mk vers un arbre trivalent T est appelée une T -application si la topologie des fibres de
f est contrôlée dans le sens suivant : la préimage de tout point à l’intérieur d’une arête de T est un cercle, il
existe k sommets terminaux xk ∈ T , tels que f−1(xk) est une composante connexe de ∂Mk, la pré-image des
autres points terminaux de T sont des points et la pré-image d’un sommet trivalent de T est homéomorphe
au θ-graphe.

1. Pour r = 1
4
, Panos Papasoglu a trouvé c(r) = 2

√
3 (Cheeger constants of surfaces and isoperimetric inequalities, 2009).

22

Figure 5.1 – T -application vers un arbre trivalent à 8 sommets, dont 5 points terminaux.

Remarque 5.1. Le balayage du pantalon que nous décrivons dans la partie 4 peut être décrit comme les
niveaux d’une T -application vers un tripode, où les 3 points terminaux ont pour pré-images les 3 composantes
de bord du pantalon. La pré-image du sommet trivalent est un Θ-filet.

Theorème 5.4 (Slicing a 2-sphère, Theorem 10, page 8)
Pour r ∈ (0, 1

4] et tout ε > 0, il existe une T -application f de Mp, p ≥ 0, telle que chaque fibre de f a une
longueur inférieur à c(r)

1−
√

1−r + |∂Mp|+ ε.

Lemme 5.1 (Slicing a 2-sphère, Lemma 11, page 9)
Soit A1 et A2 deux sous-variétés lisses fermées (avec frontière) de Mp, telles que α = A1 ∩ A2 est un arc
connexe. Soit ci la composante connexe de ∂i qui contient α. Supposons que |c1 ∪ c2| < L et que chaque Ai
admet une T -application avec des fibres de longueur < L, alors A1 ∪ A2 admet une T -application avec des
fibres de longueur ≤ L.

Lemme 5.2 (Slicing a 2-sphère, Lemma 12, page 9)
Pour tout ε > 0, il existe l > 0 tel que pour tout disque D ⊂Mp avec |∂D| ≤ l, il existe un difféomorphisme f
de D vers le disque fermé standard Dst = {x2+y2 ≤ 1} tel que la longueur de chaque pré-image f−1({x2+y2 =
cte}) n’excède pas (1 + ε)|∂D|.

Lemme 5.3 (Slicing a 2-sphère, Lemma 13, page 10)
Pour tout ε > 0, il existe A > 0 tel que pour tout disque D ⊂ Mp avec |D| ≤ A, il existe une T -application
f de D avec des fibres plus courtes que |∂D|+ ε.

23

Bibliographie

— Ian Adelstein, Minimizing geodesic nets and critical points of distance, Differential Geometry and its
Applications 2019.

— Tobias Colding et William Minicozzi, Min-max for sweepouts by curves, 2007.
— Christopher Croke, Poincaré’s problem on the shortest closed geodesic on a convex hypersurface, Journal

of Differential Geometry 17, 1982.
— Joël Hass et Frank Morgan, Geodesic nets on the 2-sphere, Procedings of the American Mathematical

Society 124(12), 1996.
— Yevgeny Liokumovich, Slicing a 2-sphere, Journal of Topology and Analysis 6(4), 2014.
— Lazar Lusternik et Lev Schnirelman, Sur le probleme de trois géodesiques fermées sur les surfaces de

genre 0, Comptes Rendus de l’Académie des Sciences de Paris 189, 1929.
— Frank Morgan, Soap bubbles in R2 and in surfaces, Pacific Journal of Mathematics 165, 1994.
— Alexander Nabutovsky et Fabian Parsch, Geodesic nets : some examples and open problems, Experi-

mental Mathematics, 2020.
— Panos Papasoglu, Cheeger constants of surfaces and isoperimetric inequalities, Transactions of the

American Mathematical Society 361(10), 2009.
— Tristan Rivière, Minmax Methods for Geodesics and Minimal Surfaces, Powerpoint.
— Tristan Rivière, Méthodes de min-max et la Conjecture de Willmore, Séminaire Bourbaki 1080, 2014.

24

	Introduction
	Introduction à l'apprentissage automatique
	Machine Learning: idée générale et premiers exemples
	Motivations
	Méthodologie et différents types de systèmes d'apprentissage
	Problèmes et challenges du Machine Learning

	Plus en détail: algorithmes de clustering habituels
	Considérations générales
	Algorithmes de clustering combinatoires
	K-means clustering
	Clustering hiérarchique

	Introduction à l'Analyse topologique des données
	Idée générale et motivation
	Complexes simpliciales, recouvrements et le Théorème du Nerf
	Inférence homologique
	Homologie simpliciale et nombres de Betti
	Filtrations
	Un algorithme pour calculer les nombres de Betti
	Homologie persistante: définitions et algorithmes
	Diagrammes de persistance et stabilité

	L'algorithme ToMATo
	Introduction
	L'intuition derrière l'algorithme: le cas continu

	Les données d'entrée (input data)
	Quelques constructions de graphes habituelles
	Quelques estimateurs classiques de la fonction de densité

	La procédure de l'algorithme
	Information finale obtenue
	Mise en œuvre de l'algorithme et exploration

	Références
	Annexe: A handy guide to using the ToMATo algorithm
	2020ClovisChabertier.pdf
	Une adjonction cobar-bar pour les algèbres associatives
	Rappels et conventions
	Algèbres
	Coalgèbres
	(Co)Algèbres différentielles graduées
	Convolution

	Adjonction cobar-bar
	Résolution cobar-bar

	Une résolution plus économe
	Complexe de Koszul associé à une algèbre quadratique
	Construction de A¡ -3muB0A BA

	Cobar-bar pour les opérades algébriques
	Introduction aux opérades algébriques
	S-modules
	Opérades
	Algèbre universelle
	Définition d'une opérade par compositions partielles
	Opérade libre

	Constructions d'algèbre homologique pour les opérades
	Linéarisation
	Extension au cadre différentiel gradué

	Adjonction cobar-bar opéradique
	Morphismes tordants
	Constructions cobar et bar

	Opérades quadratiques et dualité de Koszul

	Propérades
	Introduction
	Calculs de duaux

	Rappels

	2020ThibaultChailleux.pdf
	Introduction
	Rappels
	Applications rationnelles et régulières
	Définitions

	Diviseurs
	Définitions
	Propriétés des diviseurs
	La classe de diviseurs canonique

	Produit d'intersection
	Éclatements
	Théorème de Zariski
	Systèmes linéaires

	Propriétés des transformations de ¶2
	Équations de condition
	Composition des tranformations

	Théorème de Noether-Castelnuovo
	Introduction de la preuve
	Preuve du théorème de Noether-Castelnuovo

	Applications du théorème de Noether-Castelnuovo
	Transformations quadratiques
	Deux points-base dans ¶2 et un point-base infiniment proche
	Trois points-base infiniment proches

	Transformation de degré 3
	Transformation de degré 5
	Test de Hudson

	Annexe : Implémentation de l'algorithme
	Classes d'objets : points-base et transformation birationnelle
	La fonction transfo_deg
	La fonction compose_quad
	La fonction make_transfo_disjoint
	La fonction decomp_transfo
	Exemples et applications

	Bibliographie

	2020MahmoudElimam.pdf
	Abstract
	Dedication
	Symplectic and Contact Geometry
	Symplectic Manifolds
	Skew Symmetric Bilinear forms
	Basic concepts for symplectic manifolds
	Moser-type theorems

	Contact Manifolds
	Basic concepts for contact manifolds
	Symplectization and Contactisation
	Moser type theorems
	Generating families

	Lagrangian cobordism
	Definition and compatible generating functions
	Isotopy is realised by lagrangian cobordism
	Some results on gf-compatible lagrangian cobordisms

	Lagrangian Surgery
	First Description
	Second Discritption via cobordism

	Bibliography

	4emeCouv.pdf
	TrungNguyen.pdf
	1. Introduction
	2. KAM theorem
	Hypothesis A0
	Hypothesis A1
	Hypothesis A2

	3. Preparation
	Scheme of the proof of KAM theorem

	4. Homological equation
	The first equation
	The second equation
	The third equation

	5. Proof of the KAM theorem
	The KAM step.
	Esmating T
	Choice of parameters.
	Iterative lemma.
	Proof of KAM theorem.

	6. Applications
	7. Appendix
	The two-modes case
	The three modes case.

	References

	Rachid.pdf
	Table des matières
	Introduction
	 Analyse de l'opérateur Fokker-Planck
	Étude de l'accrétivité maximale de l'opérateur Fokker-Planck
	Conditions suffisantes pour la compacité de la résolvante de l'opérateur Fokker-Planck
	Relation entre l'opérateur Fokker-Planck et le Laplacien de Witten

	Retour à l'équilibre pour l'opérateur de Fokker-Planck
	Analyse abstrait
	Application à l'opérateur Fokker-Planck

	Appendice
	Opérateurs pseudo-différentiels
	Opérateurs accrétifs
	Chaîne de Sobolev adaptée à l'analyse de Fokker-Planck

	Bibliographie

	Bader.pdf
	Introduction
	Modèle bidomaine et Préliminaires
	Modélisation du modèle bidomaine
	Modèle microscopique du tissu cardiaque
	Modèle macroscopique du tissu cardiaque

	Quelques rappels d'analyse fonctionnelle

	Analyse d'une classe de systèmes de réaction-diffusion
	Quelques hypothèses
	Conditions sur les champs de vecteurs de diffusion Mj(t,x,).
	Conditions sur le courant ionique h(t,x,v).

	Étude du système non-dégénéré
	Existence de solutions approchées par la méthode de Faedo-Galerkin
	Estimation d'énergie
	Passage à la limite
	Retrouver la condition initiale du problème non-dégénéré (??)

	Étude du système bidomaine linéaire
	Le cas où v0=ui,0-ue,0 avec ui,0, ue,0 H10().
	Le cas où v0 L2().

	Étude du système bidomaine non-linéaire
	Le cas où v0=ui,0-ue,0 avec ui,0, ue,0 W1,p0().
	Le cas où v0 L2().

	Unicité des solutions faibles
	Conclusion
	
	Bibliographie

	GENETAY.pdf
	Introduction à la démarche des statisticiens
	Comment comparer des estimateurs statistiques
	Qu'en est-il en apprentissage statistique?

	L'estimateur Median-Of-Means
	Le Breakdown Point de MOM
	La sous-gaussiannité de MOM

	k-means et l'algorithme de Lloyd
	Illustration du fonctionnement de k-means
	Approximation de k-means par l'algorithme de Lloyd
	Propriété de k-means et de l'algorithme de Lloyd
	L'apport pratique de mon stage sur les questions de robustesse et d'amélioration de k-means

	Elements de théorie du processus empirique
	L'inégalité de Chernoff
	Preuves techniques utiles au théorème de Y. Lu et H. H. Zhou
	Le principe de symétrisation

	Références

	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge

	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge
	Page vierge

