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The Yau-Tian-Donaldson conjecture for Toric Kähler manifolds

Victor Correc

Abstract. This memoir is devoted to the study of the existence of Calabi’s extremal Kähler
metrics on toric varieties, seen as symplectic toric manifolds (M, ω, T). First we present
the theory developed by Delzant [D88] which classifies toric symplectic manifolds by their
associated Delzant polytopes (∆, L, Λ). We then describe the formalism of Abreu-Guillemin
[A98, G94], i.e. the differential geometry aspect of toric varieties. After that we investigate
the Calabi problem specialized to toric manifolds, initiated by Donaldson [D02]. In the last
part of this memoir, following Apostolov [A19], we explain some key aspects of the YTD
conjecture in the toric Kähler situation.
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0. Introduction

a

« toric varieties have provided a remarkable fertile testing
ground for general theories».

W. Fulton, Introduction to Toric Varieties, [F93]

An important problem in current research in Kähler geometry is to find and study the
"best" metric on certain complex manifolds. In this direction, an important result is the
uniformization theorem.
Theorem 0.1 (Poincaré, Koebe). Any compact Riemann surface admits a riemannian
metric g of constant scalar curvature, unique up to the action of complex automorphisms.

Motivated by this theorem, E. Calabi in [CF85], asked the problem of existence of certain
Kähler metrics on compact Kähler manifolds. Namely, the problem of Calabi is to find on a
compact Kähler manifold a Kähler metric in a given De Rham class, precisely:
Problem 0.2 (Calabi problem). Let (M,ω0) be a compact Kähler manifold, does the manifold
M admit a Kähler metric ω such that [ω] = [ω0] ∈ H2(M,R) with the scalar curvature of ω
constant ?

In [Y77], Yau answers positively to the Calabi problem for Kähler-Einstein (KE for short)
metrics, in the special case when the first cherch class vanishes:

• if c1(M) = 0, all Kähler class contains a unique KE metric such that Ric(g) = 0.
However, on a Fano manifold, corresponding to the case c1(M) > 0, the existence is, in general,
not systematic and obstructions arise given by many algebraic invariants.

In [CF85], Calabi introduced on a compact Kähler manifold, the notion of extremal met-
rics, for which constant scalar curvature Kähler (cscK for short) metrics constitute important
examples. One predicts that the existence of extremal metrics is equivalent to a certain
algebro-geometric notion of stability. Among experts, some of them think that it would be
easier to search for extremal metrics when the manifold admits more symmetry. In this
direction, Donaldson initiated a program to solve the conjecture for toric varieties. This was
done in a series of 3 articles, wherein he obtained the first results in this direction.

In this paper, our concern will be the existence of extremal metrics, in the sense of Calabi,
restricted to the toric setting. Namely, the main goal of this memoir, is to explain some key
aspects of the following theorem.
Theorem 0.3 (YTD for Toric Kähler manifolds). A Kähler toric manifold (M,ω,T)
admits a T-invariant extremal Kähler metric if and only if its associated Delzant polytope
(∆,L) is b-uniformly K-stable.

This result has been established recently as a corollary of the general study of cscK metrics
by Chen-Cheng [CC18] and an enhancement to extremal metrics due to He [H18], combined
with previous results by Donaldson [D02], Chen-Li-Sheng [CLS14] and Zhou-Zhu [ZZ08]
in the toric case.

The specialization of Kähler geometry to toric varieties takes an elegant form and things
become more elementary. Hereafter is some important results in the work.
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In [D88], Delzant gave a correspondence between toric (symplectic) manifolds (M2m, ω)
and certain polytopes ∆ in Rm called Delzant polytopes. The first works on the Kähler
geometry aspects and the calculation of the scalar curvature were studied by Abreu and
Guillemin and expressed by data on the Delzant polytope ∆. In [G94], Guillemin proved
that T-invariant Kähler metrics correspond to convex functions (symplectic potentials) on ∆.
Abreu in [A98] obtained a characterization of extremal Kähler metrics given by a non-linear
PDE of order 4 on the symplectic potential, i.e. the existence of extremal metrics is reduced
on to the resolution of this PDE. The idea behind Abreu’s equation uses the correspondence
between complex and symplectic coordinates via the Legendre transform.

The obstructions to the existence of cscK metrics are given by many algebraic invariants
such as K-stability, Futaki invariant ; Tian defined an analytic notion of stability, which
was generalized, with an algebro-geometric point of view, by Donaldson [D02]. In the
toric framework, Donaldson [D02], expresses all these invariants in terms of a single linear
functional acting on the space of continuous convex functions on the corresponding Delzant
polytope.

The first progress towards theorem 0.3, was obtained in [D09], where the author proved
that b-uniform K-stability is equivalent to K-stability on toric surfaces and, moreover, he
proved the following key result for cscK metrics on toric surfaces.
Theorem 0.4 (Donaldson [D09]). Any polarized complex toric surface with zero Futaki
invariant is K-stable if and only if it admits a cscK metric.

This result gives a positive answer to a more general existence problem on polarized algebraic
varieties (M,L), called the Yau-Tian-Donaldson (YTD for short) conjecture. The principle
is the following.
Conjecture 0.5 (YTD). The polarized algebraic manifold (M,L) admits a cscK metric in
the class c1(L) if and only if (M,L) is K-polystable.

Furthermore, Hisamoto proved that the b-uniform stability is equivalent to the equivariant
uniform K-stability relative to a maximal torus. The latter notion appears in a problem called
the YTD conjecture for extremal metrics. Letting (M,L) be an algebraic polarized variety, we
have:
Conjecture 0.6 (YTD). Existence of extremal Kähler metrics on M in c1(L) is equivalent
to an algebro-geometric of equivariant uniform K-stability with respect to a maximal torus.

This paper starts with reminders on the notion of Kähler metrics, Chern connections, and
the Ricci curvature.

In section 2, we present the theory of Delzant. We define the notion of toric symplectic
manifolds (M,ω,T) and Delzant polytopes (∆,L,Λ) and shows that they are in a 1:1 corre-
spondence by the so-called Delzant theorem. We show the Delzant construction, namely how
to construct (M,ω,T) from the data of (∆,L,Λ), for the particular case of CPm in section
2.4 and in the general case in section 2.5. We finish by the consequences of this construction.

In the next section (3), we present the theory of Abreu-Guillemin, i.e. the differential
geometry aspect of symplectic toric manifolds (M,ω,T) via the corresponding Delzant polytope
(∆,L,Λ). We obtain the local expression of T-invariant ω-compatible Kähler metrics and of
the scalar curvature sg.

We conclude this memoir, with the theory developed by Donaldson in section 4. We
define the Donaldson-Futaki invariant and the Mabuchi K-energy in order to define (uniform)
K-stability. This memoir ends with an account of the proof of theorem 0.3, following the
exposition of [A19].
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1. Generalities in Kähler Geometry

We recall some elements of Kähler geometry.

1.1. Kähler manifolds. Let M be a smooth manifold of (real) even dimension n = 2m
equipped with a riemannian metric g. An almost complex structure J on M is a field of
automorphisms of the tangent bundle TM which satisfy J2 = −Id|TM . If the riemannian
metric g satisfies the identity g(JX, JY ) = g(X,Y ) for any two vector fields X,Y then it is
called a hermitian metric. Under the previous condition, M = (M, g, J) is called an almost
hermitian manifold. With the hermitian metric, if J is assumed integrable, we can define a
(skew-symmetric) 2-form ω on M by ω(X,Y ) = g(JX, Y ). We call it the kähler form of g.
Thus ω(·, J ·) appears as a riemannian metric.

Definition 1.1. A Kähler metric on M is a hermitian metric g such that the Kähler form is
closed, i.e. dω = 0.

The Kähler metric is uniquely determined by its Kähler form ω. Since ω is a closed (1, 1)-
form, it determines a cohomology class [ω] ∈ H1,1(M)C ∩H2(M,R) called the Kähler class of
ω. If M is compact, one should mention that the set of all this classes associate to any Kähler
structure on M is called the Kähler cone

KM ⊂ H1,1(M,C) ∩H2(M,R).
Kähler manifolds are almost hermitian manifolds with (mutually) compatible complex and
symplectic structures.

Definition 1.2. An almost hermitian manifold (M, g, J, ω) is Kähler if and only if J is
integrable ( i.e. (M,J) is a complex manifold) and ω is closed ( i.e (M,ω) is a symplectic
manifold)

Let D be the Levi-Civita connection of a riemannian metric g, then the Kähler condition
i.e. dω = 0 is equivalent to that J is invariant under parallel transformation i.e. DJ = 0.

Lemma 1.3. A Kähler manifold M = (M,J, g, ω) is an almost hermitian manifold such that
DJ = 0.

The integrability condition on J means the cancellation of the Nijenhuis tensor NJ i.e.
satisfies NJ(X,Y ) := [JX, JY ] − [X,Y ] − J [JX, Y ] − J [X, JY ] = 0. From the Newlander-
Nirenberg theorem this is equivalent to the existence of a holomorphic atlas on M compatible
with the almost complex structure J , whence (M,J) is a complex manifold. Then this complex
structure on M allows us to rewritten the Kähler form in complex (local) coordinates as

ω =
√
−1
2

n∑
i,j=1

gij̄dz
i ∧ dz̄j .

Indeed, the complex structure provides us local complex coordinates {z1, . . . , zn} such that
zi = xi +

√
−1yi. The field J is defined by J∂/∂xi = ∂/∂yi and J∂/∂yi = −∂/∂xi. The

complex tangent bundle TCM := TM ⊗ C is spanned by ∂
∂zi

= 1
2

(
∂
∂xi
−
√
−1 ∂

∂yi

)
and

∂
∂z̄i

= 1
2

(
∂
∂xi

+
√
−1 ∂

∂yi

)
. When evaluated on those elements, g satisfies gij = gīj̄ = 0 and

gij̄ = gīj . The complexified tangent bundle splits as TCM = T 1,0M ⊕ T 0,1M ; into the√
−1 and the −

√
−1 eigenspaces of J . So the metric g extends naturally by C-linearity to a

hermitian metric g̃ on the holomorphic tangent bundle T 1,0M by

g̃ =
n∑

i,j=1
gij̄dzi ⊗ dz̄j .

We retrieve the riemannian structure and the symplectic one via g = Re(g̃) and ω = Im(g̃).
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Remark 1.4. The (compact) Hopf surface S := S3 × S1 admits a complex structure via
S ' C2 \ (0)/Γ where Γ = {2kId : k ∈ Z} by the equivalence relation (z1, z2) ∼ (2z1, 2z2).
However H is not a symplectic manifold as the second De Rham cohomology group is zero,
H2(S,C) = {0}. This is a general fact for compact manifold explained as follows. Let (M2m, ω)
be a compact symplectic manifold. Since ω is closed it defines a De Rham class [ω] ∈ H2(M).
By non-degeneracy of the symplectic form, ωm := ω ∧ . . . ∧ ω (m times) is a volume form.
Thus,

∫
M ωm 6= 0, as M is compact. Then [ωm] ∈ H2m(M) is nonzero, whence [ω] 6= 0 in

H2(M). For example, the only sphere which admits a symplectic structure is the 2-sphere S2,
see example (2.10).

The converse fails as well, i.e. there exist manifold with symplectic but no complex structure.
Fernández-Gotay-Gray in [FGG88] exhibited such an example. The authors showed that
the tower of circle fibrations given by circle bundles over circle bundle over the a 2-dimensional
torus, is a compact symplectic 4-manifold which do not admit complex structures. Hence by
definition 1.2 shows the peculiar aspect of Kähler manifolds.

Example 1.5. - The quotient of Cm by the lattice Z2m ⊂ Cm gives a complex tori Cm/Z2m.
As the exterior derivative is invariant by translation by integers the Kähler form on the
complex tori is ω =

∑m
i,j=1 dz

i ∧ dzj , induced by the Kähler form on Cm.
- On the complex projective space CPm the Kähler form is the Fubini-Study form, see Section
2.4.

- A Kähler manifold (M,ω) which admits a global proper Kähler potential ρ is called a Stein
manifold i.e. ω = i

2∂∂ρ where ρ is a smooth proper real-valued function on (M,J).

1.2. Holomorphic vector bundles. The purpose of this section is to give an overview on
Cauchy-Riemann operators on holomorphic vector bundles and their links with the Chern
connection. The latter naturally extends the Levi-Civita connection on an almost hermitian
manifold and coincides with it when the manifold is Kähler. In section 4.19, we will see how
Abreu deduces the Ricci form, defined in terms of the Chern connection of the anti-canonical
line bundle, and the scalar curvature for a toric symplectic manifold. This will be achieved
with proposition 1.8. We give the framework for a complex vector bundle E.

If E is a complex vector bundle of rank r over an almost complex manifold (M,J) a
Cauchy-Riemann operator ∂̄E on E is defined as a first order C-linear differential operator
acting on sections of E with values in the complex tensor product E ⊗ Λ0,1M satisfying

(1) ∂̄E(fs) = s⊗ ∂̄f + f∂̄Es.

Here, ∂̄ = 1
2(d − idc) denotes the usual Cauchy-Riemann operator acting on functions and

dc the twisted exterior differential (cf. infra). A C-linear connection provides an important
example of Cauchy-Riemann operator. Indeed, any C-linear connection ∇ on E can be written
in terms of its (0, 1) and (1, 0)-parts by ∇ = ∇1,0 +∇0,1, where

∇1,0
X s = 1

2 (∇Xs− i∇JXs) , ∇0,1
X s = 1

2 (∇Xs+ i∇JXs) ,

and ∇0,1 clearly satisfies equation (1), hence is a Cauchy-Riemann operator. Conversely,
any Cauchy-Riemann operator can be obtained uniquely in this fashion. Suppose (E, h) is
a hermitian complex fiber bundle with inner product h. We say that ∇ is hermitian if it
preserves h i.e. if X · h(s1, s2) = h(∇Xs1, s2) + h(s1,∇Xs2), for any sections s1, s2 of E and
vector field X.

Proposition 1.6. Let E a complex vector bundle over a complex manifold (M,J) and h a
given hermitian metric on E. Then, any Cauchy-Riemann operator ∂̄E on E is the (0, 1)-part
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of a C-linear hermitian connection ∇:
∂̄E = ∇0,1.

When E is furthermore endowed with a holomorphic structure, defined below, there is
a canonical Cauchy-Riemann operator ∂̄E and leading via proposition (1.6) to the notion
of canonical hermitian connection on the hermitian holomorphic vector bundle (E, h). A
holomorphic vector bundle E is a complex vector bundle (of rank r) on a complex manifold
(M,J) such that E (viewed as a manifold) as a complex structure such that all fibers are
complex submanifolds of E and the two operations coming from the vector space structure are
holomorphic. On a given holomorphic vector bundle E over a complex manifold (M,J) there
exists a canonical Cauchy-Riemann operator ∂̄E defined by

∂̄Es =
r∑
i=1

∂̄fi ⊗ si,

for any section s of E which is written in a holomorphic trivialization as s =
∑r
i=1 fisi with

respect to a holomorphic local frame si of E, and where the twisted exterior differential dc is
defined by dcψ = JdJ−1ψ, for any p-forms ψ, where J−1 = (−1)pJ is the inverse of J acting
on p-forms.

Definition 1.7. Let (E, h) be a hermitian holomorphic vector bundle. The Chern connection
∇ on E is the C-linear hermitian connection associated to the canonical Cauchy-Riemann
operator.

As mention earlier we concentrate our attention on line bundle i.e. when r = 1. If L is a
hermitian holomorphic line bundle and ∇ = ∇L the Chern connection on L, the curvature R∇
is then equal to iId⊗ ρ∇, where ρ∇ is a real 2-form called the curvature form of ∇.

Proposition 1.8. Let (L, h) a holomorphic line bundle (endowed with a hermitian metric
h) over a complex manifold (M,J). For any non vanishing holomorphic section s of L, the
Chern connection ∇ and the curvature form ρ∇ have the following expressions:

∇s = ∂ log |s|2h ⊗ s

= 1
2
(
d log|s|2h + idc log |s|2h

)
⊗ s

and,
ρ∇ = −1

2dd
c log |s|2h.

Proof. Let X be a (real) holomorphic vector field. For simplicity, we denote by (·, ·) the
hermitian inner product h. Since ∇ is a metric connection, it is consistent with h, i.e. we
have:

X · |s|2h = (∇Xs, s) + (s,∇Xs)(2)
JX · |s|2h = (∇JXs, s) + (s,∇JXs).(3)

Recall that the (0, 1)-part ∇(0,1) is equal to the Cauchy-Riemann operator, that determines
the holomorphic structure of L and since s is a holomorphic section (viewed as a map from
an open set U of M to L), it satisfies ∇(0,1)s = 0 i.e. ∇JXs = i∇Xs. With this identity,
equation (3) can be written as (∇JXs, s) = JX · |s|2h − i (s,∇Xs). Now, L is a holomorphic
line bundle hence ∇Xs = θ(X)s, where θ is a complex 1-form on U . By combining the latter
two identities, and the semi-linearity of h on the second variable we have

iθ(X)|s|2h = dc |s|2h(X) + iθ(X) |s|2h.
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We infer that Im(θ) = 1
2|s|2

h
dc |s|2h = 1

2d
c log|s|2h. Considering ∇Xs = θ(X)s and (2) instead of

(3), similar arguments leads to Re(θ) = 1
2d log|s|

2
h. We thus have θ = 1

2
(
d log|s|2h + idc log |s|2h

)
=

∂ log |s|2h. This proves the first part. The curvature R∇ of ∇, satisfy by its very definition,
R∇s = −d θ ⊗ s = −1

2dd
c log |s|2h ⊗ is. �
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2. Delzant Theory

For a given hamiltonian action of a compact Lie group G on a compact symplectic manifold
(M,ω), the image of the momentum mapping µ : M → g∗ (coming from the hamiltonian
action) is hard to describe. Guillemin and Stenberg conjectured that µ(M) intersected
with any positive Weyl chamber is a convex polytope and a proof of it was given by Kirwan
[K84]. In the same vein, when G is abelian, the abelian convexity theorem of Atiyah [A82],
Guillemin and Stenberg [GS82] offers much more quantitative informations such as an
explicit description near a vertex p of the momentum polytope and the fact that p is the image
of a fixed point in M . In particular, this theorem tells us that, the image of the moment map
of the hamiltonian action of a torus on a compact symplectic manifold (M,ω) is a convex
polyhedron ∆ ⊂ Rk, called, the moment polytope.

If (M,ω,T) is a symplectic toric manifold, grosso modo, a symplectic manifold with a
hamiltonian action of a torus T of dimension dimC(M), not all polytopes in Rk determine
completely (M,ω,T). In [D88], Delzant showed that a symplectic toric manifold (M,ω,T)
is entirely determined by the data of the moment polytope (∆,L,Λ) satisfying certain combi-
natorial conditions given by (L,Λ) and a lattice Λ. This class of polytope arising from toric
symplectic manifold is called Delzant polytope. Delzant’s theorem classifies symplectic toric
manifolds (M,ω,T) in terms of their Delzant polytope (∆,L,Λ).

2.1. Hamiltonian actions. We give the definition of a hamiltonian action. A Lie group G
acts on a smooth manifold M via a group homomorphism

ψ : G→ Diff(M)
with value in the diffeomorphism group of M . The action is smooth if the evaluation map
ev: G×M →M, ev(g, p) := ψ(g)(p) is a smooth map between manifolds. In this setting, if
M = (M,ω) is a symplectic manifold, we have

Definition 2.1. We say that G acts symplectically on (M,ω) if ψ(g)∗(ω) = ω, for all g ∈ G.

Example 2.2. From the classical isomorphism R2m ' Cm, writing zi = xi +
√
−1yi for

i = 1, . . . ,m ; the standard symplectic form on R2m is

(4) ωstd =
m∑
i=1

dxi ∧ dyi =
√
−1
2

m∑
i=1

dzi ∧ dz̄i.

Furthermore, if Tm = (e
√
−1t1 , . . . , e

√
−1tm) is the m-dimensional torus, its action on

(R2m, ωstd) via
ρ(e
√
−1t1 , . . . , e

√
−1tm)(z) := (e

√
−1t1z1, . . . , e

√
−1tmzm)

is symplectic.

Remark 2.3. The Darboux theorem states that any symplectic manifold (M2n, ω) is locally
symplectomorphic (i.e. isomorphic in the category of symplectic manifolds) to (R2m, ωstd).
Thus, ω can be expressed on a Darboux chart by means of an open set U of M with local
coordinates {(xi), (yi)}i∈J1,mK by ω|U =

∑m
i=1 dxi ∧ dyi.

Example 2.4. Another important example of such action arises from hamiltonian flows.
Consider (M,ω) a symplectic manifold and f a smooth function on it. By non-degeneracy of
ω i.e. from the isomorphism TpM ' T ∗pM induced by ω at each point p of M , we define the
so-called hamiltonian vector field of f (sometimes called the symplectic gradient of f), by

Xf := −ω−1(df).
Suppose Xf is complete (always true when M is compact) i.e. its flow ϕt is defined for all
t ∈ R. The action ρ of R on (M,ω) defined by ρ(t) := ϕt is symplectic. Indeed, at time 0,
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ϕ∗0(ω) = ω and:

d

dt| t=s
(ϕ∗tω) = ϕ∗s

(
d

dt| t=0
(ϕ∗tω)

)
= ϕ∗s

(
LXfω

)
= ϕ∗s

(
(dιXf + ιXfd)(ω)

)
= ϕ∗s (d(−df)) = 0.

Let G be a Lie group and g = Lie(G) its associated Lie algebra defined as the vector
space of all left-invariant vector fields on G. The dual vector space of g is denoted by g∗.
Consider (M,ω) a symplectic manifold and ψ : G → Diff(M) an action of G on (M,ω).
For any ξ ∈ g, let Xξ be the vector field on M generated by the one-parameter subgroup
{ψ ◦ exp(tξ) | t ∈ R} ⊂ Diff(M) i.e.

Xξ(p) := d

dt| t=0

(
ψ(exp(tξ))(p)

)
.

This vector field is the fundamental vector field of ξ ∈ g.
Recall that the conjugation action of G on itself induces a linear action on g denoted

Ad: G→ GL(g). This induces a linear action, called the co-adjoint action, on the dual vector
space g∗, denoted Ad∗ : G→ GL(g∗) and defined by

Ad∗g ◦ α := α ◦Adg−1 ,

for all g ∈ G and α ∈ g∗.

Definition 2.5. An action ψ : G → Diff(M) is called hamiltonian if there exists a smooth
map

µ : M → g∗

called a moment map which satisfies the following two properties:
(i) For any ξ ∈ g, the fundamental vector field Xξ satisfies

ω(Xξ, ·) = −d〈µ, ξ〉
where 〈·, ·〉 is the natural pairing between g and g∗.

(ii) The moment map µ is equivariant with respect to the action ψ of G on M and the
coadjoint action Ad∗ of G on g∗, i.e.

µ ◦ ψg = Ad∗g ◦ µ,
for all g ∈ G.

Example 2.6. To illustrate hamiltonian actions, we expose an important property of coadjoint
orbit called the Kirillov-Kostant-Souriau theorem. It states that each coadjoint orbit carries
a natural symplectic structure with canonical symplectic 2-forms sometimes referred as the
KKS form. To simplify the presentation a coadjoint orbit Oα for α ∈ g∗ is seen as the
quotient M := G/Gα of G by the stabilizer of α for the coadjoint action. We assume that G
is semi-simple (i.e. g is semisimple) and g = Lie(G) is algebraically compact i.e. the Killing
form of g is negative definite. Taking the derivative of Ad at the identity gives the adjoint
representation ad : g→ aut(g) := Lie(Aut(g)).

By semisimplicity of g, the inner product 〈·, ·〉 is non-degenerate and thus gives the iden-
tification g ' g∗. This allows us to work with the adjoint action rather than the coadjoint
action but then it is no longer canonical. For α, β ∈ g, the Killing form of g is denoted by
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〈α, β〉 := tr(adα ◦ adβ). By compactness of g, the Killing form 〈·, ·〉 is negative definite. So we
define the Kirillov-Kostant-Souriau (KKS) 2-form by ωy(adαy, adβy) := −〈y, [α, β]〉 for any
y ∈ M and α, β ∈ g. To make it clearer, we should identify Im(ady) with TyM so that ω
becomes

ωy(u, v) := −〈y, [u, v]〉,
for any y ∈M and u, v ∈ TyM ' Im(ady).

Proposition 2.7 (Kirillov-Kostant-Souriau). The KKS 2-form ω defines on the coadjoint
orbit M = G/Gα a symplectic structure. The adjoint action of G on (M,ω) is hamiltonian
with moment map µ := ι ◦ 〈·, ·〉 : M → g∗ identified with the inclusion ι : M ⊂ g composed with
the Killing form 〈·, ·〉 : g→ g∗.

2.2. Hamiltonian actions of T. Now we describe hamiltonian actions of torus, i.e. we
specialize when G = Tk is a k-dimensional torus (i.e. Tk is a product of k circles S1×· · ·×S1).
In the case, things are easier: the coadjoint action is trivial on Tk, thus condition (ii) reduces
to ask the moment map µ : M → t∗ to be a Tk-invariant map. Moreover, from general facts
on connected abelian Lie group, Lie’s theory tells us that Lie(Tk) =: t ' Rk and thus t∗ ' Rk.
In the tori setting, hamiltonian action can be easily described as follows.

Consider (M,ω) a symplectic manifold on which Tk acts symplectically and suppose that
each fundamental vector field Xξ (with ξ ∈ Rk) is hamiltonian with respect to a smooth
function µξ on M . Let {ξ1 . . . ξk} be the canonical basis of t ' Rk and let {Xi}i=1,...,k be the
corresponding fundamental vector fields for this basis and {µi}i=1...k the associates hamiltonian
functions. The induced fundamental vector field Xξ has for hamiltonian function

µξ :=
k∑
i=1

aiµi,

where ξ =
∑k
i=1 aiξi. This follows from the identity exp(tξ) = exp(ta1ξ1) ◦ · · · exp(takξk),

since Tk is abelian, and thus the induced fundamental vector field is Xξ =
∑k
i=1 aiXξi . Then,

condition (i) of definition 2.8 is trivially satisfied. Let the moment map µ : M → Rk be
defined by

〈µ(p), ξ〉 := µξ.

It remains to see that condition (ii) holds , coming from standard arguments in Lie’s theory,
condition (ii) is equivalent to {µξ, µν}ω = −µ[ξ,ν] where {µξ, µν}ω = ω(Xξ, Xν) is the so-called
Poisson bracket. Thus we have to show that for any Xξ, Xν the function ω(Xξ, Xν) vanishes
identically onM . Note that, LX`ω = 0 for any fundamental vector field X` since a hamiltonian
vector field is always symplectic (trivial using both Cartan formula and that ω is closed, cf.
example 2.4). Since T is abelian, [X`, Xξ] = [X`, Xν ] = 0 so LX`

(
ω(Xξ, Xν)

)
= 0 thus the

function ω(Xξ, Xν) is constant on each orbit O ⊂M for the Tk-action. A standard fact is that
O is a homogeneous manifold of G i.e. O is diffeomorphic to G/Gp, where Gp is the stabilizer
of p ∈ O. So, O is compact as G is and thus, µξ restricted to O admits a critical point. At
this point, ω(Xξ, Xν) = −dµξ(Xν) = 0, whence the function ω(Xξ, Xν) vanishes identically on
O, thus on M . Thus, we obtain the following characterization of hamiltonian actions of tori.

Lemma 2.8. Suppose that G = Tk acts symplectically on (M,ω). Then the action is
hamiltonian, if and only if, for any ξ ∈ g there exists a smooth map µξ on M which satisfies
Hamilton’s equation:

ιXξω = −dµξ.
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Proof. If the action is hamiltonian just consider µξ(p) := 〈µ(p), ξ〉 the projection of µ along
ξ and the claim follows by the definition of the moment map. We already have shown the
converse.

�

Example 2.9. Consider the Tk-action on (R2k, ωstd) given in example (2.2). Introduce polar
coordinates zi = rie

√
−1ϕi on Ck \ (0) ' R2k \ (0) for all i = 1 . . . k, then the symplectic 2-form

ωstd becomes

ωstd =
k∑
i=1

ridri ∧ dϕi.

The fundamental vector fields associated to the canonical basis of Rk are ∂
∂ϕi

. Thus ι ∂
∂ϕi

ω =

−ridri = −d(1
2r

2
i ) so the momentum mapping of the Tk-action on Ck \ (0) (hence on Ck by

continuity) is defined (up to an additive constant) by

µ(z) := 1
2(|z1|2, . . . , |zk|2).

One notices that Im(µ) = {(x1, . . . , xk) ∈ Rk : xi ≥ 0} is the nonnegative orthant of Rk.

Example 2.10. The 2-sphere S2 := {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1} is equipped with an
atlas containing two charts (U1, φ1) and (U−1, φ−1) defined by the stereographic projections
from the North pole N = (0, 0, 1) and the South pole S = (0, 0,−1) as:

(U1, φ1(x, y, z)) =
(
S2 \N, (x, y)

1− z
)

and
(U−1, φ−1(x, y, z)) =

(
S2 \ S, (x, y)

1 + z

)
.

From the stereographic projection from N , one obtains that the coordinates on U1 are
x = 2u

1+u2+v2 , y = 2v
1+u2+v2 , z = −1−u2−v2

1+u2+v2 for (u, v) ∈ R2 and thus the 2-form

ωS2 := 4du ∧ dv
(1 + u2 + v2)2

induces a symplectic structure on the 2-sphere S2. The action of S1 = T1 on (S2, ωS2)
around the z-axis of R3 is hamiltonian. Indeed, in the basis (du, dv) the 1-form −dz is
(−4u,−4v)

(1+u2+v2)2 and the interior product of ωS2 by the induced fundamental vector field −u∂u, v∂v,
for u, v respectively, gives −4u

(1+u2+v2)2 and −4v
(1+u2+v2)2 respectively. Thus, for ξ = u, v one gets

ιXξωS2 = −dz so the action is hamiltonian with momentum map the z-coordinate
µ(x, y, z) = z.

In fact, lemma (2.8) works for an abelian Lie group G since we needed only the abelian
condition on G. A moment map µ : M → Rk for a hamiltonian torus action is determined up
to the addition of a vector in Rk. Indeed, under the action of Tk, any µ+ c with c ∈ Rk is also
a moment map for that action. Reciprocally, two moment maps for a given hamiltonian torus
action differ by a constant cf. infra. A remarkable fact on faithful T-action is the following
general result about faithful actions of compact Lie group. We refer to ([GGK02], corollary
B.48) for a proof.

Proposition 2.11. Suppose the Tk-action is effective on M . Then
M0 = {p ∈M : the T-action is free at p}

is an open dense subset of M .
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Remark 2.12. If a compact Lie group G acts effectively on M and if O denotes a Tk-orbit
for this action, then O is a compact homogeneous manifold G/Gp of dimension ≤ G, where
Gp denotes the stabilizer of p ∈M . We call principal orbits of G the subset of points of M0

which orbits are of dimension = dim G.

An important consequence is the following lemma, using the fact that the symplectic
structure is identically zero on TpO, where O is a principal orbit. In other words, TpO is an
isotropic submanifold of the symplectic vector space TpM .

Lemma 2.13. Suppose that (M,ω) admits an effective hamiltonian action of G := Tk. Then
dimM > 2k.

Proof. Let p ∈ M a point where the action of G is free, i.e. Gp is trivial. Then the orbit
G · p is diffeomorphic to G/Gp = G, so has dimension k. But we have seen that Tp(G · p) is
a ω-isotropic submanifold of TpM , in others words Tp(G · p) ⊂ Tp(G · p)⊥ with respect to ω.
Therefore, k = dim(G · p) ≤ 1

2dimM . �

Hereafter is the central result on the theory of hamiltonian action of torus.

Theorem 2.14 (Atiyah [A82], Guillemin-Stenberg [GS82]). Suppose that a compact
connected symplectic manifold (M,ω) admits a hamiltonian action of Tk, with momentum
map µ : M → Rk. Then,
(i) the image of µ is the convex hull ∆ ⊂ Rk, of the images of the fixed points for the

Tk-action on M ;
(ii) for all p ∈ ∆, the variety µ−1(p) is connected.

2.3. Toric symplectic manifolds and Delzant theorem.

Definition 2.15. A symplectic toric manifold is a connected compact symplectic manifold
(M2k, ω) of real dimension 2k endowed with an effective hamiltonian action ρ of a torus T
such that

dim T = k = 1
2dim M.

We say that two toric symplectic manifolds (M1, ω1,T1, ρ1) and (M2, ω2,T2, ρ2) are equiva-
lent if there exist an isomorphism of Lie group φ : T1 → T2 and a diffeomorphism Φ : M1 →M2
with Φ∗ω2 = ω1 so that,

Φ(ρ1(g)(p)) = ρ2(φ(g))(Φ(p)),
for all g ∈ T1, p ∈M1. In this case, one has that µ1(M1) and µ2(M2) differ by a translation
of t∗. Indeed, for any ξ ∈ t, we have d〈Φ∗µ2, ξ〉 = Φ∗d〈µ2, ξ〉 = −Φ∗ιXξω2 = −ιXξω1. Hence
Φ∗µ2 is also a moment map for the action of T1 on M1, so there exist a constant γ ∈ t∗ such
that Φ∗µ2 = µ1 + γ. Thus

µ2(M2) = Φ∗µ2(M1) = µ1(M1) + γ.

Up to this equivalence, Delzant’s theorem classifies symplectic toric manifolds (M,ω,T) in
terms of the corresponding Delzant polytope. One notices that the vector space t being the Lie
algebra of a torus T, it comes with a lattice Λ ⊂ t satisfying 2πΛ = exp−1(1), where 1 is the
identity element of T. To put it another way, Λ is the lattice of t such that exp : t/2πΛ ' T.

Definition 2.16 (Delzant polytope). Let V be a real vector space of dimension m and
Λ a lattice in V . Consider a convex polytope ∆ written as the minimal number of d linear
inequalities

∆ = {x ∈ V ∗ |Lj(x) := 〈uj , x〉+ λj ≥ 0, ∀j = 1 . . . d},
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where λj ∈ R and uj ∈ V are called (labelled) normals of ∆. We shall refer the collection
of affine function L := {L1, . . . , Ld} as a labelling of ∆, and the couple (∆,L) as a labelled
polytope in V . We define a Delzant polytope to be the triple (∆,L,Λ) satisfying:
(i) ∆ is compact ;
(ii) ∆ is simple, i.e. each vertex x0 of ∆ annihilates exactly m of the Lj’s and that the

corresponding normals constitute a basis of V ;
(iii) ∆ is integral, i.e. for each vertex x0 of ∆,

spanZ{uj ∈ V : Lj(x0) = 〈uj , x0〉+ λj = 0} = Λ.

Remark 2.17. One takes d as the number of facets (i.e. faces of codimension 1) of ∆. If all the
λj are in Zm, or alternatively if all the vertices of ∆ are in Zm, then from ∆ we can construct
a polarized toric manifold.

Example 2.18. From example (2.10), recall that the momentum map for the S1-action on
(S2, ωS2) by the rotation around the z-axis is µ(x, y, z) = z so the Delzant polytope is [−1, 1].
The Delzant polytope of CP1 ×CP1 ×CP1 is the cube with vertices (±1,±1,±1).

Theorem 2.19 (Delzant [D88]). There exists a bijection between the equivalence classes of
2m-dimensional toric symplectic manifolds and the equivalence classes of Delzant polytope
(∆,L,Λ) in a vector space V ∗ of dimension m, up the the natural action of the affine group
Aff(V ∗) on the triples (∆,L,Λ) i.e. we have a one-to-one correspondence:

{symplectic toric manifold (M2m, ω,T)}∼
1:1←→ {Delzant polytope (∆,L,Λ)}∼.

The equivalence relation ∼ of the lhs (resp. rhs) is understood to be for equivariant
symplectomorphisms (resp. lattice isomorphisms). The statement, M is toric symplectic
=⇒ µ(M) is Delzant, follows from the proof of theorem (2.14). We shall sketch the Delzant
construction which associates to a toric symplectic manifold (M,ω,T) a Delzant polytope
(∆,L,Λ).

2.3.1. Symplectic reduction. Without enter deeper in the construction, this digression on
symplectic reduction will be of help when, in the next section, we will be concerned with the
symplectic structure on CPm = Cm+1\(0)/C∗.

If one considers a symplectic manifold X with an (effective, smooth, proper) action of the
torus T1 (of real dimension 1). One can ask what is the symplectic structure of the smooth
quotient manifold X̃ = X/T. Unfortunately, since dim X̃ = dimX − 1 is odd, X̃ cannot
carry a symplectic structure. The reduction theorem allows us, at least, to retrieve an even
dimensional manifold. The idea is the following ; assume that T has a subgroup N acting in a
hamiltonian fashion on X then one restricts the action of N on a level set of the momentum
map µN (for the N -action). Thus, by taking the quotient of the level set by N , one can
lowered the dimension by 1 thus get (at least) a manifold with even dimension. He who can
do less can do more, the reduction theorem is the fundamental result in symplectic reduction,
it allows one to construct symplectic quotient. The context is explained hereafter.

Consider G a compact Lie group with a closed normal subgroup N/G acting in a hamiltonian
fashion on a symplectic manifold (M,ω). Let µG : M → g∗ the momentum map for the G-
action. The momentum map for the N -action, µN : M → n∗ is obtained by composing µG
with the natural projection ι∗ : g∗ → n∗.

Proposition 2.20 (Marsden-Weinstein [MW74], Meyer [M73]). Suppose further that
C ∈ g∗ is a fixed point for the coadjoint action of G on g∗ and such that ι∗(C) = c is a regular
value for µN . Assume that the action of N on µ−1

N (c) is free. Then, the N -invariant symplectic
2-form ω, becomes a symplectic form on the manifold Mred :=

(
µ−1
N (c)

)
/N , when restricted to
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µ−1
N (c) i.e. if ω|µ−1

N (c) =: ωred then
(Mred, ωred)

is a symplectic manifold. Furthermore, the natural action of G/N on Mred is hamiltonian with
momentum map (viewed as an N -invariant function on µ−1

N (c)) given by
µ = µG − C.

Remark 2.21. The symplectic quotient Mred is sometimes denoted by M//N and is called the
reduction of (M,ω) at c ∈ n∗ with respect to G,µ. The symplectic form ωred is called the
reduced symplectic form. The dimension of the manifold M//N is dimM − 2dimN . One may
found this reduction theorem at the level c = 0. Following Apostolov [A19] (to which we
refer for a detailed proof), the construction can be summarize in the following diagram, where
we let S := µ−1

N (c),

M g∗

S g∗

Mred (g/n)∗

µG

i

π

(µG)|S

µ

`:=j+C

where i : S ↪→ M is the inclusion map and π : S � Mred the projection map. The natural
inclusion of (g/n)∗ in g∗ is denoted by j, and the map ` : (g/n)∗ → g∗ is the affine map defined
by `(x) = j(x) + C, for all x ∈ (g/n)∗.

2.4. Example: CPm. To illustrate the theorem of Delzant, we shall see that the complex
projective space CPm together with its Fubini-Study metric gFS defines a symplectic toric
manifold and that the Delzant polytope of (CPm, gFS) corresponds to the usual m-simplex.
Recall that the complex projective space CPm is the quotient of Cm+1 \(0) by the holomorphic
action of C∗ given by (λ, z) 7→ λz where (λ, z) ∈ C∗ ×Cm+1 \ (0),

CPm = Cm+1\(0)/C∗.
The homogeneous coordinates [z0 : · · · : zm] are equivalent classes under the C∗-action of
elements (z0, . . . , zm) ∈ Cm+1 \ (0). The affine charts Ui := {[z0 : · · · : zm] ∈ CPm : zi 6= 0} '
Cm recover CPm, and we defined a complex atlas with the maps φi : Ui → Cm defined by

φi([z0 : · · · : zm]) =
(z0
zi
, . . . ,

zi−1
zi

,
zi+1
zi

, . . . ,
zm
zi

)
for i = 0, . . . ,m. Thus CPm carries a structure of a complex manifold of (complex) dimension
m. In order to describe the Fubini-Study metric on CPm it is more convenient to work with
the topological identification

CPm = S2m+1/S1

as the quotient of the unit hypersphere S2m+1 of Cm+1 by the group of rotation S1. The
quotient is realized in the following fashion ; one takes the quotient of Cm+1 \ (0) under the
dilatation map Cm+1 \ (0) 3 z 7→ |z|/z ∈ S2m+1 and retaking the quotient of S2m+1 by the
diagonal (i.e. componentwise) circle action S1 gives us the announced result. The standard
flat metric of Cm+1 ' R2m+2

g0 =
m∑
i=1

dx2
i + dy2

i ,

is compatible with the symplectic standard form ωstd and the almost complex structure J0
is the usual one on Cm+1 (cf. § 1.1). As both g0 and ωstd are preserved under the action of
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Tm+1, the flat Kähler manifold (Cm+1, J0, g0, ωstd) is Tm+1-invariant. The unit hypersphere
S2m+1 carries the canonical round metric gS2m+1 induces by the restriction of the euclidean
metric g0 on S2m+1. The Fubini-Study metric gFS is defined as the unique metric such that
the projection map (called the Hopf fibration):

π : S2m+1 −→ CPm

is a riemannian submersion. In order to determine the symplectic structure on CPm =
S2m+1/S1 one starts with the Tm+1-hamiltonian action on the symplectic manifold (Cm+1, ωstd)
(cf. example 2.2). We restrict this action to the diagonal action of the circle S1 on the sphere
S2m+1 ⊂ Cm+1 given by ρ(e

√
−1t)(z0, . . . , zm) = e

√
−1t(z0, . . . , zm). In order to highlight

proposition (2.20), we let N :=
(
e
√
−1t, . . . , e

√
−1t) ⊂ Tm+1, so N acts on S2m+1 and induces

a natural action of Tm = Tm+1/N on CPm = S2m+1/N . At this point, one notice that the
diagonal action of S1 on Tm+1 is the same as the natural action of N ⊂ Tm+1 on Tm+1, so
one has the identification Tm+1/S1 = Tm+1/N . By composing the moment map (for the
Tm+1-action) µTm+1(z) = 1

2
(
|z0|2, . . . , |zm|2

)
with the projection map ι∗ : Rm+1 � R (which

is adjoint to the Lie algebras of the inclusion N ⊂ Tm+1) thence one found

µN (z) = 1
2

m∑
i=0
|zi|2.

Then, as announced,

S2m+1 = µ−1
N

(1
2

)
,

and since N acts freely on this level set, applying proposition (2.20), we can conclude that
(CPm, ωFS,Tm) is a toric symplectic manifold for the action of the torus Tm = Tm+1/N
equipped with the so-called Fubini-Study symplectic form ωFS. For example, for m = 1 the
Fubini-Study form on U0 = {[z0 : z1] ∈ CP1 : z0 6= 0} is given by

ωFS = dx ∧ dy
(1 + x2 + y2)2 ,

where z1/z0 = z is the usual local coordinate on U0 ⊂ CP1, with z = x+
√
−1y ∈ C1 and one

notice that ωFS = 1
4ωs2 .

The momentum map, induced by the action of Tm+1, and restricted to the action of S1

gives
µ : CPm −→ (tm+1/t1)∗.

Its image is thus identified with the intersection of the nonnegative orthant Im(µTm+1) =
{(x0, . . . , xm) ∈ Rm : xi ≥ 0} with the hyperplane x0 + · · ·+ xm = 1

2 . For example, for m = 1,

µ
(
[z0 : z1]

)
= 1

2 ·
|z1|2

|z0|2 + |z1|2
,

and thus the moment polytope of CP1 is [0, 1/2]. Another way to see the moment polytope is
to consider the natural action of the subtorus Tm = (1, e

√
−1t1 , . . . , e

√
−1tm) ⊂ Tm+1 on CPm

defined by:

(5) ρ(1, e
√
−1t1 , . . . , e

√
−1tm)

(
[z0 : · · · : zm]

)
= [z0 : e

√
−1t1z1 : · · · : e

√
−1tmzm].

The subtorus Tm fits in the short exact sequence of Lie groups,

1 −→ Tm −→ Tm+1 −→ Tm+1/S1 −→ 1,

in particular the subtorus Tm is isomorphic to Tm+1/S1 = Tm+1/N . From the induced
projection map between the dual of Lie algebras (tm+1)∗ � (tm)∗ ' Rm one deduces that the
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image of the momentum polytope is the m-simplex:

(6) ∆m = {(x1, . . . , xm) |
m∑
i=1

xi ≥
1
2 and xi ≥ 0, i = 1, . . . ,m}.

Proposition 2.22. The complex projective manifold (CPm, ωFS,Tm) is a symplectic toric
manifold endowed with the action of the torus Tm (via equation 5). The Delzant polytope of
CPm is the standard m-simplex ∆m ⊂ Rm (cf. equation 6) with the standard lattice Zm and
labelled by

L = {Li(x) = xi, i = 1, . . . ,m and Lm+1 = 1
2 −

m∑
i=1

xi}.

Moreover, since by construction the metric gFS is invariant by Tm, we obtain (CPm, ωFS)
as a Tm-invariant Kähler structure. In particular, if V ⊂ CPm is a projective complex variety,
since the exterior derivative commutes with the pullback, one can restrict the Fubini-Study
metric of CPm on V , thus V admits a Kähler structure. Note that the Kähler structure
depends on the embedding V ⊂ CPm.

2.5. Delzant’s construction. We give the recipe to get a symplectic toric manifold M∆ from
the data of a Delzant polytope ∆ i.e. Delzant’s construction. We begin with the ingredients.
Let (∆,Λ,L) be a Delzant polytope in the dual space V ∗, where V is a m-dimensional vector
space. By the integral condition of Delzant, the lattice Λ is defined entirely from the data of
the labelling L as the span of dLi =: ui ∈ V ∗ over Z. We let T := V/2πΛ be the corresponding
torus. Under the action of a translation in Aff(V ∗), one can assume without loss of generality
that 0 ∈ ∆ and thus Li(0) = λi ≥ 0, for all i = 1, . . . , d. Delzant’s construction, grosso modo,
constructs M∆ as the symplectic quotient (cf. section 2.3.1) of Cd by a (d−m)-dimensional
torus N which acts in a hamiltonian fashion on Cd i.e.

M∆ := Cd//N.

Step 1. Construction of the (d−m)-torus N .
Let {e1, . . . , ed} be the canonical basis of Rd consider the linear map τ : Rd → V defined by

ei 7→ ui.

Delzant’s conditions, satisfied by ∆, show that τ is onto and sends the standard lattice Zd of
Rd in the lattice Λ of V . Se we get a well defined homomorphism of tori

τ : Td = Rd/2πZd → T = V/2πΛ
and we take N to be the kernel of the induced homorphism τ , N := Ker τ . Recall that V is of
dimension m. By definition N is a connected subgroup of Td of dimension (d−m). One note
that the subtorus Td fits in the short exact sequence,

1 −→ N
ι−→ Td τ−→ T −→ 1,

which induces a short exact sequence at the level of the corresponding Lie algebras

0 −→ n
ι−→ Rd τ−→ t −→ 0,

and dually we have

(7) 0 −→ t∗
τ∗−→ (Rd)∗ ι∗−→ n∗ −→ 0.

Step 2. The hamiltonian N -action on Cd.
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Recall that the Td-action hamiltonian action on Cd has momentum map

µTd(z) = 1
2(|z1|2, . . . , |zd|2) + c.

We take the constant c to be λλλ = (λ1, . . . , λd) = (L1(0), . . . , Ld(0)) where the last identity
comes from the assumption 0 ∈ ∆. Let µN := ι∗ ◦ µTd : Cd → n∗ be the momentum map for
the action of the subtorus N ⊂ Td.

Step 3. The zero level set S := µ−1
N (0) is a compact submanifold of Cd.

We consider ∆′ := τ∗(∆) the compact image of ∆ under the inclusion τ∗. We claim that
Im(τ∗) ∩ Im(µTd) = ∆′. According to this claim and using the s.e.s (7) we infer that

S = µ−1
N (0) = (ι∗ ◦ µTd)−1(0) = µ−1

Td(Ker ι∗) = µ−1
Td(Im τ∗) = µ−1

Td(∆′).

Since µTd : Cd → (Rd)∗ is proper, S is compact. The set S is a closed manifold in Cd.
Indeed, since λi > 0, λλλ are in the interior of the nonnegative orthant of (Rd)∗, which is the
momentum image of Cd. So λλλ is a regular value of µTd and it follows that ι∗(0) is as well a
regular value of µN . It remains to prove the claim : Im(τ∗) ∩ Im(µTd) = ∆′.

Proof of the claim. Trivially, ∆′ = τ∗(∆) ⊂ Im(τ∗). By the very definition of µTd , y ∈ Im(µTd)
iff 〈y, ei〉 ≤ λi. For any x ∈ ∆, 〈τ∗(x), ei〉 = 〈x, ui〉 ≤ λi, so τ∗(∆) ⊂ Im(µTd) and thus
Im(τ∗) ∩ Im(µTd) ⊃ ∆′. For the converse we suppose y = τ∗(z) = µTd(w), it follows that
〈z, ui〉 = 〈z, τ(ei)〉 = 〈τ∗(z), ei〉 = 〈y, ei〉 ≤ λi, i.e. y ∈ ∆. Thus Im(τ∗) ∩ Im(µTd) ⊂ ∆′. We
proved Im(τ∗) ∩ Im(µTd) = ∆′.

�

Step 4. N acts freely on S.
Let z ∈ S be a point mapping to a vertex of ∆ ; we first determine the stabilizer Tz of z under
the action of Td. We claim that the stabilizer Tz is the subtorus of dimension m:

Tz = (e
√
−1t1 , . . . , e

√
−1tm , 1, . . . , 1) ⊂ Td.

Moreover, from the integral condition of Delzant, the map τ : Tz → T is injective (it is thus
an isomorphism). Thus it follows trivially,

Nz = N ∩Tz = Ker(τ) ∩N = {1} ∩N = {1}.

Since the stabilizer at any point z′ ∈ S is included in the stabilizer of a point z ∈ S
corresponding to a vertex, which is trivial, we conclude that N acts freely on S.

Proof of the claim. We first determine the stabilizer Tz at points z = (z1, . . . , zd) ∈ S. It is a
subtorus of Td of dimension d minus the cardinal of the set I := {i | zi = 0}. The pattern is the
following, z is in ∆0 iff Td acts freely on z, z is in one facet iff Td acts with a 1-dimensional
stabilizer, z is in the intersection of two facets iff Td acts with a 2-dimensional stabilizer, etc.
Note that if I ⊂ I ′ then the faces they determines, satisfy FI′ ⊂ FI , which is maximal when
the face FI corresponds to a vertex. The corresponding largest set I is describe as follows.

According to the s.e.s (7) and the previous claim µTd(z) ∈ ∆′. By the definition of ∆′,
there exists x ∈ ∆ such that µTd(z) = τ∗(x). Thus, zi = 0⇔ 〈µTd(z), ei〉 = λi ⇔ 〈x, ui〉 = λi
(which determines a face FI) i.e. x is a point in the intersection of facets whose adjacent
normal vectors are ui. By the condition (ii) of the Delzant polytope ∆ we thus have that
dim(Tz) = m and it is achieved precisely at (the images of) the vertices of ∆. Hence,

Tz = (e
√
−1t1 , . . . , e

√
−1tm , 1, . . . , 1) ⊂ Td.

�
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Finally we savour the above construction. From the Delzant polytope ∆, we have constructed
a compact symplectic toric manifold (M∆, ω∆) of real dimension 2d− 2(d−m) = 2m, where
ω∆ is the reduced symplectic form and

M∆ := Cd//N = S/N.

We explain how the momentum polytope of M∆ is ∆. This comes mainly from the Delzant
construction with help of the so-called reduction by stages. Via the isomorphism τ we get
an embedding τ̂ : Tm ↪→ Td satisfying τ ◦ τ̂ = IdTm . We get a hamiltonian action of Tm on
Cd with moment map τ̂ ◦ µTd . This action commutes with the N -action thus by performing
"reduction in stages" (see e.g. [MMOPR07]), we have that the following diagram

S Cd
(
Rd
)∗

S M∆
(
Rm

)∗
i µTd

τ̂∗

π µ

commutes. Where i is the inclusion S ↪→ Cd and π is the natural projection on classes
S � M∆. From these arguments we obtain an induced hamiltonian action of Tm on M∆
whose moment map µ makes the diagram commutative i.e. µ◦π = τ̂∗ ◦µTd ◦ i. The Tm-action
is free as it is induced by the Td-action, which is free. Thus, from the Delzant construction we
immediately infer

µ(M∆) = µ ◦ π(S) = τ̂∗ ◦ µTd ◦ i(S) = τ̂∗ ◦ µTd

(
(ι∗ ◦ µTd)−1(0)

)
= τ̂∗(Ker(ι∗)) = τ̂∗(τ∗(∆)) = (τ ◦ τ̂)∗(∆)
= ∆.

2.6. Kahler structures on symplectic toric manifolds. As observed by Delzant himself,
from his construction, symplectic toric manifolds admit a Kähler structure. Later, following
Delzant’s construction Lerman and Tolman, showed that these manifolds admits various
structures and obtained a generalization of Delzant’s theorem in the toric orbifold setting.

2.6.1. Kähler toric manifolds. Following Delzant’s construction, since M∆ is obtained via Cd,
which admits a (flat) Kähler structure, one can show that M∆ is in fact a Kähler manifold.
Hence the following result suggests that the Tm-action on M∆ preserves both symplectic and
complex structures.

Proposition 2.23 (Delzant [D88]). Any symplectic toric manifold (M,ω,T) admits a ω-
compatible T-invariant Kähler structure (g0, J0).

2.6.2. Complex toric varieties from Delzant polytopes. For a symplectic toric manifold (M,ω,T),
corresponding to a Delzant polytope (∆,L,Λ) one can associate a complex manifold MC

∆ of
dimension m. We give two constructions, one by patchwork using affine charts and the other
by means of the Geometric Invariant Theory.

For the first construction, consider a vertex v ∈ ∆ and at v, take a copy of Cm
v =

{(zv1 , . . . , zvm)}. By integral condition of Delzant polytope ∆, the collection {uv1 , . . . , uvm} is a
basis for the lattice Λ. Thus we have an identification Tm ' T, induced by the linear map
ei 7→ uvi where {ei}i is the canonical basis of Rm. To emphasis, we let Tm

v := Tm. The action
of Tm

v on the chart Cm
v is the standard one (example 2.2).

Let w ∈ ∆ be another vertex, it comes with a basis {uw1 , . . . , uwm} of Λ, corresponding
to the normal of the facets adjacent to w. The change of coordinates between the basis
{uv1 , . . . , uvm} and {uw1 , . . . , uwm} is given by the transition matrix A = (aij) ∈ SLm(Z). It
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allows us to identify the dense subset (C∗)mv ⊂ Cm
v with the dense subset (C∗)mw ⊂ Cm

w via
the identification:
(8) zwi = (zv1)ai1 · · · (zvm)aim

for i = 1, . . . ,m. This transition map is equivariant with respect to the map Cm
v → Cm

w where
Tm
v (resp. Tm

w ) acts on Cm
v (resp. Cm

w ). To conclude, one obtains a complex manifold MC
∆

of dimension m, covered by an equivariant atlas of affine charts Cm
v , parametrized by the

vertices v ∈ ∆. The intersection of charts Cm
v ∩Cm

w is identified with (C∗)m via equation (8).
Moreover MC

∆ inherits an effective action of a complex algebraic torus TC := {(z1, . . . , zm) ∈
Cm : zi 6= 0} ' (C∗)m by complexify the effective action of T on (M,J).

One can explicitly construct MC
∆ in the category of algebraic varieties by means of the

Geometric Invariant Theory (GIT), see Kirwan [K841]. The idea is to complexifies the
(d−m)-torus N and to delete "unstable" points of Cd for the action of NC. One defines

MC
∆ := (Cd)ss/NC

as the orbit space of the holomorphic action of the complexified (d −m)-dimensional torus
NC ' (C∗)d−m on the subset (Cd)ss ⊂ Cd of semi-stable points for NC-action on Cd, i.e.
the points such that the closure of the NC-orbit does not contain 0 ∈ Cd. The heart of the
construction of MC

∆ is based on the data of the normals ui = dLi in t. They are encoded by
the so-called fan F(∆,L) associated to ∆.
Definition 2.24. Let (∆,L,Λ) be a Delzant triple and P = {F ⊂ ∆} the poset of closed facets
of ∆, partially ordered by the inclusion. The fan F(∆,L) of (∆,L) is the union⋃

F∈P
CF

of polyhedral cones CF = {dL |L(x) ≥ 0 ∀x ∈ ∆, s.t. L(x) = 0 ∀x ∈ F} in V ∗.
Theorem 2.25 (Lerman-Tolman [LT97]). Suppose J is T-invariant ω-compatible complex
structure on the toric manifold (M,ω,T). Then, (M,J) is T-equivariantly biholomorphic to
the complex manifold MC

∆ associated to the fan F(∆,L) of the corresponding Delzant triple
(∆,L,Λ).

Actually, through the Delzant construction, the complex manifold MC
∆ is a smooth toric

projective variety. Under the identification by the above theorem we have the following result.
Proposition 2.26. Every symplectic toric manifold (M,ω,T) endowed with a T-invariant
ω-compatible Kähler structure J is a projective variety.
Proof. Let s ∈ H2,0(M,C) be a holomorphic 2-form. In view of the GIT construction, recall
that MC

∆ is the quotient of the (complexifies) torus NC ' (C∗)d−m acting in a holomorphic
fashion on (Cd)ss. Then, fix a basis {e1, . . . , ed−m} of Lie((C∗)d−m) = Cd−m and denote by
Kj := Xej the fundamental vector fields on M induced by Cd−m. As the torus Cd−m acts in a
holomorphic way, the Kj ’s defined thus holomorphic vector fields, equivalently, the (1, 0)-part
Z = K1,0

j is holomorphic in the usual sense, i.e. can be written in (local) holomorphic
coordinates zj as Z =

∑m
j=1 Zj∂zj where the component Zj are holomorphic functions of the

coordinates zj . Thus the function s(K1,0
i ,K1,0

j ) ∈ H0(M,O) is constant as M is compact.
Moreover, this function vanishes on the (reciprocal image by the momentum map µ of the)
vertices of ∆. Indeed, let p be such a point, by Atiyah-Guillemin-Stenberg, p is a fixed
point for the action and moreover, it is thus a zero of Ki for all i (see [T20]). Furthermore,
s(K1,0

i ,K1,0
j ) has holomorphic components, hence by analytic continuation, one can extend

this function to all M and thus this function vanishes identically on M . Then one conclude by
Hodge theorem:

H0,2(M,C) = H2,0(M,C) = {0}.
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The Hodge decomposition is then written H2(M,C) = H1,1(M,C) i.e. H2(M,C) is the group
of closed (1,1)-forms. Thus, one can assume the Kähler form [ω] ∈ H1,1(M) to be with integer
coefficients. This is equivalent to M being projective by the Kodaira embedding theorem.

Indeed, consider the exponential sequence on the complex manifold (M,J)

0 −→ Z ι−→ OM → O∗M −→ 0,

where Z is the subsheaf of germs of holomorphic functions with value in Z. It is the kernel of
the surjective morphism of sheaves OM 3 s 7→ exp(2iπs) ∈ O∗M ; the surjectivity is due to the
existence of the logarithm. Hence the short exact sequence. It induces a long exact sequence
in cohomology, in particular one has the exact sequence

(9) H1(M,O∗M ) c1−→ H2(M,Z) ι∗−→ H2(M,OM ).

Recall that H1(M,O∗M ) is encoding isomorphism classes of line bundles. By the exact sequence
(9), since ι∗([ω]) = 0, there exists a holomorphic line bundle L → M such that c1(L) = [ω].
Then, L is positive as ω is and therefore, by the Kodaira embedding theorem also ample. Hence
M is projective.

�

2.6.3. Polarized projective toric varieties. Smooth compact toric symplectic manifolds are
related to the notion of polarized toric variety. Let’s first recall the definition. A smooth
polarized (projective) complex variety is a compact complex manifold M of complex dimension
m endowed with an holomorphic very ample line bundle L→M . By very ample, one means
that the map

M −→ P
(
H0(M,L)∗

)
' CPN

is an holomorphic embedding and thus L is the pullback, via this map, of the anti-tautologic
line bundle O(1) restricted to the dual of the (N + 1)-dimensional complex vector space of
holomorphic sections of L, H0(M,L)∗. One denotes by M̃ the embedded image of M in CPN

and consider the identification (M,L) ' M̃ , where the polarization on M̃ is just the restriction
of O(1) on CPN .

Definition 2.27. A toric polarized projective variety M̃ ⊂ CPN is an m-dimensional complex
submanifold of CPN which is the Zariski closure of a principal orbits for the action of an
m-dimensional complex torus TC (viewed as a complex Lie subgroup of SLN+1(C)).

For example, any smooth polarized toric complex variety is a symplectic toric manifold.
Indeed, if Tm is the real m-dimensional torus corresponding to TC, let TN ⊂ SLN+1(C) be
a maximal real torus such that Tm ⊂ TN . Thus, on M̃ a symplectic form ω̃ is given by the
restriction (on M̃) of a TN -invariant (cf. infra) Fubini-Study Kähler metric ωFS defined on
CPN ; moreover ω̃ belongs to 2πc1(L). The polarized toric variety M̃ admits thus a symplectic
structure via ω̃. Furthermore, this structure is compatible with the toric structure, defined as
follows. The Tm-action on M̃ is hamiltonian with respect to the symplectic structure ω̃ as
Tm ⊂ TN and TN acts in a hamiltonian fashion on CPN .

From this fact, one can ask how this translates in terms of Delzant polytopes, i.e. how to
construct a polarized toric variety from the data of a Delzant polytope. The corresponding
class of Delzant polytopes is given by lattice Delzant polytopes.

Definition 2.28. A lattice Delzant polytope is a Delzant polytope (∆,L,Λ) such that all the
vertices of ∆ belongs to the dual lattice Λ∗ ⊂ V ∗.
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Let (∆,L,Λ) be such a polytope. One can take a basis {e1, . . . em} of Λ. Then, one
denotes by A(∆), the set of all lattice points λ(i) (for i = 0, . . . , N) written in coordinates as
λ(i) = (λ(i)

1 , . . . , λ
(i)
m ). Considering ∆ ⊂ (Rm)∗ with the standard lattice Λ∗ = Zm, one can

view the vertices of ∆ as elements of Zm. Now one considers the action ρ of TC ' (C∗)m on
CPN via:

ρ(z1, . . . , zm)[s0 : · · · sN ] := [(sλ
(0)
1

1 · · · sλ
(0)
m
m )s0 : · · · : (sλ

(N)
1

1 · · · sλ
(N)
m
m )sN ].

To this data, one associates the toric polarized variety MA(∆) ⊂ CPN as the Zariski closure
(in CPN ) of the (C∗)m-orbit of the point [1 : · · · : 1] ∈ CPN via ρ.

Theorem 2.29 (Section 6.6 in [C03]). For any lattice Delzant polytope ∆, MA(∆) is a
smooth polarized toric projective variety whose Delzant polytope is ∆ ⊂ Rm with dual lattice
Λ∗ = (Z)m. In particular, MA(∆) is biholomorphic to the complex manifold MC

∆ .

With this last point and proposition 2.26, one deduces a correspondence between smooth
toric projective varieties and complex toric varieties.

Remark 2.30. Moreover, with the notion of lattice polytope we retrieve easily the projectiveness
of toric symplectic manifolds (M,ω,T). Indeed, one notices that in the fan F(∆,L), the λ’s
does not appears, thus one can take Λ = Zm and λi ∈ Q, then the vertices are solutions of
systems with rational coefficients and thus are rational too. Then ∆ is a lattice polytope.
Thus MC

∆ is projective.
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3. Abreu-Guillemin Theory

We describe in this section the differential geometry aspect of toric varieties. The original
references for this section are [A98, G94]. Using Delzant theory, one considers (M,ω,T) an
m-dimensional symplectic toric manifold with momentum map µ : M → ∆. We seek to
describe locally and latter on, globally, toric Kähler metrics, i.e. T-invariant ω-compatible
Kähler metric on (M,ω,T). The local framework is due to Guillemin and generalized by
Calderbank-David-Gauduchon. The compactification, i.e. the extends of the local metric
to the whole M , is done via Abreu’s boundary condition. Inspecting T-invariant metrics, one
considers the space of orbits

Mred := M/T
for the T-action. On it the moment map µ is well defined as it is T-invariant and defined
a continuous function µ̂ (when Mred is endowed with the quotient topology). Moreover,
from Delzant’s construction µ̂ : Mred → ∆ is a bijection. In fact, one can equipped these
"manifolds" with a differentiable structure of manifolds with corners, i.e. locally modelled
on [0,∞)k ×Rm−k. The map µ̂ will be a diffeomorphism in this category. The differential
geometry of the polytope ∆ ⊂ t∗ is given by restricting smooth functions on t∗. The latter
smooth structure is related to the one on M as follows.

Lemma 3.1 (Schwarz [S74]). A T-invariant function f(p) on M is smooth if and only if
f(p) = φ(µ(p)) for some smooth function φ(x) on t∗.

In other words, the T-invariant function f is the pullback of the moment map by a smooth
function on t∗. In full generality, Schwarz proved it for any compact Lie group acting
orthogonally on Rn.

Recall that in Step 4 of Delzant’s construction, the pre-image p ∈ µ−1(y) of a point y ∈ ∆
situated on an open face of codimension k has a stabilizer which is a torus of dimension k.
As so, if ∆0 denotes the interior of ∆ , i.e. the set of points x ∈ ∆ which admit an euclidean
open ball Bx centred on x such that Bx ⊆ ∆. Then the pre-image of x ∈ ∆0 is a principal
orbit isomorphic to T. One considers the dense open subset in M :

M0 := µ−1(∆0)
consisting of points having principal orbits. Thus, µ : M0 → ∆0 is a principal T-bundle over
∆0. For the local theory, we want the T-action to be free ; this is precisely achieved when one
restricts the T-action to M0.

3.1. Toric Kähler metrics: local theory. One describe Kähler metrics onM0 by considering
a basis {e1, . . . , em} of t. For an element x ∈ t∗, we write x = (x1, . . . , xm) its decomposition in
the dual basis. From now on, to make things clearer we will identify the momentum function
µi := 〈µ, ei〉 with the coordinate function xi = 〈x, ei〉. We let Kj := Xej be the induced
fundamental vector field for each j. They are functionally independent on the dense open
subset M0 := µ−1(∆0) of M , meaning that K1 ∧ . . . ∧Km is nonvanishing on M0.

One let (g, J) be a T-invariant ω-compatible Kähler structure on M and consider:
Hij := g(Ki,Kj).

By Schwarz’s lemma, one identify this smooth function on M with a smooth function Hij on
∆. Furthermore, the corresponding symmetric matrix, will be denoted Hij = (Hij(x)) ; it is
smooth w.r.t x ∈ ∆. Without taking into account the basis we fixed, in this more intrinsic
fashion, H is defined as a S2t∗-valued smooth function over ∆ as:

Hx(ξ1, ξ2) := gp(Xξ1 , Xξ2),
for any ξ1, ξ2 ∈ t and any p in the fiber µ−1(x).
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On the boundary ∂∆ of ∆, the inverse of H happens to be singular, for example, on the
vertices of ∆, the smooth function H vanishes. This follows since the vertices corresponds to
fixed points of the action by Atiyah, Guillemin-Stenberg, and fixed points for the action
corresponds to the vanishing of all (fundamental) vector fields on this point, by a classical
result (e.g. [T20]). Thus, we restricts our attention on the interior polytope ∆0 ; on ∆0 the
matrix H is positive definite ; so let G := H−1. Consider the vector field JKj and one notice
that, with the identification µi ←→ xi, one has:

(10) dxi(JKj) = −ω(Ki, JKj) = −g(JKi, JKj) = −g(Ki,Kj) = −Hij(x).

With this observation, one considers the family (K1, . . . ,Km) that span an m-dimensional
space together with the family (JK1, . . . , JKm) that span its orthogonal w.r.t g. Since
the complex structure J is preserves by the T-action, i.e. LKiJ = 0, for all i, and by(
LKiJ

)
(Kj) = LKi(JKj) + JLKi(Kj), one infer LKi(JKj) = 0 has the other term (written

as a Lie bracket) in the r.h.s vanishes because t = LieT is abelian. Recall that the integrability
condition on J means that the Nijenhuis tensor vanishes, thus LJKiJKj = 0. In terms of Lie
bracket we have thus:

[Ki,Kj ] = [Ki, JKj ] = [JKi, JKj ] = 0.
One considers the family of vector fields {K1, . . . ,Km, JK1, . . . , JKm} which hence forms a
basis of TM0 orthogonal pairwise for the Lie bracket. To this basis correspond the dual basis
of T ∗M0:

{θ1, . . . , θm, Jθ1, . . . , Jθm}.
For any vector field X one set Jθ(X) = −θ(JX) for any 1-form θ. The pairwise orthogonality
for the Lie bracket is equivalent to 0 = dθi = d(Jθi), for i = 1, . . . ,m. Each 1 form Jθi is
basis w.r.t the fibration µ : M0 → ∆0, i.e. Jθi = µ∗(αi) for αi ∈ H1(∆0,R) ; because (in fact
it is equivalent) they satisfy ιKjJθi = 0 and LKjJθi = 0. As ∆0 ⊂ t∗ is contractible, the
fundamental group π1(∆0) is trivial, then H1(∆0,R) is trivial thus, αi = dyi for some smooth
function yi(x) defined on ∆0 up to an additive constant. Futhermore, with the convention
above on the 1-from θ (and omitting the pull-back by µ as usual) we infer that:

(11) Jθi = −dyi.

One finally obtain, with 10, the two identities

−Jθi = dyi =
m∑
j=1

Gij(x)dxj(12)

Jdxi =
m∑
j=1

Hij(x)θj(13)

or equivalently, −Jθi = Gdx and Jdxi = Hθ, when one see H,G as matrices. One defines the
t-valued 1-form θθθ, as

θθθ =
m∑
i=1

θi ⊗ ei.

This 1-form, seen alternatively as a matrix of 1-forms, determine entirely the connection locally
with zero curvature. Hence θθθ defines a flat connection 1-form.

With this framework, the symplectic 2-forms ω on M0 becomes :

(14) ω =
m∑
i=1

dxi ∧ θi,
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or in a more concise way ω = 〈dµ ∧ θθθ〉. One way to think of this system coordinates is as
follows. The universal cover of M0 := µ−1(∆0) is identified with ∆0 × t∗ ' ∆0 × t. On it
we have the system of coordinates (xi, θi), for i = 1, . . . ,m, which one also think of it as a
coordinate system on M0. Lets prove 4.9.

We evaluate ω on the basis {K1, . . . ,Km, JK1, . . . , JKm}. Primo, for any i, j, we have that
ω(Ki,Kj) = 0 vanishes onM . Indeed, as T acts symplectically onM , each fundamental vector
field K` preserves ω i.e. LK`ω = 0 and since T is abelian, LK`

(
ω(Ki,Kj)

)
= ω(∇K`Ki,Kj) +

ω(Ki,∇K`Kj) = 0. If O denote a T-orbit, it follows that the function ω(Kj ,Ki) is constant
on the submanifold O ⊂M . (An equivalent fashion to see this is by considering dω(Ki,Kj) =
−d(ιKiιKjω) and applying twice Cartan formula). Furthermore, O is a compact manifold as
T is compact (image of a compact by continuous function) and since µ is a moment map,
ω(Ki,Kj) = −dµi(Kj). Therefore, µi admits a critical point when restricted to O. At this
point ω(Ki,Kj) = −dµi(Kj) = 0, hence ω(Ki,Kj) is identically zero on O, so on M . Secundo,
as ω is J-invariant and from the last point we immediately infer that ω(JKi, JKj) vanishes on
M . Tercio, and at last, one has ω(Ki, JKj) = −dxi(JKj) = Hij(x) by 10. Thus, one conclude
that:

(15)

ω =
m∑

i,j=1
ω(Ki, JKj) θi ∧ Jθj

= −
m∑

i,j=1
Hij(x) Jθj ∧ θi

=
m∑
i=1

dxi ∧ θi

where the last line comes from (12) ; so −HJθj = HGdxi and this term is simply dxi as
H = G−1 on M0. By definition of Hij , and from the calculus above, the Kähler metric is:

(16)

g =
m∑

i,j=1
Hij

(
θi ⊗ θj + Jθi ⊗ Jθj

)
=

m∑
i,j=1

(
Gijdxi ⊗ dxj +Hijθi ⊗ θj

)
.

We used successively that Jθi = −dyi with the R-bilinearity of · ⊗ ·, and the latter argument
as for ω. In a more concise way, g = 〈dµ,G, dµ〉+ 〈θθθ,H, θθθ〉.
Lemma 3.2 (Guillemin [G94]). Let (M,w,T) be a symplectic toric manifold with Delzant
polytope ∆ and (g, J) an ω-compatible T-invariant Kähler structure. Then on M0, the Kähler
metric and Kähler form (g, ω) are of the form 15-16, where Gij = ∂2u

∂xi∂xj
for a smooth strictly

convex function u(x) on ∆0.
Conversely, for any strictly smooth function u on ∆0, the riemannian metric on M0 defined

by 16 with G = Hess(u),G = H−1 and the flat connection 1-form θθθ defines an ω-compatible
T-invariant Kähler structure on M0.
Definition 3.3 (Symplectic potential). The strictly smooth function, convex function u on
∆0 from lemma above is called the symplectic potential of g.
Proof. We will always denote, unless exception, the partial derivative ∂f

∂xi
by simply f,i. The

direction ⇒ was almost done in this section, thus one just have to check that G is the hessian
of a symplectic potential u. For β :=

∑m
i=1 yidxi, by (12), one get

dβ =
m∑
i=1

dyi ∧ dxi =
m∑

i,j=1
Gijdxi ∧ dxj = 0,
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so there exist a smooth function u on ∆0 such that β = du by Poincaré’s lemma. Thus yi = u,i
and so

(17) Gij = yi,j = u,ij

which is the hessian of u. For the converse, one only have to check that the almost complex
structure J on M0 is integrable. Assume that equation (17) remains true and let Gij =
g(Ki,Kj) thus the 1-forms

−Jθi =
m∑
i=1

Gijdxi =
m∑
i=1

u,ijdxi

are closed. Also, as θθθ is flat, the 1-forms θi are closed too so the 1-forms −Jθi +
√
−1θi forms

a basis of Λ1,0M0, thus locally this basis is written dyi +
√
−1dti. Hence, one has holomorphic

coordinates yi +
√
−1ti for J . This conclude. �

3.2. The scalar curvature on toric varieties. If (M2m, J, g, ω) is a Kähler manifold, the
riemannian metric g lifts to a hermitian metric on the anti-canonical bundle K−1

M =
∧m(T 1,0M)

whose canonical holomorphic structure is induces by the one on T 1,0 describe in the first
chapter. The corresponding Chern connection is the one induced by the Chern connection of
T 1,0, so the Chern curvature, denoted by RK

−1
M , of the Chern connection of K−1

M , is the trace
of the Chern curvature of T 1,0 and by definition 1.2, this is simply the riemannian curvature
R = RX,Y . Then, RK

−1
M is a purely imaginary 2-form which can be written as

R
K−1
M

X,Y =
√
−1tr(−J ◦RX,Y ) =

√
−1ρg(X,Y ).

Thus, the Ricci form ρg is the curvature form of the Chern connection of the anti-canonical
line bundle K−1

M . The Ricci form is related to the Ricci tensor Ricg as the symplectic form is
to the riemannian metric g, i.e.

ρg(X,Y ) = Ricg(JX, Y ).

The scalar curvature is by definition the trace of the Ricci tensor w.r.t the riemannian metric

sg := trg(Ricg),

or equivalently, sg = trω(ρg). Thus in view of its definition, one considers local complex
coordinates (z1, . . . , zm) such that

ω =
√
−1
2

m∑
i=1

dzi ∧ dz̄i and ρg =
√
−1
2

m∑
i=1

λidz
i ∧ dz̄i,

in this form, clearly λ1 + . . .+ λm = trω(ρg). If one writes ω(m) := dz1 ∧ z̄1 ∧ . . . ∧ dzm ∧ z̄m,
then

ωm =
(√
−1
2

)m
(2m)!ω(m)

ρg ∧ ωm−1 =
(√
−1
2

)m
(2m− 1)!(λ1 + . . .+ λm)ω(m)

Thus

(18) sg = 2m(ρg ∧ ωm−1)/ωm.
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Consider a symplectic toric manifold (M,ω,T), any T-invariant Kähler metric, ω-compatible
on M is locally given on M0 by (16), where G = Hess(u) and u ∈ S(∆,L) is a symplectic
potential (cf. infra). Recall that Hij = (Hess(u))−1

ij = u,ij .

Lemma 3.4 (Abreu [A98]). The expression of the Ricci form of (g, J) is:

ρg = −1
2

m∑
i,j,k=1

Hij,ikdxk ∧ θj

whereas the scalar curvature is:

sg = −
m∑

i,j=1
Hij,ij .

Proof. As the fundamental vector fields Ki preserve J , the section
σ := (K1 −

√
−1JK1) ∧ . . . ∧ (Km −

√
−1JKm)

is a holomorphic section of the anti-canonical line bundle K−1
M and furthermore, non-vanishing

on M0. From proposition 1.8 the Ricci form is given on M0 by

ρg = −1
2dd

c log |σ|2g.

We readily compute |σ|2g = 2mg(Ki,Kj) = detH and so using1 d log detH = tr
(
H−1dH

)
, and

the identity 0 = (GijHij)′ = Gij,kHij +GijHij,k one has:

dclog detH = tr
(
H−1dcH

)
=
∑
i,j,k

GijHij,kJdxk

=
∑
i,j,k,l

GijHij,kHklθl

= −
∑
i,j,k,l

Gij,kHijHklθl

= −
∑
i,j,k,l

Gik,jHijHklθl

=
∑
i,j,k,l

GikHijHkl,jθl

=
∑
j,l

Hjl,lθl.

It follows,

(19)
ρg = −1

2dd
clog detH

= −1
2
∑
i,j,k

Hij,ikdxk ∧ θj .

With this expression of ρg and recalling that, in this context of a T-invariant ω-compatible
Kähler structure on M , ω is written ω =

∑m
i=1 dxi ∧ θi, and via (18), the trace of ρg with

respect to ω is −
∑m
i,j=1Hij,ij . This conclude. �

1Let t ∈ R, the scalar ∂tlog detH is by the chain rule:
∂log detH

∂ detH
∂ detH

∂t
.

The first term is just 1/det(H) and the second is the well-known Jacobi’s formula: ∂tdetH = det(H) tr
(
H−1∂tH

)
.
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3.3. Legendre transform. This coordinate transform identifies Kähler potentials over M0

(as Legendre duals) to symplectic potentials on ∆0. Thus the spirit is to identify T-invariant J-
compatible symplectic structures within a fixed cohomology class to, T-invariant ω-compatible
complex structures onM0 within a fixed diffeomorphism class. For a given T-invariant complex
structure J on (M,ω,T), recall that the action of T on (M,J) complexifies to an effective
holomorphic action of the torus TC ' (C∗)m. Let p ∈ M0 be a fixed point for this action,
then M0 is identified with the orbit TC · p ' (C∗)m. Hence the polar coordinates (ri, ti) (on
each C∗) gives us the angular coordinates

t = (t1, . . . , tm) : M0 → t/2πΛ.
The functions {x1, . . . , xm; t1, . . . , tm} ∈ ∆0 × T are called momentum-angle coordinates
associated to the data (g, J). One writes θθθ = dt, i.e. θj = dtj . In particular the fundamental
vector fields Ki’s, dual to θi’s, are written Ki = ∂/∂ti ; then in symplectic coordinates i.e.
momentum-angle coordinates:

ω =
m∑
i=1

dxi ∧ dti

where xi are the momentum coordinates and ti are the angular coordinates such that Ki = ∂
∂ti

.
Let {e1, . . . , em} be the basis of t.

Now, following the description of Guillemin we describe how to pass from this symplectic
coordinates to holomorphic coordinates on M0. We turn our attention on the function yj = u,j
on M0. One has globally defined coordinate on M0. Indeed, Jθj +

√
−1θj = dyj +

√
−1dtj

and thus yj +
√
−1tj defined holomorphic coordinate on (M,J).

Definition 3.5 (Legendre transform). Let u be a strictly convex, smooth function on ∆0.
We denote by yj(x) := u,j(x) the first derivative of u. Consider the derivative of u at x:

y(x) :=
m∑
i=1

yi(x)ei = (du)x ∈ (Tx∆0)∗ ' (t∗)∗ = t

viewed as a map ∆0 → t. The Legendre transform of u(x) is the function φ(y) = φ(y1, . . . , ym)
such that:
(20) φ(y(x)) + u(x) = 〈y(x), x〉
where in the basis of t∗, x = (x1, . . . , xm) is viewed as a smooth function ∆0 → t∗

The main result of [G94] is

Lemma 3.6 (Guillemin [G94]). Let (g, J) be an ω-compatible t-invariant Kähler structure
on (M,ω,T) with symplectic potential u(x) on ∆0. Then, the Legendre transform φ(y) of u(x)
is a Kähler potential on M0 of the symplectic form ω i.e.

ω = ddcφ,

recall dcφ = Jdφ.

The proof uses easy computations and equation (13). By the very definition of the Legendre
transform, φ(y(x)) =

∑m
i=1 xiu,i − u(x) so dφ =

∑m
i,j=1 xiGijdxj and one compute successively

ddcφ = dJdφ to be equal to ω.

3.4. The Guillemin metric. The symplectic toric manifold M∆ canonically associated to
the Delzant polytope ∆, has a canonical T-invariant Kähler metric called the Guillemin metric,
which we denoted by g0. The key point is that a Kähler metric onM∆ determines and (modulo
the choice of angular coordinates) is determined by a metric on ∆0 called the reduced metric.
Reduced metrics behave well with respect to symplectic reductions (i.e. symplectic quotients),
in fact Caldebank-David-Gauduchon in [CDG03] show that they are functorials via the
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(pullback of the) affine map ` (cf remark 2.22). One has a map ∆ → Cd, where d is the
number of facets of ∆, which descends by means of ` to the symplectic quotient M∆. Thus one
compute the reduced metric and the symplectic potential for the flat Kähler structure on Cd.

In polar coordinates (ri, ti) the flat metric h of Cd is written h =
∑d
i=1 dr

2
i + r2

i dt
2
i , which

in momentum coordinates xi (satisfying xi = r2
i /2, as we computed the momentum map µCd)

is written on the open cone {xi > 0}:

h =
d∑
i=1

dx2
i

2xi
+

d∑
i=1

2xidt2i .

Here the first sum is the reduced metric for the flat Kähler structure on Cd. The second is
the metric on the d-dimensional torus fibres. By taking the derivatives of 2nd order of the
symplectic potential, we recover the reduced metric. Thus the symplectic potential (for the
flat structure on Cd) is 1/2

∑d
i=1 xilogxi. Now, by writing xi = Li(x) one has:

Theorem 3.7 (Guillemin [G94]). Equip M∆ with the induced Kähler structure (g0, J0) via
the Delzant construction. The reduced metric for the canonical Guillemin metric g0 is

g0
red = 1

2

d∑
i=1

dLi ⊗ dLi
Li

and so the symplectic potential on ∆0 is:

u0(x) = 1
2

d∑
i=1

LilogLi.

In all generality, for a given T-invariant ω-compatible Kähler structure (g, J) on a symplectic
toric manifold, the reduced metric associated to the metric g (16) is, by definition,

gred =
m∑

i,j=1
Gijdx̃i ⊗ dx̃j ,

where x̃i are momentum coordinates (previously denoted simply xi in the section: local theory)
identified with µi = 〈µ, ei〉.

3.5. Toric Kähler metrics : global theory. Abreu in [A01] extends Kähler toric metrics
on M0 to a (global) Kähler metric on M . To extends to the whole compact symplectic toric
manifold M the (general) toric Kähler metric g, defined as in (16), one will assume g0 to be a
globally T-invariant ω-compatible Kähler metric on (M,ω,T). Without loss of generality, one
can fix the metric g0 to be the Guillemin metric. The hessian of the symplectic potential u0 and
the angular coordinates will be denoted G0 = Hess(u0) and θθθ0 respectively. A key observation
in order to extends the metric is that it suffices to show that it can be extends smoothly on
M . If its the case, it will defined and almost complex structure J on M whose integrability
condition is satisfy by continuity. The non-degeneracy of g will follows by continuity too. At
the level of the polytope one want thus to extends a Kähler metric on the interior ∆0 to the
boundary, i.e. to compactify the metric. The sufficient conditions of compactification are given
by Abreu’s boundary conditions.

Lemma 3.8. Let g be an invariant Kähler structure on M0 = µ−1(∆0) written as in (16),
where θθθ = θθθ0 is the angular coordinates of g0. Then g extends into a Kähler structure on
M = µ−1(∆) provided Abreu’s boundary conditions:

G−G0 is smooth on ∆(21)
G−1

0 G is smooth and nondegenerate on ∆.(22)
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Conversely, to show that these condition are also necessary, is difficult. This was done by a
work in [ACGT04] of Apostolov-Calderbank-Gauduchon-Tønnesen ; they established
the following criterion for a metric on the open dense subset M0 to extends on the "boundary"
to M .

Proposition 3.9 ([ACGT04]). Let H be positive definite S2t∗-valued function on ∆0. Then,
H comes from a T-invariant ω-compatible almost-Kähler structure on M if and only if H
satisfies the following conditions:
(i) [smoothness] H is the restriction to ∆0 of a smooth S2t∗-valued function on ∆;
(ii) [boundary condition] for any point y on the facet Fj ⊂ ∆ with inward normal uj ∈ t, we

have
Hy(uj , ·) = 0 and (dH)y(uj , uj) = 2uj ,

where the differential dH is viewed as a smooth S2t∗ ⊗ t-valued function on ∆;
(iii) [positivity] for any point y in the interior of a face F ⊂ ∆, Hy(·, ·) is positive definite

when viewed as a smooth function with values in S2(t/tF )∗.

Definition 3.10 (S(∆,L)). For any compact labelled polytope (∆,L), lets denote by S(∆,L)
the space of smooth strictly convex functions u defined on ∆0, such that H = Hess(u)−1 satisfies
proposition 3.9 or equivalently conditions (21)-(22).

By a fundamental result of Abreu for Kähler metric on the toric setting, the space of
Kähler structures is parametrized by convex functions, namely symplectic potential satisfying
additional conditions.

Theorem 3.11 (Abreu [A98, A01]). There exists a bijection between the space of T-invariant
ω-compatible Kähler structure (g, J) on (M,ω,T) (modulo the action of the group of T-
equivariant symplectomorphisms) and the space S(∆,L) (modulo the additive action of the
space of affine linear functions).

By this result, the study of Kähler metrics on toric manifold is equivalent to study convex
functions defined entirely from the data of the polytope. Thus, the study of Kähler metrics
seems easier for toric manifolds. A refinement of this theorem was given by Donaldson on
the space C(∆) , where C stands for convex and continuous.

Proposition 3.12 (Donaldson). The space S(∆,L) can be alternatively defined as the
subspace of the space C(∆) of convex continuous functions on ∆, satisfying
(i) [convexity] the restriction of u to the interior of any face of ∆ (including ∆0) is a smooth

strictly convex function;
(ii) [asymptotic behaviour] u− 1

2
∑d
i=1 LilogLi is smooth on ∆.
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4. Extremal metrics & the YTD conjecture

4.1. Calabi’s extremal Kähler metrics. In the field of complex geometry, given a Kähler
manifold (M,ω0), an important problem is to find a "canonical" metric in the fixed Kähler
class [ω0]. Calabi in the 80’s introduced extremal metrics as good candidates for this problem.
Assume (M,ω0) is a compact Kähler manifold.
Definition 4.1 (Extremal metrics). A Kähler metric on M in the class [ω0], is called
extremal if it is a critical point of the Calabi functional:

ω 7−→
∫
M
s2
ω ω

m,

that sends a metric ω ∈ [ω0] to the L2-norm of the scalar curvature sω.
For example, Kähler metrics with constant scalar curvature (cscK) are trivially extremal

metrics, as so they are said to be trivial extremal metrics. As Kähler-Einstein metrics have
constant scalar curvature, they are in particular extremal metrics.

As noticed by Calabi there is a strong interplay between extremal metrics and holomorphic
vector fields. Namely, the Euler-Lagrange equation of the Calabi functional is that the gradient
of the scalar curvature sg is a holomorphic vector field.
Proposition 4.2 (Calabi [CF85]). A Kähler metric g is extremal if and only if the ω-
hamiltonian vector field Xg := ω−1(dsg) is a holomorphic vector field, i.e. LXgJ = 0.

The main question on these metrics is their existence and unicity. The latter problem is
solved but the existence problem is still open. With this characterization (proposition 4.2)
if the identity component Aut0(M,J) of the automorphism group of (M,J) is reduced to
the identity {Id}, i.e., if M has no non-trivial J-holomorphic vector fields, then all extremal
metrics have necessary constant scalar curvature. For example, using the Bochner formula
for 1-forms, see e.g. [G17], a compact Kähler manifold whose Ricci tensor Ricg is negative
definite admits no non-zero holomorphic vector fields.

On the toric setting extremal metrics admit a more practical definition. In view of Abreu’s
correspondence, one has:
Lemma 4.3. Let (g, J) be a ω-compatible toric Kähler metric on (M,ω,T) and u ∈ S(∆,L)
the corresponding symplectic potential. Then, g is an extremal metric if and only if sg is is the
pullback by the moment map of an affine function s(x) = 〈ξ, x〉+ λ on ∆.
Proof. As g is T-invariant, the scalar curvature sg defined a T-invariant function on M . Then,
by Schwarz’s lemma, sg is the pullback by the moment map of a smooth function s(x) on
∆. Hence, by the very definition of ω, in the basis Ki one has, Xg = ω−1(ds) =

∑
i s,iKi. By

hypothesis, LXgJ = 0, in other words:

0 = JKj · s,i = (ds,i)(JKj) = −
∑
i,k

s,ikJdxk(Kj) = −
∑
i,k,l

s,ikHklθl(Kj),

by duality the last term is computed as −
∑
i,k s,ikHkj . Then s,ik = 0 by non-degeneracy of H

on ∆0. This means s(x) is an affine-linear function on ∆0, hence on ∆.
For the converse, given such an affine linear function s(x) on ∆, then ds = ξ, thus

ω−1(ds) = Xξ and this vector field preserves J , i.e. is an holomorphic vector field. �

The idea behind this lemma is that a T-equivariant function f has a holomorphic gradient
if and only if, it is an affine function in the symplectic coordinates. One introduces a measure
on ∆ ⊂ t∗ induced by the Lebesgue measure dv = dx1 ∧ . . . ∧ dxm on t∗ ' Rm. A measure dσ
on the boundary ∂∆ is induced by the labelled L = (Lj) by letting, on each facets Fi ⊂ ∂∆,

dLi ∧ dσ = −dv.
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In the toric situation, the necessary condition of extremality of a metric is encoded via the
extremal function. This result was proved by Donaldson for a more general class of Delzant
polytopes.

Proposition 4.4 (Donaldson [D02]). Assume (∆,L) is a simple compact convex labelled
polytope in t∗. Then, there exists a unique affine-linear function s(∆,L) on t∗ such that, for
any affine-linear function f on ∆:

2
∫
∂∆

fdσ −
∫

∆
s(∆,L)fdv = 0.

The affine linear function s(∆,L) is called the extremal affine function of (∆,L). Furthermore,
if for u ∈ S(∆,L) the metric (16) is extremal i.e.

sg = −
m∑

i,j=1
Hij,ij = s(x) = 〈ξ, x〉+ λ,

then the affine linear function s(x) must be equal to s(∆,L).

Proof. One writes the affine linear function as s(∆,L) = a0 +
∑m
j=1 ajxj . The condition on the

integrals in proposition 4.4, applied to f = xi for i = 0, . . . ,m gives rise to a linear system
with positive definite matrix. Hence the coefficients (ai)i determines uniquely s(∆,L). For the
second part of the proposition, suppose H = (Hij) is a smooth S2t∗-valued function on ∆
which satisfies the boundary condition of proposition 3.9 and also the extremal condition i.e.

sg = s(x) = 〈ξ, x〉+ λ.

Then necessarily, s(x) = s(∆,L) i.e. s(x) satisfies the condition on the integrals in the proposition
4.4. Indeed by lemma 4.5, applied trivially to an affine linear function φ = f .

�

In the proof we make use of the following technical lemma using integration by parts, for a
proof we refer to [A19]. A generalization of this result is exposed in lemma 4.28.

Lemma 4.5. Let H be any smooth S2t∗-valued function on ∆ which satisfies the boundary
conditions of proposition 3.9 (but no necessarily the positivity condition). Then, for any smooth
function φ on ∆: ∫

∆

 m∑
i,j=1

Hij,ij

φdv =
∫

∆

 m∑
i,j=1

Hijφ,ij

 dv − 2
∫
∂∆

φdσ.

Definition 4.6 (Abreu equation). The Abreu equation is the non linear PDE of order 4:

s(u) := −
m∑

i,j=1
(u,ij),ij = s(∆,L)

where u,ij :=
(
Hess(u)

)−1
ij

= Hij.

Thus, the condition for toric Kähler metrics to be extremal reduced to solve the Abreu
equation. Let (∆,L,Λ) be a Delzant polytope associated to a toric symplectic manifold
(M,ω,T) and consider a local toric Kähler metric g in the form (16). By proposition (4.4),
if g is extremal then the corresponding symplectic potential u ∈ S(∆,L) satisfies the Abreu
equation. Conversely, if the scalar curvature sg is an affine-linear function on t∗ then by
proposition (4.3), g is therefore an extremal Kähler metric. Then one has the correspondence
: if (∆,L,Λ) is a Delzant polytope, solutions of Abreu’s equation corresponds to extremal
T-invariant, ω-compatible Kähler metrics on the symplectic manifold (M,ω,T).
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To the end of this memoir, our concern will not be directly on this PDE but rather with
an algebraic invariant given by the corresponding functional appearing in proposition (4.4),
called the Donaldson-Futaki invariant.

4.2. Donaldson-Futaki invariant. The Futaki invariant is an obstruction to the existence
of Kähler-Einstein metrics for Fano manifolds due to Futaki. A refinement of this definition
was given by Donaldson [D02], which is more algebro-geometric and uses the so-called
Donaldson-Futaki invariant. This functional is computed by Donaldson in the toric case
and appears as an obstruction to the existence of solutions of Abreu’s equation. In the toric
case the Donaldson-Futaki invariant as the following definition.

Definition 4.7 (Relative Donaldson-Futaki invariant). Given a simple compact convex
labelled polytope (∆,L) in Rm, the Donaldson-Futaki invariant associated to (∆,L) is the
functional

F(∆,L)(φ) = 2
∫
∂∆

φdσ −
∫

∆
s(∆,L)φdv,

acting on the space of continuous functions on ∆.

Remark 4.8. In the particular case s(∆,L) = cste, this functional is called the non-relative
Donaldson-Futaki invariant and corresponds to the case of cscK metrics. By the definition of
s(∆,L), whenever φ is affine linear one has F(∆,L)(φ) = 0.

Proposition 4.9 (Donaldson [D02]). If (∆,L) admits a solution of Abreu’s equation, then
F(∆,L)(φ) > 0

for any smooth convex function φ on ∆ which is not affine linear.

Proof. By lemma 4.5, one computes immediately

F(∆,L)(φ) =
∫

∆

m∑
i,j=1

Hijφ,ijdv ≥ 0,

where the positivity comes from the convexity of φ. As H is positive definite on the interior
∆0, this inequality is strict unless φ,ij vanishes i.e. φ is affine linear. �

4.3. Toric test configurations & K-stability. The existence of extremal metrics on a
manifold M is conjectured to be related to a notion of stability on the manifold M itself. The
origin of this notion comes from the Fano case (for Kähler-Einstein metrics) defined by Tian.
A similar definition is given by Donaldson [D02], in the context of polarized algebraic variety
via the Donaldson-Futaki invariant and is conjectured to characterize the existence of cscK
metrics. Inspired by this notion, Chen-Cheng proved that the existence of cscK metrics is
characterize by the notion of geodesic stability, introduced in [CC18]. Historically, K-stability
is an analogy of the stability in GIT, namely the Hilbert-Mumford criterion. In the toric
setting,

Definition 4.10. By, PL convex function φ on ∆, we mean a convex rational piecewise-linear
(PL) function φ = max(f1, . . . , fk), where fi are affine-linear function with rational coefficient.

Definition 4.11 (Toric K-stability). We say that a labelled compact convex simple polytope
(∆,L) in Rm is

(i) K-semistable, if F(∆,L)(φ) ≥ 0 for all PL convex function φ ;
(ii) K-stable, if it is K-semistable and F(∆,L)(φ) = 0 only for affine linear functions φ ;

(iii) K-unstable, if it is not K-semistable.
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Definition 4.12. Let (∆,L,Λ) be a Delzant polytope. The corresponding toric symplectic
manifold (M,ω,T) is said to be K-stable iff (∆,L) is.

From proposition 4.9, one has immediately,

Corollary 4.13 (Donaldson [D02]). If the Abreu equation admits a solution, then (∆,L) is
K-semistable.

An enhancement of this was done by Zhou-Zhu to the K-stable case.

Theorem 4.14 (Zhou-Zhu [ZZ08]). If the Abreu equation admits a solution, then (∆,L) is
K-stable.

Motivated by this result, the YTD conjecture for extremal metrics on toric manifold is the
following.

Conjecture 4.15 (Donaldson [D02]). The Abreu equation admits a solution in S(∆,L) iff
(∆,L) is K-stable.

Toric test configurations. Now, we explain the notion of toric test configuration introduced
by Donaldson [D02], giving a geometrical meaning for convex PL functions. We consider
a Delzant polytope (∆,L,Λ) in Rm, with Λ = (Zm)∗, corresponding to the symplectic toric
manifold (M,ω,T). Also, consider a PL convex function f = max(f1, . . . , fi) defined as the
minimal set of affine linear function with rational coefficients on ∆ defining f . By a suitable
normalization, one can assume without loss of generality that the coefficients of the fi’s are
integers. Fix an integer R > 0 such that R− f(p) > 0. With this data one define the polytope
Q ⊂ Rm+1 = Rm ×R,

Q =
{

(p, t) ∈ ∆×R : 0 ≤ t ≤ R− f(p)
}
.

One can assume that Q is a rational Delzant polytope, i.e. for each Lj ∈ L, the normal
uj ∈ Λ, with respect to the labelling of Q given by:{

Lj(p) ≥ 0, (R− t− fk(p)) ≥ 0, t ≥ 0, j = 1, . . . , d, k = 1, . . . , i
}

where L = (Lj)j=1,...,d are the labels of ∆. Thus Q gives rise to a symplectic toric orbifold of
complex dimension (m+ 1). For simplicity, we consider Q to be Delzant, in other words Q
is integral. Furthermore, one notice that Q is defined via integral equations, thus (§ 2.6.3)
the vertices of Q are located in Zm+1. Thus by the Delzant theorem, one get a smooth toric
polarized variety M ⊂ CPN with a polarization given by the line bundle L → M where
L = O(1)|M . The Kähler metric on M is given by the restriction of a (C∗)N -invariant
Fubini-Study metric ωFS on CPN . As T ' Tm is the torus acting on M , the corresponding
torus acting on M is given by Tm+1 := Tm × S1

m+1 where, by S1
m+1, we means the circle

subgroup of Tm+1 which act on the (m+ 1)-th factor of Tm+1.
One shall note that ∆ appears as a copy of a facet of Q by Q∩ {t = 0} = ∆× {0}. Thus,

(the preimage of) the face ∆ ⊂ Q corresponds to a smooth submanifold M̃ ⊂M which is a
smooth polarized toric manifold.

Via the Delzant construction, the stabilizer of points in M̃0 is identified with the circle
group S1

m+1. Thus, (M̃, ωFS|M̃ ) is equivariantly isomorphic to (M,ω) with respect to the
action of Tm+1/S1

m+1 ' Tm (resp. T) on M̃ (resp. M). So without loss of generality one can
take (M,ω,T) to be a smooth toric polarized manifold.

Let fix a ωFS-compatible Tm+1-invariant complex structure J on M which induces a
Tm-invariant ω-compatible complex structure J on (M,ω). Following Donaldson ([D02], §
4.2), with respect to the C∗-action ρ : C∗ → Aut(M ) induced by the circle S1

m+1, the complex
(m+ 1)-dimensional (M , ωFS|M , ρ) is an example of a Kähler test configuration associated to
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the Kähler manifold (M,ω), in the sense that definition 4.16 is satisfied.

One considers a compact complex m-dimensional Kähler manifold M and ω a Kähler form
with cohomology class [ω].

Definition 4.16 (Kähler test configuration). With this data, a smooth Kähler test configu-
ration associated to (M, [ω]), is a Kähler manifold (M ,A = [Ω]) endowed with an holomorphic
C∗-action ρ such that:

• there is a surjective holomorphic map π : M � CP1 such that for x 6= 0 ∈ CP1,
(Mx := π−1(x), ωx := Ω|Mx ) is T-equivariant isomorphic to (M, [ω]) ;
• π is equivariant with respect to the C∗-action ρ on M and the standard action on CP1

fixing 0 and ∞;
• there is a C∗ ×TC-equivariant biholomorphism

M /M0 ' (M ×CP1 \ {0}).

When (M,ω) is a toric manifold, the situation is easier. In this context, the Kähler
test configuration (M ,A ) is given by the data of the PL convex function defining Q. The
instructive example is given by figure 4.3. The Delzant polytope in the l.h.s of figure 4.3 is
obtained by chopping-off a corner of the square Delzant polytope [0, 1/2] × [0, 1/2] ⊂ R2

representing, via the Delzant theorem, the surface CP1 ×CP1. This operation correspond
precisely to the blow-up of CP1 ×CP1 at one point ; the blow-down map is denoted by β.
Thus the polytope in the l.h.s correspond to (CP1 ×CP1)]CP2 which is symplectomorphic
to CP2 blow-up at 2 points i.e. CP2]2CP2. We refer to e.g. [A19], chapt. 1.6, for more
information on equivariant blow-up. In the l.h.s polytope, the Delzant polytope of CP1 (in
red) correspond to the same segment in the r.h.s ; and the roof (in blue) corresponds to the
concave piecewise affine-linear function −f(p). Hence M = CP1 in the r.h.s is identified with
the red segment and the other copy of CP1 is the projection of the roof that defines the map
π.

Figure 1. Toric test configuration for M = CP1.

Remark 4.17. Tian proved that CP2]2CP2 is one of the two exceptional cases (where the
other is CP2]CP2) of complex surfaces with c1(S) > 0 which do not admits a Kähler-Einstein
metric.

Definition 4.18 (Toric test configuration). Let (M,ω) be a toric Kähler manifold with
labelled Delzant polytope (∆,L) in Rm with respect to the lattice Zm. A Kähler test configuration
(M ,A , ρ) associated to (M,ω) obtained from a rational PL convex function f as above is
called a toric test configuration.
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By analogy with the stability in GIT, an invariant is attached to each toric test configuration,
namely the Donaldson-Futaki invariant associated to the corresponding PL convex function.
It can be computed in terms of differential-geometric quantity on M . One denotes by s(Ω)
the scalar curvature of the Kähler metric Ω on M . The pullback on M of the extremal
affine-linear function s(∆,L) of (M,ω) will be, with a slightly abuse of notation, denoted s(∆,L).

Lemma 4.19. With this data, the Donaldson-Futaki invariant 4.7 of the PL convex function
f is given by

(2π)m+1F(∆,L)(f) = −
∫

M

(
s(Ω)− s(∆,L)

)
Ω[m+1] + 8π

∫
M
ω[m],

where ψ[m] := ψm/m!.

Remark 4.20. When looking at a toric test configuration (given by a PL function f) associated
to (M,ω) when ω is a cscK metric, Odaka proved a co-homological formulae for the Donaldson-
Futaki invariant F(∆,L)(f). Odaka first used this formula to study (possibly singular) polarized
projective test configurations. We explain how to derive from the formula in prop. 4.19 in the
context of cscK metrics. As s(∆,L) is constant, by the very definition of F(∆,L)(φ), one get

s(∆,L) = 2
∫
∂∆ dσ∫
∆ dv

with φ = 1. If u is the symplectic potential of ω, from lemma 4.5 one get
∫

∆ s(u)dv = 2
∫
∂∆ dσ.

Combining these two identities, one has

s(∆,L) =
∫

∆ s(u)dσ∫
∆ dv

=
∫
M s(Ω)ωm∫
M ωm

= 4πmc1(M) · [ω]m−1[M ]
[ω]m[M ] .

Following [A19], by substitution, one get the Donaldson-Futaki invariant for this special toric
test configuration, denoted as F(M ,Ω) := (2π)mF(∆,L)(f) by the co-homological expression:

F(M ,Ω) = −2
[(
c1(M ) · [Ω][m][M ]

)
−A

(
c1(M) · [ω][m−1][M ]

)]
+ 4Vol(M,ω),

where A = Vol(M ,Ω)/Vol(M,ω). Notice that this formula depends only on the De Rham
classes. This formula is used for any Kähler test configuration for a Kähler manifold (M,ω)
which is equipped, grosso modo, with a maximal compact torus T in its reduced group of
complew automorphisms. This gives rise to the notion of T-relative Donaldson-Futaki invariant
FT(M , [Ω]) of a compatible test configuration.

4.4. Mabuchi K-energy & unicity. Whilst on a Stein manifold, one can describe globally
the Kähler form using a single function, namely the Kähler potential ; in general its not the
case. However, provided that (M,ω) is compact, by the ∂∂-lemma, one can consider the space

H := {φ ∈ C∞(M) : ωφ = ω + i∂∂φ > 0}

of smooth Kähler potentials relative to the metric ω. This space is an infinite dimensional
Fréchet manifold endowed with a riemannian metric usually called the Mabuchi-Semmes-
Donaldson metric given by 〈φ1, φ2〉φ :=

∫
M φ1φ2ω

[m]
φ for φ1, φ2 ∈ TφH ' C∞(M,R). The

fact that H is contractible allows one to study all Kähler metrics in a fixed Kähler class
simultaneously. This variational approach proposed by Mabuchi is very fruitful to the study
of existence of extremal metrics in a fixed Kähler class. Letting ω[m]

ϕ := ωmϕ /m!, one defines
the Mabuchi K-energy by its first variation.
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Definition 4.21 (Variational Mabuchi). Let M : H/R → R be the Mabuchi K-energy
defined by

(δM)(φ) = −
∫
M

(
s(ωφ)− s

)
δφω

[m]
φ ,

where

s :=
∫
M s(ωφ)ωm∫

M ωm
.

Clearly, s(ωφ) = s iff φ is a critical point of δM. So, in the same vein as extremal metrics
are defined via the Calabi functional, cscK metrics are precisely critical points of the Mabuchi
functional. The derivative δM of the K-energy depends only on the variation of the metric
(i.e. the Kähler metric) since δM(φ+ c) = δM(φ), for any constant c ∈ R. One can see δM
as a closed 1-form on H, and as H is contractible, it definesM : H → R up to a constant ; and
one can normalizeM so thatM(0) = 0. Specialize to the case when M is a toric symplectic
manifold, we will denote byM(∆,L) the Mabuchi K-energy. Given a labelled compact convex
simple polytope (∆,L) in Rm, one has the following ramification.

Proposition 4.22 (Relative Mabuchi K-energy [D02]). With a suitable normalization by
adding a constant, the Mabuchi K-energyM =M(ω) is given, up to a factor (2π)m, by

M(∆,L)(u) = −
∫

∆

(
log detHess(u)

)
dv + F(∆,L)(u),

where the functional F(∆,L)(u) is the Donaldson-Futaki invariant:

F(∆,L)(u) = 2
∫
∂∆

udσ −
∫

∆
s(∆,L)udv.

Proof. One shows that this formula of M coincide with the Mabuchi defines by its first
variation. The functionalM(∆,L) is well-defined on C∞, by a result of Donaldson [D02]. Using
the formulae d log detG = tr

(
G−1dG

)
, with the non-degenerate matrix G = Hess(u) and with

the help of lemma 4.5, one computes the first variation ofM(∆,L) at a path u = u(t) ∈ S(∆,L)
in the direction u̇ = u̇(t),

(
dM(∆,L)

)
u
(u̇) = −

∫
∆

m∑
i,j=1

Hu
ij u̇,ijdv + F(∆,L)(u̇)

=
∫

∆

(− m∑
i,j=1

Hu
ij,ij

)
− s(∆,L)

 u̇dv.
In fact u ∈ S(∆,L) corresponds to a Kähler potential φ = φu ∈ H (with respect to ωφ). Then
for any path u(t) ∈ S(∆,L) with corresponding φ(t) := φut ∈ H, taking the differentiate of
(20) gives

(23) u̇(t) = −φ̇(t).

Recall that the scalar curvature of ωφ = ωφu is exactly

s(ωφ) = −
m∑

i,j=1
Hu
ij,ij .

To see that the average scalar curvature s coincide with the extremal affine function, one may
refer to ([G17], 4.14). �
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Unicity of extremal toric metrics. Two solutions of the Abreu equation given by symplectic
potentials u1, u2 ∈ S(∆,L) (corresponding to ω-compatible T-invariant extremal Kähler
metrics) are unique up to the action of the linear affine group on a symplectic toric manifold,
or orbifold, (M,ω,T). In particular, on any compact symplectic toric manifold (resp. orbifold),
there exists at most one, up to a T-equivariant isometry, extremal Kähler metric (if they
exist). Guan proved that a geodesic in the space of T-invariant extremal Kähler metrics
corresponds, to a line in the space of symplectic potentials S(∆,L). Thus any two T-invariant
extremal Kähler metrics, are systematically linked via a geodesic ; the convexity of the Mabuchi
K-energy conclude.

Theorem 4.23 (Guan [G99]). Let u1, u2 ∈ S(∆,L) be two solutions of Abreu’s equation.
Then, u1 − u2 is an affine function. In particular, on any compact symplectic toric manifold
(M,ω,T) each Kähler class contains, at most one T-invariant ω-compatible extremal Kähler
metric (g, J).

Proof. By the computation of (dM(∆,L))u(u̇) on the previous result, immediately, critical
points of the Mabuchi K-energyM corresponds to solutions of Abreu’s formula i.e. extremal
T-invariant ω-compatible metric. Furthermore, by the identity dG−1 = −G−1dGG−1, the
second variation ofM is(

d2M(∆,L)
)
u
(u̇, v̇) =

∫
∆
tr
((

Hess(u)
)−1

Hess(u̇)
(
Hess(u)

)−1
Hess(v̇)

)
dv.

Since H = G−1 > 0, the second variation d2M is ≥ 0,M is convex on S(∆,L). Moreover, as
Hess(u̇) is symmetric, the derivative u̇ is an affine function iff

(
d2M(∆,L)

)
u
(u̇, u̇) = 0. From

Abreu’s boundary condition, for any u1, u2,∈ S(∆,L), ut = tu1 + (1 − t)u2 for t ∈ [0, 1] is
a curve in S(∆,L) with u̇ = u1 − u2. In conclusion, if u1, u2 are two solutions of the Abreu
equation, they are critical points ofM and it follows that the difference u1− u2 must be affine
by the convexity ofM. �

From the proof, one infer that if u∗ ∈ S(∆,L) is a solution of Abreu’s equation, thus a
critical point ofM(∆,L), then the convexity ofM(∆,L) show that u∗ is a global minima of the
Mabuchi K-energyM(∆,L).

Remark 4.24. Dervan-Ross [DR16] proved that, if the Mabuchi K-energyM (see the next
§), defined on a Kähler manifold, is bounded below (resp. coercive), then this implies K-
semistability (resp. uniform K-stability). On the toric situation the coercivity ofM(∆,L) is
known to be equivalent to the uniform K-stability. This result is due to Hisamoto [H16].

The Chen-Tian formulae. We conclude this section by introduces important functional which
will be crucial in the proof of the YTD conjecture of toric manifolds. In the general context
of a Kähler manifold, the Mabuchi functional is explicitly given by the Chen-Tian formula.
Consider the Aubin-Mabuchi functional Iω : H → R defined as

(24) Iω(φ) =
∫
M
φ

m∑
i=0

ω
[i]
φ ∧ ω

[m−i].

One writes simply Iω = I when the dependence on ω is clear. For a real (1, 1)-form θ, consider
the twisted Aubin-Mabuchi Iθ defined as

Iθ(φ) =
∫
M

m−1∑
i=0

φθ ∧ ω[i]
ω ∧ ω[n−1−i].

Proposition 4.25 (Chen-Tian). The Mabuchi K-energy reads,

M(ωφ) =
∫
M

log
(ωmφ
ωm

)
ω

[m]
φ + sI(φ)− 2Iθ(φ),
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where θ is the Ricci form ρω =: Ric(ω) of the metric ω.

The r.h.s term in this proposition is unchanged if φ is changed by an additive constant, thus
M is well-defined on the variation of the metric, whence the notationM(ωφ) :=M(φ).

4.5. Uniform K-Stability. In this section we expose a strengthened notion of K-stability,
namely uniform K-stability, due to Székelyhidi [S06] and Boucksom-Hisamoto-Jonsson,
inspired by [D02] in the toric situation, and which is conjectured to be the right one in order
to characterize the existence of extremal metrics on a smooth polarized complex variety. We
relate its relationship with the properness of the Mabuchi K-energy. In the toric setting, by a
result of Hisamoto [H16], these two are equivalent, namely the uniform stability is equivalent
to the coercity of the K-energy. In this section, the definition of uniform K-stability in the
toric setting is given, relying on the coercivity of the Mabuchi K-energyM.

Recall that C(∆) is the set of continuous convex function on ∆, notice that continuity
follows from the convexity on ∆0. One introduces subset of C(∆) ; namely, the space C∞(∆)
of those smooth functions smooth on ∆0. The pattern is,

S(∆,L) ⊂ C∞(∆) ⊂ C(∆).

Note that S(∆,L) is unchanged by adding an element of C∞(∆) which is additionally supposed
smooth on ∆. Indeed, from proposition 3.12, it follows, for u ∈ S(∆,L) and f ∈ C∞(∆),
the latter one is moreover assumed smooth on all ∆, then u+ f ∈ S(∆,L). Conversely, the
difference of any two functions in S(∆,L) is a function in C∞(∆), smooth on all ∆. Affine
linear functions acts on C(∆) and C∞(∆) by translations. For this purpose one introduces a
slice C∗(∆) for the action on C(∆) which is closed under positive linear combinations ; the
induced slice in C∞(∆) will be denoted by C∗∞(∆). Grosso modo, a slice is a (local) subspace
which is transversal to the orbit. Then, any f ∈ C(∆) is uniquely written as

f = π(f) + g,

where g is an affine function and π : C(∆)� C∗(∆) is a linear projection, so π(f) ∈ C∗(∆).

Example 4.26. The two following slices will be of importance in the definition of uniform K-stability.
Donaldson [D02], gave for an interior point x ∈ ∆0 the slice:

(25) C∗(∆) := {f ∈ C(∆) : f(x) ≥ f(x0) = 0}.

One can also take the following slice:

(26) C∗(∆) := {f ∈ C(∆) :
∫

∆
f(x)g(x)dv = 0, for any g affine linear}.

This various examples of slice corresponds to different notions of stability. Each of them is
closely related to the coercivity of the Mabuchi K-energyM(∆,L) ; precisely, to the growth of
M(∆,L). To measure it we define a norm || · || on any slice C∗(∆). So let || · || be a semi-norm
on C(∆) which induces a tamed norm on C∗(∆). By tamed norm, we means that there exists
C > 0 such that

1
C
|| · ||1 ≤ || · || ≤ C|| · ||∞,

where || · ||1 :=
∫

∆ | · |dv is the L1-norm and || · ||∞ is the C0-norm on C(∆). For example the
Lp-norm || · ||p := (

∫
∆ | · |pdv)1/p defines a tamed norm on the two slices given in example 4.26.

Following [D02], the boundary norm

(27) ||f ||b :=
∫
∂∆

fdσ
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is a tamed norm with slice C∗(∆) := {f ∈ C(∆) : f(x) ≥ f(x0) = 0, x ∈ ∆0}. One claim that
for any tamed norm || · ||, the space of PL convex functions and smooth convex functions on the
whole ∆ are both dense in C∗(∆). With respect to a tamed norm || · ||, the Donaldson-Futaki
invariant (definition 4.7) F(∆,L) is, well defined and continuous on C∗(∆).

Proposition 4.27 (Donaldson [D02], Zhou-Zhu [ZZ08]). For any δ > 0, the following
assertions are equivalent:

(1) for all f ∈ C(∆),
F(∆,L)(f) ≥ δ||π(f)||

(2) for all 0 ≤ ε < δ there exists Cε such that

M(∆,L)(u) ≥ ε||π(u)||+ Cε

for all u ∈ S(∆,L).

This result suggests that the positivity (for f 6= 0) of the Donaldson-Futaki invariant F(∆,L)
corresponds to the properness of the Mabuchi K-energy M(∆,L). The direction (1) → (2),
is given by Donaldson (be aware of the sign error) and Zhou-Zhu [ZZ08], and makes use
of the following technical lemma which extends lemma 4.5. The fact that the Mabuchi is
well-defined on C∞(∆) i.e. that log det(Hess(u)) is integrable on ∆, hinge in the following
result. For clarity, note that it is enough to show that log det(uij), with i, j fixed, is integrable
on ∆, where uij :=

(
Hess(u)

)
ij
. This allows one to get rid of summation over the indices in

the following.

Lemma 4.28 (Donaldson [D02]). Let u ∈ S(∆,L). Then, for any f ∈ C∞(∆), u,ijf,ij is
integrable on ∆ and ∫

∆
u,ijf,ijdv =

∫
∆

(u,ij),ijfdv +
∫
∂∆

fdσ.

Definition 4.29 (Toric Uniform K-stability). A convex compact simple labelled polytope
(∆,L) satisfying condition (1) of proposition 4.27 for some constant λ > 0 is called, uniformly
K-stable, with respect to the chosen slice C∗∞(∆) with norm || · ||. One say that (∆,L) is

(i) Lp-uniformly K-stable, if it is uniformly K-stable w.r.t the slice 26 and the Lp-norm
|| · ||Lp ;

(ii) b-uniformly K-stable, if it is uniformly K-stable w.r.t the slice 25 and the boundary norm
|| · ||b.

This notion appears as a reinforcement of K-sability. Indeed, as PL convex functions are
dense (for the norm || · ||∞) in C(∆), one define equivalently the assertion (1) with PL functions.
Interested at toric surfaces, Donaldson obtained that the K-stability corresponds to the
b-uniform one, with the assumptions that s(∆,L) is positive. The two following theorems shows
that K-stability is in fact uniform, with not so restrictive assumption.

Theorem 4.30 (Donaldson [D02]). If (∆,L) is a compact convex labelled polytope in R2

such that s(∆,L) > 0 on ∆. Then, (∆,L) is K-stable iff it is b-uniformly K-stable.

Theorem 4.31 (Székelyhidi [S06]). If (∆,L) is a compact convex labelled polygone in R2

such that s(∆,L) is constant. Then, (∆,L) is K-stable iff it is L2-uniformly K-stable.
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4.6. Existence results. In this section the proof of the YTD conjecture on the existence of
extremal metrics on toric manifold is given via theorem 4.37 & 4.36. The notion of stability
required for the characterization is the b-uniform K-stability.

We start with a review on the general theory and then we specialize to the toric situation.
Toward this end, consider (M, g0, J, ω0) a complex compact m-dimensional manifold with
complex structure J , Kähler metric g0 and Kähler form ω0. The group Aut(M) of complex
automorphism of M , is a finite dimensional complex Lie group with Lie algebra given by the
vector space of smooth (real) holomorphic vector field, i.e. the set of X such that LXJ = 0.
Recall that,

H := {φ ∈ C∞(M) : ωφ = ω + i∂∂φ > 0}
is the space of smooth Kähler potentials relative to the metric ω. Under the action of R on
H by translation, the Kähler metric corresponding to the Kähler form ωφ is preserved ; thus
one want to work with a normalization H0, for which, one has a bijection between elements
φ0 ∈ H0 and Kähler metrics with Kähler forms in the fixed DeRham class [ω] ∈ H2(M,R).
Thus on can decompose φ ∈ H as φ = φ0 +Cte. Among all popular normalization, we consider
the normalization

H0 := H ∩ I−1({0}),
where I is the Aubin-Mabuchi functional, introduced in 24. For any σ ∈ Aut0(M), we write
σ[φ] ∈ H0(M) for the normalized Kähler potential, relative to ω, associated to the Kähler form
σ∗(ωφ).

Let KC ⊂ Aut0(M) be the reductive group corresponding to the the complexification of
a connected compact subgroup K ⊂ Aut0(M). In other words KC is the smallest closed
complex subgroup in Aut(M) containing K. Such a group K always exists with satisfying
moreover that the Kähler structure (g, J, ω) is K-invariant. So one considers the subspace
HK ⊂ H of K-invariant Kähler potentials in H. Finally, the space

H0,K := H0 ∩HK

parametrizes the K-invariant Kähler metrics on (M,J) whose Kähler form is in the DeRham
class [ω]. Darvas proved that (H, d1) is a metric space for a certain metric d1, called the
Finsler metric ; which is defined as follows. A characterization (e.g [G17], chap. 4) of smooth
segments φ(t) ∈ H0, for t ∈ [0, T ] starting at φ(0) = 0 and endpoint φ(T ), is as follows:

φ(t) ∈ H0 ⇐⇒
∫
M
φ̇(t)ωmφ(t) = 0, ∀t ∈ [0, T ].

Darvas defined the length of the smooth segment φ([0, 1]) ⊂ H by∫ 1

0

( ∫
M
|φ̇(t)|ω[m]

φ(t)

)
dt.

Thus the Finsler metric d1(φ1, φ2) is defined to be the infimum of the lengths of all segments
with endpoints φ1 and φ2. One considers

d1,KC(φ1, φ2) := inf
σ∈KC

d1(φ1, σ[φ2]),

for φ1, φ2 ∈ H. In the next definition the functional MK is called the relative Mabuchi
energy or sometimes K-relative energy (to K). The next notion of analytic stability is due to
Zhu-Zhou.

Definition 4.32 (KC-relative properness). LetMK be a functional defined on the space
HK . The functionalMK is called KC-proper with respect to d1 if

• MK is bounded from below on HK ;
• for any sequence φn ∈ H0,K , with d1,KC(φ0, φn)→∞, one hasMK(φn)→∞.



EXTREMAL METRICS ON TORIC KÄHLER MANIFOLDS 43

By a result of Calabi (see [G17], chap. 3), the invariant compact group K ⊂ Aut0(M), in
the above definition, can be taken, without loss of generality, to be a torus T in a subgroup of
Aut0(M). Precisely, letting T ⊂ Autred(M) be a (real) maximal subtorus of the reduced group
of automorphisms Autred(M) ⊂ Aut0(M). Recall that this group is closed and connected with
Lie algebra given by holomorphic vector fields with non-empty zero set. Denote by TC its
complexification which is a maximal subtorus of Autred(M). The reason of considering this
subclass of torus is the following observation by Calabi. A key result is that if it exists an
extremal metric ωφ (for some φ ∈ H), then there exists an isometric extremal metric ωφ̃. Thus
the Calabi problem is reduced, without loss of generality, on H0,T.

Furhtermore, on this space, Mabuchi & Guan [G99], introduced a functionalMK : H0,K →
R, called the Mabuchi K-energy relative to the group K. Actually, one can work without
loss of generality with the Mabuchi K-energyMT relative to a torus T, where T ⊂ K is any
maximal torus in K.

The crucial fact ([G17], chap. 4) is that critical points of MT are precisely the Kähler
potentials in H0,T, corresponding to T-invariant extremal metric in (the fixed class) [ω]. The
main result is that the properness ofMT implies the existence of T-invariant extremal Kähler
metrics in [ω], precisely:
Theorem 4.33 (Chen-Cheng [CC18], He [H18]). Suppose T ⊂ Autred(M) is a maximal
real torus and TC ⊂ Aut(M) its complexification. If the relative K-energyMT acting on HT

is TC-proper with respect to the distance d1 and the normalization H0. Then, there exists
φ ∈ HT such that ωφ is an extremal Kähler metric.

We specialize to the toric situation. Let (M,ω) be a toric symplectic manifold and (∆,L,Λ)
its corresponding Delzant polytope. From our discussion above, the torus T acting effectively, in
a hamiltonian fashion on (M,ω) is a maximal torus in the reductive group Autred(M,J), where
J is any T -invariant compatible complex structure onM . Recall that from the Abreu-Guillemin
formalism, one has J-holomorphic coordinates on M0, yj +

√
−1tj ; sometimes called the

affine logarithmic system of coordinate, because, exponentiating gives rise to zj := eyje
√
−1tj

which is another set of holomorphic coordinate on M0. Consider u ∈ S(∆,L) a symplectic
potential ; corresponding to a T-invariant ω-compatible complex structure J . In the same
spirit as the orbit-cone correspondence in toric geometry, one can identified C∗-equivariantly,
the complex manifold (M0, J) with the orbit (C∗)m ·pu. Precisely, pu ∈M0 corresponds to the
unique minima xu ∈ ∆0 of the convex function u under the momentum map µ, with tj(pu) = 0.
Hence, the action of the flows of {K1, . . . ,Km, JK1, . . . , JKm} around pu is identified with
the (local) system of coordinate (z1, . . . , zm), whence

(C∗)m ' (M0, J).
Now, the Legendre transform of u ∈ S(∆,L) is φ(y) ; with the coordinate yj , simply given
by log zj , since zj := eyje

√
−1tj and the momentum coordinate tj vanishes. So one has the

corresponding function Fu(z) of u, defined on (C∗)m by
Fu(z) := φ(y) = φ(log |z1|, . . . , log |zm|).

Moreover, the key result of Guillemin, proposition 3.6, tells us that T-invariant function Fu
introduces on M0 ' (C∗)m a Kähler form

ωu := ddcFu(z)
which is seen to extends as a smooth Kähler metric (gu, ωu, Ju) via on M via the identification
(C∗)m ' (M0, Ju). Also, since the canonical symplectic potential u0 corresponds to the
Guillemin metric ω0, it gives birth to Fu0 via, ω0 = ddcFu0 . Thus one obtains two Kähler
forms ω0, ωu related by

ωu = ω0 + ddc(Fu(z)− Fu0(z)) = ω0 + ddcφu,
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where φu := Fu(z)− Fu0(z) is a Tm-invariant function defined on (C∗)m such that φu extends
smoothly on M . To resume, at this point ω0 and ωu define two different Kähler metrics on
MC

∆ ; recall that the latter space is biholomorphic to (M,J), § 2.6. Moreover, φu extends
to a T-invariant Kähler potential (w.r.t ω0), in other words, φu ∈ HT ; this is in fact a
correspondence by taking the dual Legendre transform.

Now, fix a point p0 ∈M0 corresponding to x0 ∈ ∆0 and recall the slice of example 25 :
C∗∞(∆) := {f ∈ C∞(∆) : f(x0) = 0, dx0f = 0}.

the corresponding slice in the space of symplectic potentials is S∗(∆,L) := S(∆,L) ∩ C∗∞(∆).
With this normalization, pu = p0. However, this slice of symplectic potentials not correspond
to the slice of Kähler relative potentials H0 := H ∩ I−1({0}). Thus, we consider the action of
R and TC on H0,T. Primo, with the action of R, for u ∈ S∗(∆,L) if ũ = u+ c, then φ̃ = φ− c
and the coordinates are unchanged i.e. ỹj = yj . Secundo, if γ ∈ TC acts on φ ∈ H0,T, the
result is the same, i.e. differs by a coefficient yj . Now, consider the slice on C∞(∆):

C0
∞(∆) := {f ∈ C∞(∆) : dx0f = 0,

∫
∆
fdv =

∫
∆
u∗0dv}.

Recall that u∗0 = π(u0) is the C∗∞(∆) normalization of the canonical symplectic potential
u0. As usual, the corresponding slice in the space of symplectic potentials is S0(∆,L) :=
S(∆,L) ∩ C0

∞(∆). In fact the latter is the one we need, in others words, we have the wished
correspondence, between H0,T and symplectic potentials.

Lemma 4.34. For any path ũ(t) in S0(∆,L), the corresponding ω0-relative Kähler potentials
φ(t) = φũ(t) obtained via the Legendre transform is an element of H0,T, and satisfy

d

dt
ũ(t) = − d

dt
φ(t).

Conversely, any path in H0,T comes from a path ũ(t) in S0(∆,L), up to the action of TC.

Proof. The formula of first variation is obtained along the lines of the proof of proposition 4.22.
This identity and the characterization of path in H0, gives us I(φ(t)) = cste ; then cste = 0
since S0(∆,L) is convex and contains u∗0. For the converse, the relative Kähler potential φ(t)
can be pullback by an element γt ∈ TC so that the symplectic potential associated to γ∗t (φt)
satisfies the condition on the derivative at x0. �

In [D02] and [ZZ08], the authors relate, the relative Mabuchi K-energyMT acting on H0,T

(the Kähler case) to the Mabuchi K-energyM(∆,L) acting on S0(∆,L) (the Kähler toric case).

Proposition 4.35 (Apostolov [A19]). Assume (∆,L) is a b-uniformly K-stable Delzant
labelled polytope. Then the relative K-energy MT is TC-proper on HT with respect to the
Finsler distance d1 and the normalization H0 := {φ ∈ H : I(φ) = 0}, where I is the Aubin-
Mabuchi functional 24.

Proof. Let φj , j = 1, . . . ,∞ be a sequence in H0,T such that d1,TC(0, φj)→∞. By lemma 4.34,
from this sequence corresponds a sequence of normalized symplectic potentials ũj ∈ S0(∆,L).
The projection of ũj on the slice S∗(∆,L) is denoted u∗j := π(ũj), and thus ũj = u∗j +g where g
is an affine linear function on t∗ (for j = 0, we had the canonical symplectic potential u0). The
action of an element γj ∈ (C∗)m, let unchanged the symplectic potentials but g is translated
by a nonzero factor, thus g is assumed to be constant ; which is given as:

ũj = u∗j + 1
Vol(∆)

∫
M

(u∗0 − u∗j )dv,

with j = 0, 1, . . . ,∞. Consider the path u∗j (t) := (1− t)u∗0 + tu∗j in S0(∆,L). By lemma 4.34,
the length of this path, w.r.t d1, is C

∫
∆ |ũ∗j − u∗j |dv where C = (2π)m. By the , we have:
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d1,TC(0, φj) ≤ d1(0, γj [φj ])

≤ C
∫

∆
|ũ∗j − u∗j |dv

= C

∫
∆

(
|(u∗j − u∗0) + 1

Vol(∆)

∫
∆

(u∗0 − u∗j )dv|
)
dv

≤ (C + 1)
∫

∆
|u∗j − u∗0|dv.

We used, the very definition of d1,TC , in the first line ; in the third line the definition of
ũj . As, for j → ∞, d1,TC(0, φj) → ∞, the previous inequality gives us

∫
∆ |u∗j |dv → ∞.

Finally the properness ofMT, comes from (2) proposition 4.27 (recall that uniform stability
is defined with it) and by the assumption that (∆,L) is b-uniformly K-stable leads us to,
MT(ωφj ) = M(∆,L)(ũj) is lowered by ε||ũ∗j ||b + Cε ≥ ε′

∫
∆ |u∗j |dv + Cε which goes to ∞ as

j →∞. The last inequality comes from the fact || · ||b bounds the L1-norm. �

As a corollary of this result, together with theorem 4.33 and the correspondence between
ω0-relative Kähler potentials in H0 and symplectic potentials ũ ∈ S0(∆,L), one get:

Theorem 4.36. If (∆, L) is a b-uniformly K-stable Delzant labelled polytope (corresponding
to a toric Kähler manifold (M,ω0, J)). Then, (M,J) admits a T-invariant extremal Kähler
metric whose Kähler form is in the De Rham class [ω0].

The converse is due to Chen-Li-Sheng.

Theorem 4.37 (Chen-Li-Sheng [CLS14]). If (∆,L) is a compact convex simple labelled
polytope in Rm such that the Abreu equation admits a solution in S(∆,L) then (∆,L) is
b-uniformly K-stable.
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