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Abstract The aim of this Master thesis is to present some homological algebra operations which
can be seen in geometry, namely Massey products. Then we introduce A8 categories which have
a strong link with Massey products. In fact, A8 categories come with maps that are compositions,
that work well with Massey product in homology. One of the main theorems about A8 categories
is the Kadeishvili theorem, sometimes called minimal model theorem, which claims that one can
push forward the A8 structure from an A8 category to a set of objects as long as you have the
first composition on this set of objects and a pre-natural transformation on the A8 category.
In the first part we introduce Massey products through the example of the Borromean knot. We
present a proof that this knot is knotted that generalize in higher dimension. Then we present A8

categories in a didactic way, going further and further in the properties and their implications.
Finally, we present a proof of Kadeishvili minimal model theorem based on combinatorics with
trees.
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1 Massey product

1.1 Cup product

The first thing to do is to introduce the definition of cup product and its properties. We will briefly
give them since they are well known. The interesting point comes below. As the aim of this subject is
to understand some operations in cohomology, we will give an example where the cup product dis-
tinguish two spaces who have the same homology and cohomology.
Even if we take for now cohomology inZ in this section, and inZ/2Z later, these definition and prop-
erties are valid with cohomology in R any commutative ring with unity.

Definition 1.1. Cup product
Let X be a topological space and C p (X ,Z) = Hom(Cp (X ),Z) denote the group of singular (or simplicial
or cellular) p-cochains of X with coefficient inZ. Then we define the cup product as a map

!: C p (X ,Z) ˆ C q (X ,Z) ÝÑ C p+q (X ,Z)

as follows : if σ : ∆p+q ÝÑ X is a singular (p+q)-chain and cp P C p (X ), cq P C q (X ), then :

< cp ! cq > (σ) =< cp ,σ˝ ι(ϵ0, ...,ϵp ) > . < cq ,σ˝ ι(ϵp , ...,ϵp+q ) >

Remark 1.2. Recall ι is the simplex mapping the ϵi , σ˝ ι(ϵ0, ...,ϵp) is the restriction of σ to the front
p-face ι(ϵ0, ...,ϵp) and and σ˝ ι(ϵp , ...,ϵp+q ) is the restriction of σ to the back q-face ι(ϵp , ...,ϵp +q)

Remark 1.3. Cup product is usually hard to compute, but it is a necessary and usefull operation in
cohomology since it induces a ring structure on H 1(X ).

The followings properties are not proven. The proofs are presented in almost every general
differential geometry, homological algebra or algebraic topology book.

Theorem 1.4. (i) cup product is bilinear and associative

(ii) the cochain z0 whose value is 1 on each singular 0-cochain acts as a unity element

(iii) the following formula holds :

B(cp ! cq = (Bcp ) ! cq + (´1)p cp ! (Bcq )

Theorem 1.5. the cup product on cochains induces a cup product in cohomology :

! : H p (X ,Z) ˆ H q (X ,Z) ÝÑ H p+q (X ,Z)

which is still bilinear, associative and for which cohomology class [z0] is a unity.

Property 1.6. If f : X ÝÑ Y is a continuous function. Let f ˚ : H˚(X ) ÝÑ H˚(Y ) be the induced homo-
morphism in cohomology. Then,

@αp P H p (X ),@βq P H q (X ) ; f ˚(α!β) = f ˚(α) ! f ˚(β)

Property 1.7. The following formula holds @αp P H p (X ,Z), @βq P H q (X ,Z) :

αp !βq = (´1)pqβq !αp

Here comes the example where cup product help us to distinguish two spaces which have same
homology and cohomology. It is taken from [4] and concerns the wedge product S1 _ S1 _ S2 which if
defined as follows : take two circles, one sphere and link them in one point p. Then we have :
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Lemma 1.8. The wedge product S1 _S1 _S2 has the same homology and cohomology than the torus T.

Proof. A cellular decomposition in CW complex of this space is a dimension 0 cell (the point which
links the circles and sphere), two dimension one cell (the circles) and a dimension 2 cell (the sphere).
Now, writting [x, y, z] the simplex generated by the points x, y, z; we write the following cycles :

w1 = [a,b]+ [b,c]+ [c, a]

z1 = [a,d ]+ [d ,e]+ [e, a]

z2 = B[a, f , g ,h]

with the points a,b,c,d,e,f,g,h as in the picture1. These cycles represent fundamental classes of the
circles and the sphere.

Figure 1: Representation of S1 _ S1 _ S2 in [4]

Recall the boundary operator in a cellular chain complex X is the application Bn : Cn(Xn , Xn´1) ÝÑ

Cn´1(Xn´1, Xn´2), defined as

Bn(eαn ) =
ÿ

β

deg (attaching map of eαn on eβn´1)eβn´1

hence Bi vanishes for every i . Then the wedge product has the same decomposition map and bound-
ary operator as a torus T. This implies that they have same homology and cohomology

Remark 1.9. Even if we proved that the torus T and S1 _ S1 _ S2 have same cohomology, we also
saw before that cup product raise a ring structure on cohomology. These ring will be different. This is
where we see that cup product allows to distinguish two spaces with same homology and cohomology.
We have to compute the cup product in the torus and in S1 _ S1 _ S2.

Lemma 1.10. The cohomology rings of the torus T and S1 _ S1 _ S2 are different

Proof. Let us show that the cup product of X = S1 _ S1 _ S2 is null. We consider cocycles w1 = [b,c]˚

and z1 = [d ,e]˚ which are a basis of Hom(C1(X ),Z) as w1 and z1 give a basis of C1(X ). Since no 2-
simplex in X has vertice attached to w1 nor z1 then w1 ! w1 = z1 ! w1 = z1 ! z1 = 0. Hence the cup
product is null.
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Now we compute the cup product in the cohomology ring if the torus. The fact it isn’t null yields to
the result.
We take cocycles a and b pictured bellow. They generate H 1(T ) » Z. Since [A,B ,C ] is a 2-simplex

Figure 2: Representation of the torus and its cocycles

whose admit a and b as vertices. Then a ! b is non null.
(We can compute < a ! b, [A,B ,C ] >=< a, [A,B ] > . < b, [A,C ] >= 1.1 = 1)

In this part we saw that cup product could help us to distinguish two space with same homology
and cohomology. But this raised a question: does it exists spaces which have same homology and
cohomology, the same cup product but that are different. In this case, can we distinguish them ? We
have to go a level further in cohomology and understand other operations : Massey products.

1.2 Borromean knot and higher order Massey product

In this section, we are going to see that even if cup product is null, we can build a new product to
distinguish our space from an other. To do so we will introduce a classical link, namely the Borromean
knot. We will show that this link is knotted using Massey products. Then we will extend this proof to
a generalisation of the Borromean knot in higher dimension. In fact this is where this proof becomes
usefull since it almost don’t change and is still valid, where an easier proof that the Borromean knot is
knoted is available but isn’t valid in higher dimension.

Remark 1.11. Let X be a manifold, p, q,r PN˚ and [a] P H p (X ), [b] P H q (X )[c] P H r (X ).
Suppose a ! b = b ! c = 0.
Then there exist W PΩp+q´1(X ), Z PΩq+r ´1(X ) such that :

a ! b = d W

b ! c = d Z

Let us call T =W ! c ´ (´1)p a ! Z PΩp+q+r ´1. Then d T = 0 hence the class of T in cohomology is
well defined. This depends on the choices of W and Z , that we will remove with a quotient.

Definition 1.12. Triple Product
With the notations in 1.11, we define the triple product between [a], [b], [c], denoted 〈[a], [b], [c]〉 to
be the element of H p+q+r ´1(X )/[a ! H q+r ´1(X )+H p+q´1 ! c] which is the cohomology classes of
every such chains T.
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Remark 1.13. • The condition a ! b = b ! c = 0 makes the triple product non empty.

• We could have defined 〈[a], [b], [c]〉 as a subset of H q+r ´1(X ) whose elements are the same in
H p+q+r ´1(X )/[a ! H q+r ´1(X )+H p+q´1 ! c].

• Cup product can be seen as the order one Massey product, triple product as the order 3 Massey
product, and recursively we can defined the order n Massey product with the same reasoning as
in the remark 1.11 triple product definition.

Definition 1.14. Massey Product of order n
Let X be a manifold, n PN,n ě 2 and suppose Massey product between n ´ 1 elements defined. Let
for i P �1,n�, ai ,i P H pi (X ). The we define the Massey product between the ai ,i , denoted 〈a1,1, ..., an,n〉
to be the subset of elements of the form :

ai ,i ! ai ,i +ai ,i ! ai ,i + ...+ai ,i ! ai ,i

with u = (´1)deg uu and @(i , j ),1 É i É j É n, (i , j ) ‰ (1,n) , ai , j is a solution of :

d ai , j = ai ,i ! ai+1, j +ai ,i ! ai+2, j + ...+ai , j ! a j , j

Remark 1.15. • 0 P 〈a1,1, ..., an,n〉 if and only if these equations admits a solution;

• 〈a1,1, ..., an,n〉‰ H if and only if @S Ĺ �1;n�,S = s1, ..., sk〈as1,s1 , ..., ask ,sk 〉 = 0;

• cohomology class of elements in 〈a1,1, ..., an,n〉 is equal up to lower order Massey products be-
tween the ai , j

There is still one thing wich is required to understand this proof that Borromean knot is knot-
ted. That is Alexander duality and its application to interpret linking number. The following is pre-
sented in [5] where you can also find the proofs.

Theorem 1.16. the Lefschetz isomorphism
Let M n be a compact, orientable manifold with boundary BM. We denote [M ] i nHn(M ,BM) its funda-
mental class, and

": H n´k (M ,L1) x Hn(M ,BM) Ñ Hk (M ,L2)

with L1 =H,L2 = BM or L1 = BM ,L2 =H.
Then

" [M ] : H n´k (M) Ñ Hk (M ,BM)

and
" [M ] : H n´k (M ,BM) Ñ Hk (M)

are isomorphisms.

Remark 1.17. • this isomorphism stand in homology and cohomology with coefficient in R an
additive group of a ring.

• if M is nonorientable, this isomorphism stand with coefficient inZ/2Z

This theorem yields to Alexander duality wich will be the core of our proof.

Theorem 1.18. Alexander duality
Let M Ĺ Sn be a closed submanifold. Then @0 ď k ď n ´ 1, we have the following isomorphisms :

H̃ k (M) » H̃n´k´1(Sn\M)

H̃k (M) » H̃ n´k´1(Sn\M)
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Figure 3: Borromean Ring, by AnonMoos https://commons.wikimedia.org/w/index.php?curid=927405

Remark 1.19. This theorem is valid for every k because of reduced homology. The group H 0(X ) is
always a free abelian group of rank r. Reduced homology is the homology that is the same everywhere,
except you replace H 0(X ) by the free abelian group of rank r-1. Reduced homology is denoted by
H̃i (X ) so we have H̃i (X ) = Hi (X )@i > 1 and for example H̃0(X ) =Z if H0(X ) =Z2. The intuition is that
the homology of a point has to be 0.

Alexander duality provide an interpretation of linking number as a multiplication in cohomol-
ogy. As a quick reminder, one can define the linking number of a link in S3 as follows. This definition
comes from [2] :

Definition 1.20. Let K1,K2 Ă S3 be two knots. Suppose they are oriented and let K = K1 \ K2 and C
be the set of crossings between K1 and K2 -that is to say, considering a plan P, and the projection on
this plan Π, a crossing is a point p such that p PΠ(K1) XΠ(K2). Then @p P C one can associate a sign
following the right hand rule, written ϵ(p).
Then the linking number between K1 and K2 is defined as lk(K1,K2) =ř

pPC ϵ(p).

Remark 1.21. We will extend this definition to connected oriented manifolds embedded in Sn in fol-
lowing subsection.

Now with Alexander duality,since H̃ 2´k (K ) » H̃k (S3\K ) hence there is a class in H̃1(S3\M) that
correspond to fundamental class of K1, and an other that correspond to fundamental class of K2. The
cup product of these two is in H 2(S3\K ) » H̃0(K ) »Z. The only thing that is left to be proved is that :

Lemma 1.22. This integer is equal to linking number up to sign.

The proof is in the next subsection, together with a generalized definition of linking number of
two orientable connected submanifolds of Sn because the proof isn’t clearer in S3.
Now we can focus on the Borromean knot.

We can give explicit equation to realise this knot, for example :

x = 0, y2 + z2

4
= 1 for circle S1 (1)

y = 0, z2 + x2

4
= 1 for circle S2 (2)

z = 0, x2 + y2

4
= 1 for circle S3 (3)
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Pose α,β,γ to be respectively fundamental class of S1,S2,S3. One can compute with right hand rule
than linking number between two circles if null. Then because of Alexander duality, we have :

α!β=α! γ=β! γ= 0

This implies that the triple product <α,β,γ> is well defined. Let us show that this triple product isn’t
null. Then we will show that if the Borromean knot wasn’t knotted, this triple product would be null
hence the conclusion.
Let us write B = S1 \ S2 \ S3. We have <α,β,γ>Ă H 1+1+1´1(S3\B) » H0(B).
Indeed, we have H 2(S3\B) » H0(B) and α ! H 1(S3\B)+ H 1(S3\B) ! γ = {0} since H 1(S3\B) is gen-
erated by α,β,γ and any cup product between two of these vanishes (even α ! α = 0 for example
because of cup product property). Hence cup product is null.
Lets us call Di the disc spanned by Si , i = 1,2,3, and ωi the corresponding chain. Since H2(S3,B) »

H 1(S3\B), this isomorphism make [ω1] correspond to α, ω2 to β and ω3 to γ. Let c be half the disk D2

and d be half the disk D3. Then we have :

ω1 Xω2 = Bc

ω2 Xω3 = Bd

Figure 4: Illustration of c,d and A the cycle with non null contribution.

Then triple product < α,β,γ > is the set of cycles c Xω3 +ω1 X d P H1(S3,B) up to choice of c
and d. But this cycle comes from S1 and goes in S3 so the isomorphism B : H1(S3,B) ÝÑ H0(B) doesn’t
send it to zero. Hence the triple product isn’t null.

Now suppose Borromean knot B is unknotted, then we can separate our three circles hence
chains ωi corresponding to spanned disks doesn’t intersect anymore, then the triple product would
be null.

Then we proved :

Property 1.23. The Borromean knot is knotted
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There is an easier proof by colouring the circles that works well but cannot be generalised to
higher order Borromean rings. The following part will extend definitions of Borromean rings and
linking number in higher order, and with quite the same proof we will conclude that, again, this "Bor-
romean ring in Sn will be knotted.

1.3 Generalisation of higher dimension Borromean ring

First we want to know if we can defined a linking number between submanifolds of Sn . In the following
part, M p

1 , M q
2 will be to closed connected orientable submanifold of Sn with n = p + q +1. To do so

we need the notion of intersection number. Here goes some definitions and lemmas, proved in [5] in
I)5)3).

1.3.1 The linking number in higher order

Let M n be a closed orientable manifold. The followings definitions and properties are true on R a ring
with identity, althought we enonciate them inZ.

Lemma 1.24. We can find two cellular decompositions of M such that, denoting σi cells of the first one
and σ˚

j cells of the other :

1. there is bijection between k-cells of the first decomposition and the (n-k)-cells of the second one,

2. σi Xσ˚
j =H,@i ‰ j ,

3. σi and σ˚ intersect transversely,

4. cells are oriented such that if e1, ...,ek is a positively oriented basis for a cell σi and ϵ1, ...,ϵn´k is
for a cell σ˚

i then e1, ...,ek ,ϵ1, ...,ϵn´k is a positively oriented basis for M n .

Remark 1.25. There is an algorithm to construct such decompositions. See the remark 1.29 the next
lemma to have some clues about it.

Remark 1.26. This definition of linking number is equivalent to the other for n = 3. I gave the one with
the right-hand-rule because it is clearer that it correspond to geometric considerations.

Definition 1.27. With the notations in 1.24, let V =ř

aiσi andW =ř

biσ
˚
i . The intersection number

between V and W is defined as <<V ,W >>=ř

ai bi

Morevover here is lemma that will be usefull just after next definition :

Lemma 1.28. If ∆i and∆ j are simplicies (in the first decomposition of M) of dimension k and k-1 re-
spectively, then :

<< B∆i ,∆˚
j >>= (´1)k <<∆i ,B∆˚

j >>
where ∆˚

j is the union of each simplicies of the second decomposition that intersect ∆ j transversaly in

its barycenter. This is union of closed (n-k)-cells.

Remark 1.29. Actually given a decomposition of M into simplicies K and considering K’ the barycen-
tric subdivision of this decompostion,we can build the "dual" decomposition of the definition 1.27 by
considering the set of the ∆˚

k for ∆k P K 1

Let us go back to our closed connected orientable submanifolds Mi Ă Sn . Since n ě p, q ě 0;

Hp (Sn) = 0. Moreover fundamental class [M p
1 ] P Hp (Sn) = {0} and [M q

2 ] P Hq (Sn) = {0} then DW p+1
1 P

Cp+1(Sn),W q+1
2 P Cq+1(Sn) ; [M p

1 ] = BW p+1
1 and [M q

2 ] = BW q+1
2 .
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Definition 1.30. We define the linking number of M1 and M2 to be the intersection number between
there fundamental class and the chains Wi :

lk(M1, M2) := | <<W p+1
1 , [M q

2 ] >> | = | << [M p
1 ],W q+1

2 >> |

Remark 1.31. Because of the lemma 1.28, the second equality is clear. The first one is where the real
definition stands.

Remark 1.32. This definition looks alike what we did in the proof that Borromean knot is knotted. In
fact, this definition is valid as a definition of linking number in a knot. But I wanted a more computable
definition of the linking number in order to make the proof to be easier at a first sight.

Now we want to interpret the linking number thanks to Alexander duality.

1.3.2 Alexander duality and linking number in higher order

Take X = M p
1

Ů

M q
2 . Because of Alexander duality, H k (Sn\X ) » Hp+q´k (X ) Then :

[M p
1 ] P Hp (X ) » H q (Sn\X ), then we chooseα P H q (Sn\X ) corresponding to[M p

1 ]

[M q
2 ] P Hq (X ) » H p (Sn\X ), then we chooseβ P H p (Sn\X ) corresponding to[M q

2 ]

We have α!β P H p+q (Sn\X ) » H̃0(X ) =Z. And just like before, we have :

Lemma 1.33.
α!β= |lk(M p

1 , M q
2 |

Proof. In Alexander duality proof we have that following morphisms are isomorphisms:

H p+q (Sn\X ) ÝÑ H1(Sn , X )
B

ÝÑ H̃0(X )

Thenα!β P H p+q (Sn\X ) correspond to an element W p+1
1 &W q+1

2 P H1(Sn , X ) beacause we also have
isomorphisms :

H q (Sn\X ) ÝÑ Hp+1(Sn , X )
B

ÝÑ H̃p (X )

α ÞÑ W p+1
1 ÞÑ [M p

1 ]

Then

B(W1 XW2) = (BW1 XW2) Y (W1 XW2)

= ([M1] XW2) Y (W1 X [M2])

whose are arcs.But know two more things. Every arc in W1 X W2 which starts and finishes in M1 will
have no contribution in homology because we work in reduced homology. Plus we only need to look
at arcs starting in M1, ending in M2. So α ! β correspond to ([M1] X W2) which is the intersection
number between M1 and M2

Now that we know what linking number means in higher order, we just have to generalise Bor-
romean ring, and to prove that again it is kind of knotted which will be easy because the same proof as
before apply. The classical proof Borromean knot is knotted doesn’t generalize in higher dimension.
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1.3.3 Generalisation of the Borromean rings, and of the proof

We will generalize Borromean rings in Borromeans spheres with equations. Denoting x = (x1, ..., xp ,
y = (y1, ..., yq ), z = (z1, ..., zr , n = p +q + r and also :

Sq+r ´1
1 : x = 0, ||y ||2 + ||z||2

4
= 1 (4)

Sp+r ´1
2 : y = 0, ||z||2 + ||x||2

4
= 1 (5)

Sp+q´1
3 : z = 0, ||x||2 + ||y ||2

4
= 1 (6)

(7)

and B = S1 Y S2 Y S3 Ă Sn . Then B is our generalization of Borromean rings.

Lemma 1.34. If i , j P {1,2,3}, i ‰ j then lk(Si ,S j ) = 0

Proof. We will embed a sphere in a compact disk whose intersection with the other is empty, which

will prove the lemma. Let (D be the disk of equation ||x||2
32 + ||y ||2

( 1
2 )2 + ||z||2

( 3
2 )2 ď 1

• If (x, y, z) P S1, x = 0 and ||y ||2 = 1 ´
||z||2

4 .
Then

||x||2
32 + ||y ||2

( 1
2 )2

+ ||z||2
( 3

2 )2
= 1 ´

||z||2
4

1/4

= 4+ (
4

9
||z||2 ´ 1)

= 4 ´
5

9
||z||2

Then since 0 ď ||z||2 ď 4 we have 1 < 16
9 ď 4 ´ 5

9 ||z||2 ď 4
So S1 XD =H

• if (x, y, z) P S2, y = 0 and ||z||2 = 1 ´
||x||2

4
Then

||x||2
32 + ||y ||2

( 1
2 )2

+ ||z||2
( 3

2 )2
= ||x||2

3
+ 1 ´

||x||2
4

9/4

= 4

9
< 1

So S2 Ă D

This ensure that lk(S1,S2) = 0 since chains corresponding to balls spanned in the spheres won’t inter-
sect.
We can find such a compact for the other couples of spheres.

We deduce from the lemma that with α,β,γ fundamental classes of respectively S1,S2,S3 we
have :

α!β=α! γ=β! γ= 0
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and we still have :
α!α=β!β= γ! γ= 0

because of cup product properties.
Then the triple product <α,β,γ>P H n´1(Sn\B) » H̃0(B). Let us show it isn’t null.
Let ω1,ω2,ω3 balls such that Bwi is a representative of the fundamental class Si . We choose :

ω1 = {(x, y, z) PR3, x = 0, ||y ||2 + ||z||2
4

ď 1} (8)

ω2 = {(x, y, z) PR3, y = 0, ||z||2 + ||x||2
4

ď 1} (9)

ω3 = {(x, y, z) PR3, z = 0, ||x||2 + ||y ||2
4

ď 1} (10)

(11)

Then we have :

ω1 Xω2 = {(x, y, z)R3, x = 0, y = 0, ||z||ď 1}

ω2 Xω3 = {(x, y, z)R3, y = 0, z = 0, ||x||ď 1}

We introduce

c = {(x, y, z)R3, x1 ě 0, x2 = ... = xp = 0, y = 0, ||z||2 + x2
1

4
ď 1}

and

d = {(x, y, z)R3, x = 0, y1 ě 0, y2 = ... = yq = 0, ||z||2 + x2
1

4
ď 1}

such that we have ω1 Xω2 = Bc and ω2 Xω3 = Bd and triple product <α,β,γ> correspond to c Xω3 +
ω1 X d .
We now compute c Xω3 and ω1 X d :

ω1 X d = {(x, y, z)R3, x = 0,0 ď y1 ď 1, y2 = ... = yq = 0, z = 0}

c Xω3 = {(x, y, z)R3,0 ď x1 ď 1, x2 = ... = xp = 0, y = 0, z = 0}

So the cycles t ÞÑ

{
(1 ´ 2t ,0, ...,0), t P [0, 1

2 ]
(0, ..., y1 = 2t ´ 1,0, ...,0), t P [ 1

2 ,1]
is in c Xω3+ω1 Xd , has starting point in S1 and

ending point in S3 so it has a non null contricution in homology yields that triple product is not null.
We showed :

Property 1.35. Higher order generalization of Borromean rings has non null triple product

Corollary 1.36. Higher order generalization of Borromean rings is still "knotted" that is to say, we can’t
find K1,K2,K3 three compacts such that Si = BKi and Ki X K j =H for i ‰ j

Now that we saw the Massey product geometrically, we want to link it with an algebraic struc-
ture to understand where does it stand in the comprehension of a geometric space.

Remark 1.37. We will denote F2(X ) the configuration space of X ,and Lp,q) the corresponding lens
space. We saw example of spaces where all of the Massey products are null. There is an other example
of such a space which is F2(L7,1) because it is homotopy equivalent to _6S2 ˆ S3. But since Massey
products of F2(L7,2) are not trivial, then F2(L7,1) and F2(L7,2) are not homotopy equivalent. Since L7,1

and L7,2 are homotopy equivalent, and their configuration space are not, this induces that configura-
tion space are not homotopy invariant. All of the work is done in [3].
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2 A8 categories

In this section we introduce the A8 structure which have a strong link with Massey product as re-
marked in the first observation. The majority of the content here comes from [6]. The associative ring
we work on in cohomology isZ/2Z. We could do the work on an other field but this would make the
formulas more involving because of a lot of signs (´1)♠ where ♠ has a complicated formula. It is still
possible to find those formulas and make the work on R for example. You can have a look at [6] for
example.

2.1 A8 structure and homology

The first definition we need is the definition of a A8 category. This definition induce a lot of operations
and properties as you’re going to see right after. Just before we need a little bit of vocabulary that deals
with categorical algebra. I used the definitions in [7], but there are many equivalent definitions of
categories. Even if I consider definitions of categories and functors are known the following definition
is here to present what I mean for a non-unital category.

2.1.1 Homological vocabulary

Definition 2.1. 1. A non-unital category C consists of a set ob(C ) of objects, a set HomC (A,B)
of morphisms for every ordered pair (A,B) of ob(C ) and an associative composition between
morphism, that is to say for any ordered triple (A,B ,C ) in ob(C ), there is a map

HomC (A,B) ˆ HomC (B ,C ) Ñ HomC (A,C )

( f , g ) ÞÑ g ˝ f

which is associative

2. If moreover for every A P ob(C ) there is an identitfy map i dA P homC (A, A) such that @A,B P

ob(C ) and @ f P hom(C (A,B),
i dB ˝ f = f = f ˝ i dA

then C is said to be a category.

3. A category is said to be linear over a fieldK (or at least a commutative ring) if moreover @A,B P

ob(C ), homC (A,B) is aK-vector space and the composition operation is bilinear, that is to say
that it is defined on HomC (A,B) b HomC (A,B)

Remark 2.2. In fact, this is the definition of small categories. Replace "a set ob(C ) of objects" by "a
class ob(C ) of objects" to have the proper definition of a category. Every category will be considered
as small ones.

Remark 2.3. Note that most of the properties that comes from [6] concern non-unital categories be-
cause the goal of the book is to introduce Fukaya categories. Apparently, having an identity morphism
in such categories causes tricky phenomenons.
Since this book is my main reference, in the followings, the categories are considered as non unital
and small.

We need a final vocabulary, regarding vector spaces.

Definition 2.4. A vector space V is said to be graduaded overZ if it comes together if a decomposition
V =À

kPZVk where Vk is a vector space.

Remark 2.5. For examples polynomials (in one or several variables) form a gradedN vector space.
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2.1.2 A8 category definition and first observations

In the following, Xi will be objects of the categories, and ai will be morphisms of hom(Xi , X j ), and [k]
means shifting the grading of the vector space down by k PZ.

Definition 2.6. Let K be a field. A non-unital A8 category A is set of objects ob(A such that for
every pair (X0, X1) P ob(A ), a set of morphisms homA (X0, X1) which is a graded vector space ; that
have multi-linear compositions maps of order d ě 1 :

µd
A : homA (Xd´1, Xd ) b ... b homA (X0, X1) ÝÑ homA (X0, Xd )[2 ´ d ]

that verify the A8-associativity equations :

ÿ

1ďmďd ,0ďnďd´m

(´1):µd´m+1
A

(ad , ..., an+m+1,µm
A (an+m , ..., an+1), an , ..., a1) = 0

with :=ř |ai |´ n, |ai the graduation of ai P hom(ai , ai+1).

Remark 2.7. We wanted to give the global definition, and this : is nice enough to do it. In the following,
K=Z/2Z so that the (´1): vanishes, and A is a non-unital A8 category.

Now apply the formula for d = 1. We see that µ1 ˝µ1 = 0 hence

...
µ1

ÝÑ homA (X0, X1)
µ1

ÝÑ homA (X0, X1)
µ1

ÝÑ ...

is a chain complex we will denoting C for now. So we can build its homology as usual.

Remark 2.8. Plus we may use B instead of µ1 when we will focus on an cohomological property. This
is motivated by the fact that µ1 is a differential of a chain complex.

Also we can apply the formula for d = 2. We see that

µ2(µ1(a2), a1)+µ2(a2,µ1(a1)) =µ1(µ2(a2, a1)

It is exactly (iii), then we can think µ2 may be the cup product of some chain.
If a1, a2 are cycles, then µ1(µ2(a2, a1)) = 0 so we can define

µ2 : H¨(C ) ˆ H¨(C ) ÝÑ H¨(C )

([a1], [a2]) ÞÑ [µ2(a1, a2)]

because we have

µ2(a2 +B(b), a1) =µ2(a2, a1)+µ2(B(b), a1)

=µ2(a2, a1)+µ2(b,B(a1))+B(µ2(b, a1))

taking a1, a2 cycles the second term is null, and the last term is in Im(B). So in homology we can define
it because we haveµ2(a2+B(b), a1) =µ2(a2, a1). We will write this composition [a2]˝[a1] = [µ2(a2, a1)].

Remark 2.9. Now, we won’t write the compositions anymore. That is to say that for example [a2]˝ [a1]
will be denoted [a2].[a1] or [a2][a1].

We continue grabbing some information on H(A ) by applying the formula for d = 3. We have :

µ3(µ1(a3), a2, a1)+µ3(a3,µ1(a2), a1)+µ3(a3, a2µ
1(a1))+µ2(µ2(a3, a2), a1)+µ2(a3,µ2(a2, a1))+µ1(µ3(a3, a2, a1)) = 0
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which induces in homology taking a1, a2, a3 cycles :

[µ2(µ2(a3, a2), a1)] = [µ2(a3,µ2(a2, a1))]

that is to say that µ2 is associative in H(C ) : it is a real composition.
This implies that we can associate to A its cohomological category H(A ) which have the same

objects as A , which morphisms spaces are the cohomology groups denoted [ai ] P H(homA (X0, X1),µ1
A

)
and which composition is [a2][a1] = [µ2

A
(a2, a1)]. Then it is a linear graded small category. We don’t

know if it is unital or non-unital.
We can’t have more information with d = 4 because µ3 doesn’t have an induced application in

homology : even if a1, a2, a3 are cycles, we have

Bµ3(a1, a2, a3)) =µ2(µ2(a3, a2), a1)+µ2(a3,µ2(a2, a1))

which doesn’t simplify. But we can try to compute the triple product in homology : Suppose now
that [a3].[a2] =2.1.2 [µ2(a3, a2)] = 0 and [a2].[a1] = [µ2(a2, a1)] = 0. We also choose h2 P homA (X1, X3),
h1 P homA (X0, X2) such that Bh2 =µ2

A
(a3, a2) and Bh1 =µ2

A
(a2, a1).

Then let c =µ3
A

(a3, a2, a1)+µ2
A

(h2, a1)+µ2
A

(a3,h1) P homA (X0, X3) is a cycle and we have :

< [a3], [a2], [a1] >= [c] P
homH(A )(X0, X3)

[a3].homH(A )(X0, X2)+homH(A )(X1, X3).[a1]

Even if the compositions of order ě 3 are not chain map, they encode Massey products. An other way
to see it is that the Massey products of the chain correct the compositions so that there sum is a chain
map.

Remark 2.10. Massey prodcuts came easily considering the composition of order > 2 which means
that this notion I discussed about the geometrical aspect before have a really strong link with A8 that
have for now nothing to do with geometry. The structure of A8 category will appear in a geometric
(and also topological) counter example later on.

For now we will focus on what comes after the definition of an algebraic structure : how do we
send a structure on an other.

2.2 Functors between A8 categories

Definition 2.11. Let A and B be two A8 categories with compositions respectively µd
A

and µd
B

. An

A8 functor between A and B is a map F : Ob(A ) ÝÑ Ob(B) together with multilinears maps F d

of order d ě 1

F d : homA (Xd´1, Xd ) b ... b homA (X0, X1) ÝÑ homB(F (X0),F (Xd ))[1 ´ d ]

that verify the following equation :

ÿ

r ě1

ÿ

s1+...+sr =d ,si ě1

µr
B(F sr (ad , ..., ad´sr +1), ...,F s1 (as1 , ..., a1) =

ÿ

1ďmďd ,0ďnďd´n

F d´m+1(ad , ..., an+n+1,µm
A (an+m , ..., an+1), an , ..., a1)

Remark 2.12. This formula may look complicated but fix d,for every r we take every partition of d in r
integer and for each partition sr , ..., s1, you have to send a pack of si consecutive a j in one element of
homB(F (X0),F (Xd )) by F si . Then you can compose them with µr

B
. Summing for every r, you want
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to have the global structure (as in the definition of A8 category) of A "sent" to B. For example we
have for d=1 and d=2 :

µ1
B(F 1(a)) =F 1(µ1

A (a)) (12)

µ1
B(F 2(a2, a1))+µ2

B(F 1(a2),F 1(a1)) =F 2(µ1
A (a2), a1)+F 2(a2,µ1

A (a1))+F 1(µ2
A (a2, a1)) (13)

Remark 2.13. The first equation implies that F 1 induces a map in homology. The second equation
induces that

H(F 1)([a2]).H(F 1)([a1]) = [F 1(a2)].[F 1(a1)] = [F 1(µ2
A (a2, a1))]

Remark 2.14. We can compose functors with the following formula :

(G ˝F )d (ad , ..., a1) =
ÿ

r ě1

ÿ

s1+...+sr =d ,si ě1

G r (F sr (ad , ..., ad´sr +1), ...,F s1 (as1 , ..., a1))

This will become usefull later on.

Here we write our main theorem, the Kadeishvili theorem. Then we will in next subsection
explain the homotopy notion required in this theorem. We will prove it in the next section.

Theorem 2.15. Let B be a non-unital A8 category. Suppose @X0, X1 P Ob(B) we have (homA (X0, X1),µ1
A

)
a vector space chain complex (for now, A isn’t anything nor is µ1

A
except a chain map). Plus suppose

we have chain maps F̃ 1,G̃ 1, and also a linear map T̃ 1 of degree -1 such that we have :

1.

homA (X0, X1) homB(X0, X1)

F̃ 1

G̃ 1

T̃ 1

2. µ1
B

T̃ 1 + T̃ 1µ1
B
= F̃ 1G̃ 1 + i d

Then we can construct :

(i) An A8 category A with Ob(A ) =Ob(B), with first order composition map µ1
A

,

(ii) non-unital functors F : A ÝÑ B and G : B ÝÑ A which are identity and for whose F 1 = F̃ 1

and G 1 = G̃ 1,

(iii) an homotopy T between F 1G 1 and I dB for whose T 1 = T̃ 1

Remark 2.16. Even if we chose to introduce F̃ 1,G̃ 1, and T̃ 1 with the tildes so we don’t think they are
at the beginning first order maps of functors, looking at the conclusion I will remove them for now.
Still, remember they are not first order maps of functors, but just maps that verify the good conditions
for it.
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2.3 Natural transformation and homotopy between functors

As usual with categories, once you have the functors between elements of a category, you can look
at the category of those morphism. This is the aim of next definitions where we will introduce this
category and give the expression that verify there composition 2.17 and then finally explain what is an
homotopy between two functors.

Definition 2.17. Let A , B be two A8 categories. We define the category of nun-unital functors be-
tween A and B, denoted Q = nu ´ f un(A ,B). Its objects are the functors, and an element of the
chain space T P homg

Q
(F0,F1) (g is the degree in the chain of T )is a sequence (T d )dě0 of multilinears

maps :
T d : homA (Xd´1, Xd ) b ... b homA (X0, X1) ÝÑ homB(F (X0),F (Xd ))[g ´ d ]

Note that in particular, T 0 if a family (indexed by X) of elements in homg
Q

(F0(X ),F1(X )). We call T a
pre-natural transformation from F0 to F1.

The boundary operator of the chain is

µ1
Q(T )d (ad , ..., a1) =

ÿ

r ě1,1ďiďr

ÿ

s1+...+sr =d

µr
B(F sr

1 (‚), ...,F si+1
1 (‚),T si (‚),F

si´1
0 (‚), ...,F s1

0 (‚))

+
ÿ

1ďmď,0ďnďd´m

T d´m+1(ad , ..., an+m+1,µm
A (an+m , ..., an+1), an , ..., a1)

where the ‚ have to be replace by the a j with the good indexes, for example F
si+1
1 is evaluated in

(as1+...+si´1+1, ..., as1+...+si+1).

Remark 2.18. Note that again, this boundary operator is the chain map of the chain composed of
homQ(F0,F1).

The higher order compositions are easier to formulate and follow the same pattern as the fol-
lowing. Take T1 P homQ(F0,F1) and T2 P homQ(F1,F2). Then :

µ2
Q(T1,T2)d (ad , ..., a1) =

ÿ

1ďr ďd

ÿ

1ďi< j ďr

ÿ

s1+...+sr =d

µr
B(F sr

2 (‚), ...,F
s j+1

2 (‚),

T
s j

2 (‚),F
s j ´1

1 (‚), ...,F si+1
1 (‚),T si

1 (‚),F
si´1
0 (‚), ...,F s1

0 (‚))

Remark 2.19. You can find in the appendix a python algorithm that compute all the terms involved in
the second order composition map for pre-natural transformations.

Remark 2.20. Again the equations may be hard at a first sight. Note that T have to appear in every one
of your terms for the first equations, and both T1 and T2 have to appear in the second one.

For the first one you place firstly some stacks of F1 on the left, then T, then the other stacks of
F0 on the right. Finally, you add the "transformations of you compositions", with the same cyclic way
as usual.

For the second one you place firstly some stacks of F2 on the left, then your T2, you continue
with your stacks of F1, then your T1 and finally your stacks of F0.

Definition 2.21. Let T be a pre-natural transformation. Then if T is a cocycle (µ1
Q

(T ) = 0), we will say
that T is a natural transformation.

Remark 2.22. If T1 and T2 are two natural transformation, such that there exist there exists T3 with
T 1 = T 2 +µ1

Q
(T3), then T1 and T2 are chain homotopic (in the chain (homQ(F0,F1),µ1

Q
)). This is a

notion of chain homotopy between natural transformations.
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Remark 2.23. Given a natural transformation T between two functors F0,F1, we see that the element
[T 0

X ] P homH(B)(F0(X ),F1(X )) satisfies @[a] P homH(A )(X 0, X 1):

[T 0
X 1 ].[F 1

0 (a)] = [F 1
1 (a)].[T 0

X 0 ]

Since this is the second order product of H(A ), [T d ] verifies µ1
H(Q)([T d ]) = 0 (where H(Q) = nu ´

f un(H(A ), H(B)) hence [T] is a natural transformation between the functors induced in homology
by F0 and F1.

Now let us define what is an homotopy between two functors of A8 category.
Let F0,F1 P Ob(Q) ; Q = nu´ f un(A ,B) acting in the same way on objects. That is to say that

F0,F1 : A ÝÑ B are two functors and @X P Ob(A ) ; F0(X ) = F1(X ). We introduce D = F0 ´ F1 P

hom1
Q

(F0,F1) defined by D0 = 0, Dd =F d
0 ´F d

1 , @d ě 1.

Lemma 2.24. D is a natural transformation.

Proof. Every term in the first sum of 2.17 collapse with an other because of the multilinearity of µd
B

.
The second sum is null because F0,F1 act on the same way on objects.

Definition 2.25. We say that F0 and F1 are homotopic if DT P hom0
Q

(F0,F1), D =µ1
Q

.

Lemma 2.26. This homotopy is an equivalence relation.

Proof. The proof is in [6]. Usually, this is not hard to proof but here computation are harder due to
the "interpretation" of T P hom0

Q
(F0,F1) = hom0

Q
(F1,F2) because all this functors acts on the same

way on objects. There is just one thing which is not clear in the book that we want to add. The very
first step is to show the following formula, with { j ,k, l } = {0,1,2} and T j k seen in homQ(F j ,Fk ) and
where ‚ is the right collection of ai :

µ2
Q(Fk ´Fl ,T j k )d (‚) =µ1

Q(T j l )d +µ1
Q(T j k )d

µ2
Q(Fk ´Fl ,T j k )d (‚) =

ÿ

1ďr ďd

ÿ

1ďi< j ďr

ÿ

s1+...+sr =d

µr
B(F sr

l (‚), ...,F
s j+1

l (‚),

(Fk ´Fl )s j (‚),F
s j ´1

k (‚), ...,F si+1
k (‚),T si

j k (‚),F
si´1

j (‚), ...,F s1
j (‚))

=
linearity

ÿ

1ďr ďd

ÿ

1ďi< j ďr

ÿ

s1+...+sr =d

µr
B(F sr

l (‚), ...,F
s j+1

l (‚),

F
s j

k (‚),F
s j ´1

k (‚), ...,F si+1
k (‚),T si

j k (‚),F
si´1

j (‚), ...,F s1
j (‚))

+
ÿ

1ďr ďd

ÿ

1ďi< j ďr

ÿ

s1+...+sr =d

µr
B(F sr

l (‚), ...,F
s j+1

l (‚),

F
s j

l (‚),F
s j ´1

k (‚), ...,F si+1
k (‚),T si

j k (‚),F
si´1

j (‚), ...,F s1
j (‚))

and now for everys1, ..., sr , each term of the first sum with both F j ,Fk and Fl

µr
B(F sr

l (‚), ...,F
s j+1

l (‚),F
s j

k (‚),F
s j ´1

k (‚), ...,F si+1
k (‚),T si

j k (‚),F
si´1

j (‚), ...,F s1
j (‚))

collapse with following one in the second sum with both F j ,Fk and Fl

µr
B(F sr

l (‚), ...,F
s j

l (‚),F
s j ´1

l (‚),F
s j ´2

k (‚), ...,F si+1
k (‚),T si

j k (‚),F
si´1

j (‚), ...,F s1
j (‚))
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The only thing left is the terms with only Fl ,F j or only Fk ,F j , that is to say :

ÿ

r ě1,1ďiďr

ÿ

s1+...+sr =d

µr
B(F sr

l (‚), ...,F si+1
l (‚),T si

j l (‚),F
si´1

j (‚), ...,F s1
j (‚)) =

=µ1
Q(T j l )d (‚)+

ÿ

1ďmď,0ďnďd´m

T d´m+1
j l (ad , ..., an+m+1,µm

A (an+m , ..., an+1), an , ..., a1)

and
ÿ

r ě1,1ďiďr

ÿ

s1+...+sr =d

µr
B(F sr

k (‚), ...,F si+1
k (‚),T si

j k (‚),F
si´1

j (‚), ...,F s1
j (‚)) =

=µ1
Q(T j k )d (‚)+

ÿ

1ďmď,0ďnďd´m

T d´m+1
j k (ad , ..., an+m+1,µm

A (an+m , ..., an+1), an , ..., a1)

summing those to give the equality we wanted since T j l = T = T j k .

3 Kadeishvili theorem and combinatorial proof

The aim of this section is to proove the Kaideishvilli theorem we already presented.

Theorem 3.1. Let B be a non-unital A8 category. Suppose @X0, X1 P Ob(B) we have (homA (X0, X1),µ1
A

)
a vector space chain complex (for now, A isn’t anything nor is µ1

A
except a chain map). Plus suppose

we have chain maps F̃ 1,G̃ 1, and also a linear map T̃ 1 of degree -1 such that we have :

1.

homA (X0, X1) homB(X0, X1)

F̃ 1

G̃ 1

T̃ 1

2. µ1
B

T̃ 1 + T̃ 1µ1
B
= F̃ 1G̃ 1 + i d

Then we can construct :

(i) An A8 category A with Ob(A ) =Ob(B), with first order composition map µ1
A

,

(ii) non-unital functors F : A ÝÑ B and G : B ÝÑ A which are identity and for whose F 1 = F̃ 1

and G 1 = G̃ 1,

(iii) an homotopy T between F 1G 1 and I dB for whose T 1 = T̃ 1

In a first part, we explain our notations, and the main results we will use. Then in a next section
we present the first steps of the induction. Finally we present the combinatory in general.
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We will build the functor F and the compositions maps by induction, with the following for-
mulas :

F d (ad , ..., a1) =
ÿ

r ě2

ÿ

s1+...+sr =d

T 1(µr
B(F sr

1 (‚), ...,F si+1
1 (‚),T si (‚),F

si´1
0 (‚), ...,F s1

0 (‚)))

µd
A (ad , ..., a1) =

ÿ

r ě2

ÿ

s1+...+sr =d

G 1(µr
B(F sr

1 (‚), ...,F si+1
1 (‚),T si (‚),F

si´1
0 (‚), ...,F s1

0 (‚)))

Then we will verify that for every integer r, F r verifies the A8 functor definition 2.11 and that µd
A

verifies the A8 structure definition 2.6.

3.1 Rewriting the formulas with trees

In order to make the computation easier, we will write the formulas with trees. Here are some defini-
tion to ensure we speak of the same thing. Every tree will be rooted, but we will speak of trees instead
of rooted trees.

Definition 3.2. A rooted tree is a set of nodes and edges. Every edges has a unique parent node and a
unique child node. A node can link several (or none) edges above it , but has a unique edge below it.
The root is a unique node without any parent.
A node which has no children is called a leaf.
An interior edge is an edge for which at least one children isn’t a leaf, and which is not linked to the
root.

Our tree will be colored in red if the element that is represented is in A and in black if it is in B.
The following figures are the representations of respectively µ1

A
, µ1

B
and T 1 :

T

We will represent µd
B

as follows (same thing for µd
A

but in red):

d times

Also, we will spanned the tree in a green rectangle to express it is F d and a change of colours
will indicate that we apply F1 for red to black, and G 1 for black to red, read from the top to the bottom.

For example, we have F 2(a2, a1) = T 1(µ2
B

(F 1(a2),F 1(a1)) which will be represented in trees
as follows :

T
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We will denote τk
d the set of all the trees with k interior edges and d leafs. Moreover we call

colored a tree for which every interior edges carry a T 1, we will denote them τk
d d; and we will denote

τk
d

Â

the set of the trees which are not colored.

3.2 First steps and observation

First of all, we write the equation that verifies F 1, G 1 and T 1 on the left, and on 12 :

T T

Let us do the computation for d=2. With the formula, we see thatµ2
A

(a2, a1) =G 1(µ2
B

(F1(a2),F1(a1)).

That is to say writting with trees that :
Then we can proove 2.6 for d = 2.
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because we can use the equation verified by µd
B

since they are the composition of the A8 category B.
Now we can check that F1,F2 verify 13, that is to say :

For now and until the end, we won’t right the "+" anymore in our trees equalities. We start from
the right part of the equality. We use 3.2 and 3.2 to express the last tree as :

T T
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The last tree collapse with with the 2 others terms of the right part of the equality because of
the equation verified by µ2

B
and the right part in 3.2. The two terms that are left are exactly the terms

on the left side of the equality, which yields to the result.
The combinatory is based on the way we wrote the last tree as three trees, and to recognize

some of them. We will recursevely do this trick, which causes a combinatorial explosion of the terms.

3.3 Proof of the theorem

We suppose that F k and µd
A

verify 2.11 and 2.6 until d ´ 1.

We identity a tree T to the element it correspond to , writing µT for this element. For example

µ2
B
=µτ

0
2

B
(there is only a unique tree in the set so we confound them). Also we write

ÿ

‚

d times

for the sum µd (µ1(.), .., .)+µd (., ...,µ1(.))+µ1(µd (., ..., .)).
The equation that have to verify µA to be the compositions of a A8 category becomes :

ÿ

‚

d times

ÿ

T Pτ1
d d

µT
A

Also, note that recursively expressing F k , we have the key of the combinatory :

d times

d
ÿ

pě1

ÿ

d1+...+dp=d

ÿ

T Pτd
‚
i d

. . .T1

...

Tp

...

where T P τ‚
di

d means
ÿ

kě1

ÿ

T Pτd
k
i d

. Moreover in the following we will write this triple sum
ř

T j d

Let’s start with the right side. In a first time, we right the tree with a unique interior edge as 2
linked (by this interior edge) trees with no edges. Then since each leaf end and each root start with
respectively, from bottom to top black-red and red-black; we colour this edge in an other way to use
3.2. In the same time, we use 3.3.In the following, d1 +d2 = d ,d1 ě 1,d2 ě 1.
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ÿ

T Pτ1
d d

µT
A

d´1
ÿ

d1ě1

τ0
d´d1+1

τ0
d1

ř

T j d

ř

branches of τ0
d1

τ0
d1

. . .T1

...

Tp

...

ř

T j d

ř

branches of τ0
d1

. . .T1

...

Tp

...

τ0
d1

. . .T1

...

Tp

...

T

τ0
d1

. . .T1

...

Tp

...

T

τ0
d1

where the sum of the three trees are in the sum. Note that on the first tree on the right, the figured
edge is the only one that doesn’t carry a T (once the tree entirely developed). We call respectively A,B
and C the three sums of trees. Lets split the sum into three one, fix A and the Ti ; and figure out what
does happen using 2.11 by induction.

. . .T1

...

Tp

...

T

τ0
d1

ÿ

‚

. . .T1

...

Tp

...

T

τ0
d1

ÿ

HPτ1
p

Â

. . .T1

...

Tp

...

T

τ0
d1

H

Remember in the final sum, we sum for all the possible T j . Suppose the T j linked to the edge
that carry the dot isn’t a leaf. Then T j start with an edge that carries a T. This induces that this tree
is already in the sum B because we recognize the pattern dot - T. On the other side, every term in the
sum B is one of those trees, except for the case d1 = 1. But in this case, we find the tree corresponding
to µd

A
where the dot is carried by the root.
Now let’s have a look at the trees where the edge that carries the dot linked to T j is a leaf. Of

course we can rise the (black) dot on the edge onto a (red) dot on the leaf. Summing for all others Ti

and for all d1, and using 3.3 (be careful, here Ti is just a leaf in the figure referenced); we find µd
A

with
a dot on a leaf. This way we find :

23



ÿ

‚

d times

Moreover looking at the trees of the second kind, the unique interior edge of H is the only
interior edge of the tree which doesn’t carry a T. Then we exactly find here all of the trees that are in A.

Then we effectively proved :

ÿ

‚

d times

ÿ

T Pτ1
d d

µT
A

Similar arguments apply to prove the formula 2.11 verified by F d . We proved the first part of
the theorem.
The two other points of the theorem looks even more computational and we didn’t find the right for-
mulas. But we proved the most important thing : we can push forward the structure.

The Kadeishvili theorem is usefull to provide an A8 structure, especially on homology. For
example, in [1], it is used to provide an A8 structure on "the linearized cohomology of the Legendrian
contact homology". Then they use this structure to find "Legendrian knots that are not isotropic to
their Legendrain mirror".
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Appendix : Python script that return all of the terms in ?? for d=2, as a list of tuple, eacher tuple
being what µk is evaluated on. Commentaries are in french

import numpy as np
def tableau_combin(d):

" renvoie toutes les possibilites des indices dans le mu^d"
#on note T l'element T, S l'element F - F , F les elements F
#on renvoie en fait l'ensemble des listes avec l'interieur des mu^d
#et aussi la place qu'occupent S et T
if d < 0 : return None
if d == 0 : return [[],[]]
if d == 1 : return [[],[]]
if d == 2 :

return (([("S",0),("T",2)],[("S",1),("T",1)],[("S",2),("T",0)]),((0,1),(0,1),(0,1)))
else :

ens_liste , ens_indice = tableau_combin(d-1)

L = []
indice = []
n = len(ens_liste)

for i in range(n):
L_i = ens_liste[i]
temp_list = L_i.copy()
taille_L_i = len(L_i)
# on peut rajouter un Fk, un Fl, un Fj pour avoir les d elemnts
(s,t) = ens_indice[i]
temp_indice = (s,t)

#on insert des Fk
for k in range(s+1):

temp_list.insert(k,("F",1))

L.append(temp_list)
indice.append((s+1,t+1))

temp_list = L_i.copy()
temp_indice = (s,t)

#on insert des Fl
for k in range(s+1,t+1):

temp_list.insert(k,("F",1))

L.append(temp_list)
indice.append((s,t+1))

temp_list = L_i.copy()
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temp_indice = (s,t)

#on insert des Fj
for k in range(t+1,taille_L_i+1):

temp_list.insert(k,("F",1))

L.append(temp_list)
indice.append((s,t))

temp_list = L_i.copy()
temp_indice = (s,t)

return (L,indice)

def est_pas_dedans(M,a):
for x in M :

if x == a : return False
return True

def epuration(D):
"D est un couple de deux listes, on veut éliminer les doublons de la premiere et"
"le cas echeant"
"enlever le couple d'indice correspondant dans la deuxieme"
if len(D[0]) <= 1 : return D
(L,indice) = D
n = len(L)
new_L, new_indice = [] , []

for i in range(n):
temp = L[i]
#on eneleve les doublons , pas
if est_pas_dedans(L[i+1:n],temp) :

new_L.append(temp)
new_indice.append(indice[i])

return (new_L, new_indice)

def d_eme_terme_mu2(d):
return epuration(tableau_combin(d))

################################################################################
# on note n_m les termes en mu^m dans le n eme morphisme de la collection #
# tableau_combin(d) renvoie donc les termes en d_d et pours avoir les n_d #
#il suffit d ajuster les puissances #
# de sorte que la somme des puissances soit egales a n. Il faut donc repartir #
#n-d puissance sur les d elements #
################################################################################
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def ajout_puissance_j_eme_pos(element,j):
""" element est une liste de tuples ('F',x) et on veut mettre x+1 en jeme pos"""
lettre, x = element[j]
new_element = element.copy()
new_element[j] = (lettre, x+1)
return new_element

def distribution(L,a):
""" renvoie l'ensemble des termes qu'on peut faire en distribuant a puissances sur

"les elemnts de L"""
""" notons que L est un seul terme (une liste) qu'il faut doubler car le programme

"(recursif) renvoie une liste de listes ( de couples)"""
if a < 0 or L == [[]]: return None
if a == 0 : return L
else :

new_L = []
n = len(L)
d = len(L[0])
element = []
for i in range(n):

element = L[i]
new_element = []
#on prend un terme, on ajoute une puissance a chacun de ses elemnts tour a tour,
#et on ajoute ces exactements len(element) nvx termes
# dans L. On a plus qu'a ajouter (a-1) puissances dans ce nouveau L
for j in range(d):

new_element = ajout_puissance_j_eme_pos(element,j)
new_L.append(new_element)

return distribution(new_L,a-1)

def termes_n_d(n,d):
" renvoi tous les termes en mu^d dans mu^2_Q(T2,T1)^n"
""" attention la liste indice contient 1 elements pour tous les choix de distribution

"qu'on a fait"""
""" du coup c'est ce qu'on corrige dans le programme apres"""
if d==1 : return "d doit etre >= 2"
termes , indice = d_eme_terme_mu2(d)
return distribution(termes,n-d)

def tous_les_termes(n):
""" renvoie tous les termes de mu^2_Q(T2,T1)^n"""

termes , indices = [], []
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temp = []
A = []
ind_A = 0
for i in range(2,n):

temp = termes_n_d(n,i)
A = temp
ind_A = len(A)
for j in range(ind_A):

termes.append(A[j])
return termes

A = tous_les_termes(5)
print(A)
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