
Rapport de stage
MArche meSurée par le dispositif eGaiT chez la pERsonne âgée

(Projet MASTER)

Manon Simonot

Nantes Université
M2 Ingénierie Statistique

2024-08-28

Encadrement :
Thibault Deschamps (LMIP)

Aymeric Stamm (LMJL)
Lise Bellanger (LMJL)

Table des matières

1 Introduction 1

2 Remerciements 2

3 Pré-requis 3
3.1 Etude de la démarche et cycles de marche 3
3.2 Dispositifs eGait et GAITRite© . 4
3.3 Quaternions . 6
3.4 Paramètres spatio-temporels . 8

4 Matériel 9
4.1 Acquisitions de données . 9
4.2 Données . 10
4.3 Preprocessing des données eGait . 12
4.4 Feature space . 13

5 Méthodes statistiques 16
5.1 Modèles de classification binaire . 16

5.1.1 Régression logistique . 16
5.1.2 Arbre de décision . 17
5.1.3 Bagged trees et forêt aléatoire . 20

5.2 Déséquilibre de classes et algorithmes d’échantillonnage 22
5.2.1 Sur-échantillonnage et sous-échantillonnage aléatoires 22
5.2.2 Algorithme SMOTE (Synthetic Sampling with Data Generation) . 23
5.2.3 Algorithme ADASYN (Adaptative Synthetic Sampling) 24
5.2.4 Méthodes sous R . 25

5.3 Déséquilibre de classes et poids sur les classes 26
5.4 Métriques pour la classification binaire . 27
5.5 Tuning et évaluation avec ré-échantillonage 30

6 Applications des méthodes et résultats 32
6.1 Application des méthodes sous R . 32

6.1.1 Métriques . 32
6.1.2 Feature space et séparation des données 33
6.1.3 Recette, modèle et workflow . 34
6.1.4 Tuning et ajustement . 35

i

Table des matières

6.1.5 Evaluation et prédictions . 36
6.2 Résultats . 38

6.2.1 Comparaison des modèles . 38
6.2.2 Résultats du tuning . 40
6.2.3 Arbre de décision et importance des variables 41
6.2.4 Résultats sur données de test . 43
6.2.5 Résultats sur données AMIES . 45

7 Comparaison des dispositifs eGait et GAITRite© 47
7.1 Méthode . 47

7.1.1 Données utilisées pour la comparaison 47
7.1.2 Paramètres de comparaison . 48
7.1.3 Test de Wilcoxon apparié . 48
7.1.4 Diagramme de Bland-Altman . 49

7.2 Résultats . 50
7.2.1 Nombre de cycles . 50
7.2.2 Durée moyenne des cycles . 51
7.2.3 Vitesse angulaire moyenne et vitesse de marche 52
7.2.4 Amplitude moyenne et longueur moyenne de cycles 53

8 Conclusion et perspectives 54

9 Annexes 56

ii

1 Introduction

Les troubles de la marche touchent de nombreuses personnes et leurs causes sont
diverses. Ils impactent énormément le quotidien et diminuent fortement la qualité de vie
des personnes concernées, pouvant provoquer des chutes et blessures, et se caractérisant
par une perte de locomotion et donc d’autonomie. Les troubles de la marche sont no-
tamment présents chez les personnes souffrant de maladies neurodégénératives et chez
les populations âgées.

Dans ce contexte naît le projet eGait en 2017 au Laboratoire de Mathématiques Jean
Leray (LMJL). Il a pour objet l’étude de la démarche grâce à un dispositif portatif placé à
la hanche, mesurant des informations quantitatives sur la rotation de la hanche au cours
du temps lors de la marche. L’objectif de ce projet est la détection précoce des troubles de
la marche pour prévenir les chutes, mesurer l’état de santé des patients, voire permettre
une rééducation anticipée adaptée pour prévenir ou même retarder les symptômes. Chez
les personnes âgées, la démarche et spécifiquement certains paramètres comme la vitesse
de marche ou la variabilité de la démarche sont de très bons indicateurs de leur état de
santé générale, que ce soit leur santé physique ou leur cognition (Beauchet et al. [2]).

Ainsi, une collaboration entre le LMJL et le Laboratoire Motricité, Interactions, Per-
formance (LMIP) a vu le jour, afin de se concentrer sur les troubles de la marche chez
les personnes âgées. Mon projet de stage “MASTER” s’inscrit dans cette collaboration
interdisciplinaire, permettant d’allier les connaissances du domaine de la compréhen-
sion et de l’analyse du mouvement humain, avec celles du domaine des mathématiques
appliquées.

L’objectif principal de ce stage est l’évaluation de la concordance entre le disposi-
tif eGait porté par le LMJL et le tapis de marche GAITRite© considéré comme mé-
thode de référence, pour valider le dispositif eGait. Pour effectuer cette étude, il a fallut
commencer par acquérir des données de références afin d’améliorer la segmentation des
cycles de marche détectés par le dispositif eGait. Cela permet d’obtenir des paramètres
spatio-temporels fiables dont nous pouvons nous servir pour comparer les dispositifs.
La construction d’un modèle de machine learning permettant de segmenter le signal ob-
tenu par le dispositif eGait a donc finalement occupé la place la plus importante au sein
de ce stage, et sera détaillée dans ce rapport.

Pour information, tout le code a été réalisé en R, et les schémas de ce rapport ont été
fait sur le site escalidraw 1.

1https://math.preview.excalidraw.com

1

https://math.preview.excalidraw.com

2 Remerciements

Je tiens tout d’abord à remercier Lise Bellanger, Thibault Deschamps et Aymeric Stamm
de m’avoir accompagnée tout au long de ce stage, étant toujours disponibles pour me
guider dans mes recherches tout en me faisant confiance sur le travail effectué. Cette
collaboration entre laboratoires m’a apporté de nombreuses connaissances et a été une
très belle opportunité, et je vous remercie de m’accorder une fois de plus votre confiance
pour continuer à travailler sur ce projet après ce stage.

Je tiens également à remercier les volontaires ayant participé aux acquisitions de données
au CHU de Nantes : sans vous, aucun modèle n’aurait pu être construit. Je remercie donc
chaleureusement Margot Bornet, Michael Barrion et Nadia Negab d’avoir marché avec
enthousiasme sur ce tapis pendant mon stage, ainsi que tous les autres volontaires ayant
participé à des acquisitions dans ce contexte dans le passé.

Enfin, ce stage m’a permis de participer à différents évènements, ce dont je suis recon-
naissante. J’ai en effet pu participer aux “Rencontres R 2024” à Vannes, me permettant
d’élargir mes connaissances sur le logiciel R. J’ai également participé à la “Journée In-
novation Mathématiques” (JIM) avec mes collègues Nadia Negab et Klervi Le Gall afin
de représenter le projet eGait. Enfin, auprès du réseau ELIT permettant le financement
de mon stage, j’ai participé aux “Masteriales DELPHI ELIT HEMI FAME” afin de pré-
senter mon stage aux autres bénéficiaires de cette bourse. Un entretien a également été
publié auprès de ce réseau, décrivant mon expérience pendant ce stage 1.

1Cet entretien est disponible sur le carnet d’hypothèses ELIT : https://elit.hypotheses.org/1750.

2

https://elit.hypotheses.org/1750

3 Pré-requis

Mon stage se situant au sein du projet eGait, il est nécessaire de détailler certaines
notions qui sont essentielles à la compréhension du travail effectué. Cette partie a donc
pour objectif d’expliquer différents pré-requis.

3.1 Etude de la démarche et cycles de marche

Le projet eGait a pour sujet l’étude de la démarche avec pour objectif à long
terme la détection précoce des troubles de la marche, avant même que les individus
n’expérimentent des symptômes. Cette étude nécessite donc des connaissances sur la
démarche humaine, que l’on peut segmenter en cycles de marche.

En effet, lorsqu’un sujet marche plusieurs pas, nous pouvons segmenter sa marche en
pas ou en cycle. Un pas est considéré comme le mouvement qui commence lors de la
pose d’un pied au sol et qui se termine lorsque l’autre pied se pose au sol. Un cycle de
marche est la réalisation deux pas (cela est aussi appelé une foulée) : c’est l’ensemble
des mouvements réalisés entre deux contacts consécutifs du talon d’un même pied avec
le sol.

Figure 3.1: Schéma de pas sur le sol. 1

Dans ce stage, nous nous interessons aux cycles de marche, et c’est eux que nous voulons
segmenter chez les patients.

Nous pouvons définir plus précisément un cycle de marche. Celui-ci se divise en deux
phases : la phase d’appui et la phase de balancement. Si nous commençons notre cycle
de marche par le pied droit, alors la phase d’appui est celle pendant laquelle le pied droit
est en contact avec le sol. Elle dure en moyenne 60% de la durée du cycle de marche
complet, avant que le pied droit se soulève du sol, pendant la phase de balancement.

1Image issue du Mooc “Le mouvement humain” (F. Hug & T. Deschamps, Nantes Université, 2019).

3

https://webmail-etu.univ-nantes.fr/?_task=mail&_mbox=INBOX

3 Pré-requis

Figure 3.2: Schéma d’un cycle de marche. 2

Le schéma précédent résume les différents évènements survenant lors d’un cycle de
marche. Nous pouvons délimiter un cycle avec quatre points de références :

• La pose du talon au sol du pied droit : c’est le début de la phase d’appui.
• Le décollement du sol du pied gauche.
• La pause du talon au sol du pied gauche.
• Le décollement du sol du pied droit : c’est le début de la phase de balancement.

Ainsi, nous pouvons utiliser un de ces points, comme la pose du talon au sol d’un pied,
pour délimiter une marche en différents cycles de marche, ce sur quoi nous reviendrons
dans la suite.

3.2 Dispositifs eGait et GAITRite©

Afin d’accéder à des mesures de la démarche des patients, différents dispositifs ont été
mis en place. Deux de ces dispositifs ont été employés dans ce stage et je les détaillerai
donc dans cette partie.

Le premier dispositif est celui développé par le Laboratoire de Mathématique Jean Leray
et s’appelle eGait, c’est celui que nous essayons de valider afin de le mettre en usage.

Le dispositif se présente sous la forme d’une centrale inertielle, composée d’un accéléro-
mètre, d’un gyroscope et d’un magnétomètre, alignés sur trois axes orthogonaux. C’est
un petit boîtier que les sujets portent à la hanche droite, en l’accrochant à une ceinture.
C’est donc un dispositif portatif, léger, discret et non invasif.

2Schéma annoté à partir de celui de Jaquelin Perry sur Wikipedia.

4

https://commons.wikimedia.org/wiki/File:GaitCycle_by_JaquelinPerry.jpg

3 Pré-requis

Figure 3.3: Dispositif eGait porté à la hanche droite à l’aide d’une ceinture.

Le dispositif est relié en bluetooth à un smartphone sur lequel se trouve une application.
Cette dernière nous permet de lancer les acquisitions de données de marche, puis de
récupérer les données brutes à partir du téléphone. En effet, le capteur transfère toutes
les 10 ms son orientation au smartphone qui les enregistre dans un fichier au format
csv. Le dispositif eGait mesure l’évolution de l’orientation en 3D du capteur au cours
du temps. Ainsi, lorsqu’il est placé à la hanche, les données brutes renvoyées par le
capteur représentent la rotation de la hanche en 3D des patients, sous la forme de séries
temporelles de quaternions unitaires. Ce format de données sera expliqué dans la partie
suivante. Ce qu’il est important de retenir est que ce dispositif permet de collecter des
données quantitatives et non biaisées, dans le sens où le capteur peut être porté
dans la vie quotidienne, avec l’objectif que le patient oublie qu’il le porte, afin que sa
démarche soit celle qu’il adopte réellement dans ses activités quotidiennes.

Le second dispositif est le tapis de marche GAITRite© (GAITRite [10]), qui est
considéré comme une référence dans l’analyse de la démarche (Menz et al. [22]).

Figure 3.4: Tapis GAITRite© se trouvant à l’hôpital Bellier, au CHU de Nantes.

5

3 Pré-requis

C’est un tapis mesurant environ 9 mètres, sur lequel les sujets marchent, qui possède de
nombreux capteurs mesurant la pression des pieds. Cela nous permet d’avoir directement
un résumé de la démarche du patient sous forme de fichiers xlsx, car il est relié à un
ordinateur qui récupère les données fournies par les capteurs présents dans le tapis.

En revanche, comme ces tapis se situent dans des centres de santé comme des hôpitaux,
cela nécessite donc que les patients puissent se déplacer dans une grande ville dans
laquelle un hôpital possède ce dispositif. De plus, une fois sur place, les patients sont
observés par le personnel hospitalier pendant qu’il marche sur le tapis, ce qui introduit un
biais d’observation, signifiant que leur démarche ne sera pas forcément représentative
de celle qu’ils adoptent dans leur vie quotidienne.

Dans le cadre de mon stage, nous avons pu utiliser le tapis GAITRite© se situant au
CHU de Nantes, à l’hopital Bellier, dans le service de gérontologie. Comme le tapis
est une référence, nous pouvons donc nous servir des données qu’il renvoie afin de les
comparer aux données que nous pouvons obtenir avec le dispositif eGait, afin de valider
le dispositif porté par le LMJL.

3.3 Quaternions

Le dispositif eGait mesure la rotation en 3D de la hanche au cours du temps. Une
rotation de cette forme peut être représentée par plusieurs objets :

• Les matrices de rotation.
• Les angles d’Euler : selon la paramétrisation, on parle d’angles d’Euler ou d’angles

de Tait-Bryan ou de paramétrisation Roll-Pitch-Yaw : ils représentent une rotation
3D comme une composition de 3 rotations autour d’axes fixes.

• La représentation axe-angle.
• Les quaternions unitaires.

Cette dernière représentation a été sélectionnée pour le dispositif eGait, notamment car
c’est la paramétrisation la plus compressée, contenant seulement 4 valeurs au lieu de 6
pour les matrices de rotation par exemple. Elle permet également d’éviter le problème
appelé gimbal lock (Wikipedia [26]), qui est la perte d’un degré de liberté lorsque deux
des axes du cardan deviennent parallèles, cela bloquant le système dans un espace à deux
dimensions et non trois. Ce problème apparait par exemple dans la représentation des
angles d’Euler Roll-Pitch-Yaw, lorsque l’angle Pitch est tourné de 90° vers le haut ou le
bas, car les angles Yaw et Roll représentent alors le même mouvement.

Les quaternions (décrits par Hamilton [11]) sont des vecteurs à quatre dimensions notés
q = (𝑞𝑤, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧), mais peuvent aussi être vus comme des nombres hypercomplexes
de rang 4. Les quaternions unitaires sont de norme 1 et permettent d’encoder une
rotation 3D d’angle de rotation 𝜃 ∈ [0, 2𝜋] et d’axe de rotation u = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) ∈ 𝑆2, où
𝑆2 est la 2-sphere, par la formule :

6

3 Pré-requis

q = cos (𝜃
2) + (𝑢𝑥𝑖 + 𝑢𝑦𝑗 + 𝑢𝑧𝑘) sin (𝜃

2) (3.1)

avec :

• 𝑖, 𝑗, et 𝑘 généralisant le nombre imaginaire 𝑖, tels que 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1.
• ||q|| = √qq𝑡 = 1.

L’ensemble des quaternions unitaires, noté ℍ𝑢, est muni de propriétés intéressantes
(Drouin [8]). Les quaternions q et −q représentent la même rotation. Le groupe est
muni d’un élément neutre q(0) = (1, 0, 0, 0) qui correspond à la rotation unité, tel que
qq(0) = q(0)q = q.

Il est possible d’utiliser la distance géodésique 𝑑𝑔 entre deux quaternions q1 et q2 pour
definir un espace métrique (ℍ𝑢, 𝑑𝑔), avec :

𝑑𝑔(q1, q2) = ||log(q−1
1 q2)|| (3.2)

Dans notre cas, l’orientation du capteur est la rotation entre:

• Le référentiel d’origine, ici le référentiel terrestre 𝑅𝑓 = (𝑓1, 𝑓2, 𝑓3).
• Son propre référentiel 𝑅𝑠 = (𝑠1, 𝑠2, 𝑠3) formé par l’accéléromètre, le gyroscope et

le magnétomètre.

Nous pouvons observer ces axes sur cette illustration, représentant également l’angle de
la rotation 𝜃 et l’axe de la rotation u que nous venons d’évoquer :

Figure 3.5: Représentation sur le capteur des référentiels ainsi que de l’axe et l’angle de
rotation. 3

Ainsi, nous récupérons grâce au capteur des séries temporelles de quaternions uni-
taires, nous permettant de suivre l’orientation de la hanche du patient au cours du
temps lors de sa marche.

3Figure tirée de Drouin et al. [9].

7

3 Pré-requis

3.4 Paramètres spatio-temporels

Après avoir récupéré les données brutes du capteur, nous segmentons le signal en cycles
de marche, et cela nous permet ensuite d’obtenir des paramètres spatio-temporels.
Ce sont des indicateurs pertinents sur la démarche du patient et son état de santé
global.

Voici un résumé des paramètres spatio-temporels les plus fréquemment étudiés dans
l’étude de la démarche humaine (Drouin [8]) :

• Paramètres temporels (correspondant aux rythmes) :

– Durée des pas ou des cycles.
– Nombre de pas ou de cycles effectués.
– Durée des phases du cycle: phase d’appui et phase de balancement.

• Paramètres spatiaux (correspondant à des distances) :

– Longueur et largeur du pas.
– Longueur et largeur du cycle.
– Hauteurs maximale et minimale du pied durant la phase de balancement.
– Amplitude de rotation maximale de l’articulation de la hanche, de la cuisse,

du tibia et/ou de la cheville au cours du cycle.

• Paramètre spatio-temporel :

– Vitesse de marche.

Dans notre cas, à partir des séries de quaternions, nous pouvons calculer les paramètres
suivants :

• La durée moyenne du cycle de marche.
• La durée moyenne de la phase d’appui.
• La durée moyenne de la phase de balancement.
• L’amplitude moyenne du cycle de marche.
• La vitesse angulaire moyenne du cycle de marche.

De plus, si nous connaissons la distance parcourue par les sujets, nous pouvons facile-
ment calculer la vitesse de marche selon le temps pris pour effectuer cette distance. Ce
dernier paramètre est très important, surtout chez les personnes âgées, car il est un réel
indicateur de l’état de santé général des patients (Montero-Odasso et al. [23]).

Enfin, la variabilité de la démarche est également un facteur à prendre en compte dans
l’analyse de la marche, surtout au sein de la population agée (Annweiler et al. [1]).

8

4 Matériel

4.1 Acquisitions de données

Dans ce projet, nous utilisons des données provenant de deux dispositifs différents :
celles provenant du dispositif portatif eGait, et celles fournies par le tapis de marche
GAITRite©.

Nous voulons collecter les données des deux dispositifs simultanément afin d’avoir des
données synchronisées. Ainsi, l’acquisition des données s’est révélée moins simple qu’il
n’y paraissait au départ. En effet, il a fallu réfléchir à une manière de déclencher la
collecte des données sur les deux appareils au même moment, afin de ne pas avoir de
décalage dans les données.

Le tapis GAITRite© se déclenche par un ordinateur, tandis que le dispositif eGait se
déclenche sur une application sur smartphone. Après plusieurs essais et réflexions, le
protocole choisi a été le suivant : une même personne appuie sur les deux dispositifs avec
ses deux index. Cette technique permet une synchronisation satisfaisante et reste simple
à mettre en place.

Ensuite, afin d’être certains que les données fournies par eGait sont fiables, une personne
tenant le téléphone relié en bluetooth au capteur suit le sujet en train de marcher. Cette
personne vérifie également que les capteurs (accéléromètre, gyroscope et magnétomètre)
restent bien calibrer tout au long des acquisitions.

Avec ce protocole d’acquisition, nous avons pu récolter les données de 77 sessions de
marche, sur trois sujets ne présentant pas de troubles de la marche (deux femmes et un
homme). Nous avons également récolté des données avec différentes vitesses de marche
pour avoir une certaine diversité au sein de nos données. Voici un tableau récapitulant
les différentes vitesses de marche acquises :

Vitesse lente Vitesse intermédiaire Vitesse normale Vitesse rapide
49 à 98 cm/s 104 à 128 cm/s 138 à 155 cm/s 178 à 204 cm/s

Table 4.1: Détail des vitesses de marches effectuées pendant les acquisitions.

9

4 Matériel

4.2 Données

Comme évoqué précédemment, nous avons deux sources de données.

Premièrement, le dispositif eGait produit des séries de quaternions unitaires, en pro-
duisant un quaternion unitaire toutes les 10 ms. Cela représente la rotation en 3D de
la hanche du sujet pendant la marche effectuée. Voici un exemple de série temporelle
récoltée, avec les quatre coordonnées des quaternions :

Figure 4.1: Série temporelle de quaternions unitaires récupérées par eGait, sur une ses-
sion de marche en vitesse normale.

Nous observons sur ces courbes des cycles se répétant et étant très réguliers. Ces cycles
représentent les pas effectués par le sujet, et une telle régularité se retrouve chez les sujets
sains. Sur des patients présentant des troubles de la marche, les séries sont beaucoup
moins régulières, et cela est tout le coeur du problème de segmentation des cycles de
marche.

D’autre part, le tapis GAITRite© nous renvoie directement des indicateurs temporels et
spatiaux comme la durée ou longueur du pas, ou la vitesse (voir Table 9.3 pour un détail
de tous les paramètres récoltés). Les indicateurs nous intéressant tout particulièrement
dans cette étude sont les temps de pose des pieds au sol. En effet, GAITRite© fournit,
pour chacun des pieds, le moment où le pied est entré en contact avec le sol, ainsi que
le moment où le pied s’est décollé du sol, et ce pour chaque pas effectué.

Ainsi, comme nous avons des données synchronisées, nous pouvons associer les temps
de pose des pieds au sol à nos séries temporelles de quaternions. Voici un exemple de
données récupérées par eGait sur lesquelles nous avons superposé les indicateurs de pose
de pieds fournis par GAITRite© :

10

4 Matériel

Figure 4.2: Superposition des points de contact donnés par GAITRite© sur les données
eGait.

Ainsi, pour chaque temps des données produites par eGait, nous pouvons associer
l’information de pose du pied. Cela nous permet d’avoir des données sur lesquelles un
modèle d’apprentissage statistique peut apprendre, grâce à cette information fournit
par le tapis de marche.

Plus précisément, pour segmenter le signal eGait en cycles de marche, nous allons vouloir
prédire le temps de contact au sol du pied droit. C’est ce temps qui délimitera nos cycles
de marche au sein du signal. Nous allons donc classer les temps de marche en deux
catégories :

• Right_stance: Le pied droit vient de toucher le sol. Cela correspond au début de
la phase d’appui.

• None: Autres temps de marche.

Nous pouvons noter que nous avons choisi d’utiliser les temps associés au pied droit car
le capteur eGait se positionne sur la hanche droite des sujets.

Une caractéristique cruciale des données est le déséquilibre de classes présent. En effet,
nous avons des proportions très différentes entre notre classe d’intérêt Right_Stance et
la seconde classe :

Classe Nombre d’observations Proportion
Right_Stance 448 0.006
None 73981 0.994

Table 4.2: Proportion d’observations dans chacune de nos classes.

11

4 Matériel

Cette particularité doit impérativement être prise en compte pour construire un modèle
de machine learning sur nos données. Nous reviendrons dans la suite sur les méthodes
mises en place pour gérer cette problématique.

4.3 Preprocessing des données eGait

Avant d’utiliser nos séries temporelles de quaternions dans notre modèle, nous effectuons
une étape de pré-traitement sur ces données, appelée centring. Cela permet de centrer
les séries de quaternions autour d’une moyenne, dont le calcul est spécifique à ce type
de données (Le Gall et al. [18]).

Nous avons 𝑛 observations de séries temporelles de quaternions unitaires, notées
Q1, … , Q𝑛, que l’on observe sur la même grille de temps 𝑡1, … , 𝑡𝑝. On a donc
Q𝑖(𝑡𝑘) = q𝑖𝑘 ∈ ℍ𝑢, avec 𝑖 ∈ [[1, 𝑛]] et 𝑘 ∈ [[1, 𝑝]].
Pour calculer la série temporelle de quaternions moyenne, on calcule la moyenne des qua-
ternions q1𝑘, … , q𝑛𝑘 à chaque temps 𝑡𝑘 de la grille initiale d’observations. Cette moyenne
est appelée moyenne de Fréchet et est associée à la distance géodésique entre deux qua-
ternions unitaires (cette distance a été définie dans la Section 3.3, Équation 3.2).

q(𝑚)
𝑘 = Q(𝑚)(𝑡𝑘) = argmin

𝑞∈ℍ𝑢

𝑛
∑
𝑖=1

𝑑2
𝑔(q𝑖𝑘, q), 𝑘 ∈ [[1, 𝑝]] (4.1)

Ainsi, Q(𝑚) définie la série de quaternions moyenne par rapport aux 𝑛 séries. On peut
ensuite calculer les séries centrées grâce à cette moyenne.

q(𝑐)
𝑖𝑘 = Q(𝑐)

𝑖 (𝑡𝑘) = (q(𝑚)
𝑘)

−1
q𝑖𝑘, 𝑘 ∈ [[1, 𝑝]], 𝑖 ∈ [[1, 𝑛]] (4.2)

On a donc Q(𝑐)
1 , … , Q(𝑐)

𝑛 les séries de quaternions centrées après pré-traitement, qui
peuvent désormais être utilisées dans notre modèle.

D’autre part, comme on ne peut pas calculer une dérivée de série temporelle, on doit
passer à une représentation fonctionnelles en splines cubiques (J. O. Ramsay [15]). Cela
nous permettra ensuite de pouvoir calculer des paramètres utilisés dans notre feature
space.

12

4 Matériel

4.4 Feature space

Pour implémenter un modèle d’apprentissage statistique, nous construisons un feature
space contenant différentes variables sur lesquelles notre modèle va apprendre.

A partir des séries temporelles de quaternions unitaires de chacune des sessions de marche
acquises, nous extrayons des grandeurs permettant de caractériser le mouvement de
rotation : la vitesse angulaire ainsi que l’accélération angulaire. Si on suppose que
l’on peut calculer les dérivées premières et secondes d’une série temporelle de quaternions
par rapport au temps, ces variables sont calculées comme suit (Narayan [24]).

On note ΩΩΩ la vitesse angulaire par rapport au référentiel du corps, c’est-à-dire que le
référentiel est fixé au corps en mouvement. ΩΩΩ est un vecteur qui a pour direction l’axe
de rotation et pour grandeur la vitesse angulaire. On a :

q̇ = 𝑑q
𝑑𝑡 = 1

2q ΩΩΩ (4.3)

Comme ΩΩΩ est le vecteur de la vitesse angulaire, il est vu comme un quaternion avec une
partie scalaire nulle. De plus, c’est un vecteur unitaire. On peut donc écrire :

ΩΩΩ = 2q−1q̇ (4.4)

Nous calculons également l’accélération angulaire, notée Ω̇ΩΩ, qui est la dérivée de la vitesse
angulaire.

q̈ = 𝑑2q
𝑑𝑡2 = 1

2 (q̇ ΩΩΩ + q Ω̇ΩΩ) (4.5)

Il s’agit de nouveau d’un vecteur unitaire et on a donc :

Ω̇ΩΩ = 2 (q−1q̈ − (q−1q̇)2) (4.6)

De plus, nous pouvons calculer les angles d’Euler appelés Roll, Pitch, et Yaw, qui
représentent les rotations autour des trois principaux axes, comme représentés sur cette
illustration :

13

4 Matériel

Figure 4.3: Schéma des mouvements Roll, Pitch et Yaw sur un avion en vol.1

Comme les quaternions unitaires, ces angles représentent une rotation en trois dimen-
sions, et nous pouvons convertir nos séries de quaternions unitaires en séries d’angles
Roll-Pitch-Yaw (Wikipedia [25]).

En effet, on peut associer un quaternion à une rotation autour d’un axe avec les expres-
sions suivantes :

𝑞𝑤 = cos(rotation angle/2)
𝑞𝑥 = sin(rotation angle/2)cos(angle entre axe de rotation et axe 𝑥)
𝑞𝑦 = sin(rotation angle/2)cos(angle entre axe de rotation et axe 𝑦)
𝑞𝑧 = sin(rotation angle/2)cos(angle entre axe de rotation et axe 𝑧)

(4.7)

Cela nous amène à la matrice de rotation suivante pour passer du quaternion
q = (𝑞𝑤, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧) aux angles d’Euler Roll, Pitch et Yaw :

⎡⎢
⎣

Roll
Pitch
Yaw

⎤⎥
⎦

= ⎡⎢
⎣

atan2 (2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 1 − 2(𝑞2
𝑥 + 𝑞2

𝑦))
asin (2(𝑞𝑤𝑞𝑦 − 𝑞𝑥𝑞𝑧))

atan2 (2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦), 1 − 2(𝑞2
𝑦 + 𝑞2

𝑧))
⎤⎥
⎦

(4.8)

avec atan2(𝑦, 𝑥) = arctan(𝑦/𝑥).

D’autre part, nous avions observé sur les graphiques des séries temporelles que les points
de contact donnés par GAITRite© ne se situaient pas forcément aux mêmes endroits
selon les vitesses de marche. Ce phénomène se remarquait sur les marches en vitesse
lente, et nous pourrions émettre l’hypothèse qu’il serait causé par une démarche peu
naturelle lorsque les sujets se forcent à marcher très lentement. Pour autant, pour être
sûr de ne pas manquer d’informations, nous avons décidé d’ajouter également la vitesse
de marche à notre feature space, à partir des données fournies par le tapis GAITRite©.

1Figure tirée de Wikipedia : Yaw Axis Corrected.svg.

14

https://commons.wikimedia.org/w/index.php?lang=und&title=File%3AYaw_Axis_Corrected.svg

4 Matériel

Ainsi, pour résumer, notre feature space contient les variables suivantes :
• La vitesse angulaire : vx, vy, vz.
• L’accélération angulaire : ax, ay, az.
• Les angles d’Euler Roll-Pitch-Yaw : roll, pitch, yaw.
• La vitesse de marche : speed.

Ce feature space constitue les données qui seront fournies en entrée de notre modèle de
machine learning. De plus, notre feature space contient deux hyperparamètres :

• spar, un paramètre de lissage de la courbe de notre série temporelle de quaternions.
En effet, comme nous obtenons la vitesse et l’accélération angulaire en dérivant
notre série, il peut être intéressant de lisser notre courbe initiale.

• n_lag, définissant le nombre de temps à conserver dans le passer pour les variables.

Par conséquent, le nombre de variables de notre feature space varie en fonction du
paramètre n_lag. Plus précisément, il contiendra 10 + 9× n_lag variables. Voici une
illustration de notre feature space avec un paramètre de 1 pour le lag, contenant donc
19 variables :

Figure 4.4: Illustration du feature space avec n_lag=1.

Enfin, notre feature space contient les classes Right_Stance et None évoquées précédem-
ment, récupérées grâce au dispositif GAITRite© et associées aux temps de nos sessions.
Comme nous classons des temps sur une fréquence de 100 Hz, les observations consécu-
tives d’une session correspondent à des évènements très proches. Ainsi, nous décidons de
prendre en compte une certaine incertitude et de labelliser comme observations Right_-
Stance pas uniquement le temps exact donné par GAITRite©, mais également 𝑘 points
autour de celui-ci. En prenant 𝑘 = 3, cela correspond à une fenêtre de 70 ms, avec 7
points labellisés Right_Stance.

Figure 4.5: Illustration de la labellisation d’une plage de 6 points autour du point donné
par GAITRite©.

Cette stratégie permet également d’avoir un déséquilibre un peu moins fort entre nos
classes, comme nous rajoutons des observations dans notre classe minoritaire.

15

5 Méthodes statistiques

5.1 Modèles de classification binaire

De nombreux modèle d’apprentissage statistique existent pour classer nos données en
deux classes. Nous allons ici détailler le fonctionnement des principaux utilisés dans
ce projet, en nous basant sur l’ouvrage de référence des modèles implémentés dans le
package {tidymodels} de R : Applied Predictive Modeling de Max Kuhn et Kjell Johnson
(2013).

5.1.1 Régression logistique

Pour introduire la régression logistique, nous pouvons rappeler que la régression li-
néaire minimise la somme des carrés résiduels, définies ainsi :

𝑆𝑆𝐸 =
𝑛

∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (5.1)

En minimisant cette quantité, nous produisons également un modèle qui produit
l’estimateur du maximum de vraisemblance du paramètre (sous l’hypothèse que
les résidus suivent une loi Normale). Cet estimateur, en maximisant la fonction de
vraisemblance, est celui qui concorde le plus étroitement avec les données observées
(David W. Hosmer [7]).

Quand nous avons deux classes au sein de nos données, la distribution de probabilité la
plus souvent utilisée est la distribution Binomiale de paramètre 𝑝, avec 𝑝 la probabilité
d’une des classes. Si on a 𝑦 ∼ 𝐵(𝑝, 𝑛), alors la fonction de vraisemblance est de la forme
suivante :

𝐿(𝑝, 𝑦) = (𝑛
𝑦)𝑝𝑦(1 − 𝑝)𝑛−𝑦 (5.2)

Toutefois, nous voulons construire un modèle qui se base sur nos variables, donc nous
allons re-paramétriser le modèle pour que 𝑝 soit une fonction de ces variables.

16

https://www.tidymodels.org
https://link.springer.com/book/10.1007/978-1-4614-6849-3

5 Méthodes statistiques

Ainsi, comme pour la régression linéaire, nous allons avoir un intercept 𝛽0 et des coeffi-
cents 𝛽𝑗 associés aux variables. Comme 𝑝 est une probabilité, on a 𝑝 ∈ [0, 1], il faut donc
garantir que le modèle va contraindre les valeurs dans cet intervalle. Si nous avons 𝑝 la
probabilité d’un évènement, nous appelons côte de l’évènement la valeur 𝑝/(1−𝑝). Nous
modélisons le logarithme de cette valeur comme une fonction linéaire :

log (𝑝
1 − 𝑝) = 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑃 𝑥𝑃 (5.3)

avec 𝑃 le nombre de variables. Cela nous permet d’obtenir la formule suivante :

𝑝 = exp𝛽0+𝛽1𝑥+⋯+𝛽𝑃 𝑥𝑃

1 + exp𝛽0+𝛽1𝑥+⋯+𝛽𝑃 𝑥𝑃
(5.4)

Ainsi, nous relions notre modèle au paramètre de la distribution Binomiale, et pouvons
trouver des candidats pour nos coefficients et calculer la fonction de vraisemblance. On
sélectionne ensuite les coefficients maximisant cette fonction, qui seront utilisés pour
calculer les prédictions.

5.1.2 Arbre de décision

Les arbres de décision consistent en une suite imbriquée de déclarations if-then pour
le prédicteur qui partitionne les données. Les données sont ainsi attribuées aux classes
selon les valeurs prises par les variables. Voici un exemple d’une suite de condition et de
sa représentation en arbre :

if VarA > 0.15 then
if VarB > 0.20 then class = 1
else class = 2

else class = 2

Figure 5.1: Exemple d’arbre de décision.

Nous avons ici un arbre à deux séparations, menant à trois noeuds terminaux, aussi
appelés feuilles. Ce partionnement forme des régions rectangulaires au sein des observa-
tions.

17

5 Méthodes statistiques

Predictor A

P
re

di
ct

or
 B

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6

Class 2

Class 2

Class 1

Class 1 Class 2

Figure 5.2: Exemple des régions définis par un modèle d’arbre de décision. 1

Le but de ce modèle est de classer les observations en groupes plus petits et homogènes.
On définit ici l’homogénéité comme le fait que les noeuds de la séparation soient “pures”,
c’est à dire qu’il y ait une plus grande proportion d’une des classes dans chaque noeud.
Pour calculer cette “pureté”, nous pouvons utiliser l’indice de Gini (Breiman [5]).
Nous nous plaçons de nouveau dans le cas où nous avons deux classes.

L’indice de Gini

L’indice de Gini pour un certain noeud est :

Gini = 𝑝1(1 − 𝑝1) + 𝑝2(1 − 𝑝2) (5.5)

avec 𝑝1 et 𝑝2 les probabilités des classes 1 et 2 respectivement.
Comme on a 𝑝1 + 𝑝2 = 1, on peut ré-écrire l’indice sous la forme suivante :

Gini = 2𝑝1𝑝2 (5.6)

Nous voyons que cet indice est minimisé lorsqu’une des deux probabilités 𝑝1 ou 𝑝2 tend
vers 0, cela signifie que le noeud est “pure” car nous avons donc une classe peu présente
dans le noeud créé. A l’inverse, l’indice sera maximisé quand 𝑝1 = 𝑝2, et le noeud sera
moins “pure”.

1Figure tirée de (Kuhn [16]).

18

5 Méthodes statistiques

Le processus pour trouver la séparation optimale maximisant l’indice de Gini est le
suivant. Tout d’abord, nous rangeons les observations selon les valeurs prises par la
variable. Les points de séparations possibles sont les points médians entre chaque valeur
unique prise par la variable. A chaque point de séparation, nous obtenons une table de
contingence comme celle-ci :

Figure 5.3: Table de contingence pour le calcul de l’indice de Gini.

Ainsi, l’indice de Gini avant la séparation vaut :

Gini avant séparation = 2 (𝑛1+
𝑛) (𝑛2+

𝑛) (5.7)

On peut ensuite calculer l’indice après la séparation au sein de chaque nouveau noeud.
Pour le côté supérieur à la séparation, il vaut 2 (𝑛11

𝑛+1
) (𝑛12

𝑛+1
), tandis que pour le coté

inférieur ou égal à la séparation, il vaut 2 (𝑛21
𝑛+2

) (𝑛22
𝑛+2

).

Pour construire un indice global de l’après séparation, on place des poids correspondant
à la proportion d’observations dans chaque partie de la séparation, valant respectivement
(𝑛+1

𝑛) et (𝑛+2
𝑛). On obtient ainsi la formule suivante :

Gini après séparation = 2 [(𝑛11
𝑛) (𝑛12

𝑛+1
) + (𝑛21

𝑛) (𝑛22
𝑛+2

)] (5.8)

Si nous reprenons notre exemple précédent, nous obtenons la table de contingence sui-
vante pour la variable B au point de séparation 0.20:

Figure 5.4: Exemple de table de contingence pour le calcul de l’indice de Gini.

19

5 Méthodes statistiques

Nous obtenons un indice de 0.373 pour la séparation 𝑉 𝑎𝑟𝐵 > 0.20 et de 0.197 pour la
séparation 𝑉 𝑎𝑟𝐵 ≤ 0.20. Puis nous combinons ces valeurs avec les poids (valant respec-
tivement 0.582 et 0.418) pour obtenir l’indice global après séparation, valant 0.365.

En pratique, le modèle va évaluer chaque point de séparation pour sélectionner celui
minimisant l’indice de Gini. Ensuite, l’arbre se construit en continuant d’effectuer des
séparations ainsi, jusqu’à ce qu’on atteigne un critère d’arrêt, ce qui est la plupart du
temps une profondeur maximale indiquée.

Dans les arbres CART implémentés sous R dans le package {parsnip}, grâce à l’engine
rpart, il y a trois paramètres que nous pouvons tuner :

Paramètre Description Valeur par défaut
tree_depth Profondeur maximale de l’arbre. 30
min_n Nombre minimal d’observations dans un

noeud pour qu’il soit divisé.
2

cost_complexity Paramètre de coût-complexité. 0.01

Table 5.1: Résumé des paramètres à tuner dans le modèle d’arbre de décision CART du
package {parsnip}.

5.1.3 Bagged trees et forêt aléatoire

Le modèle de bagged trees (bagging étant l’abréviation de bootstrap aggregation) est un
ensemble d’arbres de décision. L’algorithme pour construire le modèle est le suivant.

Algorithm 1 Bagging
1: for 𝑖 = 1 to 𝑀 do
2: Générer un échantillon bootstrappé des données originales
3: Entrainer un modèle d’arbre non élagué sur cet échantillon
4: end for

Un échantillon bootstrappé est un échantillon de même taille que les données origi-
nales, obtenu en sélectionnant des observations avec remise. Cela signifie qu’une fois
qu’une observation est sélectionnée, elle reste toujours disponible pour être de nouveau
sélectionnée dans l’échantillon. Nous pouvons donc avoir dans ce nouvel ensemble des
observations apparaissant de nombreuses fois, et des observations qui ne seront jamais
sélectionnées.

Chacun de ces 𝑀 arbres de décision est utilisé pour générer une prédiction pour une
nouvelle observation, ce que nous pouvons voir comme un vote pour une des classes.
Ensuite, l’observation est classée dans la classe ayant récoltée le plus de votes au sein
des arbres.

20

https://parsnip.tidymodels.org

5 Méthodes statistiques

La forêt aléatoire est un modèle assez similaire, avec une différence que nous voyons
dans son algorithme :

Algorithm 2 Random Forests
1: for 𝑖 = 1 to 𝑀 do
2: Générer un échantillon bootstrappé des données originales
3: Entrainer un modèle d’arbre sur cet échantillon
4: for each split do
5: Sélectionner aléatoirement 𝑘 variables
6: Sélectionner le meilleur prédicteur parmis ces 𝑘 variables et partitionner les

données
7: end for
8: end for

De nouveau, chaque arbre vote pour une des classes et nous classons l’observation selon
la majorité. Cette fois, les arbres ne sont pas forcément complets et la profondeur peut
être déterminée.

Sous R, dans le package {parsnip}, les bagged trees sont implémentés avec l’engine
rpart, et les forêts aléatoires avec l’engine ranger. Voici les paramètres que nous pouvons
tuner dans ces modèles :

Paramètre Description Valeur par défaut
tree_depth Profondeur maximale de l’arbre. 30
min_n Nombre minimal d’observations dans un

noeud pour qu’il soit divisé.
2

cost_complexity Paramètre de coût-complexité. 0.01
class_cost Coût sur les classes. 1

Table 5.2: Résumé des paramètres à tuner dans le modèle de bagged trees du package
{parsnip}.

Paramètre Description Valeur par défaut
trees Nombre d’arbres dans la forêt. 500
min_n Nombre minimal d’observations dans un

noeud pour qu’il soit divisé.
10

m_try Nombre de variables aléatoirement
sélectionnées (𝑘 dans Algorithm 2)

floor(sqrt(ncol))

Table 5.3: Résumé des paramètres à tuner dans le modèle de forêt aléatoire du package
{parsnip}.

21

https://parsnip.tidymodels.org

5 Méthodes statistiques

5.2 Déséquilibre de classes et algorithmes d’échantillonnage

La situation dans laquelle une classe est fortement sous-représentée au sein de données
est courante dans les applications concrètes de nombreux domaines. Pour autant, dans
la grande majorité des cas, les algorithmes de machine learning supposent que nous leur
fournissons des distributions équilibrées de classes. Ainsi, quand ce n’est pas le cas, ils
n’arrivent pas à représenter correctement les caractéristiques des données, l’entraînement
se concentre sur la prédiction de la classe majoritaire. Nous présentons dans cette partie
des algorithmes populaires proposant des solutions à ce problème (He et Garcia [13]).

Dans cette partie, nous introduisons les notations suivantes :
• 𝑆 désigne notre échantillon d’apprentissage, tel que 𝑆 = {(𝑥𝑖, 𝑦𝑖)} avec 𝑥𝑖 une

instance de notre feature space, et 𝑦𝑖 la classe associée à cette observation. Ici,
𝑦𝑖 ∈ {1, 2}.

• 𝑆𝑚𝑖𝑛 est l’ensemble des observations de la classe minoritaire.
• 𝑆𝑚𝑎𝑗 est l’ensemble des observations de la classe majoritaire.

Nous nous concentrons dans ce rapport sur les méthodes dites d’échantillonnage, qui
font référence à la modification de données déséquilibrées par certains mécanismes dans
l’objectif de créer une distribution équilibrée.

5.2.1 Sur-échantillonnage et sous-échantillonnage aléatoires

Les algorithmes les plus simples de cette catégorie sont ceux de sur-échantillonnage et
sous-échantillonnage aléatoires.

Dans le cas du sur-échantillonnage aléatoire (random oversampling), nous sélection-
nons aléatoirement un ensemble de notre classe minoritaire 𝑆𝑚𝑖𝑛. Ensuite, nous augmen-
tons les données originales 𝑆 avec ces observations sélectionnées en les répliquant et en
les ajoutant à 𝑆.

A l’inverse, dans le sous-échantillonnage aléatoire (random undersampling), nous
sélectionnons aléatoirement un ensemble d’observations de notre classe majoritaire 𝑆𝑚𝑎𝑗,
puis nous les retirons de nos données originales 𝑆.

Nous voyons que ces deux méthodes sont simples à mettre en place et permettent de
varier le degré d’équilibre de nos classes, en retirant ou en ajoutant plus ou moins
d’observations. En revanche, elles apportent chacune certaines problématiques. En effet,
dans le cas du sous-échantillonnage, retirer aléatoirement des observations peut entraîner
une perte d’informations importante dans notre classe majoritaire. Dans le cas du sur-
échantillonnage, comme nous ajoutons des observations répliquées à nos données, nous
avons plusieurs fois les mêmes instances et cela peut conduire à du sur-apprentissage.
Cela implique que notre modèle n’arrivera pas à classer de nouvelles données qu’il n’a
pas utilisé lors de son ajustement.

22

5 Méthodes statistiques

5.2.2 Algorithme SMOTE (Synthetic Sampling with Data Generation)

L’algorithme SMOTE (Chawla et al. [6]) créé de nouvelles observations synthé-
tiques dans notre classe minoritaire, une fois de plus afin de ré-équilibrer nos classes.
La création des nouvelles observations se fait de la manière suivante.

Pour chaque observation 𝑥𝑖 de notre classe minoritaire 𝑆𝑚𝑖𝑛, on considère les 𝐾 plus
proches voisins de 𝑥𝑖 appartement à 𝑆𝑚𝑖𝑛, selon la distance euclidienne, pour un entier
donné 𝐾. Une fois ces 𝐾 plus proches voisins identifiés, on en sélectionne un aléatoire-
ment, que l’on note ̂𝑥𝑖, et on créé une observation selon la formule suivante :

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + (̂𝑥𝑖 − 𝑥𝑖) 𝛿 (5.9)

avec 𝛿 ∈ [0, 1] un nombre aléatoire.

Cela signifie que la nouvelle observation se situe sur le segment reliant l’observation
originale et le plus proche voisin aléatoirement sélectionné, comme nous l’observons sur
les schémas suivants :

(a) Observation et ses 4 plus proches voi-
sins. (b) Nouvelle observation créée.

Figure 5.5: Illustration de la création d’une observation par l’algorithme SMOTE, avec
𝐾 = 4 plus proches voisins.

Les points bleus représentent les observations de la classe majoritaire 𝑆𝑚𝑎𝑗, tandis que
les points verts représentent celles de la classe minoritaire 𝑆𝑚𝑖𝑛. Nous observons que la
nouvelle observation, représentée par le losange rouge, se situe entre l’observation 𝑥𝑖 et
son plus proche voisin sélectionné ̂𝑥𝑖.

Ce processus est répété jusqu’à arriver à l’équilibre voulu entre les classes. Cela signifie
que l’on créé autant de données synthétiques pour chacune de nos observations originales
de la classe minoritaire, sans prendre en compte le voisinage de ces observations, ce qui
peut augmenter le risque de chevauchement entre les classes.

23

5 Méthodes statistiques

5.2.3 Algorithme ADASYN (Adaptative Synthetic Sampling)

Pour contrer la limitation de l’algorithme SMOTE, des algorithmes adaptatifs ont été
proposés, comme l’algorithme ADASYN (He et al. [14]). Le principe de cette méthode
est de créer différentes quantités de données synthétiques selon la distribution de nos
observations.

Tout d’abord, on calcule le nombre total de données synthétiques que nous devons générer
pour la classe minoritaire, selon l’équilibre que nous voulons obtenir entre nos classes.
Nous notons ce nombre 𝐺 :

𝐺 = (|𝑆𝑚𝑎𝑗| − |𝑆𝑚𝑖𝑛|) 𝛽 (5.10)

avec 𝛽 ∈ [0, 1] le paramètre qui nous permet de spécifier l’équilibre voulu.

Ensuite, pour chaque 𝑥𝑖 dans notre classe minoritaire 𝑆𝑚𝑖𝑛, on trouve ses 𝐾 plus proches
voisins selon la distance euclidienne, et on calcule le ratio suivant :

Γ𝑖 = 𝛿𝑖/𝐾
𝑍 , 𝑖 = 1, … , |𝑆𝑚𝑖𝑛| (5.11)

avec :

• 𝛿𝑖 le nombre d’observations parmi les 𝐾 plus proches voisins qui appartiennent à
la classe majoritaire 𝑆𝑚𝑎𝑗.

• 𝑍 une constante de normalisation, afin que Γ𝑖 soit une fonction de distribution,
c’est à dire afin d’avoir ∑𝑖 Γ𝑖 = 1.

Cela signifie que, comparé à l’algorithme SMOTE, nous ne prenons pas en compte uni-
quement les voisins appartenant à 𝑆𝑚𝑖𝑛 :

Figure 5.6: Illustration de 𝐾 = 4 plus proches voisins avec l’algorithme ADASYN.

Dans cet exemple, nous avons 𝐾 = 4, 𝛿𝑖 = 1, et donc Γ𝑖 = 1/4
𝑍 .

24

5 Méthodes statistiques

Une fois cette étape effectuée, pour chaque 𝑥𝑖 dans 𝑆𝑚𝑖𝑛, on détermine le nombre de
données synthétiques que nous allons générer pour cette observation :

𝑔𝑖 = Γ𝑖 𝐺 (5.12)

Il ne nous reste plus qu’à générer 𝑔𝑖 nouvelles observations pour 𝑥𝑖, de la même manière
que pour l’algorithme SMOTE, selon l’ Équation 5.9.

Ainsi, cet algorithme génère de nouvelles données dans la classe minoritaire en prenant en
compte la distribution de nos données, ce qui permet d’obtenir des données synthétiques
représentant davantage nos données.

5.2.4 Méthodes sous R

Pour utiliser ces algorithmes sous R au sein de l’architecture {tidymodels}, il existe des
étapes que nous pouvons incorporer à nos {recipes}, implémentées dans le package
{themis}.

Algorithme Fonction R Paramètres
Sur-échantillonnage step_upsample() • over_ratio : fréquence de

sur-échantillonage
Sous-échantillonnage step_downsample() • under_ratio : fréquence de

sous-échantillonage
SMOTE step_smote() • over_ratio : fréquence de

sous-échantillonage
• neighbors : nombre de 𝐾 plus

proches voisins
ADASYN step_adasyn() • over_ratio : fréquence de

sous-échantillonage
• neighbors : nombre de 𝐾 plus

proches voisins

Table 5.4: Récapitulatif des fonctions implémentées dans le package

Malheureusement, même si ils ont été mis en place, ces algorithmes n’ont pas été très
performants sur nos données, et nous n’avons donc pas choisi de conserver cette approche
pour construire un modèle de machine learning sur nos données déséquilibrées.

25

https://recipes.tidymodels.org
https://themis.tidymodels.org
https://themis.tidymodels.org/reference/step_upsample.html
https://themis.tidymodels.org/reference/step_downsample.html
https://themis.tidymodels.org/reference/step_smote.html
https://themis.tidymodels.org/reference/step_adasyn.html

5 Méthodes statistiques

5.3 Déséquilibre de classes et poids sur les classes

Dans le cas d’un déséquilibre de classes, le modèle apprend des informations adéquates
sur la classe majoritaire, mais n’a pas assez d’informations sur la classe minoritaire. Cela
implique beaucoup de mauvaises prédictions sur la classe minoritaire.

Pour contrer ce phénomène, nous pouvons mettre un poids plus élevé à la classe minori-
taire, ce qui permet au modèle d’accorder plus d’attention aux patterns de cette classe.
Plus précisément, le poids donné à chaque observation spécifie à quel point chaque ob-
servation influence l’estimation du modèle (Kuhn [17]). Pour que le modèle soit biaisé
en faveur des observations considérées comme plus importantes, dans notre cas celles
appartenant à la classe minoritaire, les poids des observations sont intégrés dans la fonc-
tion de coût. Cela permet de réguler le coût de mauvaise classification, dans le sens où
mal classifier des observations plus importantes sera plus coûteux, incitant le modèle à
éviter cette situation (Hashemi et Karimi [12], Lumley [20]).

Les poids les plus souvent placés sur les classes sont ceux venant de la méthode inverse
class frequency (ce sont par exemples les poids implémentés par défaut pour les modèles
en python).

Méthode Inverse class frequency

Le poids attribué à la classe 𝑗 est le suivant :

𝜔𝑗 = 𝑛
𝑛classes 𝑛𝑗

(5.13)

avec :

• 𝑛 le nombre total d’observations.
• 𝑛classes le nombre de classes.
• 𝑛𝑗 le nombre d’observation dans la classe 𝑗.

Cette méthode permet de placer des poids équilibrés sur les classes, mais lorsque nous
avons un fort déséquilibre de classes, nous pouvons placer des poids manuellement ou
bien tuner les poids, ce que nous ferons pour notre modèle.

Placer des poids sur nos classes a significativement amélioré nos modèles et nous avons
donc choisi de mettre en place cette stratégie.

Comme nous l’avons résumé dans le tableau suivant, avec les {tidymodels} de R, nous
ne pouvons pas placer des poids sur tous les modèles, ce qui a donc restreint notre choix
de modèles. Par exemple, nous n’avons pas pu utilisé la méthode des k plus proches
voisins ou les machines à vecteur de support.

26

https://www.tidymodels.org

5 Méthodes statistiques

Modèle Fonction R Engine Poids autorisés
Bagged trees bag_tree rpart Oui
Boosted trees boost_tree xgboost Oui
Arbre de décision decision_tree rpart Oui
Régression logistique logistic_reg glm Oui
Régression logistique logistic_reg glmnet Oui
Perceptron multicouche mlp keras Non
k plus proches voisins nearest_neighbor kknn Non
Forêt aléatoire rand_forest ranger Oui
Machine à vecteur de support svm_rbf kernlab Non

Table 5.5: Récapitulatif des modèles acceptant les poids sur les classes.

5.4 Métriques pour la classification binaire

Pour évaluer nos modèles, nous devons utiliser des métriques adaptés à notre modèle
de classification. Dans une classification binaire, nous avons accès à une matrice de
confusion, définie comme suivant :

Figure 5.7: Matrice de confusion pour une classification binaire.

Elle permet de classer nos prédictions en différentes catégories. Par exemple, les Vrais
Positifs (VP) correspondent à nos prédictions positives correctement classées, tandis que
les Faux Négatifs (FN) sont les prédictions classées négativement alors que l’observation
appartenait à la classe positive.

Une des métriques la plus employée dans des tâches de classification est l’accuracy, elle
est définit ainsi :

accuracy = prédictions correctes
toutes predictions = VP + VN

VP + FP + VN + FN (5.14)

27

5 Méthodes statistiques

En revanche, dans le cas d’un déséquilibre de classes, nous ne pouvons pas utiliser cette
métrique. En effet, l’accuracy sera toujours haute car le modèle détectera beaucoup de
points dans notre classe majoritaire, et le score ne prendra pas en compte les oublis
de détection de notre classe minoritaire. Par exemple, si nous obtenons la matrice de
confusion suivante, en notant que la classe positive est notre classe minoritaire :

Figure 5.8: Exemple de matrice de confusion dans un cas d’un déséquilibre de classes.

Nous voyons bien que le modèle n’a détecté aucun point de notre classe minoritaire, mais
pour autant l’accuracy vaut 1000

1000 + 100 = 0.91. Cela est un bon score alors que notre
modèle n’arrive pas à détecter la classe nous interessant le plus.

Nous devons donc utiliser d’autres métriques nous donnant des informations plus précises
sur nos prédictions. Voici les métriques classiques que nous pouvons utiliser dans notre
cas :

Le Rappel (ou Sensibilité)

Le rappel se définit comme suivant :

Rappel = VP
VP+FN (5.15)

Il permet de mesurer à quel point le modèle a trouvé toutes les instances de notre
classe positive.

La Précision

La précision se définit comme suivant :

Précision = VP
VP+FP (5.16)

Elle permet de mesurer à quelle fréquence le modèle a prédit correctement la classe
positive.

28

5 Méthodes statistiques

La Spécificité

La spécificité se définit comme suivant :

Spécificité = VN
VN+FP (5.17)

Elle permet de mesurer si nous avons correctement prédit la classe négative.

Dans notre cas, nous voulons prédire correctement notre classe positive Right_Stance,
donc le rappel nous intéresse tout particulièrement. Au contraire, nous pouvons être plus
indulgent sur la précision, car nous acceptons le fait de prédire trop de points de contact.
Nous pouvons enfin nous intéresser à la spécificité pour restreindre tout de même un
minimum le nombre de points prédits dans notre classe positive.

Cette réflexion nous amène à l’idée d’utiliser une métrique qui prend en compte à la
fois la sensibilité et la spécificité, mais en mettant plus de poids sur la sensibilité. Nous
utilisons donc le métrique suivant :

Weighted Youden index

L’indice de Youden pondéré [19] est définit comme :

𝐽𝑤 = 2(𝑤 ∗ Sensibilité + (1 − 𝑤) ∗ Spécificité) − 1 (5.18)

avec 𝑤 ∈ [0, 1].

Dans notre cas, nous choisissons de poser 𝑤 = 0.7 pour mettre un poids plus impor-
tant sur la sensibilité, mais tout en prenant tout de même en compte la spécificité. Ce
sera donc sur cette métrique que nous allons tuner les différents paramètres de notre
modèle.

29

5 Méthodes statistiques

5.5 Tuning et évaluation avec ré-échantillonage

Pour tuner et évaluer notre modèle sur les métriques que nous venons de présenter, nous
devons séparer notre jeu de données en différentes parties.

Nous commençons par séparer nos données en deux ensembles : des données
d’apprentissage sur lesquelles nous allons tuner et ajuster notre modèle, et des
données de test qui vont nous permettre d’évaluer notre modèle sur des données qu’il
n’a jamais rencontré.

Ensuite, au sein de nos données d’apprentissage, nous créons des échantillons par
ré-échantillonage, appelés folds, de tailles semblables. Ces ensembles nous permettent
d’ajuster le modèle sur plusieurs échantillons pour tuner les hyperparamètres du
modèles, ou pour évaluer le modèle plus fiablement.

Voici un schéma résumant les séparations de nos données :

Figure 5.9: Séparation de nos données pour le tuning et l’évaluation du modèle.

Plus précisément, voici les étapes effectuées sur ces ensembles :

1. Tuning des hyperparamètres en ajustant le modèle sur les échantillons d’analyse
des folds, et en l’évaluant sur les échantillons d’évaluation des folds.

2. Ajustement du modèle sur l’ensemble des données d’apprentissage avec les hyper-
paramètres sélectionnés.

3. Evaluation du modèle sur les données de test, qui n’ont pas encore été utilisées par
le modèle.

30

5 Méthodes statistiques

Dans la pratique, il y a plusieurs manières de séparer nos données originales en différents
ensembles. La manière la plus courante est d’attribuer aléatoirement des observations
dans chacun des sous-ensembles. Dans notre cas, nous avons choisi de faire en sorte
que des sessions entières soient gardées dans nos sous-ensembles. Cette attribution nous
semblait plus cohérente et nous permettait surtout par la suite d’afficher nos prédictions
sur les sessions de notre ensemble de test. Sous R, cela peut être effectué grâce à la
fonction group_initial_split(), en choisissant de grouper les observations par nom
de session.

Pour la construction des folds, nous avons également un choix à faire. Cette fois, si nous
choisissons de construire nos folds par sessions, cela signifie que nous avons un fold par
session, et donc un grand nombre de folds. De plus, cela ne nous semblait pas intuitif car
nous voulons que nos folds soient représentatif du jeu de données. Nous avons donc décidé
de construire les folds par attribution aléatoire, mais tout en gardant la certitude que les
proportions de nos classes soient identiques dans nos folds et dans nos données originales.
Sous R, cela est pris en compte par l’argument strata de la fonction vfold_cv().

31

https://rsample.tidymodels.org/reference/initial_split.html
https://rsample.tidymodels.org/reference/vfold_cv.html

6 Applications des méthodes et résultats

6.1 Application des méthodes sous R

Nous avons implémenté les modèles de machine learning sous R, avec le package
{tidymodels}, qui permet une implémentation claire grâce à une structure basée sur
la {tidyverse}, avec notamment l’utilisation du pipe operator (%>%). La construction
des modèles suit un schéma avec différentes étapes, que nous détaillerons dans cette
partie, et utilise différents packages dont la plupart sont déjà installés directement avec
{tidymodels}.

Figure 6.1: Schéma des étapes de la contruction d’un modèle avec {tidymodels}.

6.1.1 Métriques

Afin de tuner nos hyperparamètres et d’évaluer notre modèle, nous avons besoin de
choisir des métriques. Dans l’environnement {tidymodels}, de nombreuses métriques
sont implémentées dans le package {yardstick}. Nous retrouvons ainsi les métriques
sensitivity, specificity et roc_auc correspondant respectivement à la sensibilité, la
spécificité et l’aire sous la courbe ROC.

En revanche, l’indice de Youden pondéré, que nous avions sélectionné pour tuner les
paramètres du modèle, n’est pas directement implémenté dans le package. Il a donc fallu
l’implémenter nous-même, mais cela s’est révélé assez simple grâce au tutoriel présent
dans la documentation du package 1. Le code correspondant est présent en annexes (Voir
Listing 9.1).

1https://www.tidymodels.org/learn/develop/metrics/#class-example-miss-rate

32

https://tidymodels.org
https://www.tidyverse.org
https://tidymodels.org
https://tidymodels.org
https://yardstick.tidymodels.org/reference/index.html
https://yardstick.tidymodels.org/reference/sens.html
https://yardstick.tidymodels.org/reference/spec.html
https://yardstick.tidymodels.org/reference/roc_auc.html
https://www.tidymodels.org/learn/develop/metrics/#class-example-miss-rate

6 Applications des méthodes et résultats

Enfin, il suffit de créer un ensemble de métriques grâce à la fonction metric_set() :

all_metrics <- metric_set(sensitivity, specificity, roc_auc,
weighted_youden)↪

Nous passerons ensuite cet ensemble aux fonctions utilisées pour le tuning et l’évaluation
du modèle.

6.1.2 Feature space et séparation des données

Pour construire le feature space, une fonction a été construite, prenant en entrée les
sessions de marches et calculant les différentes variables. Elle récupère également les
points de contact donnés par le tapis de marche afin d’ajouter une colonne nommées
class et contenant les classes Right_Stance et None en les associant aux temps des
séries temporelles.

Une fois que nous avons notre feature space, nous ajoutons une colonne à ce dernier
avec les poids que nous voulons mettre sur nos classes, avec la fonction importance_-
weights() :

fs <- build_binary_feature_space_window(all_sessions, spar = 0.6, n_lag
= 5, k = 3)↪

fs <- fs %>%
mutate(

case_wts = ifelse(class == "Right_Stance", 50, 1),
case_wts = importance_weights(case_wts)

)

Il est ensuite temps de séparer nos données en différents ensembles. Nous commençons
par crééer un ensemble de données d’apprentissage et un ensemble de données de test.
Cela est fait avec la fonction group_initial_split() du package {rsample} car nous
avons choisis de garder des sessions entières dans nos ensembles. Ainsi, nous avons dans
notre feature space une colonne session qui contient le nom des sessions, et qui est
passé en argument de cette fonction. Cette colonne ne servant qu’à séparer nos données,
nous la supprimons ensuite. Cette fonction place par défaut 75% de nos données dans
l’ensemble d’apprentissage et 25% dans l’ensemble de test.

splits <- group_initial_split(fs, session)
fs_train <- training(splits)
fs_test <- testing(splits)

33

https://yardstick.tidymodels.org/reference/metric_set.html
https://hardhat.tidymodels.org/reference/importance_weights.html
https://hardhat.tidymodels.org/reference/importance_weights.html
https://rsample.tidymodels.org/reference/initial_split.html
https://rsample.tidymodels.org/index.html

6 Applications des méthodes et résultats

Enfin, nous créons également 10 folds sur nos données d’apprentissage, qui nous servirons
lors du tuning des paramètres du modèle. La fonction vfold_cv() du package {rsample}
créé par défault 10 folds, et nous ajoutons l’argument strata sur notre colonne class
afin d’avoir les mêmes proportions de chaque classes dans tous les folds.

fs_folds <- vfold_cv(fs_train, strata = class)

Ces différents ensembles nous servirons lors de la construction et l’évaluation du mo-
dèle.

6.1.3 Recette, modèle et workflow

Une fois que nous avons nos ensembles de données, la prochaine étape est la construction
d’une recette avec le package {recipes}. C’est une suite d’actions à effectuer sur les
données avant de les fournir en entrée de notre modèle. Dans notre cas, notre recette
n’a qu’une étape de standardisation, qui est réalisée avec l’étape step_normalize. La
recette permet également de préciser que c’est la variable class que nous voulons prédire
ensuite.

recipe <-
recipe(class ~ ., data = fs_train) %>%
step_normalize(all_numeric(), -all_outcomes())

Il est maintenant temps de crééer notre modèle de machine learning. De très nombreux
modèles sont disponibles dans le package {parsnip}, que ce soit pour faire de la clas-
sification ou de la régression, et avec différents engines. Ces derniers sont des manières
différentes d’estimer le modèle : par exemple, pour l’arbre de décision, nous pouvons
choisir d’utiliser les arbres CART avec l’engine rpart ou bien de faire des arbres C5.0
avec l’engine du même nom. Nous précisons donc à la fois l’engine et le mode lors de la
création du modèle :

tree_mod <-
decision_tree(tree_depth = tune(), min_n = tune()) %>%
set_engine("rpart") %>%
set_mode("classification")

Nous choisissons par exemple ici de créer un modèle d’arbre de décision CART pour de la
classification. C’est également à cette étape que nous précisons au modèle les paramètres
que nous allons tuner dans la suite. Ainsi, nous ne leur passons pas de valeur mais la
fonction tune().

34

https://rsample.tidymodels.org/reference/vfold_cv.html
https://rsample.tidymodels.org/index.html
https://recipes.tidymodels.org
https://recipes.tidymodels.org/reference/step_normalize.html
https://parsnip.tidymodels.org
https://hardhat.tidymodels.org/reference/tune.html

6 Applications des méthodes et résultats

Enfin, une fois que nous avons créé la recette et le modèle, nous les assemblons au sein
d’un workflow, une structure simplifiant ensuite les étapes de tuning, d’ajustement et
d’évaluation.

tree_workflow <-
workflow() %>%
add_model(tree_mod) %>%
add_recipe(recipe) %>%
add_case_weights(case_wts)

Nous voyons ici qu’en plus d’ajouter la recette et le modèle, nous donnons le rôle de poids
à la colonne ajoutée précédemment au feature space, afin que le modèle comprenne que
cette colonne n’est pas une variable mais bien un poids à appliquer sur les classes.

6.1.4 Tuning et ajustement

Pour tuner les paramètres du modèle sur nos folds, dans cet exemple ceux de l’arbre
de décision, nous utilisons la fonction tune_grid() du package {tune}. Nous précisons
que nous voulons tuner sur les folds créés à partir des données d’apprentissage, et nous
précisons les métriques qui doivent être calculées durant cette étape.

tree_res <-
tree_workflow %>%
tune_grid(resamples = fs_folds,

grid = 20,
metrics = all_metrics)

Nous pouvons soit passer en argument de cette fonction une grille de paramètres à
tester que nous choisissons nous même, soit laisser la fonction construire cette grille elle-
même. Dans ce dernier cas, nous passons à la fonction la taille de la grille, dans cette
exemple 20. Cette grille est construite semi-aléatoirement grâce à la fonction grid_-
latin_hypercube() du package {dials}, en utilisant la méthode d’échantillonnage par
hypercube latin (McKay , Beckman et Conover [21]). Cela signifie que contrairement
à un échantillonnage complètement aléatoire, chaque échantillon est positionné de ma-
nière à ne pas avoir de coordonnées communes avec les autres échantillons précédemment
positionnés.

Il est ensuite possible de récupérer différents résultats du tuning. Nous pouvons récupérer
les cinq combinaisons de paramètres ayant le mieux performés selon une métrique avec
la fonction show_best(). D’autre part, nous pouvons aussi avoir la combinaison de
paramètres ayant maximisés une métrique de notre choix, avec select_best(). Les
scores associés aux paramètres sont également retournés dans les deux cas.

35

https://tune.tidymodels.org/reference/tune_grid.html
https://tune.tidymodels.org/index.html
https://dials.tidymodels.org/reference/grid_max_entropy.html
https://dials.tidymodels.org/reference/grid_max_entropy.html
https://dials.tidymodels.org
https://tune.tidymodels.org/reference/show_best.html
https://tune.tidymodels.org/reference/show_best.html

6 Applications des méthodes et résultats

best_param_tree <-
tree_res %>%
select_best(metric = "weighted_youden")

Ainsi, nous conservons par exemple les paramètres ayant maximisés l’indice de Youden
pondéré. Cela nous permet ensuite de finaliser notre workflow, c’est à dire de fixer les
paramètres de l’arbre de décision avec ces paramètres.

last_tree_workflow <-
tree_workflow %>%
finalize_workflow(best_param_tree)

Une fois que les paramètres ont été fixé, il faut ajuster le modèle sur les données
d’apprentissage et l’évaluer sur les données de test. La fonction last_fit() est notre
alliée dans ce cas car elle effectue ces deux actions, et elle sait qu’il ne faut pas ap-
pliquer les poids des classes sur les données de test mais uniquement sur les données
d’apprentissage. Nous lui donnons en argument un objet {rsample}, dans notre cas la
séparation entre données d’apprentissage et de test, ainsi que les métriques sur lesquelles
évaluer le modèle.

last_tree_fit <-
last_tree_workflow %>%
last_fit(splits, metrics = all_metrics)

6.1.5 Evaluation et prédictions

Pour évaluer le modèle, nous pouvons tout d’abord récupérer les scores de l’évaluation
sur les données de test après ajustement sur les données d’apprentissage.

last_tree_fit %>%
collect_metrics()

Cela nous affichera les scores pour les métriques que nous avions donné en argument de
la fonction last_fit().

D’autre part, nous pouvons visualiser le score d’importance des variables. Cette fois,
nous ne pouvons pas utiliser directement l’objet créé par last_fit(), et nous devons
donc de nouveau ajuster notre modèle sur nos données d’apprentissage.

36

https://tune.tidymodels.org/reference/last_fit.html
https://tune.tidymodels.org/reference/last_fit.html
https://tune.tidymodels.org/reference/last_fit.html

6 Applications des méthodes et résultats

final_tree <- tree_workflow %>% fit(fs_train)

final_tree %>%
extract_fit_parsnip() %>%
vip()

Cette fonction nous affiche un graphique ayant par défaut les 10 variables les plus im-
portantes, avec leurs importances respectives. Nous pouvons diminuer ou augmenter le
nombre de variables affichées.

De plus, dans le cas d’un arbre de décision, nous pouvons bien sur visualiser l’arbre
construit, de nouveau sur un objet provenant d’un fit().

final_tree %>%
extract_fit_engine() %>%
rpart.plot(roundint = FALSE, yesno = 2, box.palette = "Blues")

De nombreux paramètres sont disponibles dans la fonction rpart.plot() afin de modi-
fier la représentation de l’arbre 2. Par exemple, nous choisissons ici d’ajouter des “yes”
et “no” à chaque séparation pour plus de lisibilité, et choisissons une palette de couleurs
dans les tons bleus.

Enfin, si nous voulons effectuer des prédictions, il suffit d’utiliser la fonction predict()
sur le modèle ajusté. Dans notre cas, nous avons une fonction nous permettant de
construire le feature space à prédire à partir d’une session de marche, qui calcule donc
uniquement les variables décrivant la marche.

features_to_predict <- build_features4predictions(qts, speed, spar =
0.6, n_lag = 5)↪

preds <-
final_tree %>%
predict(features_to_predict)

Il suffit ensuite d’afficher ces prédictions sur les séries de marche ainsi que de récupérer
les temps prédits pour ensuite segmenter le signal.

2Vignette de la fonction : http://www.milbo.org/rpart-plot/prp.pdf.

37

https://workflows.tidymodels.org/reference/fit-workflow.html
https://www.rdocumentation.org/packages/rpart.plot/versions/3.1.2/topics/rpart.plot
https://parsnip.tidymodels.org/reference/predict.model_fit.html
http://www.milbo.org/rpart-plot/prp.pdf

6 Applications des méthodes et résultats

6.2 Résultats

6.2.1 Comparaison des modèles

Pouc choisir un modèle de machine learning, nous avons comparé différents modèles sur
nos données. Pour cela, nous avons fixé les paramètres du feature space ainsi que les
poids placés sur nos classes avec des valeurs qui nous paraissaient cohérentes. Pour le
feature space, nous avons fixé le paramètre de lissage spar à 0.5, et le lag n_lag à 3.
Pour les poids sur nos classes, nous avons choisi de placer les poids venant de la formule
inverse class frequency que nous avons détaillé dans la partie précédente (Équation 5.13).
Le code pour cette fonction est présent en annexe (Voir Listing 9.3).

Ensuite, nous avons tuné les paramètres de chaque modèle sur une grille de taille 10 ou
15 selon le nombre de paramètres à tester. Nous avons sélectionné les paramètres ayant
maximisés l’indice de Youden pondéré, ce dernier ayant un poids de 0.7 sur la sensibilité
et un poids de 0.3 sur la spécificité.

Voici les résultats des différents modèles testés :

Modèle Sensibilité Spécificité
Indice de Youden
pondéré

Aire sous la
courbe ROC

Régression logistique 0.99 0.74 0.83 0.93
Arbre de décision 0.93 0.84 0.81 0.92
Bagged trees 0.85 0.95 0.75 0.95
Boosted trees 0.76 0.96 0.65 0.97
Forêt aléatoire 0.61 0.98 0.44 0.97

Table 6.1: Scores des modèles après tuning sur données d’apprentissage et évaluation sur
données de test.

D’après ces résultats, nous voyons que la régression logistique a le plus grand score pour
l’indice de Youden pondéré avec un score de 0.83, juste au dessus de l’arbre de décision
qui a un score de 0.81. Toutefois, en observant les autres métriques, nous voyons que
pour la régression logistique, la sensibilité est excellente alors que la spécificité est moins
bonne. En revanche, pour l’arbre de décision, nous avons un meilleur équilibre entre ces
deux métriques, ce qui semble être donc un meilleur choix pour notre modèle.

38

6 Applications des méthodes et résultats

En effet, si nous observons les prédictions effectuées par le modèle de régression logistique,
nous observons souvent trop de points prédits, comme sur cette exemple :

Figure 6.2: Points prédits par la régression logistique et points de référence, sur une
session de nos données de test.

Pour les modèles à plusieurs arbres, nous voyons que les performances se dégradent.
Ces modèles ont de très bons scores pour la spécificité mais une moins bonne sensibilité,
alors que nous souhaitions prendre davantage en compte cette dernière. La forêt aléatoire
est par ailleurs le modèle le plus décevant, avec un indice de Youden à seulement 0.44
et une sensiblité de 0.61, indiquant que le modèle oublie trop de points dans la classe
d’intérêt.

Ainsi, d’après cette comparaison, nous choisissons d’utiliser le modèle d’arbre de dé-
cision pour classer les temps des sessions de marche. En effet, nous obtenons de bons
scores avant même de tuner les hyperparamètres du feature space et les poids à placer
sur les classes. De plus, l’arbre de décision permet à la fois des temps de calcul rapide
et une bonne interprétabilité du modèle grâce à la visualisation de l’arbre.

Enfin, nous avons testé un modèle d’arbre de décision sans poids sur nos classes pour nous
assurer de la pertinence de cette implémentation. Nous trouvions un score de seulement
0.20 pour l’indice de Youden car le modèle oubliait beaucoup de points dans notre classe
minoritaire. Ce résultat confirme qu’il est essentiel de placer des poids sur nos classes
dans notre étude.

39

6 Applications des méthodes et résultats

6.2.2 Résultats du tuning

Grâce à des fonctions implémentées, nous avons tuné plusieurs paramètres dans notre
modèle, à différents niveaux. Nous avons tuné le poids à appliquer sur la classe mi-
noritaire, en fixant le poids de la classe majoritaire à 1. De plus, nous avons tuné les
paramètres du feature space spar and n_lag. Enfin, nous avons tuné les paramètres de
l’arbre de décision tree_depth et min_n. Pour les paramètres de poids et du feature
space, nous avons testé les grilles de paramètres résumées dans le tableau suivant. Pour
les paramètres de l’arbre de décision, nous avons laissé {tidymodels} construire la grille
de paramètres à tester, en lui demandant de tester 20 couples de paramètres différents.

Poids sur classe minoraire weight_RS c(5, 10, 20, 35, 50)
Feature Space spar c(0.3, 0.4, 0.5, 0.6, 0.7)

n_lag c(1, 2, 3, 4, 5)

Table 6.2: Grilles de paramètres testées lors du tuning du modèle d’arbre de décision.

Après avoir tuné les paramètres pour maximiser l’indice de Youden pondéré, en plaçant
un poids de 0.7 sur la sensibilité et un poids de 0.3 sur la spécificité, nous pouvons
choisir les paramètres à conserver pour construire notre modèle. Les 10 combinaisons
de paramètres ayant le mieux performés par rapport à l’indice de Youden pondéré se
situent en annexe (Voir Figure 9.1). Ainsi, les paramètres sélectionnés sont les suivants
:

Poids sur classe minoraire weight_RS 50
Feature Space spar 0.6

n_lag 5
Arbre de décision tree_depth 7

min_n 38

Table 6.3: Paramètres sélectionnés après tuning pour construire le modèle.

Avec ces paramètres, nous obtenons pendant le tuning un score de 0.86 pour l’indice
de Youden, un score de 0.98 pour la sensibilité et un score de 0.83 pour la spécificité.
Ce sont donc des scores satisfaisants nous indiquant que le modèle est performant pour
prédire les temps de pose au sol du pied.

40

6 Applications des méthodes et résultats

6.2.3 Arbre de décision et importance des variables

Un des avantages du modèle d’arbre de décision est son interprétabilité. En effet, nous
pouvons observer à chaque étape de l’arbre la séparation effectuée selon nos variables.

Figure 6.3: Arbre de décision après ajustement sur les données d’apprentissage.

Nous visualisons donc un arbre d’une profondeur de 5, et nous pouvons remarquer qu’à
la fois la vitesse angulaire, l’accélération angulaire, l’angle d’Euler Yaw, et la vitesse sont
utilisés pour construire notre arbre. Cela signifie donc que les variables ajoutées dans le
feature space sont bien pertinentes.

Plus précisément, nous voyons que la majorité des points détectés comme Right_Stance
sont ceux ayant une vitesse angulaire selon 𝑥 supérieure à 0.14, un angle Yaw inférieur
à 0.01, et une accélération angulaire selon 𝑥 supérieure à −0.3. Ensuite, les autres sé-
parations dans l’arbre se font majoritairement grâce à la vitesse de marche, avec des
séparations autour des vitesses de 100 cm/s et 135 cm/s. Cela correspond aux vitesses
séparant respectivement les marches lentes des marches intermédiaires, et les marches
intermédiaires des marches normales. Ainsi, comme nous l’avions remarqué en visuali-
sant les sessions de marche, la vitesse de marche a bien un impact sur les temps où nous
posons notre pied droit au sol.

41

6 Applications des méthodes et résultats

Une autre manière d’étudier la construction du modèle est de regarder l’importance
des variables.

Figure 6.4: Importance des variables dans notre modèle.

Cela nous permet de voir directement que la vitesse de marche est bien la variable la
plus importante dans notre modèle, comme nous nous en doutions. Ensuite, ce sont les
variables de la vitesse angulaire qui sont les plus importantes, surtout celle selon 𝑥, et
avec différents lags dans le temps.

42

6 Applications des méthodes et résultats

6.2.4 Résultats sur données de test

Une fois les paramètres sélectionnés grâce au tuning effectué sur les folds des don-
nées d’apprentissage, nous construisons un modèle que nous ajustons sur les données
d’apprentissage et que nous évaluons sur les données de test. Ainsi, voici les scores obte-
nus sur les données de test :

Indice de Youden pondéré Sensibilité Spécificité Aire sous la courbe ROC
0.84 0.99 0.77 0.90

Table 6.4: Résultats des métriques sur les données de test.

De nouveau, nous avons de bons résultats, signifiant que le modèle arrive à prédire sur de
nouvelles données après avoir été ajusté sur nos données d’apprentissage. Nous obtenons
particulièrement une très haute sensibilité, ce qui a pour conséquence la prédiction de
plages de points et non pas d’un point unique caractérisant la pose du pied au sol.

En complément de ces scores, nous devons observer sur les sessions de marches de nos
données de test les prédictions faites par notre modèle. Nous les affichons sur les sé-
ries temporelles de quaternions, accompagnées des points données par le dispositif de
référence GAITRite©.

Figure 6.5: Plages prédites et points de référence, sur une marche en vitesse normale de
nos données de test.

43

6 Applications des méthodes et résultats

Nous observons ci-dessus un exemple de résultat obtenu en vitesse de marche normale,
des résultats concernant les vitesses lentes et rapides sont présents en annexes (Voir
Figure 9.2 et Figure 9.3). De plus, chacune de ces sessions de test avait été réalisée
par un sujet différent, cela montrant que le modèle arrive à faire de bonnes prédictions
quelque soit la vitesse de marche et le sujet.

Nous observons des résultats similaires sur toutes les sessions de nos données de test,
avec une plage de points prédits contenant le point de référence donné par le tapis de
marche. Ainsi, notre modèle prédit trop de points de contact avec le sol, mais cela permet
qu’il n’en oublie pas et les points prédits sont consécutifs.

Si nous souhaitons obtenir le nombre exact de points de contacts réellement effectués par
le sujet, nous pouvons choisir de sélectionner un point par plage prédite. Nous pouvons
donc choisir de conserver uniquement le point central des plages obtenues (code en
annexes, voir Listing 9.4), afin d’obtenir le même nombre de points que le dispositif de
référence. Cela peut nous aider à mieux visualiser les prédictions obtenues et à comparer
les deux dispositifs.

Figure 6.6: Points sélectionnés d’après nos prédictions et points de référence, sur une
marche en vitesse normale de nos données de test.

Sur cet exemple, nous voyons que les points sélectionnés, se situant au centre des plages
de points prédits, sont très proches des points donnés par GAITRite©. Ce résultat est
donc très satisfaisant, notre modèle semble bien prédire les temps où le pied droit se
pose au sol, et donc semble segmenter correctement le signal brut renvoyé par le capteur
eGait.

44

6 Applications des méthodes et résultats

6.2.5 Résultats sur données AMIES

En complément de nos données de test, nous avons voulu tester le modèle sur des sessions
de marche totalement différentes. Nous avons donc utilisé une base de données appelées
AMIES et contenant des données de marche de patients atteints de sclérose en plaque
et donc souffrant plus ou moins de troubles de la marche. Ces donnés ont été acquises
en 2022 sur 44 patients, chacun effectuant quatre marches de 7.62 mètres, dans le cadre
du test T25FW (Timed 25 Foot Walk) effectué par les patients souffrant de sclérose en
plaques.

Sur ces données, comme les patients ont uniquement marché avec le capteur eGait et non
sur le tapis GAITRite©, nous pouvons uniquement afficher les prédictions effectuées par
notre modèle. Cela nous permet tout de même d’observer graphiquement la segmentation
des cycles de marche sur le signal, pour voir si elle nous parait cohérente. Voici un
exemple de prédictions sur ces données, d’autres exemples se situent en annexes (Voir
Figure 9.4).

Figure 6.7: Prédictions sur sessions de marche d’un patient AMIES.

Sur cette session, nous voyons que même si la série est moins lisse et régulière que celles
acquises sur des sujets sains, le modèle arrive quand même à segmenter le signal, avec
des prédictions à des intervalles de temps régulier et nous semblant cohérentes.

45

6 Applications des méthodes et résultats

Malheureusement, comme sur l’exemple ci-dessous, le modèle n’arrive pas à faire de très
bonnes prédictions sur toutes les sessions.

Figure 6.8: Prédictions sur sessions de marche d’un patient AMIES.

Sur cette session, le modèle semble en effet avoir oublié de détecter des points de contact
avec le sol, car les courbes sont assez régulières, mais les prédictions ne se situent pas
régulièrement au niveau des courbes.

La majorité des résultats obtenus sur les données de patients atteints de sclérose en
plaques sont satisfaisants. En revanche, sur certaines sessions, le signal n’est pas bien
segmenté, indiquant que notre modèle pourrait être amélioré pour mieux performer sur
des marches de sujets souffrant de troubles de la marche. Ces résultats restent encoura-
geant car la majorité des sessions paraissent tout de même correctement segmentées.

46

7 Comparaison des dispositifs eGait et
GAITRite©

Comme nous avons réussi à construire un modèle détectant le temps de contact au sol du
pied droit lors d’une session de marche, nous pouvons segmenter les cycles de marche
des sessions récoltées en utilisant simultanément les dispositifs eGait et GAITRite©. Pour
cela, nous sélectionnons le point central des plages de points prédits par le modèle pour
obtenir des points comparables à ceux fournis par le tapis de marche.

Pour comparer les deux dispositifs, nous avons du faire attention à un phénomène qui
ne nous avait pas posé de problèmes précédemment. En effet, le tapis de marche détecte
uniquement les pas effectués sur le tapis au niveau des capteurs, ce qui signifie que le
premier pas et/ou le dernier pas effectué ne sera pas forcément enregistré selon la position
des pieds. A l’inverse, avec le capteur eGait, tous les pas sont enregistrés, qu’importe où
ils ont été effectués. Cela est visible sur la Figure 6.5 où des points supplémentaires sont
prédits au début et à la fin de la session. Nous avons donc retiré les points prédits qui
se situaient :

• 0.5 secondes avant le premier point détecté par GAITRite©.
• 0.5 secondes après le dernier point détecté par GAITRite©.

Cela nous permet de comparer les dispositifs sur une même plage de temps.

7.1 Méthode

7.1.1 Données utilisées pour la comparaison

Pour comparer les deux dispositifs, nous avons tout d’abord utilisé les mêmes données que
celles utilisées pour entrainer notre modèle de machine learning. Ces données contiennent
77 sessions de marche, en vitesse lente, intermédiaire, normale et rapide. Elles sont très
régulières et synchronisées, et ont été récoltées en juin et juillet dernier.

D’autre part, nous pouvons également effectuer la comparaison avec des données récoltées
en novembre 2023 et février 2024. Ces données n’ont pas été utilisées précédemment
car elles n’ont pas été acquises aussi précisément : sans ceinture officielle, sans réelle
synchronisation des dispositifs, etc. Nous avons dans ces données 135 sessions de marche,
effectuées par 12 sujets (5 femmes et 7 hommes), sur des vitesses de marche lentes,
normales et rapides.

47

7 Comparaison des dispositifs eGait et GAITRite©

7.1.2 Paramètres de comparaison

Nous avons utilisé différents paramètres spatio-temporels pour comparer les résultats
renvoyés par le capteur eGait et par le tapis GAITRite©. Premièrement, il y a des
paramètres que nous pouvons récolter avec les deux dispositifs au sein d’une session de
marche :

• Le nombre de cycles effectués.
• La durée moyenne des cycles.
• La variation de la durée des cycles.

Nous pouvons aussi étudier des paramètres qui ne sont pas identiques mais qui peuvent
être mis en relation :

• La vitesse angulaire moyenne calculée sur les données eGait, et la vitesse de marche
calculée par GAITRite©.

• L’amplitude rotative moyenne calculée sur les données eGait, et la longueur
moyenne d’une enjambée calculée par GAITRite©.

Pour ces derniers paramètres, nous allons simplement étudier la présence d’une relation
linéaire et utiliser la corrélation de Pearson. Pour les premiers paramètres, nous allons
pouvoir analyser leurs similarités avec des tests appariés, ainsi qu’étudier leur concor-
dance avec le diagramme de Bland-Altman, présenté dans la suite.

7.1.3 Test de Wilcoxon apparié

Comme nous sommes dans le cas de mesures effectuées sur les mêmes sujets, pour com-
parer deux dispositifs, nous pouvons effectuer des tests dits appariés. Le test de Student
apparié est très utilisé pour comparer des données quantitatives, en évaluant l’égalité de
leurs moyennes. Cependant, il réside sur l’hypothèse de normalité des données, alors que
nos données ne respectent pas cette condition. Dans ce cas, nous pouvons utiliser le test
de Wilcoxon apparié (Wikipedia [27]) qui est une alternative non-paramétrique au
test de Student. Il se base sur l’hypothèse que la différence entre les échantillons appariés
suit une distribution symétrique autours d’un centre noté 𝜃. Nous voulons tester si ce
centre est égal à 0, l’hypothèse nulle est donc 𝐻0 : 𝜃 = 0.

Ce test se base sur les rangs des observations. On range dans l’ordre croissant les valeurs
absolues des différences |𝑍𝑖|, … |𝑍𝑛|, et on note 𝑅𝑖 le rang de |𝑍𝑖|. On définit la fonction
indicatrice Ψ𝑖 tel que Ψ𝑖 = 1 si 𝑍𝑖 > 0, et 0 sinon. La statistique de test est :

𝑇 + =
𝑛

∑
𝑖=1

𝑅𝑖Ψ𝑖 (7.1)

Ainsi, on rejette 𝐻0 si 𝑇 + ∉ [𝑛(𝑛 + 1)
2 − 𝑡𝛼/2, 𝑡𝛼/2] avec 𝑡𝛼 choisi tel que le risque de

première espèce est égal à 𝛼.

48

7 Comparaison des dispositifs eGait et GAITRite©

7.1.4 Diagramme de Bland-Altman

Le diagramme de Bland-Altman (Bland et Altman [4]) permet d’évaluer la concor-
dance entre de mêmes mesures prises avec deux appareils différents. Il est souvent utilisé
pour comparer une nouvelle technique de mesure avec une technique déjà reconnue, pour
voir si la nouvelle méthode peut remplacer l’ancienne. Le diagramme permet également
d’identifier un biais fixe, c’est à dire une différence systématique entre les deux mesures,
qui pourrait être corrigé en le soustrayant à la nouvelle méthode, ou encore de repérer
des outliers.

Le diagramme représente les différences entre les méthodes par rapport à leurs
moyennes.

Figure 7.1: Schématisation du diagramme de Bland-Altman.

La différence moyenne, représentée en rouge sur la figure, représente le biais estimé.
L’écart type des différences mesure les fluctuations autour de ce biais. On calcule éga-
lement ce qu’on appelle les limites de la concordance à 95%, ce qui est la différence
moyenne plus ou moins 2 fois l’écart type, ce qui est représenté par les traits verts sur la
figure. Cela nous permet de voir à quel point les mesures sont éloignées pour la plupart
des observations.

Ainsi, si nous décidons que les différences comprises dans cet intervalle sont cliniquement
acceptables, alors nous concluons sur le fait de pouvoir utiliser les deux méthodes de
mesure de manière interchangeable.

49

7 Comparaison des dispositifs eGait et GAITRite©

7.2 Résultats

7.2.1 Nombre de cycles

Nous commençons par comparer le nombre de cycles de marche détecté par l’appareil
de référence GAITRite© et celui que nous obtenons par l’algorithme de segmentation
mis en place sur les données récoltées par le dispositif eGait. Pour chaque session, nous
calculons la différence entre le nombre de cycles obtenu par GAITRite© et celui obtenu
par eGait, et nous affichons les résultats avec un diagramme à barres.

(a) Sessions de juin et juillet. (b) Sessions de novembre et février.

Figure 7.2: Différence du nombre de cycles détecté dans une session de marche entre les
deux dispositifs.

Nous observons que pour les sessions récoltées récemment avec un protocole plus stricte,
nous obtenons pour 75 séries sur 77 exactement le même nombre de cycles avec les deux
dispositifs. Pour les sessions acquises en novembre et février, les performances sont un
peu moins bonnes mais restent satisfaisantes, avec 103 sessions où l’on détecte le même
nombre de cycles, et 22 sessions où le tapis détecte un cycle de marche supplémentaire.

Nous avons réalisé ces graphiques en fonction de la vitesse de marche (les graphiques sont
présents en annexes, voir Figure 9.5 et Figure 9.6), nous montrant que nous détectons
aussi bien les cycles de marche qu’importe la vitesse. Nous avons également réalisé les
graphiques en fonction du sexe pour les sessions de novembre et février, comme nous
avions davantage de sujets et de diversité par rapport aux sessions récentes comportant
uniquement deux femmes et un homme.

Ce graphique nous permet de voir que sur ces sessions, nous arrivons moins bien à
détecter le nombre de cycles au sein d’une session de marche lorsque le sujet est une
femme.

50

7 Comparaison des dispositifs eGait et GAITRite©

Figure 7.3: Différence entre les nombres de cycles sur les sessions de novembre et février
par rapport au sexe.

7.2.2 Durée moyenne des cycles

Dans un deuxième temps, nous comparons la durée moyenne des cycles détectés par
les deux dispositifs. Nous pouvons effectuer un test de Wilcoxon apparié pour comparer
nos deux échantillons. Pour les données acquises récemment, nous obtenons une p-value
de 0.17 > 0.05, signifiant que nous ne pouvons pas rejeter l’hypothèse nulle déclarant
que le centre de la distribution des différences vaut 0. Pour les données plus anciennes,
nous devons rejeter cette hypothèse.
Nous réalisons également le graphique de Bland-Altman pour analyser la concordance
entre les mesures (voir Figure 9.7 en annexes pour les sessions de novembre et février).

Figure 7.4: Diagramme de Bland-Altman pour la durée moyenne des cycles, sur les ses-
sions de juin et juillet. 1

1Graphique réalisé sous R avec le package blandr.

51

https://github.com/deepankardatta/blandr/

7 Comparaison des dispositifs eGait et GAITRite©

Sur ce graphique, nous observons deux outliers, mais toutes les autres différences entre
les mesures se situent au sein de l’intervalle de confiance [−0.08, 0.08]. Un cycle de marche
durant en moyenne 1 seconde, une différence de moins de 0.1 seconde entre la durée des
cycles est donc très basse. Nous observons également un biais nul, cela nous permettant
de conclure que nous obtenons une durée moyenne de cycles similaire avec le nouvel
algorithme de segmentation des données acquises par eGait par rapport au dispositif de
référence.

D’autre part, nous étudions également la variation des durées des cycles de marche.
Pour cela, nous avons calculé le coefficient de variation, définit par 𝐶𝑉 = moyenne

écart type . Pour
le test de Wilcoxon apparié, nous obtenons cette fois des p-values inférieures à 0.05 pour
toutes les sessions, nous forçant à rejeter l’hypothèse nulle. Nous affichons tout de même
les graphiques de Bland-Altman (voir Figure 9.8) et obtenons des résultats similaires à
ceux obtenus précédemment pour la durée moyenne des cycles.

Pour conclure sur la moyenne et la variation des durées de cycles, nous obtenons de
très bons résultats sur les sessions de juin et juillet, nous permettant d’affirmer que
notre méthode de détection de cycles peut être utilisée au même titre que le dispositif
de référence. Les résultats sont légèrement moins bons sur les sessions de marche plus
anciennes mais restent assez satisfaisants compte tenu des circonstances d’acquisition.
Nous pouvons noter que nous observons des outliers sur les diagrammes de Bland-Atlman
qu’il serait intéressant d’analyser.

7.2.3 Vitesse angulaire moyenne et vitesse de marche

Nous comparons la vitesse angulaire moyenne calculée sur les séries de quaternions ren-
voyées par eGait 2 et la vitesse de marche calculée par le tapis GAITRite©.

Figure 7.5: Vitesse angulaire moyenne (eGait) et vitesse de marche (GAITRite©) pour
les sessions de juin et juillet, par rapport à la vitesse.

2La vitesse angulaire d’une série de quaternions est calculée avec la fonction qts2avts() du package
squat.

52

https://github.com/LMJL-Alea/squat

7 Comparaison des dispositifs eGait et GAITRite©

Le graphique pour les sessions de novembre et février est présent en annexe (voir Fi-
gure 9.9).

Ainsi, sur les sessions de juin et juillet, nous observons une corrélation linéaire entre les
deux variables, avec une corrélation de Pearson valant 0.96. Il y a quelques observations
de marche en vitesse lente et en vitesse normale plus éloignées de la droite de régression, il
serait donc intéressant d’analyser ces sessions de marche pour voir si elles appartiennent
par exemple à un même sujet.

Il y a donc une corrélation assez forte entre ces deux variables, que ce soit sur les sessions
de marche récentes ou plus anciennes.

7.2.4 Amplitude moyenne et longueur moyenne de cycles

Enfin, nous comparons de la même manière l’amplitude moyenne calculée sur les séries
de quaternions renvoyées par eGait 3 et la longueur moyenne des cycles calculée par le
tapis GAITRite©.

Figure 7.6: Amplitude moyenne (eGait) et longueur moyenne des cycles (GAITRite©)
pour les sessions de juin et juillet, par rapport à la vitesse.

Pour les sessions récentes, nous visualisons une corrélation linéaire mais avec des points se
situant assez loin de la droite de régression, surtout en marche lente. Nous obtenons cette
fois une corrélation de Pearson de 0.69. Pour les sessions plus anciennes (voir Figure 9.10),
nous n’observons pas vraiment de corrélation linéaire entre les deux variables, avec un
nuage de points assez dispersés. Il est donc plus compliqué de conclure sur la similarité
de ces mesures entre les deux dispositifs.

3L’amplitude d’une série de quaternions est calculée avec la fonction qts2ats() du package squat.

53

https://github.com/LMJL-Alea/squat

8 Conclusion et perspectives

Au sein de ce stage, nous avons acquis de nouvelles données de marche synchronisées
entre les dispositifs eGait et GAITRite©. Cela nous a permis de construire un modèle
de machine learning par arbre de décision pour prédire les temps de pose au sol du
pied droit lors d’une session de marche. Ces prédictions servent ensuite de points de
segmentation pour segmenter le signal renvoyé par eGait en cycles de marches. Nous
avons donc ensuite pu calculer des paramètres spatio-temporels nous permettant
d’analyser la concordance entre les deux dispositifs. Cette analyse nous a permis de
constater que le dispositif eGait pourrait être utilisé cliniquement car nous obtenons des
résultats similaires à l’appareil de référence. En effet, le nouveau modèle détecte au sein
des sessions un nombre de cycles, une durée moyenne de cycle, et une variation de durée
de cycle similaires à GAITRite©.

La difficulté principale rencontrée lors de l’implémentation du modèle de machine lear-
ning a été celle causée par le déséquilibre de classes au sein de nos données. En
effet, nous nous sommes concentré pendant une période assez longue sur les algorithmes
d’échantillonnage sans obtenir de résultats satisfaisants. Lorsque nous avons ensuite dé-
couvert la possibilité de placer des poids sur les classes, cette méthode a rapidement
montré de bons résultats et cela nous a débloqué dans cette problématique.

Les résultats obtenus par ce modèle sont très bons sur les données acquises récemment,
mais nous obtenons des prédictions moins bonnes sur les sessions récoltées dans le passé.
Différentes causes peuvent expliquer ce phénomène : un problème de référentiel, une
mauvaise calibration du capteur, un placement non précis du capteur sur les sujets,
etc.

Ainsi, ce modèle est améliorable et sera perfectionné dans le futur. Tout d’abord, à
court terme, nous allons acquérir davantage de données sur de nouveaux sujets, car
pour l’instant le modèle n’apprend que sur trois sujets. Ajouter de la diversité dans les
données peut permettre au modèle d’améliorer ses prédictions sur les séries acquises dans
d’autres contextes. D’autre part, pour améliorer le modèle, nous pouvons envisager de
combiner les méthodes d’échantillonnage à la méthode des poids pour gérer au mieux la
problématique de déséquilibre de classes.

54

8 Conclusion et perspectives

Plus globalement dans le projet eGait, de nouveaux capteurs sont en cours de fabrica-
tion, qui auront le grand avantage de calculer directement la vitesse de marche. Nous
allons donc effectuer une phase de test pour ces capteurs, et cela nous permettra de pou-
voir intégrer la vitesse de marche dans notre modèle sans devoir connaitre la distance
parcourue par les sujets lors de la marche.

A plus long terme, il sera nécessaire d’acquérir des données de marche de personnes
âgées afin de tester notre modèle sur cette population, afin de voir si des ajustements
devraient être fait pour aider au mieux cette population à hauts risques de trouble de la
marche.

Enfin, dans le cadre de ce projet, il est prévu le développement d’une application web
associée au dispositif eGait. Elle sera mise à disposition du personnel hospitalier afin
de leur fournir des résumés graphiques et tabulaires, comme outil intuitif d’aide à la
décision et au suivi clinique. Cette application sera le fruit d’une réflexion commune
entre le LMJL, le LMIP et le CHU de Nantes. Une première version de cette application
avait été implémentée l’an passé lors de mon stage de Master 1, et il est désormais
temps d’en faire une version déployable. Pour cela, j’ai pu implémenter une structure de
modules shiny basée sur les packages rhino et bslib au début de ce stage (des captures
d’écran de l’application sont présentes en annexes, Figure 9.11 et Figure 9.12), que je
pourrai reprendre en continuant à travailler sur ce projet à l’issu de ce stage.

55

https://shiny.posit.co
https://appsilon.github.io/rhino/
https://rstudio.github.io/bslib/

9 Annexes

Distance (cm)
Durée (s)
Vitesse (cm/s)
Vitesse Normalisée
Nombre de pas
Cadence (pas/mn)
Différence durée du pas (s)
Différence longueur de pas (cm)
Différence durée du cycle (s)

Table 9.1: Paramètres globaux

Durée du pas (s)
Durée du cycle (s)
Longueur du pas (cm)
Longueur d’enjambée (cm)
Base appui (cm)
Double appui (%)
Phase oscillante (%)
Phase de support (%)
Pas Normalisé
Rotation du pied (deg)

Table 9.2: Paramètres bilateraux

Table 9.3: Paramètres spatio-temporels récoltés par le tapis GAITRite© (Biometrics
[3])

Figure 9.1: Résultats du tuning de nos hyperparamètres, rangés par score décroissant de
l’indice de Youden pondéré.

56

9 Annexes

(a) Plages prédites et points de référence.

(b) Points centraux sélectionnés et points de référence.

Figure 9.2: Résultats des prédictions sur une marche en vitesse lente de nos données de
test.

57

9 Annexes

(a) Plages prédites et points de référence.

(b) Points centraux sélectionnés et points de référence.

Figure 9.3: Résultats des prédictions sur une marche en vitesse rapide de nos données
de test.

58

9 Annexes

(a)

(b)

Figure 9.4: Résultats des prédictions sur des patients atteints de sclérose en plaques.

59

9 Annexes

Figure 9.5: Différence du nombre de cycles de marche détectés entre les deux dispositifs,
sur les sessions de juin et juillet, par rapport à la vitesse de marche.

Figure 9.6: Différence du nombre de cycles de marche détectés entre les deux dispositifs,
sur les sessions d’octobre et de juillet, par rapport à la vitesse de marche.

60

9 Annexes

Figure 9.7: Diagramme de Bland-Altman pour la durée moyenne des cycles, sur les ses-
sions de novembre et février.

Figure 9.8: Diagramme de Bland-Altman pour la variation de la durée des cycles, sur
les sessions de juin et juillet.

61

9 Annexes

Figure 9.9: Vitesse angulaire moyenne (eGait) et vitesse de marche (GAITRite©) pour
les sessions de novembre et février, par rapport à la vitesse.

Figure 9.10: Amplitude moyenne (eGait) et longueur moyenne des cycles (GAITRite©)
pour les sessions de novembre et février, par rapport à la vitesse.

62

9 Annexes

Figure 9.11: Page d’accueil de l’application web en développement.

Figure 9.12: Page regroupant les patients de l’application web en développement.

63

9 Annexes

Listing 9.1 Création de la métrique de Youden pondérée

pour avoir le nom de la classe positive
event_col <- function(xtab, event_level) {

if (identical(event_level, "first")) {
colnames(xtab)[[1]]

} else {
colnames(xtab)[[2]]

}
}

implémentation de la métrique
weighted_youden_impl <- function(truth, estimate, event_level) {

xtab <- table(estimate, truth) # matrice de confusion
col <- event_col(xtab, event_level) # nom de la classe positive
col2 <- setdiff(colnames(xtab), col) # nom de la classe négative

tp <- xtab[col, col] # vrais positifs
tn <- xtab[col2, col2] # vrais négatifs
fp <- xtab[col, col2] # faux positifs
fn <- xtab[col2, col] # faux négatifs

sen <- tp / (tp + fn) # sensibilité
spe <- tn / (tn + fp) # spécificité

2 * (0.7 * sen + 0.3 * spe) - 1 # métrique avec poids choisis
}

implémentation de l'utilisation sur vecteur
weighted_youden_vec <- function(truth,

estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = "first",
...) {

estimator <- finalize_estimator(truth, estimator)

check_class_metric(truth, estimate, case_weights, estimator)

if (na_rm) {
result <- yardstick_remove_missing(truth, estimate, case_weights)

truth <- result$truth
estimate <- result$estimate
case_weights <- result$case_weights

} else if (yardstick_any_missing(truth, estimate, case_weights)) {
return(NA_real_)

}

weighted_youden_impl(truth, estimate, event_level)
}

64

9 Annexes

Listing 9.2 Création de la métrique de Youden pondérée

définition du métrique
weighted_youden <- function(data, ...) {

UseMethod("weighted_youden")
}

préciser que cette métrique est à maximiser
weighted_youden <- new_class_metric(weighted_youden, direction =

"maximize")↪

implémentation de l'utilisation sur data frame
weighted_youden.data.frame <- function(data,

truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = "first",
...) {

class_metric_summarizer(
name = "weighted_youden",
fn = weighted_youden_vec,
data = data,
truth = !!enquo(truth),
estimate = !!enquo(estimate),
estimator = estimator,
na_rm = na_rm,
case_weights = !!enquo(case_weights),
event_level = event_level

)
}

65

9 Annexes

Listing 9.3 Fonction retournant les poids de la méthode inverse class frequency

retourne un vecteur avec un poids pour chaque classe
ordonné de la classe avec le moins d'observations à la classe avec le

plus d'observations↪

inverse_class_freq <- function(class) {
n_samples <- length(class)
classes <- levels(class)
n_classes <- length(classes)

on calcule le nombre d'observatin dans chaque classe pour ordonner
les poids↪

n_samples_classes <- 1:n_classes
ordered_classes <- 1:n_classes
for (i in 1:n_classes){

n_samples_classes[i] <- length(class[class %in% classes[i]])
}
ordered_classes <- classes[order(n_samples_classes)]

on créé le vecteur de poids
weights <- 1:n_classes
for (i in 1:n_classes){

n_samples_i <- length(class[class %in% ordered_classes[i]])
weights[i] <- n_samples/(n_classes*n_samples_i)

}
return(weights)

}

66

9 Annexes

Listing 9.4 Sélection du point central de la plage de points prédits

select_central_points <- function(predictions) {

if(length(predictions)==0) {return()}
if(length(predictions)==1){return(predictions)}

selected_points <- c()
window <- c()

for (i in 1:(length(predictions)-1)) {
current_point <- predictions[i]
next_point <- predictions[i+1]

si nous sommes toujours dans la même plage
if (next_point-current_point < 0.1) {

on conserve le point et on continue
window <- c(window, current_point)

}
else {

si on est arrivé au bout de la plage, on sélectionne le point
central↪

central_point <- window[floor(length(window)/2)]
selected_points <- c(selected_points, central_point)
puis on reset notre plage
window <- c()

}
}
return(selected_points)

}

67

Références

[1] Cédric Annweiler et al. “Risk factors for falls in geriatric inpatients: interaction
between increased stride time variability and history of falls”. In : Annales de
Gérontologie 2.1 (2009), p. 1-3.

[2] Olivier Beauchet et al. “Poor gait performance and prediction of dementia: re-
sults from a meta-analysis”. In : Journal of the American Medical Directors Asso-
ciation 17.6 (2016), p. 482-490.

[3] Biometrics . GAITRite pro. url : https://biometrics.fr/web/nos-technologies/
78-gaitrite.html.

[4] J. Martin Bland et Douglas G. Altman . “Statistical Methods For Assessing
Agreemment Between Two Methods Of Clinical Measurement”. In : The Lancet
327.8476 (1986), p. 307-310. issn : 0140-6736. doi : https://doi.org/10.1016/S0140-
6736(86)90837-8.

[5] Leo Breiman . Classification and regression trees. Routledge, 2017.
[6] N. V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Technique”.

In : Journal of Artificial Intelligence Research 16 (juin 2002), p. 321-357. issn :
1076-9757. doi : 10.1613/jair.953. url : http://dx.doi.org/10.1613/jair.953.

[7] Stanley Lemeshow David W. Hosmer . Applied Logistic Regression. Wiley Series
in Probability et Statistics, 2000.

[8] Pierre Drouin . “”Amélioration du suivi des patients atteints de maladies neuro-
dégénératives à l’aide d’objets connectés””. Theses. Nantes Université, sept. 2022.
url : https://theses.hal.science/tel-04046965.

[9] Pierre Drouin et al. “Semi-supervised clustering of quaternion time series: Appli-
cation to gait analysis in multiple sclerosis using motion sensor data”. In : Statistics
in Medicine 42.4 (2023), p. 433-456.

[10] GAITRite . The GAITRite Gold Standard. url : https://www.gaitrite.com.
[11] William Rowan Hamilton . “LXXVIII. On quaternions; or on a new system of

imaginaries in Algebra”. In : The London, Edinburgh, and Dublin Philosophi-
cal Magazine and Journal of Science 25.169 (1844), p. 489-495. doi : 10.1080/
14786444408645047. url : https://doi.org/10.1080/14786444408645047.

[12] Mahdi Hashemi et Hassan Karimi . “Weighted Machine Learning”. In : Statistics,
Optimization & Information Computing 6 (nov. 2018). doi : 10.19139/soic.v6i4.
479.

68

https://biometrics.fr/web/nos-technologies/78-gaitrite.html
https://biometrics.fr/web/nos-technologies/78-gaitrite.html
https://doi.org/https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/https://doi.org/10.1016/S0140-6736(86)90837-8
https://doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
https://theses.hal.science/tel-04046965
https://www.gaitrite.com
https://doi.org/10.1080/14786444408645047
https://doi.org/10.1080/14786444408645047
https://doi.org/10.1080/14786444408645047
https://doi.org/10.19139/soic.v6i4.479
https://doi.org/10.19139/soic.v6i4.479

Références

[13] Haibo He et Edwardo A. Garcia . “Learning from Imbalanced Data”. In : IEEE
Transactions on Knowledge and Data Engineering 21.9 (2009), p. 1263-1284. doi :
10.1109/TKDE.2008.239.

[14] Haibo He et al. “ADASYN: Adaptive synthetic sampling approach for imbalanced
learning”. In : (2008), p. 1322-1328. doi : 10.1109/IJCNN.2008.4633969.

[15] B. W. Silverman J. O. Ramsay . Functional Data Analysis. Springer New York,
NY, 2005. doi : https://doi.org/10.1007/b98888.

[16] M Kuhn . Applied Predictive Modeling. Springer New York, 2013.
[17] Max Kuhn . Using case weights with tidymodels. url : https://www.tidyverse.org/

blog/2022/05/case-weights.
[18] Klervi Le Gall et al. “Generation of synthetic gait data: application to multiple

sclerosis patients’ gait patterns”. In : The International Journal of Biostatistics
(2024).

[19] Dan-ling Li et al. “Weighted Youden index and its two-independent-sample com-
parison based on weighted sensitivity and specificity”. In : Chinese medical journal
126.6 (2013), p. 1150-1154.

[20] Thomas Lumley . ”Weights in statistics”. url : https://notstatschat.rbind.io/
2020/08/04/weights-in-statistics/.

[21] M. D. McKay , R. J. Beckman et W. J. Conover . “A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from
a Computer Code”. In : Technometrics 21.2 (1979), p. 239-245. issn : 00401706.
url : http://www.jstor.org/stable/1268522 (visité le 13/08/2024).

[22] Hylton B Menz et al. “Reliability of the GAITRite® walkway system for the
quantification of temporo-spatial parameters of gait in young and older people”.
In : Gait & Posture 20.1 (2004), p. 20-25. issn : 0966-6362. doi : https://doi.org/
10.1016/S0966-6362(03)00068-7. url : https://www.sciencedirect.com/science/
article/pii/S0966636203000687.

[23] Manuel Montero-Odasso et al. “Gait velocity as a single predictor of adverse
events in healthy seniors aged 75 years and older”. In : The Journals of Gerontology
Series A: Biological Sciences and Medical Sciences 60.10 (2005), p. 1304-1309.

[24] Ashwin Narayan . How to Integrate Quaternions. 2017. url : https : / / www .
ashwinnarayan.com/post/how-to-integrate-quaternions/.

[25] Wikipedia . Conversion between quaternions and Euler angles. url : https://en.
wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles.

[26] Wikipedia . Gimbal lock. url : https://en.wikipedia.org/wiki/Gimbal_lock.
[27] Wikipedia . Test des rangs signés de Wilcoxon. url : https://fr.wikipedia.org/

wiki/Test_des_rangs_sign%C3%A9s_de_Wilcoxon.

69

https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/https://doi.org/10.1007/b98888
https://www.tidyverse.org/blog/2022/05/case-weights
https://www.tidyverse.org/blog/2022/05/case-weights
https://notstatschat.rbind.io/2020/08/04/weights-in-statistics/
https://notstatschat.rbind.io/2020/08/04/weights-in-statistics/
http://www.jstor.org/stable/1268522
https://doi.org/https://doi.org/10.1016/S0966-6362(03)00068-7
https://doi.org/https://doi.org/10.1016/S0966-6362(03)00068-7
https://www.sciencedirect.com/science/article/pii/S0966636203000687
https://www.sciencedirect.com/science/article/pii/S0966636203000687
https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/
https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/
https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
https://en.wikipedia.org/wiki/Gimbal_lock
https://fr.wikipedia.org/wiki/Test_des_rangs_sign%C3%A9s_de_Wilcoxon
https://fr.wikipedia.org/wiki/Test_des_rangs_sign%C3%A9s_de_Wilcoxon

	Introduction
	Remerciements
	Pré-requis
	Etude de la démarche et cycles de marche
	Dispositifs eGait et GAITRite©
	Quaternions
	Paramètres spatio-temporels

	Matériel
	Acquisitions de données
	Données
	Preprocessing des données eGait
	Feature space

	Méthodes statistiques
	Modèles de classification binaire
	Régression logistique
	Arbre de décision
	Bagged trees et forêt aléatoire

	Déséquilibre de classes et algorithmes d'échantillonnage
	Sur-échantillonnage et sous-échantillonnage aléatoires
	Algorithme SMOTE (Synthetic Sampling with Data Generation)
	Algorithme ADASYN (Adaptative Synthetic Sampling)
	Méthodes sous R

	Déséquilibre de classes et poids sur les classes
	Métriques pour la classification binaire
	Tuning et évaluation avec ré-échantillonage

	Applications des méthodes et résultats
	Application des méthodes sous R
	Métriques
	Feature space et séparation des données
	Recette, modèle et workflow
	Tuning et ajustement
	Evaluation et prédictions

	Résultats
	Comparaison des modèles
	Résultats du tuning
	Arbre de décision et importance des variables
	Résultats sur données de test
	Résultats sur données AMIES

	Comparaison des dispositifs eGait et GAITRite©
	Méthode
	Données utilisées pour la comparaison
	Paramètres de comparaison
	Test de Wilcoxon apparié
	Diagramme de Bland-Altman

	Résultats
	Nombre de cycles
	Durée moyenne des cycles
	Vitesse angulaire moyenne et vitesse de marche
	Amplitude moyenne et longueur moyenne de cycles

	Conclusion et perspectives
	Annexes

