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NOTATIONS GENERALES
QCcR? ,ouvertd > 2

L2(Q) = {u mesurable sur Q) et / lu|?dx < oo }
0

HY(Q) = {u € LX(Q);  wp,, =0ctdyue LZ(Q)}

a(
T:T = i Ti]-Ti/]. pour lequel on a la norme |||7]|| = VT: T, Tet T dans R4
K={ue 2@l <1 ppsur O |

V ={we H}(Q)?, divw=0}

12(Q) = {u e 12(Q), /Qu — 0}

dxd

|.|;2 la norme L2(Q) ainsi que pour les espaces L?(Q)? et L>(Q)%*“ ou |.| il n’y a pas d’em-

biguité avec la valeur absolue
(.,.) pour produit scalaire sur L2(Q)?*? ainsi que sur L2(Q) et L2(Q)“

((u,v)) = (D(u),D(v)) = /QD(u) :D(v)dx, Yu,ve Vetl|lul| =+/((u,0))
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INTRODUCTION

L'Université Gustave Eiffel est une université nationale multi-site issue de la fusion récente
de plusieurs établissements d’enseignement et de recherche. Le campus de Nantes de cette uni-
versité, initialement Laboratoire Central des Ponts et Chaussées, est caractérisé par ses grands
équipements permettant des expérimentations a échelle réelle dans le domaines du génie civil et
plus récemment du développement durable. Ce campus regorge de chercheurs aux compétences
tres diverses dans son laboratoire GPEM (Granulats et Procédés d’Elaboration des Matériaux) qui
vont des mathématiques appliquées au génie civil en passant par la physique, le génie des procé-

dés ou encore la chimie.

Un point crucial reliant toutes les recherches du laboratoire concerne les pates granulaires. Ce
sont des matériaux visco-plastiques, c’est-a-dire qu’ils se comportent comme un fluide ou un so-
lide localement : plus ils sont soumis a une forte sollicitation a un endroit, plus ils s’écoulent de
facon liquide au voisinage de cet endroit, comme de la purée. Il faut signaler que de nos jours,
la modélisation des écoulements de pates granulaires offre de nombreuses applications en génie
civil (bétons, enrobés bitumineux, terres pour la construction, boues d’épuration), environnemen-
tales (coulées de boue, avalanches), biologiques (fluides corporels tels que le sang). Le modéle de
Bingham [Bingham, 1922]] est un modele viscoplastique et tres pratique que 1’on utilise générale-
ment comme point de base, car il contient la difficulté fondamentale de la viscoplasticité : 1'effet
de seuil. Cette difficulté se traduit par I'existence possible de zones de I’écoulement dites rigides
de mesure de Lebesgues non-négligeables dans lesquelles le taux de déformation (partie symé-

trique du gradient de vitesse) est nul.

En général, lorsqu’on a un ouvert borné () inclus dans R4, 1e modele de Bingham s’écrit sous

la forme [Bingham, 1922] :

[l < < D*(u") =0
D*(u* @

)
T[] > 10 <= T =2uD*(u*) + o7
[[D* ()|
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N

ol
u* : champ de vitesse ,
Tp : seuil de plasticité,

u : la viscosité,

Vu* + (Vu)T
D (u) = (T (T
T* : le déviateur du tenseur de contrainte.

: tenseur de taux de déformation

Plusieurs auteurs ont traité ce modele dans les années récentes et c’est un sujet qui occupe la
recherche en mathématiques appliquées depuis des dizaines d’années. On peut en particulier ci-
ter les travaux remarquables et pionniers de [Duvaut and Lions, 1972], [Trémolieres et al., 2011] et
récemment [Saramito and Wachs, 2017]] qui dresse un état de 1’art des méthodes numériques pour

résoudre le systéme d’équations aux dérivées partielles qui exprime ce modele d’écoulement.

La résolution mathématique des écoulements de fluide a seuil d’écoulement implique une op-
timisation convexe de problémes non réguliers.
Les principales méthodes connues sont les suivantes :

— Lagrangien Augmenté ( LA développée dans les années 1980) dans [Fortin and Glowinski, 2000]
a gagné en popularité. Elle a été la premiere a étre largement utilisée qui correspond
au cadre de l'algorithme de calcul de point de selle, en s’appuyant principalement sur
un algorithme de type UZAWA pour la minimisation d"une fonctionnelle convexe non-
différentiable sous une contrainte linéaire. Récemment, un algorithme amélioré nommé
FISTA™ a été introduit dans [Treskatis et al., 2018] qui atteint le taux optimal en terme de
convergence pour cette classe d’algorithme.

— la méthode de Newton dans [Saramito, 2016] et reformulation de la programmation par
cone du second ordre dans [Bleyer, 2018] semblent surpasser tous les autres algorithmes.
Toutes ces méthodes ont été mises en place dans le but d’améliorer la vitesse convergence
des algorithmes.

— Gradient Projeté (UZAWA \ISTA, 1976 par [Glowinski, 1976]) utilisé dans [Trémoliéres et al., 2011]]
pour trouver une partie non visqueuse appropriée du champ de contraintes, en tant que
minimiseur d'une fonctionnelle quadratique convexe sous contrainte convexe; Ces mé-
thodes itératives de calcul de point de selle sont aussi trouvées dans [Irémolieres et al., 2011,
[Beck and Teboulle, 2009] et ses variantes récentes, et faciles a programmer mais dont la

lenteur reste insatisfaisante en pratique malgré la populaire accélération récente initiée

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes
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dans [Beck and Teboulle, 2009] pour le traitement d’images a partir de travaux généraux
de [Nesterov, 1983, puis appliquée a Bingham dans [Ireskatis et al., 2018].

Le gradient projeté (GP) a été amélioré : dans [Birgin and Martinez, 2014], le Gradient projeté
spectral (SPG pour Spectral Projected Gradient) est introduit puis sa généralisation Scaled Gradient
Projection dans [Bonettini et al., 2008]. Notre motivation se base sur le fait que SPG a montré son
efficacité supérieure a PG dans de nombreuses applications dans la littérature, mais n’a pas encore
été testé pour Bingham. C’est ce que nous proposons dans ce travail.

En fait, c’est au bout d’une ancienne corde que nous en tissons une nouvelle. Nous prenons
en effet la suite de travail de Benoit Sénard ancien étudiant de MACS a 'université de Nantes, de
la maniere suivante : il a considéré l'introduction de propriétés physiques dans le GP, tandis que
nous introduisons une méthodes mathématique de calcul automatique du pas de descente

Le travail est réalisé en quatre parties :

- Dans la premiére partie, nous présentons le modéle physique et la formulation variation-
nelle associée.

- Dans la deuxiéme partie, nous présentons une classe d’algorithme de Gradient Projeté, le
Gradient Projeté Spectral, qui utilise la regle de Barzilai-Borwein [Barzilai and Borwein, 1988]
avec Grippo-Lempariello-Lucidi [Grippo et al., 1986] en poursuivant ainsi le travail commencé
dans le stage de Benoit Senard.

- Dans la troisieme partie, nous exposons les expériences numériques en faisant un approxi-
mation spatiale par éléments finis pour présenter des résultats numériques.

- Nous faisons une conclusion de tout ce qui a été abordé et éventuellement nous évoquons

nos perspectives possible.

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes



MODELE PHYSIQUE ET FORMULATION
VARIATIONNELLE

1.1 Modéles de Bingham équivalents

Dans ce chapitre, nous formulons sous différentes formes 1’écoulement stationnaire d"un maté-
riau de Bingham confiné. Le modéle physique est d’abord écrit sous sa forme la plus usuelle, puis
des expressions équivalentes connues dans la littérature mais moins usitées en mécanique sont
décrites. Elles conduisent a une formulation adaptée a 1’application de 'algorithme de gradient
projeté. Le matériau est mis en mouvement avec forces extérieurs et en absence de gravitation
particuliere et le fluide adhere aux parois.

Le modele de Bingham (1)) sans dimension se réécrit :

I|lIT||| < Bi<= D(u)=0

(1.1)
7]l > Bi <= 7 =2D(u)+ Bi—2W) _

D)l

ou
u : champ de vitesse;

. . e, . T . .
Bi : le nombre de Bingham, contient 1'information sur la viscosité u, 1 et Bi = —&, U et L sont ici

L
respectivement une vitesse et une longueur caractéristiques. Ce sont des grandeurs de référence

qui caractérisent les ordres de grandeur du probleme traité.
Vu+ (Vu)T

iy = (T (T

T : le déviateur de tenseur de contrainte.

: tenseur de taux de déformation;

On complete le modele (1.1) par es lois de conservations stationnaires :

p(Vu)u—divt —V.p=f (conservation de quantité de mouvement ) 12)

divu =0 (conservation de la masse )
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ou

(Vu).u est négligé dans la suite (i.e sans effet d'inertie).

En effet, cette écriture sans dimension se repose sur les grandeurs physiques mises en jeu.

De la relation (I) on a:

0 sinon
2uD*(u*) = *
W(\HT*\H —T) silllIT¥[] > 1

* * . . .
etu = MU , X = xf sans dimensions avec D = %D* donc on obtient :

U 0 sinon
IO el s
™| — 1) si ™| > 1
Hiall
T
0 sinon .
2D(u) = en posant Bi= 2 otr="
(lxll - Bi) silllt|]| > Bi ud W
Hiall L L

Et par conséquent, la relation (1.1) est bien équivalente a la relation (T).

Les équations de conservations dimensionnées qui sont considérées avec le modéle (1)) s’écrivent :

—divt* — V.p* = f* (conservation de quantité de mouvement)
divu® =0 (conservation de la masse )

Puisque, la pression p* et le second membre f* sont homogenes a des contraintes, tout comme 7*

alors elles se comportent comme ce dernier i.e. f = f g etr= P 0 De plus u = ”—J . Et par suite,
"I T
on obtient aussi les relations (1.2).

Définition 1.1. On définit un champs de contrainte A par la relation :

T =2D(u) + ABi (1.3)

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes
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La solution du probleme qu’on propose consiste a appliquer une méthode en trouvant A
comme argument minimum d’une certaine fonctionnelle que nous allons découvrir trés rapide-

ment, et qui permet d’appliquer le gradient projeté.

e Pour l'accueil compréhensif des notions autour du modele, commencgons par quelques pré-

liminaires de définitions, propriétés, remarques et lemmes intéressantes pour la suite du travail.

La Caractérisation de A € L?(Q)%*4 de la relation (1.3) pour u € H'(Q)4 que l'on propose est
donnée par :

( D(u)

/\:W siD(u) #0

p.p. sur () (1.4)

| IAl[<1 siDu)=0

Définition 1.2. On définit I'ensemble K = {pt e L2 Q)™ |||ul]| < 1p.p surQ} qui est convexe.
Eneffet, Vu, ve Keta € [0,1] ona:

g+ (1= a)v]|] < [[lap]]] + (1= a)|[|v]
<a+(1—uw)

< T car [[|plll <1 et |[[v][]] <1

Lemme 1.1. Nous pouvons observer I'équivalence entre la loi de comportement et la définition de A

:
T =2D(u) + ABi <= ([1.1))

Démonstration. Supposons T = 2D (u) + ABi
e Montrons que |||t]|| < Bi<= D(u)=0
Si |||l < Bi

Ona:|[[|z[|| < Bi < Bil[|A[|[ +2[[|D(u)][|
done (1 —[[|A[]) < éH\D(u)H\

Supposons par 1'absurde que D(u) # 0. Alors |||A|||] = 1 (caractérisation de A). Il suit que
2 . .

0 < Z=llID(w)|[ et [[|D(u)[|| = 0 (impossible).

SiD(u)=0

Ona: |||7||| < Bill|A||| +2|||D(u)]|| puis |||D(u)||| = 0et |||A < 1]|| (caractérisation de A). Donc
[HIl[} < Bi.

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes
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. D
e Montrons que |||7||| > Bi <= 1 =2D(u) + Bi-— (1)

, D@
si |||||| > Bi
: D(u) i D)
Ona:t=2D(u)+ Bid = 2D(u) + Bi——— en identifiant A = avec D(u) #0.
AR =l DG e P
Sit=2D(u)+ Bi———— () _ = 2D(u) + BiA (caractérisation de A) .

D ()]

On suppose par l'absurde que |||7]||| < Bi
Alors |||D(u)||| = 0et |||T||| = Bi|||A]]]- Or |||A]]| = 1, donc |||T||| = Bi (impossible). Il suit que
Il > Bi.
Réciproquement, en supposant (1.1) avec la caractérisation de A proposé, il est évident de consta-
ter que T = 2D(u) + ABi . O
Remarque 1.1. Nous verrons dans une proposition qu’en fait, pour tout p > Oona:
A+ pD(u)

A={ [A+pD(u)|

A+ pD(u) sinon

Toutes ces formulations ont un intérét algorithmique. Nous nous limitons ici aux formulations qui nous

si|A+pD(u)| > 1

sont utiles, mais d’autres écritures existent, qui sont utilisées dans la littérature pour pouvoir appliquer

d’autre méthodes.

Rappel : (Caractérisation de la projection)
Soit X un espace de Hilbert avec son produit scalaire (. ,. )y , et K une partie non-vide , convexe

et fermée de X. Alors la projection orthogonale Px vérifie, pour tout x € X, ,y € K

(x = Px(x),y — Px(x))x <0

Rappel : Pk la projection orthogonale sur K donnée par :
posilllulll <1

sinon

[ #1]

Remarque 1.2. Le lemme suivant est un résultat classique qui joue un role essentiel dans I'écriture de
classe d’algorithme pour Bigham. les assertions qui le constituent sont en général éparpillé dans différents

ouvrages comme par exemple dans ([|Glowinski, 2008]]).

Lemme 1.2. Soit A € L2(Q)%*? et u € V. Alors nous avons les équivalences suivantes :

1. (u—A,D(u)) <0,ueK

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes
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2. 7 =2D(u) + ABi
3. A=Px(A+pD(u)),Vp >0

4. A:D(u) = |[ID@)[| A <1

Démonstration. ® 1. = 3.

Supposons 1.

Soit p > 0. En multipliant par p alors (¢ — A, pD(u)) <0

< (p—A,A+pD(u) — A) <0 (on ajoute et retranche A)

& A = Px(A + pD(u)) (caractérisation de la projection) i.e 3. est donc obtenu.
©3. = 2.

Supposons 3. Montrons que T = 2D(u) + ABi

On sait que par définition de de A : T = 2D(u) + ABi = 2D(u) + Px(A + pD(u))
e si D(u) = 0 Alors Px(A) = A.

A-t-on |||7]]| < Bi?

Onat=2x0+ ABiet|||t||| = Bi]||A|||. Puisque A € K alors |||7||| < Bi.

Par conséquent, on bien T = 2D(u) + ABi

e si D(u) # 0. Nous utilisons la définition de A donnée par: T = 2D(u) + ABi = 2D(u) + Px(A +
pD(u)).

Montrons que Px(A + pD(u)) = Puisque |A + pD(u)| > 1 alors

D)

DG ouTr
S+ pllID@)))

_ A+pD@) _ D@ _ p)

AP = BBl = 1+plDGIT - D]

Par suite, T = 2D(u) + ABi.

®2. = 4.

=A

Supposons 2. et montrons que A : D(u) = |||D(u)]|| ,|A] <1
Comme |A| < 1alors D(u) = 0. Ainsi |||D(u)||| =0etA: D(u) =0=|||D(u)|||
De plus on a bien |||7||| < Bicar [A| <1letD(u) =0

©4 — 1
Supposons 4.
Soit 4 € K. Montrons que (4 — A, D(u)) <0

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes
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Ona:
(u—A):D(u)=p:D(u)—A:D(u)
=u: D(M) 11D (u)]]]
< |ul||IDm)||| = |||D(u)||| (Chauchy — Schwartz avec y : D(u))
< ([ul = DD (w)]]|

<0 carpek

[]
Proposition 1.1. Soit p > 0, la caractérisation de A de la relation est équivalente a la relation :
A = Px(A+pD(u)) (1.5)
Démonstration. e Si D(u) = 0, 1’équivalence est évidente : 0 = Px(0) <= 0 <1
D
e Si D(u) # 0. Soit p > 0 et supposons que A = |HDEu§H| ielestvérifie. Ona:
D(u)
A+eD ()] = Iy (A ellIPEIIN T =1+ plliDG)I] > 1
et par définition de Px, ona:
D)
1+pl||D
pen oDy — oD _ e PO by
[A+pD(u)| 1+ p[l[D(w)]]] D ()]l]
et donc la relation (1.6) est ainsi obtenue.
Dans le sens inverse, en supposant (1.6) i.e A = Px(A + pD(u))
On a nécessairement |A + pD(u)| > 1 sinon on aurait p = 0 puisque D(u) # 0.
Par conséquent, en utilisant une fois encore la définition de Px, ona A = % Et par
factorisation on obtient : A (JA + pD(u)| — 1) = pD(u) et donc D(u) = AA +pl;( wl = )
En passant & lanormeona: |||D(u)||| = A+ pr(u)| -1 en remarquant que |A| = 1.
D’ou
_ A+ pD(u) = _ D(u)
A+ pD(u)] (1D
[l

1.2 Formulation variationnelle

Pour écrire la formulation variationnelle que I’on propose pour Bingham, nous allons donner

une idée qui permet de coupler cette formulation sous forme de définition liant (#,A) € V x K

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes
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On rappelle que la formule de Green valable pour le V(.) est aussi valable avec D(.), comme

montré dans [Brezzi and Fortin, 2012] :

/Qdiv(qf).vdx = —/QC : D(v) dx+/aQ(§.n).vda

avec dx la mesure de Lebesgue, do la mesure de surface sur le bord, { un champs régulier de
contraintes et v un champs de vitesse suffisamment réguliers.
D’une part, concernant la conservation de la quantité de mouvement :

e Dans un sens d’implication de I'écriture variationnelle Vo € V, en multipliant I’équation

de quantité de mouvement (1.2) par v et en appliquant la formule de Green, on a :

_/a (T.n).vda+/ D(v) : de+/ div(v) pdx — / pondo = / fodx
Q
=>2/ dx—i—Bz/A D( )dx—/fvdx
en utilisant la définition de :
T =2D(u) + ABi,
avecv € V = {w c HY}(Q)Y, divw = O} comme l'espace de fonction test, cela implique :
2(D(u),D(v)) + Bi(A,D(v)) = (f,v), Vo e V

e Dans le sens inverse de I’écriture variationnelle, on se repére a la condition «in fsup» (dans

[Brezzi and Fortin, 2012]]). Cette condition assure la surjectivité de 'opérateur divergence

e.:3pel2(Q) = {u e L2(O)Y, /Qu = 0} tel que

/QD(U):de+/0div(v)pdx:/ﬂf.vdx

D’autre part, le Lemme (1.2) montre que l'inéquation variationnelle Vi € K, (4 —A,D(u)) <0

est équivalente a la loi de comportement locale.

Définition 1.3. La vitesse u € V et le champ de tension A € K sont liés dans le probleme de Bingham par

la formulation variationnelle :

2(D(u),D(v)) + Bi(A,D(v)) = (f,v), Vo eV (1.6)
(0—A,D(u)) <0,peK

e Par le théoréme de Lax-Milgram, on peut remarquer que le probleme variationnel :

pour u € L2(Q)%*4 donné, trouver u(u) € V telle que :

2(D(u()), D(v)) + Bi(, D(v)) = (f,0), Vo € V

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes
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admet une unique solution puisque :
— V est un espace de Hilbert dans ([Brezzi and Fortin, 2012]), ([Girault and Raviart, 1979]) et
([Brenner et al., 2008]),
— De plus, (v, w) — 2(D(v), D(w)) est une forme bilinéaire, continue et coercive sur V;
— v — (f,v) — Bi(u, D(v)) est une forme linéaire continue sur V.

Ainsi, nous pouvons introduire une fonctionnelle ¢ : L2(Q)) — R définie par :

#(10) = 5| D)) 17)

Dans la proposition suivante, nous abordons les propriétés de ¢ qui permettent d’écrire la

formulation variationnelle sous la forme d"un probleme de minimisation.
Proposition 1.2. Soit ¢ définie par (1.7). Alors les deux assertions suivantes sont équivalentes :

1. A = arminycxd(p)
2. (u—=A,D(u(A))) <0,ueK

Démonstration. 1. = 2. Supposons que A = armin,cx¢ (i)

donc ¢(A) < ¢p(p), Vu € K

Soitv € K, # € [0,1].0naK> (av+ (1 —a)A) =A+a(v—A7A)

ainsi p(A) < p(av+ (1 —a)A) = p(A +a(v—A7))

donc0 < p(A+a(v—A)) —p(A)

Tl suit que 0 < % (A + (v —A)) — p(A))

Et en faisant tendre « vers 0 et en utilisant la formule du taux de variation, nous obtenons
0< (v ¢(1)

Enfin par le Théoréme 1.1 nous obtenons (v — A, D(u(A))) < 0.

1. <= 2. Supposons (it — A, D(u(A))) <0,u € Kie0 < (v —A,¢ (A)) (Théoreme )
Ainsi 0 < % (p(A+a(u—A)) —¢(A)) par la formule de taux de variation avec a — 0
doncp(A) < p(A+a(p—A))etonprendv = A+a(p—A) = (ap+ (1 — a)A) inK est quelconque
car u est quelconque.

Il suit que ¢(A) < ¢(v), Vv € K Autrement A = armin,cxd(u) O

Remarque 1.3. Nous avons écrit le probleme de Bingham comme la minimisation d’une fonctionnelle

convexe quadratique sur un convexe, dans le but d’appliquer des algorithmes connus pour ce contexte.

1.3 Existence et unicité

Le théoreme suivant traite des propriétés de ¢ qui garantissent l’existence d"une solution.
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Théoreme 1.1. Soit ¢ la fonctionnelle de L2(Q)) — R définie par (1.7). Alors
1. ¢ est est convexe.

2. ¢ est dérivable au sens de Fréchet sur L2(QY), de dérivée ¢' (1) = —D(u(p)).

Démonstration. 1. On sait que par définition u satisfait :

u(A + (1 —a)p) =au(A)+ (1 —a)u(u), Va € [0;1],A, p € K

Ona:
2Big(ah + (1 a)p) = [|[aD(u(A)) + (1 - ) D(u(p))||?
< @Dl + (1~ )[[[Du()I||)? (ingalit triangulaire)
Pl + (1— ) < 29(A) + (1 — w)%p(s) +20(1 — )| || D(ae(p0)) ||| x |||D (.
Par+ (1—a)p) < ap(A) + (1 - w)p(p)

2. Soit i € L2(Q).
Par un calcul d’identé remarquable, on a :

D (e ()= D @) = 1D (g +17)) = D ()12 +2 (D(u(p + 1)) = D(u(p)), D(u
En utilisant la ligne 1 de I’équation on obtient :

(D(u(p+n)) = D(u(p)), D(v)) + Bi(y,D(v)) = 0,vv € V (1.8)

On prend v = (u(u) dans[1.8] Il vient donc que :

1D (e + )2 = D (@)I1? = [[ID @+ 1)) — D(u(p))[|* = 2Bi(y, D(u(p)))
D’autre part, on prend aussi v = u(p + 1) — u(p) dans[l.8etona:

1D (e + )12 = D (u(u)|II> = —Bi (17, D(u(p + 1)) = D(u(n)))
< Bily|[|[[[D(u(p + 1)) = D(u(p))|||  (Cauchy — Schwarz)

<Bz‘zﬁJrllllD(u(IHrﬂ))—D(u(ﬂ))lll2 (Young)
-7 2 T2

Donc ||[D(u(p + 1)) — D(u(p)|l|> := O(In?) -
1l suit que : ¢(p + 1) = ¢(u) + (1, D(u(p)) +O(Iy]*))
Par conséquent, (,b/(y) = —D(u(p))

Corollaire 1.1. Il existe A € K solution de min,cx¢(p).

La preuve repose sur le fait ¢ est propre et qu’avec les propriétés du théoreme le théoreme XXX de [?]
s’applique.
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Ainsi d’apres le Théoreme (1.1), (#(A),A) € V x K est donc solution du probleme de
Bingham.

u(A) est unique mais A ne l'est pas toujours (voir dans [Duvaut and Lions, 1972]).

Remarque 1.4. L'unicité de u(A) n'est pas I'application de Lax-Milgram. En effet, Lax-Milgram prouve
que u(p) est unique pour un p donné. Considérons donc A1 et A, deux minimiseurs de ¢, et uq et uy les

vitesses respectivement associées. On a :
((uq1 — up,v)) + Bi(A1 — Ay, D(v)) =0, Vo e V
en choisissant v = uq — uy, il vient :
|1 — uz|)® + Bi(Ap — Ay, D(uy — up)) = 0
Or, les inéquations variationnelles permettent d’écrire, pouri = 1,2 :
(= Ay, D(u;)) <0
ce qui donne, en sommant les inéquations pour y = Ay aveci =2, et y = Ayaveci =1:
(A — Az, D(ug —up)) <0

On obtient donc ||u; — up|| < 0. Ceci prouve I'unicité de la vitesse .
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GRADIENT PROJETE (GP) AVEC LA
REGLE DE BARZILAI-BORWEIN ET
GRIPPO-LAMPORIELLO-LUCIDI

2.1 Formulation - Minimisation par gradient projeté

La formulation variationnelle du modele de Bingham donné dans|l.6et reformulée sous forme
de minimisation dans la proposition |1.2| permet d’écrire 1’algorithme classique du Gradient Pro-
jeté ([Trémolieres et al., 2011]).

La méthode du gradient projeté que nous mettons en place ici calcule a chaque itération une
nouvelle approximation d’un minimum de ¢ en progressant d'un pas p le long de la direction
opposée a celle de ¢’ au point courant, puis en projetant sur K le point obtenu.

Soit p > 0, AV € Ketn € IN. Par récurrence, la suite (u”“, A”H) € V x K se calcule comme

suit :

u 1 v (A7 v)) = 0 [
2(D(u"1),D(v)) + Bi(A",D(v)) = (f,v), VYoeV (2.1)

AL = P (A" + pD(un+1))
On montre que cette suite converge vers (u,A) qui est dans V x K aussi donc solution du pro-
bléme, avec une convergence faible pour A"t et forte pour u"*! (voir [Trémolieres et al., 2011]).
Pour établir un ordre de convergence |p(A") — ¢(A)| = (O)(1/k) (voir [Beck and Teboulle, 2009]
pour la démonstration générale, avec une fonctionnelle ¢ convexe différentiable), 1'idée fonda-
mentale se base sur le fait que la dérivée de la fonctionnelle ¢ est lipschitzienne. Ce qui peut étre

établi dans le cas de Bingham :

Proposition 2.1. ¢’ est Bi lipschitzienne et ¢ localement lipschitzienne

En effet, d’apres la ligne 1 de I'équation on sait que :

(D(u(A)) = D(u(p)), D(v)) = =Bi(A — 4, D(v))

12
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D’autre part,

1D @) = D @@E)II? = [1D((A)) = D(u(p)||[* +2(D(u(A)) — D(u(p)), D(u(n)))
= —Bi(A — p, D(u(A)) — D(u(p))) — 2Bi(A — , D(u(p)))

car |||D(u(A)) = D(u(u)[|* = =Bi(A — u, D(u(A)) = D(u(n))) , pour v = u(A) — D(u(p)
et donc |D(u(A)) — D(u(n))| < BilA — | (par Cauchy — Schwarz)

Il suis que 4) est Bi lipschitzienne

De plus,
D@D = D w(p)|? = =Bi(A = u, D(u(A)) + D(u(p)))

En réappliquant Cauchy-Schwarz, on obtient :
D @NIZ = D (u)[? < BilA = pl.[|D(u(A)) + D(u(m))ll.
Et puisque (D(u(A)) + D(u(n)),D(v)) = 2(f,v) + (A + pu, D(v)), Yo € V, il s’en suit que :
(D ((A)) + D(u(p)ll < 2|f] + BilA + pl
< 2(|f| + Bi), car A,y € K

Ainsi

PN) — pl1e) < 5 % 2BilA — il (1f] + Bi)

< (If + Bi)[A =y

2.2 Calcul automatique d'un pas de descente variable

Dans l'algorithme de gradient projeté (2.1), le pas de descente est constant. On peut toutefois
ce demander si un pas variable p" permettrait d’accélérer la convergence.

Dans ce but, la méthode du gradient projeté spectral (SPG) de Birgin, Martinez et Raydan
en 2000-2003 pour la résolution de problémes avec contraintes convexes, est née du mariage du
schéma non monotone de Barzilai- Borwein (Raydan 1997) avec la méthode classique du gra-
dient projeté (Bertsekas 1976, Goldstein 1964, Levitin et Polyak 1966) qui ont été utilisés dans les

statistiques.

2.2.1 Généralité sur Barzilai et Borwein (BB)

Dans ([Birgin et al., 2000]) les auteurs ont relaté que Barzilai et Borwein (BB) en 1988 dans

[Barzilai and Borwein, 1988|] ont proposé une méthode pour la minimisation sans contrainte d"une
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fontion différentiable ¢y : RN dans R

On se donne x? € RY, l'itération BB est donnée par:
R A A INED (2.2)

ou p est la longueur de pas, pO est arbitraireet Vk = 1, ...,

T
K Sk-15k-1

— k1t (2.3)
O S
avec Sp_1 = x* — ¥ Tety_; = Von(xF) — Von(xF1)
1
Lorsque ¢n(x) = ixT.Ax + bxT + ¢ est la fonction quadratique et A une matrice symétrique

définie positive alors :

¢ _ Von(E)Ton (1)
O N ()T Ay (1)

Les auteurs définissent le Spectral Projected Gradient (SPG) dans lequel on utilise le pas de des-

cente Barzilai et Borwein (BB), en conjonction avec une généralisation de la régle d’Armijo, nom-
mée regle GLL (pour Grippo, Lampariello et Lucidi). SPG est défini dans 1'article fondateur :
[Birgin et al., 2000] et GLL est définie dans : [Grippo et al., 1986].

Le terme Spectral provient du fait que le pas de descente BB est compris entre les valeurs propres
extrémes de la dérivée seconde de la fonctionnelle ¢. La regle d’Armijo garantit que la fonction-
nelle & minimiser décroit au fil des itérations. Cependant, la littérature a progressivement constaté
que la vitesse de convergence peut étre significativement améliorée si on relaxe la monotonie en
ne l'imposant que tous les M itérations, I’algorithme étant au contraire inefficace sinon. C’est le

but de GLL en remplacement d”Armijo. Cela semble vrai notamment pour SPG.

Remarque 2.1. o L'efficacité de la méthode BB est liée a la relation entre les py. et les valeurs propres de la
matrice Hessienne de ¢ et non a la diminution de la valeur de la fonction.

o SPG a montré son efficacité supérieure a PG dans ces nombreuses applications.
¢ étant une fonctionnelle quadratique, elle peut s’écrire :

1
(1) = ZIF — Quf?

en faisant les identifications suivantes :

on définit A : V — V' et B: V — L2(Q)%*“ par des crochets de dualité

< Av,w >= (D(v),D(w)) Yow eV
(Bv,u) = (D(v),u) Yv €V Vue LZ(Q)dXd
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et

Q = BiBA™!B*; F = BA~!f

! 2 % . " _2 %
‘P(P‘):EQ (Qu—F); ¢ (P‘)—EQ Q

/ " -1 /
e I'ldée fondamentale de BB est de chercher p* € R* tel que p¥¢ (A¥) soit proche de {4) (AR } ¢ (AF).

En faisant le calcul de p* au lieu d’utliser les expressions de Barzilai et Borwein en espérant trou-

ver une expression simple et facile a calculer, on a :

oF = argmin, oAk — (¢")TIAK|?

"

& (AP —(¢) A =0

/\kl " —1)\k
NGRS

Dans [Birgin et al., 2000] il est rappelé que la régle BB s’écrit classiquement, a partir de I'équation

de la sécante :
|)Lk o Ak_1|2 ’)\k o )Lk_1|2

k
Psec *= _ 7 7 — =
e ()‘k_)‘k 1/4) ()‘k) —¢ (Ak 1)) (Ak_)tkfl lQ*Q(/\k_/\kfl))
" Bi
Dans le cas o1 il n’y a pas de contrainte, l'itération de descente est :

/\k . Akfl — _pkfl(P’()kal)

et donc nous obtenons 'expression équivalente :

koo e (A=D1
pquad T 1

(¢ V1), Q" Qpf (W)

Pour Bingham, on a en outre les propriétés :

Q = Q*; Q*> = BiQ puisque A = BB*
Par suite nous avons les formes simplifiées :

Lemme 2.1. Soient les opérateurs A, B et Q définis précédemment. Alors les expressions de psec et de pgy a4

sont données par :

ko AR — Ak Lk |9 (AF1))2
Fsec = (WF ZART, QAR — AF-T)) 7 Foquad = (¢'(AF=1),Q¢" (AF1))

® s est toujours positif d’apres le Corollaire suivant :
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Corollaire 2.1. Soient les opérateurs A, B et Q définis précédemment. Alors :

1

k —
pquud " Bi

Démonstration. On sait que :
of 9 (A2
quad * ((P/()\k_l),Q(P/(/\k_l))

et en remplacant Q = Bi BA~!B* et A = B*B, on obtient :

—— [ (A1) P2
Pauad = (" (=T, Bi Tp (AF1))
gk
Bilg' (A1)
- 1
=B

Quelles sont donc les relations entre pf,, et P];,u wd?
® A priori, o4 utilise I'information de dérivabilité seconde, et possede donc un avantage.
e Comme la projection affaiblit cet avantage, il est peut-étre préférable d'utiliser ps.. qui informe

sur le convexe K.

e Pour prendre du recul sur I'algorithme SPG qui vient, lorsqu’on utilise A plutot que T et en
respectant nos notations habituelles, nous présentons cet algorithme dit de gradient projeté qui

est encore l'itération de (BB), et qui se caractérise par :
AL = AT — 0G,(A™) (2.4)

ou

Go(u) = (—p + Px(p — pp(n)))

est une direction de descente de et p un pas de descente,

avec

W) = ¢(p) +1k(p) et

0 sixekK
1k (x)
+o0  sinon
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2.2.2 Formulation Algorithmique

Lemme 2.2. u — u(p) est convexe et vérifie de plus la propriété :
u(ap+ (1 —a)v) = au(p) + (1 —a)u(v), Vu,v € K, a € [0;1]
Démonstration. En effet, pour tout «, B dans [0,1] on a d’une part :

2(D(u(ap + Bv)),D(v)) = (f,v) — Bi(ap + pv, D(v)), Yo € V.
—Bi(ap + Bv,D(v)) = —Bia(u, D(v)) — Bip(v, D(v))

—a{(f,0) =2(D(u(w)), D(0))} = {(f,0) = 2(D(u(v)),D(v))} Ainsi

2(D(ulap +pv)),D(v)) = (f,0) —a{(f,v) =2(D(u(n)), D(v))}

—p{(f,0) =2(D(u(v)), D(v))}

= 2(D(u(ap + pv) —au(p) — pu(v)), D(v)) = (1 —a —B)(f,0)

O

D’autre part, pour avoir une estimation de ¢(A" + aG,(A")) moins chere en terme du temps

de calcul, on évalue Vi > 1, A" 4+ aG,(A").Ona:

A" 4+ aGy(A") = A"+« (PK(A” +p"D(u"h)) — A”)
= (1 —a)A" + aPg (A" + "D (u"1))
u(A" + aGy(A")) = au((Px(A" + 0"D (")) + (1 — a)u™*!
2Big(A" +aGy(A")) = [«D(u(Pc(A" +p"D(u™1)))) + (1 = a) D(u" 1) 2
= [ D(u(Pe(A" +p"D (™)) + 20(1 — &) (D(u(P(A" + p"D(u™1)))), D))

+(1 =)’ D"

Remarque 2.2. Pour écrire I'algorithme dans un formalisme mathématique avec BB et GLL, il est aussi

instructif d’essayer de poursuivre par une idée de simplification.
Pour cela, On pose Vnn > 1:

At = A" 4 o"D(u1)

A — ém(u(PK(X")))F,

1

B" = — (D(u(Px(A"))), D(u")),
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T" = (D(u"*1), Go(A"))

1
PV) = ID(w )P

Prmax = max {cp()\”*k),o <k <min{n,M — 1}}

01=01,0,=09,9=10%e=10" ,

7

B l |/\n . /\n—l‘2 |
Psee = Bi (An — An=1, D(un+1) — D(un))’ Fmin

=107, ppuar = 1070 et Go(A") = Pg(A") — A"

Proposition 2.2. Soient n = 0 et A € K fixés.
Alors I'algorithme BBPG avec GLL s’écrit pour toutn > 1:

(

2(D(u"*!),D(v)) + Bi(A",D(v)) = (f,v), VYoeV
Go(A") = Pi(Am) — A"
BB o= pmax  si (A" =A""1),D(u"*1) —D(u")) <0
max { Ppin, Min {Psec, Pmax }}  sinon
on cherche la suite o telle que :
( =1

Si ()2 A" 420K (1 — a™F)B" + (1 — a*)2¢,(A") < Pyax — Y& T Alors o™ =«

GLL Sortie de la sous boucle

_(D‘n,k)ZTn
_ 2 : k
“n,k-f—l — ‘Xtemrl - (zx”rk)ZA"—I—th”'k(1—0("'k)B”+a”'k(a”'k—2)¢(A”)+a”/kT” 51 ‘Xtemp € [Ull 0—2&11 ]
n,k
& sinon
\
\ An—l—l — \" —I—Oanp(An)

(2.5)
Soit e > 0 nous utilisons le Critere d” arrét:  (|z"[;2 4 [A"T1: D(u"t!) — [||D(u™Y)||||,) < €

pour 'algorithme.

Cinq résidus qui doivent tendre vers zéro entrent en jeu dans la mise en place de notre algo-

rithme :

° |/\n+1 _ /\n|

° Hun—l—rl_unH

e Par la loi de comportement la relation (1.2) et la propriété A : D(u) = |||D(u)l||, on a

A D@ )~ [|ID ) ]
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e |D(u"*1)| —|D(u™)| qui mesure la convergence de la fonctionnelle ¢.

e Par I'écriture variationnelle (z%,v) = 2(D(u"*1), D(v)) + B;(A",D(v)) — (f,v) qui découle
du probléme de Bingham, Vo € H}(Q)), ot z" = Au"! + BiB*A"™! — f; (A correspond au Lapla-
cien et B au taux de déformation). Et on utilise la norme |z"|;2» comme résidu.

En fait, si la somme de résidus : |2"|> 4+ [A"T1: D(u"*1) — ||| D(u"+1)|||| . tend vers zéro, cela

suffit pour avoir un critére d’arrét pour notre algorithme.

Dans ([Grippo et al., 1986]]), les conditions ont été données pour la mise en ceuvre de la mé-
thode BB pour la minimisation a 1’aide d'une stratégie non monotone. Raydan a développé une
méthode de convergence en 1997 en utilisant la stratégie Grippo-Lampariello-Lucidi (GLL) , et la

méthode BB donnée plus haut par la relation (2.3).
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EXPERIMENTATIONS NUMERIQUES

3.1 Approximation spatiale

Pour déterminer la solution de la formulation variationnelle discrete du probleme modéle,

nous considérons les espaces :

Vi = {wh € H}(Q)*, divw;, = 0}
Q= LZ(Q)dxd_
My, 'espace des fonctions constantes par cellules.
Nous exposons une approximation éléments finis sur un domaine annulaire Q C RR? avec des
rayons intérieur et extérieur donnés respectivement notés Ry et R, R > Ry > 0.
Un maillage cartésien quadrangulaire polygonal régulier G; définit un domaine discret (), et se

rapproche de (), avec des nceuds :

Xio = Riei, Xit1,; = Xij + O jei, Xin, = Ree;

‘ml

avec e; = et e ;= (cos(27ti/ Ny),sin(27ti/Ng))

™

pour0<i< Ny, 0<j<N,

ou la longueur A, ; des bords radiaux [Xl-,j; Xi,]-H] (pour tout i) est incrémentalement réglée sur
la longueur du bord angulaire [X; ;; X; 1 j, tandis que Ny = 2/, avec un 6 < I < 9 prescrit dans
tous les résultats ultérieurs. La valeur de N; est telle que ||X; n,—1]| < Reet || Xin, — Xin,—1]] >
||Xi N, — Xit1,n, || de maniere a éviter les cellules de grille éventuellement plates.

Comme d’habitude dans les méthodes d’éléments finis, 1 désigne le plus grand diametre des
cellules quadrilatérales [Xi,in+1,in+1,j+1 Xi’]'_H], et est utilisé pour indexer toutes les entités dis-
cretes. Ici, la discrétisation du probleme a I’aide d"une méthode d’éléments finis, consiste a définir
des espaces fonctionnels de dimensions finies Xj, et M}, proches respectivement des espaces V et
Q de dimensions infinies. Cette méthode est utilisée pour calculer la solution approchée (1, Aj,)

de (u,A).
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Le domaine discret qui approche () correspondant est (), et on note M, o = M;, N L3(Q).

On approche le champ u comme un vecteur continu de 4Q; par uy, i.e uy, € X qui est I'espace
vectoriel de champ linéaire bidimensionnelle continu .

Le champ de pression p est approché par py, sur Q.

Soit ’ensemble convexe K, on considére 1’ensemble discret :

Ky = {pn € MP% ||m]|| < 1 5ur O}

ainsi que P, (uy) = al iy € M7<2

max (L, |||pll])
Le probleme discrétisé de Bingham correspondant peut alors s’écrire :

trouver (uy, o, pp, An) € Xpo X My x Kj, tel que

2(D(upp), D(oy)) + Bi(Ap, D(vp)) — (pn, div o) = (fn,on), Yop € Xpp

(i — An, D(upp)) <0, up € Ky

, (3.1)

Puisque vy, € Vj, alors Yy, € Mﬁxz, la solution uy, o(y;) € Vj, de la formulation variationnelle dis-
crete du probleme modéle (ici probleme de couette) recherchée est définie comme étant 1'unique
solution de :

2(D(upp), D(vy)) + +Bi(Ay, D(vy)) = (fu,on), Yo, € V), (3.2)

Le probleme de minimisation associé est donné par :
, 1 2

A = argminy,ex, @ (i) = =D (tno(pn))] (3:3)
Ainsi par un raisonnement analogue comme décrit dans la section , il existe (1,0, Ay) € Xpo X
M, o pour le probleme avec Uy unique et cette solution peut étre calculer en utilisant une
minimisation algorithmique pour ¢y,.
L’analyse de convergence des approximations par éléments finis du probléme de Bingham est étu-
diée depuis les années 70. Une analyse générale faite dans les pionniers travaux [Glowinski, 1976]
et [Glowinski, ||, et plus loin dans [Han and Reddy, 1995] fournit une estimation sous-optimale
l|lu — up|| = O(Vh) avec des méthodes du premier ordre, et les recherches actuelles visent a
prouver ces travaux afin de se conformer a des expériences numériques quasi-optimales. Pour
cela, la plupart des auteurs se concentrent sur le probleme de Mosolov, défini comme la courbure
rotationnelle dans un tuyau droit a section constante sous un gradient de pression. Dans cet écou-
lement simplifié, la vitesse est supposée étre un champ scalaire parallele a I'axe du tuyau, tandis
que la principale difficulté de non-linéarité persiste. A noter également que la limitation de régu-
larité de la solution de Bingham justifie I'utilisation d’approximations d’ordre inférieur dans la

littérature, dans la mesure ot I’adaptation du maillage n’est pas utilisée (voir [Roquet et al., 2000]
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et [Gustafsson and Lederer, 2022] pour une analyse d’ordre supérieur). Dans ce contexte, les ré-
sultats O(h) optimaux sont d’abord obtenus dans [Falk and Mercier, 1977], en utilisant une re-
formulation des modeles ot de la vitesse est la variable principale approchée par un champ
constant par morceaux. Une estimation optimale est prouvée dans [Carstensen et al., 2016] pour
une méthode non linéaire par morceaux conforme avec une nouvelle méthode discrete a trois
champs appropriée pour la formulation, et les résultats sont étendus aux écoulements 3D. Dans
[Gustatsson and Lederer, 2022[, la formulation pour le probleme de Mosolov est considéré,
avec une approche abstraite conforme. Une condition de stabilité LBB associant vitesse et contrainte
des espaces discretes conduit alors a |[u — uy|| + |[div(A — Ap)|[g-1q) = O(h) a priori estimer
sous 'hypothese de régularité u € H*(Q) et div A € L?(Q)?, o1 u et A sont des composantes non

nulles respectivement de u et A dans la probleme.

3.2 Algorithme en dimension finie

Dans cette section, nous abordons la question de div D(v) et de Av .
Soit a considérer une fonctionnelle sur 'espace discret V,
En fait, lorsqu’on travaille dans un espace discret, on ne dit pas que div v;, = 0 mais plutot que
(div vy, q, = 0),Yq, € My, ot M, est 'espace des fonctions constantes par cellules. Ce qui n’est
pas équivalent a div v;, = 0. Il faut une inclusion d’espace d’abord. Or (div v, ne coincide pas

avec Mj,. Par exemple si :

1
Pn(pn) = E’D(”h(lf‘h))‘z avec
2(D(uy), D(vy)) = (f, o) — Bi(D(vy,), uy,) — (div py, div vy) Yo, € My,
et on impose (div vy, q, = 0),Yq, € M,

La conséquence est que gb;1 ne sera pas la méme que celle qu’on connaissait si on utilise un solveur
de l'opérateur laplacien pour l'approximation de I'opérateur A. Un tel choix est en effet parfois
tres utile pour simplifier les cofits de programmations et de calcul.

En fait,

cp;l(yh) = —D(up(py)) + Un terme (3.4)

C’est un peu cher en prix. Mais puisque (div vy, q;, = 0) par imposition , on néglige le second
terme qui s’est rajouté. Certes, c’est pas anodin. Il a des éléments finis pour lesquels div v, = 0

mais pas tous. Ainsi dans un élément fini dont div vy, # 0, la dérivée de la fonctionnelle n’est pas
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le méme. Et quand on fait méme l'itération de gradient projeté : A"+ = Pg(A" — pd (A")), on se

pose la question du terme qui se rajoute a (pl .

Remarque 3.1. En fait, 2div D(v) = Av avec le probleme de Stokes : 2(D(v), D(w)) = (Vo, Vw) —
(div v, div w). Mais ¢a, c’est au niveau continu. Lorsqu’on discrétise, I'égalité n’est plus vérifié. Il est facile
de montrer que c’est pas vrai en 2D. On travail dans un espace a divergence nulle (Vy). Mais quand on
écrit I'algorithme de gradient projeté, on fait une minimisation d’une fonctionnelle et on garde D (le taux
de déformation) partout dans la théorie de Bingham. Nous avons un solveur algébrique qui est rapide parce

que quand on fait les éléments finis, il n’est plus vrai que div D(v) = Av.

e Une diffrence:
On définit un certain ), qui vérifie '’équation variationnelle dans M),. 6}, est la projection L? de
dy (up) sur My, : 6, = dy ' dy, (uy,) ie (6 — dy(up), qn) = 0,Yqy € My <= 6, = P (dy(up)).
Si on choisit uy, bilinéaire par cellule sur un maillage qui est raffiné deux fois, on calcule une quan-
tité qui est constante par cellule. Si on dérive dj(u;,), on obtient un élément de M;,. Il faut donc
calculer sa projection. Donc en gros, 1’algorithme variationnellement et mine de rien ce n’est plus

exactement la méme chose.

3.3 Résultats numériques

Le Maillage de notre domaine annulaire ) C R? avec 'approximation par éléments finis

considéré est se présente comme suit :

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes



b K
\
\

| ’

| |
| |
‘ J Selon : K=7,8 et 9

|
\ | u:vitesse
|

CA(0)

Maillage : Cellule 4 Q1

pression: p ‘ °

lambda : ] ‘

CACD)

Maillage : Cellule QO



« Spectral Projected Gradient » SPG = PG + BB + GLL appliqué a Bingham 25

1 : R T T

et
s
+++$++t+++++++
e

it
e,
e
A
ety

-1 -0.5 0 0.5 1

FIGURE 3.2 — Maillage pour k=8
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FIGURE 3.3 — Maillage pour k=9 FIGURE 3.4 — Domaine annulaire approché

Dans cette section, nous testons 'algorithme SPG (BBPG). Nous simulons I'écoulement d"un
fluide viscoplastique deux cylindres co-axiaux en rotation, de rayons (resp. intérieur et extérieur)
R = ry etr =1, et de vitesses angulaires w; et w = 1. Nous utilisons les conditions de Dirichlet
homogene. Le programme de Couette (Fortran) utilisé a permit d’avoir un temps de calcul opti-
mal. La force de volume f du second membre qui met le fluide en mouvement est bien choisie.
C’est aussi dans ce programme qu’on fait le choix de Bi, du maillage, et la tolérance pour controler
le résidu itéré. Il a été appliqué dans tous les tests effectués. Nous avons fixé un nombre maximal

d’itérations N, = 10000.

Nous présentons les similarités entre le BBPG et UZAWA avec différents cas tests. Il est repré-
senté dans chaque image le résidu itéré en fonction du nombre d’itérations Nit. Des lors que la
tolérance est atteint ici fol = 10719, on arréte.

Afin de chercher le p, iy, optimal, on prend p échelonné oy = é, l € {1;4}. Lesvaleurs | =1
et | = 2 apparaissent optima car demandent moins d’itérations avant d’atteindre tol. | = 3 a

tendance a demander un nombre important d’itérations avant d’atteindre le tol et ceci pour un
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maillage grossier ou fin. | = 4 demande le nombre maximal d’itération pour satisfaire le critere

de la tolérance. I = 2 est demande moins d’itération que I = 1 alors on retient p, i = B

2 4
La valeur de p de BB optimal noté pypti, qui est B comparé celui de UZAWA qui est Bi selon le

Bi choisi.

e e
001 | E 001 |

00001 | E 00001 |

1><10*‘E . 1><10*‘E

1x10% E \ E 1x10% E \

1)(10401 0 T T T T T ‘ 1)(10401 T T T T T T

Nit Nit

FIGURE 3.5 — BBPG vs UZAWA a Bi=10 et FIGURE 3.6 — BBPG vs UZAWA a Bi=10 a
k=7 Bi=10 et k=8
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FIGURE 3.7 — BBPG vs UZAWA a Bi=10 et FIGURE 3.8 — BBPG vs UZAWA a Bi=50 et

Dans les graphiques (3.5) a (3.22), nous présentons les résultats de ’algorithme BBPG com-
paré a UZAWA. BBPG présente un comportement a quelques différences prés de UZAWA (un
gain léger par rapport a UZAWA ) . Le résidu décroit au fur et a mesure que le nombre d'ité-
rations et augmente. BBPG demande moins d’itérations avant d’atteindre la tolérance. Selon le
maillage (k = 7, 8 et 9) et la valeur de Bi prisent, BBPG prend une avance sur UZAWA . Dans
tout les cas, au niveau des deux algorithmes, le résidu a tendance a descendre légerement et pro-
gressivement au cours de l'itération jusqu’a de la valeur Nit;,;y = ol la tolérance est obtenue.
Cependant, dans le cas ou Bi = 10 au niveau duquel les deux résidus atteignent le tol aux mémes
Nitygy. A partir de Bi = 50, Nity,,x >~ Bi une fois que la valeur de tol est atteint. Tout ceci se
réalise dans les mémes conditions au niveau des deux algorithmes a 'exeption des pics observés
au niveau du BBPG qui a contribué au gain obtenu. Il parait que Bi semble ne pas intervenir
vraiment dans 1'efficacité (convergence rapide de BBPG ) du résidu mais plutot le calcul auto-
matique de p de BB et le maillage choisie. On pourrait donc de ce fait supposer que ces pics de
BBPG sont proviennent du calcul automatique de p. Les deux algorithmes demandent pratique-
ment les mémes nombre d’itération avant d’atteindre la tolérance souhaité. Quelque soit la valeur
de Bi = 50, 100, 200 ...; le résidu prend son départ au voisinage du point (1,1) au niveau de

BBPG alors que le départ d’'UZAWA dépend du nombre de Bingham Bi choisi (en fait, resi prend
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FIGURE 3.9 — BBPG vs UZAWA a Bi=50 et FIGURE 3.10 — BBPG vs UZAWA a Bi=50 et

son départ de Nit,,;,ggpg) + P selon le le maillage choisi ). Cet écart f mesuré a permit de garder
un rythme parallele conforme entre les deux résidus itérés.Par contre le cas Bi = 10 semble violé
cette condition de rythme conforme. Ceci peut étre relier aux pics observés au niveau de BBPG.

Ce qui a permis la validation de l'algorithme BBPG du modele numérique est 1'odre de conver-
gence O(h) d’approximation par éléments finis qui est bien vérifié pour les deux erreurs calculées

pour les grandeurs 10~8 et 1071 qui est pratiquement le méme que I'algorithme d’'UZAWA.
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FIGURE 3.11 — BBPG vs UZAWA a Bi=100 et FIGURE 3.12 — BBPG vs UZAWA a Bi=100 et

Il faut dire qu’avec le calcul de psec qui devrait étre I'équivalent de % pour pg,.s avec UZAWA
a permis d’améliorer la situation puisqu’on gagne au moins 30% de performance sur l’accélération
de la vitesse de convergence de l'algorirthme BBPG comparé a UZAWA. Le choix du parameétre
M pour la détermination de « itéré pour GLL a aussi participé a cette remarquable amélioration
observée car des lors que ce fameux parametre passe a 100, 200, 300, ... la situation n’est plus amé-
liorée (le résidu itéré se stagne et s’explose quelque soit l'itération).

Pour bien voir comment la valeur — demeure 1’'optimale pour BBPG, nous avons de représenté
i

4
Z.) et pour Bi = 10,50 et 100 pour les

s _ 3 _
pour différentes valeurs de p (o1 = 7P2 = 3 et p3 = B

trois maillages k = 7,8 et 9.
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FIGURE 3.13 — BBPG vs UZAWA a Bi=100 et FIGURE 3.14 — BBPG vs UZAWA a Bi=250 et
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FIGURE 3.15 - BBPG vs UZAWA a Bi=250 et

k=8
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FIGURE 3.16 — BBPG vs UZAWA a Bi=250 et

Le temps de calcul a aussi confirmé l'efficacité de SPG comparé a UZAWA. Comme le montre les

quatre différents tableaux ci-dessous. Les deux premiers révelent que pour Bi = 10 (nombre de

Bingham petit), on gagne déja en temps de calcul et les deux derniers tableaux ont continué sur

la méme lancée pour Bi = 100 (nombre de Bingham élevé).

Bi=10 différents maillages Temps de calcul CPU

SPG K=7 | Average = 1.092.10~2 et Total = 4.588.10~!
SPG K=8 | Average =4.518.1072 et Total = 1.898.10°
SPG K=9 | Average = 2.118.10"! et Total = 9.107.10°
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FIGURE 3.17 — BBPG vs UZAWA a Bi=500 et FIGURE 3.18 — BBPG vs UZAWA a Bi=500 et
k=7 k=8

Bi=10 différents maillages Temps de calcul CPU

GP K=7 | Average = 1.345.1072 et Total = 5.515.10~"

GP K=8 | Average = 5.970.10~2 et Total = 2.448.10°

GP K=9 | Average = 2.923.10~! et Total = 1.128.10"

Bi=100 différents maillages Temps de calcul CPU

SPG K=7 | Average = 1.334.10~2 et Total = 2.014.10"

SPG K=8 | Average = 5.962.10~2 et Total = 1.061.10"

SPG K=9 | Average = 2.935.107! et Total = 4.843.10'
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f t & f f
FIGURE 3.19 - BBPG vs UZAWA a Bi=500 et FIGURE 3.20 - BBPG vs UZAWA a Bi=750 et
k=9 k=7
Bi=100 différents maillages Temps de calcul CPU
GP K=7 | Average = 3.297.10~2 et Total = 3.264.10"
GP K=8 | Average = 1.470.10~! et Total = 1.719.10'
GP K=9 | Average = 7.399.10~! et Total = 7.990.10'
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FIGURE 3.21 — BBPG vs UZAWA a Bi=750 et FIGURE 3.22 — BBPG vs UZAWA a Bi=750 et
k=8 k=9
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FIGURE 3.23 — BBPG et pycpe10n @ Bi=10, 50,
100 puis k=7, 8 et 9
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FIGURE 3.24 — BBPG — rhose a Bi=10 et tol = FIGURE 3.25 - BBPG — rhose a Bi=10 et tol =
10712 1079

Afin de mieux justifier la raison pour laquelle, 'idée de faire un BBPG pour Bingham est
importante, nous avons de tracé le comportement de ps.. en fonction de nombre d’itérations.
Nous avons fait des tests pour le choix de deux tolérances tol = 107 et tol = 10~'2 pour une
bonne précision.

Les graphes ( figures 3.20 a 3.20 ) présent les différents caractéristiques de crucial ps.c sur qui
repose le calcul de Barzilai Borwein et qui introduit GLL. Sur ces graphes, il représenter
I’évolution de pse itéré en fonction du nombre d’itérations et on arréte avec la tolérance. Les
figures du coté gauche sont tracées avec tol = 10~!2 tandis que celles du droit avec tol = 10~°.
Tout comme le résidu itéré, ps. itéré décroit au cous du nombre d’itération. On constate que psec
présente de s paliers au fur et a mesure que Nit augmente et il a tendance a diminuer. Les tests
ont été réalisé pour des valeurs de Bi = 10, 100, 250 et 750 pour bien propager toutes les variantes
liées a psec. Le constat général fait est que, plus Bi augment, plus pse. plus d'térations quelque soit

le maillage choisi.
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FIGURE 3.26 — BBPG — rhos a Bi=100 et FIGURE 3.27 — BBPG — rhos. a Bi=100 et
tol = 1012 tol =10~°
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FIGURE 3.28 — BBPG — rhos,. 4 Bi=250 et FIGURE 3.29 — BBPG — rhos,. 4 Bi=250 et
tol = 1012 tol = 10?
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FIGURE 3.30 — BBPG — rhosec a Bi=750 et FIGURE 3.31 — BBPG — rhosec a Bi=750 et
tol =10~° tol =10~°

Manifestement avec tol = 1077, pour Bi = 100, ps,c demande 328; pour Bi = 250, ps. de-
mande 152 Bi = 750, ps,c demande 797 itérations. Il s’est aussi avérer que les valeurs initiales
Omax = %, % et % ont participé a I'augmention des itérations, donc au gain obtenu. pyux = %
fait passer pour Bi = 100, 750 a 1000 itérations. Mais dans le cas de Bi = 250, les itérations ne
dépassent pas 328 quelque soit pjax.

Pour tol = 10~'2 on observe le méme comportement de paliers avec p,x = Bi et Bi mais pour

3 e . ) . A
OPmax = B’ a la fin des paliers, psec présente des cisaillements avec un méme rythme.
On ne peut pas comparer pse. a une valeur constante d’'UZAWA. Ces résultats montrent I'intérét
de faire BBPG. On gagne 30 pour 100 et on a ce gain parce qu’au cours de Nit, il faut passer
d’un palier a un autre avec des courbes décroissantes de paliers. L'efficacité de BBPG comparé a

UZAWA est ainsi basé sur ce fameux ps.c qui change la situation.

Les figures 3.28 et 3.29 présentent l’ensemble des ps. représentés pour les tolérances res-

pectivement tol = 102 et tol = 10712
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Nous avons aussi représenté une caractéristique du pas de descente a¥ de GLL en fonction de
I’évolution du parametre M. En fait, c’est le asenmp temporaire qui gouverne cette évolution de ak .
Comme on I'espérait, a* de GLL garde au cours d’une certaines itérations (jusqu’a % itération ),
la valeur 1. Ce dernier décroit au cours des restes d’itérations et devient asymptotiquement nul.
Ce qui est normal, car cette décroissance a permis a a¥ de garder la condition de relaxation. Tl faut
aussi noter qu’il est important de bien le choisir le parametre M pour permettre a ce fameux a de
maintenir le rythme de décroissance. C’est d’ailleurs pour cette raison que les auteurs l'appellent
parametre de relaxation de la condition de monotonie. Comme le montre les figures (3.30) a
(3.35), lorsque ce parametre devient grand a devient asymptotiquement nul, ce qui n’améliore
plus la situation dans ce cas. Les auteurs ont de ce fait raison de pourvoir mettre en exergue ce

parametre M.

Le calcul de a avec GLL révele un gain optimal, car a présente une monotonie comme es-
péré, et cela permet de valider I'implémentation 1’algorithme au niveau GLL .Cet maintient de
condition de monotonie de a est due aux réglages des valeurs de 01, 0> et <y proposées par GLL
car une fois ses valeurs ne sont pas respectées (bien réglées), a ne respecte plus la condition de
monotonie. Cette condition de de relation de la monotonie est avérée nécessaire pour avoir une
convergence.

C’est par conséquent 13, la nécessité d’accompagner le calcul automatique de p* de BB avec
le calcul de af de GLL. Il s’est avérer aussi que pour M = 1, 2 et 3 a* ne respecte pas la
condition de relaxation de la monotonie. Par contre pour 4 < M < 50 Cette condition de
relaxation de la monotonie est respectée et tout baigne bien. Mais des lors que M devient grand

(M > 10* avec x > 2) la condition de relation de la monotonie est de nouveau violée.
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FIGURE 3.34 — BBPG et af a M =10 FIGURE 3.35 — BBPG et ak 3 M =20
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CONCLUSION ET PERSPECTIVES

Dans ce stage, nous avons mis en place une nouvelle approche algorithmique (SPG) plus per-
formante que celle d'UZAWA /ISTA classique pour le modele de Bingham . En effet, cette amé-
lioration observée est due aux idées de Barzilai-Borwein (BB) et Grippo-Lempori-Lucidi qui n’a
jamais été fait, a notre connaissance, par les auteurs qui travaillent sur le probleme de Bingham.
J’ai programmé l’algorithme pour un cas simple du probleme de Couette. Il est aussi donné 'idée
générale d’établissement de la convergence de pour l'algorithme.

Un gain d’amélioration de BBPG est remarquable (30%) a été obtenu comparé a UZAWA. Et c’est
ce qui a permis de valider l'efficacité de BBPG.

Nous projetons de faire des tests pour le BBPG avec la pénalisation en limitant le ps,. de Bar-
zilai Borwein dans la zone rigide avec le probléeme de Couette. Nous prévoyons également :

e d’une part, de faire des tests avec pg«/ppx de de BBPG et le comparé a la version pénalisé a pas
constant (o = cts) d’'UZAWA qu’a fait Benoit Senard,
e d’autre part, faire les mémes testes mais cette fois ci avec le fameux ¢ de la relation avec le

terme de surplus et regarder son influence.

1 Annexe

.2 Algorithme du gradient projeté localement pondéré par péna-

lisation avec BB et GLL (LPWPGQG)

2.1 Algorithme du gradient projeté localement pondéré (LWPG)

e Benoit Sénard dans son travail, a expliqué la raison pour laquelle qu’au lieu d’utiliser
D(u) = 0, on utilise plutét |||2D(u) 4+ BiA||| < Bi ce qui permet d’écrire une forme améliorée de

I'algoritme précédent avec le calcul de p" en tenant compte de la zone rigide.
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L’algoritme qu’on utilise a cette étape dit du gradient projet localement pondéré (LWPG) :

;

2(D(u"*1),D(v)) + B;(A",D(v)) = (f,v), YoeV
or si |||D(u"!) + BiA"||| < Bi

pr sinon

AL = Pr(A" 4 o"D(u™1)) Vo >0

Il s’est d’abord dans un premier temps, intéresser a des valeurs constantes du pas p dans les deux
types de région (Rigide et Fluide) pour examiner les performances sur des cas mono-dimensionnels
simples, tout en démontrant la convergence de l'algorithme de gradient projeté localement pon-
déré (LWPG). Dans un second temps, il a réalisé des tests numériques sur le probléeme de Couette
avec l'algorithme LWPG ainsi que la variante de pénalisation (LPWPG : que nous présenterons
plus tard) pour mettre en évidence les gains de performances qu’on espere obtenir par rapport a
I'algorithme d"UZAWA classique.

A fin d’utiliser ’hypothese de la zone rigide et de bien exposer 1’algorithme en utilisant les regles

BB et de GLL avec la pénalisation (LPWPG), on considere la formulation suivante :

.

o) = D), Voev
R(u) = {x € Q; |2D(u(n)) + Bip| < Bi} )

2(D(u(p)), D(v)) = (f,v) = Bi(y,D(v)) VoeV

\
ot R(A) est ’ensemble des zone rigide .
On se lance dans 1'idée intéressante de pouvoir exploiter cette condition D(#) = 0 caractérisant

les zones rigides.

Pour cela considére la formulation de Bingham avec pénalisation :

2(D(ua(A)), D(0)) +ar(D(ua(1)), D(0)) + Bi(A, D(v)) = (f,0), Yo € V
(1= A, D(u(A))) < 0, € K

ce qui permet d’écrire 'algorithme pour la pénalisation LPWPG en utilisant le calcul de p avec
Barzilai Borwein et celui de « avec GLL noté BBLPWPG dans le code.

Nous avons utilisé les mémes idées que précédemment, mais jusqu’ici, la fonctionnelle de mini-
misation change (avec la pénalisation) d’expression et aussi on tient compte de la limitation de p}

dans le zone rigide et puis du calcul de p} avec psc dans la zone fluide.

1
Ona: ¢q (A") = ﬁWaR()\n) %z(Q) + aR|“uR(/\")|L2(1R)
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De plus, on fait les calculs de réductions avec 'expression de cette fonctionnelle de pénalisation.

Ona:Vn>1:

A"+ aGy(A") = M' +a (PK(A” +p"D(u"t)) — A”)
= (1 —a)A" + aPg (A" + "D (u"1))
Uag (A" + aGp(A")) = tttag ((Pr(A")) + (1 — a)u*!
2Bip(A" +aGp(A")) = |attag (P(A")) + (1 — a)u" 2 + ag |ty (P (A")) + (1 — a)u |
— it (PP 261 = ) (s (PCE), D)) + (1= a2
+ ag|ttgy (P (AM)) + (1 — a)u"|
On pose Vn > 1:
At = A" 4 o"D(u1)
n _ 1 \ 711
A" = g (B(P)P

1 .
B" = 2= (tax (P(AM)), u"1),

C" = ag|aua, (P (A7) + (1 — a)u+1|,
T" = (D(u"*1), Go(A™))

1
n _ n\|2 n
1 =01,0,=09,7y=10"*%e=107 , P (") = 2iBi|u”R(/\ iz + AR [1ae (A") [ 12(w) ,
(pmux = max {(P(/\n—k)/() < k < min {H,M — 1}}

1 |/\n _/\n—1|2

Osec = E ()L” — /\”—1,D(u”+1) — D(u”))' Pmin = 10_30/ Pmax = 1073 et Gp()tn) = PK(/\_n) — A"

© Ghislain A BOGNON Université Gustave Eiffel/ Campus de Nantes



« Spectral Projected Gradient » SPG = PG + BB + GLL appliqué a Bingham 46

(

2(D(u"*Y),D(v)) + ar(D(u"*1),D(v))r = (f,v) — Bi(A",D(v)), Vo€V
Gol(A") = Pic(A7) — A"
O = pmax  si (A" = A"71), D) — D(u™)) <O0et |||2D(u"*1) + BiA"||| < Bi
P} = max {pmyin, Min {Psec, Omax}}  sinon
on cherche la suite o telle que :

( al =1

Si ()2 A" 420K (1 — ™) B" + (1 — )2 |u|"™ 1 + C" < Py — Y T Alors o = a™k

GLL Sortie de la sous boucle

1(0&””()2'1"”

Oén’k+1 — “temp - (zx”'k)ZA”+20c”'k(lftx"/k)B”+Dc”fk(tx"/k72)|u\”+1+C”+uc”/kT”
nk
a 7

Siteemp € [0, Uzoc"'k}

sinon

AL = AT 4 "Gy (AT)

)
ol ag > 0 est le coefficient de pénalisation qui a pour role de forcer la suite itérée D(u"*1) a
converger le plus vite possible vers D(u) et R
Soit ¢ > 0 nous utilisons le Critere d” arrét :  (|z"]2 + [A"T1: D(u"™) — [||D(u" 1) |]]],) < €

pour l'agorithme.
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