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NOTATIONS GENERALES

Ω ⊂ Rd , ouvert d ≥ 2

L2(Ω) =

{
u mesurable sur Ω et

∫
Ω
|u|2dx < ∞

}

H1
0(Ω) =

{
u ∈ L2(Ω); u|∂(Ω)

= 0 et ∂xi u ∈ L2(Ω)
}

τ : τ
′
= ∑i,j τijτ

′
ij pour lequel on a la norme |||τ||| =

√
τ : τ

′ , τ et τ
′

dans Rd×d

K =
{

µ ∈ L2(Ω)d×d, |||µ||| ≤ 1 p.p sur Ω
}

V =
{

w ∈ H1
0(Ω)d, div w = 0

}
L2

0(Ω) =

{
u ∈ L2(Ω)d,

∫
Ω

u = 0
}

|.|L2 la norme L2(Ω) ainsi que pour les espaces L2(Ω)d et L2(Ω)d×d ou |.| s’il n’y a pas d’em-

biguité avec la valeur absolue

(. , .) pour produit scalaire sur L2(Ω)d×d ainsi que sur L2(Ω) et L2(Ω)d

((u, v)) = (D(u), D(v)) =
∫

Ω
D(u) : D(v)dx , ∀ u, v ∈ V et ||u|| =

√
((u, v))
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INTRODUCTION

L’Université Gustave Eiffel est une université nationale multi-site issue de la fusion récente

de plusieurs établissements d’enseignement et de recherche. Le campus de Nantes de cette uni-

versité, initialement Laboratoire Central des Ponts et Chaussées, est caractérisé par ses grands

équipements permettant des expérimentations à échelle réelle dans le domaines du génie civil et

plus récemment du développement durable. Ce campus regorge de chercheurs aux compétences

très diverses dans son laboratoire GPEM (Granulats et Procédés d’Elaboration des Matériaux) qui

vont des mathématiques appliquées au génie civil en passant par la physique, le génie des procé-

dés ou encore la chimie.

Un point crucial reliant toutes les recherches du laboratoire concerne les pâtes granulaires. Ce

sont des matériaux visco-plastiques, c’est-à-dire qu’ils se comportent comme un fluide ou un so-

lide localement : plus ils sont soumis à une forte sollicitation à un endroit, plus ils s’écoulent de

façon liquide au voisinage de cet endroit, comme de la purée. Il faut signaler que de nos jours,

la modélisation des écoulements de pâtes granulaires offre de nombreuses applications en génie

civil (bétons, enrobés bitumineux, terres pour la construction, boues d’épuration), environnemen-

tales (coulées de boue, avalanches), biologiques (fluides corporels tels que le sang). Le modèle de

Bingham [Bingham, 1922] est un modèle viscoplastique et très pratique que l’on utilise générale-

ment comme point de base, car il contient la difficulté fondamentale de la viscoplasticité : l’effet

de seuil. Cette difficulté se traduit par l’existence possible de zones de l’écoulement dites rigides

de mesure de Lebesgues non-négligeables dans lesquelles le taux de déformation (partie symé-

trique du gradient de vitesse) est nul.

En général, lorsqu’on a un ouvert borné Ω inclus dans Rd, le modèle de Bingham s’écrit sous

la forme [Bingham, 1922] :
|||τ∗||| ≤ τ0 ⇐⇒ D∗(u∗) = 0

|||τ∗||| > τ0 ⇐⇒ τ∗ = 2µD∗(u∗) + τ0
D∗(u∗)
|||D∗(u∗)|||

(1)

v
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où

u∗ : champ de vitesse ,

τ0 : seuil de plasticité,

µ : la viscosité,

D∗(u∗) =
(∇u∗ + (∇u∗)T)

2
: tenseur de taux de déformation

τ∗ : le déviateur du tenseur de contrainte.

Plusieurs auteurs ont traité ce modèle dans les années récentes et c’est un sujet qui occupe la

recherche en mathématiques appliquées depuis des dizaines d’années. On peut en particulier ci-

ter les travaux remarquables et pionniers de [Duvaut and Lions, 1972], [Trémolières et al., 2011] et

récemment [Saramito and Wachs, 2017] qui dresse un état de l’art des méthodes numériques pour

résoudre le système d’équations aux dérivées partielles qui exprime ce modèle d’écoulement.

La résolution mathématique des écoulements de fluide à seuil d’écoulement implique une op-

timisation convexe de problèmes non réguliers.

Les principales méthodes connues sont les suivantes :

— Lagrangien Augmenté ( LA développée dans les années 1980) dans [Fortin and Glowinski, 2000]

a gagné en popularité. Elle a été la première à être largement utilisée qui correspond

au cadre de l’algorithme de calcul de point de selle, en s’appuyant principalement sur

un algorithme de type UZAWA pour la minimisation d’une fonctionnelle convexe non-

différentiable sous une contrainte linéaire. Récemment, un algorithme amélioré nommé

FISTA∗ a été introduit dans [Treskatis et al., 2018] qui atteint le taux optimal en terme de

convergence pour cette classe d’algorithme.

— la méthode de Newton dans [Saramito, 2016] et reformulation de la programmation par

cône du second ordre dans [Bleyer, 2018] semblent surpasser tous les autres algorithmes.

Toutes ces méthodes ont été mises en place dans le but d’améliorer la vitesse convergence

des algorithmes.

— Gradient Projeté (UZAWA \ISTA, 1976 par [Glowinski, 1976]) utilisé dans [Trémolières et al., 2011]

pour trouver une partie non visqueuse appropriée du champ de contraintes, en tant que

minimiseur d’une fonctionnelle quadratique convexe sous contrainte convexe ; Ces mé-

thodes itératives de calcul de point de selle sont aussi trouvées dans [Trémolières et al., 2011],

[Beck and Teboulle, 2009] et ses variantes récentes, et faciles à programmer mais dont la

lenteur reste insatisfaisante en pratique malgré la populaire accélération récente initiée

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes



« Spectral Projected Gradient » SPG = PG + BB + GLL appliqué à Bingham 1

dans [Beck and Teboulle, 2009] pour le traitement d’images à partir de travaux généraux

de [Nesterov, 1983], puis appliquée à Bingham dans [Treskatis et al., 2018].

Le gradient projeté (GP) a été amélioré : dans [Birgin and Martínez, 2014], le Gradient projeté

spectral (SPG pour Spectral Projected Gradient) est introduit puis sa généralisation Scaled Gradient

Projection dans [Bonettini et al., 2008]. Notre motivation se base sur le fait que SPG a montré son

efficacité supérieure à PG dans de nombreuses applications dans la littérature, mais n’a pas encore

été testé pour Bingham. C’est ce que nous proposons dans ce travail.

En fait, c’est au bout d’une ancienne corde que nous en tissons une nouvelle. Nous prenons

en effet la suite de travail de Benoît Sénard ancien étudiant de MACS à l’université de Nantes, de

la manière suivante : il a considéré l’introduction de propriétés physiques dans le GP, tandis que

nous introduisons une méthodes mathématique de calcul automatique du pas de descente

Le travail est réalisé en quatre parties :

- Dans la première partie, nous présentons le modèle physique et la formulation variation-

nelle associée.

- Dans la deuxième partie, nous présentons une classe d’algorithme de Gradient Projeté, le

Gradient Projeté Spectral, qui utilise la règle de Barzilai-Borwein [Barzilai and Borwein, 1988]

avec Grippo-Lempariello-Lucidi [Grippo et al., 1986] en poursuivant ainsi le travail commencé

dans le stage de Benoît Senard.

- Dans la troisième partie, nous exposons les expériences numériques en faisant un approxi-

mation spatiale par éléments finis pour présenter des résultats numériques.

- Nous faisons une conclusion de tout ce qui a été abordé et éventuellement nous évoquons

nos perspectives possible.

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes



MODÈLE PHYSIQUE ET FORMULATION

VARIATIONNELLE

1.1 Modèles de Bingham équivalents

Dans ce chapitre, nous formulons sous différentes formes l’écoulement stationnaire d’un maté-

riau de Bingham confiné. Le modèle physique est d’abord écrit sous sa forme la plus usuelle, puis

des expressions équivalentes connues dans la littérature mais moins usitées en mécanique sont

décrites. Elles conduisent à une formulation adaptée à l’application de l’algorithme de gradient

projeté. Le matériau est mis en mouvement avec forces extérieurs et en absence de gravitation

particulière et le fluide adhère aux parois.

Le modèle de Bingham (1) sans dimension se réécrit :


|||τ||| ≤ Bi⇐⇒ D(u) = 0

|||τ||| > Bi⇐⇒ τ = 2D(u) + Bi
D(u)
|||D(u)|||

(1.1)

où

u : champ de vitesse ;

Bi : le nombre de Bingham, contient l’information sur la viscosité µ, τ0 et Bi =
τ0

µ U
L

, U et L sont ici

respectivement une vitesse et une longueur caractéristiques. Ce sont des grandeurs de référence

qui caractérisent les ordres de grandeur du problème traité.

D(u) =
(∇u + (∇u)T)

2
: tenseur de taux de déformation ;

τ : le déviateur de tenseur de contrainte.

On complète le modèle (1.1) par es lois de conservations stationnaires : ρ(∇u).u− div τ −∇.p = f (conservation de quantité de mouvement )

div u = 0 (conservation de la masse )
(1.2)

2
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où

(∇u).u est négligé dans la suite (i.e sans effet d’inertie).

En effet, cette écriture sans dimension se repose sur les grandeurs physiques mises en jeu.

De la relation (1) on a :

2µD∗(u∗) =


0 sinon

τ∗

|||τ∗||| (|||τ
∗||| − τ0) si |||τ∗||| > τ0

et u = u∗
U , x = x∗

L sans dimensions avec D = 1
L D∗ donc on obtient :

2µ
U
L

D(u) =


0 sinon

τ

|||τ||| (|||τ
∗||| − τ0) si |||τ∗||| > τ0

m

2D(u) =


0 sinon

τ

|||τ||| (|||τ||| − Bi) si |||τ||| > Bi
en posant Bi =

τ0

µ
U
L

et τ =
τ∗

µ
U
L

Et par conséquent, la relation (1.1) est bien équivalente à la relation (1).

Les équations de conservations dimensionnées qui sont considérées avec le modèle (1) s’écrivent : −div τ∗ −∇.p∗ = f ∗ (conservation de quantité de mouvement)

div u∗ = 0 (conservation de la masse )

Puisque, la pression p∗ et le second membre f ∗ sont homogènes à des contraintes, tout comme τ∗

alors elles se comportent comme ce dernier i.e. f =
f ∗

µ
U
L

et p =
p∗

µ
U
L

. De plus u = u∗
U . Et par suite,

on obtient aussi les relations (1.2).

Définition 1.1. On définit un champs de contrainte λ par la relation :

τ = 2D(u) + λBi (1.3)

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes
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La solution du problème qu’on propose consiste à appliquer une méthode en trouvant λ

comme argument minimum d’une certaine fonctionnelle que nous allons découvrir très rapide-

ment, et qui permet d’appliquer le gradient projeté.

• Pour l’accueil compréhensif des notions autour du modèle, commençons par quelques pré-

liminaires de définitions, propriétés, remarques et lemmes intéressantes pour la suite du travail.

La Caractérisation de λ ∈ L2(Ω)d×d de la relation (1.3) pour u ∈ H1(Ω)d que l’on propose est

donnée par : 
λ =

D(u)
|||D(u)||| si D(u) 6= 0

p.p. sur Ω

|||λ||| ≤ 1 si D(u) = 0

(1.4)

Définition 1.2. On définit l’ensemble K =
{

µ ∈ L2(Ω)d×d, |||µ||| ≤ 1p.p surΩ
}

qui est convexe.

En effet, ∀ µ, ν ∈ K et α ∈ [0, 1] on a :

|||αµ + (1− α)ν||| ≤ |||αµ|||+ (1− α)|||ν|

≤ α + (1− α)

≤ 1 car |||µ||| ≤ 1 et |||ν|||| ≤ 1

Lemme 1.1. Nous pouvons observer l’équivalence entre la loi de comportement (1.1) et la définition de λ

(1.3) :

τ = 2D(u) + λBi⇐⇒ (1.1)

Démonstration. Supposons τ = 2D(u) + λBi

•Montrons que |||τ||| ≤ Bi⇐⇒ D(u) = 0

Si |||τ||| ≤ Bi

On a : |||τ||| ≤ Bi < Bi|||λ|||+ 2|||D(u)|||

donc (1− |||λ|||) ≤ 2
Bi
|||D(u)|||

Supposons par l’absurde que D(u) 6= 0 . Alors |||λ||| = 1 (caractérisation de λ). Il suit que

0 ≤ 2
Bi
|||D(u)||| et |||D(u)||| = 0 (impossible).

Si D(u) = 0

On a : |||τ||| ≤ Bi|||λ|||+ 2|||D(u)||| puis |||D(u)||| = 0 et |||λ ≤ 1||| (caractérisation de λ). Donc

|||τ||| ≤ Bi.

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes
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•Montrons que |||τ||| > Bi⇐⇒ τ = 2D(u) + Bi
D(u)
|||D(u)||| .

si |||τ||| > Bi

On a : τ = 2D(u) + Biλ = 2D(u) + Bi
D(u)
|||D(u)||| en identifiant λ =

D(u)
|||D(u)||| avec D(u) 6= 0 .

Si τ = 2D(u) + Bi
D(u)
|||D(u)||| = 2D(u) + Biλ (caractérisation de λ) .

On suppose par l’absurde que |||τ||| < Bi

Alors |||D(u)||| = 0 et |||τ||| = Bi|||λ|||. Or |||λ||| = 1, donc |||τ||| = Bi (impossible). Il suit que

|||τ||| > Bi.

Réciproquement, en supposant (1.1) avec la caractérisation de λ proposé, il est évident de consta-

ter que τ = 2D(u) + λBi .

Remarque 1.1. Nous verrons dans une proposition qu’en fait, pour tout ρ > 0 on a :

λ =


λ + ρD(u)
|λ + ρD(u)| si |λ + ρD(u)| ≥ 1

λ + ρD(u) sinon
Toutes ces formulations ont un intérêt algorithmique. Nous nous limitons ici aux formulations qui nous

sont utiles, mais d’autres écritures existent, qui sont utilisées dans la littérature pour pouvoir appliquer

d’autre méthodes.

Rappel : (Caractérisation de la projection)

Soit X un espace de Hilbert avec son produit scalaire 〈. , . 〉X , et K une partie non-vide , convexe

et fermée de X. Alors la projection orthogonale PK vérifie, pour tout x ∈ X, , y ∈ K

〈x− PK(x), y− PK(x)〉X ≤ 0

Rappel : PK la projection orthogonale sur K donnée par :

PK


µ si |||µ||| < 1

µ

|||µ||| sinon

Remarque 1.2. Le lemme suivant est un résultat classique qui joue un rôle essentiel dans l’écriture de

classe d’algorithme pour Bigham. les assertions qui le constituent sont en général éparpillé dans différents

ouvrages comme par exemple dans ([Glowinski, 2008]).

Lemme 1.2. Soit λ ∈ L2(Ω)d×d et u ∈ V. Alors nous avons les équivalences suivantes :

1. (µ− λ, D(u)) ≤ 0, µ ∈ K

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes
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2. τ = 2D(u) + λBi

3. λ = PK(λ + ρD(u)), ∀ρ > 0

4. λ : D(u) = |||D(u)||| , |λ| ≤ 1

Démonstration. � 1. =⇒ 3.

Supposons 1.

Soit ρ > 0. En multipliant par ρ alors (µ− λ, ρD(u)) ≤ 0

⇔ (µ− λ, λ + ρD(u)− λ) ≤ 0 (on ajoute et retranche λ)

⇔ λ = PK(λ + ρD(u)) (caractérisation de la projection) i.e 3. est donc obtenu.

� 3. =⇒ 2.

Supposons 3. Montrons que τ = 2D(u) + λBi

On sait que par définition de de λ : τ = 2D(u) + λBi = 2D(u) + PK(λ + ρD(u))

• si D(u) = 0 Alors PK(λ) = λ.

A-t-on |||τ||| ≤ Bi ?

On a τ = 2× 0 + λBi et |||τ||| = Bi|||λ|||. Puisque λ ∈ K alors |||τ||| ≤ Bi.

Par conséquent, on bien τ = 2D(u) + λBi

• si D(u) 6= 0. Nous utilisons la définition de λ donnée par : τ = 2D(u) + λBi = 2D(u) + PK(λ +

ρD(u)).

Montrons que PK(λ + ρD(u)) =
D(u)
|||D(u)||| . Puisque |λ + ρD(u)| > 1 alors

PK(λ + ρD(u)) =
λ + ρD(u)
|λ + ρD(u)| =

D(u)
|||D(u)||| (1 + ρ|||D(u)|||)

1 + ρ|||D(u)||| =
D(u)
|||D(u)||| = λ

Par suite, τ = 2D(u) + λBi.

� 2. =⇒ 4.

Supposons 2. et montrons que λ : D(u) = |||D(u)||| , |λ| ≤ 1

Comme |λ| ≤ 1 alors D(u) = 0. Ainsi |||D(u)||| = 0 et λ : D(u) = 0 = |||D(u)|||.

De plus on a bien |||τ||| ≤ Bi car |λ| ≤ 1 et D(u) = 0

� 4. =⇒ 1.

Supposons 4.

Soit µ ∈ K. Montrons que (µ− λ, D(u)) ≤ 0

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes
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On a :

(µ− λ) : D(u) = µ : D(u)− λ : D(u)

= µ : D(u)− |||D(u)|||

≤ |µ|.|||D(u)||| − |||D(u)||| (Chauchy− Schwartz avec µ : D(u))

≤ (|µ| − 1)|||D(u)|||

≤ 0 car µ ∈ K

Proposition 1.1. Soit ρ > 0, la caractérisation de λ de la relation (1.4) est équivalente à la relation :

λ = PK(λ + ρD(u)) (1.5)

Démonstration. • Si D(u) = 0, l’équivalence est évidente : 0 = PK(0)⇐⇒ 0 ≤ 1

• Si D(u) 6= 0. Soit ρ > 0 et supposons que λ =
D(u)
|||D(u)||| i.e 1 est vérifié. On a :

|λ + ρD(u)| = | D(u)
|||D(u)||| (1 + ρ|||D(u)|||) | = 1 + ρ|||D(u)||| > 1

et par définition de PK, on a :

PK(λ + ρD(u)) =
λ + ρD(u)
|λ + ρD(u)| =

D(u)
|||D(u)||| (1 + ρ|||D(u)|||)

1 + ρ|||D(u)||| =
D(u)
|||D(u)||| = λ

et donc la relation (1.6) est ainsi obtenue.

Dans le sens inverse, en supposant (1.6) i.e λ = PK(λ + ρD(u))

On a nécessairement |λ + ρD(u)| > 1 sinon on aurait ρ = 0 puisque D(u) 6= 0.

Par conséquent, en utilisant une fois encore la définition de PK, on a λ =
λ + ρD(u)
|λ + ρD(u)| . Et par

factorisation on obtient : λ (|λ + ρD(u)| − 1) = ρD(u) et donc D(u) =
λ (|λ + ρD(u)| − 1)

ρ
.

En passant à la norme on a : |||D(u)||| = |λ + ρD(u)| − 1
ρ

en remarquant que |λ| = 1.

D’où

λ =
λ + ρD(u)
|λ + ρD(u)| =⇒ λ =

D(u)
|||D(u)||| .

1.2 Formulation variationnelle

Pour écrire la formulation variationnelle que l’on propose pour Bingham, nous allons donner

une idée qui permet de coupler cette formulation sous forme de définition liant (u, λ) ∈ V × K
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On rappelle que la formule de Green valable pour le ∇(.) est aussi valable avec D(.), comme

montré dans [Brezzi and Fortin, 2012] :∫
Ω

div(ξ).v dx = −
∫

Ω
ξ : D(v)dx +

∫
∂Ω

(ξ.n).v dσ

avec dx la mesure de Lebesgue, dσ la mesure de surface sur le bord, ξ un champs régulier de

contraintes et v un champs de vitesse suffisamment réguliers.

D’une part, concernant la conservation de la quantité de mouvement :

• Dans un sens d’implication de l’écriture variationnelle ∀v ∈ V, en multipliant l’équation

de quantité de mouvement (1.2) par v et en appliquant la formule de Green, on a :

−
∫

∂Ω
(τ.n).v dσ +

∫
Ω

D(v) : τ dx +
∫

Ω
div(v) p dx−

∫
∂Ω

p v.n dσ =
∫

Ω
f .v dx

⇒ 2
∫

Ω
D(u) : D(v)dx + Bi

∫
Ω

λ : D(v)dx =
∫

Ω
f .v dx

en utilisant la définition de :

τ = 2D(u) + λBi,

avec v ∈ V =
{

w ∈ H1
0(Ω)d, div w = 0

}
comme l’espace de fonction test, cela implique :

2(D(u), D(v)) + Bi(λ, D(v)) = ( f , v), ∀v ∈ V

• Dans le sens inverse de l’écriture variationnelle, on se repère à la condition «in f sup» (dans

[Brezzi and Fortin, 2012]). Cette condition assure la surjectivité de l’opérateur divergence

i.e. : ∃ p ∈ L2
0(Ω) =

{
u ∈ L2(Ω)d,

∫
Ω

u = 0
}

tel que

∫
Ω

D(v) : τ dx +
∫

Ω
div(v) p dx =

∫
Ω

f .v dx

D’autre part, le Lemme (1.2) montre que l’inéquation variationnelle ∀µ ∈ K, (µ− λ, D(u)) ≤ 0

est équivalente à la loi de comportement locale.

Définition 1.3. La vitesse u ∈ V et le champ de tension λ ∈ K sont liés dans le problème de Bingham par

la formulation variationnelle :

 2(D(u), D(v)) + Bi(λ, D(v)) = ( f , v), ∀v ∈ V

(µ− λ, D(u)) ≤ 0, µ ∈ K
(1.6)

• Par le théorème de Lax-Milgram, on peut remarquer que le problème variationnel :

pour µ ∈ L2(Ω)d×d donné, trouver u(µ) ∈ V telle que :

2(D(u(µ)), D(v)) + Bi(µ, D(v)) = ( f , v), ∀v ∈ V
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admet une unique solution puisque :

— V est un espace de Hilbert dans ([Brezzi and Fortin, 2012]), ([Girault and Raviart, 1979]) et

([Brenner et al., 2008]),

— De plus, (v, w) 7→ 2(D(v), D(w)) est une forme bilinéaire, continue et coercive sur V ;

— v 7→ ( f , v)− Bi(µ, D(v)) est une forme linéaire continue sur V.

Ainsi, nous pouvons introduire une fonctionnelle φ : L2(Ω) −→ R définie par :

φ(µ) =
1
Bi
|D(u(µ))|2 (1.7)

Dans la proposition suivante, nous abordons les propriétés de φ qui permettent d’écrire la

formulation variationnelle sous la forme d’un problème de minimisation.

Proposition 1.2. Soit φ définie par (1.7). Alors les deux assertions suivantes sont équivalentes :

1. λ = arminµ∈Kφ(µ)

2. (µ− λ, D(u(λ))) ≤ 0, µ ∈ K

Démonstration. 1.⇒ 2. Supposons que λ = arminµ∈Kφ(µ)

donc φ(λ) ≤ φ(µ), ∀µ ∈ K

Soit ν ∈ K, α ∈ [0, 1]. On a K 3 (αν + (1− α)λ) = λ + α(ν− λ)

ainsi φ(λ) ≤ φ(αν + (1− α)λ) = φ(λ + α(ν− λ))

donc 0 ≤ φ(λ + α(ν− λ))− φ(λ)

Il suit que 0 ≤ 1
α
(φ(λ + α(ν− λ))− φ(λ))

Et en faisant tendre α vers 0 et en utilisant la formule du taux de variation, nous obtenons

0 ≤ (ν− λ, φ
′
(λ))

Enfin par le Théorème 1.1 nous obtenons (ν− λ, D(u(λ))) ≤ 0 .

1.⇐ 2. Supposons (µ− λ, D(u(λ))) ≤ 0, µ ∈ K i.e 0 ≤ (ν− λ, φ
′
(λ)) (Théorème (1.1))

Ainsi 0 ≤ 1
α
(φ(λ + α(µ− λ))− φ(λ)) par la formule de taux de variation avec α −→ 0

donc φ(λ) ≤ φ(λ+ α(µ−λ)) et on prend ν = λ+ α(µ−λ) = (αµ + (1− α)λ) inK est quelconque

car µ est quelconque.

Il suit que φ(λ) ≤ φ(ν), ∀ν ∈ K Autrement λ = arminµ∈Kφ(µ)

Remarque 1.3. Nous avons écrit le problème de Bingham comme la minimisation d’une fonctionnelle

convexe quadratique sur un convexe, dans le but d’appliquer des algorithmes connus pour ce contexte.

1.3 Existence et unicité

Le théorème suivant traite des propriétés de φ qui garantissent l’existence d’une solution.

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes



« Spectral Projected Gradient » SPG = PG + BB + GLL appliqué à Bingham 10

Théorème 1.1. Soit φ la f onctionnelle de L2(Ω) −→ R définie par (1.7). Alors

1. φ est est convexe.

2. φ est dérivable au sens de Fréchet sur L2(Ω), de dérivée φ
′
(µ) = −D(u(µ)).

Démonstration. 1. On sait que par définition u satisfait :

u(αλ + (1− α)µ) = αu(λ) + (1− α)u(µ) , ∀α ∈ [0; 1], λ, µ ∈ K

On a :

2Biφ(αλ + (1− α)µ) = |||αD(u(λ)) + (1− α)D(u(µ))|||2

≤ (α|||D(u(λ))|||+ (1− α)|||D(u(µ))|||)2 (ingalit triangulaire)

φ(αλ + (1− α)µ) ≤ α2φ(λ) + (1− α)2φ(µ) + 2α(1− α)|||D(u(µ))||| × |||D(u(λ))|||

φ(αλ + (1− α)µ) ≤ αφ(λ) + (1− α)φ(µ)

2. Soit µ, η ∈ L2(Ω).

Par un calcul d’identé remarquable, on a :

|||D(u(µ+ η))|||2−|||D(u(µ))|||2 = |||D(u(µ+ η))−D(u(µ))|||2 + 2 (D(u(µ + η))− D(u(µ)), D(u(µ))).

En utilisant la ligne 1 de l’équation (1.1) on obtient :

(D(u(µ + η))− D(u(µ)), D(v)) + Bi(η, D(v)) = 0, ∀v ∈ V (1.8)

On prend v = (u(µ) dans 1.8. Il vient donc que :

|||D(u(µ + η))|||2 − |||D(u(µ))|||2 = |||D(u(µ + η))− D(u(µ))|||2 − 2Bi(η, D(u(µ)))

D’autre part, on prend aussi v = u(µ + η)− u(µ) dans 1.8 et on a :

|||D(u(µ + η))|||2 − |||D(u(µ))|||2 = −Bi (η, D(u(µ + η))− D(u(µ)))

≤ Bi|η|.||||D(u(µ + η))− D(u(µ))||| (Cauchy− Schwarz)

≤ Bi2 |η|2
2

+
1
2
|||D(u(µ + η))− D(u(µ))|||2 (Young)

Donc |||D(u(µ + η))− D(u(µ))|||2 := O(|η|2) .

Il suit que : φ(µ + η) = φ(µ) +
(
η, D(u(µ)) + O(|η|2)

)
Par conséquent, φ

′
(µ) = −D(u(µ))

Corollaire 1.1. Il existe λ ∈ K solution de minµ∈Kφ(µ).

La preuve repose sur le fait φ est propre et qu’avec les propriétés du théorème 1.1, le théorème XXX de [?]

s’applique.
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Ainsi d’après le Théorème (1.1), (u(λ), λ) ∈ V × K est donc solution du problème (1.3) de

Bingham.

u(λ) est unique mais λ ne l’est pas toujours (voir dans [Duvaut and Lions, 1972]).

Remarque 1.4. L’unicité de u(λ) n’est pas l’application de Lax-Milgram. En effet, Lax-Milgram prouve

que u(µ) est unique pour un µ donné. Considérons donc λ1 et λ2 deux minimiseurs de φ, et u1 et u2 les

vitesses respectivement associées. On a :

((u1 − u2, v)) + Bi(λ1 − λ2, D(v)) = 0, ∀ v ∈ V

en choisissant v = u1 − u2, il vient :

||u1 − u2||2 + Bi(λ1 − λ2, D(u1 − u2)) = 0

Or, les inéquations variationnelles (1.3) permettent d’écrire, pour i = 1, 2 :

(µ− λi, D(ui)) ≤ 0

ce qui donne, en sommant les inéquations pour µ = λ1 avec i = 2, et µ = λ2 avec i = 1 :

(λ1 − λ2, D(u1 − u2)) ≤ 0

On obtient donc ||u1 − u2|| ≤ 0. Ceci prouve l’unicité de la vitesse u.
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GRADIENT PROJETÉ (GP) AVEC LA

RÈGLE DE BARZILAI-BORWEIN ET

GRIPPO-LAMPORIELLO-LUCIDI

2.1 Formulation - Minimisation par gradient projeté

La formulation variationnelle du modèle de Bingham donné dans 1.6 et reformulée sous forme

de minimisation dans la proposition 1.2 permet d’écrire l’algorithme classique du Gradient Pro-

jeté ([Trémolières et al., 2011]).

La méthode du gradient projeté que nous mettons en place ici calcule à chaque itération une

nouvelle approximation d’un minimum de φ en progressant d’un pas ρ le long de la direction

opposée à celle de φ′ au point courant, puis en projetant sur K le point obtenu.

Soit ρ > 0, λ0 ∈ K et n ∈ N. Par récurrence, la suite (un+1, λn+1) ∈ V × K se calcule comme

suit :

 2(D(un+1), D(v)) + Bi(λ
n, D(v)) = ( f , v), ∀v ∈ V

λn+1 = PK(λ
n + ρD(un+1))

(2.1)

On montre que cette suite converge vers (u, λ̄) qui est dans V × K aussi donc solution du pro-

blème, avec une convergence faible pour λn+1 et forte pour un+1 (voir [Trémolières et al., 2011]).

Pour établir un ordre de convergence |φ(λn)− φ(λ)| = (O)(1/k) (voir [Beck and Teboulle, 2009]

pour la démonstration générale, avec une fonctionnelle φ convexe différentiable), l’idée fonda-

mentale se base sur le fait que la dérivée de la fonctionnelle φ est lipschitzienne. Ce qui peut être

établi dans le cas de Bingham :

Proposition 2.1. φ
′

est Bi lipschitzienne et φ localement lipschitzienne

En effet, d’après la ligne 1 de l’équation (1.1) on sait que :

(D(u(λ))− D(u(µ)), D(v)) = −Bi(λ− µ, D(v))

12
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D’autre part,

|||D(u(λ))|||2 − |||D(u(µ))|||2 = |||D(u(λ))− D(u(µ))|||2 + 2(D(u(λ))− D(u(µ)), D(u(µ)))

= −Bi(λ− µ, D(u(λ))− D(u(µ)))− 2Bi(λ− µ, D(u(µ)))

car |||D(u(λ))− D(u(µ))|||2 = −Bi(λ− µ, D(u(λ))− D(u(µ))) , pour v = u(λ)− D(u(µ)

et donc |D(u(λ))− D(u(µ))| ≤ Bi|λ− µ| (par Cauchy− Schwarz)

Il suis que φ
′

est Bi lipschitzienne

De plus,

|||D(u(λ))|||2 − |||D(u(µ))|||2 = −Bi(λ− µ, D(u(λ)) + D(u(µ)))

En réappliquant Cauchy-Schwarz, on obtient :

|||D(u(λ))|||2 − |||D(u(µ))|||2 ≤ Bi|λ− µ|.|||D(u(λ)) + D(u(µ))|||.

Et puisque (D(u(λ)) + D(u(µ)), D(v)) = 2( f , v) + g(λ + µ, D(v)), ∀v ∈ V, il s’en suit que :

|||D(u(λ)) + D(u(µ))||| ≤ 2| f |+ Bi|λ + µ|

≤ 2(| f |+ Bi), car λ, µ ∈ K

Ainsi

φ(λ)− φ(µ) ≤ 1
2Bi
× 2Bi|λ− µ|(| f |+ Bi)

≤ (| f |+ Bi)|λ− µ|

2.2 Calcul automatique d’un pas de descente variable

Dans l’algorithme de gradient projeté (2.1), le pas de descente est constant. On peut toutefois

ce demander si un pas variable ρn permettrait d’accélérer la convergence.

Dans ce but, la méthode du gradient projeté spectral (SPG) de Birgin, Martinez et Raydan

en 2000-2003 pour la résolution de problèmes avec contraintes convexes, est née du mariage du

schéma non monotone de Barzilai- Borwein (Raydan 1997) avec la méthode classique du gra-

dient projeté (Bertsekas 1976, Goldstein 1964, Levitin et Polyak 1966) qui ont été utilisés dans les

statistiques.

2.2.1 Généralité sur Barzilai et Borwein (BB)

Dans ([Birgin et al., 2000]) les auteurs ont relaté que Barzilai et Borwein (BB) en 1988 dans

[Barzilai and Borwein, 1988] ont proposé une méthode pour la minimisation sans contrainte d’une
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fontion différentiable φN : RN dans R

On se donne x0 ∈ RN, l’itération BB est donnée par :

xk+1 = xk − ρk∇φN(xk) (2.2)

où ρ est la longueur de pas, ρ0 est arbitraire et ∀k = 1, ....,

ρk =
ST

k−1Sk−1

Sk−1yk−1
(2.3)

avec Sk−1 = xk − xk−1 et yk−1 = ∇φN(xk)−∇φN(xk−1)

Lorsque φN(x) =
1
2

xTAx + bxT + c est la fonction quadratique et A une matrice symétrique

définie positive alors :

ρk =
∇φN(xk−1)TφN(xk−1)

φN(xk−1)TAφN(xk−1)

Les auteurs définissent le Spectral Projected Gradient (SPG) dans lequel on utilise le pas de des-

cente Barzilai et Borwein (BB), en conjonction avec une généralisation de la règle d’Armijo, nom-

mée règle GLL (pour Grippo, Lampariello et Lucidi). SPG est défini dans l’article fondateur :

[Birgin et al., 2000] et GLL est définie dans : [Grippo et al., 1986].

Le terme Spectral provient du fait que le pas de descente BB est compris entre les valeurs propres

extrêmes de la dérivée seconde de la fonctionnelle φ. La règle d’Armijo garantit que la fonction-

nelle à minimiser décroit au fil des itérations. Cependant, la littérature a progressivement constaté

que la vitesse de convergence peut être significativement améliorée si on relaxe la monotonie en

ne l’imposant que tous les M itérations, l’algorithme étant au contraire inefficace sinon. C’est le

but de GLL en remplacement d’Armijo. Cela semble vrai notamment pour SPG.

Remarque 2.1. • L’efficacité de la méthode BB est liée à la relation entre les ρk et les valeurs propres de la

matrice Hessienne de φN et non à la diminution de la valeur de la fonction.

• SPG a montré son efficacité supérieure à PG dans ces nombreuses applications.

φ étant une fonctionnelle quadratique, elle peut s’écrire :

φ(µ) =
1
Bi
|F−Qµ|2

en faisant les identifications suivantes :

on définit A : V −→ V′ et B : V −→ L2(Ω)d×d par des crochets de dualité

< Av, w >= (D(v), D(w)) ∀v w ∈ V

(Bv, µ) = (D(v), µ) ∀v ∈ V ∀µ ∈ L2(Ω)d×d
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et

Q = BiBA−1B∗ ; F = BA−1 f

On a :

φ
′
(µ) =

2
Bi

Q∗(Qµ− F) ; φ
′′
(µ) =

2
Bi

Q∗Q

• l’Idée fondamentale de BB est de chercher ρk ∈ R∗+ tel que ρkφ
′
(λk) soit proche de

{
φ
′′
(λk)

}−1
φ
′
(λk).

En faisant le calcul de ρk au lieu d’utliser les expressions de Barzilai et Borwein en espérant trou-

ver une expression simple et facile à calculer, on a :

ρk = argminρ|ρλk − (φ
′′
)−1λk|2

⇔ (λk, ρkλk − (φ
′′
)−1λk) = 0

⇔ ρk =
(λk, (φ

′′
)−1λk)

|λk|2

Dans [Birgin et al., 2000] il est rappelé que la règle BB s’écrit classiquement, à partir de l’équation

de la sécante :

ρk
sec :=

|λk − λk−1|2
(λk − λk−1, φ

′(λk)− φ
′(λk−1))

=
|λk − λk−1|2

(λk − λk−1,
1
Bi

Q∗Q(λk − λk−1))

Dans le cas où il n’y a pas de contrainte, l’itération de descente est :

λk − λk−1 = −ρk−1φ
′
(λk−1)

et donc nous obtenons l’expression équivalente :

ρk
quad :=

|||φ′(λk−1)|||2

(φ′(λk−1),
1
Bi

Q∗Qφ
′(λk−1))

Pour Bingham, on a en outre les propriétés :

Q = Q∗ ; Q2 = BiQ puisque A = BB∗

Par suite nous avons les formes simplifiées :

Lemme 2.1. Soient les opérateurs A, B et Q définis précédemment. Alors les expressions de ρsec et de ρquad

sont données par :

ρk
sec :=

|λk − λk−1|2
(λk − λk−1, Q(λk − λk−1))

; ρk
quad :=

|φ′(λk−1)|2
(φ′(λk−1), Qφ

′(λk−1))

• ρsec est toujours positif d’après le Corollaire suivant :
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Corollaire 2.1. Soient les opérateurs A, B et Q définis précédemment. Alors :

ρk
quad :=

1
Bi

Démonstration. On sait que :

ρk
quad :=

|φ′(λk−1)|2
(φ′(λk−1), Qφ

′(λk−1))
et en remplaçant Q = Bi BA−1B∗ et A = B∗B, on obtient :

ρk
quad :=

|φ′(λk−1)|2
(φ′(λk−1), Bi Iφ

′(λk−1))

=
|φ′(λk−1)|2

Bi|φ′(λk−1)|2

=
1
Bi

Quelles sont donc les relations entre ρk
sec et ρk

quad ?

• A priori, ρquad utilise l’information de dérivabilité seconde, et possède donc un avantage.

• Comme la projection affaiblit cet avantage, il est peut-être préférable d’utiliser ρsec qui informe

sur le convexe K.

• Pour prendre du recul sur l’algorithme SPG qui vient, lorsqu’on utilise λ plutot que τ et en

respectant nos notations habituelles, nous présentons cet algorithme dit de gradient projeté qui

est encore l’itération de (BB), et qui se caractérise par :

λn+1 = λn − ρGρ(λ
n) (2.4)

où

Gρ(µ) = (−µ + PK(µ− ρψ(µ)))

est une direction de descente de et ρ un pas de descente,

avec

ψ(µ) = φ(µ) + 1K(µ) et

1K(x)

 0 si x ∈ K

+∞ sinon
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2.2.2 Formulation Algorithmique

Lemme 2.2. µ 7→ u(µ) est convexe et vérifie de plus la propriété :

u(αµ + (1− α)ν) = αu(µ) + (1− α)u(ν), ∀µ, ν ∈ K, α ∈ [0; 1]

Démonstration. En effet, pour tout α, β dans [0, 1] on a d’une part :

2(D(u(αµ + βν)), D(v)) = ( f , v)− Bi(αµ + βν, D(v)), ∀v ∈ V.

−Bi(αµ + βν, D(v)) = −Biα(µ, D(v))− Biβ(ν, D(v))

= −α {( f , v)− 2(D(u(µ)), D(v))} − β {( f , v)− 2(D(u(ν)), D(v))} Ainsi

2(D(u(αµ + βν)), D(v)) = ( f , v)− α {( f , v)− 2(D(u(µ)), D(v))}

− β {( f , v)− 2(D(u(ν)), D(v))}

⇐⇒ 2(D(u(αµ + βν)− αu(µ)− βu(ν)), D(v)) = (1− α− β)( f , v)

D’autre part, pour avoir une estimation de φ(λn + αGρ(λn)) moins chère en terme du temps

de calcul, on évalue ∀n ≥ 1, λn + αGρ(λn). On a :

λn + αGρ(λ
n) = λn + α

(
PK(λ

n + ρnD(un+1))− λn
)

= (1− α)λn + αPK(λ
n + ρnD(un+1))

u(λn + αGρ(λ
n)) = αu((PK(λ

n + ρnD(un+1))) + (1− α)un+1

2Biφ(λn + αGρ(λ
n)) = |αD(u(PK(λ

n + ρnD(un+1)))) + (1− α)D(un+1)|2

= α2|D(u(PK(λ
n + ρnD(un+1))))|2 + 2α(1− α)

(
D(u(PK(λ

n + ρnD(un+1)))), D(un+1)
)

+(1− α)2|D(un+1)|2

Remarque 2.2. Pour écrire l’algorithme dans un formalisme mathématique avec BB et GLL, il est aussi

instructif d’essayer de poursuivre par une idée de simplification.

Pour cela, On pose ∀n ≥ 1 :

λ̄n = λn + ρnD(un+1)

An =
1
Bi
|D(u(PK(λ̄n)))|2,

Bn =
1
Bi
(

D(u(PK(λ̄n))), D(un+1)
)
,
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Tn = (D(un+1), Gρ(λn))

σ1 = 0.1, σ2 = 0.9, γ = 10−4, ε = 10−7 ,


φ(λn) =

1
Bi
|D(un+1)|2

φmax = max
{

φ(λn−k), 0 ≤ k ≤ min {n, M− 1}
} ,

ρsec =
1
Bi

|λn − λn−1|2
(λn − λn−1, D(un+1)− D(un))

, ρmin = 10−30, ρmax = 10−30 et Gρ(λn) = PK(λ̄n)− λn

Proposition 2.2. Soient n = 0 et λ0 ∈ K fixés.

Alors l’algorithme BBPG avec GLL s’écrit pour tout n ≥ 1 :

2(D(un+1), D(v)) + Bi(λ
n, D(v)) = ( f , v), ∀v ∈ V

Gρ(λn) = PK(λ̄n)− λn

BB ρn =

 ρmax si
(
(λn − λn−1), D(un+1)− D(un)

)
≤ 0

max {ρmin, min {ρsec, ρmax}} sinon

on cherche la suite αn telle que :

GLL



αn,1 = 1

Si (αn,k)2An + 2αn,k(1− αn,k)Bn + (1− αn,k)2φa(λn) ≤ φmax − γαn,kTn Alors αn = αn,k

Sortie de la sous boucle

αn,k+1 =


αtemp =

1
2
(αn,k)2Tn

(αn,k)2 An+2αn,k(1−αn,k)Bn+αn,k(αn,k−2)φ(λn)+αn,kTn si αtemp ∈
[
σ1, σ2αn,k]

αn,k

2
sinon

λn+1 = λn + αnGρ(λn)

(2.5)

Soit ε > 0 nous utilisons le Critère d’ arrêt : (|zn|L2 +
∣∣λn+1 : D(un+1)− |||D(un+1)|||

∣∣
L∞) < ε

pour l’algorithme.

Cinq résidus qui doivent tendre vers zéro entrent en jeu dans la mise en place de notre algo-

rithme :

• |λn+1 − λn|

• ||un+r1 − un||

• Par la loi de comportement la relation (1.2) et la propriété λ : D(u) = |||D(u)|||, on a∣∣λn+1 : D(un+1)− |||D(un+1)|||
∣∣

L∞ .
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• |D(un+1)| − |D(un)| qui mesure la convergence de la fonctionnelle φ.

• Par l’écriture variationnelle (zn, v) = 2(D(un+1), D(v)) + Bi(λ
n+1, D(v))− ( f , v) qui découle

du problème de Bingham, ∀v ∈ H1
0(Ω), où zn = Ãun+1 + BiB̃∗λn+1− f ; (A correspond au Lapla-

cien et B au taux de déformation). Et on utilise la norme |zn|L2 comme résidu.

En fait, si la somme de résidus : |zn|L2 +
∣∣λn+1 : D(un+1)− |||D(un+1)|||

∣∣
L∞ tend vers zéro, cela

suffit pour avoir un critère d’arrêt pour notre algorithme.

Dans ([Grippo et al., 1986]), les conditions ont été données pour la mise en œuvre de la mé-

thode BB pour la minimisation à l’aide d’une stratégie non monotone. Raydan a développé une

méthode de convergence en 1997 en utilisant la stratégie Grippo-Lampariello-Lucidi (GLL) , et la

méthode BB donnée plus haut par la relation (2.3).
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EXPÉRIMENTATIONS NUMÉRIQUES

3.1 Approximation spatiale

Pour déterminer la solution de la formulation variationnelle discrète du problème modèle,

nous considérons les espaces :

Vh =
{

wh ∈ H1
0(Ω)d, div wh = 0

}
Q = L2(Ω)d×d.

Mh, l’espace des fonctions constantes par cellules.

Nous exposons une approximation éléments finis sur un domaine annulaire Ω ⊂ R2 avec des

rayons intérieur et extérieur donnés respectivement notés RI et RE, RE > RI > 0.

Un maillage cartésien quadrangulaire polygonal régulier Gh définit un domaine discret Ωh et se

rapproche de Ω, avec des nœuds :

Xi,0 = RIei, Xi+1,j = Xi,j + ∆r,jei, Xi,Nr = REei

avec ei =
ẽ
||ẽ|| et ũe := (cos(2πi/Nθ), sin(2πi/Nθ))

pour 0 ≤ i < Nθ, 0 ≤ j ≤ Nr

où la longueur ∆r,j des bords radiaux [Xi,j; Xi,j+1] (pour tout i) est incrémentalement réglée sur

la longueur du bord angulaire [Xi,j; Xi+1,j], tandis que Nθ = 2l , avec un 6 ≤ l ≤ 9 prescrit dans

tous les résultats ultérieurs. La valeur de Nr est telle que ||Xi,Nr−1|| < RE et ||Xi,Nr − Xi,Nr−1|| >

||Xi,Nr − Xi+1,Nr || de manière à éviter les cellules de grille éventuellement plates.

Comme d’habitude dans les méthodes d’éléments finis, h désigne le plus grand diamètre des

cellules quadrilatérales [Xi,jXi+1,jXi+1,j+1Xi,j+1], et est utilisé pour indexer toutes les entités dis-

crètes. Ici, la discrétisation du problème à l’aide d’une méthode d’éléments finis, consiste à définir

des espaces fonctionnels de dimensions finies Xh et Mh proches respectivement des espaces V et

Q de dimensions infinies. Cette méthode est utilisée pour calculer la solution approchée (uh, λh)

de (u, λ).

20
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Le domaine discret qui approche Ω correspondant est Ωh et on note Mh,0 = Mh
⋂

L2
0(Ω).

On approche le champ u comme un vecteur continu de 4Q1 par uh, i.e uh ∈ Xh qui est l’espace

vectoriel de champ linéaire bidimensionnelle continu .

Le champ de pression p est approché par ph sur Q0.

Soit l’ensemble convexe K, on considère l’ensemble discret :

Kh =
{

µh ∈ M2×2
h ; |||µh||| ≤ 1 sur Ωh

}
ainsi que Ph(µh) =

µh
max(1, |||µh|||)

, ∀µh ∈ M2×2
h

Le problème discrétisé de Bingham correspondant peut alors s’écrire :

trouver (uh,0, ph, λh) ∈ Xh,0 ×Mh,0 × Kh tel que 2(D(uh,0), D(vh)) + Bi(λh, D(vh))− (ph, div vh) = ( fh, vh), ∀vh ∈ Xh,0

(µh − λh, D(uh,0)) ≤ 0, µh ∈ Kh

, (3.1)

Puisque vh ∈ Vh alors ∀µh ∈ M2×2
h , la solution uh,0(µh) ∈ Vh de la formulation variationnelle dis-

crète du problème modèle (ici problème de couette) recherchée est définie comme étant l’unique

solution de :

2(D(uh,0), D(vh)) + +Bi(λh, D(vh)) = ( fh, vh), ∀vh ∈ Vh (3.2)

Le problème de minimisation associé est donné par :

λh = argminµh∈Kh φh(µh) :=
1
Bi
|D(uh,0(µh))|2 (3.3)

Ainsi par un raisonnement analogue comme décrit dans la section (2), il existe (uh,0, λh) ∈ Xh,0 ×

Mh,0 pour le problème (3.1) avec uh,0 unique et cette solution peut être calculer en utilisant une

minimisation algorithmique pour φh.

L’analyse de convergence des approximations par éléments finis du problème de Bingham est étu-

diée depuis les années 70. Une analyse générale faite dans les pionniers travaux [Glowinski, 1976]

et [Glowinski, ], et plus loin dans [Han and Reddy, 1995] fournit une estimation sous-optimale

||u − uh|| = O(
√

h) avec des méthodes du premier ordre, et les recherches actuelles visent à

prouver ces travaux afin de se conformer à des expériences numériques quasi-optimales. Pour

cela, la plupart des auteurs se concentrent sur le problème de Mosolov, défini comme la courbure

rotationnelle dans un tuyau droit à section constante sous un gradient de pression. Dans cet écou-

lement simplifié, la vitesse est supposée être un champ scalaire parallèle à l’axe du tuyau, tandis

que la principale difficulté de non-linéarité persiste. A noter également que la limitation de régu-

larité de la solution de Bingham justifie l’utilisation d’approximations d’ordre inférieur dans la

littérature, dans la mesure où l’adaptation du maillage n’est pas utilisée (voir [Roquet et al., 2000]
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et [Gustafsson and Lederer, 2022] pour une analyse d’ordre supérieur). Dans ce contexte, les ré-

sultats O(h) optimaux sont d’abord obtenus dans [Falk and Mercier, 1977], en utilisant une re-

formulation des modèles où de la vitesse est la variable principale approchée par un champ

constant par morceaux. Une estimation optimale est prouvée dans [Carstensen et al., 2016] pour

une méthode non linéaire par morceaux conforme avec une nouvelle méthode discrète à trois

champs appropriée pour la formulation, et les résultats sont étendus aux écoulements 3D. Dans

[Gustafsson and Lederer, 2022], la formulation (3.1) pour le problème de Mosolov est considéré,

avec une approche abstraite conforme. Une condition de stabilité LBB associant vitesse et contrainte

des espaces discrètes conduit alors à ||u − uh|| + ||div(λ − λh)||H−1(Ω) = O(h) a priori estimer

sous l’hypothèse de régularité u ∈ H2(Ω) et div λ ∈ L2(Ω)2 , où u et λ sont des composantes non

nulles respectivement de u et λ dans la problème.

3.2 Algorithme en dimension finie

Dans cette section, nous abordons la question de div D(v) et de ∆v .

Soit à considérer une fonctionnelle sur l’espace discret Vh

En fait, lorsqu’on travaille dans un espace discret, on ne dit pas que div vh = 0 mais plutôt que

(div vh, qh = 0), ∀qh ∈ Mh où Mh est l’espace des fonctions constantes par cellules. Ce qui n’est

pas équivalent à div vh = 0. Il faut une inclusion d’espace d’abord. Or (div vh ne coïncide pas

avec Mh. Par exemple si :

φh(µh) =
1
Bi
|D(uh(µh))|2 avec

2(D(uh), D(vh)) = ( f , vh)− Bi(D(vh), uh)− (div ph, div vh) ∀vh ∈ Mh

et on impose (div vh, qh = 0), ∀qh ∈ Mh.

La conséquence est que φ
′
h ne sera pas la même que celle qu’on connaissait si on utilise un solveur

de l’opérateur laplacien pour l’approximation de l’opérateur A. Un tel choix est en effet parfois

très utile pour simplifier les coûts de programmations et de calcul.

En fait,

φ
′
h(µh) = −D(uh(µh)) + Un terme (3.4)

C’est un peu cher en prix. Mais puisque (div vh, qh = 0) par imposition , on néglige le second

terme qui s’est rajouté. Certes, c’est pas anodin. Il a des éléments finis pour lesquels div vh = 0

mais pas tous. Ainsi dans un élément fini dont div vh 6= 0, la dérivée de la fonctionnelle n’est pas
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le même. Et quand on fait même l’itération de gradient projeté : λn+1 = PK(λ
n − ρφ

′
(λn)), on se

pose la question du terme qui se rajoute à φ
′

.

Remarque 3.1. En fait, 2div D(v) = ∆v avec le problème de Stokes : 2(D(v), D(w)) = (∇v,∇w)−

(div v, div w). Mais ça, c’est au niveau continu. Lorsqu’on discrétise, l’égalité n’est plus vérifié. Il est facile

de montrer que c’est pas vrai en 2D. On travail dans un espace à divergence nulle (Vh). Mais quand on

écrit l’algorithme de gradient projeté, on fait une minimisation d’une fonctionnelle et on garde D (le taux

de déformation) partout dans la théorie de Bingham. Nous avons un solveur algébrique qui est rapide parce

que quand on fait les éléments finis, il n’est plus vrai que div D(v) = ∆v.

• Une diffrence :

On définit un certain θh qui vérifie l’équation variationnelle dans Mh. θh est la projection L2 de

dh(uh) sur Mh : θh = d−1
h dh(uh) ie (θh − dh(uh), qh) = 0, ∀qh ∈ Mh ⇐⇒ θh = PK(dh(uh)).

Si on choisit uh bilinéaire par cellule sur un maillage qui est raffiné deux fois, on calcule une quan-

tité qui est constante par cellule. Si on dérive dh(uh), on obtient un élément de Mh. Il faut donc

calculer sa projection. Donc en gros, l’algorithme variationnellement et mine de rien ce n’est plus

exactement la même chose.

3.3 Résultats numériques

Le Maillage de notre domaine annulaire Ω ⊂ R2 avec l’approximation par éléments finis

considéré est se présente comme suit :
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FIGURE 3.1 – Maillage pour k=7 FIGURE 3.2 – Maillage pour k=8

FIGURE 3.3 – Maillage pour k=9 FIGURE 3.4 – Domaine annulaire approché

Dans cette section, nous testons l’algorithme SPG (BBPG). Nous simulons l’écoulement d’un

fluide viscoplastique deux cylindres co-axiaux en rotation, de rayons (resp. intérieur et extérieur)

R = r1 et r = 1, et de vitesses angulaires ω1 et ω = 1. Nous utilisons les conditions de Dirichlet

homogène. Le programme de Couette (Fortran) utilisé a permit d’avoir un temps de calcul opti-

mal. La force de volume f du second membre qui met le fluide en mouvement est bien choisie.

C’est aussi dans ce programme qu’on fait le choix de Bi, du maillage, et la tolérance pour contrôler

le résidu itéré. Il a été appliqué dans tous les tests effectués. Nous avons fixé un nombre maximal

d’itérations Nmax = 10000.

Nous présentons les similarités entre le BBPG et UZAWA avec différents cas tests. Il est repré-

senté dans chaque image le résidu itéré en fonction du nombre d’itérations Nit. Dès lors que la

tolérance est atteint ici tol = 10−10, on arrête.

Afin de chercher le ρoptim optimal, on prend ρ échelonné ρmax =
l

Bi
, l ∈ {1; 4}. Les valeurs l = 1

et l = 2 apparaissent optima car demandent moins d’itérations avant d’atteindre tol. l = 3 a

tendance à demander un nombre important d’itérations avant d’atteindre le tol et ceci pour un
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maillage grossier ou fin. l = 4 demande le nombre maximal d’itération pour satisfaire le critère

de la tolérance. l = 2 est demande moins d’itération que l = 1 alors on retient ρoptim =
2
Bi

.

La valeur de ρ de BB optimal noté ρoptim qui est
2
Bi

comparé celui de UZAWA qui est
4
Bi

selon le

Bi choisi.

FIGURE 3.5 – BBPG vs UZAWA à Bi=10 et

k=7

FIGURE 3.6 – BBPG vs UZAWA à Bi=10 à

Bi=10 et k=8
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FIGURE 3.7 – BBPG vs UZAWA à Bi=10 et

k=9

FIGURE 3.8 – BBPG vs UZAWA à Bi=50 et

k=7

Dans les graphiques (3.5) à (3.22), nous présentons les résultats de l’algorithme BBPG com-

paré à UZAWA. BBPG présente un comportement à quelques différences près de UZAWA ( un

gain léger par rapport à UZAWA ) . Le résidu décroît au fur et à mesure que le nombre d’ité-

rations et augmente. BBPG demande moins d’itérations avant d’atteindre la tolérance. Selon le

maillage (k = 7, 8 et 9) et la valeur de Bi prisent, BBPG prend une avance sur UZAWA . Dans

tout les cas, au niveau des deux algorithmes, le résidu a tendance à descendre légèrement et pro-

gressivement au cours de l’itération jusqu’à de la valeur Nitmax = où la tolérance est obtenue.

Cependant, dans le cas où Bi = 10 au niveau duquel les deux résidus atteignent le tol aux mêmes

Nitmax. A partir de Bi = 50, Nitmax ' Bi une fois que la valeur de tol est atteint. Tout ceci se

réalise dans les mêmes conditions au niveau des deux algorithmes à l’exeption des pics observés

au niveau du BBPG qui a contribué au gain obtenu. Il parait que Bi semble ne pas intervenir

vraiment dans l’efficacité (convergence rapide de BBPG ) du résidu mais plutôt le calcul auto-

matique de ρ de BB et le maillage choisie. On pourrait donc de ce fait supposer que ces pics de

BBPG sont proviennent du calcul automatique de ρ. Les deux algorithmes demandent pratique-

ment les mêmes nombre d’itération avant d’atteindre la tolérance souhaité. Quelque soit la valeur

de Bi = 50, 100, 200 . . . ; le résidu prend son départ au voisinage du point (1, 1) au niveau de

BBPG alors que le départ d’UZAWA dépend du nombre de Bingham Bi choisi (en fait, resi prend
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FIGURE 3.9 – BBPG vs UZAWA à Bi=50 et

k=8

FIGURE 3.10 – BBPG vs UZAWA à Bi=50 et

k=9

son départ de Nitmax(BBPG) + β selon le le maillage choisi ). Cet écart β mesuré a permit de garder

un rythme parallèle conforme entre les deux résidus itérés.Par contre le cas Bi = 10 semble violé

cette condition de rythme conforme. Ceci peut être relier aux pics observés au niveau de BBPG.

Ce qui a permis la validation de l’algorithme BBPG du modèle numérique est l’odre de conver-

gence O(h) d’approximation par éléments finis qui est bien vérifié pour les deux erreurs calculées

pour les grandeurs 10−8 et 10−10 qui est pratiquement le même que l’algorithme d’UZAWA.
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FIGURE 3.11 – BBPG vs UZAWA à Bi=100 et

k=7

FIGURE 3.12 – BBPG vs UZAWA à Bi=100 et

k=8

Il faut dire qu’avec le calcul de ρsec qui devrait être l’équivalent de
2
Bi

pour ρquad avec UZAWA

a permis d’améliorer la situation puisqu’on gagne au moins 30% de performance sur l’accélération

de la vitesse de convergence de l’algorirthme BBPG comparé à UZAWA. Le choix du paramètre

M pour la détermination de α itéré pour GLL a aussi participé à cette remarquable amélioration

observée car dès lors que ce fameux paramètre passe à 100, 200, 300, ... la situation n’est plus amé-

liorée (le résidu itéré se stagne et s’explose quelque soit l’itération).

Pour bien voir comment la valeur
2
Bi

demeure l’optimale pour BBPG, nous avons de représenté

pour différentes valeurs de ρ (ρ1 =
2
Bi

, ρ2 =
3
Bi

et ρ3 =
4
Bi

) et pour Bi = 10, 50 et 100 pour les

trois maillages k = 7, 8 et 9.
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FIGURE 3.13 – BBPG vs UZAWA à Bi=100 et

k=9

FIGURE 3.14 – BBPG vs UZAWA à Bi=250 et

k=7
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FIGURE 3.15 – BBPG vs UZAWA à Bi=250 et

k=8

FIGURE 3.16 – BBPG vs UZAWA à Bi=250 et

k=9

Le temps de calcul a aussi confirmé l’efficacité de SPG comparé à UZAWA. Comme le montre les

quatre différents tableaux ci-dessous. Les deux premiers révèlent que pour Bi = 10 (nombre de

Bingham petit), on gagne déjà en temps de calcul et les deux derniers tableaux ont continué sur

la même lancée pour Bi = 100 (nombre de Bingham élevé).

Bi=10 différents maillages Temps de calcul CPU

SPG K=7 Average = 1.092.10−2 et Total = 4.588.10−1

SPG K=8 Average = 4.518.10−2 et Total = 1.898.100

SPG K=9 Average = 2.118.10−1 et Total = 9.107.100
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FIGURE 3.17 – BBPG vs UZAWA à Bi=500 et

k=7

FIGURE 3.18 – BBPG vs UZAWA à Bi=500 et

k=8

Bi=10 différents maillages Temps de calcul CPU

GP K=7 Average = 1.345.10−2 et Total = 5.515.10−1

GP K=8 Average = 5.970.10−2 et Total = 2.448.100

GP K=9 Average = 2.923.10−1 et Total = 1.128.101

Bi=100 différents maillages Temps de calcul CPU

SPG K=7 Average = 1.334.10−2 et Total = 2.014.100

SPG K=8 Average = 5.962.10−2 et Total = 1.061.101

SPG K=9 Average = 2.935.10−1 et Total = 4.843.101
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FIGURE 3.19 – BBPG vs UZAWA à Bi=500 et

k=9

FIGURE 3.20 – BBPG vs UZAWA à Bi=750 et

k=7

Bi=100 différents maillages Temps de calcul CPU

GP K=7 Average = 3.297.10−2 et Total = 3.264.100

GP K=8 Average = 1.470.10−1 et Total = 1.719.101

GP K=9 Average = 7.399.10−1 et Total = 7.990.101
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FIGURE 3.21 – BBPG vs UZAWA à Bi=750 et

k=8

FIGURE 3.22 – BBPG vs UZAWA à Bi=750 et

k=9
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FIGURE 3.23 – BBPG et ρechelon à Bi=10, 50,

100 puis k=7, 8 et 9
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FIGURE 3.24 – BBPG− rhosec à Bi=10 et tol =

10−12

FIGURE 3.25 – BBPG− rhosec à Bi=10 et tol =

10−9

Afin de mieux justifier la raison pour laquelle, l’idée de faire un BBPG pour Bingham est

importante, nous avons de tracé le comportement de ρsec en fonction de nombre d’itérations.

Nous avons fait des tests pour le choix de deux tolérances tol = 10−9 et tol = 10−12 pour une

bonne précision.

Les graphes ( figures 3.20 à 3.20 ) présent les différents caractéristiques de crucial ρsec sur qui

repose le calcul de Barzilai Borwein et qui introduit GLL. Sur ces graphes, il représenter

l’évolution de ρsec itéré en fonction du nombre d’itérations et on arrête avec la tolérance. Les

figures du coté gauche sont tracées avec tol = 10−12 tandis que celles du droit avec tol = 10−9.

Tout comme le résidu itéré, ρsec itéré décroît au cous du nombre d’itération. On constate que ρsec

présente de s paliers au fur et à mesure que Nit augmente et il a tendance à diminuer. Les tests

ont été réalisé pour des valeurs de Bi = 10, 100, 250 et 750 pour bien propager toutes les variantes

liées à ρsec. Le constat général fait est que, plus Bi augment, plus ρsec plus d’térations quelque soit

le maillage choisi.
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FIGURE 3.26 – BBPG − rhosec à Bi=100 et

tol = 10−12

FIGURE 3.27 – BBPG − rhosec à Bi=100 et

tol = 10−9

FIGURE 3.28 – BBPG − rhosec à Bi=250 et

tol = 10−12

FIGURE 3.29 – BBPG − rhosec à Bi=250 et

tol = 10−9
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FIGURE 3.30 – BBPG − rhosec à Bi=750 et

tol = 10−9

FIGURE 3.31 – BBPG − rhosec à Bi=750 et

tol = 10−9

Manifestement avec tol = 10−9, pour Bi = 100, ρsec demande 328 ; pour Bi = 250, ρsec de-

mande 152 Bi = 750, ρsec demande 797 itérations. Il s’est aussi avérer que les valeurs initiales

ρmax =
2
Bi

,
3
Bi

et
4
Bi

ont participé à l’augmention des itérations, donc au gain obtenu. ρmax =
4
Bi

fait passer pour Bi = 100, 750 à 1000 itérations. Mais dans le cas de Bi = 250, les itérations ne

dépassent pas 328 quelque soit ρmax.

Pour tol = 10−12 on observe le même comportement de paliers avec ρmax =
2
Bi

et
4
Bi

mais pour

ρmax =
3
Bi

, à la fin des paliers, ρsec présente des cisaillements avec un même rythme.

On ne peut pas comparer ρsec à une valeur constante d’UZAWA. Ces résultats montrent l’intérêt

de faire BBPG. On gagne 30 pour 100 et on a ce gain parce qu’au cours de Nit, il faut passer

d’un palier à un autre avec des courbes décroissantes de paliers. L’efficacité de BBPG comparé à

UZAWA est ainsi basé sur ce fameux ρsec qui change la situation.

Les figures 3.28 et 3.29 présentent l’ensemble des ρsec représentés pour les tolérances res-

pectivement tol = 10−9 et tol = 10−12
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FIGURE 3.32 – BBPG et ρechelon à Bi=10, 50,

100 puis k=7, 8, 9 et tol = 10−9
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FIGURE 3.33 – BBPG et ρechelon à Bi=10, 50,

100 puis k=7, 8, 9 et tol = 10−12
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Nous avons aussi représenté une caractéristique du pas de descente αk de GLL en fonction de

l’évolution du paramètre M. En fait, c’est le αtemp temporaire qui gouverne cette évolution de αk .

Comme on l’espérait, αk de GLL garde au cours d’une certaines itérations ( jusqu’à
M
2

itération ),

la valeur 1. Ce dernier décroît au cours des restes d’itérations et devient asymptotiquement nul.

Ce qui est normal, car cette décroissance a permis à αk de garder la condition de relaxation. Il faut

aussi noter qu’il est important de bien le choisir le paramètre M pour permettre à ce fameux α de

maintenir le rythme de décroissance. C’est d’ailleurs pour cette raison que les auteurs l’appellent

paramètre de relaxation de la condition de monotonie. Comme le montre les figures (3.30) à

(3.35), lorsque ce paramètre devient grand α devient asymptotiquement nul, ce qui n’améliore

plus la situation dans ce cas. Les auteurs ont de ce fait raison de pourvoir mettre en exergue ce

paramètre M.

Le calcul de α avec GLL révèle un gain optimal, car α présente une monotonie comme es-

péré, et cela permet de valider l’implémentation l’algorithme au niveau GLL .Cet maintient de

condition de monotonie de α est due aux réglages des valeurs de σ1, σ2 et γ proposées par GLL

car une fois ses valeurs ne sont pas respectées (bien réglées), α ne respecte plus la condition de

monotonie. Cette condition de de relation de la monotonie est avérée nécessaire pour avoir une

convergence.

C’est par conséquent là, la nécessité d’accompagner le calcul automatique de ρk de BB avec

le calcul de αk de GLL. Il s’est avérer aussi que pour M = 1, 2 et 3 αk ne respecte pas la

condition de relaxation de la monotonie. Par contre pour 4 ≤ M ≤ 50 Cette condition de

relaxation de la monotonie est respectée et tout baigne bien. Mais dès lors que M devient grand

(M ≥ 10x avec x ≥ 2) la condition de relation de la monotonie est de nouveau violée.

FIGURE 3.34 – BBPG et αk à M =10 FIGURE 3.35 – BBPG et αk à M =20

© Ghislain A.BOGNON Université Gustave Eiffel/ Campus de Nantes



« Spectral Projected Gradient » SPG = PG + BB + GLL appliqué à Bingham 42

FIGURE 3.36 – BBPG et αk à M =30 FIGURE 3.37 – BBPG et αk à M =40

FIGURE 3.38 – BBPG et αk à M =50

FIGURE 3.39 – BBPG et αk à M =100
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CONCLUSION ET PERSPECTIVES

Dans ce stage, nous avons mis en place une nouvelle approche algorithmique (SPG) plus per-

formante que celle d’UZAWA/ISTA classique pour le modèle de Bingham . En effet, cette amé-

lioration observée est due aux idées de Barzilai-Borwein (BB) et Grippo-Lempori-Lucidi qui n’a

jamais été fait, à notre connaissance, par les auteurs qui travaillent sur le problème de Bingham.

J’ai programmé l’algorithme pour un cas simple du problème de Couette. Il est aussi donné l’idée

générale d’établissement de la convergence de pour l’algorithme.

Un gain d’amélioration de BBPG est remarquable (30%) a été obtenu comparé à UZAWA. Et c’est

ce qui a permis de valider l’efficacité de BBPG.

Nous projetons de faire des tests pour le BBPG avec la pénalisation en limitant le ρsec de Bar-

zilai Borwein dans la zone rigide avec le problème de Couette. Nous prévoyons également :

• d’une part, de faire des tests avec ρRk /ρFk de de BBPG et le comparé à la version pénalisé à pas

constant (ρ = cts) d’UZAWA qu’a fait Benoît Senard,

• d’autre part, faire les mêmes testes mais cette fois ci avec le fameux φ de la relation (3.4) avec le

terme de surplus et regarder son influence.

.1 Annexe

.2 Algorithme du gradient projeté localement pondéré par péna-

lisation avec BB et GLL (LPWPG)

.2.1 Algorithme du gradient projeté localement pondéré (LWPG)

• Benoît Sénard dans son travail, a expliqué la raison pour laquelle qu’au lieu d’utiliser

D(u) = 0, on utilise plutôt |||2D(u) + Biλ||| ≤ Bi ce qui permet d’écrire une forme améliorée de

l’algoritme précédent avec le calcul de ρn en tenant compte de la zone rigide.
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L’algoritme qu’on utilise à cette étape dit du gradient projet localement pondéré (LWPG) :

2(D(un+1), D(v)) + Bi(λ
n, D(v)) = ( f , v), ∀v ∈ V

ρn =

 ρR si |||D(un+1) + Biλn||| < Bi

ρF sinon

λn+1 = PK(λ
n + ρnD(un+1)) ∀ρ > 0

(1)

Il s’est d’abord dans un premier temps, intéresser à des valeurs constantes du pas ρ dans les deux

types de région (Rigide et Fluide) pour examiner les performances sur des cas mono-dimensionnels

simples, tout en démontrant la convergence de l’algorithme de gradient projeté localement pon-

déré (LWPG). Dans un second temps, il a réalisé des tests numériques sur le problème de Couette

avec l’algorithme LWPG ainsi que la variante de pénalisation (LPWPG : que nous présenterons

plus tard) pour mettre en évidence les gains de performances qu’on espère obtenir par rapport à

l’algorithme d’UZAWA classique.

A fin d’utiliser l’hypothèse de la zone rigide et de bien exposer l’algorithme en utilisant les règles

BB et de GLL avec la pénalisation (LPWPG), on considère la formulation suivante :
φ(µ) =

1
Bi
|D(u(µ))|2, ∀v ∈ V

R(µ) = {x ∈ Ω ; |2D(u(µ)) + Biµ| ≤ Bi}

2(D(u(µ)), D(v)) = ( f , v)− Bi(µ, D(v)) ∀v ∈ V

(2)

où R(λ) est l’ensemble des zone rigide .

On se lance dans l’idée intéressante de pouvoir exploiter cette condition D(u) = 0 caractérisant

les zones rigides.

Pour cela considère la formulation de Bingham avec pénalisation : 2(D(ua(λ)), D(v)) + aR(D(ua(λ)), D(v))R + Bi(λ, D(v)) = ( f , v), ∀v ∈ V

(µ− λ, D(ua(λ))) ≤ 0, µ ∈ K
,

ce qui permet d’écrire l’algorithme pour la pénalisation LPWPG en utilisant le calcul de ρ avec

Barzilai Borwein et celui de α avec GLL noté BBLPWPG dans le code.

Nous avons utilisé les mêmes idées que précédemment, mais jusqu’ici, la fonctionnelle de mini-

misation change (avec la pénalisation) d’expression et aussi on tient compte de la limitation de ρn
R

dans le zone rigide et puis du calcul de ρn
F avec ρsec dans la zone fluide.

On a : φaR(λ
n) =

1
2iBi
|uaR(λ

n)|2L2(Ω)
+ aR|uaR(λ

n)|L2(R)
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De plus, on fait les calculs de réductions avec l’expression de cette fonctionnelle de pénalisation.

On a : ∀n ≥ 1 :

λn + αGρ(λ
n) = λn + α

(
PK(λ

n + ρnD(un+1))− λn
)

= (1− α)λn + αPK(λ
n + ρnD(un+1))

uaR(λ
n + αGρ(λ

n)) = αuaR((PK(λ̄n)) + (1− α)un+1

2Biφ(λn + αGρ(λ
n)) = |αuaR(PK(λ̄n)) + (1− α)un+1|2 + aR|αuaR(PK(λ̄n)) + (1− α)un+1|

= α2|uaR(PK(λ̄n))|2 + 2α(1− α)
(

uaR(PK(λ̄n)), D(un+1)
)
+ (1− α)2|un+1|2

+ aR|αuaR(PK(λ̄n)) + (1− α)un+1|

On pose ∀n ≥ 1 :

λ̄n = λn + ρnD(un+1)

An =
1
Bi
|uaR(PK(λ̄n))|2,

Bn =
1
Bi
(
uaR(PK(λ̄n)), un+1),

Cn = aR|αuaR(PK(λ̄n)) + (1− α)un+1|,

Tn = (D(un+1), Gρ(λn))

σ1 = 0.1, σ2 = 0.9, γ = 10−4, ε = 10−7 ,


φaR(λ

n) =
1

2iBi
|uaR(λ

n)|2L2(Ω)
+ aR|uaR(λ

n)|L2(R)

φmax = max
{

φ(λn−k), 0 ≤ k ≤ min {n, M− 1}
} ,

ρsec =
1
Bi

|λn − λn−1|2
(λn − λn−1, D(un+1)− D(un))

, ρmin = 10−30, ρmax = 10−30 et Gρ(λn) = PK(λ̄n)− λn
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

2(D(un+1), D(v)) + aR(D(un+1), D(v))R = ( f , v)− Bi(λn, D(v)), ∀v ∈ V

Gρ(λn) = PK(λ̄n)− λn

BB ρn =

 ρn
R = ρmax si

(
(λn − λn−1), D(un+1)− D(un)

)
≤ 0 et |||2D(un+1) + Biλn||| < Bi

ρn
F = max {ρmin, min {ρsec, ρmax}} sinon

on cherche la suite αn telle que :

GLL



αn,1 = 1

Si (αn,k)2An + 2αn,k(1− αn,k)Bn + (1− αn,k)2|u|n+1 + Cn ≤ φmax − γαn,kTn Alors αn = αn,k

Sortie de la sous boucle

αn,k+1 =


αtemp =

1
2
(αn,k)2Tn

(αn,k)2 An+2αn,k(1−αn,k)Bn+αn,k(αn,k−2)|u|n+1+Cn+αn,kTn si αtemp ∈
[
σ1, σ2αn,k]

αn,k

2
sinon

λn+1 = λn + αnGρ(λn)

(3)

où aR > 0 est le coefficient de pénalisation qui a pour role de forcer la suite itérée D(un+1) à

converger le plus vite possible vers D(u) et R

Soit ε > 0 nous utilisons le Critère d’ arrêt : (|zn|L2 +
∣∣λn+1 : D(un+1)− |||D(un+1)|||

∣∣
L∞) < ε

pour l’agorithme.
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