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Introduction

La méthode de Lattice Boltzmann (LBM) est une méthode numérique utilisée pour la simu-
lation de problèmes complexes de la dynamique des �uides. Elle propose une approche di�érente
des méthodes classiques de type volumes �nis ou éléments �nis pour résoudre les équations de
Navier-Stokes. Contrairement à ces méthodes qui se placent à l'échelle macroscopique, la LBM
se concentre sur les particules de �uide à l'échelle mésoscopique. On est capable de retrouver
les caractéristiques macroscopiques du �uide à partir de la physique des particules. Avec cette
méthode on peut donc modéliser le comportement d'un �uide dans diverses situations. Les prin-
cipaux avantages de la LBM sont qu'elle est relativement simple à implémenter et surtout très
adaptée à la parallélisation. Grâce à ces avantages, cette méthode pourrait à l'avenir, devenir un
outil majeur de la mécanique des �uides numérique.

L'objectif de ce stage consiste, dans un premier temps, à implémenter la méthode de Lattice
Boltzmann en 2 puis 3 dimensions, puis à la coupler avec une méthode d'éléments discrets (DEM).
La DEM permet de simuler le comportement de grains solides soumis à des forces à distance ainsi
qu'à des forces de contact avec d'autres grains. Le couplage de ces deux méthodes permettrait
alors de simuler le comportement de particules dans un �uide.

On commencera par décrire dans la première section la méthode de Lattice Boltzmann pour
un modèle �xé à 2 dimensions (modèle D2Q9) et on montrera que cette approche permet de
décrire le comportement d'un �uide en retrouvant les équations de Navier Stokes. On présentera
ensuite dans la section 2 l'implémentation numérique de la méthode en 2D (modèle D2Q9) et
en 3D (modèle D3Q15), que l'on validera sur des cas tests où l'on comparera les résultats obte-
nus avec une solution analytique. Dans la section 3, on présentera deux méthodes de couplage
LBM/DEM et on procédera à des tests de couplage de la LBM avec un obstacle solide, d'abord
à 2 dimensions puis à 3 dimensions. En�n, dans la section 4, on présentera un problème d'un
couplage LBM/DEM et on donnera les premiers résultats obtenus.
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1 Méthode de Lattice Boltzmann

La méthode de Lattice Boltzmann est utilisée pour modéliser l'écoulement d'un �uide re-
présenté comme un ensemble discret de particules qui interagissent entre elles. Cette méthode
cherche à approcher la solution de l'équation continue de Boltzmann qui permet de décrire le
comportement d'un �uide à l'échelle mésoscopique. Sous certaines conditions la LBM permet
de simuler le comportement d'un liquide décrit à l'échelle macroscopique par les équations de
Navier-Stokes.

1.1 Equation de Boltzmann

L'équation de Boltzmann peut être introduite comme suit [Succi_2001]. On isole par la pensée
un volume V �xé contenant N molécules identiques de masse m d'un gaz et on suppose qu'elles
interagissent via une force ~F qui dépend de la distance qui les sépare. On peut considérer ces
particules comme ponctuelles, car la distance moyenne entre elles vaut d = ( VN )

1
3 et est donc très

grande comparée à la taille des molécules. L'équation de Boltzmann s'exprime donc au travers
d'une fonction f(~x,~c, t) qui représente la densité de probabilité qu'une particule se trouve proche
de ~x, au temps t et avec une vitesse proche de ~c. f(~x,~c, t)d~xd~v représente donc le nombre de ces
particules. On cherche alors à déterminer f à l'instant t+ dt.

En l'absence de collision entre particules, à l'instant t + dt les particules initialement à la
position ~x se retrouvent à la position ~x+ ~c dt avec une vitesse ~c+

~F
mdt. De là, comme ~c = d~x

dt et
d~c
dt =

~F
m , alors f(~x+ ~c dt,~c+

~F
mdt, t+ dt) = f(~x+ d~x,~c+ d~c, t+ dt).

Dans le cas contraire, certaines particules initialement situées à la position ~x avec une vitesse
~c à l'instant t n'atteindrons pas (~x + d~x,~c + d~c, t + dt) à cause de collisions avec d'autre par-
ticules. De même, certaines particules se retrouveront en (~x + d~x,~c + d~c, t + dt) après collision
sans s'être trouvées initialement en (~x,~c, t). On peut alors écrire l'équation de Boltzmann comme :

f(~x+ d~x,~c+ d~c, t+ dt) = f(~x,~c, t) + Ω(~x,~c, t) (1)

Où Ω représente la fonction choc.
Par la suite on négligera les forces ~F . On peut donc réécrire l'équation de Boltzmann comme suit :

f(~x+ ~cdt, t+ dt) = f(~x, t) + Ω(~x, t) (2)

On peut remarquer que comme on a une in�nité de directions de propagation possibles pour
chacune des particules et qu'elles sont toutes équiprobables, on a alors un champ de vitesse iso-
trope.

1.2 Lattice Boltzmann

Pour construire la méthode de Lattice Boltzmann, on discrétise en temps et en espace l'équa-
tion de Boltzmann et pour la résolution numérique, on se donne un nombre �niM+1 de directions
de propagations possibles des particules (Figure 1). On ne peut pas choisir les directions aléatoi-
rement, il faut les choisir de façon à ce que le champ des vitesses reste isotrope. Le passage de
l'équation continue de Boltzmann à l'équation discrétisée de Lattice Boltzmann est détaillé dans
la thèse de [Cao_2019]. L'idée est de développer la fonction de distribution f(~x,~c, t) à l'aide des
polynômes d'Hermite.
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L'équation de Lattice Boltzmann peut alors s'écrire comme :

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t) + Ωi(f(~x, t)), i = 0, ...,M (3)

Avec ~ci la vitesse locale dans la direction i de la particule, fi(~x, t) la densité de probabilité dans
la direction i et Ωi le terme de collision.
On peut faire le lien entre les échelles mésoscopique et macroscopique du �uide à l'aide des mo-
ments de vitesse d'ordre 0 à 2 :

ρ =
M∑
i=0

fi(~x, t)

ρ~u =

M∑
i=0

~cifi(~x, t)

ρe+
1

2
ρ|~u|2 =

1

2

M∑
i=0

|~ci|2fi(~x, t)

(4)

Où ρ correspond à la masse volumique du �uide et ~u à sa vitesse macroscopique. e représente la
densité massique d'énergie du �uide. Dans le cas d'un gaz, on a : e = D

2 rT avec D le nombre de
degrés de liberté des particules, T la température et r la constante réduite du gaz.

Le réseau est construit tel qu'entre les instants t et t + ∆t, chaque densité de probabilité
directionnelle fi se déplace sur le n÷ud voisin dans la direction de ~ci. On appellera cette étape,
l'étape de di�usion (Figure 2). On a alors c = |~ci| = ∆~xi

∆t , où ∆~xi désigne la distance entre les
deux n÷uds. De plus, on a la vitesse du son cs qui vaut c√

3
. D'après [Succi_2001], la méthode de

Lattice Boltzmann peut alors simuler l'hydrodynamique uniquement sous l'hypothèse d'un faible
nombre Mach (M = ‖~u‖

cs
), ce qui implique que la vitesse ‖~u‖ doit rester petite devant cette vitesse

du son cs.

On peut prendre pour exemple le schéma D2Q9, à 2 dimensions et 9 directions de propaga-
tions, explicité par [Zou&He_1997]. Avec |~ci| = c pour i = 1 à 8, on a :

~c0 =

(
0
0

)
~ci = c

(
cos
(
π
2 (i− 1)

)
sin
(
π
2 (i− 1)

)) pour i = 1, 2, 3, 4

~ci = c

(√
2cos

(
π
2 (i− 4− 1

2)
)

√
2sin

(
π
2 (i− 4− 1

2)
)) pour i = 5, 6, 7, 8

•••••

•••••

•••••

∆x

∆y = ∆x

• 1

2

3

4

56

7 8
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Figure 1: Réseaux de Boltzmann et zoom sur les directions de propagations possibles pour le
schéma à maille carrée D2Q9
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Figure 2: Étape de di�usion sur un n÷uds pour le schéma D2Q9

1.3 Conditions limites

Comme dans toute méthode numérique, pour pouvoir modéliser correctement un problème
physique, on a besoin de conditions aux limites. Dans la LBM on a un manque d'information
au niveau des fonctions de distributions sur les bords du domaine. En e�et, lors de l'étape de
di�usion (Figure 2), les n÷uds des bords ne peuvent pas recevoir toutes leurs nouvelles fonctions
de distributions dû à l'absence de n÷uds voisins au delà des limites du domaine. Ainsi, ils
reçoivent celles venant de l'intérieur du domaine uniquement.

La Figure 3, illustre les fonctions de distributions manquantes venant de l'extérieur du domaine,
représentées en pointillés, après l'étape de di�usion pour un n÷ud situé sur le bord Ouest du
domaine.
On va alors présenter les di�érentes conditions aux limites utilisées dans cette étude pour palier
à ce problème.

f3

f7 f4 f8

f1

f5f2f6

Nord

Est

Sud

Ouest

Intérieur du domaine

Figure 3: Informations manquantes (en pointillés) sur les n÷uds des bords du domaine après
étape de di�usion
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1.3.1 Condition périodique

On commence par la condition de périodicité. Lorsqu'on applique cette condition limite, si une
fonction de distribution sort du domaine, elle rentre ensuite par son bord opposé en gardant la
même direction. Ainsi, tout ce qui sort d'un coté rentre de l'autre. Les n÷uds situés sur les bords
du domaine sont alors voisins des n÷uds du bord opposé, ce qui permet donc de transmettre
les fonctions de distributions initialement manquantes. Cette condition limite est principalement
utilisée pour simuler l'écoulement d'un �uide en régime permanent dans un domaines semi-in�ni.
On l'utilisera par exemple, dans le cas d'un écoulement de Poiseuille.

1.3.2 Condition de rebond (bounce-back)

La condition de rebond permet de simuler des bords solides du domaine. Lorsque l'on applique
cette condition sur un bord, les fonctions de distributions qui arrivent du �uide sur ce bord sont
redirigées dans le sens opposé, vers l'intérieur du domaine, pour simuler un rebond sur cette
paroi solide.
On applique le rebond en copiant les fonctions de distributions connues venant du �uide et en les
pointant dans la direction opposée de sorte qu'elles retournent bien dans le �uide. Par exemple,
si l'on reprend la Figure 3, on échange f1 et f3, f5 et f7, f8 et f6.

On peut distinguer 2 types de conditions de rebond.

Rebond complet
Dans le cas du rebond complet (ou on-grid bounceback en anglais), la paroi solide est située sur
les n÷uds qui représentent donc une interface �uide/solide.

Rebond à mi chemin
Dans le cas du rebond à mi chemin (ou half-way wall bounceback en anglais), la paroi solide se
trouve au milieu de deux rangées de n÷uds. Les n÷uds sont alors soit complètement solide soit
complètement �uide, il n'existe pas de n÷ud à l'interface �uide/solide. D'après [Zou&He_1997],
ce rebond permet d'obtenir une meilleur précision sur la vitesse obtenue après convergence que
pour le Rebond complet, c'est pourquoi on l'utilisera pour nos simulations.

À l'implémentation, la collision sera di�érente en fonction du type de rebond choisi. Si l'on
choisi le rebond complet la collision à lieu sur l'ensemble des n÷uds y compris les n÷uds à
l'interface �uide/solide. Mais si l'on choisi le rebond à mi chemin, la collision aura lieu unique-
ment sur les n÷uds �uides, il faudra donc faire la distinction entre n÷uds �uides et n÷uds solides.

On peut également appliquer des conditions limites sur la vitesse ou la pression du �uide. Par
exemple, la condition de VonNeumann de [Zou&He_1997] qui impose une vitesse sur la frontière
du domaine et la condition de Dirichlet de [Zou&He_1997] qui impose une pression sur le bord
du domaine choisi. Nous ne détaillerons pas ces conditions limites qui ne seront pas utilisés dans
cette étude.

Dans la suite on introduit et on explicite la fonction de distribution à l'équilibre, puis la fonction
collision, en�n on montre les grandes lignes de la démarche permettant de retrouver les équations
de Navier-Stokes à partir de l'équation de Lattice Boltzmann.

6



1.4 Fonction de distribution à l'équilibre

On dé�nit la fonction de distribution à l'équilibre pour l'équation de Boltzmann fe(~x,~c, t) comme
étant la fonction de distribution qui annule le terme de collision de l'équation (2) [Succi_2001].
On suppose que les collisions sont uniquement binaires (on peut négliger les collisions à plus de
deux particules étant donnée leur rareté liée au très faible ratio entre la taille des particules et
leur distance moyenne de séparation d). On pose fe1′2′ la densité de probabilité de trouver en
(~x + d~x,~c + d~c, t + dt) une molécule ne provenant pas de (~x,~c, t) et fe12 celle de trouver ailleurs
qu'en (~x + d~x,~c + d~c, t + dt) une molécule provenant de (~x,~c, t). Par l'isotropie du champ des
vitesses, on peut faire l'hypothèse de chaos moléculaire, c'est à dire qu'il n'y a pas de corrélation
entre les vitesses des particules avant ou après un choc. Cette hypothèse reste valide dans le cas
d'un gaz s'écoulant à une vitesse moyenne ~u seulement si on considère la vitesse relative ~c − ~u
des particules. On a alors :{

fe12(~x,~c− ~u, t) =fe1 (~x,~c− ~u, t)fe2 (~x,~c− ~u, t)
fe1′2′(~x,~c− ~u, t) =fe1′(~x,~c− ~u, t)fe2′(~x,~c− ~u, t)

(5)

Par passage au logarithme, on obtient que ln(fe(~x,~c−~u, t)) est un invariant de collision, on peut
donc l'exprimer comme une combinaison linéaire des invariants de collision (masse, quantité de
mouvement et énergie) :

ln(fe(~x,~c− ~u, t)) = α+ β~u+ γ~u2 ⇒ fe(~x,~c− ~u, t) = exp(α+ β~u+ γ~u2) (6)

Pour calculer les coe�cients, on exprime chaque invariant de collision comme un moment d'ordre
n de fe (ordre 0 pour la masse, ordre 1 pour la vitesse et ordre 2 pour l'énergie) en intégrant sur
l'espace des phases.
On peut alors identi�er fe comme étant la distribution de Maxwell-Boltzmann :

fe(~x,~c− ~u, t) = ρ(2πv2
T )−

D
2 exp

(
− (~c− ~u)2

2v2
T

)
(7)

Où D correspond à la dimension du domaine �uide et vT =
√

kBT
m avec kB la constante de

Boltzmann et T la température absolue.
On suppose que la vitesse du �uide ||~u|| est petite devant la vitesse des particules ||~c||. On peut
donc faire un développement de Taylor d'ordre 2 en ~u de la distribution de Maxwell-Boltzmann
(7), et on obtient :

fe(~x,~c− ~u, t) = ρ(2πv2
T )−

D
2 exp

(
− ~c2

2v2
T

)(
1 +

~c.~u

v2
T

+
(~c.~u)2

2v4
T

− ~u2

2v2
T

)
(8)

La forme discrète de la fonction de distribution à l'équilibre pour l'équation de Lattice Boltz-
mann, peut alors s'écrire [Chen_1998] :

fei (~x, t) = ρωi
(
1 +

3~ci.~u

c2
+

9

2c4
(~ci.~u)2 − 3

2c2
~u2
)

(9)

Avec c = |~ci| et où les coe�cients ωi dépendent du schéma choisi. Dans le cas du schéma D2Q9
(Figure 1), on a ω0 = 4

9 , ωi = 1
9 pour i = 1, ..., 4 et ωi = 1

36 pour i = 5, ..., 8.
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1.5 Terme de collision

On s'intéresse maintenant à l'expression du terme de collision. On commence par faire un
développement de Taylor de fi(~x+ ~ci∆t, t+ ∆t), puis on le remplace dans l'équation de Lattice
Boltzmann (3). On obtient alors :

∆t

(
∂fi
∂t

+ ~ci.∇~xfi
)

(~x, t) +
∆t2

2

(
~ci
T .∇2

~xfi.~ci + 2~ci.∇~x
∂fi
∂t

+
∂2fi
∂t2

)
(~x, t) = Ωi(f(~x, t)) (10)

En considérant que les densités de probabilité fi �uctuent au voisinage de la fonction
de distribution à l'équilibre fe, on peut développer ces densités en puissance du nombre de
Knudsen ε (un nombre adimensionnel utilisé pour déterminer le régime d'écoulement d'un �uide) :

fi = fei + εf
(1)
i +O(ε2) (11)

On peut alors appliquer un développement de Taylor à Ωi(f) = Ωi(f
e + εf

(1)
i ) :

Ωi(f) = Ωi(f
e) + εf

(1)
j

∂Ωi(f
e)

∂fj
+O(ε2) (12)

En utilisant (11), on peut réécrire l'équation (12) comme suit :

Ωi(f) = Ωi(f
e) + (fj − fej )

∂Ωi(f
e)

∂fj
+O(ε2) (13)

De plus, par (10), on remarque que Ωi(f
e) −→ 0 quand ∆t −→ 0. À l'ordre 1 en ε, l'opérateur

de collision s'écrit donc :

Ωi(f) = Mij(fj − fej ) (14)

Avec Mij = ∂Ωi(f
e)

∂fj
qui correspond à la matrice de collision.

En assimilant les collisions à des perturbations avec retour à l'équilibre en un temps τ ,
[Chen_1998] propose d'écrire la matrice de collision :

Mij = −1

τ
δij (15)

Où δij correspond au symbole delta de Kronecker. On obtient alors l'opérateur simpli�é de
collision BGK, proposé par [Bhatnagar_1954] :

Ωi(f) = −1

τ
(fi − fei ) (16)

L'équation de Lattice Boltzmann avec l'opérateur de collision BGK devient alors :

fi(~x+ ~ci∆~x, t+ ∆t) = fi(~x, t)−
1

τ
(fi(~x, t)− fei (~x, t)) (17)

1.6 De Lattice Boltzmann à Navier-Stokes

On cherche à retrouver les équations de Navier Stokes (18) à partir de l'équation de Lattice
Boltzmann (17). Pour cela, on suit le raisonnement détaillé dans la thèse de [Cao_2019].

∇.~u =0

∂~u

∂t
+∇.(~u~u) =− 1

ρ
∇.(pI) +∇.

[
ν
(
∇~u+ (∇~u)T

)] (18)
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On commence par faire un développement de Taylor à l'ordre 2 de fi(~x + ~ci∆t, t + ∆t) puis on
l'injecte dans l'équation de Lattice Boltzmann (17), on obtient alors :

∆t

(
∂fi
∂t

+~ci.∇~xfi
)

(~x, t)+
∆t2

2

(
~ci
T .∇2

~xfi.~ci+2~ci.∇~x
∂fi
∂t

+
∂2fi
∂t2

)
(~x, t)+

1

τ

(
fi(~x, t)−fei (~x, t)

)
+O(∆t3) = 0

(19)

Ensuite, on utilise le développement (11) autour de la valeur d'équilibre f (0)
i . On peut di�érencier

trois échelles de temps : la relaxation vers l'état d'équilibre (temps ε0), la perturbation de la
densité qui se propage à la vitesse du son (temps ε1) et la di�usion (temps ε2). On peut donc
utiliser un développement multi-échelles de Chapman-Enskog :

∂t =ε∂t1 + ε2∂t2 +O(ε3)

∂~x =ε∂~x1 +O(ε2)
(20)

En réalisant alors un développement multi-échelles à l'ordre 2 en ε de l'équation de Lattice
Boltzmann (17) puis en passant le terme de collision Ωi dans le membre de gauche, on obtient
un polynôme d'ordre 2 en ε dont chaque coe�cient doit être nul :

Ordre ε0 :
1

τ

(
f

(0)
i − f

e
i

)
(~x, t) = 0 (21)

Ordre ε1 :
∂f

(0)
i

∂t1
(~x, t) + ~ci.

∂f
(0)
i

∂~x1
(~x, t) +

1

τ
f

(1)
i (~x, t) = 0 (22)

Ordre ε2 :
∂f

(0)
i

∂t2
(~x, t) +

(
∂f

(1)
i

∂t1
(~x, t) + ~ci.

∂f
(1)
i

∂~x1
(~x, t)

)(
1− 1

2τ

)
= 0 (23)

Pour obtenir la forme du coe�cient en ε2, on a d'abord pris la dérivée particulaire par rapport à
t1 de l'équation obtenue à l'ordre ε1 (22), puis on a remplacé dans l'équation obtenu initialement
à l'ordre ε2 pour �nalement obtenir (23).

On cherche maintenant à passer de l'échelle mésoscopique à l'échelle macroscopique. Pour cela,
on détermine les moments en vitesse d'ordre 0, 1 et 2 de la densité de probabilité qui s'écrivent
comme (4).
Le moment d'ordre 1 appliqué au coe�cient d'ordre ε2 (23) s'écrit comme suit :

∂(ρ~u)

∂t2
− c2

s(τ −
1

2
)

[
∇1.

(
ρ(∇1.~u+ (∇1.~u)T

)]
= 0 (24)

Où ∇1 = ∂
∂~x1

.

On repasse en échelle simple avec ∂t = ε∂t1 + ε2∂t2 +O(ε3) et ∂~x = ε∂~x1 +O(ε2).
Puis, par une combinaison linéaire entre l'équation du moment d'ordre 0 appliqué au coe�cient
d'ordre ε1 et celle appliqué au coe�cient d'ordre ε2, on obtient la première équation de Navier
Stokes (18) :

∂ρ

∂t
+∇.(ρ~u) = 0 (25)
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De même, par une combinaison linéaire entre (24) et l'équation du moment d'ordre 1 appliqué
au coe�cient d'ordre ε1, on retrouve la deuxième équation de Navier Stokes (18) :

∂(ρ~u)

∂t
+∇.(ρ~u~u) = −∇(ρc2

sI) + c2
s(τ −

1

2
)∇.
[
ρ

(
∇.~u+ (∇.~u)T

)]
(26)

On identi�e p = c2
sρ la pression et µ = ρc2

s(τ − 1
2) la viscosité dynamique.

On remarque que dans notre cas, contrairement à Navier-Stokes, ρ n'est pas complètement
constante.
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2 Implémentation numérique et validation de la méthode LBM

Dans ce chapitre, on commence par expliquer comment implémenter la méthode LBM. On y
présente les di�érentes étapes de l'algorithme et on détaille comment choisir les paramètres de
simulation. Ensuite, on teste la méthode sur un premier cas test simple en 2 dimensions puis
un deuxième cas test en 3 dimensions a�n de valider la méthode avant de la coupler avec un
obstacle solide dans le chapitre suivant.

2.1 Algorithme

On commence par présenter l'algorithme de la méthode de Lattice Boltzmann :

Algorithme 1 : Méthode de Lattice Boltzmann

Initialisation : On pose les paramètres du problème (ν, Re, dx, dt ...) et initialise l'ensemble
des données (~u, fei , ρ, fi)

While : critère d'arrêt sur la vitesse ~u
Di�usion : Pour toutes les directions i, f tempi = fi dans la direction ~ci
Condition limite (rebond à mi chemin) : Sur les parois, fi = f temp−i , ρ =

∑
i fi et

~u = 0
Valeurs macroscopiques : En dehors des parois, ρ =

∑
i f

temp
i et ~u =

∑
i f

temp
i ~ci

f Équilibre : fei = ρωi
(
1 + 3~ci.~u

c2
+ 9

2c4
(~ci.~u)2 − 3

2c2
~u2
)

Collision : Sur les n÷uds �uides, fi = f tempi − 1
τ (f tempi − fei )

Body force : fi = fi + ∆tρ ~g.~ci
Kc2

End while

Sauvegarde : On stock dans des �chiers les résultats des valeurs macroscopiques obtenues.
A�chage : On a�che sur le terminal les paramètres initiaux ( ν, Re, dx, dt ...) et les

données �nales (nombre itération, erreurs, vitesse max calculée ...)

Dans la littérature on retrouve di�érentes possibilités pour le choix de l'ordre des étapes
de l'algorithme. Ici, ce choix se base sur des travaux réalisés antérieurement au laboratoire.
Toutefois, on peut remarquer que l'ordre n'impacte pour ainsi dire pas le résultat car les étapes
sont répétées en boucle jusqu'à atteindre le critère d'arrêt posé comme l'écart relatif entre deux
vitesses ~u calculée entre deux pas de temps successifs inférieur à 10−10 :

‖u(t)− u(t−∆t)‖∞
‖u(t−∆t)‖∞

< 10−10 (27)

La di�érence entre deux résultats à ∆t près sera donc négligeable.

L'initialisation des paramètres dépend du problème étudié et du modèle choisi pour la simulation.
On commence par dé�nir les dimensions de notre domaine, comme sa longueur et sa hauteur.
Puis on �xe le nombre de n÷uds pour en déduire le pas de discrétisation. Dans le cas à 2
dimensions nos mailles sont donc carrées (et cubiques dans le cas à 3 dimensions). Par exemple,
si nx correspond au nombre de n÷uds selon x et L à la longueur du domaine sur ce même axe
alors le pas de discrétisation sur cet axe vaut L

nx
. Toutefois cette formule peut légèrement di�érer

dans le cas de la condition limite de rebond à mi chemin qui situe la frontière concernée du
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domaine entre deux n÷uds.

Connaissant la discrétisation, on peut dé�nir le pas de temps à l'aide de la formule obtenue
par identi�cation de l'équation de Navier Stokes (26), en redimenssionnant cette formule et en
écrivant la viscosité dynamique en fonction de la viscosité cinématique µ = ρν :

∆t = (τ − 0.5)
∆x2

3ν
(28)

car on rappel que cs = c√
3
.

Pour simuler l'écoulement d'un �uide, le nombre de Reynolds est un paramètre important à
prendre en compte. On peut le relier à la viscosité ν du �uide par la formule suivante :

Re =
UmoyD

ν
(29)

Où Umoy correspond à la vitesse moyenne de l'écoulement du �uide et D désigne une longueur
caractéristique du domaine.

Pour une simulation, on va donc �xer certains paramètres et calculer les autres à l'aide de ces
deux formules (28) et (29) qui les relient tous entre eux.

Dans la littérature, on trouve di�érentes façon d'intégrer une body force guidée par une
accélération ~g. On choisi, comme [Owen_2011], de l'introduire directement dans l'équation de
Lattice Boltzmann, ce qui donne :

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t)−
1

τ

(
fi(~x, t)− fei (~x, t)

)
+ ∆t

~G.~ci
Kc2

(30)

Avec ~G = ρ~g la body force (ou densité de force), K une constante (vaut 6 pour le schéma D2Q9
et 10 pour le schéma D3Q15) et c la vitesse du réseau.

En pratique, on ajoute alors ∆t
~G.~ci
Kc2

à fi après l'étape de collision.

Remarque : Pour gagner du temps de calcul, l'ensemble des codes ont été parallélisés à l'aide de
OpenMP et on teste le critère d'arrêt uniquement toute les 2000 itérations pour les simulations
à 2 dimensions et 10000 pour celles à 3 dimensions.

2.2 Cas test 2D

On choisi le schéma D2Q9 explicité dans le chapitre précédant (Figure 1) et on souhaite tester
l'implémentation numérique de la méthode LBM en 2 dimensions dans le cas d'un écoulement
de poiseuille.
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H = 0.3m

L = 2m

Direction du �uide

x

y

Solide

Figure 4: Domaine du cas test à 2 dimensions

On se place dans un domaine de 2 mètres de long et 0.3 mètres de hauteur. On �xe des frontières
solides sur les bords haut et bas du domaine et on y impose une condition limite de rebond à
mi chemin. Le �uide circule de gauche à droite entre ces deux frontières et une condition de
périodicité est appliquée en entrée et en sortie. Pour la discrétisation du domaine en espace, on
choisi ∆x = ∆y = 0.002 mètres. On doit alors poser nx = 1000 et ny = 151. De plus, on choisi
comme temps de relaxation τ = 0.55 et ν = 10−4m2/s comme viscosité cinématique du �uide.
De là, on peut �xer ∆t à l'aide de l'équation (28). En�n, on initialise la densité du �uide ρ à
1000kg/m3.
Dans cette simulation la vitesse ~u est initialisée à ~0 et l'écoulement est généré par une body force

(qui n'est autre qu'un gradient de pression) ρ~g tel que ~g =

(
gx
0

)
. Étant dans la con�guration

d'un écoulement de Poiseuille, on peut facilement déterminer gx en fonction du nombre de
Reynolds. En e�et, pour un écoulement de Poiseuille dans la direction x, on a la solution
analytique suivante des équations de Navier-Stokes :

u(x)(y) =
ρgx
2ρν

(
Hy − y2

)

u(x)(0) = u(x)(H) = 0

u(y)(y) = 0 si y = 0 ou y = H

u(x)(
H

2
) = u(x)

max

(31)

où H représente la hauteur du domaine.

On a donc :

u(x)
max =

ρgx
2ρν

H2

22
(32)

Comme dans un écoulement de Poiseuille on a umoy = 2
3umax, on obtient donc par (29) :

gx =
3

2

8ν2Re

H2D
(33)

On introduit cette body force après l'étape de collision, comme explicité dans la partie précédente.
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On teste ce cas pour di�érents nombres de Reynolds et on véri�e les pro�ls de vitesse ainsi que
les lignes de courants obtenues. Le nombre de Reynolds étant �xé, on calcule la vitesse maximale
u

(x)
max théorique de l'écoulement du �uide et son accélération gx en utilisant les formules décrites

précédemment (29) et (33). Les données de départ sont alors détaillés en fonction du nombre de
Reynolds :

Table 1: Données initiales
nombre de Reynolds 0.5 5 10 34

umax théorique (selon x) (m/s) 2.50 10−4 2.50 10−3 5.00 10−3 1.70 10−2

accélération gx (m/s2) 2.22 10−6 2.22 10−5 4.44 10−5 1.51 10−4

Après simulations, on obtient les résultats suivant :

Table 2: Résultats

nombre de Reynolds 0.5 5 10 34

nombre d'itérations 1 540 000 1 538 000 1 538 000 1 538 000

écart relatif de vitesses entre 2 itérations 9.90 10−11 9.93 10−11 9.93 10−11 9.93 10−11

umax calculée (selon x) (m/s) 2.4997 10−4 2.4997 10−3 4.9995 10−3 1.6998 10−2

erreur absolue sur la vitesse (m/s) 1.55 10−8 1.55 10−7 3.10 10−7 1.05 10−6

erreur relative sur la vitesse 6.18 10−3% 6.20 10−3% 6.20 10−3% 6.20 10−3%

On commence par remarquer que notre code converge bien. En e�et, on obtient bien un écart
de vitesses entre deux itérations inférieur au seuil donné dans le critère d'arrêt (10−10). On
peut également observer que l'erreur relative reste du même ordre pour chacun des nombres de
Reynolds choisis et qu'étant de l'ordre de 10−3, on peut a�rmer que la solution calculée est
su�samment proche de la solution analytique pour considérer que la vitesse calculée approche
bien la vitesse réelle du �uide.
Lorsque l'on trace la courbe de vitesse calculée en entrée, milieu et sortie du domaine, et celle de la
solution analytique attendue (31), on obtient pour chaque nombre de Reynolds testé, une super-
position parfaite de ces quatre courbes. Par exemple, pour Re = 10, on obtient la �gure suivante :
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Figure 5: Pro�ls de vitesse calculée et analytique pour Re = 10, dans un cas 2D

La �gure des pro�ls de vitesses con�rme donc bien les observations numériques e�ectuées juste
au-dessus : la vitesse calculée converge vers la vitesse analytique.
Maintenant, si on trace les lignes de courant, on obtient pour chaque nombre de Reynolds, des
lignes parallèles. Si on reprend l'exemple de Re = 10, on a alors :

Figure 6: Lignes de courant pour Re = 10, dans un cas 2D sans obstacle

La convergence de la vitesse calculé par le code, la superposition des courbes de vitesse obtenues
avec une erreur relative très faible et les lignes de courant bien parallèles nous permettent de
con�rmer l'e�cacité de notre implémentation de la LBM en 2 dimensions.
On souhaite maintenant la tester pour 3 dimensions.
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2.3 Cas test 3D

On choisi le schéma D3Q15, à 3 dimensions et 15 directions de propagations, explicité en annexe
A [Portinari_2015]. On pose c comme étant la vitesse du réseau, on a alors pour ce schéma :

~c0 =
(
0, 0, 0

)
~ci = c

(
±1, 0, 0

)
, c
(
0,±1, 0

)
, c
(
0, 0,±1

)
pour i = 1, ..., 6

~ci = c
(
±1,±1,±1

)
pour i = 7, ..., 14

• 12

3

4

5

6

•

7

8

9

10
11

12

13

14

Figure 7: Discrétisation spatiale de la méthode de Lattice Boltzmann pour le schéma D3Q15

Seul les coe�cients ωi de la fonction équilibre changent pour ce schéma, et deviennent :

ωi =



2

9
pour i = 0

1

9
pour i = 1, ..., 6

1

72
pour i = 7, ..., 14

On souhaite maintenant tester notre implémentation de la méthode LBM en 3 dimensions pour
ce schéma. Pour cela, on choisit de reproduire le cas test de [Portinari_2015] de l'écoulement
d'un �uide entre deux plaques parallèles de taille in�nie

(
Figure 8

)
.
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y

z
x

Direction du �uide

H=60

Figure 8: Domaine entre deux plaques parallèles de taille in�nie

On place deux plaques parallèles de taille in�nie espacées d'une hauteur de 60 unités de Lattice
(60 × ∆x mètres). On pose la longueur de la plaque selon y égale à 3 unités de Lattice et sa
profondeur selon x à 60 unités de Lattice. Puis, pour simuler la longueur et la profondeur in�nie
des deux plaques, on impose une condition de périodicité selon les axes x et y. Sur les plaques
(bords haut et bas du domaine), on applique une condition limite de rebond à mi chemin. On
fait le choix de prendre ∆x = ∆y = ∆z = 0.004m et on impose une vitesse moyenne au cours de
la simulation de 0.05×∆x m/s dans la direction d'écoulement du �uide selon x, puis on �xe la
viscosité ν à l'aide de la formule (29) où l'on prend D comme la hauteur de notre domaine. Le
pas de temps ∆t est alors initialisé grâce à (28). Comme pour les cas tests à 2 dimensions, on
simule un gradient de pression à l'aide d'une body force correspondant à l'accélération ~g dé�nie
en (33). En�n, on initialise la densité du �uide ρ à 1000 kg/m3.

Du fait qu'on ait une plaque de dimension in�nie dans la direction x (écoulement du �uide) et
dans la direction y (largeur du domaine), la solution à l'état stable n'est donc pas dépendante
de ces deux directions. On doit alors retrouver la même solution analytique dans le plan dé�ni
par les axes x et z que dans le cas à 2 dimensions pour un écoulement de Poiseuille ((31) en
remplaçant les y par des z).
On a�che donc la vitesse calculée en fonction z en entrée, milieu et sortie du domaine et la
compare avec la solution analytique attendue et on obtient les résultats suivant après simulation :

17



Table 3: Résultats
nombre de Reynolds 500

nombre d'itérations 42 000

écart de vitesse entre 2 itérations 9.16 10−11

umax calculée (selon x) 2.9975 10−4

erreur sur la vitesse 1.69 10−7

erreur relative sur la vitesse 5.63 10−2%

On peut voir que l'algorithme a bien convergé et on obtient une erreur très faible sur la vitesse.
De plus, si on observe la Figure 9, on remarque que tous les pro�ls de vitesse calculés en entrée,
sortie et milieu du domaine se superposent bien avec la solution analytique attendue.
On peut donc conclure de ce test numérique que notre implémentation de la méthode LBM en 3
dimensions est validée. On peut maintenant la coupler avec des obstacles solides.

Figure 9: Pro�ls de vitesse calculés et analytique dans le cas d'un écoulement entre 2 plaques
de taille in�nie pour Re=500, dans un cas 3D sans obstacle
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3 Couplage LBM/obstacle solide

Dans ce chapitre, on présente deux méthodes permettant de coupler le code Lattice-Boltzmann
avec un code d'éléments discrets. La DEM permet de simuler les interactions entre solides tandis
que la LBM simule le comportement du �uide. Le couplage entre ces deux méthodes permettrait
donc de décrire l'interaction entre solides et �uide. Pour cela, les deux codes doivent s'échanger
des informations entre eux : le code DEM transmet la position et la vitesse des obstacles solides
permettant au code LBM de simuler le comportement du �uide autour de ces solides tandis que
la LBM renvoie à la DEM les forces hydrodynamiques exercées par le �uide sur les obstacles
pour pouvoir calculer les champs de vitesse et de déplacement des solides. C'est pourquoi, on
commencera par simuler une simple interaction entre un �uide et un obstacle solide pour calculer
avec notre code LBM les forces hydrodynamiques et valider son e�cacité. On présentera donc
dans la suite de ce chapitre les résultats obtenus pour di�érents cas tests en 2 dimensions puis 3
dimensions.

3.1 Les principales méthodes

3.1.1 Immersed moving boundary method

Dans la �immersed moving boundary method�, on utilise une approche eulérienne pour cal-
culer l'écoulement du �uide sur un maillage cartésien �xe. Cette méthode, présentée par
[Benamour_2015], a d'abord été conçue pour des solides élastiques par Peskin, dans les années
1970. Puis, la méthode a été modi�ée pour s'adapter aux solides indéformables en considérant
la frontière attachée, à l'aide d'un ressort, à un point de référence. On peut donc exprimer la
densité de la force générée par l'élasticité du matériau ~F comme suit :

~F (s, t) = −k( ~X(s, t)− ~X(s, t)r) (34)

Avec k qui correspond à la constante de raideur du ressort et ~X(s, t)r au point de référence
associé au n÷ud de la frontière de coordonnées cartésiennes ~X(s, t).

Pour forcer le n÷ud de la frontière à rester très proche de son n÷ud de référence, le coe�cient de
raideur k doit être choisi très grand. De plus, pour éviter la déformation du solide, on autorise
uniquement un mouvement de rotation du point de référence entre deux pas de temps ce qui
permet de garder une distance constante entre le centre de gravité du solide et sa frontière entre
ces deux pas de temps. On obtient alors la formule suivante :

~X(s, t)r = ~Xp(t) +R(t)( ~X(s, 0)r − ~Xp(0)) (35)

Où ~Xp est le centre de gravité du solide et R(t) sa matrice de rotation.

Pour coupler cette méthode avec la LBM, on distribue ~F (s, t) sur le maillage eulérien de la LBM
et on obtient alors la force exercée par l'obstacle sur le �uide ~fh pour le maillage eulérien :

~fh(~x, t) =

N∑
n=1

~F ( ~Xn, t)δh(~x− ~Xn)∆s ∀~x ∈ gh (36)

Avec N qui correspond au nombre de n÷uds de la frontière immergée, δh(~x) la distribution de
Dirac, gh désignant le maillage régulier eulérien des n÷uds �uides et :
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~F ( ~Xn, t) = −k( ~Xn − ~Xr
n) (37)

[Benamour_2015] utilise alors l'équation de Lattice-Boltzmann avec terme source comme ceci :

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t)−
1

τ

(
fi(~x, t)− fei (~x, t)

)
+ ∆tFi (38)

Où Fi = 3
2ωi

~fh.~ci

L'équation de Lattice Boltzmann (38) peut alors être résolue pour calculer la vitesse du �uide sur
les n÷uds du domaine eulérien à l'aide des équations des moments sur la vitesse (4). La vitesse
~u est ensuite interpolée sur les n÷uds de la frontière immergée avec l'équation discrétisée suivante :

~U( ~Xn, t+ ∆t) =
∑
~x∈gh

~u(~x, t+ ∆t)δh(~x− ~Xn)h2 (39)

On peut alors calculer la position de l'ensemble des points de la frontière immergée à l'aide de
la vitesse ~U( ~Xn, t+ ∆t) maintenant connue pour chacun de ces points.

La littérature sur cette méthode, révèle des problèmes de stabilité dans la résolution des
équations du �uide pour des k trop élevés, et pour des k trop faibles les résultats semblent
dépendre de ce coe�cient k. On s'intéressera donc à une autre méthode, la �partially saturated
cells method�.

3.1.2 Partially saturated cells method

La �partially saturated cells method� a été proposée par [Noble et Tozczynski_1998] pour étudier
des écoulements de �uides dans un milieu granulaire. Cette méthode de couplage entre un �uide
et des solides se base sur l'équation de Lattice Boltzmann avec un opérateur de collision BGK
(17). Cette équation est modi�ée en y ajoutant une fonction de pondération, Bs, permettant de
faire la distinction entre les cellules occupées ou non par les obstacles solides, et un terme de
collision solide, Ωs

i , qui prend en compte l'interaction du �uide avec chaque obstacle solide dans
les cellules concernées. Elle permet alors de conserver le caractère local de la collision propre à
la méthode de Lattice Boltzmann tout en s'adaptant à la présence de frontières évolutives des
obstacles solides :

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t) + (1−
N∑
s=1

Bs)(−
1

τ
(fi(~x, t)− fei (~x, t))) +

N∑
s=1

BsΩ
s
i (40)

où N représente le nombre de solides dans le �uide étudié.

Il existe plusieurs formes possible pour l'opérateur de collision solide Ωs
i ,

[Noble et Tozczynski_1998] en présentent deux dans leur étude. La première est basée sur
la règle du �rebond� de la partie non équilibrée et s'écrit :

Ωs
i = f−i(~x, t)− fi(~x, t) + fei (ρ, ~us)− fe−i(ρ, ~u) (41)

Où ~us est la vitesse du solide s à l'instant t, au n÷ud de coordonnées x et la notation f−i corres-
pond au �rebond� à partir de fi obtenu en inversant l'ensemble des vitesse moléculaire (~ci → −~ci).
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La deuxième forme est construite de façon à ce que la distribution de particules résultante soit
égale à celle d'équilibre évaluée à la vitesse du solide plus un terme dépendant de la di�érence
entre la distribution fi et sa valeur d'équilibre :

Ωs
i = fei (ρ, ~us)− fi(~x, t) +

(
1− ∆t

τ

)(
fi(~x, t)− fei (ρ, ~u)

)
(42)

Au delà des di�érentes formes possibles pour le terme de collision solide Ωs
i , on a également

plusieurs possibilités pour l'expression de Bs dans l'implémentation de l'équation (40). Suite à
l'étude de [Noble et Tozczynski_1998], il s'avère que pour le choix de (41) pour Ωs

i , une fonction
de pondération simple su�t pour obtenir de bons résultats :

Bs = εs (43)

où εs est la fraction volumique occupée par le solide s dans la cellule de calcul, comme illustré
par la Figure (10).

En revanche, pour le choix de (42) pour Ωs
i , [Noble et Tozczynski_1998] proposent une fonction

de pondération un peu plus complexe :

Bs =
εs(

τ
∆t − 0.5)

(1− εs) + ( τ
∆t − 0.5)

(44)

On observe bien que dans les deux cas, on a Bs = 0 quand la cellule est remplie uniquement de
�uide et Bs = 1 quand elle est remplie uniquement de solide s.

•••

•••

•••

εs =

Figure 10: Représentation de εs pour une cellule intersectée par un solide

On peut alors calculer la force hydrodynamique totale agissant sur l'obstacle comme explicité
par [Owen_2011] :

~Fh =
∆xD

∆t

∑
n

Bn
(∑

i

Ωs
i ~ci
)

(45)

Où D représente la dimension du domaine, n le numéro du n÷ud et Bn =

N∑
s=1

Bs dans la cellule

de calcul associée au n÷ud n.
Pour une force hydrodynamique selon l'axe x, on a son coe�cient de traînée associé :

Cd =
2F

(x)
h

ρ(u
(x)
m )2S

(46)

Avec F (x)
h la composante selon x de la force de traînée ~Fh, S une surface de référence liée à

l'obstacle et u(x)
m la composante selon x de la vitesse de l'obstacle relativement au �uide.
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3.2 Implémentation numérique

Dans la suite nous utiliserons la �partially saturated cells method� pour coupler la méthode
de Lattice Boltzmann avec un obstacle solide. Avec ce couplage, de nouvelles étapes (en bleu)
apparaissent alors dans l'algorithme :

Algorithme 2 : Méthode de Lattice Boltzmann couplée avec un obstacle solide

Initialisation : On y ajoute l'initialisation des données de l'obstacle (rayon, coordonnée
centre d'inertie, vitesse rotation, vitesse translation ...)

Calcul εs et us : Calcule et stockage dans un tableau des valeurs de εs et us pour les cellules
qui intersectent l'obstacle

While : critère d'arrêt sur la vitesse ~u
Di�usion
Condition limite (rebond à mi chemin)
Valeurs macroscopiques
f Équilibre : On y ajoute le calcul de fei (ρ, ~us)
Collision solide : Ωs

i = f−i − fi + fei (ρ, ~us)− fe−i(ρ, ~u)
Collision
Assemblage �partially saturated cells method� : Sur l'ensemble des cellules qui

intersectent l'obstacle : fi = fi +Bs
1
τ (f tempi − fei (ρ, ~u)) +BsΩ

s
i

Body force
−Bs Body force : On retire la body force dans les cellules qui intersectent l'obstacle :

fi = fi −Bs∆tρgcixKc2

End while

Calcule de la force de traînée :Fh = ∆xD

∆t Bs
(∑

i

Ωs
i ci
)

Calcule du coe�cient de traînée : Cd = 2Fh
ρu2mS

Sauvegarde : On stocke dans des �chiers les résultats des valeurs macroscopiques et le
coe�cient de traînée obtenues.

A�chage : On a�che sur le terminal les paramètres initiaux ( ν, Re, dx, dt ...) et les
données �nales (nombre itération, erreurs, vitesse max calculée, coe�cient de traînée...)

Pour coupler la méthode de Lattice Boltzmann avec un obstacle solide, on a besoin de calculer
la fraction volumique εs occupée par le solide dans chaque cellule qui intersecte l'obstacle.
Pour cela, on s'inspire de la méthode présentée par [Galindo-Torres_2013] pour un obstacle
3D sphérique, qui consiste à trouver les points d'intersections entre la sphère et les arêtes de la
cellule. Une fois les deux points extrêmes identi�és pour une arête, on calcule alors la distance
entre ces deux points. On obtient donc la longueur intersectée de chaque arête et on dé�nit la
fraction solide εs comme étant le ratio de la somme de ces longueurs intersectées sur la longueur
totale des arêtes de la cellule.
On souhaite adapter cette méthode à l'ensemble des polyèdre convexe. Pour cela, on on com-
mence par identi�er les cellules qui intersectent le cercle circonscrit de l'obstacle. On commence
par identi�er les indices extrèmes des cellules qui intersectent le cercle (ou sphère) circonscrit de
l'obstacle puis à partir de ces indices on obtient l'ensemble de ces cellules. On peut maintenant
calculer εs et ~us pour chacune de ces cellules. Pour calculer la vitesse de l'obstacle au centre de
la cellule ~us, on utilise la formule suivante :
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~us = ~vt + ~vr ∧ ~X (47)

où ~vt est la vitesse de translation de l'obstacle, ~vr sa vitesse de rotation et ~X = ~Xc − ~Xo la
di�érence entre le centre de la cellule et le centre de l'obstacle.

Pour le calcul de la fraction volumique εs occupée par le solide, on commence par parcourir
l'ensemble des cellules qui intersectent le cercle inscrit de l'obstacle solide. Puis on regarde pour
chacune de ces cellules (carré en dimension 2 et cube en dimension 3) le nombre de sommets dans
le cercle inscrit de l'obstacle. Si l'ensemble de tout les sommets y sont, alors εs = 1 et on peut
calculer ~us associée à cette cellule ( ~us est d'abord initialisé à zéros puis calculée uniquement dans
les cas où εs 6= 0). Si au moins un des sommets n'appartient pas au cercle inscrit de l'obstacle,
alors on véri�e qu'il y en ai au moins un qui l'intersecte puis on détermine la longueur de chaque
arête de la cellule dans l'obstacle. On peut alors les additionner puis diviser par le nombre totale
d'arête d'une cellule (4 en 2 dimensions et 12 en 3 dimensions) multiplié par ∆x ce qui nous donne
la fraction volumique εs occupée par le solide dans la cellule de calcule. (On prend en compte
que les cellules voisines ont des arêtes communes et donc on parcours uniquement les arêtes qui
n'ont pas encore été calculées).
On résume l'ensemble de ces étapes pour dans l'algorithme suivant :

Algorithme 3 : Calcule de εs

for i=1, nombre cellules intersectées par le cercle circonscrit de l'obstacle :
if Tous les sommets de la cellule sont dansle cercle inscrit de l'obstacle :
εs = 1 et calcul de us

else :
if la cellule n'intersecte pas le cercle circonscrit de l'obstacle :
εs = 0

else :
for j=1, nombre d'arête de la cellule na :

if arête déjà parcourue :
Prendre longueur arête dans l'obstacle déjà calculé

else :
if l'arête intersecte le cercle circonscrit :

Calcule longueur arête dans obstacle
else :

longueur arête = 0
end if

end if
end for
Addition de toutes les longueurs d'arête de la cellule dans l'obstacle n0

a

εs = n0
a

na∆x
if εs 6= 0 :

Calcul de us
end if

end if
end if

end for
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Pour toutes les simulations qui suivent, on garde le même critère d'arrêt que dans le cas sans
obstacle 27.

3.3 Résultats numériques 2D

On souhaite valider le couplage de la méthode de Lattice Boltzmann avec un obstacle solide
en 2 dimensions. Pour ce faire, on se base sur deux cas tests de l'article de [Owen_2011]. Le
premier étant un écoulement de Poiseuille autour d'un disque et le second autour d'un carré. On
comparera les résultats obtenus pour le coe�cient de traînée avec ceux de l'article.

3.3.1 Écoulement de Poiseuille autour d'un disque

On se place dans le même domaine et avec les mêmse paramètres que pour l'écoulement de
Poiseuille étudié en section 2.2. On ajoute un obstacle circulaire de diamètre 0.02 mètre,
immobile, au centre du domaine (Figure 11).

H = 0.3m

L = 2m

l = 0.02m

Direction du �uide

x

y

Solide

Figure 11: couplage �uide-grain en 2D avec un disque

Pour rappel, une condition limite de rebond à mi chemin est appliquée sur les bords solides haut
et bas du domaine et une condition de périodicité sur l'écoulement du �uide en entrée et en
sortie est imposée. On résume les paramètres choisis dans le tableau si dessous :

Table 4: Données initiales
∆x 0.002m

τ 0.55

ν 10−4m2/s

ρ 1000kg/m3

Pour calculer la collision solide Ωs
i , on prendra la formule 41, et on choisira donc de prendre

Bs = εs.

On calcule le coe�cient de traînée à l'aide de la formule (46) en prenant S comme étant le
diamètre de l'obstacle. L'écoulement du �uide étant un Poiseuille, on sait que avant interaction
avec l'obstacle sa vitesse est maximale au centre du domaine. Comme l'obstacle est situé au
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centre du domaine et de diamètre très petit devant la hauteur du domaine, on prend um comme
étant cette vitesse maximale du �uide.

On a donc calculé le coe�cient de traînée pour di�érents nombres de Reynolds et comparé avec
les résultats de [Owen_2011]. Pour faire varier le nombre de Reynolds, on fait varier l'accélération
~g de la body force et on obtient le nombre de Reynolds associé au �uide proche de l'obstacle avec :

Re =
umD

ν
(48)

où um correspond à la vitesse maximale du �uide calculée avant interaction avec l'obstacle, D le
diamètre de l'obstacle et ν la viscosité cinématique du �uide.

Les résultats obtenus sont représentés sur la Figure 12 suvante :

Figure 12: Coe�cient de traînée en fonction du nombre de Reynolds, pour un écoulement de
Poiseuille autour d'un disque en 2D

On peut voir sur cette �gure que, bien que nos coe�cients de traînée s'éloignent légèrement de
ceux obtenus par [Owen_2011] pour des nombres de Reynolds supérieurs à 10, ils restent tout
de même très proches et semble bien suivre le pro�l de résulats de [Owen_2011]. On peut donc
valider cette simulation.
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3.3.2 Écoulement de poiseuille autour d'un carre

On s'intéresse maintenant à l'écoulement d'un �uide autour d'un carré selon [Owen_2011]. On
se place dans un domaine de 3.07 mètres de long et 0.82 mètre de hauteur. On garde les mêmes
conditions limites et les mêmes paramètres que dans le cas précédent. La taille du domaine étant
di�érente, on change la discrétisation, on prend ∆x = 0.005 mètres. On aura donc nx = 614 et
ny = 165. Comme pour le cas précédent, l'écoulement du �uide est un écoulement de Poiseuille
dirigé par une body force d'accélération ~g que l'on fera varier pour obtenir di�érents nombres de
Reynolds. On place au centre de ce domaine un obstacle carré de largeur 0.1025 mètre et immobile.

H = 0.82m

L = 3.07m

l = 0.1025m

Direction du �uide

x

y

Solide

Figure 13: couplage à 2 dimensions avec un solide carré

Les paramètres de la simulation sont résumé dans le tableau suivant :

Table 5: Paramètres de simulation
∆x 0.005m

τ 0.55

ν 10−4m2/s

ρ 1000kg/m3

Comme pour la simulation précédente, on souhaite calculer le coe�cient de traînée pour
di�érents nombres de Reynolds et comparer avec les résultats obtenus par [Owen_2011].

Pour calculer le coe�cient de traînée, on utilise la formule (46) en prenant u(x)
m comme étant

la vitesse maximale du �uide calculée au centre du domaine avant interaction avec l'obstacle
dans la direction x. Ce choix est celui qui avait été validé dans le cas test autour de l'obstacle
circulaire. On choisit également les mêmes formules pour la collision solide Ωs

i et Bs ainsi que
pour le nombre de Reynolds.

Pour l'obstacle carré, on obtient les résultats présentés sur la Figure 14.
On observe des résultats proche de ceux attendus bien que comme dans le cas précédent, des
résultats légèrement moins bons pour des nombres de Reynolds supérieurs à 10. Cependant, le
pro�l des résultats obtenus suit bien celui présenté par [Owen_2011].
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Figure 14: Coe�cient de traînée en fonction du nombre de Reynolds, pour un écoulement de
Poiseuille autour d'un carré en 2D

On peut donc également valider cette simulation et maintenant tester en 3 dimensions le couplage
de la LBM avec un obstacle solide.

3.4 Résultats numériques 3D

On souhaite maintenant valider le couplage de la méthode de Lattice Boltzmann avec un obstacle
solide en 3 dimensions. Pour cela, on reproduit un cas test de l'article de [Galindo-Torres_2013],
qui simule l'écoulement d'un �uide autour d'une sphère. On comparera nos résultats de coe�cient
de traînée avec ceux de [Galindo-Torres_2013] mais également ceux de [Owen_2011] qui présente
un test similaire, ainsi qu'avec une corrélation empirique trouvée avec des données expérimentales
[White_1991] :

CD ≈
24

Re
+

6

1 +
√
Re

+ 0.4 (49)

On se place dans un domaine de 240 cellules de longueur et 60 cellules de hauteur et profondeur
où ∆x = ∆y = ∆z = 0.004m. On place au centre de ce domaine une sphère solide de rayon
0.036m. On pose la densité du �uide ρ = 1000kg/m3, sa viscosité cinématique ν = 10−4m2/s
et un temps de relaxation τ = 0.6. On �xe alors le pas de temps à l'aide de (28). On applique
dans chacune des trois directions une condition limite périodique et on impose une body force
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d'accélération constante ~g dans la direction du �uide x. On calcule le nombre de Reynolds en
fonction du diamètre de la sphère D, de la viscosité cinématique du �uide ν et de la vitesse
moyenne uave calculée dans les cellules non occupée par l'obstacle :

Re =
uaveD

ν
(50)

Avec la vitesse moyenne uave qui est calculée comme suit :

uave =
1

nxnynz

n∑
i=1

(1− εis)u
(x)
i (51)

où n représente le nombre de n÷uds dans le domaine, u(x)
i la vitesse calculé au n÷ud i dans la

direction x et εis le ratio de solide s dans la cellule de calcule associé au n÷ud i.

Pour faire varier le nombre de Reynolds, on test notre simulation pour di�érentes accélérations
~g. Pour chaque simulation, on calcule la vitesse moyenne dans le domaine à l'aide de la formule
51 puis le nombre de Re avec 50. On y associe alors le coe�cient de traînée calculé à l'aide de la
formule suivante :

CD =
8F

(x)
h

ρu2
aveπD

2
(52)

Pour ces simulations, on applique un nouvel opérateur de collision que [Galindo-Torres_2013]
utilise :

Ωs
i = f−i(~x, t)− fi(~x, t) + fei (ρ, ~us)− fe−i(ρ, ~us) (53)

Cet opérateur de collision est associé à la fonction de pondération suivante :

Bs =
εs(τ − 0.5)

(1− εs) + (τ − 0.5)
(54)

Les résultats obtenus sont exposés sur la �gure 15. On peut y voir que les résultats obtenus sont
très similaires à ceux de [Galindo-Torres_2013] et [Owen_2011]. Les valeurs restent proches
et suivent bien le pro�l de résultats présenté par [Galindo-Torres_2013]. On peut donc valider
cette simulation 3D.
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Figure 15: Coe�cient de traînée calculé en fonction du nombre de Reynolds, écoulement d'un
�uide autour d'une sphère en 3D

3.5 Discussion

Pour la simulation à 2 dimensions autour d'un disque on a d'abord commencé par �xer un
nombre de Reynolds puis imposé l'accélération de la body force ~g à partir de ce nombre à l'aide
de la formule (33), comme dans les simulations d'écoulement de Poiseuille sans obstacle en
section 2.2. On calculait alors le coe�cient de traînée comme présenté en section 3.3.1 mais avec
le nombre de Reynolds �xé au départ pour le calcul de la body force et en prenant la vitesse
maximale théorique obtenue à l'aide de la formule suivante :

Umax =
3

2

Reν

D
(55)

Avec D le diamètre de l'obstacle.

On obtenait alors les résultats résumés dans le tableau suivant :
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Table 6: Coe�cients de traînée calculés à partir de de la vitesse maximale théorique, en fonction
du nombre de Reynolds �xé en début de simulation

Re Cd cette étude Cd Owen erreur relative
0.5 16.60 20.1 17.41%
0.9 9.56 16.5 42.06%
2.7 3.78 6.9 45.22%
5 2.37 4.6 48.48%
9.5 1.49 3.15 52.70%
18.5 0.92 2.2 58.18%
34 0.58 1.7 65.88%

On peut voir que les résultats sont globalement très éloignés de ceux de [Owen_2011]. On choisit
alors de tester à nouveau notre simulation en prenant une moyenne de cette vitesse maximale.
Pour un écoulement de Poiseuille, cela revient à prendre 2

3 de cette vitesse maximale. Ce choix
vient du fait que l'obstacle étant plus large qu'une cellule de calcul, on suppose que la vitesse
de l'obstacle relativement au �uide doit être plus proche de la vitesse moyenne du �uide dans
le domaine. On teste cette théorie d'abord pour des nombres de Reynolds autour de 10, et les
résultats semblent cohérents et proches de ceux attendus. Cependant, quand on s'éloigne de ce
nombre de Reynolds, les résultats sont moins bons :

Figure 16: Coe�cient de traînée calculé à partir de 2
3 de la vitesse maximale théorique, en

fonction du nombre de Reynolds �xé en début de simulation

Re Cd cette étude Cd Owen erreur relative
0.5 37.36 20.1 85.87%
0.9 21.51 16.5 30.36%
2.7 8.50 6.9 23.19%
5 5.33 4.6 15.87%
9.5 3.35 3.15 6.35%
18.5 2.06 2.2 6.36%
34 1.30 1.7 23.55%

Suite à ces résultats pas encore assez proche de ceux attendus, on souhaite véri�er par un
autre moyen l'e�cacité et la cohérence de notre implémentation de ce couplage pour savoir si le
problème vient du calcul du coe�cient. Pour cela on regarde les lignes de courant et les pro�ls
de vitesse obtenus pour notre simulation (Figure 17 à 22).
Il faut noter que le pro�l de vitesse calculé à partir du umax théorique ne correspond pas
forcément à la solution exacte attendu. En e�et, il correspond à la vitesse d'un écoulement de
Poiseuille dans un domaine de hauteur l, le diamètre de l'obstacle, sans obstacle. Dans notre cas,
avec l'obstacle au centre du domaine, on ne connaît pas la vitesse exacte attendue.
Quand on observe le pro�l de la vitesse calculé, on voit que les vitesses en entrée et en sortie
du domaine sont parfaitement superposées et on retrouve bien une vitesse nulle au milieu du
domaine à l'endroit de l'obstacle avec une accélération de part et d'autre de l'obstacle. Ce pro�l
semble donc cohérent.
De plus, si on regarde les lignes de courant, on observe bien qu'elles contournent l'obstacle
comme voulu, et plus le nombre de Reynolds est élevé plus la longueur de recirculation du �uide
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derrière l'obstacle est grande. On voit également que cette longueur impacte le pro�l de vitesse
pour des nombres de Reynolds élevé. Ces résultats sont donc tout à fait cohérents avec ce que
l'on peut trouver dans la littérature.

Figure 17: lignes de courant autour d'un disque
pour Re = 0.5

Figure 18: lignes de courant autour d'un disque
pour Re = 9.5

Figure 19: lignes de courant autour d'un disque
pour Re = 34

Figure 20: pro�ls de vitesse pour Re = 0.5

Figure 21: pro�ls de vitesse pour Re = 9.5

Figure 22: pro�ls de vitesse pour Re = 34

Comme la vitesse maximale calculée autour de l'obstacle est considérablement di�érente de
la vitesse maximale théorique, on choisi de prendre, dans la formule du coe�cient de traînée
(46), um comme la vitesse maximale calculée autour de l'obstacle situé au centre du domaine.
Cette vitesse pourrait correspondre à la vitesse de l'obstacle relativement au �uide. On avait
commencé par tester avec la valeur théorique au centre du domaine selon l'axe des y (maximum
de la courbe noire des Figures ci-dessus), on teste donc maintenant avec la valeur maximale
calculée au centre du domaine selon l'axe des x (c'est à dire le maximum de la courbe bleu des
Figures ci-dessus). On obtient les coe�cients de traînée suivants :
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Table 7: Coe�cient de traînée calculé à partir de la vitesse maximale calculée autour de l'obs-
tacle, en fonction du nombre de Reynolds

Re Cd cette étude Cd Owen erreur relative
0.5 23.38 20.1 16.31%
0.9 13.57 16.5 17.76%
2.7 5.60 6.9 18.84%
5 3.72 4.6 19.13%
9.5 2.56 3.15 18.73%
18.5 1.84 2.2 16.36%
34 1.44 1.7 15.29%

On remarque que bien que l'erreur relative du coe�cient de traînée calculé ne descende pas plus
bas que 15%, elle reste relativement constante (varie entre 15% et 20%) en fonction du nombre
de Reynolds contrairement au cas précédent. On peut donc dire que dans ce deuxième cas, le
pro�l du coe�cient de traînée calculé semble globalement mieux suivre celui attendu. On les
représente graphiquement dans la �gure suivante :

Figure 23: Coe�cient de traînée calculé à partir de 2
3umax théorique et du umax calculé autour

de l'obstacle, en fonction du nombre de Reynolds
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Quand on regarde les �gures 20 à 22, on peut remarquer que la vitesse maximale calculée
au centre du domaine avant l'interaction du �uide (maximum de la courbe rouge) avec
l'obstacle est très di�érente de celle calculé à partir du nombre de Reynolds �xé en début
de simulation. C'est pourquoi on a �nalement choisi de recalculer le nombre de Reynolds
en �n de simulation à partir de la vitesse obtenue au centre du domaine en entrée et en
sortie du domaine et de calculer le coe�cient de traînée à partir de ces nouvelles valeurs. Ce
sont �nalement les résultats présentés en section 3.3.1 et retenus pour le reste des simulations 2D.

On s'intéresse donc maintenant à ces résultats présentés en section 3.3.1 et 3.3.2. On a remarqué
que les résultats semblaient légèrement moins bon pour des nombres de Reynolds supérieurs à 10.
On peut se demander si la condition de périodicité n'in�uencerait pas la vitesse calculée et donc
le calcul du coe�cient de traînée. Cette condition limite fait apparaître un réseau périodique
d'obstacles espacés de façon régulière et on ne se retrouve donc plus exactement dans le cas d'un
écoulement de �uide in�ni autour d'un seul obstacle. En e�et, on peut observer dans le cas du
disque comme dans celui du carré, une zone de recirculation derrière l'obstacle qui augmente
avec le nombres de Reynolds (�gures 17 à 19 pour le disque et �gures 24, 26 et 28 pour le carré),
et quand il est supérieur à 10 on peut voir que la vitesse semble être impactée par cette zone de
recirculation en entrée et en sortie du domaine (courbe rouge des �gures 20 à 22 pour le disque
et �gures 25, 27 et 29 pour le carré).

Figure 24: lignes de courant autour d'un carré
pour Re = 0.5 Figure 25: pro�ls de vitesses pour Re = 0.5

Figure 26: lignes de courant autour d'un carré
pour Re = 17 Figure 27: pro�ls de vitesses pour Re = 17
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Figure 28: lignes de courant autour d'un carré
pour Re = 46 Figure 29: pro�ls de vitesses pour Re = 46
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4 Couplage DEM/LBM

Jusque là, on couplait la methode de Lattice Boltzmann avec un obstacle solide immobile par
rapport au domaine (vitesse non nul �uidemais ps par rapport au �uide), maintenant on souhaite
que l'obstacle se déplace.
La DEM permet de simuler les intéractions entre di�érents solides. Elle résoud les équations de
Newton sur chaque grain solide soumis à des forces à distance et de contact. Dans un premier
temps, on code une version simpli�ée de la DEM dans laquelle il n'y a pas de force de contact
solide, seulement des forces �uide, et un seul grain en translation. Il en résulte que la partie
DEM se limite à la résolution d'une équation de Newton en translation et au calcul de vitesse et
déplacement en translation par un schéma de di�érences �nies d'ordre 2 tout simple (�Leap-frog
Verlet�).
On souhaite donc maintenant coupler la LBM avec cette méthode de di�érences �nies en 2
dimensions. Pour cela, on ce place dans une cuve remplie d'huile au repos, de H = 0.48m de
hauteur et L = 0.045m de largeur. Puis on laisse tomber une bille en aluminium, que l'on
représentera par un disque, de masse volumique ρb = 2700kg/m3 et de diamètre D = 0.003m.

H = 0.48m

L = 0.045m

fluide

y

x

Figure 30: représentation schématique de la simulation

À l'aide d'une méthode de di�érence �nie on va calculer la position et la vitesse de l'obstacle
à chaque pas de temps puis transmettre ces informations au code LBM qui calculera la force
de traînée obtenue. On comparera nos résultats avec ceux obtenus par la loi de Stokes qui nous
donne la vitesse limite Vl atteinte par la bille pendant sa chute dans le �uide :

Vl =
g(ρb − ρf )D2

18ρfν
(56)

où g correspond à l'accélération de pesanteur que l'on estimera à 9.81m/s2, D le diamètre de la
bille et ρf la masse volumique du �uide et ν sa viscosité.
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4.1 LBM

Pour la méthode LBM, on applique des conditions de rebond à mi chemin sur chacune des parois
solides et on pose ∆x = 0.0003m et ∆t = 6.8 × 10−5s. La masse volumique du �uide vaut
ρf = 880kg/m3.

4.2 La méthode de di�érences �nies

On pose z(t) la position de la bille à l'instant t et donc ż(t) sa vitesse au temps t.
Par développements de Taylor à l'ordre 2, on obtient :

ż(t+
dt

2
) = ż(t) +

dt

2
z̈(t) +

dt2

8

...
z (t) + o(dt2)

ż(t− dt

2
) = ż(t)− dt

2
z̈(t) +

dt2

8

...
z (t) + o(dt2)

(57)

On fait alors la di�érence des deux formules précédentes :

ż(t+
dt

2
)− ż(t− dt

2
) = dtz̈(t) + o(dt2) (58)

La bille est soumise à trois forces, la poussée d'Archimède, la force de gravité et celle de traînée.
On a alors par la deuxième loi de Newton :

mz̈(t) = ~Fh(t) + ~FA + ~Fg (59)

Où ~Fh(t) correspond à la force de traînée à l'instant t, ~FA la poussée d'Archimède et ~Fg la force
de gravité.
La poussée d'Archimède et la force de gravité sont connues :{

~FA = Vb ~g ρf

~Fg = Vb ~g ρb
(60)

Où Vb est le volume de la bille.
La force de traînée sera calculer à l'aide du code LBM, et on pourra tester dans un premier
temps notre code DEM à l'aide de la formule de Stokes :

~Fh(t) = −6 π ρf ν R ż(t) (61)

Avec R le rayon de la bille.

En combinant les équations 58 et 59, on obtient �nalement le schéma de di�érences �nies suivant :
ż(t+

dt

2
) = ż(t− dt

2
) +

dt

m

(
~Fh(t) + ~FA + ~Fg

)
+ o(dt2)

z(t+ dt) = z(t) + dtż(t+
dt

2
) + o(dt2)

(62)

De plus, comme on considère que la bille est lâchée à une vitesse nulle à la hauteur
H − 0.01m de sorte que la bille soit complètement immergée, alors on a pour condition initiale
z(t = 0) = H − 0.01 et ż(t = 0) = 0.
Pour cette méthode on veut un pas de temps petit devant le temps caractéristique de chute de la

bille sur une hauteur égale à son diamètre en ignorant le �uide, tc =
√

D
g ≈ 1.75× 10−2. On veut
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prendre un pas de temps à la fois inférieur ou égale à 0.5% de ce temps (qui vaut 8.75× 10−5) et
au pas de temps de la LBM (qui vaut 6.8 × 10−5). Comme 6.8 × 10−5 < 8.75 × 10−5, on prend
alors dt = 6.8× 10−5s le même pas de temps que pour la LBM.

Implémentation numérique

Pour implémenter le couplage de ces deux méthodes, on suit l'algorithme suivant :

Algorithme 4 : Couplage LBM/DEM

Initialisation

While : critère d'arrêt sur la vitesse de la bille
LBM : On calcule la force de traînée de �uide sur l'obstacle
DEM : On calcule la nouvelle position de l'obstacle et sa vitesse

End while

Sauvegarde : On stocke dans un �chier les vitesses et positions de la bille en fonction du
temps et la force de traînée

A�chage : On a�che sur le terminal les paramètres initiaux et les données �nales

Dans l'initialisation, on initialise la vitesse de la bille à zéros et sa position à la hauteur H−0.01.
On fait également, comme précédemment, l'ensemble des initialisations nécessaires pour la
méthode de Lattice Boltzmann.

Comme on sait par la loi de Stokes que la vitesse de la bille va converger vers une certaine vitesse
limite, on peut donc prendre pour critère d'arrêt l'écart relatif entre deux vitesses ~v calculée
pour la bille entre deux pas de temps inférieur à 10−6 :

‖~v(t)− ~v(t− dt)‖∞
‖~v(t− dt)‖∞

< 10−6 (63)

Si le pas de temps DEM avait été choisi plus petit que celui de la LBM, on aurait rajouté une
boucle sur la DEM jusqu'à retrouver le pas de temps LBM. Par exemple, si le pas de temps DEM
est 10 fois plus petit que celui de la LBM, après chaque code LBM on lance 10 fois consécutives
le code DEM avant de relancer le code LBM.

Résultats

Dans un premier temps, on va tester le code DEM. Pour cela, on remplace dans l'algorithme le
code LBM par le calcul de la force de traînée par la formule (61). Quand le code DEM sera validé
on pourra alors le coupler avec notre code de la méthode de Lattice Boltzmann qui calculera alors
la force de traînée du �uide sur la bille pour que le code de di�érences �nies puisse simuler son
déplacement dans la cuve et calculer sa vitesse limite atteinte pendant sa chute. Je n'ai pour le
moment pas de résultats à présenter pour cette simulation.
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5 Conclusion et perspectives

Lors de mon stage j'ai pu compléter et appliquer mes connaissances dans le domaine de la
mécanique des �uides ainsi que développer une première expérience de chercheur.

J'ai commencé par revoir les bases de la mécanique des �uides avant de me pencher sur l'origine
et le fonctionnement de la méthode de Lattice Boltzmann où j'ai notamment travaillé sur le
passage de l'équation de Lattice Boltzmann aux équations de Navier-Stokes. Suite à cette étude
théorique, j'ai réécrit des codes 2D, implémentés lors de travaux de recherche préalables au sein
du laboratoire, puis je les ai parallélisé à l'aide de OpenMP. Une fois la parallélisation validée, j'ai
repris le couplage avec des obstacles solides et validé les résultats en 2D et en 3D sur la base de
références bibliographiques. Après avoir examiné di�érentes méthodes de couplage DEM/LBM,
j'ai implémenté la �partially saturated cells method� puis j'ai comparé mes coe�cients de traînées
résultants de mes simulations avec ceux rapportés par [Galindo-Torres_2013] et [Owen_2011].
J'ai �nalement commencé à travailler sur un cas test de couplage d'une méthode de di�érences
�nies avec la LBM comme exemple de premier couplage DEM/LBM. Je travaille actuellement
sur la validation de l'implémentation de mon code DEM et il me restera donc ensuite à valider
le couplage avec mon code LBM.

Dans la suite du stage, je vais continuer à travailler sur le couplage DEM/LBM d'abord pour le
cas simple d'un grain chutant dans un �uide puis pour des cas plus complexes faisant intervenir
plusieurs grains.

Par la suite on pourrait envisager de ra�ner le maillage autour des obstacles solides pour
gagner en précision sur les calculs de forces hydrodynamiques. Il serait également intéressant de
tester un couplage sur des obstacles de type polyèdres convexes quelconques. Le ra�nement du
maillage autour de ces obstacles serait alors d'autant plus pertinent.
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