INI Nantes

. . . Université
\J Université >:\< Gustave Eiffel

Rapport de stage de Master 2
MACS

Reéalisé au sein de l'université de Gustave Eiffel, Laboratoire GPEM du Département MAST

Codage de la méthode de
Lattice-Boltzmann en 3D et couplage
avec un code d’éléments discrets

Lucie CHAILLOU

Sous la direction de Yannick DESCANTES

Du 3 avril au 29 septembre 2023



Table des matiéres

Introduction|

T Méihode de Taitice Bol l

Implémentation numérique et validation de la méthode LBM]

2.1 Algorithme| . . . .. ..

Couplage LBM /obstacle solide|

[3.1 Les principales méthodes|

[3.2  Implémentation numérique|. . . . . . . . . ..o

[3.3  Résultats numériques 2D)|
13.4  Résultats numériques 3D|

Couplage DEM /LBM]|

4.1 LBMf. ... ... ... .

B

Conclusion et perspectives|

o0 00 —~] UL W W W

11
12
16

19
19
22
24
27
29

35
36
36

38



Introduction

La méthode de Lattice Boltzmann (LBM) est une méthode numérique utilisée pour la simu-
lation de problémes complexes de la dynamique des fluides. Elle propose une approche différente
des méthodes classiques de type volumes finis ou éléments finis pour résoudre les équations de
Navier-Stokes. Contrairement & ces méthodes qui se placent & 1’échelle macroscopique, la LBM
se concentre sur les particules de fluide & I’échelle mésoscopique. On est capable de retrouver
les caractéristiques macroscopiques du fluide & partir de la physique des particules. Avec cette
méthode on peut donc modéliser le comportement d’un fluide dans diverses situations. Les prin-
cipaux avantages de la LBM sont qu’elle est relativement simple & implémenter et surtout trés
adaptée a la parallélisation. Grace & ces avantages, cette méthode pourrait & ’avenir, devenir un
outil majeur de la mécanique des fluides numérique.

L’objectif de ce stage consiste, dans un premier temps, & implémenter la méthode de Lattice
Boltzmann en 2 puis 3 dimensions, puis & la coupler avec une méthode d’éléments discrets (DEM).
La DEM permet de simuler le comportement de grains solides soumis & des forces & distance ainsi
qu’a des forces de contact avec d’autres grains. Le couplage de ces deux méthodes permettrait
alors de simuler le comportement de particules dans un fluide.

On commencera par décrire dans la premiére section la méthode de Lattice Boltzmann pour
un modele fixé & 2 dimensions (modéle D2Q9) et on montrera que cette approche permet de
décrire le comportement d’un fluide en retrouvant les équations de Navier Stokes. On présentera
ensuite dans la section 2 I'implémentation numérique de la méthode en 2D (modele D2Q9) et
en 3D (modéele D3Q15), que 'on validera sur des cas tests ou I'on comparera les résultats obte-
nus avec une solution analytique. Dans la section 3, on présentera deux méthodes de couplage
LBM/DEM et on procédera a des tests de couplage de la LBM avec un obstacle solide, d’abord
a 2 dimensions puis & 3 dimensions. Enfin, dans la section 4, on présentera un probléme d’un
couplage LBM/DEM et on donnera les premiers résultats obtenus.



1 Meéthode de Lattice Boltzmann

La méthode de Lattice Boltzmann est utilisée pour modéliser I’écoulement d’un fluide re-
présenté comme un ensemble discret de particules qui interagissent entre elles. Cette méthode
cherche & approcher la solution de I’équation continue de Boltzmann qui permet de décrire le
comportement d’un fluide & 1’échelle mésoscopique. Sous certaines conditions la LBM permet
de simuler le comportement d’un liquide décrit & I’échelle macroscopique par les équations de
Navier-Stokes.

1.1 Equation de Boltzmann

L’équation de Boltzmann peut étre introduite comme suit [Succi 2001]. On isole par la pensée
un volume V fixé contenant N molécules identiques de masse m d’un gaz et on suppose qu’elles
interagissent via une force F qui dépend de la distance qui les sépare. On peut considérer ces
particules comme ponctuelles, car la distance moyenne entre elles vaut d = (%)% et est donc trés
grande comparée a la taille des molécules. L’équation de Boltzmann s’exprime donc au travers
d’une fonction f(Z, ¢, t) qui représente la densité de probabilité qu’une particule se trouve proche
de Z, au temps ¢ et avec une vitesse proche de ¢é. f(Z, €, t)dZdv représente donc le nombre de ces
particules. On cherche alors & déterminer f & l'instant ¢ + dt.

En I’absence de collision entre particules, & l'instant ¢ + dt les particules initialement & la

position ¥ se retrouvent & la position ¥ + ¢ dt avec une vitesse ¢+ %dt. De 1a, comme &= % et

dt
9 = L alors f(Z+ ¢ dt,c+ Ldt, t + dt) = f(& + dZ, ¢+ dé,t + dt).
Dans le cas contraire, certaines particules initialement situées a la position I avec une vitesse
¢ a l'instant ¢ n’atteindrons pas (Z + dZ,¢ + dc,t + dt) a cause de collisions avec d’autre par-
ticules. De méme, certaines particules se retrouveront en (Z + dZ, ¢+ dé,t + dt) aprés collision
sans s'étre trouvées initialement en (Z, ¢ t). On peut alors écrire I’équation de Boltzmann comme :

F(F+dZ, e+ de,t + dt) = f(Z,Et) + T, G 1) (1)

Ou € représente la fonction choc.
Par la suite on négligera les forces F'. On peut donc réécrire I’équation de Boltzmann comme suit :

| F(F+ cdt,t+ dt) = f(F,t) + QT 1) | (2)

On peut remarquer que comme on a une infinité de directions de propagation possibles pour
chacune des particules et qu’elles sont toutes équiprobables, on a alors un champ de vitesse iso-
trope.

1.2 Lattice Boltzmann

Pour construire la méthode de Lattice Boltzmann, on discrétise en temps et en espace ’équa-
tion de Boltzmann et pour la résolution numérique, on se donne un nombre fini M +1 de directions
de propagations possibles des particules (Figure . On ne peut pas choisir les directions aléatoi-
rement, il faut les choisir de fagon a ce que le champ des vitesses reste isotrope. Le passage de
I’équation continue de Boltzmann & I’équation discrétisée de Lattice Boltzmann est détaillé dans
la these de [Cao 2019)]. L’idée est de développer la fonction de distribution f(Z,¢,t) a laide des
polynémes d’Hermite.



L’équation de Lattice Boltzmann peut alors s’écrire comme :

Ji@ + GALE+ AL) = fi(F,6) + U(f(E, 1), i = 0,... M (3)

—

Avec ¢; la vitesse locale dans la direction i de la particule, f;(Z,t) la densité de probabilité dans
la direction 7 et §; le terme de collision.

On peut faire le lien entre les échelles mésoscopique et macroscopique du fluide a ’aide des mo-
ments de vitesse d’ordre 0 & 2 :

pil = _afi(@ ) (4)
=0
1 1
pe+ o plil” —QZ;rcszi(f,t)
1=

Ou p correspond & la masse volumique du fluide et @ & sa vitesse macroscopique. e représente la
densité massique d’énergie du fluide. Dans le cas d’un gaz, on a : e = %rT avec D le nombre de
degrés de liberté des particules, T' la température et r la constante réduite du gaz.

Le réseau est construit tel qu’entre les instants ¢ et ¢ + At, chaque densité de probabilité
directionnelle f; se déplace sur le noeud voisin dans la direction de ¢;. On appellera cette étape,
Pétape de diffusion (Figure . On a alors ¢ = [¢| = AAQ?, ou Az; désigne la distance entre les
deux nceuds. De plus, on a la vitesse du son ¢s qui vaut % D’apres [Succi 2001], la méthode de

Lattice Boltzmann peut alors simuler I’hydrodynamique uniquement sous ’hypothése d’un faible

nombre Mach (M = @), ce qui implique que la vitesse ||| doit rester petite devant cette vitesse

du son cs.

On peut prendre pour exemple le schéma D2Q9, a 2 dimensions et 9 directions de propaga-
tions, explicité par [Zou&He 1997|. Avec |¢;| =cpouri=14a8,on a:

G =c (095(2(2‘ : 1))> pouri=1,2,3,4

> pouri=5,6,7,8
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FIGURE 1: Réseaux de Boltzmann et zoom sur les directions de propagations possibles pour le
schéma & maille carrée D2Q9
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FI1GURE 2: Etape de diffusion sur un noeuds pour le schéma D2Q9

1.3 Conditions limites

Comme dans toute méthode numérique, pour pouvoir modéliser correctement un probléme
physique, on a besoin de conditions aux limites. Dans la LBM on a un manque d’information
au niveau des fonctions de distributions sur les bords du domaine. En effet, lors de I’étape de
diffusion (Figure , les nceuds des bords ne peuvent pas recevoir toutes leurs nouvelles fonctions
de distributions di & I’absence de nceuds voising au deld des limites du domaine. Ainsi, ils
recoivent celles venant de l'intérieur du domaine uniquement.

La Figure [3] illustre les fonctions de distributions manquantes venant de I'extérieur du domaine,
représentées en pointillés, aprés ’étape de diffusion pour un nceud situé sur le bord Ouest du

domaine.
On va alors présenter les différentes conditions aux limites utilisées dans cette étude pour palier

A ce probléme.

Nord
fe = [fo I
Ouest f3 fi FE'st
Intérieur du domaine
f1% fa fs
Sud

FIGURE 3: Informations manquantes (en pointillés) sur les noeuds des bords du domaine apreés
étape de diffusion



1.3.1 Condition périodique

On commence par la condition de périodicité. Lorsqu’on applique cette condition limite, si une
fonction de distribution sort du domaine, elle rentre ensuite par son bord opposé en gardant la
méme direction. Ainsi, tout ce qui sort d’un coté rentre de I'autre. Les nceuds situés sur les bords
du domaine sont alors voisins des nceuds du bord opposé, ce qui permet donc de transmettre
les fonctions de distributions initialement manquantes. Cette condition limite est principalement
utilisée pour simuler I’écoulement d’un fluide en régime permanent dans un domaines semi-infini.
On T'utilisera par exemple, dans le cas d’un écoulement de Poiseuille.

1.3.2 Condition de rebond (bounce-back)

La condition de rebond permet de simuler des bords solides du domaine. Lorsque 1’on applique
cette condition sur un bord, les fonctions de distributions qui arrivent du fluide sur ce bord sont
redirigées dans le sens opposé, vers l'intérieur du domaine, pour simuler un rebond sur cette
paroi solide.

On applique le rebond en copiant les fonctions de distributions connues venant du fluide et en les
pointant dans la direction opposée de sorte qu’elles retournent bien dans le fluide. Par exemple,
si Pon reprend la Figure [ on échange f1 et fs, f5 et fr, fs et fe.

On peut distinguer 2 types de conditions de rebond.

Rebond complet
Dans le cas du rebond complet (ou on-grid bounceback en anglais), la paroi solide est située sur
les noeuds qui représentent donc une interface fluide/solide.

Rebond a mi chemin

Dans le cas du rebond & mi chemin (ou half-way wall bounceback en anglais), la paroi solide se
trouve au milieu de deux rangées de noeuds. Les nceuds sont alors soit complétement solide soit
complétement fluide, il n’existe pas de neeud a l'interface fluide/solide. D’aprés [Zou&He 1997],
ce rebond permet d’obtenir une meilleur précision sur la vitesse obtenue aprés convergence que
pour le Rebond complet, c’est pourquoi on l'utilisera pour nos simulations.

A T'implémentation, la collision sera différente en fonction du type de rebond choisi. Si I’on
choisi le rebond complet la collision a lieu sur I’ensemble des noeuds y compris les nceuds a
Iinterface fluide/solide. Mais si ’on choisi le rebond & mi chemin, la collision aura lieu unique-
ment sur les nceuds fluides, il faudra donc faire la distinction entre noeuds fluides et nceuds solides.

On peut également appliquer des conditions limites sur la vitesse ou la pression du fluide. Par
exemple, la condition de VonNeumann de [Zou&He 1997 qui impose une vitesse sur la frontiére
du domaine et la condition de Dirichlet de [Zou&He 1997] qui impose une pression sur le bord
du domaine choisi. Nous ne détaillerons pas ces conditions limites qui ne seront pas utilisés dans
cette étude.

Dans la suite on introduit et on explicite la fonction de distribution & I’équilibre, puis la fonction
collision, enfin on montre les grandes lignes de la démarche permettant de retrouver les équations
de Navier-Stokes a partir de I’équation de Lattice Boltzmann.



1.4 Fonction de distribution a 1’équilibre

On définit la fonction de distribution a 1’équilibre pour I’équation de Boltzmann f¢(Z, ¢,t) comme
étant la fonction de distribution qui annule le terme de collision de ’équation [Succi 2001].
On suppose que les collisions sont uniquement binaires (on peut négliger les collisions a plus de
deux particules étant donnée leur rareté liée au trés faible ratio entre la taille des particules et
leur distance moyenne de séparation d). On pose f{,, la densité de probabilité de trouver en
(Z + d¥, ¢+ dé, t + dt) une molécule ne provenant pas de (Z,¢,t) et fi, celle de trouver ailleurs
qu'en (¥ 4 d¥,c+ dc,t + dt) une molécule provenant de (&, ¢,t). Par llsotrople du champ des
vitesses, on peut faire I’hypothése de chaos moléculaire, c’est a dire qu’il n’y a pas de corrélation
entre les vitesses des particules avant ou aprés un choc. Cette hypothése reste valide dans le cas
d’'un gaz s’écoulant & une vitesse moyenne  seulement si on considére la vitesse relative ¢ — 4

des particules. On a alors :

(@ c—at)  =fi(
firg (T, 6=, t) =1 (
Par passage au logarithme, on obtient que In(f¢(Z,¢—,t)) est un invariant de collision, on peut

donc I’exprimer comme une combinaison linéaire des 1nvar1ants de collision (masse, quantité de
mouvement et énergie) :

(5)

¢— :
,5— U, t) fo (Z,6—u,t)

8 St

In(fé(Z,6— 0,t)) = o+ B + yi? = f¢(7,¢— u,t) = exp(a + B + i) (6)

Pour calculer les coefficients, on exprime chaque invariant de collision comme un moment d’ordre
n de f€¢ (ordre 0 pour la masse, ordre 1 pour la vitesse et ordre 2 pour I’énergie) en intégrant sur
I’espace des phases.

On peut alors identifier f¢ comme étant la distribution de Maxwell-Boltzmann :

— 2
cC—1u
P, e~ ity t) = p<2wv%>—?exp( - (2)> (7)
2v7,
Ou D correspond a la dimension du domaine fluide et vy = % avec kp la constante de

Boltzmann et T la température absolue.

On suppose que la vitesse du fluide ||i|| est petite devant la vitesse des particules ||¢]|. On peut
donc faire un développement de Taylor d’ordre 2 en @ de la distribution de Maxwell-Boltzmann
, et on obtient :

2 ci  (d)? @2
o yo_D é cu (ca) u
$o(@,0-a.0) = pl2mod) Fean( - 35) (”W 20h 2> o

La forme discréte de la fonction de distribution & 1’équilibre pour 1’équation de Lattice Boltz-
mann, peut alors s’écrire [Chen 199§] :

3¢ i
2c4

Gy — i) (9)

2c2

JEE, 1) =

Avec ¢ = |¢j| et ou les coefficients w; dépendent du schéma choisi. Dans le cas du schéma D2Q9
(Figure , on a wy = %, w; = % pour i =1,....,4 et w; = % pour i = 5,..., 8.



1.5 Terme de collision

On s’intéresse maintenant & l’expression du terme de collision. On commence par faire un
développement de Taylor de f;(Z + ¢;At,t + At), puis on le remplace dans I’équation de Lattice
Boltzmann . On obtient alors :

. 2 . 2 r.
s v avan )@ + 5 (Vi 20w+ O Y@ — @) (o
t t 2

En considérant que les densités de probabilité f; fluctuent au voisinage de la fonction
de distribution & I’équilibre f€¢, on peut développer ces densités en puissance du nombre de
Knudsen € (un nombre adimensionnel utilisé pour déterminer le régime d’écoulement d’un fluide) :

fi=fi+efV + 0 (1)
On peut alors appliquer un développement de Taylor & Q;(f) = Q;(f°¢ + 5fi(1)) :

u(f) = () + el

En utilisant , on peut réécrire I’équation comme suit :
o8 (f°)
of;

De plus, par , on remarque que ;(f¢) — 0 quand At — 0. A P'ordre 1 en ¢, 'opérateur
de collision s’écrit donc :

+ 0(e?) (12)

+ 0(£?) (13)

Qi(f) = () + (fi = f5)

Qi(f) = My (f; — f5) (14)

Avec M;; = 895]({ o) qui correspond a la matrice de collision.

En assimilant les collisions & des perturbations avec retour & 1’équilibre en un temps 7,
[Chen 1998] propose d’écrire la matrice de collision :

1

Ou d;; correspond au symbole delta de Kronecker. On obtient alors l'opérateur simplifié de
collision BGK, proposé par [Bhatnagar 1954] :

(f) = ~—(fi = £7) (16)

L’équation de Lattice Boltzmann avec I'opérateur de collision BGK devient alors :

FilE + GAT, 1+ A1) = [i(@1) — —(H(E 1) ~ (1) 17)

1.6 De Lattice Boltzmann a Navier-Stokes

On cherche & retrouver les équations de Navier Stokes a partir de ’équation de Lattice
Boltzmann ([L7)). Pour cela, on suit le raisonnement détaillé dans la these de [Cao_2019)].

V. =0
ou

% 9 = 9.+ (v (v

(18)

8



On commence par faire un développement de Taylor a lordre 2 de f;(Z + ¢ At,t + At) puis on
I'injecte dans I’équation de Lattice Boltzmann , on obtient alors :

2 2
12
(19)

Ensuite, on utilise le développement autour de la valeur d’équilibre fl-(o) . On peut différencier
trois échelles de temps : la relaxation vers I'état d’équilibre (temps %), la perturbation de la
densité qui se propage a la vitesse du son (temps ') et la diffusion (temps £2). On peut donc
utiliser un développement multi-échelles de Chapman-Enskog :

O =0y + %0, + O(e%)
0z =0z + O(c?)
En réalisant alors un développement multi-échelles & l'ordre 2 en ¢ de 1’équation de Lattice

Boltzmann puis en passant le terme de collision €2; dans le membre de gauche, on obtient
un polynéme d’ordre 2 en € dont chaque coefficient doit étre nul :

(20)

Ordre &° : i( £ - ff) (F,1) =0 (21)
(0) (0)
Ordre ¢! : agz (Z,t) + é. aéf (@,t) + f(1 (Z,t) =0 (22)
(0) (1) (1)
Ordre 2 : agz (@,t) + <8§: (@, t) + 6. 8;: (2, )> <1 - 217_> =0 (23)

Pour obtenir la forme du coefficient en €2, on a d’abord pris la dérivée particulaire par rapport a

t1 de I’équation obtenue & l’ordre &' , puis on a remplacé dans ’équation obtenu initialement
a I'ordre €2 pour finalement obtenir (23)).

On cherche maintenant & passer de I’échelle mésoscopique & 1’échelle macroscopique. Pour cela,
on détermine les moments en vitesse d’ordre 0, 1 et 2 de la densité de probabilité qui s’écrivent
comme (4)).

Le moment d’ordre 1 appliqué au coefficient d’ordre 2 ([23) s’écrit comme suit :

9(pu)

_2(r— 1) [vl <p(V1.ﬁ—|— (vl.a)T>] —0 (24)

OouvVv; =
T

On repasse en échelle simple avec 9, = €0y, + 20y, + O(e%) et 0z = 0z, + O(£?).

Puis, par une combinaison linéaire entre I’équation du moment d’ordre 0 appliqué au coefficient

d’ordre e! et celle appliqué au coefficient d’ordre €2, on obtient la premiére équation de Navier

Stokes :

dp
E—FV( pi) =0 (25)




De méme, par une combinaison linéaire entre (24]) et I’équation du moment d’ordre 1 appliqué
au coefficient d’ordre !, on retrouve la deuxiéme équation de Navier Stokes (18] :

I(pti)
ot

+ V.(piii) = =V (pc?I) + A(1 — %)V. [,0 (v.ﬁ+ (v.ﬁ)Tﬂ (26)

On identifie p = c2p la pression et u = pc?(r — 1) la viscosité dynamique.
On remarque que dans notre cas, contrairement & Navier-Stokes, p n’est pas complétement
constante.
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2 Implémentation numérique et validation de la méthode LBM

Dans ce chapitre, on commence par expliquer comment implémenter la méthode LBM. On y
présente les différentes étapes de l'algorithme et on détaille comment choisir les paramétres de
simulation. Ensuite, on teste la méthode sur un premier cas test simple en 2 dimensions puis
un deuxiéme cas test en 3 dimensions afin de valider la méthode avant de la coupler avec un
obstacle solide dans le chapitre suivant.

2.1 Algorithme

On commence par présenter l’algorithme de la méthode de Lattice Boltzmann :

Algorithme 1 : Méthode de Lattice Boltzmann

Initialisation : On pose les paramétres du probléme (v, Re, dx, dt ...) et initialise I’ensemble
des données (4, ff, p, fi)

While : critére d’arrét sur la vitesse o

Diffusion : Pour toutes les directions i, f;*™” = f; dans la direction ¢

Condition limite (rebond a mi chemln) : Sur les parois, f; = temp, => . fiet
=0

Va}eurs macroscopiques : En dehors des parois, p = > ffemp et U=y, ffempc";

f Equilibre : ff = pw; (1 + 25% + 2(G.1)? — 2u?)

Collision : Sur les nceuds fluides, f; = ffemp i(ftemp 15)

Body force : f; = f; + Atpg <

End while

Sauvegarde : On stock dans des fichiers les résultats des valeurs macroscopiques obtenues.
Affichage : On affiche sur le terminal les paramétres initiaux ( v, Re, dx, dt ...) et les
données finales (nombre itération, erreurs, vitesse max calculée ...)

Dans la littérature on retrouve différentes possibilités pour le choix de 'ordre des étapes
de l'algorithme. Ici, ce choix se base sur des travaux réalisés antérieurement au laboratoire.
Toutefois, on peut remarquer que I'ordre n’impacte pour ainsi dire pas le résultat car les étapes
sont répétées en boucle jusqu’a atteindre le critére d’arrét posé comme ’écart relatif entre deux
vitesses i calculée entre deux pas de temps successifs inférieur a 10710 :

[ut) = u(t = At)[lo
[ut = At)]l

La différence entre deux résultats & At prés sera donc négligeable.

<1071 (27)

L’initialisation des paramétres dépend du probléme étudié et du modéle choisi pour la simulation.
On commence par définir les dimensions de notre domaine, comme sa longueur et sa hauteur.
Puis on fixe le nombre de nceuds pour en déduire le pas de discrétisation. Dans le cas a 2
dimensions nos mailles sont donc carrées (et cubiques dans le cas & 3 dimensions). Par exemple,
si n, correspond au nombre de noeuds selon z et L a la longueur du domaine sur ce méme axe
alors le pas de discrétisation sur cet axe vaut L . Toutefois cette formule peut légérement différer
dans le cas de la condition limite de rebond "3 mi chemin qui situe la frontiére concernée du

11



domaine entre deux noceuds.

Connaissant la discrétisation, on peut définir le pas de temps & l'aide de la formule obtenue
par identification de I’équation de Navier Stokes , en redimenssionnant cette formule et en
écrivant la viscosité dynamique en fonction de la viscosité cinématique pu = pv :

A 2
At = (1 — 0.5)3% (28)

car on rappel que ¢; = %
Pour simuler 1’écoulement d’un fluide, le nombre de Reynolds est un paramétre important a
prendre en compte. On peut le relier a la viscosité v du fluide par la formule suivante :

_ UnoyD
14

Re (29)

Ol Upoy correspond & la vitesse moyenne de 1’écoulement du fluide et D désigne une longueur
caractéristique du domaine.

Pour une simulation, on va donc fixer certains parameétres et calculer les autres a ’aide de ces
deux formules (28]) et (29)) qui les relient tous entre eux.

Dans la littérature, on trouve différentes fagon d’intégrer une body force guidée par une
accélération g. On choisi, comme [Owen 2011], de l'introduire directement dans I’équation de
Lattice Boltzmann, ce qui donne :

G.c
Kc?

Avec G = pg la body force (ou densité de force), K une constante (vaut 6 pour le schéma D2Q9
et 10 pour le schéma D3Q15) et ¢ la vitesse du réseau.

Fi(F+ AL E+ AL = fi(& 1) — %(fi(f, £) — fE(E 1) + At (30)

En pratique, on ajoute alors At ?ch a f; aprés ’étape de collision.

Remarque : Pour gagner du temps de calcul, 'ensemble des codes ont été parallélisés a l'aide de
OpenMP et on teste le critére d’arrét uniquement toute les 2000 itérations pour les simulations
a 2 dimensions et 10000 pour celles & 3 dimensions.

2.2 Cas test 2D

On choisi le schéma D2Q9 explicité dans le chapitre précédant (Figure [1)) et on souhaite tester
I'implémentation numérique de la méthode LBM en 2 dimensions dans le cas d’un écoulement
de poiseuille.
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Solide

F1GURE 4: Domaine du cas test & 2 dimensions

On se place dans un domaine de 2 métres de long et 0.3 métres de hauteur. On fixe des frontiéres
solides sur les bords haut et bas du domaine et on y impose une condition limite de rebond a
mi chemin. Le fluide circule de gauche & droite entre ces deux frontiéres et une condition de
périodicité est appliquée en entrée et en sortie. Pour la discrétisation du domaine en espace, on
choisi Az = Ay = 0.002 meétres. On doit alors poser n, = 1000 et n, = 151. De plus, on choisi
comme temps de relaxation 7 = 0.55 et v = 10~*m?/s comme viscosité cinématique du fluide.
De 1a, on peut fixer At a l'aide de I’équation . Enfin, on initialise la densité du fluide p a
1000kg/m3.

Dans cette simulation la vitesse @ est initialisée a 0 et I'écoulement est généré par une body force

9z
0

d’un écoulement de Poiseuille, on peut facilement déterminer g, en fonction du nombre de
Reynolds. En effet, pour un écoulement de Poiseuille dans la direction x, on a la solution
analytique suivante des équations de Navier-Stokes :

u(z)(y) POz (Hy . y2)

(qui n’est autre qu'un gradient de pression) pg tel que § = . Etant dans la configuration

- 2pv
u®(0) = @ (H) =0 a1
uW(y)=0 siy=0ouy=H
H
) ),
ou H représente la hauteur du domaine.
On a donc :
@ _ P9z H?
max — 2pl/272 (32)
Comme dans un écoulement de Poiseuille on a 0y = %umax, on obtient donc par :
_ §81/2Re (33)
J* = 5"H?D

On introduit cette body force aprés I’étape de collision, comme explicité dans la partie précédente.
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On teste ce cas pour différents nombres de Reynolds et on vérifie les profils de vitesse ainsi que
les lignes de courants obtenues. Le nombre de Reynolds étant fixé, on calcule la vitesse maximale
u%}n théorique de I’écoulement du fluide et son accélération g, en utilisant les formules décrites

précédemment et . Les données de départ sont alors détaillés en fonction du nombre de

Reynolds :

TABLE 1: Données initiales

nombre de Reynolds 0.5 5 10 34
Umaz théorique (selon z) (m/s) | 2.50 10~* | 2.50 10~3 | 5.00 10~3 | 1.70 10~2
accélération g, (m/s?) 2221076 [ 2.22107° | 444 10~ | 1.51 1074
Aprés simulations, on obtient les résultats suivant :
TABLE 2: Résultats
nombre de Reynolds 0.5 ) 10 34
nombre d’itérations 1540 000 | 1538000 | 1538000 1 538 000
écart relatif de vitesses entre 2 itérations | 9.90 10~ 9.93 10~ 11 9.93 10~ 9.93 10~ 11
Umae calculée (selon ) (m/s) 2.4997 10~* | 2.4997 1073 | 4.9995 102 | 1.6998 10~
erreur absolue sur la vitesse (m/s) 1.55 107° 1.55 107 3.10 10~ 1.05 107
erreur relative sur la vitesse 6.18 1073% | 6.20 1073% | 6.20 1073% | 6.20 103%

On commence par remarquer que notre code converge bien. En effet, on obtient bien un écart
de vitesses entre deux itérations inférieur au seuil donné dans le critére d’arrét (1071°). On
peut également observer que l'erreur relative reste du méme ordre pour chacun des nombres de
Reynolds choisis et qu’étant de I'ordre de 1073, on peut affirmer que la solution calculée est
suffisamment proche de la solution analytique pour considérer que la vitesse calculée approche
bien la vitesse réelle du fluide.

Lorsque I’on trace la courbe de vitesse calculée en entrée, milieu et sortie du domaine, et celle de la
solution analytique attendue , on obtient pour chaque nombre de Reynolds testé, une super-
position parfaite de ces quatre courbes. Par exemple, pour Re = 10, on obtient la figure suivante :

14
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FIGURE 5: Profils de vitesse calculée et analytique pour Re = 10, dans un cas 2D

La figure des profils de vitesses confirme donc bien les observations numériques effectuées juste
au-dessus : la vitesse calculée converge vers la vitesse analytique.
Maintenant, si on trace les lignes de courant, on obtient pour chaque nombre de Reynolds, des
lignes paralléles. Si on reprend 'exemple de Re = 10, on a alors :

FIGURE 6: Lignes de courant pour Re = 10, dans un cas 2D sans obstacle

La convergence de la vitesse calculé par le code, la superposition des courbes de vitesse obtenues
avec une erreur relative trés faible et les lignes de courant bien paralléles nous permettent de
confirmer l'efficacité de notre implémentation de la LBM en 2 dimensions.

On souhaite maintenant la tester pour 3 dimensions.
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2.3 Cas test 3D

On choisi le schéma D3Q15, & 3 dimensions et 15 directions de propagations, explicité en annexe
A |Portinari  2015|. On pose ¢ comme étant la vitesse du réseau, on a alors pour ce schéma :

¢ = (0,0,0)
é =¢(£1,0,0),¢(0,£1,0),¢(0,0,£1) pouri=1,...,6
G =c(£1,£1,£1) pouri =7, ..., 14

14

12

11

8 3

FIGURE 7: Discrétisation spatiale de la méthode de Lattice Boltzmann pour le schéma D3Q15

Seul les coefficients w; de la fonction équilibre changent pour ce schéma, et deviennent :
pour ¢ =0
pourt=1,...,6

— pouri=17,..,14

On souhaite maintenant tester notre implémentation de la méthode LBM en 3 dimensions pour
ce schéma. Pour cela, on choisit de reproduire le cas test de [Portinari 2015| de l’écoulement
d’un fluide entre deux plaques paralleles de taille infinie (Figure .

16



H=60

Direction du fluide

FIGURE 8: Domaine entre deux plaques paralleles de taille infinie

On place deux plaques paralléles de taille infinie espacées d’une hauteur de 60 unités de Lattice
(60 x Az meétres). On pose la longueur de la plaque selon y égale & 3 unités de Lattice et sa
profondeur selon x a 60 unités de Lattice. Puis, pour simuler la longueur et la profondeur infinie
des deux plaques, on impose une condition de périodicité selon les axes x et y. Sur les plaques
(bords haut et bas du domaine), on applique une condition limite de rebond & mi chemin. On
fait le choix de prendre Az = Ay = Az = 0.004m et on impose une vitesse moyenne au cours de
la simulation de 0.05 x Az m/s dans la direction d’écoulement du fluide selon x, puis on fixe la
viscosité v a ’aide de la formule ou 'on prend D comme la hauteur de notre domaine. Le
pas de temps At est alors initialisé grace a . Comme pour les cas tests a 2 dimensions, on
simule un gradient de pression & 1’aide d’une body force correspondant & 'accélération g définie
en (33). Enfin, on initialise la densité du fluide p 4 1000 kg/m?>.

Du fait qu’on ait une plaque de dimension infinie dans la direction z (écoulement du fluide) et
dans la direction y (largeur du domaine), la solution & ’état stable n’est donc pas dépendante
de ces deux directions. On doit alors retrouver la méme solution analytique dans le plan défini
par les axes = et z que dans le cas & 2 dimensions pour un écoulement de Poiseuille ((31)) en
remplacant les y par des z).

On affiche donc la vitesse calculée en fonction z en entrée, milieu et sortie du domaine et la
compare avec la solution analytique attendue et on obtient les résultats suivant aprés simulation :
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TABLE 3: Résultats

nombre de Reynolds 500
nombre d’itérations 42 000
écart de vitesse entre 2 itérations | 9.16 10~
Umaz calculée (selon x) 2.9975 10~4
erreur sur la vitesse 1.69 107
erreur relative sur la vitesse 5.63 10%%

On peut voir que l'algorithme a bien convergé et on obtient une erreur trés faible sur la vitesse.
De plus, si on observe la Figure 9] on remarque que tous les profils de vitesse calculés en entrée,
sortie et milieu du domaine se superposent bien avec la solution analytique attendue.

On peut donc conclure de ce test numérique que notre implémentation de la méthode LBM en 3
dimensions est validée. On peut maintenant la coupler avec des obstacles solides.
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FIGURE 9: Profils de vitesse calculés et analytique dans le cas d’un écoulement entre 2 plaques
de taille infinie pour Re=500, dans un cas 3D sans obstacle
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3 Couplage LBM //obstacle solide

Dans ce chapitre, on présente deux méthodes permettant de coupler le code Lattice-Boltzmann
avec un code d’éléments discrets. La DEM permet de simuler les interactions entre solides tandis
que la LBM simule le comportement du fluide. Le couplage entre ces deux méthodes permettrait
donc de décrire l'interaction entre solides et fluide. Pour cela, les deux codes doivent s’échanger
des informations entre eux : le code DEM transmet la position et la vitesse des obstacles solides
permettant au code LBM de simuler le comportement du fluide autour de ces solides tandis que
la LBM renvoie a la DEM les forces hydrodynamiques exercées par le fluide sur les obstacles
pour pouvoir calculer les champs de vitesse et de déplacement des solides. C’est pourquoi, on
commencera par simuler une simple interaction entre un fluide et un obstacle solide pour calculer
avec notre code LBM les forces hydrodynamiques et valider son efficacité. On présentera donc
dans la suite de ce chapitre les résultats obtenus pour différents cas tests en 2 dimensions puis 3
dimensions.

3.1 Les principales méthodes
3.1.1 Immersed moving boundary method

Dans la “immersed moving boundary method”, on utilise une approche eulérienne pour cal-
culer I’écoulement du fluide sur un maillage cartésien fixe. Cette méthode, présentée par
[Benamour 2015], a d’abord été congue pour des solides élastiques par Peskin, dans les années
1970. Puis, la méthode a été modifiée pour s’adapter aux solides indéformables en considérant
la frontiére attachée, a ’aide d’un ressort, & un point de référence. On peut donc exprimer la
densité de la force générée par I’élasticité du matériau F comme suit :

F(s,t) = —k(X(s,t) — X(s,t)") (34)
Avec k qui correspond & la constante de raideur du ressort et X (s,t)" au point de référence
associé au nceud de la frontiére de coordonnées cartésiennes X (s, t).

Pour forcer le nceud de la frontiére a rester trés proche de son nceud de référence, le coefficient de
raideur k doit étre choisi trés grand. De plus, pour éviter la déformation du solide, on autorise
uniquement un mouvement de rotation du point de référence entre deux pas de temps ce qui
permet de garder une distance constante entre le centre de gravité du solide et sa frontiére entre
ces deux pas de temps. On obtient alors la formule suivante :

— - —

X(s,1)" = Xp(t) + R(t)(X(5,0)" = X,(0)) (35)

Ou Xp est le centre de gravité du solide et R(¢) sa matrice de rotation.

Pour coupler cette méthode avec la LBM, on distribue ﬁ(s, t) sur le maillage eulérien de la LBM
et on obtient alors la force exercée par ’obstacle sur le fluide f, pour le maillage eulérien :

N

fu(@,t) = F(Xn, t)04(& — Xp)As Vi€ gy (36)
n=1

Avec N qui correspond au nombre de nceuds de la frontiére immergée, o (%) la distribution de

Dirac, g désignant le maillage régulier eulérien des nceuds fluides et :
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F(X,t) = —k(X, — X7,) (37)

[Benamour 2015| utilise alors I’équation de Lattice-Boltzmann avec terme source comme ceci :

1
[i(@ + GAL L+ At) = fi(Z,t) — ;(fi(fa t) — fH(Z,1) + AtE, (38)
Ot F; = SwifaG;

L’équation de Lattice Boltzmann (38]) peut alors étre résolue pour calculer la vitesse du fluide sur
les nceuds du domaine eulérien & 1’aide des équations des moments sur la vitesse . La vitesse
4 est ensuite interpolée sur les nceuds de la frontiére immergée avec I’équation discrétisée suivante :

U(Xn t+At) = > (&t + At)5 (T — X)h? (39)
TEGR
On peut alors calculer la position de ’ensemble des points de la frontiére immergée & 1'aide de
la vitesse U(X,,,t + At) maintenant connue pour chacun de ces points.

La littérature sur cette méthode, révele des problémes de stabilité dans la résolution des
équations du fluide pour des k trop élevés, et pour des k trop faibles les résultats semblent
dépendre de ce coefficient k. On s’intéressera donc & une autre méthode, la “partially saturated
cells method”.

3.1.2 Partially saturated cells method

La "partially saturated cells method” a été proposée par |[Noble et Tozczynski 1998| pour étudier
des écoulements de fluides dans un milieu granulaire. Cette méthode de couplage entre un fluide
et des solides se base sur I’équation de Lattice Boltzmann avec un opérateur de collision BGK
. Cette équation est modifiée en y ajoutant une fonction de pondération, B, permettant de
faire la distinction entre les cellules occupées ou non par les obstacles solides, et un terme de
collision solide, €27, qui prend en compte l'interaction du fluide avec chaque obstacle solide dans
les cellules concernées. Elle permet alors de conserver le caractére local de la collision propre a
la méthode de Lattice Boltzmann tout en s’adaptant a la présence de frontiéres évolutives des
obstacles solides :

N N
FilE + GALE+ A = @0+ (- Y0 B (f(#0) ~ f@E0) + B0 | (40)
s=1

s=1

ou N représente le nombre de solides dans le fluide étudié.

Il existe plusieurs formes possible pour ID'opérateur de collision solide €7,
[Noble et Tozczynski 1998| en présentent deux dans leur étude. La premiére est basée sur
la régle du "rebond” de la partie non équilibrée et s’écrit :

QF = f-i(@,t) — fil@,0) + £ (p,us) — f<;(p, @) (41)

Ou uy est la vitesse du solide s & 'instant ¢, au noeud de coordonnées x et la notation f_; corres-
pond au "rebond” & partir de f; obtenu en inversant I’ensemble des vitesse moléculaire (¢; — —¢;).
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La deuxiéme forme est construite de facon & ce que la distribution de particules résultante soit
égale a celle d’équilibre évaluée & la vitesse du solide plus un terme dépendant de la différence
entre la distribution f; et sa valeur d’équilibre :

O = [2(paiz) — fi(@, 1) + (1 — A) (fi@, 1) = f£ (p, D)) (42)

t
-

Au deld des différentes formes possibles pour le terme de collision solide 27, on a également
plusieurs possibilités pour ’expression de B dans l'implémentation de ’équation . Suite &
I’étude de [Noble et Tozczynski 1998, il s’avére que pour le choix de pour {2, une fonction
de pondération simple suffit pour obtenir de bons résultats :

9

ol €5 est la fraction volumique occupée par le solide s dans la cellule de calcul, comme illustré
par la Figure (10).

En revanche, pour le choix de pour 2, |[Noble et Tozczynski 1998| proposent une fonction
de pondération un peu plus complexe :

£s(x7 —0.5)

Bs = (1—¢5) + (L —0.5)

(44)

On observe bien que dans les deux cas, on a B; = 0 quand la cellule est remplie uniquement de
fluide et By = 1 quand elle est remplie uniquement de solide s.

FI1GURE 10: Représentation de €5 pour une cellule intersectée par un solide

On peut alors calculer la force hydrodynamique totale agissant sur ’obstacle comme explicité

par [Owen 2011] :

N 2) B
Fy= 5 > Ba( Y 0ie) (45)
n

7

N
Ou D représente la dimension du domaine, n le numéro du neceud et B,, = Z By dans la cellule

s=1
de calcul associée au noeud n.

Pour une force hydrodynamique selon ’axe x, on a son coefficient de trainée associé :

2F(x)
Ca = % (46)
plum’ )28

Avec F,Em) la composante selon z de la force de trainée Fp, S une surface de référence liée a

I'obstacle et u%) la composante selon x de la vitesse de 'obstacle relativement au fluide.
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3.2 Implémentation numérique

Dans la suite nous utiliserons la “partially saturated cells method” pour coupler la méthode
de Lattice Boltzmann avec un obstacle solide. Avec ce couplage, de nouvelles étapes (en bleu)
apparaissent alors dans ’algorithme :

Algorithme 2 : Méthode de Lattice Boltzmann couplée avec un obstacle solide

Initialisation : On y ajoute linitialisation des données de 'obstacle (rayon, coordonnée
centre d’inertie, vitesse rotation, vitesse translation ...)

Calcul €5 et us : Calcule et stockage dans un tableau des valeurs de €5 et us pour les cellules
qui intersectent 'obstacle

While : critére d’arrét sur la vitesse 4

Diffusion

Condition limite (rebond a4 mi chemin)

Valeurs macroscopiques

f Equilibre : On y ajoute le calcul de f£(p, %)

Collision solide : Qf = f_; — f; + ff(p,us) — f<,(p, @)

Collision

Assemblage “partially saturated cells method” : Sur I’ensemble des cellules qui
intersectent I'obstacle : f; = f; + ByL(f{“" — f¢(p, @) + B

Body force

—B;s Body force : On retire la body force dans les cellules qui intersectent 1’obstacle :
fi = fi — BsAtp%s

Kc?
End while

Calcule de la force de trainée :F}, = Agf BS(Z chz)
i

2F,
pu2 S
Sauvegarde : On stocke dans des fichiers les résultats des valeurs macroscopiques et le

coefficient de trainée obtenues.
Affichage : On affiche sur le terminal les paramétres initiaux ( v, Re, dx, dt ...) et les
données finales (nombre itération, erreurs, vitesse max calculée, coefficient de trainée...)

Calcule du coefficient de trainée : Cy =

Pour coupler la méthode de Lattice Boltzmann avec un obstacle solide, on a besoin de calculer
la fraction volumique &5 occupée par le solide dans chaque cellule qui intersecte 1’obstacle.
Pour cela, on s’inspire de la méthode présentée par [Galindo-Torres 2013] pour un obstacle
3D sphérique, qui consiste & trouver les points d’intersections entre la sphére et les arétes de la
cellule. Une fois les deux points extrémes identifiés pour une aréte, on calcule alors la distance
entre ces deux points. On obtient donc la longueur intersectée de chaque aréte et on définit la
fraction solide €5 comme étant le ratio de la somme de ces longueurs intersectées sur la longueur
totale des arétes de la cellule.

On souhaite adapter cette méthode & ’ensemble des polyédre convexe. Pour cela, on on com-
mence par identifier les cellules qui intersectent le cercle circonscrit de 'obstacle. On commence
par identifier les indices extrémes des cellules qui intersectent le cercle (ou sphére) circonscrit de
I'obstacle puis & partir de ces indices on obtient I’ensemble de ces cellules. On peut maintenant
calculer g4 et uy pour chacune de ces cellules. Pour calculer la vitesse de ’obstacle au centre de
la cellule ug, on utilise la formule suivante :
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=0+ o, AX (47)

ou u; est la vitesse de translation de l'obstacle, v, sa vitesse de rotation et X = X.— X, la
différence entre le centre de la cellule et le centre de 'obstacle.

Pour le calcul de la fraction volumique €5 occupée par le solide, on commence par parcourir
I’ensemble des cellules qui intersectent le cercle inscrit de ’obstacle solide. Puis on regarde pour
chacune de ces cellules (carré en dimension 2 et cube en dimension 3) le nombre de sommets dans
le cercle inscrit de l'obstacle. Si 'ensemble de tout les sommets y sont, alors e; = 1 et on peut
calculer 4} associée a cette cellule (uy est d’abord initialisé & zéros puis calculée uniquement dans
les cas ou €5 # 0). Si au moins un des sommets n’appartient pas au cercle inscrit de 'obstacle,
alors on vérifie qu’il y en ai au moins un qui l'intersecte puis on détermine la longueur de chaque
aréte de la cellule dans I'obstacle. On peut alors les additionner puis diviser par le nombre totale
d’aréte d’une cellule (4 en 2 dimensions et 12 en 3 dimensions) multiplié par Az ce qui nous donne
la fraction volumique &5 occupée par le solide dans la cellule de calcule. (On prend en compte
que les cellules voisines ont des arétes communes et donc on parcours uniquement les arétes qui
n’ont pas encore été calculées).

On résume ’ensemble de ces étapes pour dans ’algorithme suivant :

Algorithme 3 : Calcule de ¢,

for i=1, nombre cellules intersectées par le cercle circonscrit de l'obstacle :
if Tous les sommets de la cellule sont dansle cercle inscrit de ’obstacle :
es = 1 et calcul de ug

else :
if la cellule n’intersecte pas le cercle circonscrit de ’obstacle :
es=0
else :
for j=1, nombre d’aréte de la cellule n, :
if aréte déja parcourue :
Prendre longueur aréte dans l'obstacle déja calculé
else :
if I’aréte intersecte le cercle circonscrit :
Calcule longueur aréte dans obstacle
else :
longueur aréte =0
end if
end if
end for
Addition de toutes les longueurs d’aréte de la cellule dans I’obstacle n?
0
€s = naZ:v
if e #0:
Calcul de ug
end if
end if
end if
end for
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Pour toutes les simulations qui suivent, on garde le méme critére d’arrét que dans le cas sans

obstacle

3.3 Résultats numériques 2D

On souhaite valider le couplage de la méthode de Lattice Boltzmann avec un obstacle solide
en 2 dimensions. Pour ce faire, on se base sur deux cas tests de l'article de [Owen 2011]. Le
premier étant un écoulement de Poiseuille autour d’un disque et le second autour d’un carré. On
comparera les résultats obtenus pour le coefficient de trainée avec ceux de I’article.

3.3.1 Ecoulement de Poiseuille autour d’un disque

On se place dans le méme domaine et avec les mémse parameétres que pour 1’écoulement de
Poiseuille étudié en section 2.2. On ajoute un obstacle circulaire de diamétre 0.02 métre,
immobile, au centre du domaine (Figure [L1]).

Direction du fluide ‘

Solide

FI1GURE 11: couplage fluide-grain en 2D avec un disque

Pour rappel, une condition limite de rebond & mi chemin est appliquée sur les bords solides haut
et bas du domaine et une condition de périodicité sur I’écoulement du fluide en entrée et en
sortie est imposée. On résume les parameétres choisis dans le tableau si dessous :

TABLE 4: Données initiales
Az 0.002m
T 0.55
v | 107%m?/s
p | 1000kg/m3

Pour calculer la collision solide €2, on prendra la formule @ et on choisira donc de prendre
Bs = ¢;.

On calcule le coefficient de trainée a l'aide de la formule en prenant S comme étant le

diameétre de I'obstacle. L’écoulement du fluide étant un Poiseuille, on sait que avant interaction
avec 'obstacle sa vitesse est maximale au centre du domaine. Comme 'obstacle est situé au
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centre du domaine et de diamétre trés petit devant la hauteur du domaine, on prend u,, comme
étant cette vitesse maximale du fluide.

On a donc calculé le coefficient de trainée pour différents nombres de Reynolds et comparé avec

les résultats de [Owen 2011]. Pour faire varier le nombre de Reynolds, on fait varier I’accélération
g de la body force et on obtient le nombre de Reynolds associé au fluide proche de 'obstacle avec :

Um D
v

Re = (48)

ol Uy, correspond & la vitesse maximale du fluide calculée avant interaction avec 'obstacle, D le
diameétre de ’obstacle et v la viscosité cinématique du fluide.

Les résultats obtenus sont représentés sur la Figure [I2] suvante :

L- = Owen_2011
)\ = cette etude
£ 104
r i
=
%
g ™
O :-:
L] 4
=
10° . . . . . . .
o ] 10 15 20 23 20 33 40

Fe - Nembre de Reynolds

FiGURE 12: Coefficient de trainée en fonction du nombre de Reynolds, pour un écoulement de
Poiseuille autour d’un disque en 2D

On peut voir sur cette figure que, bien que nos coefficients de trainée s’éloignent légérement de

ceux obtenus par [Owen 2011] pour des nombres de Reynolds supérieurs & 10, ils restent tout
de méme tres proches et semble bien suivre le profil de résulats de [Owen 2011]. On peut donc

valider cette simulation.
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3.3.2 Ecoulement de poiseuille autour d’un carre

On s’intéresse maintenant a ’écoulement d’un fluide autour d’un carré selon [Owen 2011]. On
se place dans un domaine de 3.07 metres de long et 0.82 métre de hauteur. On garde les mémes
conditions limites et les mémes parameétres que dans le cas précédent. La taille du domaine étant
différente, on change la discrétisation, on prend Az = 0.005 métres. On aura donc n, = 614 et
ny = 165. Comme pour le cas précédent, I’écoulement du fluide est un écoulement de Poiseuille
dirigé par une body force d’accélération g que l'on fera varier pour obtenir différents nombres de
Reynolds. On place au centre de ce domaine un obstacle carré de largeur 0.1025 métre et immobile.

y L =3.0Tm

Directi fAui
irection du fluide H =0.82m

Solide

FIGURE 13: couplage a 2 dimensions avec un solide carré

Les paramétres de la simulation sont résumé dans le tableau suivant :

TABLE 5: Parameétres de simulation
Azx 0.005m
T 0.55

v | 107*m?/s
p | 1000kg/m3

Comme pour la simulation précédente, on souhaite calculer le coefficient de trainée pour
différents nombres de Reynolds et comparer avec les résultats obtenus par [Owen 2011].

Pour calculer le coefficient de trainée, on utilise la formule (46) en prenant u%f) comme étant
la vitesse maximale du fluide calculée au centre du domaine avant interaction avec ’obstacle
dans la direction z. Ce choix est celui qui avait été validé dans le cas test autour de ’obstacle
circulaire. On choisit également les mémes formules pour la collision solide €2} et By ainsi que
pour le nombre de Reynolds.

Pour lobstacle carré, on obtient les résultats présentés sur la Figure [14]

On observe des résultats proche de ceux attendus bien que comme dans le cas précédent, des
résultats légérement moins bons pour des nombres de Reynolds supérieurs & 10. Cependant, le
profil des résultats obtenus suit bien celui présenté par [Owen 2011].
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FiGURE 14: Coefficient de trainée en fonction du nombre de Reynolds, pour un écoulement de
Poiseuille autour d’un carré en 2D

On peut donc également valider cette simulation et maintenant tester en 3 dimensions le couplage
de la LBM avec un obstacle solide.

3.4 Résultats numériques 3D

On souhaite maintenant valider le couplage de la méthode de Lattice Boltzmann avec un obstacle
solide en 3 dimensions. Pour cela, on reproduit un cas test de I'article de |Galindo-Torres 2013,
qui simule I’écoulement d’un fluide autour d’une sphére. On comparera nos résultats de coefficient
de trainée avec ceux de |[Galindo-Torres 2013| mais également ceux de [Owen 2011] qui présente
un test similaire, ainsi qu’avec une corrélation empirique trouvée avec des données expérimentales

[White 1991] :

24 6

Cob~—+———+4+04
D™ Re 1+ +vVRe

(49)

On se place dans un domaine de 240 cellules de longueur et 60 cellules de hauteur et profondeur
o Azxz = Ay = Az = 0.004m. On place au centre de ce domaine une sphére solide de rayon
0.036m. On pose la densité du fluide p = 1000kg/m3, sa viscosité cinématique v = 10~*m?/s
et un temps de relaxation 7 = 0.6. On fixe alors le pas de temps & 'aide de . On applique
dans chacune des trois directions une condition limite périodique et on impose une body force
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d’accélération constante ¢ dans la direction du fluide z. On calcule le nombre de Reynolds en
fonction du diameétre de la sphére D, de la viscosité cinématique du fluide v et de la vitesse
moyenne ugye calculée dans les cellules non occupée par 'obstacle :
Ugpe D
Re = —*< (50)

v

Avec la vitesse moyenne ugye qui est calculée comme suit :

n

1
Ugve = (1 - 5is)u§x) (51)
NNy, <

N 2 . x . P .
ou n représente le nombre de nceuds dans le domaine, ul( ) la vitesse calculé au neeud 7 dans la
direction z et ¢;, le ratio de solide s dans la cellule de calcule associé¢ au nceud 4.

Pour faire varier le nombre de Reynolds, on test notre simulation pour différentes accélérations
g. Pour chaque simulation, on calcule la vitesse moyenne dans le domaine & 1’aide de la formule
1] puis le nombre de Re avec 50} On y associe alors le coefficient de trainée calculé a l'aide de la
formule suivante :

8F")
Cp= sy (52)

ave

Pour ces simulations, on applique un nouvel opérateur de collision que |Galindo-Torres 2013|
utilise :

Qf = f—i(f’ t) - fl(f7t) + fie(pau_‘;) - fiz(pvu_;) (53)
Cet opérateur de collision est associé a la fonction de pondération suivante :

es(t —0.5)

Bs = (I—e5)+ (r—0.5)

(54)

Les résultats obtenus sont exposés sur la figure [I5] On peut y voir que les résultats obtenus sont
tres similaires & ceux de |Galindo-Torres 2013| et [Owen 2011|. Les valeurs restent proches
et suivent bien le profil de résultats présenté par |Galindo-Torres 2013|. On peut donc valider
cette simulation 3D.
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FiGURE 15: Coeflicient de trainée calculé en fonction du nombre de Reynolds, écoulement d’un
fluide autour d’une spheére en 3D

3.5 Discussion

Pour la simulation & 2 dimensions autour d’un disque on a d’abord commencé par fixer un
nombre de Reynolds puis imposé ’accélération de la body force § & partir de ce nombre a I’aide
de la formule , comme dans les simulations d’écoulement de Poiseuille sans obstacle en
section 2.2. On calculait alors le coefficient de trainée comme présenté en section 3.3.1 mais avec
le nombre de Reynolds fixé au départ pour le calcul de la body force et en prenant la vitesse
maximale théorique obtenue a 1’aide de la formule suivante :

3 Rev
U, = —— 55
Avec D le diameétre de 'obstacle.

On obtenait alors les résultats résumés dans le tableau suivant :
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TABLE 6: Coefficients de trainée calculés a partir de de la vitesse maximale théorique, en fonction

du nombre de Reynolds fixé en début de simulation

Re | Cy cette étude | Cy Owen | erreur relative
0.5 16.60 20.1 17.41%
0.9 9.56 16.5 42.06%
2.7 3.78 6.9 45.22%

5 2.37 4.6 48.48%
9.5 1.49 3.15 52.70%
18.5 0.92 2.2 58.18%

34 0.58 1.7 65.88%

On peut voir que les résultats sont globalement tres éloignés de ceux de [Owen 2011]. On choisit
alors de tester & nouveau notre simulation en prenant une moyenne de cette vitesse maximale.
Pour un écoulement de Poiseuille, cela revient & prendre % de cette vitesse maximale. Ce choix
vient du fait que ’obstacle étant plus large qu’une cellule de calcul, on suppose que la vitesse
de P'obstacle relativement au fluide doit étre plus proche de la vitesse moyenne du fluide dans
le domaine. On teste cette théorie d’abord pour des nombres de Reynolds autour de 10, et les
résultats semblent cohérents et proches de ceux attendus. Cependant, quand on s’éloigne de ce
nombre de Reynolds, les résultats sont moins bons :

F1GURE 16: Coefficient de trainée calculé a partir de % de la vitesse maximale théorique, en

fonction du nombre de Reynolds fixé en début de simulation

Re | Cy cette étude | Cy Owen | erreur relative
0.5 37.36 20.1 85.87%
0.9 21.51 16.5 30.36%
2.7 8.50 6.9 23.19%

5 5.33 4.6 15.87T%
9.5 3.35 3.15 6.35%
18.5 2.06 2.2 6.36%

34 1.30 1.7 23.55%

Suite & ces résultats pas encore assez proche de ceux attendus, on souhaite vérifier par un
autre moyen efficacité et la cohérence de notre implémentation de ce couplage pour savoir si le
probléme vient du calcul du coefficient. Pour cela on regarde les lignes de courant et les profils
de vitesse obtenus pour notre simulation (Figure [17)a [22).

Il faut noter que le profil de vitesse calculé & partir du ., théorique ne correspond pas
forcément & la solution exacte attendu. En effet, il correspond & la vitesse d’un écoulement de
Poiseuille dans un domaine de hauteur [, le diamétre de I'obstacle, sans obstacle. Dans notre cas,
avec l'obstacle au centre du domaine, on ne connait pas la vitesse exacte attendue.

Quand on observe le profil de la vitesse calculé, on voit que les vitesses en entrée et en sortie
du domaine sont parfaitement superposées et on retrouve bien une vitesse nulle au milieu du
domaine & I’endroit de 1’obstacle avec une accélération de part et d’autre de 'obstacle. Ce profil
semble donc cohérent.

De plus, si on regarde les lignes de courant, on observe bien qu’elles contournent 1’obstacle
comme voulu, et plus le nombre de Reynolds est élevé plus la longueur de recirculation du fluide
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derriére l'obstacle est grande. On voit également que cette longueur impacte le profil de vitesse
pour des nombres de Reynolds élevé. Ces résultats sont donc tout a fait cohérents avec ce que
l'on peut trouver dans la littérature.

FI1GURE 17: lignes de courant autour d’un disque
pour Re = 0.5

F1GURE 20: profils de vitesse pour Re = 0.5
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FI1GURE 18: lignes de courant autour d’un disque
pour Re =9.5 FIGURE 21: profils de vitesse pour Re = 9.5

. 26 a i mka,
e e San e

N
R

FIGURE 22: profils de vitesse pour Re = 34
FI1GURE 19: lignes de courant autour d’un disque
pour Re = 34

Comme la vitesse maximale calculée autour de l'obstacle est considérablement différente de
la vitesse maximale théorique, on choisi de prendre, dans la formule du coefficient de trainée
(46)), u,, comme la vitesse maximale calculée autour de l'obstacle situé au centre du domaine.
Cette vitesse pourrait correspondre & la vitesse de 'obstacle relativement au fluide. On avait
commenceé par tester avec la valeur théorique au centre du domaine selon I’axe des y (maximum
de la courbe noire des Figures ci-dessus), on teste donc maintenant avec la valeur maximale
calculée au centre du domaine selon 1’axe des x (c’est & dire le maximum de la courbe bleu des
Figures ci-dessus). On obtient les coefficients de trainée suivants :
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TABLE 7: Coefficient de trainée calculé & partir de la vitesse maximale calculée autour de 1’obs-
tacle, en fonction du nombre de Reynolds

Re | Cy cette étude | Cy Owen | erreur relative
0.5 23.38 20.1 16.31%
0.9 13.57 16.5 17.76%
2.7 5.60 6.9 18.84%

5 3.72 4.6 19.13%
9.5 2.56 3.15 18.73%
18.5 1.84 2.2 16.36%

34 1.44 1.7 15.29%

On remarque que bien que lerreur relative du coefficient de trainée calculé ne descende pas plus
bas que 15%, elle reste relativement constante (varie entre 15% et 20%) en fonction du nombre
de Reynolds contrairement au cas précédent. On peut donc dire que dans ce deuxiéme cas, le
profil du coefficient de trainée calculé semble globalement mieux suivre celui attendu. On les
représente graphiquement dans la figure suivante :
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FI1GURE 23: Coefficient de trainée calculé & partir de %umaz théorique et du uy,q, calculé autour
de l'obstacle, en fonction du nombre de Reynolds
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Quand on regarde les figures 20| & 22| on peut remarquer que la vitesse maximale calculée
au centre du domaine avant linteraction du fluide (maximum de la courbe rouge) avec
I’obstacle est tres différente de celle calculé & partir du nombre de Reynolds fixé en début
de simulation. C’est pourquoi on a finalement choisi de recalculer le nombre de Reynolds
en fin de simulation & partir de la vitesse obtenue au centre du domaine en entrée et en
sortie du domaine et de calculer le coefficient de trainée & partir de ces nouvelles valeurs. Ce
sont finalement les résultats présentés en section 3.3.1 et retenus pour le reste des simulations 2D.

On s’intéresse donc maintenant & ces résultats présentés en section 3.3.1 et 3.3.2. On a remarqué
que les résultats semblaient légérement moins bon pour des nombres de Reynolds supérieurs a 10.
On peut se demander si la condition de périodicité n’influencerait pas la vitesse calculée et donc
le calcul du coefficient de trainée. Cette condition limite fait apparaitre un réseau périodique
d’obstacles espacés de facon réguliére et on ne se retrouve donc plus exactement dans le cas d’un
écoulement de fluide infini autour d’un seul obstacle. En effet, on peut observer dans le cas du
disque comme dans celui du carré, une zone de recirculation derriére 'obstacle qui augmente
avec le nombres de Reynolds (figures [17/a|19| pour le disque et figures et [28| pour le carré),
et quand il est supérieur a 10 on peut voir que la vitesse semble étre impactée par cette zone de
recirculation en entrée et en sortie du domaine (courbe rouge des figures [20| & 22| pour le disque

et figures , et pour le carré).

FIGURE 24: lignes de courant autour d’un carré
pour Re = 0.5 FIGURE 25: profils de vitesses pour Re = 0.5
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FIGURE 26: lignes de courant autour d’un carré
pour Re =17 FIGURE 27: profils de vitesses pour Re = 17
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FiGURE 28: lignes de courant autour d’un carré
pour Re = 46 FIGURE 29: profils de vitesses pour Re = 46

34



4 Couplage DEM/LBM

Jusque 14, on couplait la methode de Lattice Boltzmann avec un obstacle solide immobile par
rapport au domaine (vitesse non nul fluidemais ps par rapport au fluide), maintenant on souhaite
que l'obstacle se déplace.

La DEM permet de simuler les intéractions entre différents solides. Elle résoud les équations de
Newton sur chaque grain solide soumis & des forces & distance et de contact. Dans un premier
temps, on code une version simplifiée de la DEM dans laquelle il n’y a pas de force de contact
solide, seulement des forces fluide, et un seul grain en translation. Il en résulte que la partie
DEM se limite a la résolution d’une équation de Newton en translation et au calcul de vitesse et
déplacement en translation par un schéma de différences finies d’ordre 2 tout simple ("Leap-frog
Verlet”).

On souhaite donc maintenant coupler la LBM avec cette méthode de différences finies en 2
dimensions. Pour cela, on ce place dans une cuve remplie d’huile au repos, de H = 0.48m de
hauteur et L = 0.045m de largeur. Puis on laisse tomber une bille en aluminium, que 1’on
représentera par un disque, de masse volumique p, = 2700kg/m? et de diamétre D = 0.003m.

O

H =0.48m
T

fluide

L = 0.045bm

F1GURE 30: représentation schématique de la simulation

A laide d’une méthode de différence finie on va calculer la position et la vitesse de 1’obstacle
a chaque pas de temps puis transmettre ces informations au code LBM qui calculera la force
de trainée obtenue. On comparera nos résultats avec ceux obtenus par la loi de Stokes qui nous
donne la vitesse limite V; atteinte par la bille pendant sa chute dans le fluide :

_ D?
18psv

otl g correspond & l'accélération de pesanteur que 1'on estimera & 9.81m/s%, D le diamétre de la
bille et py la masse volumique du fluide et v sa viscosité.
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4.1 LBM

Pour la méthode LBM, on applique des conditions de rebond & mi chemin sur chacune des parois
solides et on pose Az = 0.0003m et At = 6.8 x 10~°s. La masse volumique du fluide vaut
ps = 880kg/m3.

4.2 La méthode de différences finies

On pose z(t) la position de la bille & I'instant ¢ et donc Z(t) sa vitesse au temps ¢.
Par développements de Taylor & 'ordre 2, on obtient :

dt dt . dt? ...

A(t+ 5) = 2(t) + Ez(t) +5 % (t) + o(dt?)
dt dt dt* (57)
At = 5) = &(t) = A + ?'ﬁz'(t) + o(dt?)
On fait alors la différence des deux formules précédentes :
dt dt
) — 2= ) = dti(t) + o(dt?) (58)

La bille est soumise & trois forces, la poussée d’Archiméde, la force de gravité et celle de trainée.
On a alors par la deuxiéme loi de Newton :

mi(t) = Fy(t) + Fa + Fy (59)

Ou F_’;Z(t) correspond & la force de trainée a l'instant ¢, Fj la poussée d’Archimeéde et F_;, la force
de gravité.
La poussée d’Archiméde et la force de gravité sont connues :

Fa= Vi §
/ b ngf (60)
Fg = % g Po
Ou V, est le volume de la bille.
La force de trainée sera calculer a l'aide du code LBM, et on pourra tester dans un premier

temps notre code DEM a P’aide de la formule de Stokes :

Fi(t) = 6 7 py v R 2(t) (61)

Avec R le rayon de la bille.

En combinant les équations 5§ et [59] on obtient finalement le schéma de différences finies suivant :

dt dt. dt [ .
Ht+5) =2t )+ m(Fh(t) + Fa+ Fg> + o(dt?)

(62)

2(t 4 dt) = 2(t) + dtz(t + %) + o(dt?)

De plus, comme on considére que la bille est lachée a une vitesse nulle a la hauteur
H — 0.01m de sorte que la bille soit complétement immergée, alors on a pour condition initiale
2(t=0)=H —0.01l et 2(t=0) =0.

Pour cette méthode on veut un pas de temps petit devant le temps caractéristique de chute de la

bille sur une hauteur égale & son diamétre en ignorant le fluide, t. = 4 /% ~ 1.75 x 1072. On veut
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prendre un pas de temps & la fois inférieur ou égale 4 0.5% de ce temps (qui vaut 8.75 x 107°) et
au pas de temps de la LBM (qui vaut 6.8 x 107°). Comme 6.8 x 1075 < 8.75 x 1077, on prend
alors dt = 6.8 x 107°s le méme pas de temps que pour la LBM.

Implémentation numérique

Pour implémenter le couplage de ces deux méthodes, on suit 1’algorithme suivant :

Algorithme 4 : Couplage LBM/DEM

Initialisation

While : critére d’arrét sur la vitesse de la bille
LBM : On calcule la force de trainée de fluide sur ’obstacle
DEM : On calcule la nouvelle position de 'obstacle et sa vitesse
End while

Sauvegarde : On stocke dans un fichier les vitesses et positions de la bille en fonction du
temps et la force de trainée
Affichage : On affiche sur le terminal les paramétres initiaux et les données finales

Dans l'initialisation, on initialise la vitesse de la bille & zéros et sa position a la hauteur H —0.01.
On fait également, comme précédemment, I'’ensemble des initialisations nécessaires pour la
méthode de Lattice Boltzmann.

Comme on sait par la loi de Stokes que la vitesse de la bille va converger vers une certaine vitesse
limite, on peut donc prendre pour critére d’arrét 1’écart relatif entre deux vitesses ¢ calculée
pour la bille entre deux pas de temps inférieur & 1076 :

[0(t) — 9t — dt) ||

1 —6
wt—a. (63)

Si le pas de temps DEM avait été choisi plus petit que celui de la LBM, on aurait rajouté une
boucle sur la DEM jusqu’a retrouver le pas de temps LBM. Par exemple, si le pas de temps DEM
est 10 fois plus petit que celui de la LBM, aprés chaque code LBM on lance 10 fois consécutives
le code DEM avant de relancer le code LBM.

Résultats

Dans un premier temps, on va tester le code DEM. Pour cela, on remplace dans l’algorithme le
code LBM par le calcul de la force de trainée par la formule . Quand le code DEM sera validé
on pourra alors le coupler avec notre code de la méthode de Lattice Boltzmann qui calculera alors
la force de trainée du fluide sur la bille pour que le code de différences finies puisse simuler son
déplacement dans la cuve et calculer sa vitesse limite atteinte pendant sa chute. Je n’ai pour le
moment pas de résultats a présenter pour cette simulation.

37



5 Conclusion et perspectives

Lors de mon stage j’ai pu compléter et appliquer mes connaissances dans le domaine de la
mécanique des fluides ainsi que développer une premiére expérience de chercheur.

J’ai commencé par revoir les bases de la mécanique des fluides avant de me pencher sur I'origine
et le fonctionnement de la méthode de Lattice Boltzmann ot j’ai notamment travaillé sur le
passage de I’équation de Lattice Boltzmann aux équations de Navier-Stokes. Suite a cette étude
théorique, j’ai réécrit des codes 2D, implémentés lors de travaux de recherche préalables au sein
du laboratoire, puis je les ai parallélisé a I’aide de OpenMP. Une fois la parallélisation validée, j’ai
repris le couplage avec des obstacles solides et validé les résultats en 2D et en 3D sur la base de
références bibliographiques. Aprés avoir examiné différentes méthodes de couplage DEM/LBM,
j’ai implémenté la "partially saturated cells method” puis j’ai comparé mes coefficients de trainées
résultants de mes simulations avec ceux rapportés par |Galindo-Torres 2013| et |[Owen 2011].
J’ai finalement commencé & travailler sur un cas test de couplage d’'une méthode de différences
finies avec la LBM comme exemple de premier couplage DEM/LBM. Je travaille actuellement
sur la validation de 'implémentation de mon code DEM et il me restera donc ensuite & valider
le couplage avec mon code LBM.

Dans la suite du stage, je vais continuer & travailler sur le couplage DEM/LBM d’abord pour le
cas simple d’un grain chutant dans un fluide puis pour des cas plus complexes faisant intervenir
plusieurs grains.

Par la suite on pourrait envisager de raffiner le maillage autour des obstacles solides pour
gagner en précision sur les calculs de forces hydrodynamiques. Il serait également intéressant de
tester un couplage sur des obstacles de type polyédres convexes quelconques. Le raffinement du
maillage autour de ces obstacles serait alors d’autant plus pertinent.
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