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Résumé
Ce rapport a été réalisé dans le cadre du stage de M2 MACS sous la supervision de Frédéric

Hérau et de Mehdi Badsi. Le stage s’est porté sur des méthodes spectrales conservant l’hypo-
coercivité des équations de Fokker-Planck et de Vlasov-Poisson-Fokker-Planck (VPFP) issues de
la physique des plasmas. La première partie du rapport expose la notion d’hypocoercivité ainsi
que les techniques de preuve utilisées. Une seconde partie est consacrée à l’étude de l’article [1]
qui propose une méthode numérique hypocoercive pour l’équation de Fokker-Planck basée sur
la décomposition de Hermite en vitesse. Ensuite, on propose un schéma numérique pour le sys-
tème de Vlasov-Poisson-Fokker-Planck en essayant d’utiliser les mêmes idées. Ce schéma n’est
pas satisfaisant, ce qui nous amène à étudier le système de VPFP dans un cadre plus théorique
dans une dernière partie. On expose une preuve d’hypocoercivité H1, qui fonctionne seulement
sous l’hypothèse non raisonnable que la longueur de Debye doit être suffisament grande. On
utilise ensuite la décomposition de Hermite en vitesse pour établir une preuve d’hypocoercivité
L2 sans condition sur la longueur de Debye. Ceci motive la définition d’un schéma de volumes
finis basé sur cette décomposition.
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1 Plasmas et équations cinétiques

1.1 Qu’est-ce qu’un plasma ?
Un plasma est un tout d’abord gaz ionisé : les électrons (charges électriques négatives) portés

par les atomes du gaz ont reçus une excitation assez importante pour se libérer de l’attraction
des noyaux atomiques (charges électriques positives).

Pour être qualifié de plasma, un gaz ionisé doit exhiber deux principales caractéristiques
(voir [2]). Premièrement, le gaz doit être quasi-neutre, c’est-à-dire que le gaz doit être assez
homogène électriquement pour que localement en tout point, la charge totale soit environ nulle.
Ceci exprime entre autre que pour être un plasma, le gaz doit être un bon conducteur électrique,
rééquilibrant les charges électriques lorsque des défauts apparaissent. Ceci s’exprime en terme
physique en disant que la longueur de Debye δ2 est très petite devant la longueur caractéristique
L du système. Ensuite, on doit observer des comportements collectifs parmi les particules
chargées. L’apparition d’une densité de charges non nulle en un point crée l’apparition d’un
champ électrique. Un force électromagnétique va alors apparaitre et va agir sur les particules.
Ainsi, les particules s’influencent mutuellement à distance contrairement à un gaz neutre. On
peut, par exemple, observer des ondes se former dans un plasma.

Une large partie de l’univers est constituée de plasma : les étoiles, les nébuleuses ainsi que
le milieu interstellaire sont constitués de plasmas de températures et de propriétés différentes.
Sur Terre, on peut également observer des plasmas naturels lors d’orages sous forme de foudre.
Enfin, il existe des plasmas artificiels. Un exemple est l’utilisation de plasmas dans les tokamaks
pour réaliser la fusion nucléaire.

Figure 1 – Plasma artificiel dans un tokamak.

1.2 Equation de Boltzmann et de Fokker-Planck
Comme un plasma est constitué d’un nombre énorme de particules, on ne peut pas envisager

de simuler les particules constituant le plasma pour simuler le plasma à l’échelle macroscopique.
Pour modéliser un plasma, on utilise l’approche de la physique statistique. On cherche à calculer
la densité de probabilité de présence des particules d’une espèce donnée dans l’espace des phases.
On se place dans l’espace RN , avec N =1,2 ou 3. Du point de vue de la physique classique,
un électron dans un plasma est repéré au temps t par N coordonnées d’espaces x ainsi que N
composantes de son vecteur quantité de mouvement p. Rappelons également que p = mv avec v
la vitesse de la particule et m sa masse. Ainsi, un électron est repéré par 2N coordonnées (x, p)
dans l’espace des phases R2N . Notons f la densité de probabilité de position dans l’espace des
phases des électrons, qui dépend de t, de x et de p. Ainsi, si dxNdvN est un élément de volume
de l’espace des phases, la probabilité qu’une particule se trouve dans cet élément à l’instant t
vaut f(t, x, v)dxNdvN . Notons F la force totale s’exerçant sur un électron.
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On suppose qu’il n’y a pas de collision entre les particules. La conservation du nombre
de particules pendant l’évolution du système entre t et t + dt dans un volume infinitésimal
s’exprime par l’équation :

f(t+ dt, x+ p

m
dt, p+ dtF)dxNdvN

∣∣∣∣
t+dt

= f(t, x, p)dxNdvN
∣∣∣
t

L’élément infinitésimal, bien que déformé par la transformation du système, a le même
volume. En divisant par ce volume multiplié par dt puis en passant à la limite dt → 0, on
obtient l’équation suivante :

∂f

∂t
+ p

m

∂f

∂x
+ F∂f

∂p
= 0

Elle est appelé équation de Boltzmann sans collisions. S’il y a des collisions entre les par-
ticules, la conservation des particules dans l’élément de volume entre deux instants n’est plus
respectée. Si dNcoll est la variation infinitésimale du nombre de particules du aux collisions, on
définit le noyau de collision L(f) par l’égalité dNcoll = L(f)dxNdvNdt. Le noyau de collision
représente la variation du nombre de particules par collisions par unité de volume et de temps.
En effectuant le même passage à la limite de précédemment, on déduit l’équation

∂f

∂t
+ p

m

∂f

∂x
+ F∂f

∂p
= L(f)

C’est l’équation de Boltzmann avec collisions. L’expression de L est à choisir selon la modé-
lisation des chocs entre particules. L’équation aux dérivées partielles obtenue est une équation
cinétique, en référence au fait que f dépend de la vitesse v = p

m
qui est alors une variable.

On doit maintenant détailler les hypothèses utilisées pour établir l’équation de Fokker-
Planck et le système de Vlasov-Poisson-Fokker-Planck. Dans toute la suite, N = 1.

1.2.1 Equation de Fokker-Planck

Les hypothèses sont les suivantes :
— On se place dans l’approximation des régimes quasi-stationnaires. Le plasma est non-

relativiste et on néglige le champ magnétique B.
— Un champ électrostatique extérieur E est imposé. Ce champ dérive d’un potentiel Φ

également imposé. Le champ électrique autoconsistant Ẽ produit par les particules du
plasma est négligeable devant le champ E.

— Le plasma évolue dans un tore T de dimension 1. Cette hypothèse permet de ne pas
traiter les effets de bords.

— Le noyau de collision est l’opérateur de Fokker-Planck L(f) = ∂v(vf + ∂vf).
Sous ces hypothèses, la force électromagnétique s’écrit F = −qE où −q est la charge de

l’électron.
L’équation de Fokker-Planck, traduisant dans ce contexte l’évolution de la densité électro-

nique f dans le plasma est

∂tf + v∂xf − E∂vf = ∂v(vf + ∂vf)
On introduira cependant les paramètres positifs ε et τ(ε). ε est la rapport entre le libre

parcours moyen d’un électron et l’échelle typique de longueur. Si τ(ε) ∼ ε en 0, la limite
t
ε

→ +∞ correspond au comportement en temps long du plasma. L’équation de Fokker-Planck
prend la forme suivante :

∂tf + 1
ε

(v∂xf − E∂vf) = 1
τ(ε)∂v(vf + ∂vf)
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Remarquons qu’il y a bien conservation de la masse pour ce modèle de plasma. On note dx
la mesure de Haar normalisée sur le tore.

En intégrant l’équation sur T × R, on obtient si f est régulière :

d

dt

∫ ∫
T×R

fdxdv = 1
τ(ε)

∫ ∫
T×R

∂v(vf + ∂vf)dxdv = 0

Ceci montre qu’il n’y a pas de destruction ni de production d’électron. On notera la masse
m dans toute la suite.

Par contre il n’y a pas conservation de la quantité de mouvement. En effet, en multipliant
par v puis en intégrant l’équation comme précédemment on obtient par le même genre de calcul
que

d

dt

∫ ∫
T×R

fvdxdv + 1
ε

∫
T
Eρdx = − 1

τ(ε)

∫ ∫
T×R

fvdxdv

où ρ(t, x) est la densité spatiale d’électrons, ρ(t, x) =
∫

R f(t, x, v)dv.
L’énergie cinétique n’est pas non plus conservée. On montre que

d

dt

∫ ∫
T×R

fvdxdv +
∫

T
E
∫

R
fv2dvdx = − 2

τ(ε)

∫ ∫
T×R

fv2dxdv + m

τ(ε)
La seule loi de conservation à préserver au niveau numérique sera la conservation de la

masse. Remarquons que la non conservation des différents moments est due au choix du noyau
de collision, et à la présence d’un champ électrique non-nul.

On note
M(v) = 1√

2π
e− v2

2

la Maxwellienne. Lorsque t

ε
→ ∞, la densité f converge (dans un espace fonctionnel approprié

dépendant de la régularité des données) vers une densité stationnaire f∞(x, v) = ρ∞(x)M(v),
où

ρ∞(x) = c0e
Φ(x)

La constante c0 étant donnée par la conservation de la masse d’électrons.

1.2.2 Système de Vlasov-Poisson-Fokker-Planck

Les hypothèses sont les suivantes :
— Le plasma est composé de deux espèces : les électrons chargés "-" et les ions de charge"+".
— Les ions sont beaucoup plus lourds que les électrons et ne se déplacent pas. Leur densité

spatiale ni(x) est stationnaire.
— On se place dans l’approximation des régimes quasi-stationnaires. Le plasma est non-

relativiste et on néglige le champ magnétique B.
— Le plasma évolue dans un tore T de dimension 1. Cette hypothèse permet de ne pas

traiter les effets de bords.
— Le noyau de collision est l’opérateur de Fokker-Planck L(f) = ∂v(vf + ∂vf).
Les équations de Maxwell sont sous ces hypothèses :

div(E) = q
ni − ρ

ε0
rot(E) = 0
div(B) = 0
rot(B) = 0
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Comme rot(E) = 0 et que T est compact et connexe, l’existence d’un potentiel ϕ dont dérive
le champ électrique E découle du théorème de décomposition de Helmoltz-Hodge. On a alors
E = −∇ϕ. On en déduit alors l’équation de Poisson :

−∆ϕ = q
ni − ρ

ε0

En réalité, on va devoir prendre en compte l’effet d’écrantage. Pour ce faire, introduisons la
longueur de Debye λD. Cette longueur est un paramètre fondamental du plasma. Elle représente
la longueur maximale à partir de laquelle la quasi-neutralité n’est plus respectée. Elle est en
pratique faible devant l’échelle typique de longueur du système L. Sa valeur exprimée en mètres
varie de 10−4 pour des plasmas artificiels de tokamak, 10−3 dans l’ionosphère terrestre et 10
dans le milieu interstellaire. En posant δ = λD

L
, et en posant à 1 les autres constantes, l’équation

de Poisson devient

−δ2∆ϕ = ni − ρ

On obtient alors le système de Vlasov-Poisson-Fokker-Planck :
∂tf + 1

ε
(v∂xf − E∂vf) = 1

τ(ε)∂v(vf + ∂vf)

−δ2∆ϕ = ni − ρ
E = −∇ϕ

Le potentiel électrique est dit autoconsistant. Ce système est non-linéaire du fait du couplage
entre l’équation de Fokker-Planck et l’équation de Poisson via le potentiel électrique.

Le plasma est globalement neutre et la masse d’électrons se conserve, ce qui donne les
égalités : ∫

T
ρ(t, x)dx =

∫
T
ni(x)dx := m > 0 ∀t ≥ 0

On peut formellement identifier l’état d’équilibre de ce système, qui s’écrit :
−δ2∂xxϕ∞(x) = ni(x) − ceϕ∞(x)

c = m∫
T e

ϕ∞(x)dx
f∞(x, v) = ceϕ∞(x)M(v)

Remarquons que ϕ∞ est défini à une constante près et que si ni est constante alors ϕ∞ = 0
est une solution de l’équation non-linéaire.

1.3 Hypocoercivité
Du point de vue de la physique comme des mathématiques, il est interessant d’étudier le

comportement asymptotique de la solution de l’équation de Fokker-Planck. Une inégalité du
type

∥f − f∞∥L2(T×R) ≤ Cθ(t)∥f0 − f∞∥L2(T×R)

avec θ une fonction monotone décroissante de limite nulle en l’infini donnerait une vitesse de
retour à l’équilibre voir un temps de retour à l’équilibre explicite. De plus, un schéma numérique
préservant cette propriété serait stable pour la norme considérée.

On peut alors se demander si cette propriété est vraie dans le cas de l’équation de Fokker-
Planck. Pour étudier le retour vers l’état asymptotique de f pour l’équation de Fokker-Planck,
utilisons une approche perturbative. En écrivant que f = f∞ +f∞h avec h la nouvelle inconnue,
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on établit l’EDP vérifiée par h. On définit aussi le sous espace fermé de L2(f∞dxdv) des fonctions
à moyenne nulle V = {h ∈ L2(f∞dxdv) |

∫ ∫
T×R hf∞dxdv = 0}. Définissons le produit scalaire

pour tout f, g ∈ L2(f∞dxdv) :

< f, g >:=
∫ ∫

T×R
fgf∞dxdv

L’équation vérifiée par h est la suivante : ∂th+ 1
τ(ε)(v − ∂v)∂vh+ 1

ε
(v∂xh− E∂vh) = 0

h0 ∈ V

Dans ce cadre perturbatif, l’équation cinétique de Fokker-Planck est donc constituée de 3
parties : une dérivée temporelle, un opérateur de transport T = v∂x −E∞∂v et un opérateur de
collision L = (v−∂v)∂v, agissant seulement en vitesse. Ces opérateurs sont définis sur des sous-
espaces de L2(f∞dxdv). Sur les sous-espaces sur lesquels ces opérateurs sont définis, on vérifie
que T est antisymétrique et L est autoadjoint. De plus, < Lh, h >= ∥∂vh∥2 par intégration par
partie. Dans un premier temps, ignorons le transport. On s’intéresse au système suivant : ∂th+ 1

τ(ε)Lh = 0∫
R h0M(v)dv = 0

Le théorème de Hille-Yosida donne l’existence d’une solution forte à ce problème d’évolution
et de plus en tout temps,

∫
R hM(v)dv = 0. Prenons le produit scalaire de l’équation d’évolution

par h :

1
2
d

dt
∥h∥2 = − 1

τ(ε) < Lh, h >

= − 1
τ(ε)∥∂vh∥2

≤ − 1
τ(ε)∥h∥2

où pour la dernière inégalité on a utilisé l’inégalité de Poincaré-Wirtinger pour la mesure
de probabilité M(v)dv et le fait que

∫
R hM(v)dv = 0. En appliquant le lemme de Gronwall, on

obtient le retour à l’équilibre à vitesse exponentielle :

∥h∥ ≤ e− t
τ(ε) ∥h0∥

Ceci est une conséquence directe de la coercivité de L sur le sous espace fermé de V des
fonctions h telles que

∫
R hM(v)dv = 0. Le caractère coercif se montre comme il suit, en utili-

sant une intégration par partie et l’inégalité de Poincaré-Wirtinger qui se simplifie grâce à la
condition supplémentaire :

< Lh, h >= ∥∂vh∥2 ≥ ∥h−
∫

R
hM(v)dv∥2 = ∥h∥2

On peut se demander ce qu’il se passe alors pour l’équation complète. En réitérant les mêmes
calculs, on obtient que
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1
2
d

dt
∥h∥2 = − 1

τ(ε) < Lh, h >

= − 1
τ(ε)∥∂vh∥2

≤ − 1
τ(ε)∥h−

∫
R
hM(v)dv∥2

Il n’est pas possible de conclure avec le calcul précédent. Néanmoins, on peut montrer qu’il
existe C > 1, κ > 0 tels que l’inégalité suivante soit vraie :

∥h∥2 ≤ C∥h0∥2e−κt

Ainsi, le retour vers l’équilibre s’effectue à vitesse exponentielle pour l’équation de Fokker-
Planck. Cette inégalité est très proche de celle trouvée dans le cas coercif. C’est une manifesta-
tion du caractère hypocoercif de l’opérateur 1

ε
T + 1

τ(ε)L. Cet opérateur n’est pas coercif dans
V mais la solution du problème d’évolution associée possède la propriété de retour à l’équilibre
à vitesse exponentielle. Les méthodes utilisées pour exhiber le taux de convergence exponen-
tielle a été développée par Hérau, Nier et Helffer (voir [6], [8] ). La notion d’hypocoercivité est
développée par Villani dans [9].

Les preuves d’hypocoercivité suivent le schéma suivant, comme présenté par Frédéric Hérau
dans son cours de master [5]. Dans un premier temps, on choisit l’espace de Hilbert et la
norme dans laquelle on veut prouver l’hypocoercivité. Ensuite, on définit une fonctionnelle
E(h) équivalente à la norme choisie, c’est-à-dire qu’il existe deux constantes a, b > 0 telles que
pour tout h dans l’espace fixé,

a∥h∥2 ≤ E(h) ≤ b∥h∥2

L’entropie doit pouvoir être dérivée en temps. Dans cette perspective, on utilisera des es-
timations a priori obtenues en supposant la solution de l’équation dans l’espace de Schwartz
S(Rn). En employant des équivalences de normes qui utilisent des inégalités de type Poincaré,
on doit montrer qu’il existe une constante κ > 0 telle que

dE
dt

(h) ≤ −κE(h)

Le lemme de Gronwall montre que E(h) ≤ E(h0)e−κt. Enfin, l’équivalence avec la norme
montre que

∥h∥2 ≤ b

a
∥h0∥2e−κt

2 Méthode numérique hypocoercive pour l’équation de
Fokker-Planck

Cette section récapitule l’article de Filbet et Blaustein [1]. Dans cet article, l’équation de
Fokker-Planck est projetée sur la base des fonctions de Hermite, ce qui fait apparaitre un
système hyperbolique vérifié par les coefficients. Cette astuce permet une lecture facile des dif-
férentes propriétés de l’équation de Fokker-Planck, ainsi qu’une démonstration simple d’hypo-
coercivité dans une norme L2. Ensuite, le système hyperbolique est discrétisé par une méthode
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des volumes finis. Cette discrétisation permet de préserver l’hypocoercivité pour les normes
discrètes. Pour plus de détails sur les fonctions de Hermite, on renvoie à l’annexe (5).

Un avantage de cette méthode est de faire disparaitre la variable vitesse et donc de diviser
par 2 la dimension du problème. Un autre avantage est qu’expérimentalement, on mesure les
premiers moments de f (densité, vitesse fluide...) et donc il est intéressant de simuler directe-
ment les moments plutôt que f .

2.1 Projection de l’EDP sur la base de Hermite
On considère un potentiel Φ ∈ W 2,∞(T), et on note E = −∂xΦ le potentiel électrique associé.

L’équation de Fokker-Planck décrivant l’évolution de la densité d’électrons f pour ce potentiel
extérieur imposé s’écrit : ∂tf + 1

ε
(v∂xf + E∂vf) = 1

τ(ε)(vf + ∂vf) ∀(x, v) ∈ T × R, t > 0

f0 ∈ L1(T × R, dxdv) donnée
Attention : le signe devant le champ E est ici "+" et pas "-" comme dans l’introduction.

Ceci ne change rien à part que l’état stationnaire s’écrit f∞(x, v) = c0e
−Φ(x)M(v).

L’estimation d’énergie suivante :

1
2
d

dt

∫
T×R

(f − f∞)2f−1
∞ dxdv = − 1

τ(ε)

∫
T×R

(
∂v

(
f

f∞

))2

f∞dxdv

montre que un espace de Hilbert naturel pour cette étude est L2(T × R, f−1
∞ dxdv). Ainsi,

on va projeter la densité f sur la base des fonctions de Hermite. On trouvera alors un système
d’une infinité d’EDP portant sur les coefficients de f dans cette base. On résoudra par la suite
ce système pour résoudre l’équation de Fokker-Planck.

On exprime alors f comme sa série de Hermite :

f(t, x, v) =
∞∑

k=0
Ck(t, x)ψk(v) =

∞∑
k=0

√
ρ∞(x)Dk(t, x)ψk(v)

où on définit Dk(t, x) := Ck(t, x)√
ρ∞(x)

.

En remplaçant f par cette série dans l’EDP et en utilisant les propriétés des fonctions de
Hermite, on trouve alors que Dk vérifie pour tout k ∈ N, ∂tDk + 1

ε
(
√
kADk−1 −

√
k + 1A∗Dk+1) = − k

τ(ε)Dk ∀x ∈ T, t > 0

Dk(t = 0, .) donnée
(1)

A et A∗ sont des opérateurs différentiels adjoints dans L2(T, dx) :
Au = ∂xu− E

2 u

A∗u = −∂xu− E

2 u

La décomposition de la densité stationnaire f∞ dans la base de Hermite donne{
D0,∞(x) =

√
ρ∞(x)

Dk,∞(x) = 0, ∀k ≥ 1
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Rappelons que f tend vers f∞ lorsque t

ε
→ +∞. En particulier, tout les moments d’ordre

k ≥ 1 doivent tendre vers 0 quand t

ε
→ +∞. Il n’y a pas de conservation de ces moments sauf de

la masse. On peut d’ailleurs la démontrer dans ce cadre. Ici la masse vaut
∫

T D0(t, x)
√
ρ∞(x)dx.

Un calcul direct montre que A
√
ρ∞(x) = 0, et donc∫

T
A∗D1

√
ρ∞(x)dx =

∫
T
D1A

√
ρ∞(x)dx = 0

On multiplie alors l’équation
∂tD0 − 1

ε
A∗D1 = 0

par √
ρ∞, puis on intègre sur le tore et on intervertit intégrale en espace et dérivée en temps

pour obtenir que

d

dt

∫
T
D0(t, x)

√
ρ∞(x)dx = 0

La masse est donc constante. Cette propriété est très importante et devra être conservée au
niveau discret pour assurer le retour à l’équilibre.

Dans ce contexte, la norme dans L2(T × R, f−1
∞ dxdv) est

∥D∥L2 :=
√√√√ ∞∑

k=0
∥Dk,0∥2

L2(T) (Inégalité de Parseval)

et l’estimation d’énergie devient

1
2
d

dt
∥D(t) −D∞∥2

L2 = − 1
τ(ε)

∞∑
k=1

k∥Dk∥2
L2(T)

On énonce alors le théorème d’hypocoercivité en norme L2 et en régime fortement collision-
nel.

Théorème 1 (Filbet & Blaustein [1]). Supposons que τ(ε)
ε2 → τ0 < +∞ quand ε → 0. Soit

(Dk,0)k∈N la donnée initiale.
Sous la condition initiale ∥D(t = 0)∥L2 < +∞, on a que

∥D −D∞∥L2 ≤
√

3∥D(t = 0) −D∞∥L2 exp
(

−τ(ε)
ε2 κt

)

κ valant 1
C(1 + τ0)

, où C ne dépend que de Φ.

La preuve repose sur l’utilisation de l’entropie suivante :

E(t) = 1
2∥D(t) −D∞∥2

L2 + α1
τ(ε)
ε

< AD1, u >L2(T)

Elle est constituée de deux termes : la norme L2 de notre espace de Hilbert, à laquelle on
ajoute un second terme. Ce terme dépend de u, la solution du problème aux limites elliptique
suivant : 

AA∗u = D0∫
T u

√
ρ∞dx = 0

u ∈ H2(T)
Ce terme permet de retrouver la dissipation en ∥D0∥2

L2(T), qui est absente de l’estimation
d’énergie 2.1
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2.2 Discrétisation en espace et temps

On choisit Nx ∈ N. Soit un intervalle [0, L], et dx = L

Nx

. Pour simplifier les notations, on

considère un maillage uniforme. On définit xj+ 1
2

= jdx pour j = 0, ..., Nx, et xj = (j − 1
2)dx

pour j = 1, ..., Nx. On définit les cellules Kj =]xj− 1
2
, xj+ 1

2
[, pour j = 1, ..., Nx. Soit dt > 0 le

pas de temps. La discrétisation en temps se fera aux instants tn = ndt, ∀n ∈ N.
On approche Dk(tn, xj) par Dn

k,j, qui est une approximation de type volumes finis utilisant
la formule du point milieu :

Dn
k,j = 1

dx

∫
Kj

Dk(tn, x)dx ≈ Dk(tn, xj)

Maintenant, on choisit de faire un schéma d’Euler implicite en temps : disposant de Dn
k,j

pour tout k ∈ N, 1 ≤ j ≤ Nx et n fixé, on calculera les Dn+1
k,j pour tout k ∈ N, 1 ≤ j ≤ Nx en

résolvant

Dn+1
k,j −Dn

k,j

dt
+ 1
ε

(
√
k(ÃDn+1

k−1)j −
√
k + 1(Ã∗Dn+1

k+1)j) = − k

τ(ε)D
n+1
k,j , ∀k ∈ N, 1 ≤ j ≤ Nx (2)

Pour la discrétisation en espace, on doit discrétiser les opérateurs adjoints. Blaustein et
Filbet choisissent les discrétisations suivantes : si (uj)1≤j≤Nx est une suite finie de réels, on la
prolonge par u0 = uNx et uNx+1 = u1, et les opérateurs discrets Ã et Ã∗ sont définis par

(Ãu)j = uj+1 − uj−1

2dx − Ej

2 uj

(Ã∗u)j = −uj+1 − uj−1

2dx − Ej

2 uj

On constate qu’il reste désormais un degré de liberté à fixer, qui est le choix de discrétisa-
tion Ej du champ E(xj). On va fixer ce choix de manière à ce que le schéma préserve l’état
stationnaire.

Lemme 1. Le schéma préserve l’état stationnaire si et seulement si

Ej =

√
ρ∞(xj+1) −

√
ρ∞(xj−1)

dx
√
ρ∞(xj)

Démonstration. Pour ce faire, considérons que Dn
k,j, pour k ∈ N et 1 ≤ j ≤ Nx est la discré-

tisation de l’état stationnaire à n fixé. Ainsi Dn
k,j = 0 si k ̸= 0 et Dn

0,j =
√
ρ∞(xj) sinon. On

suppose que l’état stationnaire est préservé entre les instants n et n + 1, soit Dn
k,j = Dn+1

k,j .
Toutes les équations du système 2 sont triviales, sauf celles données pour k = 1, ce qui donne
(ÃDn

0 )j = 0 pour tout j. En isolant Ej pour tout 1 ≤ j ≤ Nx, on trouve alors que

Ej =

√
ρ∞(xj+1) −

√
ρ∞(xj−1)

dx
√
ρ∞(xj)

Réciproquement, si la discrétisation du champ électrique est la précédente, on vérifie direc-
tement que l’état stationnaire est préservé.
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Ce choix est nécessaire et suffisant pour préserver l’état stationnaire. En fait, on retrouve au
niveau discret que l’état stationnaire doit être élément du noyau de l’opérateur A. La préserva-
tion de l’état stationnaire est capitale pour observer l’hypocoercivité, car si l’état stationnaire
n’est pas préservé, on ne peut pas espérer s’en approcher arbitrairement près en temps long.

Blaustein et Filbet prouvent que ce schéma préserve le caractère hypocoercif de l’équation
de Fokker-Planck, c’est-à-dire que l’on observe au niveau discret le retour à l’équilibre à vitesse
exponentielle.

Théorème 2. Suppososns que τ(ε)
ε2 → τ0 < +∞ quand ε → 0. Soit (D0

k)k∈N la donnée initiale.
Il existe C0 > 0 dependant de Φ telle que pour tout ε > 0 et n ≥ 0, on a

∥Dn −D∞∥L2 ≤
√

3∥D0 −D∞∥L2

(
1 + τ(ε)

ε2 κ0dt

)− n
2

κ0 valant 1
C0(1 + τ0)

.

D’un point de vue pratique, la matrice issue du schéma d’Euler implicite est carrée non
symétrique, de dimension (P + 1) ∗ Nx × (P + 1) ∗ Nx où P est le paramètre de troncature
de la série de Hermite. Elle croit donc très vite selon les paramètres choisis. Heureusement elle
est très creuse, et peut être efficacement codée dans un format creux comme CSR. Lorsque la
matrice est en format plein, et que l’on utilise la résolution par décomposition LU offerte par
LAPACK, même pour des paramètres raisonnables, on observe que l’erreur peut s’accumuler
au fur et à mesure de la simulation, rendant les résultats médiocres à partir d’un temps peu
élevé. Il faut en fait utiliser un solveur préconditionné, par exemple le solveur itératif GEMRES
préconditionné par le solveur LU. Ce solveur est proposé pour les matrices sous format CSR
par la librairie STRUMPACK ou bien PETsC.

2.3 Expérimentations
On reproduit dans cette section l’expérimentation déjà menée dans [1]. Le cas test utilisé

est le suivant. La donnée initiale est

f0(x, v) = (1 + δ cos
(2πx
L

)
)M(v)

avec δ = 0.5, L = 10. On calcule les 200 premiers modes de Hermite et la discrétisation en
espace se fait avec Nx = 64. Le pas de temps est fixé à 5.10−3. La fonction τ(ε) vaut 5ε2. On
étudie alors l’évolution des normes ∥f − f∞∥L2(f−1

∞ ) et ∥f − ρM∥L2(f−1
∞ ).

Sur la figure 2 on représente la solution approchée à différentes dates pour ε = 1, ainsi que
l’état stationnaire théorique. On peut observer l’allure du système dans le plan de phase.

Sur la figure 3, on représente l’évolution de ∥f − ρM∥L2(f−1
∞ ) avec une échelle logarithmique

en ordonnée pour différentes valeurs de ε. On représente aussi la droite d’interpolation et on
calcule sa pente. On peut remarquer des oscillations de la courbe dont il est fait mention dans
[1]. De plus, on remarque que plus ε est petit, plus le plasma est collisionnel et plus le retour à
l’équilibre s’effectue rapidement. Pour la valeur la plus petite, les courbes des différentes normes
deviennent horizontales lorsqu’elles rejoignent l’erreur machine.
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(a) t = 0 (b) t = 0.5

(c) t = 1.5 (d) t = 3

(e) t = 20 (f) Etat stationnaire.

Figure 2 – Cas test 1.
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(a) ε = 1

(b) ε = 0.5

(c) ε = 0.1

Figure 3 – Cas test 1.
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(a) ε = 1

(b) ε = 0.5

(c) ε = 0.1

Figure 4 – Cas test 1.
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3 Schéma de splitting pour Vlasov-Poisson Fokker-Planck
Essayons d’adapter le schéma précédent au système non-linéaire de Vlasov-Poisson-Fokker-

Planck, avec longueur de Debye fixée à 1.


∂tf + 1

ε
(v∂xf − E∂vf) = 1

τ(ε)(vf + ∂vf) ∀(x, v) ∈ T × R, t > 0

−∂xxΦ = ni − ρ ∀(x, v) ∈ T × R, t ≥ 0
E = −∂xΦ

f(0, ., .) ∈ L1
x(T, dx) ∩ L2

v(R, dv) donnée

Le but de cette section est d’essayer naïvement de transformer ce système en un système
hyperbolique de structure similaire au cas de Fokker-Planck, puis d’analyser les nouvelles dif-
ficultés rencontrées. On proposera par la suite des pistes pour éliminer ces difficultés.

3.1 Projection sur la base de Hermite
On décompose f dans la base des fonction de Hermite :

f(t, x, v) =
∞∑

k=0
Ck(t, x)ψk(v) =

∞∑
k=0

e
Φ(t,x)

2 Dk(t, x)ψk(v)

où on définit Dk(t, x) := Ck(t, x)
e

Φ(t,x)
2

. Ce choix permettra de mettre le système sous la même
forme que précédemment, avec les opérateurs A et A∗ de la même forme qu’avant. Ce choix ne
demande pas de résoudre l’équation non-linéaire de Poisson non-linéaire dont Φ∞ est solution.

On injecte cette série de Hermite dans l’EDP de Fokker-Planck pour en déduire le système
d’équations sur Dk, pour tout k ∈ N :

 ∂tDk + 1
ε

(
√
kAtDk−1 −

√
k + 1A∗

tDk+1) = −
(

k

τ(ε) + ∂tΦ
2

)
Dk ∀x ∈ T, t > 0

Dk(t = 0, .)donnée

Il apparait maintenant dans le système un terme ∂tΦ. At et A∗
t sont des opérateurs diffé-

rentiels adjoints dans L2(T, dx) et dépendent de t
Atu = ∂xu+ E(t, .)

2 u

A∗
tu = −∂xu+ E(t, .)

2 u

Les opérateurs dépendent maintenant du temps. Ils restent adjoints dans L2(T, dx). L’équa-
tion de Poisson linéaire devient alors une équation de Poisson non-linéaire :

−∂xxΦ(t, x) = ni(x) −D0(t, x)e
Φ(t,x)

2

Comme pour Fokker-Planck linéaire, la masse
∫

T D0(t, x)e
Φ(t,x)

2 dx doit se conserver et doit
valoir en tout temps m =

∫
T ni(x)dx.

Pour établir la conservation de la masse, on multiplie l’EDP portant sur ∂tD0 par e
Φ(t,x)

2 .
On utilise la règle de dérivation d’un produit et on intègre pour obtenir que
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d

dt
(
∫

T
D0(t, x)e

Φ(t,x)
2 dx) −

∫
T

A∗
tD1e

Φ(t,x)
2 dx = 0

Ensuite, on réalise une intégration par partie pour obtenir que

d

dt
(
∫

T
D0(t, x)e

Φ(t,x)
2 dx) +

∫
T
D1Ate

Φ(t,x)
2 dx = 0

Comme Ate
Φ(t,x)

2 = 0, on obtient la propriété attendue. Il faudra également préserver cette
propriété au niveau discret.

3.2 Discrétisation de l’équation de Fokker-Planck
On reprend les mêmes notations que pour le premier schéma de Filbet et Blaustein.
Le schéma d’Euler implicite s’écrit alors, ∀k ∈ N, 1 ≤ j ≤ Nx :

Dn+1
k,j −Dn

k,j

dt
+ 1
ε

(
√
k(Ãn+1D

n+1
k−1)j −

√
k + 1(Ã∗

n+1D
n+1
k+1)j) = −

(
k

τ(ε) +
Φn+1

j − Φn
j

2dt

)
Dn+1

k,j

La première différence est l’introduction d’une différence finie pour approcher ∂tΦ. La
deuxième différence est que les opérateurs discrets Ã∗

n, Ãn dépendent du temps :
(Ãn+1u)j = uj+1 − uj−1

2dx +
En+1

j

2 uj

(Ã∗
n+1u)j = −uj+1 − uj−1

2dx +
En+1

j

2 uj

On doit alors choisir la discrétisation de En+1
j qui préserve l’état stationnaire.

Lemme 2. L’état stationnaire est préservé si et seulement si

En+1
j = −

√
ρ∞(xj+1) −

√
ρ∞(xj−1)

dx
√
ρ∞(xj)

= −e
Φ∞(xj+1)

2 − e
Φ∞(xj−1)

2

dxe
Φ∞(xj )

2

La preuve du lemme est analogue en tout point au lemme prouvé pour le schéma résolvant
l’équation de Fokker-Planck.

Cette différence finie est consistante avec E = −∂xΦ.
On voit que pour utiliser ce schéma, il faut connaitre Dn

k,j pour tout k, j ainsi que Φn+1
j ,Φn

j

pour tout j. On doit alors calculer le potentiel sur deux instants précédents et alterner la
résolution de l’équation de Fokker-Planck et la résolution de Poisson non-linéaire.

Conservation de la masse Ce schéma n’est a priori pas conservatif. En effet on aimerait
que

Nx∑
j=1

dxDn+1
0,j e

Φn+1
j
2 =

Nx∑
j=1

dxDn
0,je

Φn
j

2

Mais en procédant comme dans le cas continu (multiplication par dxe
Φn

j
2 , sommation sur j,

intégration par partie discrète) on obtient que
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Nx∑
j=1

dx
Dn+1

0,j −Dn
0,j

dt
e

Φn
j

2 = −
Nx∑
j=1

dx
Φn+1

j − Φn
j

2dt e
Φn

j
2 Dn+1

0,j

Cette égalité ne permet pas de conclure : le terme de droite n’est pas forcément nul, et
le facteur e

Φn
j

2 ne permet pas de faire apparaitre les deux intégrales discrètes simultanément
dans le terme de gauche. Pour résoudre le problème de non-conservativité, on doit changer
de procéder pour calculer D0. En particulier, l’apparition du terme ∂tΦ est dramatique. On
propose alors de changer l’équation actuelle sur D0 :

∂tD0 − 1
ε

A∗
tD1 = −∂tΦ

2 D0

On multiplie l’équation par eΦ
2 , on utilise la règle de dérivation d’un produit pour trouver

l’équation

∂tC0 − 1
ε
e

Φ
2 A∗

tD1 = 0

car C0 = e
Φ
2 D0. Il n’y a alors plus de non linéarité. Le schéma discrétiserait alors le système

suivant :



∂tC0 − 1
ε
e

Φ
2 A∗

tD1 = 0
C0 = e

Φ
2 D0

∂tDk + 1
ε

(
√
kAtDk−1 −

√
k + 1A∗

tDk+1) = −
(

k

τ(ε) + ∂tΦ
2

)
Dk ∀k ≥ 1

Dk(t = 0, .) donnée

Du point de vue de l’étude théorique du système, rien ne devrait changer (on a juste utilisé
la définition de C0). Pour le schéma, la première équation donne bien la conservation de C0
donc de la masse.

3.3 Résolution de l’équation de Poisson non-linéaire
Supposons que l’on connaisse D0(tn, x) pour tout x ∈ T. On souhaite résoudre l’équation de

Poisson non-linéaire sur le tore, avec conditions aux limites périodiques et condition de moyenne
nulle :

−∂xxϕ(x) +D0(tn, x)e
ϕ(x)

2 − ni(x) = 0
Définissons alors l’application

F : C2(T) 7→ C0(T)
ϕ 7→ −∂xxϕ+D0(tn, .)e

ϕ
2 − ni

Trouver la solution de l’EDP non linéaire au sens classique revient à trouver le zéro de F .
On propose d’utiliser la méthode de Newton.

F est différentiable au sens de Fréchet, sa différentielle étant

dϕF : C2(T) 7→ C0(T)

h 7→ −∂xxh+ D0(tn, .)
2 e

ϕ
2 h

Soit v ∈ C0(T). Calculer u = (dϕF )−1.v revient à résoudre l’EDP suivante :
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 v = −∂xxu+ D0(tn, .)
2 e

ϕ
2 u

u ∈ C2(T)
On se propose alors d’approcher u par la troncature de rang K de sa série de Fourier puis

d’appliquer la méthode de collocation. On veut approcher u(x) par une somme de Fourier :

u(x) ≈
K∑

k=−K

cke
2ikπx

L

Les inconnues sont alors les coefficients dans la base de Fourier. Pour ce faire, on part du
fait que l’EDP est vérifiée sur les centres des cellules xj+ 1

2
= (j − 1

2)dx, ∀j = 1, ..., Nx :

v(xj+ 1
2
) =

K∑
k=−K

ck

(2kπ
L

)2

+
D0(tn, xj+ 1

2
)

2

 eϕ(x
j+ 1

2
)

2 e
2ikπ

L
x

j+ 1
2

Si la contrainte Nx ≥ 2K + 1 est satisfaite, alors on peut former un système linéaire carré
qu’il faut inverser pour calculer les ck. Les points de collocations peuvent être choisis équirépartis
si 2K divise Nx − 1.

Supposons maintenant que l’on connaisse le vecteur Φ̂n ∈ C2K+1 des coefficients de Fourier
de Φn, et que l’on connaisse Dn

0,j pour tout 1 ≤ j ≤ Nx. L’algorithme de Newton prend la forme
suivante.

Etape 1 : initialisation On choisit û0 ∈ C2K+1. On note le compteur p = 0.

Etape 2 : itérations Tant que la convergence n’est pas atteinte, on répète le calcul suivant :
— On assemble la matrice M ∈ M2K+1(C) de coefficients

Mj,k =
(2kπ

L

)2

+
Dn

0,j

2

 eup(x
j+ 1

2
)

2 e
2ikπ

L
x

j+ 1
2

où up est la somme de Fourier associée à ûp.

— On assemble le second membre b ∈ C2K+1 de coefficients bj = F (up)(xj+ 1
2
).

— On résout le système Mx = b.

— On calcule ûp+1 = ûp − x, le coefficient associé à la valeur moyenne est remis à 0, puis p
est incrémenté de 1.

Etape 3 : résultat Le vecteur ûp obtenu à la convergence est le vecteur Φ̂n+1 des coefficients
de Fourier du potentiel Φn+1 à l’instant n+ 1 .

Remarque On a été obligé, pour la programmation de cet algorithme, de remettre le coeffi-
cient associé à la moyenne à 0 à la fin de l’étape 2. Si cette opération n’est pas faite, on obtient
un overflow. Le fait que la matrice de collocation est très mal conditionnée et que la valeur
moyenne du potentiel se retrouve dans une exponentielle à chaque itération peut expliquer ce
problème. Cette approche n’est pas rigoureuse.
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3.4 Algorithme de splitting
On assemble alors un algorithme qui permet de simuler le système de Vlasov-Poisson Fokker-

Planck à partir des deux précédents solveurs. Nx, K sont deux entiers fixés avant l’initialisation
et correspondent au paramètres de troncature des séries de Fourier et le nombre de cellules du
maillage. T est le temps final.

Etape 1 : initialisation t0 = 0. On fixe n = 0. Les valeurs D0
k,j sont données. On calcule le

potentiel initiale à t = 0 en résolvant l’équation de Poisson linéaire :

−∂xxΦ0 = ni(x) − ρ(x)
Pour ce faire, on approche Φ0 par sa série de Fourier tronquée au rang K. La valeur moyenne

est fixée à 0.

Itérations Tant que tn < T , on répète les opérations suivantes.
Le pas de temps dt prend la valeur min(dt, T − tn) (ainsi toutes les itérations se font avec

le même pas de temps sauf la dernière. La simulation s’arrêtera alors bien au temps T).
La date est incrémentée : tn+1 = tn + dt. Comme les coefficients de Hermite et le potentiel

sont connus au temps tn, on peut :
— Premièrement calculer Φn+1 par l’algorithme de Newton (demande de connaitre Dn

0,j) ;
— Ensuite calculer les coefficients de Hermite Dn+1

k,j pour tout k, j (demande de connaitre
Dn

k,j pour tout k, j, Φn+1, Φn).
Le compteur n est incrémenté de 1.

Fin La simulation est arrivée à terme.

Supposons que le potentiel stationnaire Φ∞ soit de la forme ∑K
k=−K cke

2ikπx
L , et que l’on

sache calculer de manière exacte les coefficients de Fourier de ni − ρ lors de la résolution de
Poisson linéaire dans l’initialisation. Alors ( erreurs machine près ) :

— Le solveur pour Poisson non-linéaire va préserver le potentiel. En effet, le second membre
b issu de la méthode de collocation sera nul, donc la solution du système x aussi, donc
ûp+1 = ûp.

— Le solveur de Fokker-Planck va également respecter l’état stationnaire. Il a été conçu
spécifiquement dans ce but.

Ceci est vrai à la première itération. Par récurrence, l’état stationnaire sera préservé après
toutes les itérations en temps. La seconde hypothèse peut être réalisée en prenant un grand
nombre de points et une méthode de Newton-Cotes d’ordre élevé (il ne faut pas dépasser l’ordre
7 à cause du phénomène de Runge).

3.5 Expérimentations
3.5.1 Cas test 1

Le premier cas test est une perturbation de l’état stationnaire :

f(0, x, v) =
(

1 + δ cos
(2πx
L

))
M(v)eΦ∞(x)

avec L = 10, δ = 0.5.
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On choisit le potentiel stationnaire comme

Φ∞(x) = 0.1 cos
(2πx
L

)
+ 0.9 cos

(4πx
L

)
L’état stationnaire est de la forme

f∞(x, v) = c0e
Φ∞(x)M(v)

Moyennant utilisation d’un logiciel de calcul formel (Geogebra) on peut calculer

c0 = 1 + δ

∫
T cos(2πx

L
)eΦ∞(x)dx∫

T e
Φ∞(x)dx

. Les coefficients de Hermite sont initialement Dk(0, x) = 0 si

k ̸= 0 et D0(0, x) =
(

1 + δ cos
(2πx
L

))
eΦ∞(x)− Φ(0,x)

2 .
On dispose de toutes les données pour effectuer la simulation. Les paramètres sont :
— Nx = 61 ;
— K = 10 (troncature des série de Fourier) ;
— P = 100 (troncature des séries de Hermite) ;
— T = 20
— L = 10
— dt = 0.005
— τ(ε) = 5ε2.
On étudie l’évolution de différentes normes pour ε = 1, 0.5, 0.1 :

||f − ρM||L2(f−1
∞ ) =

(∑∞
k=1

∫
T Dk(t, x)2 e

Φ(t,x)

ρ∞(x)dx
)1/2

||ρ− ρ∞||L2(ρ−1
∞ ) =

∫
T

(e
Φ(t,x)

2 D0(t, x) − ρ∞(x))2

ρ∞(x)

1/2

||f − f∞||L2(f−1
∞ ) =

(
||f − ρM||2

L2(f−1
∞ ) + ||ρ− ρ∞||2

L2(ρ−1
∞ )

)1/2

On obtient les figures 5 et 6. On vérifie expérimentalement que la masse est constante
et que le schéma est conservatif. Les différentes normes L2 tendent vers 0 mais presque sans
oscillations.

3.6 Conclusion
En tentant naïvement d’adapter le même schéma au système de Vlasov-Poisson-Fokker-

Planck, on a donc vu plusieurs difficultés apparaitre. On a écrit les schémas en utilisant les
variables Dk car on voulait obtenir un système d’une structure similaire à celui obtenu pour
Fokker-Planck. Néanmoins, ce choix a causé les difficultés suivantes :

— Les opérateurs différentiels dépendent du temps. Ainsi, la matrice utilisée pour résoudre
l’équation de Fokker-Planck dépend du temps. Elle doit être formée à chaque itération
ce qui prend beaucoup de temps.

— Le terme ∂tΦ est apparu, qui complique l’étude du schéma.
— La conservativité du schéma est obtenue en écrivant en variable Ck l’équation sur le

premier moment. On peut se demander s’il n’est alors pas plus pertinent d’écrire le
schéma entier sur les coefficients Ck.

— L’équation de Poisson est devenue non-linéaire. Sa résolution aurait été beaucoup plus
simple si elle était restée linéaire.

De plus, l’étude théorique de l’hypocoercivité du système non-linéaire de Vlasov-Poisson-
Fokker-Planck s’effectue sous forme perturbative, c’est à dire que l’on écrit
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f = f∞ + f∞h

h est une perturbation autour de l’état d’équilibre f∞. Les preuves d’hypocoercivité se
placent alors sous l’hypothèse que h est assez petite. Ainsi, il serait plus simple d’étudier et
résoudre l’équation cinétique vérifiée par h.

En prenant compte de ces différentes remarques, on va étudier plus rigoureusement le sys-
tème sous forme perturbative.
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(a) ε = 1 (b) ε = 1

(c) ε = 1 (d) ε = 0.5

(e) ε = 0.5 (f) ε = 0.5

Figure 5 – Cas test 1.
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(a) ε = 0.1 (b) ε = 0.1

(c) ε = 0.1

Figure 6 – Cas test 1.

25



4 Etude du système de Vlasov-Poisson-Fokker-Planck

4.1 Introduction et notations
Rappelons le système de Vlasov-Poisson-Fokker-Planck :

∂tf + 1
ε

(v∂xf − E∂vf) = 1
τ(ε)(vf + ∂vf) ∀(x, v) ∈ T × R, t > 0

−δ2∂xxϕ(t, x) = ni(x) − ρ(t, x) ∀x ∈ T, t ≥ 0
E(t, x) = −∂xϕ(t, x) ∀x ∈ T, t ≥ 0

f(0, ., .) ∈ L2(T × R) donnée

(3)

Le plasma est globalement neutre et la masse d’électrons se conserve, ce qui donne les
égalités : ∫

T
ρ(t, x)dx =

∫
T
ni(x)dx := m > 0 ∀t ≥ 0

On peut formellement identifier l’état d’équilibre de ce système, qui s’écrit :

−δ2∂xxϕ∞(x) = ni(x) − ceϕ∞(x)

c = m∫
T e

ϕ∞(x)dx
ρ∞(x) = ceϕ∞(x)

f∞(x, v) = ρ∞(x)M(v)

(4)

La question de la convergence vers l’équilibre se pose alors naturellement. Contrairement à
l’équation de Fokker-Planck linéaire, on doit supposer que la condition initiale est assez proche
de l’état d’équilibre pour obtenir la convergence vers l’équilibre à vitesse exponentielle : c’est
une approche dite "perturbative". Il est naturel d’effectuer le changement de variable suivant :
on écrit que f = f∞ + f∞h, où h est la perturbation relative par rapport à l’état d’équilibre.
On injecte cette expression dans le système pour en déduire le système vérifié par h.

On calcule :

∂xf∞ = −E∞f∞

∂vf∞ = −vf∞

∂tf = f∞∂th

v∂xf = −vE∞f∞ − E∞vf∞h+ vf∞∂xh

−E∂vf = Evf∞ + Evf∞h− Ef∞∂vh

∂v(∂vf + vf) = ∂v

(
M∂v

(
f

M

))
= ∂v(f∞∂vh)
= −vf∞∂vh+ f∞∂

2
vh

On pose ψ := ϕ− ϕ∞, d’où Eh := ∂xψ = E∞ −E. Le système obtenu pour la perturbation
h est le suivant :


∂th+ 1

ε
(−v∂xψ − E∞∂vh+ v∂xh+ ∂xψ(∂vh− vh)) = 1

τ(ε)(∂2
vh− v∂vh) ∀t > 0

−δ2∂xxψ = −
∫

R hf∞dv ∀t ≥ 0
h(0, ., .) = h0 ∈ H0 donnée
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Définissons un espace fonctionnel adapté à l’étude de ce dernier problème. Notons H =
L2(T × R, f∞dxdv). C’est un espace de Hilbert muni du produit scalaire

< u, v >=
∫ ∫

T×R
uvf∞dxdv

et de la norme

∥u∥ =
(∫ ∫

T×R
u2f∞dxdv

)1/2

On définit aussi le sous espace fermé des fonctions à moyenne nulle H0 = {f ∈ H | <
f, 1 >= 0}.

Posons les opérateurs suivants définis sur H1(T × R, f∞dxdv) :

A = ∂v , B = v∂x − E∞∂v , C = ∂x

Les adjoints de ces opérateurs dans H sont

A∗ = v − ∂v , B
∗ = −B

En utilisant ces notations ainsi que L = 1
τ(ε)A

∗A+ 1
ε
B, le système se réécrit

∂th+ Lh− 1
ε
∂xψv = 1

ε
∂xψA

∗h ∀(x, v) ∈ T × R, t > 0
−∂xxψ = −

∫
R hf∞dv ∀x ∈ T, t ≥ 0

Eh = ∂xψ ∀x ∈ T, t ≥ 0
h0 ∈ H0 donné

(5)

Par la suite, on utilisera plusieurs identités algébriques pour établir les estimations d’énergie
nécessaires à la preuve d’hypocoercivité dans le cas linéaire :

[A,B] = AB −BA

= ∂v(v∂x − E∞∂v) − v∂v∂x + E∞∂
2
v

= ∂x

[B,C] = BC − CB

= −∂xxϕ∞∂v

[A,A∗] = AA∗ − A∗A

= 1
< ABh,Ch > + < Ah,CBh > = ∥Ch∥2+ < Ah, ∂xxϕ∞Ah >

< h,−Lh > = − 1
τ(ε)∥Ah∥2

4.2 Estimations d’énergie
Par la suite, on voudrait donner une preuve d’hypocoercivité pour le système de VPFP

perturbatif (5). On commencera par étudier le problème linéarisé suivant, obtenu en supprimant
le terme non linéaire du système de départ (5) :

∂th+ Lh− 1
ε
∂xψv = 0 ∀(x, v) ∈ T × R, t > 0

−δ2∂xxψ = −
∫

R hf∞dv ∀x ∈ T, t ≥ 0
h0 ∈ H0 donnée

(6)
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La première étape sera de dériver en temps une entropie bien choisie. Les estimations d’éner-
gie suivantes donnent des valeurs des dérivées en temps de plusieurs normes pour une solution
h ∈ H0 de (6) régulière (par exemple dans l’espace de Schwarz S(T × R)).

Proposition 1. Si h est une fonction régulière vérifiant le système (6), alors les quatre égalités
suivantes sont vérifiées.

1
2
d

dt
∥h∥2 + δ2

2
d

dt
∥∂xψ∥2

L2(T) = − 1
τ(ε)∥Ah∥2

1
2
d

dt
∥Ah∥2 + δ2

2
d

dt
∥∂xψ∥2

L2(T) = − 1
τ(ε)(∥Ah∥2 + ∥A2h∥2) − 1

ε
< Ch,Ah >

1
2
d

dt
∥Ch∥2 = − 1

τ(ε)∥CAh∥2 − 1
ε
< ∂xxϕ∞Ah,Ch > +1

ε
< ∂xxψv,Ch >

d

dt
< Ah,Ch > = − 1

τ(ε)(< Ah,Ch > +2 < A2h,ACh >) − 1
ε

(∥Ch∥2+ < Ah, ∂xxϕ∞Ah >)

+ 1
ε

(< ∂xψ,Ch > + < ∂xxψv,Ah >)

Démonstration. Tout d’abord, on établit l’équation de continuité du flux. On multiplie l’équa-
tion par f∞ puis on intègre sur R. On obtient 3 intégrales qu’on traite séparément :∫

R
∂thf∞dv +

∫
R
Lhf∞dv −

∫
R

1
ε
∂xψvf∞dv = 0

La première vaut d

dt

∫
R hf∞dv car f∞ est indépendante du temps. La troisième vaut

−1
ε
∂xψ

∫
R
∂vf∞dv = 0

car ψ est indépendant de v. Pour la deuxième intégrale,

∫
R
Lhf∞dv = 1

τ(ε) < A∗Ah, 1 > +1
ε

∫
R
Bhf∞dv

= 1
τ(ε) < Ah,A1 > +1

ε

∫
R
Bhf∞dv

= 1
ε

∫
R
Bhf∞dv

= 1
ε
∂x

∫
R
vhf∞dv

L’équation de continuité du flux est donc, si j(t, x) =
∫

R vhf∞dv,

d

dt

∫
R
hf∞dv = −1

ε
∂xj(t, x)

Un autre calcul préliminaire est le suivant.
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< ∂xψv, h > =
∫

T
∂xψjdx

= −
∫

T
ψ∂xjdx

= ε
∫

T
ψ

(
d

dt

∫
R
hf∞dv

)
dx

= εδ2
∫

T
ψ∂t∂xxψdx

= −εδ2
∫

T
∂xψ∂t∂xψdx

= −εδ2

2
d

dt
∥∂xψ∥2

L2(T)

On dérive maintenant ∥h∥2 selon t.

1
2
d

dt
∥h∥2 = < ∂th, h >=< h,−Lh+ 1

ε
∂xψv >

= < h,−Lh+ 1
ε
∂xψv >

= − 1
τ(ε)∥Ah∥2+ < h,

1
ε
∂xψv >

= − 1
τ(ε)∥Ah∥2 − δ2

2
d

dt
∥∂xψ∥2

L2(T)

= − 1
τ(ε)∥Ah∥2 − δ2

2
d

dt
∥∂xψ∥2

L2(T)

On dérive maintenant ∥Ah∥2 selon t.

1
2
d

dt
∥Ah∥2 = − < Ah,ALh > +1

ε
< A(∂xψv), Ah >

Or,

∥A∗Ah∥2 = < AA∗Ah,Ah >

= < [A,A∗]Ah,Ah > + < A∗AAh,Ah > (car AA∗ = 1 + A∗A)
= ∥Ah∥2 + ∥A2h∥2

Donc

− < ALh,Ah > = − 1
τ(ε)∥A∗A∥2 − 1

ε
< ABh,Ah >

= − 1
τ(ε)(∥Ah∥2 + ∥A2h∥2) − 1

ε
< [A,B]h,Ah > +1

ε
< BAh,Ah >

= − 1
τ(ε)(∥Ah∥2 + ∥A2h∥2) − 1

ε
< Ch,Ah >

Ensuite
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1
ε
< A(∂xψv), Ah > = 1

ε
< ∂xψA

∗Av, h >

= −δ2

2
d

dt
∥∂xψ∥2

L2(T) (car A∗Av = v)

On dérive maintenant ∥Ch∥2 selon t.

1
2
d

dt
∥Ch∥2 = − < Ch,CLh > +1

ε
< C(∂xψv), Ch >

Or,

− < CLh,Ch > = − 1
τ(ε) < CA∗Ah,Ch > −1

ε
< CBh,Ch >

= − 1
τ(ε) < CAh,CAh > +1

ε
< [B,C]h,Ch > −1

ε
< BCh,Ch > (CA = AC)

= − 1
τ(ε)∥CAh∥2 − 1

ε
< ∂xxϕ∞Ah,Ch > (B∗ = −B)

Ensuite,

1
ε
< C(∂xψv), Ch > = 1

ε
< ∂xxψv,Ch >

On dérive maintenant < Ah,Ch > selon t.

d

dt
< Ah,Ch > = − < Ch,ALh > +1

ε
< A(∂xψv), Ch >

− < Ah,CLh > +1
ε
< C(∂xψv), Ah >

Puisque

− 1
τ(ε)(< AA∗Ah,Ch > + < Ah,CA∗Ah >) = − 1

τ(ε)(< Ah,Ch > +2 < A2h,ACh >)

et que

−1
ε

(< ABh,Ch > + < Ah,CBh >) = −1
ε

(∥Ch∥2+ < Ah, ∂xxϕ∞Ah >)

on obtient que

− < Ch,ALh > − < Ah,CLh > = − 1
τ(ε)(< Ah,Ch > +2 < A2h,ACh >)

− 1
ε

(∥Ch∥2+ < Ah, ∂xxϕ∞Ah >)

Ensuite,

1
ε

(< A(∂xψv), Ch > + < C(∂xψv), Ah >) = 1
ε

(< ∂xψ,Ch > + < ∂xxψv,Ah >)

On conclut en rassemblant les différentes expressions.
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4.3 Etude de l’état d’équilibre
Dans cette partie, on étudie l’existence de l’état d’équilibre satisfaisant (4), ainsi que ses

propriétés de régularité. On va également déduire des estimations Lp sur la densité stationnaire.

Proposition 2. Supposons que la densité ionique ni soit dans L∞(T). Alors l’EDP non-linéaire
(4) admet une unique solution ϕ∞ dans {u ∈ H2(T) |

∫
T udx = 0}.

De plus, pour tout 1 ≤ p ≤ ∞, on a que

∥ρ∞∥Lp(T) ≤ ∥ni∥Lp(T) (7)
Enfin, le principe du maximum implique les inégalités suivantes :

inf
T
ni ≤ inf

T
ρ∞ ≤ ∥ρ∞∥∞ ≤ ∥ni∥∞ (8)

1
∥ni∥∞

≤ inf
T

1
ρ∞

≤
∥∥∥∥∥ 1
ρ∞

∥∥∥∥∥
∞

≤ 1
infT ni

(9)

Remarque La solution ϕ∞ est à moyenne nulle dans l’énoncé au dessus. En réalité, ce po-
tentiel stationnaire n’est défini qu’à une constante près. La condition de moyenne nulle permet
d’obtenir l’unicité. En effet, supposons que ϕ∞ soit une solution et soit r ∈ R. Alors

−δ2∂xx(r + ϕ∞(x)) = −δ2∂xxϕ∞(x)
= ni(x) − m∫

T e
ϕ∞dx

eϕ∞(x)

= ni(x) − m∫
T e

ϕ∞+rdx
eϕ∞(x)+r

et donc ϕ∞ + r est aussi solution.

Démonstration. Définissons la fonction

J : {u ∈ H1(T) |
∫

T udx = 0} 7→ R

ϕ 7→ δ2

2
∫

T ∂xϕ
2dx−

∫
T niϕdx+m ln

(∫
T e

ϕ
)

Cette fonction est coercive. Par l’inégalité de Poincaré sur le tore, on peut équiper l’espace
de définition de la norme ∥∂xu∥L2(T) équivalente à la norme ∥u∥H1(T). J est constituée de 3
termes. Par les inégalités de Cauchy-Schwartz et Poincaré pour le second terme et l’inégalité
de Jensen pour le troisième terme,

J(ϕ) ≥ δ2

2 ∥∂xϕ∥2
L2(T) − cp∥ni∥L2∥∂xϕ∥L2 +m ln

(
exp

(∫
T
ϕdx

))
Mais comme ϕ est de moyenne nulle, on a que

J(ϕ) ≥ δ2

2 ∥∂xϕ∥2
L2(T) − cp∥ni∥L2∥∂xϕ∥L2

ce qui montre la coercivité.
J est strictement convexe. En effet, le second membre est linéaire donc convexe. Le troisième

terme est convexe en vertu de l’inégalité de Hölder :
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m ln
(∫

T
exp(tϕ1 + (1 − t)ϕ2)dx

)
≤ m ln

((∫
T

exp(ϕ1)dx
)t (∫

T
exp(ϕ2)dx

)1−t
)

≤ tm ln
(∫

T
exp(ϕ1)dx

)
+m(1 − t)

(∫
T

exp(ϕ2)dx
)

Le premier terme est strictement convexe. J est strictement convexe et coercive sur un
espace de Banach donc elle admet un unique point de minimum global.

On vérifie que J est Fréchet-différentiable de classe C1. On en déduit que l’unique point
critique de J correspond au point de minimum global.

Puisque la différentielle de J en ϕ appliquée à h est

dϕJ.h = δ2
∫

T
∂x∂xhdx−

∫
T
nihdx+m

∫
T e

ϕhdx∫
T e

ϕdx

on trouve que le point de minimum global, noté à partir de maintenant ϕ∞, est tel que pour
toute h ∈ H1(T) à moyenne nulle,

δ2
∫

T
∂xϕ∞∂xhdx =

∫
T
nihdx−m

∫
T e

ϕ∞hdx∫
T e

ϕ∞dx

Remarquons que l’égalité est vérifiée aussi pour les fonctions constantes, donc elle est vraie
pour toute h ∈ H1(T), et en particulier pour toute h ∈ C∞(T).

Comme ni − m∫
T e

ϕdx
eϕ ∈ L2(T), on en déduit que ϕ∞ ∈ H2(T). En faisant une intégration

par partie et en utilisant la densité de C∞(T) dans L2(T), on en déduit que ϕ∞ vérifie l’EDP
suivante :

−δ2∂xxϕ∞ = ni − m∫
T e

ϕ∞dx
eϕ∞

Réciproquement si une fonction de H2(T) vérifie l’équation presque partout alors c’est
l’unique point de minimum global ϕ∞. On a donc montré l’existence et l’unicité d’une solution.

Dans la suite, on pose ϕ̃∞ = ϕ∞ − ln
(
δ2
∫

T e
ϕ∞dx

m

)
. Elle vérifie l’équation

−∂xxϕ̃∞ = ni

δ2 − eϕ̃∞

dont la formulation faible est : ∀h ∈ H1(T),∫
T
∂xϕ̃∞∂xhdx =

∫
T

ni

δ2hdx−
∫

T
eϕ̃∞hdx

Soit G une fonction de C1(R), strictement croissante sur ]0,+∞[ et nulle sur ] − ∞, 0].

Posons h = G

(
eϕ̃∞ − ∥ni∥∞

δ2

)
dans la dernière équation. Alors

∫
T
(∂xϕ̃∞)2eϕ̃∞G′

(
eϕ̃∞ − ∥ni∥∞

δ2

)
dx =

∫
T

(
ni

δ2 − ∥ni∥∞

δ2

)
G

(
eϕ̃∞ − ∥ni∥∞

δ2

)
dx

−
∫

T

(
eϕ̃∞ − ∥ni∥∞

δ2

)
G

(
eϕ̃∞ − ∥ni∥∞

δ2

)
dx

Le membre de gauche est positif. Dans le membre de droite, la première intégrale est né-
gative. On en déduit alors que la dernière intégrale est négative, mais comme tG(t) ≥ 0 pour
tout t ∈ R,
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0 ≤
∫

T

(
eϕ̃∞ − ∥ni∥∞

δ2

)
G

(
eϕ̃∞ − ∥ni∥∞

δ2

)
dx ≤ 0

ce qui veut dire que presque partout dans T, eϕ̃∞ ≤ ∥ni∥∞

δ2 . Finalement si ρ∞(x) =
m∫

T e
ϕdx

eϕ(x), alors

ρ∞(x) ≤ ∥ni∥∞ presque partout dans le tore
Si maintenantG est une fonction de classe C1(R) négative, strictement croissante sur ]−∞, 0[

et nulle sur [0,+∞[, on peut répéter le même raisonnement. Posons h = G

(
eϕ̃∞ − infT ni

δ2

)
dans la dernière équation. Alors

∫
T
(∂xϕ̃∞)2eϕ̃∞G′

(
eϕ̃∞ − infT ni

δ2

)
dx =

∫
T

(
ni

δ2 − infT ni

δ2

)
G

(
eϕ̃∞ − infT ni

δ2

)
dx

−
∫

T

(
eϕ̃∞ − infT ni

δ2

)
G

(
eϕ̃∞ − infT ni

δ2

)
dx

Le membre de gauche est positif. Dans le membre de droite, la première intégrale est né-
gative. On en déduit alors que la dernière intégrale est négative, mais comme tG(t) ≥ 0 pour
tout t ∈ R,

0 ≤
∫

T

(
eϕ̃∞ − infT ni

δ2

)
G

(
eϕ̃∞ − infT ni

δ2

)
dx ≤ 0

ce qui veut dire que presque partout dans T, eϕ̃∞ ≥ infT ni

δ2 . Finalement

inf
T
ni ≤ ρ∞(x) ≤ ∥ni∥∞ presque partout dans le tore

ce qui implique les inégalités dans L∞(T).
Pour prouver les estimations dans les autres espaces Lp, reprenons l’équation vérifiée par

ϕ̃∞. Soit p ≥ 1. On la multiplie par e(p−1)ϕ̃∞ , puis on intègre et on réalise une intégration par
partie pour obtenir :∫

T
epϕ̃∞dx ≤

∫
T
epϕ̃∞dx+ (p− 1)

∫
T
(∂xϕ̃∞)2e(p−1)ϕ̃∞dx ≤

∫
T

ni

δ2 e
(p−1)ϕ̃∞dx

En utilisant l’inégalité de Hölder, on trouve alors que

∥eϕ̃∞∥p
Lp(T) ≤ 1

δ2 ∥ni∥Lp(T)∥eϕ̃∞∥p−1
Lp(T)

ce qui donne la borne Lp, 1 ≤ p < ∞.

4.4 Hypocoercivité H1

Une preuve d’hypocoercivité à déjà été fourni par Herda et Rodrigues dans [4], où la preuve
est faite en deux temps. Dans un premier temps, les termes dépendant de ψ sont ignorés pour
considérer l’équation linéaire ∂th + Lh = 0. L’hypocoercivité est démontrée pour ce système
linéaire. Dans un second temps, une preuve par point fixe permet de montrer l’hypocoercivité
du système non-linéaire entier. La preuve donnée dans [4] permet d’obtenir des constantes
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explicites selon τ(ε) et δ et permet d’étudier des équations limites. La difficulté rencontrée
est qu’il faut supposer δ assez grande pour conclure. Ceci présente un problème car δ est un
paramètre plutôt voué à être petit dans un plasma en vertu de la quasi-neutralité.

Nous allons refaire une partie de la preuve pour montrer d’où vient la contrainte sur δ. Nous
n’essayerons pas d’obtenir des constantes explicites. Le système sur lequel nous allons travailler
est le suivant : 

∂th+ Lh− 1
ε
∂xψv = 0 ∀t > 0

−δ2∂xxψ = −
∫

R hf∞dv ∀t ≥ 0
h(t, ., .) ∈ H0 ∀t ≥ 0

Ce système est linéaire.
Une propriété importante de l’espace fonctionnel H0 auquel la perturbation h appartient est

l’existence de l’inégalité de Poincaré suivante. Elle nous permettra de prouver l’hypocoercivité.

Proposition 3. (voir ([4]) Il existe une constante K > 0 telle que pour toute fonction h ∈ H0,

∥h∥2 ≤ K∥eϕ∞∥L∞(T)∥e−ϕ∞∥L∞(T)(∥Ch∥2 + ∥Ah∥2)

On notera Kϕ∞ := K∥eϕ∞∥L∞(T)∥e−ϕ∞∥L∞(T) la constante de Poincaré dans H0.

Définissons l’entropie par

E(h) = α1(∥h∥2 + δ2∥∂xψ∥L2(T)) + α2ε(∥Ah∥2 + δ2∥∂xψ∥L2(T)) + α3ε∥Ch∥2 + α4ε < Ah,Ch >

où α1, α2, α3, α4 > 0 sont à fixer. La proposition suivante donne un encadrement de l’entropie
par la norme ∥h∥2

H1 = ∥h∥2 + ∥Ah∥2 + ∥Ch∥2.

Proposition 4. Si il existe η > 0 tel que α2 − α4

2η > 0 et α3 − α4η

2 > 0 alors il existe m,M > 0
tels que

m(∥h∥2
H1 + ∥∂xψ∥2

L2(T)) ≤ E(h) ≤ M(∥h∥2
H1 + ∥∂xψ∥2

L2(T))

Démonstration. La preuve repose sur l’utilisation de l’inégalité de Young avec η > 0 :

|α4ε < Ah,Ch > | ≤ α4ε

2η ∥Ah∥2 + α4εη

2 ∥Ch∥2

On obtient l’encadrement suivant :

α1∥h∥2 +
(
α2 − α4

2η

)
ε∥Ah∥2 +

(
α3 − α4η

2

)
ε∥Ch∥2 + δ2(α1 + α2ε)∥∂xψ∥2

L2(T) ≤ E(h)

et

E(h) ≤ α1∥h∥2 +
(
α2 + α4

2η

)
ε∥Ah∥2 +

(
α3 + α4η

2

)
ε∥Ch∥2 + δ2(α1 + α2ε)∥∂xψ∥2

L2(T)

Sous l’hypothèse de l’énoncé, on pose alors m = min
(
α1, (α2 − α4

2η )ε, (α3 − α4η

2 )ε
)

et M =

max
(
α1, (α2 + α4

2η )ε, (α3 + α4η

2 )ε
)

. On obtient le résultat.
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On se sert maintenant des estimations d’énergie et de l’entropie E pour montrer le résultat
de convergence vers l’état stationnaire suivant :

Proposition 5. Sous l’hypothèse suivante sur la longueur de Debye δ :

1
δ2 <

√
infT ni

K

1
cp∥ni∥∞

(K étant fourni par la proposition 3) il existe des constantes C, κ > 0 dépendant de ε, τ(ε)
telles que si h est solution de (6) alors

∥h∥H1 ≤ C∥h0∥H1e−κt

Démonstration. On calcule dE(h)
dt

en utilisant les estimations d’énergie (1) :

dE(h)
dt

= − 2α1

τ(ε)∥Ah∥2 − 2α2ε

τ(ε) (∥Ah∥2 + ∥A2h∥2) − 2α2 < Ch,Ah >

− 2α3ε

τ(ε) ∥ACh∥2 − 2α3 < ∂xxϕ∞Ah,Ch,> +2α3 < ∂xxψv,Ch >

− α4ε

τ(ε)(< Ah,Ch > +2 < A2h,ACh >) − α4(∥Ch∥2+ < Ah, ∂xxϕ∞Ah >)

+ α4(< ∂xψ,Ch > + < ∂xxψv,Ah >)

Dans cette expression, 5 produits scalaires n’ont pas de signe. On majore en prenant la
valeur absolue :

dE(h)
dt

≤
(
α4∥∂xxϕ∞∥∞ − 2α1

τ(ε) − 2α2ε

τ(ε)

)
∥Ah∥2 − 2α2ε

τ(ε) ∥A2h∥2 − 2α3ε

τ(ε) ∥ACh∥2

+
(

2α2 + α4ε

τ(ε) + 2α3∥∂xxϕ∞∥∞

)
| < Ch,Ah > | − α4∥Ch∥2

+ 2α4ε

τ(ε) | < A2h,ACh > | + 2α3| < ∂xxψv,Ch > | + α4| < ∂xψ,Ch > | + α4| < ∂xxψv,Ah > |

Puis en utilisant l’inégalité de Young, avec η, µ, ν, ω, θ > 0 :

(
2α2 + α4ε

τ(ε) + 2α3∥∂xxϕ∞∥∞

)
| < Ch,Ah > | ≤ 1

2θ

(
2α2 + α4ε

τ(ε) + 2α3∥∂xxϕ∞∥∞

)2

∥Ah∥2 + θ

2∥Ch∥2

2α4ε

τ(ε) | < A2h,ACh > | ≤ α4ε

τ(ε)

(
∥A2h∥2

η
+ η∥ACh∥2

)

2α3| < ∂xxψv,Ch > | ≤ α3

(
∥∂xxψv∥2

ν
+ ν∥Ch∥2

)

α4| < ∂xxψv,Ah > | ≤ α4

2

(
∥∂xxψv∥2

ω
+ ω∥Ah∥2

)

α4| < ∂xψ,Ch > | ≤ α4

2

(
∥∂xψ∥2

µ
+ µ∥Ch∥2

)

Il faut majorer les différentes normes faisant intervenir ψ.
En utilisant directement l’équation de Poisson,
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∥∂xxψv∥2 =
∫

T
(∂xxψ)2ρ∞dx

≤ ∥ρ∞∥∞∥∂xxψ∥2
L2(T)

≤ 1
δ2 ∥ρ∞∥∞

∫
T

(∫
R
hf∞dv

)2
dx

≤ 1
δ2 ∥ρ∞∥∞

∫
T

∫
R
h2ρ2

∞M(v)dvdx (Jensen en v)

≤ 1
δ2 ∥ρ∞∥2

∞∥h∥2

Prenons cp la constante de Poincaré sur le tore, c’est-à-dire la constante minimale telle que
pour tout u ∈ H1(T) de moyenne nulle,

∥u∥L2(T) ≤ cp∥∂xu∥L2(T)

En considérant la formulation variationnelle de l’équation de Poisson pour le potentiel, en
la testant sur ψ, et en utilisant les inégalités de Cauchy-Schwarz et de Poincaré on obtient que

δ2

c2
p

∥ψ∥2
L2(T) ≤ δ2∥∂xψ∥2

L2(T) ≤ ∥√
ρ∞∥∞∥h∥∥ψ∥L2(T) ≤ ∥√

ρ∞∥∞∥h∥cp∥∂xψ∥L2(T)

d’où

∥ψ∥L2(T) ≤ 1
δ2 c

2
p∥√

ρ∞∥∞∥h∥

∥∂xψ∥L2(T) ≤ 1
δ2 cp∥√

ρ∞∥∞∥h∥

On a donc la majoration

dE(h)
dt

≤

α4∥∂xxϕ∞∥∞ − 2α1

τ(ε) − 2α2ε

τ(ε) + 1
2θ

(
2α2 + α4ε

τ(ε) + 2α3∥∂xxϕ∞∥∞

)2

+ α4ω

2

 ∥Ah∥2

+
(

−α4 + θ

2 + α3ν + µ

2α4

)
∥Ch∥2

+
(
α3

δ2ν
∥ρ∞∥2

∞ + α4

2δ2ω
∥ρ∞∥2

∞ + α4

2µδ4 c
2
p∥√

ρ∞∥2
∞

)
∥h∥2

+
(
α4ε

τ(ε)η − 2α2ε

τ(ε)

)
∥A2h∥2

+
(
α4εη

τ(ε) − 2α3ε

τ(ε)

)
∥ACh∥2

On veut que les deux derniers termes soient négatifs. Ainsi, on obtient les conditions :

α3 ≥ α4η

2
α2 ≥ α4

2η
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On prendra l’égalité pour ces deux conditions, donc

α3 = α4η

2
α2 = α4

2η

On veut que les deux premiers termes soient strictement négatifs. Remarquons que α1
n’apparait que dans le premier terme, et donc que l’on pourra toujours choisir α1 assez grand
pour que ce terme soit strictement négatif. On se concentre alors sur le deuxième terme. Il
existe α4 > 0 tel que le deuxième terme soit négatif si et seulement si :

−1 + νη

2 + µ

2 < 0

Cette condition est vérifiée pour des paramètres µ, ν, η suffisamment petits.
On choisit donc α4 respectant cette dernière condition.
Enfin, on souhaite contrôler le troisième terme par les deux premiers, via l’inégalité de

Poincaré dans H0 (voir proposition 3). On peut supposer que les deux premiers termes ont la
même valeur −β < 0 et le troisième vaut γ > 0. Si k > 1 on va avoir :

dE(h)
dt

≤ −β
(

1 − 1
k

)
(∥Ah∥2 + ∥Ch∥2) − β

kKϕ∞

∥h∥2 + γ∥h∥2

Ainsi, on va devoir montrer que γ − 1
kKϕ∞

β < 0, avec k > 1.
Cette dernière condition sur les paramètres est explicitement :

1
kKϕ∞

(
(−1 + νη

2 + µ

2 )α4 + θ

2

)
+ ηα4

2δ2ν
∥ρ∞∥2

∞ + α4

2δ2ω
∥ρ∞∥2

∞ + α4

2µδ4 c
2
p∥√

ρ∞∥2
∞ < 0

Encore une fois, cette inégalité a une solution α4 > 0 si et seulement si

1
kKϕ∞

(
−1 + νη

2 + µ

2

)
+ η

2δ2ν
∥ρ∞∥2

∞ + 1
2δ2ω

∥ρ∞∥2
∞ + 1

2µδ4 c
2
p∥√

ρ∞∥2
∞ < 0

Supposons maintenant que k > 1 soit fixé. On peut choisir , ν assez petit, η = ν2 et ω assez
grands tels que quelque soit ε′ > 0,

1
kKϕ∞

νη

2 + η

2δ2ν
∥ρ∞∥2

∞ + 1
2δ2ω

∥ρ∞∥2
∞ < ε′

Donc pour tout ε′ > 0,

− 1
kKϕ∞

+ µ

2kKϕ∞

+ 1
2µδ4 c

2
p∥√

ρ∞∥2
∞ + ε′ < 0

Finalement on obtient que la condition est

− µ

kKϕ∞

+ µ2

2kKϕ∞

+ 1
2δ4 c

2
p∥√

ρ∞∥2
∞ < 0

Le membre de gauche est un polynôme de degré 2 en µ. Cette inéquation a une solution en
µ si et seulement si le discriminant est strictement positif, c’est-à-dire si
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1
kc2

pKϕ∞

>
1
δ4 ∥√

ρ∞∥2
∞

En utilisant les inégalités trouvées dans (8), on remarque que cette inégalité est vraie dès
que

1
δ2 <

√
infT ni

kK

1
cp∥ni∥∞

Ainsi, la longueur de Debye doit être choisie assez grande en fonction de la densité ionique
donnée.

Enfin, en posant C > 0 une constante adéquate et en utilisant la proposition (4) :

dE(h)
dt

≤ −
(

1 − 1
k

)
β(∥Ah∥2 + ∥Ch∥2) −

(
+ 1
kKϕ∞

β − γ

)
∥h∥2

≤ −1
2

(
1 − 1

k

)
β(∥Ah∥2 + ∥Ch∥2) − 1

2Kϕ∞

(
1 − 1

k

)
β∥h∥2 −

(
+ 1
kKϕ∞

β − γ

)
∥h∥2

≤ −1
2

(
1 − 1

k

)
β(∥Ah∥2 + ∥Ch∥2) − 1

2Kϕ∞

(
1 − 1

k

)
β

δ4

(cp∥√
ρ∞∥∞)2 ∥∂xψ∥2

L2(T)

−
(

1
kKϕ∞

β − γ

)
∥h∥2

≤ −C(∥h∥2 + ∥Ah∥2 + ∥Ch∥2 + ∥∂xψ∥2
L2(T))

≤ − C

M
E(h)

Après utilisation du lemme de Gronwall et la proposition (4) :

E(h) ≤ E(h0)e− C
M

t ≤ M∥h0∥2e− C
M

t

On remarque que le terme problématique dans la preuve est < ∂xψ,Ch >.
Nos majorations ont peut-être été trop grossières. On va prouver l’hypocercivité L2 en

utilisant une décomposition dans la base de Hermite. On aura une lecture plus complète de
chaque termes, on pourra effectuer des majorations plus précises et de plus, la projection du
système sur la base de Hermite pourrait être utilisée dans le cadre d’un schéma numérique.

4.5 Hypocoercivité L2

On va essayer de prouver l’hypocoercivité pour la norme de H0. Pour ce faire, on va projeter
l’équation (5 ) sur la base des polynômes de Hermite. Remarquons que

∫
R h

2M(v)dv < ∞ pour
presque tout t > 0 et x ∈ T. Ainsi, une base hilbertienne adaptée est la base des polynômes de
Hermite normalisés (H̃k)k∈N, qui est une base orthonormale de L2(R,M(v)dv) muni du produit
scalaire usuel (voir annexe (5)).

En utilisant ces deux relations, on montre que la base de Hermite diagonalise l’opérateur
A∗A :

A∗AH̃k = (v∂v − ∂vv)H̃k

= kH̃k
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Les coefficients de h dans cette base sont les fonctions de temps et d’espace Ck(t, x), mais
on préférera travailler avec les coefficients Dk(t, x) = Ck(t, x)

√
ρ∞(x), d’où

h(t, x, v) =
∞∑

k=0

Dk(t, x)√
ρ∞(x)

H̃k(v)

Les coefficients Dk, k ∈ N vérifient le système suivant :

 ∂tDk + 1
ε

(
√
k + 1ADk+1 −

√
kA∗Dk−1) = − k

τ(ε)Dk + 1k=1
1
ε
∂xψ

√
ρ∞ + 1

ε

√
k∂xψDk−1

δ2∂xxψ = D0
√
ρ∞

(10)
A,A∗ sont deux opérateurs linéaires définis sur H1(T), adjoints dans L2(T) :

Au = ∂xu− E∞

2 u

A∗u = −∂xu− E∞

2 u

La version linéarisée du système est la suivante : ∂tDk + 1
ε

(
√
k + 1ADk+1 −

√
kA∗Dk−1) = − k

τ(ε)Dk + 1k=1
1
ε
∂xψ

√
ρ∞

δ2∂xxψ = D0
√
ρ∞

(11)

4.5.1 Résultats préliminaires

Les estimations d’énergies obtenues précédemment ne changent pas. On écrit l’expression
des différentes normes en utilisant la base de Hermite :

∥h∥2 =
∞∑

k=0
∥Dk∥2

L2(T)

∥Ah∥2 =
∞∑

k=1
k∥Dk∥2

L2(T)

∥Ch∥2 =
∞∑

k=0
∥A∗Dk∥2

L2(T)

< Ah,Ch > = −
∞∑

k=0

√
k + 1

∫
T
Dk+1A∗Dkdx

On peut établir la conservation de la masse pour le système. En multipliant la première
équation de 10 par √

ρ∞, puis en intégrant sur le tore, on obtient que

d

dt

∫
T
D0

√
ρ∞dx+ 1

ε

∫
T

AD1
√
ρ∞dx = 0

On passe à l’adjoint dans la dernière intégrale, puis on remarque que A∗√ρ∞ = 0. Ainsi,
pour tout t ≥ 0, ∫

T
D0(t, x)

√
ρ∞(x)dx = 0

On aura besoin de l’inégalité de Poincaré suivante pour établir l’existence et l’unicité de
l’équation elliptique
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Proposition 6. Il existe une constante Cϕ∞ > 0 dépendant de l’état stationnaire telle que pour
tout u ∈ H1(T) respectant la condition

∫
T u

√
ρ∞dx = 0,

∥u∥L2(T) ≤ Cϕ∞∥A∗u∥L2(T)

Démonstration. On raisonne par l’absurde : supposons qu’une telle constante n’existe pas. Alors
il existe une suite (un)n∈N de fonction de H1(T) telle que

∥A∗un∥L2(T) ≤ 1
n

∥un∥L2(T)

Sans perte de généralité, on peut supposer que ∥un∥L2(T) = 1. Par inégalité triangulaire, on
obtient que

∥∂xun∥L2(T) ≤ 1
n

+ ∥E∞∥∞

2
Donc la suite (un)n∈N est bornée dans H1(T). Le théorème de Rellich (voir [3]) énonce

alors qu’il existe une sous-suite (unk
)k∈N qui converge vers un élément u ∈ L2(T). Comme

A∗unk
= A∗unk

− E∞

2 u+ E∞

2 u, on obtient en utilisant l’inégalité triangulaire

1
nk

+ ∥E∞∥∞

2 ∥u− unk
∥L2(T) ≥ ∥∂xunk

+ E∞

2 ∥L2(T)

Ceci montre que lim
k→∞

∂xunk
= −E∞

2 u dans L2(T). Ainsi, u ∈ H1(T) et ∂xu = −E∞

2 u. Cette

dernière équation s’intègre et donne que u(x) = C exp(ϕ∞(x)
2 ).

Puisque pour tout k ∈ N, < unk
,
√
ρ∞ >L2(T)= 0, un passage à la limite donne que <

u,
√
ρ∞ >L2(T)= 0 = C∥ρ∞∥L1(T).

Comme ∥ρ∞∥L1(T) > 0, ceci implique que C = 0 puis u = 0, mais constitue une contradiction
avec le fait que ∥u∥L2(T) = lim

k→∞
∥unk

∥L2(T) = 1.

Pour prouver l’hypocoercivité, on va avoir besoin d’étudier spécifiquement une EDP ellip-
tique. L’entropie qui sera utilisée contiendra un terme faisant apparaitre la solution de cette
équation pour une donnée bien choisie.

Proposition 7. Pour tout g ∈ L2(T) telle que
∫

T g
√
ρ∞dx = 0, le problème aux limites suivant{

AA∗u = g∫
T u

√
ρ∞dx = 0

admet une unique solution u ∈ H2(T).

Démonstration. Soit v un élément d’un espace fonctionnel V . On multiplie l’EDP par v puis
on intègre par partie pour obtenir ∫

T
A∗uA∗vdx =

∫
T
gvdx

On pose V = {v ∈ L2(T)| < v,
√
ρ∞ >= 0}. La formulation variationnelle demande de trou-

ver u ∈ V telle que pour tout v ∈ V , la dernière égalité soit vraie. On va utiliser le théorème de
Lax-Milgram. Le membre de gauche est une forme bilinéaire. Sa coercivité découle de l’inégalité
de Poincaré sur V . En effet, en utilisant cette dernière ainsi que l’inégalité triangulaire,
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∥∂xu∥2
L2(T) ≤ 2

(
1 + ∥E∞∥2

∞
4Cϕ∞

)
∥A∗u∥2

L2(T)

d’où

min

Cϕ∞ ,
1

2
(

1 + ∥E∞∥2
∞

4Cϕ∞

)
 ∥u∥2

H1(T) ≤ ∥A∗u∥2
L2(T)

La continuité se montre comme il suit :

|
∫

T
A∗uA∗vdx| ≤ ∥A∗u∥L2(T)∥A∗v∥L2(T)

≤ max
(

1, ∥E∞∥∞

2

)
∥u∥H1(T)∥v∥H1(T)

La continuité du membre de droite est évidente. Il existe donc une unique solution u ∈ V à
la formulation variationnelle par le théorème de Lax-Milgram. En testant la formulation faible
sur ϕ ∈ C∞(T), puis en utilisant la continuité de la forme linéaire et l’inégalité triangulaire, on
obtient que

∣∣∣∣∫
T

A∗u∂xϕdx
∣∣∣∣ ≤ ∥g∥L2(T)∥ϕ∥L2(T)+

∣∣∣∣∫
T

A∗u
E∞

2 ϕdx
∣∣∣∣ ≤ ∥g∥L2(T)∥ϕ∥L2(T)+

∥E∞∥∞

2 ∥A∗u∥L2(T)∥ϕ∥L2(T)

ce qui montre que A∗u ∈ H2(T), et que u ∈ H2(T). Ainsi, en considérant la formulation
faible appliquée à ϕ ∈ C∞(T), on peut passer à l’adjoint et déduire que∫

T
(AA∗u− g)ϕdx = 0

On en déduit par densité dans L2(T) que AA∗u = g presque partout dans le tore.

Maintenant que l’équation 7 admet une unique solution, on va avoir besoin de diverses
estimations sur la solution. C’est l’objet de la proposition suivante.

Proposition 8. Soit g ∈ L2(T) telle que
∫

T g
√
ρ∞dx = 0. Soit u la solution du problème aux

limites 7 associée. Alors :
— ∥A∗u∥L2(T) ≤ Cϕ∞∥g∥L2(T) ;
— ∥A∗2u∥L2(T) ≤ (1 + ∥E∞∥∞Cϕ∞)∥g∥L2(T) ;

— Si de plus g = −D0, alors ∥∂tA∗u∥L2(T) ≤ 1
ε

∥D1∥L2(T) .

Démonstration. En testant la formulation faible du problème aux limites sur la solution u puis
en utilisant l’inégalité de Poincaré pour A∗, on obtient :

∥A∗u∥2
L2(T) ≤ ∥g∥L2(T)∥u∥L2(T) ≤ Cϕ∞∥g∥L2(T)∥A∗u∥L2(T)

ce qui donne la première inégalité.
Ensuite, on écrit que

∥A∗2u∥ = ∥ − AA∗u+ (A + A∗)A∗u∥L2(T)

= ∥ − AA∗u− E∞A∗u∥L2(T)

≤ ∥g∥L2(T) + ∥E∞∥∞Cϕ∞∥g∥L2(T)
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où on a utilisé l’inégalité triangulaire et la première inégalité de l’énoncé.
Pour la troisième inégalité, on dérive en temps l’EDP du problème aux limites 7 puis on

utilise la première ligne du système 10 pour obtenir que

∂tAA∗u = 1
ε

AD1

Ceci donne que

∥∂tA∗u∥2
L2(T) = < ∂tu, ∂tAA∗u >

= 1
ε
< ∂tu,AD1 >

= 1
ε
< ∂tA∗u,D1 >

≤ 1
ε

∥∂tA∗u∥L2(T)∥D1∥L2(T)

ce qui termine la preuve.

4.5.2 Etude du problème linéarisé

L’objectif de cette section est de montrer l’hypocoercivité du système linéarisé (11) en norme
L2. Premièrement, on doit définir une entropie adaptée au problème. On aimerait montrer la
décroissance exponentielle de la quantité

∥h∥2 + ∥∂xψ∥2
L2(T)

Or, la première estimation d’énergie obtenue à 1 et l’écriture de ∥Ah∥ dans la base de
Hermite montre que la dérivée en temps donne bien une dissipation en tout les coefficients Dk,
sauf pour D0 qui en est absent. On doit donc ajouter un terme dont la dérivée en temps donne
−∥D0∥2

L2(T) . On procède comme dans l’article de Filbet et Blaustein ([1]). L’entropie que l’on
considère est définie par

E(h) = α1
1
2
(
∥h∥2 + δ2∥∂xψ∥2

L2(T)

)
+ α2

τ(ε)
ε

< AD1, u >L2(T) (12)

où u est la solution du problème aux limites 7 avec donnée −D0 et α1, α2 > 0.
La première chose à établir est un encadrement de l’entropie par la norme d’intérêt.

Proposition 9. Sous les hypothèses α2
τ(ε)
ε
Cϕ∞ <

α1

2 et δ ≤ 1, il existe deux constantes
m,M > 0 telles que

m(∥h∥2 + ∥∂xψ∥2
L2(T)) ≤ E(h) ≤ M(∥h∥2 + ∥∂xψ∥2

L2(T))
Les constantes sont explicites :

m = min
(
α1
δ2

2 ,
α1

2 − α2
τ(ε)
ε
Cϕ∞

)

M = α1

2 + α2
τ(ε)
ε
Cϕ∞
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Démonstration. Il suffit de remarquer que

| < AD1, u >L2(T) | = | < D1,A∗u >L2(T) |
≤ Cϕ∞∥D1∥L2(T)∥D0∥L2(T)

≤ Cϕ∞∥h∥2

Le résultat est alors immédiat.

On peut maintenant passer à la preuve d’hypocoercivité L2 pour le système de Vlasov-
Poisson-Fokker-Planck. Contrairement au cas H1, on n’a pas besoin de l’hypothèse que δ soit
assez grande. Ceci est rassurant d’un point de vue physique car δ est en réalité très petite.

Proposition 10. Sous l’hypothèse que h0 ∈ L2(f∞dxdv), il existe des constantes C, κ > 0
telles que si h est une solution de (6) alors

∥h∥2 + ∥∂xψ∥2
L2(T) ≤ C(∥h∥2 + ∥∂xψ|t=0∥2

L2(T))e−κt

Démonstration. On commence par dériver en temps notre entropie E . Le premier terme de l’en-
tropie se dérive en utilisant la première équation de 1. Le second terme se dérive en appliquant
A à la deuxième équation du système 10, ce qui donne

∂tAD1 = −1
ε

(√
2A2D2 − AA∗D0

)
− 1
τ(ε)AD1 + 1

ε
A(∂xψ

√
ρ∞)

Ainsi, la dérivée de l’entropie est

d

dt
E(h) = − α1

τ(ε)

∞∑
k=1

k∥Dk∥2
L2(T) − α2

τ(ε)
ε2 <

√
2A2D2 − AA∗D0, u >

− α2

ε
< AD1, u >

+ α2
τ(ε)
ε2 < A(∂xψ

√
ρ∞), u >

+ α2
τ(ε)
ε

< AD1, ∂tu >

En utilisant la définition de u et en passant à l’adjoint dans la première ligne, on obtient
alors que

d

dt
E(h) = − α1

τ(ε)

∞∑
k=1

k∥Dk∥2
L2(T) − α2

τ(ε)
ε2 ∥D0∥2

L2(T)

− α2
τ(ε)
ε2 <

√
2A2D2, u >

− α2

ε
< AD1, u >

+ α2
τ(ε)
ε2 < A(∂xψ

√
ρ∞), u >

+ α2
τ(ε)
ε

< AD1, ∂tu >
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Les termes strictement négatifs sont regroupés sur la première ligne. On constate que le
choix de u a effectivement permis de récupérer de la dissipation en D0. On doit maintenant
majorer les termes non-signés, et les compenser par les termes de la première ligne.

En utilisant les inégalités de Cauchy-Schwartz, de Young puis les majorations de la propo-
sition 8, on obtient que

| − α2
τ(ε)
ε2 <

√
2A2D2, u > | ≤ α2√

2
τ(ε)
ε2 (1 + ∥E∞∥∞Cϕ∞)

(∥D2∥2
L2(T)

η
+ η∥D0∥2

L2(T)

)

|α2

ε
< AD1, u > | ≤ α2Cϕ∞

2ε

(∥D2∥2
L2(T)

θ
+ θ∥D0∥2

L2(T)

)

|α2
τ(ε)
ε

< AD1, ∂tu > | ≤ α2τ(ε)
ε2 ∥D1∥2

L2(T)

avec η, θ > 0. Il reste alors un dernier terme à majorer qui dépend du champ électrique.

Remarquons d’abord que pour tout g ∈ H1(T), ∂xg = √
ρ∞A

(
g

√
ρ∞

)
. On va montrer que le

dernier terme est dissipatif, ce qui nous permet de conclure.

α2
τ(ε)
ε2 < A(∂xψ

√
ρ∞), u > = α2

τ(ε)
ε2 < ∂xψ

√
ρ∞,A∗u >

= −α2
τ(ε)
ε2 < ψ, ∂x(√ρ∞A∗u) > (IPP)

= −α2
τ(ε)
ε2 < ψ,

√
ρ∞AA∗u >

= α2
τ(ε)
ε2 < ψ,

√
ρ∞D0 >

= δ2α2
τ(ε)
ε2 < ψ, ∂xxψ > (équation de Poisson)

= −δ2α2
τ(ε)
ε2 ∥∂xψ∥2

L2(T) (IPP)
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Donc en rassemblant toutes les estimations,

dE
dt

≤
(

− α1

τ(ε) + α2√
2
τ(ε)
ε2η

(1 + ∥E∞∥∞Cϕ∞) + α2Cϕ∞

2εθ + α2τ(ε)
ε2

) ∞∑
k=1

k∥Dk∥2
L2(T)

+ α2

(
−τ(ε)

ε2 + 1√
2
τ(ε)
ε2 (1 + ∥E∞∥∞Cϕ∞)η + Cϕ∞

2ε θ

)
∥D0∥2

L2(T)

− δ2α2
τ(ε)
ε2 ∥∂xψ∥2

L2(T)

Remarquons que α1 n’est présent que dans le premier terme et est précédé du signe moins.
On peut toujours choisir α1 assez grand pour rendre le premier terme négatif. Passons au second
terme. On peut rendre α2√

2
τ(ε)
ε2 (1 + ∥E∞∥∞Cϕ∞)η + α2Cϕ∞

2ε θ arbitrairement petit, en rendant
θ, η > 0 arbitrairement petits. Le second terme est donc négatif.

Enfin, le dernier terme est négatif : c’est la dissipation selon la norme du potentiel.
Il existe alors β, γ, ω > 0 tels que

dE
dt

≤ −β
∞∑

k=1
k∥Dk∥2

L2(T) − γ∥D0∥2
L2(T) − ω∥∂xψ∥2

L2(T)

≤ − min(β, γ)
∞∑

k=0
∥Dk∥2

L2(T) − ω∥∂xψ∥2
L2(T)

Posant C > 0 une constante appropriée, on en déduit que

dE
dt

≤ −C(∥h∥2 + ∥∂xψ∥2
L2(T))

≤ − C

M
E(h)

Enfin en utilisant le lemme de Gronwall et l’encadrement de l’entropie, on obtient

∥h∥2 + ∥∂xψ∥2
L2(T) ≤ E(h) ≤ M

m
(∥h0∥2 + ∥∂xψ(t = 0)∥2

L2(T))e− C
M

t

Cette fois, la valeur de la longueur de Debye ne nous a pas posé de souci. Il y a bien retour
à l’équilibre en norme L2 pour le système de Vlasov-Poisson-Fokker-Planck linéarisé.

Pour établir l’hypocoercivité du système entier (10), il faudrait procéder par exemple par
point fixe.

4.6 Schéma de volumes finis et expérimentations
On utilise la façon de procéder de Filbet et Blaustein pour définir un schéma de volumes

finis à partir du système (10). On réutilise exactement les mêmes notations que pour les schémas
précédents.

On choisit Nx ∈ N. Soit un intervalle [0, L], et dx = L

Nx

. Pour simplifier les notations, on

considère un maillage uniforme. On définit xj+ 1
2

= jdx pour j = 0, ..., Nx, et xj = (j − 1
2)dx

pour j = 1, ..., Nx. On définit les cellules Kj =]xj− 1
2
, xj+ 1

2
[, pour j = 1, ..., Nx. Soit dt > 0 le

pas de temps. La discrétisation en temps se fera aux instants tn = ndt, ∀n ∈ N.
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On approche Dk(tn, xj) par Dn
k,j, qui est une approximation de type volumes finis utilisant

la formule du point milieu :

Dn
k,j = 1

dx

∫
Kj

Dk(tn, x)dx ≈ Dk(tn, xj)

De même, on approche ψ(tn, xj) par ψn
j avec la méthode des points milieux :

ψn
j = 1

dx

∫
Kj

ψ(t, x)dx ≈ Dk(tn, xj)

Pour résoudre l’équation de Poisson, on utilise le schéma de volumes finis classique avec
conditions de Dirichlet. On peut ensuite éventuellement soustraire sa moyenne à la solution ob-
tenue pour obtenir une solution de moyenne nulle. Pour obtenir ce schéma, on intègre l’équation
sur une cellule Kj :

−(∂xψ(tn, xj+1/2) − ∂xψ(tn, xj−1/2)) = − 1
δ2

∫
Kj

D0(tn, x)
√
ρ∞(x)dx

puis on utilise une approximation de la dérivée pour 1 ≤ j ≤ Nx− 1

∂xψ(tn, xj+1/2) ≈
ψn

j+1 − ψn
j

dx
Pour les cas j = 0 et j = Nx, on pose ψn

0 = ψn
Nx+1 = 0 pour respecter la condition de

Dirichlet homogène et les dérivées deviennent

∂xψ(tn, x1/2) ≈ ψn
1

dx/2 ; ∂xψ(tn, xNx+1/2) ≈
−ψn

Nx

dx/2
Maintenant, on choisit de faire un schéma d’Euler implicite en temps pour l’équation de

Vlasov-Fokker-Planck, avec une discrétisation spatiale similaire à celle de Filbet et Blaustein.
La seule différence est le choix d’une différence centrée pour approcher ∂xψ dans cette équation.
Disposant de Dn

k,j pour tout k ∈ N, 1 ≤ j ≤ Nx et n fixé, on calculera les ψn
j et Dn+1

k,j pour tout
k ∈ N, 1 ≤ j ≤ Nx en résolvant le système suivant, ∀k ∈ N, 1 ≤ j ≤ Nx :



−ψn
2
dx

+ 3ψn
1

dx
= −dx

δ2 D
n
0,1

√
ρ∞(x1)

−
ψn

j+1 − 2ψn
j + ψn

j−1

dx
= −dx

δ2 D
n
0,j

√
ρ∞(xj)

−
ψn

Nx−1
dx

+ 3ψn
Nx

dx
= −dx

δ2 D
n
0,Nx

√
ρ∞(xNx)

Dn+1
k,j −Dn

k,j

dt
+ 1
ε

(
√
k + 1(ADn+1

k+1)j −
√
k(A∗Dn+1

k−1)j) = − k

τ(ε)D
n+1
k,j

+ 1k=1
1
ε

ψn
j+1 − ψn

j−1

2dx
√
ρ∞(xj)

+
√
k

1
ε

ψn
j+1 − ψn

j−1

2dx Dn+1
k−1,j

Pour la discrétisation en espace, on doit discrétiser les opérateurs adjoints. Blaustein et Filbet
choisissent les discrétisations suivantes : si (uj)1≤j≤Nx est une suite finie de réels, on la prolonge
par u0 = uNx et uNx+1 = u1, et les opérateurs discrets A et A∗ sont définis par

(Au)j = uj+1 − uj−1

2dx − E∞,j

2 uj

(A∗u)j = −uj+1 − uj−1

2dx − E∞,j

2 uj
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Les trois premières équations du système donnent une matrice constante au cours des itéra-
tions, mais la dernière équation donne une matrice dont les coefficients dépendent du potentiel
et n’est donc pas constante.

Ce schéma préserve automatiquement l’état stationnaire qui est la fonction nulle. En effet,
puisque tous nos opérateurs sont linéaires, si la donnée initiale est nulle alors la solution reste
nulle au cours du temps.

Il reste un degré de liberté à fixer, qui est le choix de E∞,j. Pour ce schéma, ce choix ne
modifie pas le caractère well-balanced mais la conservation de la masse. Le lemme suivant donne
un choix possible de discrétisation pour préserver la masse.

Lemme 3. Si pour tout 1 ≤ j ≤ Nx,

E∞,j = −

√
ρ∞(xj+1) −

√
ρ(xj−1)

dx
√
ρ∞(xj)

alors pour tout n ∈ N,

Nx∑
i=0

dxDn+1
0,j

√
ρ∞(xj) =

Nx∑
i=0

dxDn
0,j

√
ρ∞(xj)

et le schéma est conservatif.

Démonstration. Prenons l’équation d’évolution sur le moment D0 issue de 4.6. On la multiplie
par

√
ρ(xj) pour tout 1 ≤ j ≤ Nx puis on somme sur j, ce qui donne :

1
dt

Nx∑
i=0

Dn+1
0,j

√
ρ∞(xj) −Dn

0,j

√
ρ∞(xj) = −1

ε

Nx∑
j=1

(ADn+1
1 )

√
ρ∞(xj)

On peut alors effectuer une intégration par partie discrète dans le membre de droite pour
obtenir que

1
dt

Nx∑
i=0

Dn+1
0,j

√
ρ∞(xj) −Dn

0,j

√
ρ∞(xj) = −1

ε

Nx∑
j=1

(A∗√ρ∞)jD
n+1
1,j

On s’aperçoit que (A∗√ρ∞)j s’annule si E∞,j est donné par l’énoncé. Ceci entraine alors la
conservation de la masse.

Nous ne prouvons pas plus de propriétés sur ce schéma par manque de temps. Une première
propriété serait le caractère hypocoercif du schéma linéarisé, c’est-à-dire dans lequel on enlève le
terme quadratique. Nous allons réaliser quelques simulations et comparer aux résultats obtenus
pour le schéma naïf obtenu section 3.

4.7 Expérimentations
Pour nos simulations, on va étudier l’évolution de différentes normes :

∥f − f∞∥L2(f−1
∞ dxdv) = ∥h∥ =

√√√√ ∞∑
k=0

∥Dk∥2
L2(T)

∥f − ρM∥L2(f−1
∞ dxdv) =

√√√√ ∞∑
k=1

∥Dk∥2
L2(T)

∥ρ− ρ∞∥L2(f−1
∞ dxdv) = ∥D0∥L2(T)
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ainsi que la norme ∥∂xψ∥L2(T). Notre cas test est le suivant. On choisit le potentiel station-
naire ϕ∞ comme

ϕ∞(x) = 0.1 cos
(2πx
L

)
+ 0.9 cos

(4πx
L

)
On va prendre une donnée initiale de la forme

f0(x, v) = (1 + γh0(x))f∞(x, v)
Ainsi la perturbation ne dépend que de x. Un calcul de la masse donne que

m =
∫ ∫

T×R
f0(x, v)dxdv = m

(
1 + γ

∫
T h0(x) exp(ϕ∞(x))dx∫

T exp(ϕ∞(x))dx

)
Cette situation n’est possible que si

∫
T h0(x) exp(ϕ∞(x))dx = 0. On choisit alors

h0(x) = exp(−ϕ∞(x)) − 1∫
T exp(ϕ∞(x))dx

La masse m a alors une valeur arbitraire, qu’on peut fixer à 1. Grâce à un logiciel de calcul
formel, on peut alors calculer la constante c0 :

c0 = m∫
T exp(ϕ∞(x))dx = 1∫

T exp(ϕ∞(x))dx ≈ 0.82151486106

Initialement, le seul moment non nul est D0 et vaut

D0(0, x) = γ

(
exp(−ϕ∞(x)) − 1∫

T exp(ϕ∞(x))dx

)√
ρ∞(x)

4.7.1 Cas δ = 1

On fixe la longueur de Debye δ égale à 1, et γ = 0.5. Le paramètre ε est fixé à 1 et τ(ε) = 5ε2.
On tronque la série de Hermite au rang 30 et on prend un pas Nx = 100 et dt = 0.01.

Les courbes donnant l’évolution des différentes normes en échelle logarithmique pour les
ordonnées sont données figure (7). On voit que toutes les courbes sont approximativement des
droites, ce qui montre leur décroissance à vitesse exponentielle. On vérifie sur le dernier graphe
que l’erreur ponctuelle est de l’ordre de 10−7.

On peut réitérer l’expérience en abaissant le nombre de points Nx (8) ou en abaissant le
rang de troncature K (9). On constate que ceci n’a pas d’impact sur le retour à l’équilibre.

4.7.2 Cas δ = 0.3

On prend cette fois une longueur de Debye δ valant 0.3 et on réalise la même expérience. On
prend K = 30, Nx = 100. On constate que sur la figure 10, le retour vers l’équilibre se réalise. A
partir du temps t = 55 environs, les courbes d’erreurs s’infléchissent et deviennent horizontales.
Nous n’avons pas trouvé d’erreur dans le code expliquant ce comportement. Il est possible que
le seuil d’arrêt dans la méthode itérative utilisée pour la résolution des systèmes linéaires ne
soit pas suffisante. On vérifie que l’erreur ponctuelle est de l’ordre de 10−6, et il semble donc
peut probable qu’une erreur dans l’expression de la donnée initiale en soit la cause.

On peut diminuer K pour le passer à 10. On obtient alors la figure 11. On voit que dans un
premier temps il semble y avoir retour vers l’équilibre, mais dans un second temps le schéma
diverge à vitesse exponentielle. L’erreur ponctuelle atteint des valeurs de l’ordre de 10.

Dans une troisième configuration, on laisse K = 30 mais on prend Nx = 50. On obtient alors
la figure 12. On voit que dans un premier temps il semble y avoir retour vers l’équilibre, mais
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dans un second temps le schéma diverge à vitesse exponentielle. L’erreur ponctuelle atteint des
valeurs de l’ordre de 104.

Pour les longueurs de Debye plus petites que 1, les choix de paramètres de troncature K et
de discrétisation spatiale Nx sont très importants pour observer le retour à l’équilibre.

Essayons de situer la source de ce problème. On effectue les simulations pour les mêmes
paramètres, mais cette fois ci avec la version linéarisée du schéma, c’est-à-dire le schéma obtenu
en ignorant le terme bilinéaire. On obtient alors les figures (13) et (14). On constate sur celles-ci
que le retour à l’équilibre se fait sans problème. Ainsi, c’est le terme non-linéaire qui impose le
choix de Nx et K pour obtenir le retour à l’équilibre.

4.8 Conclusion
Ce dernier schéma semble aussi bien du point de vue théorique que pratique meilleur que

le schéma naïf proposé plus tôt. On sait prouver l’hypocoercivité du système continu linéarisé
et il parait plausible de montrer l’hypocoercivité pour le même système linéarisé discret sans
hypothèse sur la longueur de Debye. Il reste néanmoins à traiter le système non-linéaire et le
système non-linéaire discret. On s’attend sur ce dernier point à trouver une condition sur les
paramètres de discrétisation pour observer le caractère hypocoercif. Enfin, ce schéma n’est pas
idéal car il demande de recalculer la matrice d’itération à chaque itération.
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Figure 7 – Paramètres : δ = 1, K = 30, Nx = 100
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Figure 8 – Paramètres : δ = 1, K = 30, Nx = 50
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Figure 9 – Paramètres : δ = 1, K = 10, Nx = 100
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Figure 10 – Paramètres : δ = 0.3, K = 30, Nx = 100.

53



Figure 11 – Paramètres : δ = 0.3, K = 10, Nx = 100.
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Figure 12 – Paramètres : δ = 0.3, K = 30, Nx = 50.
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Figure 13 – Système linéarisé. Paramètres : δ = 0.3, K = 30, Nx = 50.
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Figure 14 – Système linéarisé. Paramètres : δ = 0.3, K = 30, Nx = 50.
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5 Annexe : Bases de Hermite
L’étude de l’hypocoercivité L2 ainsi que la construction de méthode numérique la préservant

est facilitée par l’utilisation de bases hilbertiennes adaptées. Dans notre cas, nous utiliserons les
bases des fonctions de Hermite et des polynômes de Hermite. Dans la première partie de cette
annexe, des définitions et des rappels sont faits sur ces familles de fonctions. Dans une seconde
partie, on s’intéresse à l’approximation de fonctions par troncature de leur série dans la base
des fonctions de Hermite. On montre que la série de fonctions de Hermite associée aux fonctions
C∞

c (R) converge normalement et donc ponctuellement. On montre que la positivité d’une fonc-
tion C∞

c (R) n’est pas préservée par troncature de sa série dans la base des fonctions de Hermite.
Or, la conservation de la positivité d’une densité de particule par une méthode numérique est
une propriété importante. En fait, les méthodes numériques s’appuyant sur la projection dans
cette base hilbertienne donnent des approximations de type L2 et pas ponctuelles : ainsi les
schémas numériques approchent les moments∫

R
f(t, x, v)ψk(v)M(v)−1dv

pour k inférieur à un paramètre de troncature, mais n’approche pas les valeurs de f aux
points du maillage.

5.1 Polynômes et fonctions de Hermite
On considère les polynômes d’Hermite "probabilistes" (Hk)k∈N. Ces polynômes sont définis

par

Hk(v) = (−1)ke
v2
2
dk

dkv
e− v2

2 ∀k ∈ N

Ces polynômes sont orthogonaux dans l’espace de Hilbert L2(R,M(v)dv) muni du produit
scalaire

< f, g >=
∫

R
f(v)g(v)M(v)dv

Ainsi, ils forment une base orthogonale de cet espace de Hilbert. On obtient une base
hilbertienne (H̃k)k∈N de L2(R,M(v)dv) en renormalisant les polynômes de Hermite,

H̃k = Hk√
k!

Les polynômes de Hermite vérifient les deux relations suivantes :

Hk+1(v) = vHk(v) − kHk−1(v)
H

′

k(v) = kHk−1(v)

On obtient alors facilement que les polynômes de Hermite renormalisés vérifient les relations
de récurrence : ∀k ∈ N, v ∈ R,

vH̃k(v) =
√
k + 1H̃k+1(v) +

√
kH̃k−1(v)

H̃
′

k(v) =
√
kH̃k−1(v)

en posant H̃−1 = 0.
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Enfin, considérons l’espace de Hilbert L2(R,M(v)−1dv) pour le produit scalaire canonique.
On définit les fonctions de Hermite (ψk)k∈N par

ψk(v) = H̃k(v)M(v)

Figure 15 – Les 5 premières fonctions de Hermite. On constate qu’elles sont très localisées
autour de l’origine.

Ces fonctions constituent une base hilbertienne de L2(R,M(v)−1dv) donc pour tout k, l ∈ N :∫
R
ψk(v)ψl(v)M−1(v)dv = δk,l

Enfin, les fonctions de Hermite vérifient les propriétés de récurrence suivante : on pose
ψ−1 = 0, ψ0 = M(v) et

vψk(v) =
√
kψk−1(v) +

√
k + 1ψk+1(v)

ψ′
k(v) =

√
kψk−1(v) − vψk(v)

Enfin, l’inégalité de Cramer [7] énonce que

max
x∈R

∣∣∣∣∣ 1
(n!)1/2 e

− x2
2 Hn(

√
2x)

∣∣∣∣∣ = 1

et implique que

max
x∈R

|ψn(x)| ≤ 1√
2π
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5.2 Approximation de fonctions par série de Hermite
Commençons par la propriété suivante :

Proposition 11. Soit ϕ ∈ C∞
c (R). Alors la série de fonctions

∞∑
k=0

< ϕ,ψk >L2(M−1(v)dv) ψk(v)

converge ponctuellement vers ϕ.

Démonstration. Les coefficients de la série se réécrivent comme∫
R
ϕ(v)Hk(v)

(k!)1/2dv

En remarquant que Hk = H
′
k+1

k + 1, on peut effectuer 3 intégrations par parties successives
pour obtenir que

< ϕ,ψk >L2(M−1(v)dv)= −
∫

R
ϕ

′′′(v) Hk+3(v)
(k + 1)(k + 2)(k + 3)(k!)1/2dv

En utilisant l’inégalité de Cramer et en écrivant que le support de ϕ est inclus dans un
intervalle [−A,A], on obtient la majoration suivante :

< ϕ,ψk >L2(M−1(v)dv)≤ ∥ϕ′′′∥∞

∫ A

−A
ev2/2dv

1√
(k + 1)(k + 2)(k + 3)

En utilisant encore une fois l’inégalité de Cramer, on trouve alors que

∞∑
k=0

| < ϕ,ψk >L2(M−1(v)dv) |∥ψk∥∞ ≤ ∥ϕ′′′∥∞√
2π

∫ A

−A
ev2/2dv

∞∑
k=0

1√
(k + 1)(k + 2)(k + 3)

< +∞

La série converge normalement et elle définit une fonction continue. On sait de plus, par la
théorie des espaces de Hilbert que

ϕ =
∞∑

k=0
< ϕ,ψk >L2(M−1(v)dv) ψk

dans L2(M−1(v)dv) et donc presque partout sur R. L’égalité a lieu partout puisque les deux
membres sont continus.

Maintenant que l’on sait que l’on peut écrire une fonction ϕ ∈ C∞
c (R) comme sa somme de

fonctions Hermite, on peut vouloir l’approcher par la série tronquée. Soit K ∈ N le rang de
troncature. On fait l’approximation suivante :

ϕ(v) ≈
K∑

k=0
< ϕ,ψk >L2(M(v)−1(v)dv) ψk(v)

Or,

K∑
k=0

< ϕ,ψk >L2(M(v)−1(v)dv) ψk(v) =
∫

R

(
K∑

k=0

1
k!Hk(v)Hk(x)

)
ϕ(x)dx M(v)
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Fixons v. Supposons que ϕ soit une fonction positive laissée variable. La somme dans l’in-
tégrale est alors une somme finie de polynômes, c’est donc un polynôme nommé PK,v. De plus,
comme les polynômes de Hermite Hk sont unitaires et de de degré k, c’est un polynôme de
degré k et de coefficient dominant HK(v).

Si K est impair, et que HK(v) ̸= 0, alors la PK,v est un polynôme de degré impair. Il admet
−∞ comme limite en l’infini. Ainsi, il suffit de choisir ϕ dont le support est assez loin de l’ori-
gine pour que l’intégrale soit négative. De plus, on s’aperçoit que l’on peut étendre son support
arbitrairement loin en l’infini pour faire tendre cette intégrale vers −∞.

Si K est pair et que HK(v) < 0, alors par les mêmes arguments on peut faire tendre l’in-
tégrale vers −∞ en considérant une fonction ϕ dont le support est assez étendu et loin de
l’origine. L’ensemble des v qui correspondent à ce cas est une zone bornée de R.

Enfin, si K est pair mais que HK(v) > 0, on ne peut plus utiliser d’argument basé sur le
degré. On conjecture néanmoins que PK,v est strictement négative sur un intervalle, pour tout
K pair. Ainsi, on devrait encore pouvoir choisir ϕ une fonction plateau dont le support est
contenu dans cet intervalle pour rendre l’intégrale négative. On pourrait de plus faire tendre
l’intégrale vers −∞ en multipliant ϕ par un réel arbitrairement grand.

Même s’il manque une preuve du dernier cas pour conclure, on voit que pour tout rang
de troncature K impair, il existe une infinité de fonctions infiniment dérivables et à supports
compacts pour lesquelles la positivité n’est pas respectée.
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