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Résumé

Ce rapport a été réalisé dans le cadre du stage de M2 MACS sous la supervision de Frédéric
Hérau et de Mehdi Badsi. Le stage s’est porté sur des méthodes spectrales conservant ’hypo-
coercivité des équations de Fokker-Planck et de Vlasov-Poisson-Fokker-Planck (VPFP) issues de
la physique des plasmas. La premiere partie du rapport expose la notion d’hypocoercivité ainsi
que les techniques de preuve utilisées. Une seconde partie est consacrée a I’étude de larticle [1]
qui propose une méthode numérique hypocoercive pour 1’équation de Fokker-Planck basée sur
la décomposition de Hermite en vitesse. Ensuite, on propose un schéma numérique pour le sys-
teme de Vlasov-Poisson-Fokker-Planck en essayant d’utiliser les mémes idées. Ce schéma n’est
pas satisfaisant, ce qui nous amene a étudier le systeme de VPFP dans un cadre plus théorique
dans une derniére partie. On expose une preuve d’hypocoercivité H', qui fonctionne seulement
sous I’hypothese non raisonnable que la longueur de Debye doit étre suffisament grande. On
utilise ensuite la décomposition de Hermite en vitesse pour établir une preuve d’hypocoercivité
L? sans condition sur la longueur de Debye. Ceci motive la définition d’un schéma de volumes
finis basé sur cette décomposition.
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1 Plasmas et équations cinétiques

1.1 Qu’est-ce qu’un plasma?

Un plasma est un tout d’abord gaz ionisé : les électrons (charges électriques négatives) portés
par les atomes du gaz ont recus une excitation assez importante pour se libérer de I'attraction
des noyaux atomiques (charges électriques positives).

Pour étre qualifié de plasma, un gaz ionisé doit exhiber deux principales caractéristiques
(voir [2]). Premierement, le gaz doit étre quasi-neutre, c’est-a-dire que le gaz doit étre assez
homogene électriquement pour que localement en tout point, la charge totale soit environ nulle.
Ceci exprime entre autre que pour étre un plasma, le gaz doit étre un bon conducteur électrique,
rééquilibrant les charges électriques lorsque des défauts apparaissent. Ceci s’exprime en terme
physique en disant que la longueur de Debye 62 est trés petite devant la longueur caractéristique
L du systeme. Ensuite, on doit observer des comportements collectifs parmi les particules
chargées. L’apparition d’une densité de charges non nulle en un point crée 'apparition d’un
champ électrique. Un force électromagnétique va alors apparaitre et va agir sur les particules.
Ainsi, les particules s’influencent mutuellement a distance contrairement a un gaz neutre. On
peut, par exemple, observer des ondes se former dans un plasma.

Une large partie de I'univers est constituée de plasma : les étoiles, les nébuleuses ainsi que
le milieu interstellaire sont constitués de plasmas de températures et de propriétés différentes.
Sur Terre, on peut également observer des plasmas naturels lors d’orages sous forme de foudre.
Enfin, il existe des plasmas artificiels. Un exemple est 1'utilisation de plasmas dans les tokamaks
pour réaliser la fusion nucléaire.

FIGURE 1 — Plasma artificiel dans un tokamak.

1.2 Equation de Boltzmann et de Fokker-Planck

Comme un plasma est constitué d’un nombre énorme de particules, on ne peut pas envisager
de simuler les particules constituant le plasma pour simuler le plasma a 1’échelle macroscopique.
Pour modéliser un plasma, on utilise I’approche de la physique statistique. On cherche a calculer
la densité de probabilité de présence des particules d’une espece donnée dans I’espace des phases.
On se place dans l'espace RV, avec N =1,2 ou 3. Du point de vue de la physique classique,
un électron dans un plasma est repéré au temps ¢t par N coordonnées d’espaces = ainsi que [NV
composantes de son vecteur quantité de mouvement p. Rappelons également que p = mv avec v
la vitesse de la particule et m sa masse. Ainsi, un électron est repéré par 2N coordonnées (x, p)
dans 'espace des phases R*V. Notons f la densité de probabilité de position dans 'espace des
phases des électrons, qui dépend de ¢, de z et de p. Ainsi, si dz¥dv" est un élément de volume
de 'espace des phases, la probabilité qu’une particule se trouve dans cet élément a l'instant ¢
vaut f(t,z,v)dz™dv". Notons F la force totale s’exercant sur un électron.
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On suppose qu’il n’y a pas de collision entre les particules. La conservation du nombre
de particules pendant I’évolution du systeme entre t et t + dt dans un volume infinitésimal
s’exprime par 1’équation :

Ft+dt,z+ %dt, p+ dtF)de¥dv®| = f(t,z,p)da"dv™|

t+dt

L’élément infinitésimal, bien que déformé par la transformation du systeme, a le méme
volume. En divisant par ce volume multiplié par dt puis en passant a la limite dt — 0, on
obtient I’équation suivante :

Elle est appelé équation de Boltzmann sans collisions. S’il y a des collisions entre les par-
ticules, la conservation des particules dans 1’élément de volume entre deux instants n’est plus
respectée. Si dN,,y; est la variation infinitésimale du nombre de particules du aux collisions, on
définit le noyau de collision L(f) par I'égalité dN.o = L(f)dz™dvNdt. Le noyau de collision
représente la variation du nombre de particules par collisions par unité de volume et de temps.
En effectuant le méme passage a la limite de précédemment, on déduit I'équation

ot  mox dp
C’est I’équation de Boltzmann avec collisions. L’expression de £ est a choisir selon la modé-
lisation des chocs entre particules. L’équation aux dérivées partielles obtenue est une équation
cinétique, en référence au fait que f dépend de la vitesse v = £ qui est alors une variable.
On doit maintenant détailler les hypotheses utilisées pour établir ’équation de Fokker-

Planck et le systeme de Vlasov-Poisson-Fokker-Planck. Dans toute la suite, N = 1.

1.2.1 Equation de Fokker-Planck

Les hypotheses sont les suivantes :

— On se place dans 'approximation des régimes quasi-stationnaires. Le plasma est non-
relativiste et on néglige le champ magnétique B.

— Un champ électrostatique extérieur E est imposé. Ce champ dérive d’un potentiel &
également imposé. Le champ électrique autoconsistant E produit par les particules du
plasma est négligeable devant le champ FE.

— Le plasma évolue dans un tore T de dimension 1. Cette hypothese permet de ne pas
traiter les effets de bords.

— Le noyau de collision est 'opérateur de Fokker-Planck L(f) = 0,(vf + 0, f).

Sous ces hypotheses, la force électromagnétique s’écrit F = —gFE ol —q est la charge de

Iélectron.

L’équation de Fokker-Planck, traduisant dans ce contexte 1’évolution de la densité électro-

nique f dans le plasma est

atf + Uamf - Eavf = av(vf + 8vf)

On introduira cependant les parametres positifs € et 7(¢). € est la rapport entre le libre
parcours moyen d’un électron et 1'échelle typique de longueur. Si 7(¢) ~ ¢ en 0, la limite
g — 400 correspond au comportement en temps long du plasma. L’équation de Fokker-Planck
prend la forme suivante :

Of + (0, ~ BO.f) = T(lg)avwf +0.f)
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Remarquons qu’il y a bien conservation de la masse pour ce modele de plasma. On note dx
la mesure de Haar normalisée sur le tore.
En intégrant I’équation sur T X R, on obtient si f est réguliere :

CZ//TXRfda:dv:T;@//TxRav(var@uf)dl"dU:O

Ceci montre qu’il n’y a pas de destruction ni de production d’électron. On notera la masse
m dans toute la suite.

Par contre il n’y a pas conservation de la quantité de mouvement. En effet, en multipliant
par v puis en intégrant I’équation comme précédemment on obtient par le méme genre de calcul
que

1 1
d// fudzdv + f/Epdx = ——/ fvdzdv
dt J JTxr et T(e) J JTxR

ou p(t,x) est la densité spatiale d’électrons, p(t,x) = g f(t,z,v)dv.

L’énergie cinétique n’est pas non plus conservée. On montre que
d// fudxdv + / E/ fvidvdx = —2/ Foldedy + 2
dt J Jrxr T JR 7(e) J JTxR 7(€)

La seule loi de conservation a préserver au niveau numérique sera la conservation de la
masse. Remarquons que la non conservation des différents moments est due au choix du noyau
de collision, et a la présence d'un champ électrique non-nul.

On note

1 ’U2
M) = —e 7

t
la Maxwellienne. Lorsque — — oo, la densité f converge (dans un espace fonctionnel approprié

dépendant de la régularité des données) vers une densité stationnaire fo,(x,v) = poo(z) M (v),
ou
poo(@) = e

La constante ¢y étant donnée par la conservation de la masse d’électrons.

1.2.2 Systeme de Vlasov-Poisson-Fokker-Planck

Les hypotheses sont les suivantes :

— Le plasma est composé de deux especes : les électrons chargés "-" et les ions de charge"+".

— Les ions sont beaucoup plus lourds que les électrons et ne se déplacent pas. Leur densité
spatiale n;(x) est stationnaire.

— On se place dans 'approximation des régimes quasi-stationnaires. Le plasma est non-
relativiste et on néglige le champ magnétique B.

— Le plasma évolue dans un tore T de dimension 1. Cette hypotheése permet de ne pas
traiter les effets de bords.

— Le noyau de collision est 'opérateur de Fokker-Planck L(f) = 0,(vf + 0,.f).

Les équations de Maxwell sont sous ces hypotheses :

div(E) = qni —r
€0
rot(E) = 0
div(B) = 0
rot(B) = 0



Comme rot(E) = 0 et que T est compact et connexe, 'existence d’un potentiel ¢ dont dérive
le champ électrique E découle du théoreme de décomposition de Helmoltz-Hodge. On a alors
E = —V¢. On en déduit alors ’équation de Poisson :

—1ﬁ¢:::qnl P
€o

En réalité, on va devoir prendre en compte 'effet d’écrantage. Pour ce faire, introduisons la
longueur de Debye \p. Cette longueur est un parametre fondamental du plasma. Elle représente
la longueur maximale a partir de laquelle la quasi-neutralité n’est plus respectée. Elle est en

pratique faible devant ’échelle typique de longueur du systeme L. Sa valeur exprimée en metres
varie de 107 pour des plasmas artificiels de tokamak, 1072 dans l'ionosphére terrestre et 10

A
dans le milieu interstellaire. En posant ¢ = TD’ et en posant a 1 les autres constantes, I’équation

de Poisson devient

—2Np=n; —p
On obtient alors le systeme de Vlasov-Poisson-Fokker-Planck :
1 1
atf + 7(U8xf - Eavf) = 781}(”]0 + avf)
£ 7(€)
—0* A =n; —p
E=-V¢

Le potentiel électrique est dit autoconsistant. Ce systéme est non-linéaire du fait du couplage
entre I’équation de Fokker-Planck et ’équation de Poisson via le potentiel électrique.
Le plasma est globalement neutre et la masse d’électrons se conserve, ce qui donne les
égalités :
/p(t,x)dm = / ni(z)de:=m >0 Vt >0
T T

On peut formellement identifier I’état d’équilibre de ce systéme, qui s’écrit :

_628xx¢oo(x) = ni(x)_ce¢M(x)

. B m
 frede@dy
foolz,v) = et M (v)

Remarquons que ¢, est défini a une constante pres et que si n; est constante alors ¢, = 0
est une solution de I’équation non-linéaire.

1.3 Hypocoercivité

Du point de vue de la physique comme des mathématiques, il est interessant d’étudier le
comportement asymptotique de la solution de I’équation de Fokker-Planck. Une inégalité du

type

1f = fosllzrxry < CO@) | fo — foollL2(rxr)

avec 6 une fonction monotone décroissante de limite nulle en I'infini donnerait une vitesse de
retour a 1’équilibre voir un temps de retour a I’équilibre explicite. De plus, un schéma numérique
préservant cette propriété serait stable pour la norme considérée.

On peut alors se demander si cette propriété est vraie dans le cas de ’équation de Fokker-
Planck. Pour étudier le retour vers I’état asymptotique de f pour I’équation de Fokker-Planck,
utilisons une approche perturbative. En écrivant que f = fo + fooh avec h la nouvelle inconnue,
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on établit PEDP vérifiée par h. On définit aussi le sous espace fermé de L?( fo.dxdv) des fonctions
a moyenne nulle V = {h € L*(foodzdv) | [ [tyxr hfsodzdv = 0}. Définissons le produit scalaire
pour tout f,g € L?(fodxdv) :

<fg >:://TXngfood:cdv

L’équation vérifiée par h est la suivante :

1 1
oh+——(w—0,)0,h + —(vO,h — EO,h) = 0
t +T(€)(U ) +€<U )
ho eV

Dans ce cadre perturbatif, I’équation cinétique de Fokker-Planck est donc constituée de 3
parties : une dérivée temporelle, un opérateur de transport 7' = v0, — F,,0, et un opérateur de
collision L = (v — 0,)0,, agissant seulement en vitesse. Ces opérateurs sont définis sur des sous-
espaces de L*(f.dzdv). Sur les sous-espaces sur lesquels ces opérateurs sont définis, on vérifie
que T est antisymétrique et L est autoadjoint. De plus, < Lh, h >= ||0,h||* par intégration par
partie. Dans un premier temps, ignorons le transport. On s’intéresse au systeme suivant :

Oh + iLh =0
7(e)
Jr hoM(v)dv = 0

Le théoréme de Hille-Yosida donne ’existence d'une solution forte a ce probleme d’évolution
et de plus en tout temps, [z hM(v)dv = 0. Prenons le produit scalaire de I’équation d’évolution
par h :

1d 1
SSJh? = ——— < Lhh
3"l o) S
1
= =l
7(e)
1
< ——lnl

7(e)

ou pour la derniere inégalité on a utilisé I'inégalité de Poincaré-Wirtinger pour la mesure
de probabilité M (v)dv et le fait que [z hM(v)dv = 0. En appliquant le lemme de Gronwall, on
obtient le retour a I’équilibre a vitesse exponentielle :

__t
[Pl < e 7@ Rl

Ceci est une conséquence directe de la coercivité de L sur le sous espace fermé de V des
fonctions h telles que [z hM(v)dv = 0. Le caractére coercif se montre comme il suit, en utili-
sant une intégration par partie et 'inégalité de Poincaré-Wirtinger qui se simplifie grace a la
condition supplémentaire :

< Lhh>= 9,02 = b= [ hM()dv]? = 0]
R

On peut se demander ce qu’il se passe alors pour I’équation complete. En réitérant les mémes
calculs, on obtient que



1d
2 dt

1
B = ——— < Lhh>

7(e)
1
= ———|0,h]?
7(5) H v ||
1
<~ = [ AM@)a]?
7(e) R
Il n’est pas possible de conclure avec le calcul précédent. Néanmoins, on peut montrer qu’il
existe C' > 1,k > 0 tels que I'inégalité suivante soit vraie :

Ih[I* < Cliho| e~

Ainsi, le retour vers I’équilibre s’effectue a vitesse exponentielle pour ’équation de Fokker-
Planck. Cette inégalité est tres proche de celle trouvée dans le cas coercif. C’est une manifesta-

tion du caractere hypocoercif de I'opérateur iT + 7_(15)[/. Cet opérateur n’est pas coercif dans
V' mais la solution du probleme d’évolution associée possede la propriété de retour a 1’équilibre
a vitesse exponentielle. Les méthodes utilisées pour exhiber le taux de convergence exponen-
tielle a été développée par Hérau, Nier et Helffer (voir [6], [§] ). La notion d’hypocoercivité est
développée par Villani dans [9].

Les preuves d’hypocoercivité suivent le schéma suivant, comme présenté par Frédéric Hérau
dans son cours de master [5]. Dans un premier temps, on choisit I'espace de Hilbert et la
norme dans laquelle on veut prouver I'’hypocoercivité. Ensuite, on définit une fonctionnelle
E(h) équivalente a la norme choisie, c’est-a-dire qu’il existe deux constantes a,b > 0 telles que
pour tout h dans 'espace fixé,

allh])* < E(h) < bR]*

L’entropie doit pouvoir étre dérivée en temps. Dans cette perspective, on utilisera des es-
timations a priori obtenues en supposant la solution de I’équation dans ’espace de Schwartz
S(R™). En employant des équivalences de normes qui utilisent des inégalités de type Poincaré,
on doit montrer qu’il existe une constante x > 0 telle que

&

dt

Le lemme de Gronwall montre que E(h) < E(hg)e *. Enfin, I’équivalence avec la norme
montre que

(h) < —KE(h)

b
IP1* < lho|*e ™

2 Méthode numérique hypocoercive pour I’équation de
Fokker-Planck

Cette section récapitule l'article de Filbet et Blaustein [I]. Dans cet article, I'équation de
Fokker-Planck est projetée sur la base des fonctions de Hermite, ce qui fait apparaitre un
systeme hyperbolique vérifié par les coefficients. Cette astuce permet une lecture facile des dif-
férentes propriétés de I’équation de Fokker-Planck, ainsi qu’une démonstration simple d’hypo-
coercivité dans une norme L?. Ensuite, le systéme hyperbolique est discrétisé par une méthode



des volumes finis. Cette discrétisation permet de préserver ’hypocoercivité pour les normes
discretes. Pour plus de détails sur les fonctions de Hermite, on renvoie a ’annexe .

Un avantage de cette méthode est de faire disparaitre la variable vitesse et donc de diviser
par 2 la dimension du probleme. Un autre avantage est qu’expérimentalement, on mesure les
premiers moments de f (densité, vitesse fluide...) et donc il est intéressant de simuler directe-
ment les moments plutot que f.

2.1 Projection de 'EDP sur la base de Hermite

On considere un potentiel ® € W2(T), et on note F = —0,® le potentiel électrique associé.
L’équation de Fokker-Planck décrivant ’évolution de la densité d’électrons f pour ce potentiel
extérieur imposé s’écrit :

of + 2 (v8f+Ec’)f) = L wrsa) V) eTxRit>0

7(¢)
fo€ Ll(T X R, dxdv) donnée

Attention : le signe devant le champ F est ici "+" et pas "-" comme dans l'introduction.
Ceci ne change rien & part que 1'état stationnaire s’écrit foo(x,v) = coe"*@ M (v).

non

L’estimation d’énergie suivante :

1d B B 1 f
2dt TxR(f_foo)zfooldﬂﬂv = _7'(8)[er (8 (foo)) foodxdv

montre que un espace de Hilbert naturel pour cette étude est L*(T x R, f ldzdv). Ainsi,
on va projeter la densité f sur la base des fonctions de Hermite. On trouvera alors un systeme
d’une infinité d’EDP portant sur les coefficients de f dans cette base. On résoudra par la suite
ce systeme pour résoudre I’équation de Fokker-Planck.

On exprime alors f comme sa série de Hermite :

ft,z,v) = Zthxwk Z Poo () Dy (t, 2)1r(v)

Ck<t, 1’)

\/ Poo()
En remplacant f par cette série dans 'EDP et en utilisant les propriétés des fonctions de
Hermite, on trouve alors que D, vérifie pour tout k € N,

ou on définit Dy(t,z) :=

k
oDy, + = (\/_ADk - VE+ 1A D) =  ——DyVz eT,t>0

7(e) (1)
Dy(t=0,.) donnée

A et A* sont des opérateurs différentiels adjoints dans L*(T, dz) :

FE
Au = 8xu—§u
E
Au = —0,u— —

La décomposition de la densité stationnaire f,, dans la base de Hermite donne

{DO,OO(I) = poo(l“)
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t
Rappelons que f tend vers f., lorsque — — +00. En particulier, tout les moments d’ordre
€

k > 1 doivent tendre vers 0 quand — — 4o00. Il n’y a pas de conservation de ces moments sauf de
5

la masse. On peut d’ailleurs la démontrer dans ce cadre. Ici la masse vaut [; Do(t, )1/ poo(x)dz.

Un calcul direct montre que Ay/ps(z) = 0, et donc

/ A" D/ poo(x)dx = / D1 A\ poo(x)dz =0
T T
On multiplie alors I’équation
1
oDy — EA*DI =0

par /peo, PUis on integre sur le tore et on intervertit intégrale en espace et dérivée en temps
pour obtenir que

d
— | D N —
% [ Dott ) foslw)de = 0

La masse est donc constante. Cette propriété est tres importante et devra étre conservée au
niveau discret pour assurer le retour a 1’équilibre.
Dans ce contexte, la norme dans L*(T x R, f_'dzdv) est

D2 = Di.oll?- Inégalité de Parseval
O0llz2(T)
k=0
et 'estimation d’énergie devient

1d 1 &
——||D(t) — Dsoll32 = —— > k|| Dy|?
3 1P®) = Dl = =5 3 kIDslaqr

On énonce alors le théoréme d’hypocoercivité en norme L? et en régime fortement collision-
nel.
7(e)
£2

Théoreme 1 (Filbet & Blaustein [1]). Supposons que — To < +00 quand € — 0. Soit

(Dko)ken la donnée initiale.
Sous la condition initiale |D(t = 0)]|12 < +00, on a que

ID = Dz < VEID( = 0) = Dulrexw (=75t

1
k valant —————, ou C ne dépend que de P.

C(l + T())’

La preuve repose sur 'utilisation de I’entropie suivante :

1 T(e
£() = JID(0) ~ Dol + 00" < ADyw >

Elle est constituée de deux termes : la norme L? de notre espace de Hilbert, a laquelle on
ajoute un second terme. Ce terme dépend de u, la solution du probléeme aux limites elliptique
suivant :

AA*u = D(]
Jruy/podz = 0
u € H?(T)

Ce terme permet de retrouver la dissipation en ||D0H2L2(T), qui est absente de 'estimation
d’énergie [2.1
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2.2 Discrétisation en espace et temps

L
On choisit N, € N. Soit un intervalle [0, L], et dz = N Pour simplifier les notations, on

considére un maillage uniforme. On définit zjp1 = jdr pour j = 0,.., Ny, et x; = (7 — §)dx

pour j = 1,..., N;. On définit les cellules K; =]z, 1, L5 [ pour j = 1,..., N,. Soit dt > 0 le
pas de temps. La discrétisation en temps se fera aux 1nstants t, = ndt, Vn € N.

On approche Dy(t,, ;) par Dy ;, qui est une approximation de type volumes finis utilisant
la formule du point milieu :

" 1
Dk,j — % /Kj Dk(tn,fﬂ)dflﬁ ~ Dk(tnvmj)

Maintenant, on choisit de faire un schéma d’Euler implicite en temps : disposant de Dy ;
pour tout £ € N, 1 < 5 < N, et n fixé, on calculera les D"+1 pour tout £ € N,1 < j < N, en
résolvant

% + - (\/%(AD”H) —Vk (A*DZLI) ) = @D,’j;ﬂ, VEeN,1<j<N, (2
T )’

Pour la discrétisation en espace, on doit discrétiser les opérateurs adjoints. Blaustein et
Filbet choisissent les discrétisations suivantes : si (u;)1<j<n, est une suite finie de réels, on la
prolonge par ug = uy, et un,+1 = uy, et les opérateurs discrets A et A* sont définis par

i Ujrr — Ui B

(Au)j = == =S

Wy = == 3w

On constate qu’il reste désormais un degré de liberté a fixer, qui est le choix de discrétisa-
tion E; du champ E(x;). On va fixer ce choix de maniere a ce que le schéma préserve 1'état
stationnaire.

Lemme 1. Le schéma préserve [’état stationnaire si et seulement si

B \/Poo(fb’jﬂ) - \/ﬂoo(l’jfl)

dzy\/ poo(5)

Démonstration. Pour ce faire, considérons que Dy ;, pour k € N et 1 < j < N, est la discré-
tisation de I'état stationnaire a n fixé. Ainsi D, = 0 si k # 0 et Df; = |/poo(z;) sinon. On
suppose que ’état stationnaire est préservé entre les instants n et n + 1, soit Dy, = Dzjl.

Toutes les équations du systeme [2] sont triviales, sauf celles données pour k = 1, ce qui donne
(ADg); = 0 pour tout j. En isolant E; pour tout 1 < j < N,, on trouve alors que

Ej _ \/poo(xj—i—l) - \/poo(l'j—l)

dx \/ Poo (xj)

Réciproquement, si la discrétisation du champ électrique est la précédente, on vérifie direc-
tement que I’état stationnaire est préservé.

]
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Ce choix est nécessaire et suffisant pour préserver ’état stationnaire. En fait, on retrouve au
niveau discret que I’état stationnaire doit étre élément du noyau de 'opérateur A. La préserva-
tion de I’état stationnaire est capitale pour observer I’hypocoercivité, car si I’état stationnaire
n’est pas préservé, on ne peut pas espérer s’en approcher arbitrairement pres en temps long.

Blaustein et Filbet prouvent que ce schéma préserve le caractere hypocoercif de 1’équation
de Fokker-Planck, c’est-a-dire que I’'on observe au niveau discret le retour a I’équilibre a vitesse
exponentielle.

7(e)
)
Il existe Cy > 0 dependant de ® telle que pour tout € >0 et n >0, on a

Théoréme 2. Suppososns que — 79 < +00 quand ¢ — 0. Soit (D{)ren la donnée initiale.

0[3

10" — Dl < V3| D° — D] (1 " Tf)ffodt)
19
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D’un point de vue pratique, la matrice issue du schéma d’Euler implicite est carrée non
symétrique, de dimension (P + 1) x N, X (P + 1) * N, ou P est le paramétre de troncature
de la série de Hermite. Elle croit donc tres vite selon les parametres choisis. Heureusement elle
est treés creuse, et peut étre efficacement codée dans un format creux comme CSR. Lorsque la
matrice est en format plein, et que I'on utilise la résolution par décomposition LU offerte par
LAPACK, méme pour des parametres raisonnables, on observe que ’erreur peut s’accumuler
au fur et a mesure de la simulation, rendant les résultats médiocres a partir d'un temps peu
élevé. Il faut en fait utiliser un solveur préconditionné, par exemple le solveur itératif GEMRES

préconditionné par le solveur LU. Ce solveur est proposé pour les matrices sous format CSR
par la librairie STRUMPACK ou bien PETsC.

2.3 Expérimentations

On reproduit dans cette section l'expérimentation déja menée dans [I]. Le cas test utilisé
est le suivant. La donnée initiale est

folwv) = (14 6 cos (T))M@)

avec 0 = 0.5, L = 10. On calcule les 200 premiers modes de Hermite et la discrétisation en
espace se fait avec N, = 64. Le pas de temps est fixé & 5.1073. La fonction 7(g) vaut 5¢2. On
étudie alors I'évolution des normes || f — foollp2(s21) et [[f — pM|| 221

Sur la figure [2l on représente la solution approchée a différentes dates pour € = 1, ainsi que
I’état stationnaire théorique. On peut observer I'allure du systéme dans le plan de phase.

Sur la figure 3| on représente I'évolution de || f — pM|[;2(;-1) avec une échelle logarithmique
en ordonnée pour différentes valeurs de €. On représente aussi la droite d’interpolation et on
calcule sa pente. On peut remarquer des oscillations de la courbe dont il est fait mention dans
[1]. De plus, on remarque que plus € est petit, plus le plasma est collisionnel et plus le retour a
I’équilibre s’effectue rapidement. Pour la valeur la plus petite, les courbes des différentes normes
deviennent horizontales lorsqu’elles rejoignent 1’erreur machine.
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3 Schéma de splitting pour Vlasov-Poisson Fokker-Planck

Essayons d’adapter le schéma précédent au systéme non-linéaire de Vlasov-Poisson-Fokker-
Planck, avec longueur de Debye fixée a 1.

Ohf + (v@f Eo,f) = (16)(vf+&,f) W(z,0) € Tx Rt > 0
T
— 0y ® = ni—p Y(r,0) eTxRt>0
E = -0,
f(0,.,.) € LL(T,dz) N LA(R, dv) donnée

Le but de cette section est d’essayer naivement de transformer ce systéme en un systéme
hyperbolique de structure similaire au cas de Fokker-Planck, puis d’analyser les nouvelles dif-
ficultés rencontrées. On proposera par la suite des pistes pour éliminer ces difficultés.

3.1 Projection sur la base de Hermite

On décompose [ dans la base des fonction de Hermite :

f(t,z,v) = Zthxwk 262 k(t, @) (v)

Ci(t,z
ou on définit Dy(t,z) := ’ilf(t x)) Ce choix permettra de mettre le systeme sous la méme

forme que précédemment, avec les opérateurs A et A* de la méme forme qu’avant. Ce choix ne
demande pas de résoudre I’équation non-linéaire de Poisson non-linéaire dont ®,, est solution.

On injecte cette série de Hermite dans ’'EDP de Fokker-Planck pour en déduire le systéme
d’équations sur Dy, pour tout k € N :

k 0, P
oDy + — (\/_.AtDk 1—VEk+1A D) = — (7-(<g)+;> Dy Ve eT,t>0
Dy(t = 0,.)donnée

Il apparait maintenant dans le systeme un terme 0,$. A; et Ay sont des opérateurs diffé-
rentiels adjoints dans L*(T,dz) et dépendent de ¢

Au = E(t, )u

Afu = —&Eu+ i )u

Les opérateurs dépendent maintenant du temps. Ils restent adjoints dans L*(T, dz). L’équa-
tion de Poisson linéaire devient alors une équation de Poisson non-linéaire :

— 0, ®(t, ) = ny(x) — Dolt, x)e” 5

Comme pour Fokker-Planck linéaire, la masse [; Do(t,x)eé(gm dz doit se conserver et doit
valoir en tout temps m = [;n;(z)dz.
Pour établir la conservation de la masse, on multiplie 'EDP portant sur 0,Dy par ™5

On utilise la regle de dérivation d’un produit et on intégre pour obtenir que
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d t,x t,z
@(/TDO(@@;<2 >d:U) —/T.A:Dleq)(? ‘dz =0

Ensuite, on réalise une intégration par partie pour obtenir que

d B(t,2) 3(t,2)
— Dtme2d:v+/D.A62da::O
= Dolt.2)e™ o) + [ DA
(t.2) . o , ,
Comme Atem2 = 0, on obtient la propriété attendue. Il faudra également préserver cette
propriété au niveau discret.

3.2 Discrétisation de I’équation de Fokker-Planck

On reprend les mémes notations que pour le premier schéma de Filbet et Blaustein.
Le schéma d’Euler implicite s’écrit alors, VE € N;1 < 7 < N, :

Dn—i.-l Dn 1
%+ (VE(Aw 1 D) — VE+1( nHDZi%)j):—(T

ke
%_
() 2dt

La premiere différence est I'introduction d’une différence finie pour approcher 9,®. La
deuxieme différence est que les opérateurs discrets A, A,, dépendent du temps :

n+1
r Ujpr — uj—1 B
(J4n+lu)j = ! 2d17] + iz Uj

n+1
(A —‘rlu) = —- 2dr ’ + 32 u]

On doit alors choisir la discrétisation de E}”l qui préserve I’état stationnaire.

Lemme 2. L’¢tat stationnaire est préservé si et seulement si

Doo (5 ) Doo(zi_1)
B — Vol@im) = Jplasr) 5 o
j - —_

Poo(z5)
dz\/ poo(;) dre ="
La preuve du lemme est analogue en tout point au lemme prouvé pour le schéma résolvant
I’équation de Fokker-Planck.

Cette différence finie est consistante avec £ = —0,.

On voit que pour utiliser ce schéma, il faut connaitre Dy ; pour tout k, j ainsi que (ID?H, o7
pour tout j. On doit alors calculer le potentiel sur deux instants précédents et alterner la
résolution de 1’équation de Fokker-Planck et la résolution de Poisson non-linéaire.

Conservation de la masse Ce schéma n’est a priori pas conservatif. En effet on aimerait
que

¢n+1

Z dzDyte = Z d:vDoje 3

Mais en procédant comme dans le cas continu (multiplication par dxeTj, sommation sur 7,
intégration par partie discréte) on obtient que
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Ny D”H pDr.oe? Ny q)ﬂH q)n 37
0.J ¢ £ _ L myn+l
S et e = =5 et e DY

Cette égalité ne permet pas de conclure : le terme de droite n’est pas forcément nul, et
@774

le facteur e ne permet pas de faire apparaitre les deux intégrales discrétes simultanément
dans le terme de gauche. Pour résoudre le probléeme de non-conservativité, on doit changer
de procéder pour calculer Dy. En particulier, 'apparition du terme 0;® est dramatique. On
propose alors de changer 1’équation actuelle sur Dy :

1 0y ®
GtDU - *A:Dl - LDO
€ 2

On multiplie I'équation par e2

I’équation

, on utilise la regle de dérivation d’un produit pour trouver

1
8,Co — ge%A:Dl =0

Y . s o, s , . , L. . N
car Cp = ez Dy. Il n’y a alors plus de non linéarité. Le schéma discrétiserait alors le systeme
suivant :

0,Co — ie§A§D1 = 0
C = ez Dy
0Dy, + — (\/_.AtDk 1 —Vk+ 1A Dyy) = — (Té) + 8,52) D, Vk>1
Dy(t=0,.) donnée

Du point de vue de 'étude théorique du systéme, rien ne devrait changer (on a juste utilisé
la définition de Cp). Pour le schéma, la premieére équation donne bien la conservation de Cy
donc de la masse.

3.3 Résolution de I’équation de Poisson non-linéaire

Supposons que I'on connaisse Dy(t,,x) pour tout z € T. On souhaite résoudre 1’équation de
Poisson non-linéaire sur le tore, avec conditions aux limites périodiques et condition de moyenne
nulle :

—0uad(x) + Do(tn, 2)e™ " — ny(z) =0
Définissons alors I'application
F CYT) — C°(T)

¢ = —Omd+ Dy(tn, )e? —n;

Trouver la solution de 'EDP non linéaire au sens classique revient a trouver le zéro de F'.
On propose d’utiliser la méthode de Newton.
F est différentiable au sens de Fréchet, sa différentielle étant

dyF :CX(T) — CO(T)

Dﬂ(tn7 ) k4
2

h —  —Ogh + ezh

Soit v € C°(T). Calculer u = (dyF)~*.v revient a résoudre 'EDP suivante :
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Dy(tn,.) o
{v = — mqu~|—0(2)e(§u
u e C*(T)

On se propose alors d’approcher u par la troncature de rang K de sa série de Fourier puis
d’appliquer la méthode de collocation. On veut approcher u(x) par une somme de Fourier :

K )
u(x) ~ Z ckem%
k= K

Les inconnues sont alors les coefficients dans la base de Fourier. Pour ce faire, on part du
fait que 'EDP est vérifiée sur les centres des cellules Tj 1= (7 — %)d:c, Vi=1,..,N,:

2k7r>2+D0(tmxj+§)) ) e

K
U<$»+1): Z Ck ( 2 e L Titg

Si la contrainte N, > 2K + 1 est satisfaite, alors on peut former un systéme linéaire carré
qu’il faut inverser pour calculer les ¢;. Les points de collocations peuvent étre choisis équirépartis
si 2K divise N, — 1.

Supposons maintenant que I’on connaisse le vecteur dn € C2E+1 des coefficients de Fourier
de ®", et que I'on connaisse Dy ; pour tout 1 < j < N,. L’algorithme de Newton prend la forme
suivante.

Etape 1 : initialisation On choisit @, € C2%*!. On note le compteur p = 0.

Etape 2 : itérations Tant que la convergence n’est pas atteinte, on répete le calcul suivant :
— On assemble la matrice M € Myg,1(C) de coefficients

2 n up(x . ) i
2k D{ PUits zikm,
e (( L ) i 2%)6226 o

ou u, est la somme de Fourier associée a .
— On assemble le second membre b € C***! de coefficients b; = F(u,) (2, 1).
2
— On résout le systeme Mx = b.

— On calcule 4,41 = 1, — z, le coefficient associé a la valeur moyenne est remis a 0, puis p
est incrémenté de 1.

Etape 3 : résultat Le vecteur @, obtenu a la convergence est le vecteur "+ des coefficients
de Fourier du potentiel ®"*! & I'instant n + 1 .

Remarque On a été obligé, pour la programmation de cet algorithme, de remettre le coeffi-
cient associé a la moyenne a 0 a la fin de I'étape 2. Si cette opération n’est pas faite, on obtient
un overflow. Le fait que la matrice de collocation est tres mal conditionnée et que la valeur
moyenne du potentiel se retrouve dans une exponentielle a chaque itération peut expliquer ce
probleme. Cette approche n’est pas rigoureuse.
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3.4 Algorithme de splitting

On assemble alors un algorithme qui permet de simuler le systeme de Vlasov-Poisson Fokker-
Planck a partir des deux précédents solveurs. V., K sont deux entiers fixés avant ’initialisation
et correspondent au parametres de troncature des séries de Fourier et le nombre de cellules du
maillage. T" est le temps final.

Etape 1 : initialisation t° = 0. On fixe n = 0. Les valeurs D} ; sont données. On calcule le
potentiel initiale a ¢t = 0 en résolvant I’équation de Poisson linéaire :

~05:®° = ni(z) — p(2)

Pour ce faire, on approche ®° par sa série de Fourier tronquée au rang K. La valeur moyenne
est fixée a 0.

Itérations Tant que t" < T, on répete les opérations suivantes.

Le pas de temps dt prend la valeur min(dt, T — t") (ainsi toutes les itérations se font avec
le méme pas de temps sauf la derniére. La simulation s’arrétera alors bien au temps T).

La date est incrémentée : " = t" + dt. Comme les coefficients de Hermite et le potentiel
sont connus au temps t"*, on peut :

— Premierement calculer ®"*! par I'algorithme de Newton (demande de connaitre D ;) ;

— Ensuite calculer les coefficients de Hermite D,:ffjrl pour tout k,j (demande de connaitre

I pour tout k, j, ol Pn).
Le compteur n est incrémenté de 1.

Fin La simulation est arrivée a terme.

2ikmx

Supposons que le potentiel stationnaire ®., soit de la forme Y& . cre L, et que l'on
sache calculer de maniere exacte les coefficients de Fourier de n; — p lors de la résolution de
Poisson linéaire dans l'initialisation. Alors ( erreurs machine pres ) :

— Le solveur pour Poisson non-linéaire va préserver le potentiel. En effet, le second membre

b issu de la méthode de collocation sera nul, donc la solution du systeme x aussi, donc
Upp1 = Up.

— Le solveur de Fokker-Planck va également respecter 1’état stationnaire. Il a été congu

spécifiquement dans ce but.

Ceci est vrai a la premiere itération. Par récurrence, ’état stationnaire sera préservé apres
toutes les itérations en temps. La seconde hypothese peut étre réalisée en prenant un grand
nombre de points et une méthode de Newton-Cotes d’ordre élevé (il ne faut pas dépasser I'ordre
7 a cause du phénomene de Runge).

3.5 Expérimentations
3.5.1 Cas test 1
Le premier cas test est une perturbation de I’état stationnaire :

2rx

f(0,z,0) = (1 + d cos (L)) M(v)eP=®
avec L = 10,6 = 0.5.
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On choisit le potentiel stationnaire comme

2 4
O (x) =0.1cos (Zx) + 0.9 cos (?)

L’état stationnaire est de la forme

foo(x,v) = coeq)“’(m)./\/l(v)

Moyennant utilisation d’un logiciel de calcul formel (Geogebra) on peut calculer

Jr cos(3E)eP=)dy

J7 e®=@dx
2 e
k#0et Dy(0,2) = <1 + 0 cos <7£w)> ePoo (@)= 5
On dispose de toutes les données pour effectuer la simulation. Les parametres sont :
— N, =61,
— K =10 (troncature des série de Fourier);
— P =100 (troncature des séries de Hermite) ;

co =146 . Les coefficients de Hermite sont initialement D (0,z) = 0 si

— T =20
— L =10
— dt =0.005
— 7(g) = 5.
On étudie I’évolution de différentes normes pour € = 1,0.5,0.1 :
e@(t,ac) 1/2
- o1y = > Jy Di(t, x)? d
17 = oMl (s ute s ) )
P(t,x)
o= pllizgey = (€5 Duft,2) — pee(a))
o0 L2(poo) T poo(x)
1/2
Hf - fooHLQ(fo_ol) = (Hf - pMH%ﬁ(f;}) + Hp - ;OooHiz(p(;l))

On obtient les figures [ et [l On vérifie expérimentalement que la masse est constante
et que le schéma est conservatif. Les différentes normes L? tendent vers 0 mais presque sans
oscillations.

3.6 Conclusion

En tentant naivement d’adapter le méme schéma au systeme de Vlasov-Poisson-Fokker-
Planck, on a donc vu plusieurs difficultés apparaitre. On a écrit les schémas en utilisant les
variables Dy car on voulait obtenir un systeme d’une structure similaire a celui obtenu pour
Fokker-Planck. Néanmoins, ce choix a causé les difficultés suivantes :

— Les opérateurs différentiels dépendent du temps. Ainsi, la matrice utilisée pour résoudre
I’équation de Fokker-Planck dépend du temps. Elle doit étre formée a chaque itération
ce qui prend beaucoup de temps.

— Le terme 0;® est apparu, qui complique 1’étude du schéma.

— La conservativité du schéma est obtenue en écrivant en variable C} 1’équation sur le
premier moment. On peut se demander s’il n’est alors pas plus pertinent d’écrire le
schéma entier sur les coefficients C},.

— L’équation de Poisson est devenue non-linéaire. Sa résolution aurait été beaucoup plus
simple si elle était restée linéaire.

De plus, I'étude théorique de I’hypocoercivité du systeme non-linéaire de Vlasov-Poisson-

Fokker-Planck s’effectue sous forme perturbative, c¢’est a dire que I'on écrit
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f:foo+fooh

h est une perturbation autour de I’état d’équilibre f.,. Les preuves d’hypocoercivité se
placent alors sous I'hypotheése que h est assez petite. Ainsi, il serait plus simple d’étudier et
résoudre ’équation cinétique vérifiée par h.

En prenant compte de ces différentes remarques, on va étudier plus rigoureusement le sys-
teme sous forme perturbative.
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4 Etude du systeme de Vlasov-Poisson-Fokker-Planck

4.1 Introduction et notations

Rappelons le systeme de Vlasov-Poisson-Fokker-Planck :

1
atf + g(vaxf - Eavf)
—620,.0(t, )
E(t,x)
f(0,.,.) € LX(T x R)
Le plasma est globalement neutre et la masse d’électrons se conserve, ce qui donne les
égalités :

7_(16)(vf—|—8vf) V(z,v) € T xRt >0

VeeT, t>0
VeeT, t>0

(3)

ni(x) — p(t, )
- acqb(tax)

donnée

/p(t,x)d:v = / ni(x)dr :==m >0 VYt >0
T T

On peut formellement identifier I'état d’équilibre de ce systéme, qui s’écrit :

—620,0000(7) = nyi(w) — ce?o®
: Tm
@) = et W
folz,v) = poc(z)M(v)

La question de la convergence vers I’équilibre se pose alors naturellement. Contrairement a
I’équation de Fokker-Planck linéaire, on doit supposer que la condition initiale est assez proche
de I'état d’équilibre pour obtenir la convergence vers 1’équilibre a vitesse exponentielle : c¢’est
une approche dite "perturbative". Il est naturel d’effectuer le changement de variable suivant :
on écrit que f = foo + fooh, ou h est la perturbation relative par rapport a 1’état d’équilibre.
On injecte cette expression dans le systeme pour en déduire le systéme vérifié par h.

On calcule :

a:cfoo = - oofoo
avfoo = _vfoo
atf = fooath
V0, f = —vVEsfoo — ExoVfsch + vfu0h
—FEO,f = Evfe+ Evfoh — EfyOuh
0u(0.f +0f) = 0, (Mav (j;))

= Oy(focOuh)
= _Ufooavh + fooa?,h

On pose ¢ := ¢ — ¢, d'ou Ep, := 0,00 = E,, — E. Le systéme obtenu pour la perturbation

h est le suivant :

Oh + i(—v@xw — Exc0uh + v9,h + 9,4(9,h — vh))

_528;m¢

= (92h — vd,h) Wt > 0

1
7(e)
L ohfadv VE>0

h(0,.,.) = ho € Hy donnée
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Définissons un espace fonctionnel adapté a 1’étude de ce dernier probleme. Notons H =
L*(T x R, fwdxzdv). C’est un espace de Hilbert muni du produit scalaire

< U, v >= // uv foodxdv
TxR

et de la norme

o= ([ g o)

On définit aussi le sous espace fermé des fonctions & moyenne nulle Hy = {f € H | <
f,1>=0}.
Posons les opérateurs suivants définis sur H(T x R, foodzdv) :

A=d,, B=vd, — B0, , C =0,

Les adjoints de ces opérateurs dans H sont

A*=v—9,, B*=-B

1 1
En utilisant ces notations ainsi que L = ﬂA*A + — B, le systeme se réécrit

7(e €

1 1
Oh+ Lh — =0, 0v = =0, A*h Y(z,v) € T xRt >0
€ €
— Oz = — [jhfodv Y eT t>0 (5)
E, = 0 YreT,t>0

ho c 7‘[0 donné

Par la suite, on utilisera plusieurs identités algébriques pour établir les estimations d’énergie
nécessaires a la preuve d’hypocoercivité dans le cas linéaire :

[A,B] = AB- BA
= 0,(v0, — Exs0y) — 09,05 + B>

1
(B,C] = BC—CB
= — 01200y
A A] = AA"— A°A
= 1
< ABh,Ch> + < Ah,CBh > — ||Ch|*+ < Ah, duudos Al >
<h—Lh> — ——|an|?
7(¢)

4.2 Estimations d’énergie

Par la suite, on voudrait donner une preuve d’hypocoercivité pour le systeme de VPFP
perturbatif . On commencera par étudier le probleme linéarisé suivant, obtenu en supprimant
le terme non linéaire du systeme de départ :

1
Oth+ Lh — =0,v =  0V(z,v) € TxR,t>0

19
—528,,1 = — fhfedv Vo eET,t>0 (6)
ho € Hy donnée
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La premiere étape sera de dériver en temps une entropie bien choisie. Les estimations d’éner-
gie suivantes donnent des valeurs des dérivées en temps de plusieurs normes pour une solution
h € Hy de @ réguliere (par exemple dans I'espace de Schwarz S(T x R)).

Proposition 1. Si h est une fonction réguliere vérifiant le systéme @, alors les quatre égalités
suivantes sont vérifiées.

1d 6% d 1
——|Ihl? + == 1001321y = ——— || Ah|?
3 Al + 5 100 e =~ lan]
1d ,  0%d ) B 1 ) S |
5%”1‘1’1” + E%Haxd)”LQ(T) = —f(g)(HAh” + [|A%R|]%) — - < Ch, Ah >
1d 1 1 1
——|ICh||? = ——||CAR|]> = = < OpstooAh, Ch > 4+~ < Oyutpv,Ch >
2dt 7(€) 5 €
d 1 , 1 ,
T

+ i(< Ox0, Ch > + < Oppthv, Ah >)

Démonstration. Tout d’abord, on établit I’équation de continuité du flux. On multiplie I’équa-
tion par f. puis on integre sur R. On obtient 3 intégrales qu’on traite séparément :

/R O,h foudv + /R Lhfoydv — /R iamvfoodv —0

d
La premiere vaut 7 Jr hfoodv car fo est indépendante du temps. La troisieme vaut

1
—= ww/Ravfwdv:o

car ¢ est indépendant de v. Pour la deuxieme intégrale,

1 1
/thoodv < AARL> +f/ Bhf.dv
R 7(e) e Jr

1 |
— < AR Al> +7/ Bh fadv
7(€) e Jr

1
S / Bh faudv
e Jr
1
= 20, [ vhfxdo
e " JrR
L’équation de continuité du flux est donc, si j(t,z) = [z vhfeodv,

d 1. .

Un autre calcul préliminaire est le suivant.
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< Ophv,h > = /@ijdx
T
= —/ﬂﬁxjdx
.

- 5/T@Z)<jt/Rhfoodv> dr
_ /T OO bda
_ e / 0,000, dx

552

= 0l

On dérive maintenant ||| selon t.

1
2 _ — _ bl
thHhH = < Oh,h >=<h,—Lh+ Eaxm >

1

1 1
= ———||An|*+ < h, —(‘%ﬂ/ﬂ) >
7(e)

= an - Lo,
T 1(e) 2 a7
1 6% d
= = 2 a2
SRR - S 00 e
On dérive maintenant || Ah|* selon t.
1
Ah||? = — < Ah, AL -<A A
2dt” h| < Ah, h>+€ < A(0y9pv), Ah >
Or,
|A*AR|]? = < AA*Ah, Ah >
— < [A, A AR AR > + < A*AAR, AR > (car AA* =1+ A*A)
= [lAR]* + | A%R|”
Donc
R |
— <ALhAh> = ——||A"A|’ - < ABh, Ah >
T(é?)
1 1
= ——(|ARn|* + ||A2h|| )— ~ < [A,B]lh,Ah > += < BAh, Ah >
7'(5) € €
1 1
= ——(||AR||* + ||A%A h, Ah
~ S IARIE + [ 4%F) = £ < Ch,Ah >
Ensuite
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1 1
B < A(Oz9pv), Ah > = B < O WA Av, h >

6% d 9 .
= —E%HQMﬂHL?(T) (car A*Av = v)
On dérive maintenant ||Chl|? selon t.
1d ) 1
Or,
1 . 1
— < CLh,Ch > = —@ < CA*Ah,Ch > — < CBh,Ch >
T
1 1 1
0] < CAh,CAR > +o < [B,C] h,Ch > —- < BCh,Ch > (CA= AC)
-
1 1
= ———||CAR|* = = < 00 Ah,Ch > (B* = —B)
7(€) €
Ensuite,

i < C(0xYv),Ch > = i < Opetpv, Ch >

On dérive maintenant < Ah, Ch > selon t.

d 1
o < Ah,Ch > = — < Ch,ALh > +g < A(0,Yv),Ch >

1
— < Ah,CLh > +g < C(0x4v), Ah >

Puisque

1 1
—@(< AA*Ah,Ch >+ < Ah,CA*Ah >) = —@(< Ah,Ch > 42 < A’h, ACh >)
T T

et que

1 1
—g(< ABh,Ch > + < Ah,CBh >) = —g(|y(1h|\2+ < Ah, Opyho Ah >)

on obtient que

— < Ch,ALh > — < Ah,CLh > = —(16)(<Ah,(]h>+2<A2h,ACh>)
T

1
= (IChIP+ < Ah, Ozupoc Al >)

Ensuite,

i(< A(09v),Ch > + < C(0,9v), Ah >) = i(< Op10, Ch > + < Opptpv, Ah >)

On conclut en rassemblant les différentes expressions.
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4.3 Etude de l’état d’équilibre

Dans cette partie, on étudie I'existence de 1’état d’équilibre satisfaisant , ainsi que ses
propriétés de régularité. On va également déduire des estimations L sur la densité stationnaire.

Proposition 2. Supposons que la densité ionique n; soit dans L>°(T). Alors 'EDP non-linéaire
admet une unique solution ¢o, dans {u € H*(T) | Jrudz = 0}.
De plus, pour tout 1 < p < 00, on a que

1psollzeer < lInilloen (7)

Enfin, le principe du mazimum implique les inégalités suivantes :

inf 1, < inf poo < sl < ]l (5)
1 1 1 1

T < inf — < H < - (9)

Il =% b = |l = infrm,

Remarque La solution ¢, est a moyenne nulle dans I’énoncé au dessus. En réalité, ce po-
tentiel stationnaire n’est défini qu’a une constante pres. La condition de moyenne nulle permet
d’obtenir I'unicité. En effet, supposons que ¢, soit une solution et soit » € R. Alors

—(528,,330(7" + doo(x)) = —5239”(/500@)
n;(x) T R
= nl(x) mn Poo(z)+7

— V€
f_l_ 64500+de

et donc ¢ + r est aussi solution.
Démonstration. Définissons la fonction
J:{ue HY(T) | [fudz =0} R
o) > 522 [ 0x0%dx — [+ niédr +mIn (fT e¢)

Cette fonction est coercive. Par I'inégalité de Poincaré sur le tore, on peut équiper 1'espace
de définition de la norme ||0,ul/z2(my équivalente a la norme ||ul[g1¢r). J est constituée de 3
termes. Par les inégalités de Cauchy-Schwartz et Poincaré pour le second terme et l'inégalité
de Jensen pour le troisiéme terme,

52
5(6) = T0:0l32m = collnil 20201+ mn (exp ( [ ar) )

Mais comme ¢ est de moyenne nulle, on a que

62
T(9) 2 F10:0z2r) = colinill 2106l 2

ce qui montre la coercivité.
J est strictement convexe. En effet, le second membre est linéaire donc convexe. Le troisieme
terme est convexe en vertu de 'inégalité de Holder :
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mIn </T exp(tor + (1 — t)qbg)dx) < mln ((/T exp(qbl)dx)t (/T exp(¢2)d$)1t>
< tmln (/T exp(gzﬁﬁdx) +m(1—t) (/T exp(d)g)dx)

Le premier terme est strictement convexe. J est strictement convexe et coercive sur un
espace de Banach donc elle admet un unique point de minimum global.

On vérifie que J est Fréchet-différentiable de classe C'. On en déduit que I'unique point
critique de J correspond au point de minimum global.

Puisque la différentielle de J en ¢ appliquée a h est

[y e®hdx
[ etdx

on trouve que le point de minimum global, noté a partir de maintenant ¢, est tel que pour
toute h € H'(T) a moyenne nulle,

dyJ.h = 8 / 0,0, hdx — / nihdz +m
T T

J7 e®><hdx
[ eP~dx

Remarquons que ’égalité est vérifiée aussi pour les fonctions constantes, donc elle est vraie
pour toute h € H'(T), et en particulier pour toute h € C*(T).

e? € L*(T), on en déduit que ¢, € H?(T). En faisant une intégration

5 / 06Oy hdz — / nshdz —m
T T

Comme n; —
b fretdx

par partie et en utilisant la densité de C*°(T) dans L?(T), on en déduit que ¢, vérifie "EDP
suivante :

m._ e
ey 2] oo
J1 eP~dx

Réciproquement si une fonction de H?(T) vérifie I'équation presque partout alors c’est
I"unique point de minimum global ¢.,. On a donc montré I'existence et 'unicité d’une solution.

- Jye?>=dx
Dans la suite, on pose ¢oe = ¢oo — In | 27— |. Elle vérifie I’équation
m
~ n; ~
_axx¢00 = 572 - e¢w

dont la formulation faible est : Vh € H'(T),

| Oednctuhde = [ Sindw— [ e~hds
T T 62 T
Soit G une fonction de C'(R), strictement croissante sur ]0,+oo| et nulle sur | — oo, 0].

oo _ II7illoo

Posons h = G <e¢°° -5

7 2 e [ e Ml _ ni nills doo _ IMilloo
Jo.dxpec (6 52 )d‘” /T<52 2 )9\ 2 )"

oo IIMill S )] B
—/T<e¢—52G6¢—62 dz

Le membre de gauche est positif. Dans le membre de droite, la premiere intégrale est né-
gative. On en déduit alors que la derniére intégrale est négative, mais comme tG(t) > 0 pour
tout t € R,

) dans la derniere équation. Alors
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b Moo 5 il
OS/T<6 5 G | eP>~ — 52 dr <0

~ n
ce qui veut dire que presque partout dans T, e?> < | g!oo Finalement si po(r) =
m
We“”, alors
Tefdx

Poo() < |Inillee presque partout dans le tore

Si maintenant G est une fonction de classe C'(R) négative, strictement croissante sur | —oo, 0]

- inft n;
et nulle sur [0, +oo[, on peut répéter le méme raisonnement. Posons h = G (ed"” — (;2 l)

dans la derniere équation. Alors

7 oo ¥ [ Boo inft n; n; inft n; So inft n;
oo ) [ ).

oo inft n; oo inft n;
—/T<e -5 )G(e -5 )da:

Le membre de gauche est positif. Dans le membre de droite, la premiere intégrale est né-
gative. On en déduit alors que la derniere intégrale est négative, mais comme tG(t) > 0 pour

tout t € R,
0 < Foo inftn; G [ ot inftn; de <0
g\ el ) des

inftn;

52

ce qui veut dire que presque partout dans T, edo > . Finalement

irTlf n; < Poo(x) < ||n4]|ee Presque partout dans le tore

ce qui implique les inégalités dans L>(T).

Pour prouver les estimations dans les autres espaces L?, reprenons 1’équation vérifiée par
hoo. Soit p > 1. On la multiplie par e® %= puis on intégre et on réalise une intégration par
partie pour obtenir :

/ep¢°°da: < / PP dy 4 (p — 1) /(&0&00)26(1’_1)%"6190 < T =1 gy
T T T T 62
En utilisant I'inégalité de Holder, on trouve alors que

5 1 I ip—
le®11Zoem) < szlnillomlle™ )

ce qui donne la borne LP, 1 < p < oo.

4.4 Hypocoercivité H'

Une preuve d’hypocoercivité a déja été fourni par Herda et Rodrigues dans [4], ou la preuve
est faite en deux temps. Dans un premier temps, les termes dépendant de 1 sont ignorés pour
considérer ’équation linéaire 0;h + Lh = 0. L’hypocoercivité est démontrée pour ce systéeme
linéaire. Dans un second temps, une preuve par point fixe permet de montrer 'hypocoercivité
du systéme non-linéaire entier. La preuve donnée dans [4] permet d’obtenir des constantes
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explicites selon 7(¢) et ¢ et permet d’étudier des équations limites. La difficulté rencontrée
est qu’il faut supposer ¢ assez grande pour conclure. Ceci présente un probleme car § est un
parametre plutot voué a étre petit dans un plasma en vertu de la quasi-neutralité.

Nous allons refaire une partie de la preuve pour montrer d’ou vient la contrainte sur . Nous
n’essayerons pas d’obtenir des constantes explicites. Le systéme sur lequel nous allons travailler
est le suivant :

1
—0%0,,0 — [rhfoodv Yt >0
h(t,., ) € Hyg V>0
Ce systeme est linéaire.

Une propriété importante de I’espace fonctionnel Hy auquel la perturbation h appartient est
I'existence de 'inégalité de Poincaré suivante. Elle nous permettra de prouver 'hypocoercivité.

Proposition 3. (voir ([4]) Il existe une constante K > 0 telle que pour toute fonction h € Hy,
17 < Klle? [ oo [le™ | ooy (ICRI* + | AR[)
On notera Ky = K||e?>|| ool || (1) la constante de Poincaré dans H,.

Définissons ’entropie par

E(h) = ar(|h]* + 8*|0:% || L2(ry) + e (|| AR|* + 62(|0x || L2(r)) + asel|Ch|* + aue < Ah,Ch >

ol ap, g, a3, iy > 0 sont a fixer. La proposition suivante donne un encadrement de I’entropie

par la norme [|h[[zn = [[A]|* + [|AR[* +[|Ch]]*.

Proposition 4. Si il existe n > 0 tel que ay — % >0 et ag— % > 0 alors il existe m, M > 0
U]

tels que

m(|[hllz + 1029 72(r) < E(h) < M(|IR][F + 110:0l[72r))

Démonstration. La preuve repose sur l'utilisation de l'inégalité de Young avec n > 0 :

05467’]

lase < Ah,Ch > | < O;joAW lCh|?

On obtient 'encadrement suivant :

« (8%
ullff + (s = 54 ) el ant? + (a2 = 7 lCHP + on + 001, < 0

et

£(h) < a1||h||2+<a2+ >5||Ah||2 (3—1—>€||Ch||2+62(a1+ozgs)||8x¢||L2

2
Oy Q47
Sous I’hypothese de ’énoncé, on pose alors m = min (al, (g — 2—)6, (g — 2)5) et M =
n
max (ozl, (g + %) (a3 + %) ) On obtient le résultat. O
n

34



On se sert maintenant des estimations d’énergie et de I’entropie £ pour montrer le résultat
de convergence vers I'état stationnaire suivant :

Proposition 5. Sous l'hypothése suivante sur la longueur de Debye § :

i< [inftn; 1
62 K cllnill

(K étant fourni par la proposition@ il eziste des constantes C)k > 0 dépendant de ¢, 7(¢)
telles que si h est solution de (@ alors

12l < Clihollzre™

Démonstration. On calcule en utilisant les estimations d’énergie 1} :

dg(h) i 2041 2 20428 2 2
& T G )IIA I° - e )(HAhH + | A%h[]*) — 202 < Ch, Ah >
2
_ ‘2‘3§||A0h||2 — 203 < OppooAh, Ch, > +203 < Dygtbv, Ch >
Qe

= ——(< Ah,Ch > +2 < A*h, ACh >) — ay(||Ch|*+ < Ah, 0o Ah >)
-
+ (< 0,0, Ch > + < Opptpv, Ah >)

Dans cette expression, 5 produits scalaires n’ont pas de signe. On majore en prenant la
valeur absolue :

20i3€

7(e)

dE(h 2 2 2

+ (2042 + ;kéj) + 2043‘|axx¢oo|’oo> ’ < Ch>Ah > | - CY4”C(hH2

| < A%h, ACh > | + 2as| < Opuhv, Ch > | + | < 0,00, Ch > | + ay| < Oputhv, Ah > |

SIIAIP = S 1ACK|?

2(148
7(e)

Puis en utilisant I'inégalité de Young, avec n, p, v,w,0 > 0 :

+

7(e)

1 2 0
<2a2 +5 ) + 2043||(3qu500||00) [<ChAh>| < o <20z2 + o 2a3||am¢oo||m> 4RI+ S ICh|?
age (|| A%h|]?

2@48

7(e) 7(e)
2
23] < Oy, Ch > | < < el —I—VHChH2>

2
”a”w“” +w\|AhH2)

@U 2

Il faut majorer les différentes normes faisant intervenir .
En utilisant directement 1’équation de Poisson,

| < A%h, ACh >| < ( n[|AChH2>

ay| < Oppthv, Ah > | < %
ay
2

] < 0pth,Ch>| <
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[0mt0l? = [ (Grt)?prcd

< HPOOHOO”amw”%?(T)
1 2

< —

< Sl [( [ hfwdv) do
1 2 2

< ﬁ”poo”oo/_r/Rh paoM(v)dvdx (Jensen en v)
1

< §||Poo|!§o||h||2

Prenons ¢, la constante de Poincaré sur le tore, c’est-a-dire la constante minimale telle que
pour tout u € H'(T) de moyenne nulle,

[l 2ery < epll O] 2ry

En considérant la formulation variationnelle de I’équation de Poisson pour le potentiel, en
la testant sur 1, et en utilisant les inégalités de Cauchy-Schwarz et de Poincaré on obtient que

52
S0l < POy < Pl 2l lezcry < [1VPsclloclIRepllOatillz2ry
p

d’ou

N

[Pll2m < 52 cpllv/Pocllool Il
102l L2y < gcpllx/pooHoloH

On a donc la majoration

d&(h ) 2 1 2
deth) (amamooum L R (za2 4 2a3uam¢oouoo> “4“) | AR?

dt T(e) 7(e) 26 7(e)

7
+ (—a4 + 3 + azv + ';044) |Ch|)*

(0

* (ﬁl”ﬂw”z g Pl + g5 p||\/_poo||2>||hll2
( e 20@5) HAQfLHz
T(e)n  T(e)

(-2 e

On veut que les deux derniers termes soient négatifs. Ainsi, on obtient les conditions :




On prendra ’égalité pour ces deux conditions, donc

oun

2
Qg = 277

On veut que les deux premiers termes soient strictement négatifs. Remarquons que «y
n’apparait que dans le premier terme, et donc que I'on pourra toujours choisir a; assez grand
pour que ce terme soit strictement négatif. On se concentre alors sur le deuxiéme terme. Il
existe ay > 0 tel que le deuxiéme terme soit négatif si et seulement si :

Z/ T
-1+ 5 + 5 <0

Cette condition est vérifiée pour des parametres p, v, n suffisamment petits.

On choisit donc ay respectant cette derniere condition.

Enfin, on souhaite controler le troisieme terme par les deux premiers, via 'inégalité de
Poincaré dans H, (voir proposition . On peut supposer que les deux premiers termes ont la
méme valeur —f < 0 et le troisieme vaut v > 0. Si £ > 1 on va avoir :

dE(h)

< 1— =) (J|AR|* + ||Ch h||? h||?
< =81 ) UARIP + IOHP) = gl + 5l
Ainsi, on va devoir montrer que vy — e £ <0, avec k> 1.
Poo
Cette derniere condition sur les parametres est explicitement :
(1 By 0] o O 4 Sl 4 ol < 0
kK. 2 2 262 252 54 %

Encore une fois, cette inégalité a une solution ay > 0 si et seulement si

1 vn u)
1 _
k:K%o( ot

lpoollze +

sl + gl + 3 medlvaml <0

Supposons maintenant que k > 1 soit fixé. On peut choisir , v assez petit, n = v? et w assez
grands tels que quelque soit ¢’ > 0,

1V77

KKy, 2 252 lpollae + 552, Ioeolloe < &
Donc pour tout & > 0,
1 H oell%

Finalement on obtient que la condition est

ft y

- . 2
WK, | 2hK,. 54%””‘”” <0

Le membre de gauche est un polynéme de degré 2 en u. Cette inéquation a une solution en
1 si et seulement si le discriminant est strictement positif, ¢’est-a-dire si
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1 1 )
m > g”\/PooHoo

En utilisant les inégalités trouvées dans , on remarque que cette inégalité est vraie des
que

1 < infT n; 1
02 kK cpl|nilloo
Ainsi, la longueur de Debye doit étre choisie assez grande en fonction de la densité ionique

donnée.
Enfin, en posant C' > 0 une constante adéquate et en utilisant la proposition (4)) :

dil(th) < - (1 — ;) B(IIAR]? + [[ChI*) - <+M1%06 - 7) iy
< 5 (1= ) B4R+ 1CnR) = g (1= 2) Bl - (+M§%@ﬁ - v) Il
< =5 (1= 1) anp o) - i (1 1) Bl
- (=) e
< —C(IIP + AR + | CHIP + 0,0 xcr)
< —]CWE(h)

Apres utilisation du lemme de Gronwall et la proposition ({4]) :

E(h) < E(ho)e 31" < M||ho||%e™ 1!
0

On remarque que le terme problématique dans la preuve est < 0,9, Ch >.

Nos majorations ont peut-étre été trop grossicres. On va prouver ’hypocercivité L? en
utilisant une décomposition dans la base de Hermite. On aura une lecture plus complete de
chaque termes, on pourra effectuer des majorations plus précises et de plus, la projection du
systeme sur la base de Hermite pourrait étre utilisée dans le cadre d’un schéma numérique.

4.5 Hypocoercivité L?

On va essayer de prouver I’hypocoercivité pour la norme de Hy. Pour ce faire, on va projeter
I’équation ) sur la base des polynomes de Hermite. Remarquons que [z h* M (v)dv < oo pour
presque tout ¢ > 0 et x € T. Ainsi, une base hilbertienne adaptée est la base des polynémes de
Hermite normalisés (H},)gen, qui est une base orthonormale de L?(R, M (v)dv) muni du produit
scalaire usuel (voir annexe (9))).

En utilisant ces deux relations, on montre que la base de Hermite diagonalise 1'opérateur
A*A

A*AH, = (v0y — Oyy) Hy
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Les coefficients de h dans cette base sont les fonctions de temps et d’espace Cj(t, ), mais
on préférera travailler avec les coefficients Dy (t,z) = Ck(t, )4/ poo(x), d’out

h(t,z,v) = kféo %ﬁk(v)

Les coefficients Dy, k € N vérifient le systeme suivant :

1 k 1 1
d,Dy, + g(\/k: +1ADy — VEA* D) = —@Dk + 1k:1gax¢\ /Do + g\/Eaka_l
5anxw = DO vV Poo
(10)
A, A* sont deux opérateurs linéaires définis sur H'(T), adjoints dans L*(T) :
Ex
Au = Oyu— gu
Au = —0,u— ?’ou
La version linéarisée du systeme est la suivante :
1 . k 1
0Dk + Z(VE+TADgy = VEA Dya) = Dt Lie1Z0uth /P (1)
52axa:w = DO V Poo

4.5.1 Résultats préliminaires

Les estimations d’énergies obtenues précédemment ne changent pas. On écrit I'expression
des différentes normes en utilisant la base de Hermite :

R[> = > I1DellZ2m)
k=0

IAR[> = > kIl Dyll72m
P

ICh* = > A" Dilliar)

k=0

<ACh> = =Y VEHT [ Dpt A Deda
k=0 T

On peut établir la conservation de la masse pour le systeme. En multipliant la premiere
équation de [10| par /poo, puis en intégrant sur le tore, on obtient que

d 1
a/TDON/,OOde%—E/TADh/pOde—O

On passe a 'adjoint dans la derniere intégrale, puis on remarque que A*,/ps = 0. Ainsi,
pour tout ¢ > 0,

/TDO(t,x) Poo(z)dz =0

On aura besoin de l'inégalité de Poincaré suivante pour établir I'existence et I'unicité de
I’équation elliptique

39



Proposition 6. [l existe une constante Cy_ > 0 dépendant de [’état stationnaire telle que pour
tout uw € HY(T) respectant la condition [t u\/pedzr =0,
[ull 2y < Co A ullL2(r)

Démonstration. On raisonne par I’absurde : supposons qu’une telle constante n’existe pas. Alors
il existe une suite (u,),en de fonction de H(T) telle que

. 1
[ A U2y < 5||Un||L2(T)

Sans perte de généralité, on peut supposer que ||u,||z2m) = 1. Par inégalité triangulaire, on
obtient que

1 e
n 2

Donc la suite (u,)nen est bornée dans H'(T). Le théoréme de Rellich (voir [3]) énonce
alors qu’il existe une sous-suite (uy,, Jken qui converge vers un élément v € L*(T). Comme

HaxunHLQ(T) <

EOO oo . o1 - s o, 2 . .
Ay, = A%y, — U + — W on obtient en utilisant 1'inégalité triangulaire
1 Bl B
PR e = v llz2ery 2 105y, + = [lz2m)

Es Ex
Ceci montre que Jim Dy, = 5 u dans L?(T). Ainsi, u € HY(T) et O,u = - U Cette
—00
¢oo($))
5 )

Puisque pour tout & € N, < tuy,, /P >r2(my= 0, un passage a la limite donne que <

U, /P >r2m= 0= C|lpocl|L1(m).-
Comme || poo | ri(m) > 0, ceci implique que C' = 0 puis u = 0, mais constitue une contradiction
avec le fait que |lu||p2(ry = klim |tn, || 21y = 1.
—00

derniere équation s’integre et donne que u(z) = C exp(

]

Pour prouver I’hypocoercivité, on va avoir besoin d’étudier spécifiquement une EDP ellip-
tique. L’entropie qui sera utilisée contiendra un terme faisant apparaitre la solution de cette
équation pour une donnée bien choisie.

Proposition 7. Pour tout g € L*(T) telle que [; g /pedx = 0, le probléme auz limites suivant

AA*u = g
Jruy/pscdr = 0

admet une unique solution u € H?*(T).

Démonstration. Soit v un élément d’un espace fonctionnel V. On multiplie 'EDP par v puis
on integre par partie pour obtenir

/A*uA*vdx :/gvdx
T T

On pose V = {v € L*(T)| < v, \/ps >= 0}. La formulation variationnelle demande de trou-
ver u € V telle que pour tout v € V, la derniere égalité soit vraie. On va utiliser le théoreme de
Lax-Milgram. Le membre de gauche est une forme bilinéaire. Sa coercivité découle de I'inégalité
de Poincaré sur V. En effet, en utilisant cette derniere ainsi que I'inégalité triangulaire,
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2 | Eoo |2, . 12
[0zullf2m <2(1+ TR [ A" w72

o]

d’ou

1 *
211 2700
( TAC,. >

La continuité se montre comme il suit :

min [ Cy_,

| [ A A ] < A A2

| Eco |l
< max (1, 020 =) Nullgr ey ol gy

La continuité du membre de droite est évidente. Il existe donc une unique solution u € V' a
la formulation variationnelle par le théoreme de Lax-Milgram. En testant la formulation faible
sur ¢ € C*(T), puis en utilisant la continuité de la forme linéaire et I'inégalité triangulaire, on
obtient que

| B oo
2

‘ /T A ud,pdx

* EOO
< ”g“L?(T)H(bHLQ(T)‘F‘/I_A u—" gz

< lgllz2emyll@ll L2 )+ A ul| 2my |0 L2(T)

ce qui montre que A*u € H?*(T), et que u € H*(T). Ainsi, en considérant la formulation
faible appliquée a ¢ € C*°(T), on peut passer a 'adjoint et déduire que

/T(.A.A*u —g)pdr =0

On en déduit par densité dans L*(T) que AA*u = g presque partout dans le tore. O

Maintenant que 1'équation [7] admet une unique solution, on va avoir besoin de diverses
estimations sur la solution. C’est I'objet de la proposition suivante.

Proposition 8. Soit g € L3(T) telle que 7 gy/pocdx = 0. Soit u la solution du probléme auzx
limites (4 associée. Alors :

— ||A*;L||L2(T) < Collgllemy
— AUl 2y < (14 [ EoollooCo) gl L2y 5

. 1
— Si de plus g = —Dy, alors ||OpA ul|r2(r) < EHDlHLQ(T) .

Démonstration. En testant la formulation faible du probleme aux limites sur la solution u puis
en utilisant 'inégalité de Poincaré pour A*, on obtient :

A ullZ2 ) < Nlgllzeenllullzzm < Conllgllzeem A w2

ce qui donne la premiere inégalité.
Ensuite, on écrit que

[AZul| = | = AA 4+ (A + A A"l r2qr)
|| — AA*U — EooA*uHL?(T)
< llgllzem + [[EsollocCollgllz2em)
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ou on a utilisé I'inégalité triangulaire et la premiere inégalité de 1’énoncé.
Pour la troisieme inégalité, on dérive en temps 'EDP du probleme aux limites [7| puis on
utilise la premiére ligne du systéme [I0] pour obtenir que

1
8tAA*u = EADI

Ceci donne que

||8tA*u||%2(T) = < atu, @AA*U >

1
= — <o, AD; >
g

1
= g < atA*U, D1 >
1 *
< EH&A ul| 2y || D1l z2(my

ce qui termine la preuve.

4.5.2 Etude du probleme linéarisé

L’objectif de cette section est de montrer I’hypocoercivité du systéme linéarisé en norme
L?. Premiérement, on doit définir une entropie adaptée au probléme. On aimerait montrer la
décroissance exponentielle de la quantité

1A]* + 10281172

Or, la premiere estimation d’énergie obtenue a (1| et Iécriture de ||Ah|| dans la base de
Hermite montre que la dérivée en temps donne bien une dissipation en tout les coefficients Dy,
sauf pour Dy qui en est absent. On doit donc ajouter un terme dont la dérivée en temps donne
—||Do||%2(T) . On procede comme dans larticle de Filbet et Blaustein ([1]). L’entropie que ’on
considere est définie par

1 T(e
g(h) = 0415 (Hh||2 + 52||8x1/)“%2(-|-)) + 042(6) < ADl,u >L2(T) (12)

ou u est la solution du probléme aux limites [7] avec donnée —Dy et oy, ag > 0.
La premiere chose a établir est un encadrement de I’entropie par la norme d’intérét.
. \ 7(¢) o3 S
Proposition 9. Sous les hypothéses aa——=Cyp < > et 0 < 1, il existe deur constantes
€
m, M > 0 telles que

m([a* +110:9172(r)) < E(h) < MR + 10201172 r))

Les constantes sont explicites :

5 T(e
m = min <a12, 21 042()0(;500)
M= Y40, 00
= _— o ———
2 g o
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Démonstration. Il suffit de remarquer que

‘ < ADl,u >L2(T) ‘ = ’ < Dl,A*U >L2(T) |

Cooo | Dill2emy | Doll 2 (T
Coo ||hII?

Le résultat est alors immédiat.
O]

On peut maintenant passer a la preuve d’hypocoercivité L? pour le systéme de Vlasov-
Poisson-Fokker-Planck. Contrairement au cas H', on n’a pas besoin de I'hypothése que & soit
assez grande. Ceci est rassurant d’un point de vue physique car § est en réalité tres petite.

Proposition 10. Sous hypothése que hy € L*(fsdxdv), il existe des constantes C,k > 0
telles que si h est une solution de (@ alors

1Rl + 1050172y < CURI + 1008 leollZ2(r))e ™

Démonstration. On commence par dériver en temps notre entropie £. Le premier terme de ’en-
tropie se dérive en utilisant la premiére équation de[I] Le second terme se dérive en appliquant
A a la deuxieme équation du systeme [10], ce qui donne

1 1 1
0:AD: = — (V2A’Dy — AA'Dy) — AP+ S AR

Ainsi, la dérivée de I’entropie est

d 1 - 2 T(E) 2 *
ag(h) = _@;kHDkHL%T) - 042572 < V2A°Dy — AA* Dy, u >

(6%
— 2 < ADy,u>
g

T

+ ozgg) < A(03Y/Poo)s 1 >
7(¢)

+ 2 - - <AD1,8¢U>

En utilisant la définition de u et en passant a ’adjoint dans la premiere ligne, on obtient
alors que

d o & 2 7(e) 2
%S(h) = _@;M'DkHLQ(T)_052?HD0||L2(T)

— &27—2? < \/§A2D2,U, >
- * < ADy,u >
€

T

+ azg) < A(0p\/poo), >
7(g)

+ 012? < ADl,atu >
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Les termes strictement négatifs sont regroupés sur la premiere ligne. On constate que le
choix de u a effectivement permis de récupérer de la dissipation en Dy. On doit maintenant
majorer les termes non-signés, et les compenser par les termes de la premiere ligne.

En utilisant les inégalités de Cauchy-Schwartz, de Young puis les majorations de la propo-
sition [ on obtient que

’—agﬂ < \/§A2D2,U> | <

7(¢) L B D227 Dol
¢ A1+ 1Bl (422 + Dol

&2
V2 e

o asCy ||D2||%2(T) 2
|? <ADj,u>| < 5 ( 7 + 0| Doll72 (T
T(E QoTIE
’ag(s) < AD;,0u>| < 2€2< >||D1H%2(T)

avec 1,0 > 0. Il reste alors un dernier terme a majorer qui dépend du champ électrique.
g

NS

Remarquons d’abord que pour tout g € HY(T), 0,9 = \/po A ( . On va montrer que le

dernier terme est dissipatif, ce qui nous permet de conclure.

042:%) < A(0pY\/poo)su > = 0427—6(? < 0¥\ Poo, A'u >
) <o, (omA') > (1PP)

= _OZQTE(? <Y,/ Poc AA U >

T(e
= 042;) <Y, y/PocDo >
5, 7(e) , . .
= 0°ay—3~ <,0.,7 > (équation de Poisson)
5

T\E
= %0, 0,3, (PP)
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Donc en rassemblant toutes les estimations,

d€ o ay T(€) asCl 0427'
— < | ——+ ==L (14| Ex||scCls. ) + = E k|| D
dt = < 7(8) \/5 6277( || ” ¢oo> 2:0 o2 || k||L2

b o (=T ST Bl Contn + B )||Do||L2<T

- 520428(2)||3x¢|’%2(n

Remarquons que a; n’est présent que dans le premier terme et est précédé du signe moins.

On peut toujours choisir a; assez grand pour rendre le premier terme négatif. Passons au second

C
terme. On peut rendre %M(l + | EoollooCpo )11 + ke 2

V2 &2

6,n > 0 arbitrairement petits. Le second terme est donc négatif.
Enfin, le dernier terme est négatif : c’est la dissipation selon la norme du potentiel.
Il existe alors 3, v,w > 0 tels que

0 arbitrairement petit, en rendant

d& Kt
- < —BZkHDkH%Q(T)_'}/HDOH%P(T)_wHa’er%Q(T)

< —min(B3,7) Y [1Dllz2y — w022y
k=0

Posant C' > 0 une constante appropriée, on en déduit que

d&
=< —CUIRIP + 101 r)
C
<
< —TE)

Enfin en utilisant le lemme de Gronwall et I’encadrement de I’entropie, on obtient

_C
1Rl + 1000 2y < E(R) < (Hholl2+ 1053 (t = 0)|Z2ry Je™ 7"
O

Cette fois, la valeur de la longueur de Debye ne nous a pas posé de souci. Il y a bien retour
a I’équilibre en norme L? pour le systéme de Vlasov-Poisson-Fokker-Planck linéarisé.

Pour établir ’hypocoercivité du systeme entier ((10)), il faudrait procéder par exemple par
point fixe.

4.6 Schéma de volumes finis et expérimentations

On utilise la fagon de procéder de Filbet et Blaustein pour définir un schéma de volumes
finis a partir du systéme . On réutilise exactement les mémes notations que pour les schémas
précédents.

L
On choisit N, € N. Soit un intervalle [0, L], et dz = —. Pour simplifier les notations, on

considere un maillage uniforme. On définit Tjp1 = jdx pour j =0,...,N,, et z; = (j — §)da:

pour j = 1,..., N;. On définit les cellules K; =]z, 1, T L[, pour j = 1,..., N,. Soit dt > 0 le
pas de temps. La discrétisation en temps se fera aux instants t, = ndt, Vn € N.
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On approche Dy(t,, ;) par Dy ;, qui est une approximation de type volumes finis utilisant
la formule du point milieu :

" 1
Dy, = . /Kj Dy (tn, x)dx = Dy(t,, ;)
De méme, on approche ¢(t,, z;) par ¥} avec la méthode des points milieux :

1

Vi = /Kj Y(t, z)dr ~ Dy(tn, ;)

Pour résoudre ’équation de Poisson, on utilise le schéma de volumes finis classique avec
conditions de Dirichlet. On peut ensuite éventuellement soustraire sa moyenne a la solution ob-
tenue pour obtenir une solution de moyenne nulle. Pour obtenir ce schéma, on integre I’équation
sur une cellule K :

1
—(aﬂ/f(tmxjﬂﬂ) - 8x¢(tn7$j—1/2)) = _ﬁ/ Do(tn, )/ poo()dx
puis on utilise une approximation de la dérivée pour 1 < j7 < Nx —1
i — Y
Oty i1 )2) = ———L T

Pour les cas j = 0 et j = N,, on pose ¢y = ¥y, = 0 pour respecter la condition de
Dirichlet homogene et les dérivées deviennent

3z¢(tn,$1/2) d¢/2 xw(tnaxNx-H/Q) ;;Z};VQT

Maintenant, on choisit de faire un schéma d’Euler implicite en temps pour 1’équation de
Vlasov-Fokker-Planck, avec une discrétisation spatiale similaire a celle de Filbet et Blaustein.
La seule différence est le choix d’une différence centrée pour approcher 0,1 dans cette équation.
Disposant de Dy ; pour tout k € N,1 < j < N, et n fix¢, on calculera les ¢} et DZ;rl pour tout
ke N,1 <j <N, en résolvant le systeme suivant, Vk € N;1 < 53 < N, :

-2 4 -1 = 0.1/ PoolZ1
L de Poo (1)
, dv - dr 02
T~ 2Y7 _ dﬁ n -
. = 62D pw(mj)
VR, BV du
. = T et — D fo'e)
Dl _ pn 1 dx * dx o Ok; )
(VR LADE); — VRATDED),) = “r P
Ly — by
+ 11— % Poo (xj)
erl 1 yn+1
+ \/_ 4 dej Dk+1,j

Pour la discrétisation en espace, on doit discrétiser les opérateurs adjoints. Blaustein et Filbet
choisissent les discrétisations suivantes : si (u;)1<j<n, est une suite finie de réels, on la prolonge
par ug = uy, et un,+1 = u1, et les opérateurs discrets A et A* sont définis par

Ujpr —uj—1 By
(Au)j = == ==
* u.+1 —_ u‘_l Ew’,
(Aw)j = - =
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Les trois premieres équations du systeme donnent une matrice constante au cours des itéra-
tions, mais la derniere équation donne une matrice dont les coefficients dépendent du potentiel
et n’est donc pas constante.

Ce schéma préserve automatiquement 1’état stationnaire qui est la fonction nulle. En effet,
puisque tous nos opérateurs sont linéaires, si la donnée initiale est nulle alors la solution reste
nulle au cours du temps.

Il reste un degré de liberté a fixer, qui est le choix de E ;. Pour ce schéma, ce choix ne
modifie pas le caractere well-balanced mais la conservation de la masse. Le lemme suivant donne
un choix possible de discrétisation pour préserver la masse.

Lemme 3. Si pour tout 1 < j < N,,

E. \/Poo (2j41) — \/p(x)-1)

dz\/poc(z;)

alors pour tout n € N,

Zd:ng;Fl\/poo ;) deD A/ Poo(5)
=0

et le schéma est conservatif.

Démonstration. Prenons I’équation d’évolution sur le moment Dy issue de [4.6, On la multiplie
par \/p(x;) pour tout 1 < j < N, puis on somme sur j, ce qui donne :

Nz
1 Dg—ji_l\/poo ;) Dgg\/poo ;) _*Z DnH \/Poo(%)

On peut alors effectuer une intégration par partie dlscrete dans le membre de droite pour
obtenir que

Nz

On s’apercoit que (.A*w /Poo); s’annule si B, ; est donne par I’énoncé. Ceci entraine alors la
conservation de la masse.

]

Nous ne prouvons pas plus de propriétés sur ce schéma par manque de temps. Une premiere
propriété serait le caractere hypocoercif du schéma linéarisé, c’est-a-dire dans lequel on enleve le
terme quadratique. Nous allons réaliser quelques simulations et comparer aux résultats obtenus
pour le schéma naif obtenu section 3.

4.7 Expérimentations

Pour nos simulations, on va étudier 1’évolution de différentes normes :

1f = fooll 2=t anan) = 10N = | D22 N DkllF2my
k=0

If = pMHL?(f;ldxdv) = Z HD’fH%Q(T)
k=1
lp = ool 2(s2 dwavy = Dol L2y
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ainsi que la norme ||0,%||r2(r). Notre cas test est le suivant. On choisit le potentiel station-
naire ¢, comme

2 4
Goo(x) = 0.1 cos (T) + 0.9 cos (T)

On va prendre une donnée initiale de la forme

fo(z,v) = (1 +7ho(z)) foo(z, v)

Ainsi la perturbation ne dépend que de x. Un calcul de la masse donne que

B _ J1 ho() exp(oo (2))d
= / TxR fo(l’, U)dxdv - (1 e : f'r exp(¢m(I>>dx >
Cette situation n’est possible que si [7 ho(z) exp(doo(x))dz = 0. On choisit alors
1
o) = P00 = e bl

La masse m a alors une valeur arbitraire, qu’on peut fixer a 1. Grace a un logiciel de calcul
formel, on peut alors calculer la constante ¢ :

m 1

" rep(G(@)de  frexp(u(@)de

Initialement, le seul moment non nul est Dy et vaut

& ~ 0.82151486106

1
 Jrexp(po(x))d

Do(0,2) = 7 <exp<—¢oo<x>> ) (@)

471 Casd=1

On fixe la longueur de Debye § égale a 1, et v = 0.5. Le parametre € est fixé a 1 et 7(g) = 52,
On tronque la série de Hermite au rang 30 et on prend un pas N, = 100 et dt = 0.01.

Les courbes donnant 1’évolution des différentes normes en échelle logarithmique pour les
ordonnées sont données figure @ On voit que toutes les courbes sont approximativement des
droites, ce qui montre leur décroissance a vitesse exponentielle. On vérifie sur le dernier graphe
que l'erreur ponctuelle est de 1'ordre de 1077.

On peut réitérer I'expérience en abaissant le nombre de points N, ou en abaissant le
rang de troncature K @ On constate que ceci n’a pas d’impact sur le retour a 1'équilibre.

4.7.2 Cas §=0.3

On prend cette fois une longueur de Debye ¢ valant 0.3 et on réalise la méme expérience. On
prend K = 30, N, = 100. On constate que sur la figure[10] le retour vers 1’équilibre se réalise. A
partir du temps ¢ = 55 environs, les courbes d’erreurs s’infléchissent et deviennent horizontales.
Nous n’avons pas trouvé d’erreur dans le code expliquant ce comportement. Il est possible que
le seuil d’arrét dans la méthode itérative utilisée pour la résolution des systemes linéaires ne
soit pas suffisante. On vérifie que l'erreur ponctuelle est de l'ordre de 1075, et il semble donc
peut probable qu’'une erreur dans I'expression de la donnée initiale en soit la cause.

On peut diminuer K pour le passer a 10. On obtient alors la figure [I1} On voit que dans un
premier temps il semble y avoir retour vers 1’équilibre, mais dans un second temps le schéma
diverge a vitesse exponentielle. L’erreur ponctuelle atteint des valeurs de 1’ordre de 10.

Dans une troisieme configuration, on laisse K = 30 mais on prend N, = 50. On obtient alors
la figure [I2] On voit que dans un premier temps il semble y avoir retour vers I’équilibre, mais
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dans un second temps le schéma diverge a vitesse exponentielle. L’erreur ponctuelle atteint des
valeurs de l'ordre de 10%.

Pour les longueurs de Debye plus petites que 1, les choix de parametres de troncature K et
de discrétisation spatiale IV, sont trés importants pour observer le retour a 1’équilibre.

Essayons de situer la source de ce probleme. On effectue les simulations pour les mémes
parametres, mais cette fois ci avec la version linéarisée du schéma, c¢’est-a-dire le schéma obtenu
en ignorant le terme bilinéaire. On obtient alors les figures et . On constate sur celles-ci
que le retour a I’équilibre se fait sans probleme. Ainsi, c’est le terme non-linéaire qui impose le
choix de N, et K pour obtenir le retour a 1’équilibre.

4.8 Conclusion

Ce dernier schéma semble aussi bien du point de vue théorique que pratique meilleur que
le schéma naif proposé plus t6t. On sait prouver 'hypocoercivité du systéeme continu linéarisé
et il parait plausible de montrer I’hypocoercivité pour le méme systeme linéarisé discret sans
hypothese sur la longueur de Debye. Il reste néanmoins a traiter le systeme non-linéaire et le
systeme non-linéaire discret. On s’attend sur ce dernier point a trouver une condition sur les
parametres de discrétisation pour observer le caractére hypocoercif. Enfin, ce schéma n’est pas
idéal car il demande de recalculer la matrice d’itération a chaque itération.
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5 Annexe : Bases de Hermite

L’étude de I’hypocoercivité L? ainsi que la construction de méthode numérique la préservant
est facilitée par 'utilisation de bases hilbertiennes adaptées. Dans notre cas, nous utiliserons les
bases des fonctions de Hermite et des polynomes de Hermite. Dans la premiere partie de cette
annexe, des définitions et des rappels sont faits sur ces familles de fonctions. Dans une seconde
partie, on s’intéresse a l'approximation de fonctions par troncature de leur série dans la base
des fonctions de Hermite. On montre que la série de fonctions de Hermite associée aux fonctions
C2°(R) converge normalement et donc ponctuellement. On montre que la positivité d'une fonc-
tion C2°(R) n’est pas préservée par troncature de sa série dans la base des fonctions de Hermite.
Or, la conservation de la positivité d'une densité de particule par une méthode numérique est
une propriété importante. En fait, les méthodes numériques s’appuyant sur la projection dans
cette base hilbertienne donnent des approximations de type L? et pas ponctuelles : ainsi les
schémas numériques approchent les moments

/R f(ta Z, U)@ij(v)M(U)_ldU

pour k inférieur a un parametre de troncature, mais n’approche pas les valeurs de f aux
points du maillage.

5.1 Polyndémes et fonctions de Hermite

On considere les polyndémes d’Hermite "probabilistes" (Hy)ren. Ces polyndémes sont définis
par

k

He(w) = (—1)res L =% vh e N

drv
Ces polynomes sont orthogonaux dans 'espace de Hilbert L?(R, M(v)dv) muni du produit
scalaire

< f.9>= [ F)g0)M(@)do

Ainsi, ils forment une base orthogonale de cet espace de Hilbert. On obtient une base
hilbertienne (Hy)gen de L*(R, M(v)dv) en renormalisant les polyndmes de Hermite,

- H,

Les polynémes de Hermite vérifient les deux relations suivantes :
Hk+1<v) = UHk(U> — ]{?kal(v)
Hk(v) = ka_l(v)

On obtient alors facilement que les polynomes de Hermite renormalisés vérifient les relations
de récurrence : Vk € N,v € R,

vH(v) = Vk+ 1Hp(v) + VEHp_1(v)
Hy(v) = VEkH, 1(v)

en posant FLl =0.
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. Craghrg -

L

autour de l'origine.

Ces fonctions constituent une base hilbertienne de L*(R, M(v)'dv) donc pour tout k,! € N :

/R Ui (V) (V) M~ (w)dv = b,

Enfin, les fonctions de Hermite vérifient les propriétés de récurrence suivante : on pose

Vo1 =0, Y = M(v) et

vhe(v) = Vi (v) + VE+ 1 (v)
Uiv) = Vi (0) = vi(v)

Enfin, l'inégalité de Cramer [7] énonce que

’%Hn(\/ifv) =1

1
ER ()1 2€

et implique que

<
max [ ()] <

¥~
3

29



5.2 Approximation de fonctions par série de Hermite

Commencons par la propriété suivante :

Proposition 11. Soit ¢ € C°(R). Alors la série de fonctions

> < Ok > 1201 (0)dv) Ui(V)
k=0
converge ponctuellement vers ¢.

Démonstration. Les coeflicients de la série se réécrivent comme

o at

’

H
En remarquant que Hp = ? fi, on peut effectuer 3 intégrations par parties successives
pour obtenir que
/// Hk-+3<'U)
< ¢,V > (v)dv dv
0, Yk > i) /¢ (k+ 1)(k + 2)(k + 3) (kD172

En utilisant I'inégalité de Cramer et en écrivant que le support de ¢ est inclus dans un
intervalle [— A, A], on obtient la majoration suivante :

1
k+2)(k+ 3)

En utilisant encore une fois 'inégalité de Cramer, on trouve alors que

n

A 2
< O,V > L2 (M1 ()i < || @ ||oo/ eV 2dv
A Vk+1)(

"

. <o ||oo 20N 1
< 0, > L2(M—1(v)dv o < d
21 = 0z e < =50 RN

< +00

La série converge normalement et elle définit une fonction continue. On sait de plus, par la
théorie des espaces de Hilbert que

¢ = <O UVk >r2Mm-1(0)dv) Yi
)

dans L2(M~1(v)dv) et donc presque partout sur R. L’égalité a lieu partout puisque les deux
membres sont continus.

]

Maintenant que I'on sait que 'on peut écrire une fonction ¢ € C2°(R) comme sa somme de
fonctions Hermite, on peut vouloir 'approcher par la série tronquée. Soit K € N le rang de
troncature. On fait ’approximation suivante :

K

(V) = D < bk >r2(M(w)-1 (0)dv) Yi(V)

k=0
Or,

Z < O,k > L2 (M) (v)dv) Vk(V) / (Z lek v)Hy(z )) ¢(z)dx M(v)
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Fixons v. Supposons que ¢ soit une fonction positive laissée variable. La somme dans I'in-
tégrale est alors une somme finie de polynomes, c’est donc un polynéme nommé Pk,,. De plus,
comme les polynomes de Hermite Hj sont unitaires et de de degré k, c’est un polynome de
degré k et de coefficient dominant Hg (v).

Si K est impair, et que Hg(v) # 0, alors la Pk, est un polynéme de degré impair. Il admet
—oo comme limite en I'infini. Ainsi, il suffit de choisir ¢ dont le support est assez loin de I'ori-
gine pour que l'intégrale soit négative. De plus, on s’apercoit que I'on peut étendre son support
arbitrairement loin en 'infini pour faire tendre cette intégrale vers —oo.

Si K est pair et que Hg(v) < 0, alors par les mémes arguments on peut faire tendre 'in-
tégrale vers —oo en considérant une fonction ¢ dont le support est assez étendu et loin de
I'origine. L’ensemble des v qui correspondent a ce cas est une zone bornée de R.

Enfin, si K est pair mais que Hg(v) > 0, on ne peut plus utiliser d’argument basé sur le
degré. On conjecture néanmoins que Py, est strictement négative sur un intervalle, pour tout
K pair. Ainsi, on devrait encore pouvoir choisir ¢ une fonction plateau dont le support est
contenu dans cet intervalle pour rendre 'intégrale négative. On pourrait de plus faire tendre
I'intégrale vers —oo en multipliant ¢ par un réel arbitrairement grand.

Méme s’il manque une preuve du dernier cas pour conclure, on voit que pour tout rang
de troncature K impair, il existe une infinité de fonctions infiniment dérivables et a supports
compacts pour lesquelles la positivité n’est pas respectée.
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