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1 Introduction

1.1 Problématique et objectifs
Dans le domaine de l’analyse numérique, on doit toujours faire un choix entre la précision d’une approxi-

mation et son temps de calcul. Ce choix se fait en fonction des conditions d’utilisations. Un modèle rapide
à calculer est généralement une forme simplifiée d’un problème plus général, ou plus complexe.
Afin de calculer plus rapidement un problème complexe avec un temps de calcul long, le but de ce rapport est
de développer une méthode permettant de réduire le temps de calcul d’un modèle complexe, en s’appuyant
sur la résolution d’un problème plus rapide à résoudre numériquement.

L’utilisation d’une telle méthode peut par exemple servir dans le domaine de la sécurité pour les risques
côtiers, où l’on a besoin de résultats rapides, avec des estimations les plus précises possible pour agir avec le
plus d’efficacité.

1.2 Introduction du modèle hyperbolique avec contraintes
On se place dans un espace Ω× [0, T ] avec Ω = [0, L] ⊆ R et T ≥ 0.

Le problème se décompose en trois éléments, présentés de la manière suivante : ∂tU +A(U)∂xU = −ϕ,
< U, ϕ > = 0,
L(U) = 0.

(1)

Dans notre cas, l’ensemble des fonctions étudiées sont dans L∞([0, T ], L2(Ω)).

Dans le cadre de notre observation, on pose U =

(
u
w

)
, A(U) =

(
u 0
0 c2

)
. Le système hyperbolique est

composé d’une équation de Burgers sur u , et d’une équation de transport linéaire de vitesse constante c2

sur w, avec un second membre ϕ =

(
ϕ1(t, x)
ϕ2(t, x)

)
.

Le produit scalaire employé est < . >L2(Ω), défini par

< U, ϕ >L2(Ω)=

∫
Ω

(uϕ1 + wϕ2) dx (2)

et notre fonction de contraintes entre u et w est définie par L(U), tel que :

L(U) = w + α∂xu = 0 (3)

avec α une constante.

On note également pour conditions aux bords : u(t, 0) = uL,
u(t, L) = uR,
uϕ2 = 0 p.p sur ∂Ω.

La mise en place de ces éléments permet d’affirmer que si U est solution de (1), alors u est solution de
l’équation BBM-KdV (aussi appelée équation de Korteweg-de Vries) :

∂tu+ u∂xu− α2∂xxtu− c2α
2∂xxxu = 0 (4)

Cette équation est utilisée pour calculer la propagation de vagues dans des milieux à faible profondeur.
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Preuve:
Soit u(x, t), w(x, t) ϕ1 , ϕ2 des fonctions de L∞([0, T ], L2(Ω))

Par définition du produit scalaire, ∀(u,w) vérifiant (1) :∫
Ω

(uϕ1 + wϕ2)dx = 0.

En utilisant (3) : ∫
Ω

(uϕ1 − α∂xuϕ2)dx = 0,∫
Ω

(u(ϕ1 + α∂xϕ2))dx−
∫
∂Ω

uϕ2∂σ = 0.

On a par condition aux bords : ∫
∂Ω

uϕ2∂σ = 0.

Ce qui permet d’établir l’égalitée :
ϕ1 = −α∂xϕ2 sur Ω (5)

En reprenant la première équation du problème, on obtient :

∂tu+ u∂xu = α∂xϕ2,

∂tu+ u∂xu = −α∂x(∂tw + c2∂xw),

∂tu+ u∂xu = α2∂x(∂txu+ c2∂xxu).

Ce qui donne la formule (4)

Réécrire l’équation de BBM-KdV sous la forme (1) plutôt que sous la forme (4) va permettre d’approcher
numériquement une solution à un problème de BBM-KdV, avec un temps de calcul plus court, ce qui est le
thème de ce rapport.
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2 Problème discret

2.1 Discrétisation et décomposition du problème
Considérons une discrétisation de l’espace Ω× [0, T ].

Soit (tn)n∈N, tel que t0 = 0 et tn+1 = tn + δnt , les points de discrétisation en temps et (ωi)i∈{1,...,p} une
discrétisation uniforme de Ω.

On note δx = |ωi+1−ωi|. A partir de la suite (ωi)i∈{1,...,p}, on définit les volumes de contrôle (xi)i∈{1,...,p}
tel que xi = [ωi − δx

2 , ωi +
δx
2 ]

On note p le nombre de cellules issues de la discretisation de Ω

Ω

x0 x1 xp xp+1. . .

Figure 1 – Discrétisation de Ω

La figure 1 illustre le découpage de Ω en p cellules.

Dans cette partie, on note ∂Ω les cellules frontalières à Ω. On définit ∂Ω par deux cellules x0 et xp+1 i.e
∂Ω = {x0, xp+1}.

On pose Un
i =

(
un
i

wn
i

)
avec :

un
i ≈ 1

δx

∫
xi

u(tn, x)dx

wn
i ≈ 1

δx

∫
xi

w(tn, x)dx

L’algorithme de résolution de l’ensemble de (1) est un algorithme de résolution implicite qui se décompose
en deux étapes, présentes sur chaque pas de temps.

Pour illustrer ces étapes, on se donne une estimation de U au temps tn, que l’on notera Un, le but de la
démarche est alors de trouver Un+1.

Etape 1 :

En partant de Un, le but est de trouver U∗ =

(
u∗
i

w∗
i

)
, solution du problème :

{
∂tu+ u∂xu = 0,
∂tw + c2∂xw = 0,

(6)

ce qui correspond, d’un point de vue numérique, à poser :
u∗
i = un

i − δx
δnt

(Fu
i+ 1

2

−Fu
i− 1

2

),

w∗
i = wn

i − δx
δnt

(Fw
i+ 1

2

−Fw
i− 1

2

),
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avec F un flux numérique.

La méthode employée sera explicitée dans la section 2.2

Etape 2 :

Le but de la seconde méthode consiste à trouver Un+1, en partant d’une projection de la solution U∗ sur
l’ensemble A définit par :

A :=

{
U =

(
u
w

)
∈ L∞([0, T ], L2(Ω)) ; L(U) = 0

}
.

D’un point de vue numérique, l’expression se traduit par :

P(U∗,n) =


un+1 = u∗ − δnt ϕ

n+1
1 .

wn+1 = w∗ − δnt ϕ
n+1
2 .

L(Un+1) = 0.
< Un+1, ϕn+1 >L2(Ω) = 0.

(7)

Plus de précisions sur la seconde étape seront apportées dans la section 2.3.

2.2 Résolution du problème hyperbolique
Partons de l’équation (6), et rappelons la forme discrète de ce problème hyperbolique :

U∗,n
i = Un

i − δx
δnt

(Fi+ 1
2
−Fi− 1

2
)

avec pour conditions initiales
u0
i = u0(xi)

w0
i = w0(xi)

Avec Fi+ 1
2

le flux numérique entre les cellules xi et xi+1 sur les variables Un
i et Un

i+1, dans nos observations,
nous utiliserons un flux upwind, propre à chaque variable observée.

Fi+ 1
2
=

(
Fu

i+ 1
2

Fw
i+ 1

2

)
= F(Un

i , U
n
i+1)

avec

Fu(UL, UR) =


u2
L

2
si

uL + uR

2
≥ 0,

u2
R

2
si

uL + uR

2
< 0,

Fw(UL, UR) = c−2 wR + c2wL

c−2 = min(c2, 0), et c+2 = max(c2, 0).

Les deux problèmes sont résolus simultanément, par conséquent le pas de temps δnt doit correspondre
aux contraintes imposées par la CFL de chaque variable composant le problème. Il est calculé comme suit

δnt ≤ δx
max(|c2|,max(|un

i |))
.
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2.3 Résolution du problème de projection
La résolution du problème de projection demande l’utilisation de divers opérateurs discrets.

On pose ∇iu, dérivée discrète d’une fonction u dans le volume de contrôle xi. On utilisera l’opérateur de
gradient centré, définit par :

∇iu =
ui+1 − ui−1

2δx
, (8)

et < ., . >h: R2p × R2p −→ R, le produit scalaire dans l’espace discretisé, définit par :

< U, ϕn >h=

p∑
i=1

(uiϕ
n
1,i + wiϕ

n
2,i) = 0, (9)

avec :
ϕn
1,i ≈

1

δx

∫
xi

ϕ1(t
n, x)dx,

ϕn
2,i ≈

1

δx

∫
xi

ϕ2(t
n, x)dx.

Pour l’étape 2 de la résolution du problème, calculer Ph(U
∗,n) revient à poser l’équation discrétisée :

(1− α2∇i∇i)u
n+1 = u∗

i + α∇iw
∗
i (10)

pour trouver un+1, puis on pose wn+1 = −α∇iu
n+1

Preuve:
Partons de la formule de P(U∗,n) :

P(U∗,n) =


un+1 = u∗ − δnt ϕ

n+1
1 .

wn+1 = w∗ − δnt ϕ
n+1
2 .

L(Un+1) = 0.
< Un+1, ϕn+1 >L2(Ω) = 0.

Par (5), et par la ligne 2 de P(Un,∗) :

un+1
i = u∗

i + α∇i(w
∗
i − wn+1

i ),

D’après (3), on a wn+1
i = −α∇iu

n+1, ∀i,

ce qui nous donne donc l’équation (10).

Pour obtenir une fonction Un+1 appartenant à l’ensemble A, on calcule ensuite wn+1
i à l’aide de (3).

Un problème intervient si Ω devient borné, avec l’utilisation de l’opérateur de grandiant centré (8).

Proposition 1 :
Soit Ω un domaine borné, alors on a

un
0ϕ

n
2,1 + un

1ϕ
n
2,0 = 0,

un
pϕ

n
2,p+1 + un

p+1ϕ
n
2,p = 0.

(11)
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Preuve:

Partons de (9) :

< Un, ϕn >h=

p∑
i=1

(un
i ϕ

n
1,i + wn

i ϕ
n
2,i) = 0.

En utilisant (3)

p∑
i=1

(un
i ϕ

n
1,i − α∇iu

nϕn
2,i) = 0.

Par (5)

−α

p∑
i=1

(un
i ∇iϕ

n
2 +∇iu

nϕn
2,i) = 0.

Par (8),
−α

2δx

p∑
i=1

(
un
i (ϕ

n
2,i+1 − ϕn

2,i−1) + (un
i+1 − un

i−1)ϕ
n
2,i

)
= 0.

Cette formule se simplifie par :

−un
0ϕ

n
2,1 − un

1ϕ
n
2,0 + un

pϕ
n
2,p+1 + un

p+1ϕ
n
2,p = 0.

En isolant les deux bords de Ω, on sépare alors l’égalité précédente en deux égalités pour obtenir (11)

Dans le cadre de ce travail, on pose un
0 = un

1 = uL et un
p = un

p+1 = uR, ce qui amène aux égalités{
ϕn
2,0 = −ϕn

2,1.
ϕn
2,p+1 = −ϕn

2,p.

2.4 Analyse paramétrique de la méthode
Pour analyser correctement les résultats, il est nécessaire de regarder les paramètres à étudier. Une telle

observation se fait à partir d’un calcul adimensionnel porté sur la projection.

On note [T] l’echelle en temps, [L] l’echelle en espace et û, la forme adimensionnée de u tel que u = û[u]

D’après (4) on a

∂tû+ û
[u][T ]

[L]
∂xû− α2

[L]2
∂xxtû− c2α

2[T ]

[L]3
∂xxxû = 0 (12)

Afin d’analyser au mieux le résultat, il est nécessaire de faire varier les coefficients adimensionnés
[u][T ]

[L]
,

α

[L]
, et

c2[T ]

[L]
. Dans le cadre de notre observation, nous travaillerons sur un même domaine en espace et en

temps. On doit alors modifier les valeurs de α, de c2 et de u, qui sera observé par le biais de la vitesse du
choc σ (obtenu à partir de Rankine - Hugoniot), pour analyser au mieux le comportement de la solution.

Le cas test pour les différentes observations est le suivant.
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Sur l’intervalle [0,10] décomposé en 1000 cellules, on pose pour fonction u0 :

u0(x) =

 2 si x < 1,
1 si x > 2,

3− x sinon.

La valeur de w0(x) est donnée par (3).

Figure 2 – Représentation de u selon diverses valeurs de α

La figure 2 montre le comportement de u la hauteur d’eau pour différentes valeurs de α. Ces graphes
ont été réalisés au temps T = 2.5, avec pour valeur α = 0.1 à gauche, α = 0.01 au centre et α = 0.001 à droite.

Sur ces différents graphes, il apparait une oscillation en amont de la position du choc dont l’amplitude
décroit lorsque le paramètre α décroit. Ce comportement s’explique par (10) qui tend vers l’égalité un+1 = u∗

lorsque α tend vers 0.

Figure 3 – Représentation des oscillations en fonction de la valeur de c2

La figure 3 montre le positionnement des oscillations en fonction de la valeur du paramètre c2. On a
c2 = 1 sur le graphe de gauche, c2 = 1.5 sur le graphe central et c2 = 2 sur le graphe de droite. Ces graphes
ont été réalisés au temps T = 2.5, avec α = 0.1.

Sur les différents graphes, il apparait que les oscillations ont une position différente en fonction de la
vitesse du choc σ. Si la valeur de c2 < σ les oscillations se forment avant le choc, si c2 > σ les oscillations se
forment après le choc, et si c2 = σ les oscillations se forment avant et après le choc. Dans les trois cas, les
ocsillations ont un comportement commun, plus elles sont proches du choc et plus l’amplitude de l’oscillation
est élevée.
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Figure 4 – Représentation des oscillations avec une vitesse de choc nulle, en différents temps.

La figure 4 représente les oscillations d’un même cas test sur différents temps. Ces observations ont été
faites en modifiant le u0 usuel en utilisant celui de la section 3.2.1. Les paramètres sont c2 = 2 et α = 0.1.
Les graphes ont été faits aux temps T = 1.5 à gauche, T = 3 au centre et T = 4.5 à droite.

Ces trois graphes montrent une propagation à vitesse c2 des oscillations dans le domaine Ω. Notons éga-
lement que plus une oscillation est loin de la position du choc, et plus son amplitude sera faible.

Temps de calcul

Figure 5 – Schéma de répartition du temps de calcul

La figure 5 est un graphe de la répartition du temps de calcul pour le cas test de la section 2.4 pour
une durée de T = 5. Le bloc "mod_calcul_Burgers" à droite, représente la 1ère étape de résolution, avec le
bloc "Calcul_du_pas_de_temps" au centre, qui a pour but de calculer le pas de temps. Le bloc de droite
"Correction_optimale" correspond à la partie du code qui résout l’étape 2. Chaques blocs est pointé par une
flèche qui montre le nombre de fois où le bloc est appellé lors de la résolution du probluème, et le symbole
% montre le pourcentage du temps passé dans le bloc, comparé au temps de calcul total.

Le graphe montre que le temps de calcul est inégalement répartie entre les différentes étapes. L’étape 1
avec le calcul du pas de temps prends près de 13.6% du temps de calcul total, tandis que l’étape 2 prends
près de 86.4% du temps de calcul.

Cette inégalité du temps de calcul est dû au système matriciel qui demande également aux matrices de
se construire (dans notre cas, il a été préférable d’effectuer un stockage pentadiagonal pour les matrices) en
chaques pas de temps, et de résoudre le problème matriciel. Il est donc préférable de chercher à optimiser la
seconde étape dans l’optique de gagner un maximum de temps de calcul.
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Figure 6 – Temps de calcul de la méthode sur le domaine entier

La figure 6 représente le temps de calcul nécessaire pour faire le cas test de la section 2.4 pour une durée
de T = 5 avec différents raffinements de maillages (allant de δx = 0.1 à δx = 10−4). Le temps de calcul est
exprimé en seconde.

Ces valeurs servent de valeurs de temps de calcul de référence, l’objectif est alors de développer une
méthode pouvant réduire les temps relevés. Pour ce faire, la méthode employée consistera à résoudre locale-
ment l’étape 2 de la résolution sur un domaine que l’on souhaite optimal (les critères définissant un domaine
comme optimal sont donnés dans la section 3.1).
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3 Projection sur un domaine réduit : approche itérative

3.1 Estimation de l’erreur et domaine de correction
Comme présenté dans la section 2.1, l’algorithme se décompose en 2 étapes distinctes. Le temps de calcul

pour effectuer ces étapes est inégal et une grande partie de ce dernier correspond à la résolution de la seconde
étape (présentée dans la section 2.3). Cette inégalité vient principalement de la résolution du problème ma-
triciel intervenant sur la seconde étape comme le montre la figure 5.

Pour satisfaire une problématique de réduction de temps de calcul, la piste privilégiée est de faire l’étape
2 sur un sous-domaine afin de réduire la taille du système à résoudre. Pour connaitre le domaine, l’approche
est la suivante : "Si je suis trop loin de mon plan de projection A et que je ne crée pas trop d’erreur aux
bords, alors je projette".

L’idée d’un "trop loin" étant vague, il est alors préférable de quantifier une distance à notre zone de
projection. Pour cela nous introduisons ϵi(u,w), qui représente une erreur de projection sur une cellule xi.
Cette distance sera calculée entre l’étape 1 et l’étape 2 avec pour but de définir un sous-domaine pour calculer
l’étape 2. Elle se définit de la manière suivante :

ϵi(u
∗, w∗) = |w∗

i + α∇iu
∗| (13)

D’un point de vue numérique, on se doit également d’établir un seuil de tolérance ϵ̄, pour lequel, si l’erreur
ϵi est au dessus, alors on projette sur xi, et sinon, alors on ne projette pas.

La valeur de ϵ̄ sert à déterminer un domaine D prenant en compte l’ensemble des cellules ayant une erreur
non tolérable pour l’utilisateur, et d’effectuer la seconde étape uniquement sur D . Elle doit correspondre
au cas voulu par l’utilisateur en fonction de sa nécessité à être proche de KdV-BBM. En effet, un choix
trop élevé de ϵ̄ peut alors donner un domaine de projection nul sur l’ensemble de la solution et entrainer
la résolution d’un problème de Burgers en u et un problème de transport linéaire en w sans se soucier du
domaine de fonctions admissible A.

xi xj

ϵ̄

erreur

cellule

Figure 7 – Illustration du domaine D = [xi, xj ]

L’utilisation d’une telle approche pour D a pour effet de retirer l’erreur de projection à l’interieur du
domaine mais il crée également de l’erreur au bord. Cette apparition d’erreur au bord fait suite à l’utilisation
de l’opérateur gradient centré qui a pour effet de modifier l’erreur dans les cellules voisines de D pouvant
ainsi devenir non négligeable (i.e. ϵi−1 > ϵmax ou/et ϵj+1 > ϵmax). Un tel effet aura pour conséquence de
donner une approximation erronée du problème.

D’un point de vue numérique il est donc necéssaire de prendre un domaine plus grand, tel que l’erreur
de projection engendrée au bord reste tolérable (< ϵ̄) sur Ω.
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L’ensemble du problème de trouver un D optimal réside dans le fait que le domaine se doit d’être assez
grand pour éviter des erreurs aux bords trop élevées, mais également de trouver un domaine de projection
D le plus petit possible, afin de satisfaire au mieux la problématique de réduction du temps de calcul.

3.2 Approche itérative
Soit xn

p et xn
j , deux points de discretisation de Ω tel que x0

p = minx∈Ω(ϵi ≥ ϵ̄) et x0
j = maxx∈Ω(ϵi ≥ ϵ̄)

L’approche naïve d’obtention du domaine optimal est une approche itérative qui se déroule de la manière
suivante :

1. Initialise D = [x0
p, x

0
j ], et n = 0.

2. Calcul de la projection et des contraintes sur D.
3. si ϵi−1 > ϵ̄ alors xn+1

p = xn
p − δx et retour à 2 avec n = n+ 1.

4. si ϵj+1 > ϵ̄ alors xn+1
j = xn

j + δx et retour à 2 avec n = n+ 1.
5. Sortie de D = [xn

p , x
n
j ]

Une telle approche a pour but d’obtenir un domaine D optimal, dans le sens où D est le plus petit do-
maine tel que la projection engendre une erreur plus petite que ϵ̄ sur l’ensemble du domaine. Un tel domaine
est appelé Dopt.

Cette approche possède néanmoins un défaut vis à vis du temps de calcul, à cause de l’approche qui est
itérative, demandant de réaliser plusieurs fois la seconde étape, sur un domaine de plus en plus grand. Une
telle réalisation ne permet pas de satisfaire la problématique d’optimisation du temps de calcul, qui est dans
certains cas plus long que de faire une projection sur l’ensemble du domaine.

Pour satisfaire la problématique d’optimisation du temps de calcul, il est donc nécessaire de mettre en
place une méthode directe de la détermination du domaine de projection Dopt.

L’idée est à présent de prédire le comportement du domaine. Il est donc nécessaire de comprendre comment
il évolue. Pour ce faire nous nous appuierons sur deux cas tests.

3.2.1 Etude d’un cas à vitesse de choc nulle

Le premier cas est posé tel que :

u0(x) =

 2 si x < 1,
−2 si x > 2,

6− 4x sinon.

Le but de ce cas test est de voir le comportement du domaine dans un cas où la vitesse du choc en u
(notée σ) est nulle.

Pour satisfaire une analyse correcte du domaine, on va poser un jeu de données de base. L’observation
sera effectuée sur une partition formée de 1000 cellules de l’intervalle [0,10] pendant une durée de T = 10, α
prendra pour valeur 0.1, c2 = 2 et ϵ̄ = 10−3. Ce jeu de variables sera utilisé dans l’ensemble des observations,
une précision sera donnée dans la présentation des figures en cas contraire.

On prendra pour condition au bord u(t, 0) = 2, et u(t, 10) = −2.
Pour l’analyse paramétrique de ce cas test, chaque paramètre sera changé un à un, dans le but d’observer

au mieux l’implication de chacun des paramètres dans l’obtention du domaine Dopt.
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Variation du paramètre α

Figure 8 – Représentation de la longueur du domaine en fonction du temps, par différentes valeurs de α.

La figure représente la taille du domaine Dopt au cours du temps selon plusieurs valeurs de α lorsque
la vitesse du choc est σ = 0. Sur ce graphe, α = 0.1 sur la courbe violette, α = 0.01 sur la courve verte,
α = 0.001 sur la courbe bleue, et α = 0 sur la courbe jaune.

Ce graphe montre que pour α = 0.1, le domaine augmente, jusqu’à atteindre une valeur qui borne sa
longueur. Pour des valeurs de α plus petites, le domaine optimal se réduit pour retrouver une longueur fixe
au cours du temps. Pour le cas particulier de α = 0, le domaine optimal Dopt n’est pas calculé en tout pas
de temps.

Ces différents comportements du domaine optimal sont liés à l’influence de α sur les oscillations observées
sur les figures 2 et 4, par le fait que la position du domaine optimal dépend de la position des oscillations.
La courbe violette s’explique par la figure 4 qui montre que les oscillations prennent tout le domaine, ce
qui explique l’augmentation de la longueur du domaine, puis son blocage qui est lié au fait que le domaine
optimal touche le bord de Ω.

Pour α = 0.01 et α = 0.001, la baisse et la stagnation de la longueur du domaine optimal s’explique
par le fait que les oscillations normalement présentes ont une amplitude trop faible à partir d’une certaine
distance du choc, ce qui crée une erreur locale plus faible que le seuil de tolérance.
Pour le cas particulier de α = 0, il y a l’égalité un+1 = u∗ sur Ω d’après (10). Il n’y a donc pas de calcul de
Dopt (et pas de calcul de l’étape 2).
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Variation du paramètre c2

Figure 9 – Position des bords du domaine Dopt en fonction du temps, selon différentes valeurs de c2

La figure 9 montre l’évolution de la position des bords du domaine Dopt, avec c2 = 2 à gauche et c2 = 3 à
droite. Pour chacun des graphes, la courbe violette représente le bord gauche du domaine, et la courbe verte
représente le bord droit.

Sur chacun des graphes, le bord gauche évolue peu, tandis que le bord droit parcourt le domaine Ω à une
vitesse jusqu’à se trouver bloqué à une valeur fixe pour ces deux cas.

Pour chacun des cas tests, le bord droit parcourt le domaine Ω suivant une vitesse approchant les valeurs
de c2 attribués pour chaque cas test. Le blocage en x = 10 correspond au bord droit de Ω est atteint par
le domaine optimal Dopt. Sur le graphe de gauche, le bord droit est égal au bord gauche en x = 0 sur une
itération, ce qui correspond numériquement au fait que le domaine optimal n’est pas calculé. Un tel cas
intervient si l’ensemble des erreurs locales sont inférieures au seuil de tolérance ϵ̄. Les petites irrégularités
dans l’évolution des bords sont liées à la propagation et l’accumulation de l’erreur autour du domaine,
s’accumulant au cours du temps.

Figure 10 – Position du domaine Dopt en fonction du temps avec c2 = 0

Sur la figure 10 le domaine Ω a été modifié et vaut maintenant [-4,4] et c2 = 0 pour chacun des graphes.
Le graphe de gauche représente la position des bords du domaine Dopt dans Ω, tandis que le graphe de droite
représente la distance entre les bords de Dopt et la position du choc. Pour chaque graphe, la courbe violette
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correspond au bord droit de Dopt et la courbe verte correspond au bord gauche.

Ces deux graphes montrent que les bords du domaine s’éloignent de la position du choc au cours du
temps. Cet éloignement est réalisé de manière symétrique par rapport à la position du choc. On constate
également des légères instabilités sur les positions des bords.

L’éloignement des bords du domaine Dopt est lié à la propagation des oscillations au cours du temps,
tandis que les petites instabilités sont liées à une accumulation d’erreur que crée cette propagation.

On observe également des points en temps régulier où le domaine Dopt est beaucoup moins grand. Cela
est dû à des étapes où le pas de temps est très faible, car il y a eu nécéssité de regarder la solution en des
temps précis, le δt était donc beaucoup plus faible qu’à l’usuel pour tomber sur ces temps, ce qui n’a pas
donné le temps à l’erreur d’apparaitre, donnant ainsi un Dopt plus petit.

Variation de ϵ̄

Figure 11 – Longueur de Dopt au cours du temps en fonction de la tolérance ϵ̄

La figure 11 montre la longueur de Dopt en fonction de différentes tolérance (c2 et Ω ont repris leurs
valeurs initiales). On a ϵ̄ = 0.1 sur la courbe verte, ϵ̄ = 0.01 sur la courbe bleue, ϵ̄ = 0.001 sur la courbe
jaune et ϵ̄ = 0 sur la courbe violette.

Ce graphe montre que la taille du domaine de Dopt augmente lorsque la valeur de ϵ̄ diminue, il y a
également une réduction des instabilités dans la taille du domaine lorsque ϵ̄ diminue.
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Variation du nombre de cellules

Figure 12 – Evolution de la longueur du domaine sur différents maillages, en fonction du temps.

La figure 12 représente la taille du domaine Dopt pour différents maillages. La courbe rouge représente
un maillage de 100 cellules, la courbe orange représente un maillage de 1000 cellules, et la courbe violette
représente un maillage de 10 000 cellules.

La longueur du domaine Dopt s’accroit en fonction du nombre de cellules, et converge.

Observation du domaine en fonction du nombre de cellules : Evolution des bords du domaine optimal

Figure 13 – Positions des bords du domaine Dopt

La figure 13 est constituée de deux graphes qui représentent les positions des bords du domaine Dopt

pour différents maillages. Le graphe de gauche représente le bord gauche de Dopt, et le graphe de droite
représente le bord droit. La courbe rouge représente un maillage de 100 cellules, la courbe orange représente
un maillage de 1000 cellules, et la courbe violette représente un maillage de 10 000 cellules.
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Sur le graphe de gauche, la position du bord de gauche décroit de plus en plus avec le raffinement du
maillage, tandis que sur le graphe de droite, le bord droit s’accroit de plus en plus. Chaque bord converge
en fonction du nombre de cellules. Pour les maillages les plus fins, les bords de gauche de Dopt fixés à 0, et
les bords de droite fixés à 10, sont liés aux bords du domaine Ω = [0, 10].

3.2.2 Etude d’un cas à vitesse de choc positive

Pour le second cas on prend u0(x) tel que

u0(x) =

 2 si x < 1.
1 si x > 2.

3− x sinon.

Le but de ce cas test est de regarder un cas où la vitesse du choc en u notée σ est non nulle (ici σ = 1.5
d’après Rankine-Hugoniot).

On prendra pour condition au bord u(t, 0) = 2, et u(t, 10) = 1.

On pose les mêmes jeux de paramètres que sur la section 3.2.1. Ne seront affichés que les graphes appor-
tant une idée nouvelle, n’apparaissant pas sur l’étude du cas précédent.

Variation de c2

Figure 14 – Evolution de la position des bords du domaine pour plusieurs valeurs de c2 en fonction du
temps

La figure 14 est composée de trois graphes représentant l’évolution au cours du temps de la position des
bords du domaine Dopt en fonction de diverses valeurs de c2. Sur chaque graphe, la courbe violette repré-
sente le bord gauche du domaine et la courbe verte représente le bord droit. Sur le graphe de gauche, c2 = 1,
sur le graphe central c2 = 2, et sur le graphe de droite c2 = 3. Il y a également deux fonctions affines sur
chaque graphe, en bleu une droite affine de pente max(σ, c2), et en jaune une droite affine de pente min(σ, c2).

Sur les différents graphes, on voit un déplacement des deux bords de Dopt dans Ω au cours du temps.
L’évolution de la courbe verte au cours du temps coïncide avec la droite bleue, et l’evolution de la courbe
violette coïncide avec la droite jaune.

Les positions des bords de Dopt suivent une évolution de vitesse min(σ, c2) et max(σ, c2) jusqu’à être
confrontés aux conditions aux bords (qui sont ici des conditions de Dirichlet non homogène), qui est une
source d’erreur dans notre cas, lorsque le domaine optimal touche le bord puisque l’on fixe la valeur de u.
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3.3 Erreur et temps de calcul de la méthode itérative

Figure 15 – Comparasion entre le temps de calcul de l’approche itérative, et de la projection sur un domaine
entier (à gauche). Norme L2 de l’erreur d’approximation, en fonction du temps (à droite)

La figure 15 est décomposée en deux graphes. Le graphe de gauche représente le temps de calcul (en
secondes) nécessaire à la résolution du cas test présenté dans la section 3.2.2 sur une durée de T = 5 en
fonction de différents maillages. Il est composé de deux courbes. La courbe violette représente le temps de
calcul obtenu sur la projection d’un domaine entier (c’est la même courbe que celle présente en figure 6), et la
courbe verte représente le temps de calcul obtenu pour résoudre le problème à l’aide de la méthode itérative.
Le graphe de droite représente l’évolution en temps de la norme L2 sur le domaine Ω de la différence entre
la méthode de projection sur le domaine entier et la méthode par projection locale sur un domaine obtenue
de manière itérative.

Sur le graphe de gauche, on remarque que la courbe verte croit plus rapidement que la courbe violette.
Par exemple pour un maillage de 10 000 cellules (ce qui représente δx = 10−3), le temps de calcul est de
1454 secondes pour la méthode itérative, tandis que la projection sur tout le domaine résout le problème en
35 secondes.

Sur le graphe de droite, la courbe d’erreur admet des valeurs faibles qui s’accroissent avec le temps. Cet
accroissement est lié à la propagation de l’erreur dans le temps, puisque l’on effectue des approximations, à
partir de données contenant une erreur.

L’accroissement trop élevé du temps de calcul est dû aux projections successives qui sont nécessaires pour
obtenir un domaine optimal (ce qui a déjà été énoncé au début de la section 3.2). Bien qu’elle soit très longue
à calculer, cette méthode a néanmoins un point positif qui est que le domaine Dopt est une bonne (si ce n’est
la meilleure) estimation du domaine sur lequel on souhaite faire l’étape de projection. Le but est à présent de
trouver une méthode explicite pour calculer un domaine D contenant Dopt avec pour objectif de s’en rappro-
cher le plus possible. Ce point positif est également souligné par le graphe de droite, qui montre que l’erreur ne
dépasse pas 10−3, ce qui témoigne de l’éfficacité de la méthode du point de vue de la précision de la résolution.
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4 Approche explicite du domaine optimal

4.1 Opérateurs nécessaires pour une approche directe du domaine
Pour satisfaire l’approche directe du domaine, il est nécessaire pour les méthodes de résolutions employées

d’introduire deux opérateurs x̄τ et σ̄τ , correspondant à la moyenne empirique et à l’écart-type empirique de
l’erreur de projection. Ils sont calculés de la manière suivante

x̄τ =

∫
Ω

x
ϵ(x) 1ϵ(x)>τϵ̄(x)

||ϵ 1ϵ(x)>τϵ̄||L2(Ω)
dx, (14)

σ̄τ =

√∫
Ω

(x− x̄τ )2
ϵ(x) 1ϵ(x)>τϵ̄(x)

||ϵ 1ϵ(x)>τϵ̄||2L(Ω)
dx. (15)

Autrement dit, à partir de la Figure 7, n’est prise en compte que la partie grisée pour τ = 1, et toutes
les erreurs relevées pour τ = 0.

La mise en place de ces paramètres a pour but de trouver une fonction les utilisant pour approcher au
mieux les bords du domaine optimal Dopt obtenu par la méthode itérative. Les approches devront majorer
le domaine, pour éviter une propagation de l’erreur de projection, et rester sous le seuil de tolérance ϵ̄

4.2 Présentation de méthodes explicites appuyées sur de la régression linéaire
4.2.1 Présentation des opérateurs, et estimation d’erreur

La première méthode présentée ici consiste à approcher les bords du domaine Dopt, par une combinaison
linéaire entre les deux moments empiriques.

Par conséquent, si on note xl, xr les deux bords du domaines, on obtient que l’on cherche une matrice
A = (Al, Ar) :

< ((x̄τ1 , σ̄τ1 , . . . , x̄τn , σ̄τn), Al >= xl

< ((x̄τ1 , σ̄τ1 , . . . , x̄τn , σ̄τn), Ar >= xr

Afin de trouver les coefficients, on se servira d’une base de données de m cas tests Em, et des différents
domaines obtenus de manière itérative pour ces cas tests Dm.

Le but sera alors de trouver la matrice A telle que

EmA = Dm.

Pour la suite, on pose E = Em et D = Dm.

Proposition 2 La matrice A est donnée par A = (EtE)−1EtD.

Preuve:

On a EA = D ce qui implique que EtEA = EtD
EtE est une matrice symétrique, donc elle est inversible

Donc A = (EtE)−1EtD.

Pour tester convenablement la qualité de l’approche, il faut intégrer un opérateur d’efficacité ϵ̂. On le
définira de la manière suivante :

ϵ̂ = 1−
∫
Ω

∫
Ω
ϵDopti

(x)dx

ϵ(x)
dx,
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avec ϵDopti l’erreur prélevée sur le domaine Ω lors de l’approche itérative du problème.

Si l’estimateur d’erreur ϵ̂ est positif alors le domaine obtenu de manière explicite est trop petit. Si ϵ̂ est
négatif, alors le domaine calculé explicitement est trop grand. L’objectif est alors de faire tendre cette erreur
vers 0 en utilisant un minimum de paramètres d’observations dans une optique d’optimisation du temps de
calcul. Une méthode sera toutefois supposée utilisable pour certains jeux de paramètres si ϵ̂ ≤ 0.

Dans les observations, on appellera erreur de projection, une erreur définie par :

Errproj = max
j

(||L(U j)||L2(Ω))

avec L(U j) défini par (3) au temps t = tj .

4.3 Méthode d’approche explicite par régression linéaire
Tout au long du stage, plusieurs pistes ont été étudiées pour obtenir le plus petit domaine calculé de

manière explicite D, majorant Dopt.

Dans cette partie, certaines méthodes présentées n’ont pu aboutir pour des raisons techniques (base de
test trop coûteuse à faire, manque de temps sur le stage, ...).

Dans le but de comparer les différentes méthodes, un même cas test (présenté dans la section 3.2.2) sera
utilisé avec τ = 0 (sauf énonciation du cas contraire), sur lequel sera appliqué une analyse paramétrique de
l’erreur de projection, en fonction des paramètres numériques (nombre de cellules, tolérance d’erreur, valeur
de τ).

4.3.1 Méthode 1 : D = [x̄τ + a1σ̄τ ; x̄τ + a2σ̄τ ]

L’idée derrière cette méthode est de retrouver un domaine majorant Dopt en partant du point x̄τ .

L’obtention des coefficients a1 et a2 s’effectue à l’aide de la méthode expliquée dans la section 4.2.1, avec
une matrice A = (a1, a2)

Figure 16 – Superposition entre la solution exacte et l’approximation (à gauche). Norme L2 de l’erreur
d’approximation en fonction du temps(à droite).
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La figure 16 se décompose en deux graphes. Le graphe de gauche se décompose en trois courbes. La
courbe violette représente la solution obtenue à partir de la projection sur tout le domaine, la courbe verte
représente l’approximation obtenue à l’aide de la méthode explicite, et la courbe bleue représente le domaine
D calculé à partir de cette même méthode. Le graphe de droite représente l’évolution en temps de la norme
L2 sur le domaine Ω de la différence entre la méthode de projection sur le domaine entier et la méthode par
projection locale sur le domaine D.

Le graphe de gauche montre que les résultats de cette méthode explicite sont éloignés de la solution. Ce
résultat est confirmé par le graphe de droite, qui montre que l’erreur dépasse 0.1 pour cette méthode, tandis
qu’elle ne dépassait pas 10−3 sur la méthode itérative (cf figure 15).

Cette mauvaise approximation est liée à une mauvaise approche du domaine, qui est pour notre cas plus
petit que le domaine optimal Dopt. La projection ne peut donc se faire sur un domaine assez grand, ce qui
crée une forte erreur.

Variation de ϵ̄ :

Figure 17 – Valeur de ϵ̂ (à gauche) et valeur de Errproj (à droite), en fonction de la tolérance ϵ̄

La Figure 17 se décompose en 2 graphes, celui de gauche représente la valeur de ϵ̂ en fonction de la
tolérance ϵ̄, le graphe de droite représente la valeur de Errproj en fonction de la tolérance, la courbe verte
représente cette valeur en utilisant le domaine de projection D, et la courbe violette représente Errproj
appliquée sur le même cas test, mais utilisant le domaine de projection Dopt.

Sur le graphe de gauche, on remarque que ϵ̂ augmente lorsque ϵ̄ diminue, ce qui montre que la méthode
de calcul explicite du domaine n’est pas adaptée au cas où la tolérance ϵ̄ tend vers 0. L’explication de cela
est donnée sur le graphe de droite, qui montre que l’utilisation de la projection sur Dopt fait tendre l’erreur
Errproj vers 0 avec une vitesse de convergence de 1 lorsque la tolérance tend vers 0, mais que l’utilisation
du domaine D fait apparaitre la présence d’un minimum strictement positif de l’erreur de valeur 0.2.
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Variation de τ :

Figure 18 – Valeur de ϵ̂ en utilisant le domaine D, en fonction de la valeur τ .

La Figure 18 représente la valeur de l’erreur de projection ϵ̂, sur un cas où le domaine explicite D est
calculé à partir de différentes valeurs de τ .

La valeur de τ fait varier ϵ̂. Pour avoir un résultat se rapprochant au mieux du résultat obtenu de manière
itérative, il est alors préférable d’utiliser un τ avec une valeur élevée, se rapprochant de 1.

Variation du nombre de cellules :

Figure 19 – Valeur de ϵ̂ (à gauche) et valeur de Errproj (à droite), en fonction du maillage utilisé.

La figure 19 est composée de deux graphes. Le graphe de gauche représente la valeur de ϵ̂ en fonction
du nombre de cellules dans le domaine, et le graphe de droite représente l’erreur de projection Errproj sur
différents maillages avec en violet l’erreur obtenue à l’aide d’un domaine itératif Dopt, et en vert celle obtenue
à partir d’un domaine explicite D.

Sur le graphe de gauche, ϵ̂ tend vers 0 pour des maillages plus grossiers (Par l’utilisation de l’echelle log,
les derniers points ne sont pas affichés car log(0) n’est pas défini) ce qui est confirmé par le graphe de droite.
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Cette première méthode est donc utilisable pour des maillages peu raffinés. Dans le but d’obtenir une
méthode convenable pour un plus grand nombre de mailles, il est nécessaire d’améliorer cette méthode. Un
premier axe damélioration consiste à augmenter le nombre de variables à observer.

4.3.2 Méthode 2 : D = [b1x̄τ + a1σ̄τ , b2x̄τ + a2σ̄τ ]

Dans ce second cas, on ajoute x̄τ comme un matériel d’observation nécessaire pour l’estimation de D.

Les coefficients a1 a2, b1 et b2 sont obtenus à l’aide de la méthode expliquée dans la section 4.2.1, en
posant A = (Al, Ar), avec Al = (a1, b1) et Ar = (a2, b2)

Nous nous mettons dans le cadre d’observations de la méthode 1.

Figure 20 – Superposition entre la solution exacte et l’approximation avec τ = 0.7 (à gauche). Norme L2

de l’erreur de cette même approximation, en fonction du temps (à droite).

La figure 20 se décompose en deux graphes. Le graphe de gauche se décompose en trois courbes, la courbe
violette représente la solution obtenue à partir de la projection sur tout le domaine, la courbe verte représente
l’approximation obtenue par projection sur D (avec τ = 0.7), et la courbe bleue représente le domaine D
calculé à partir de la méthode 2. Le graphe de droite représente l’évolution en temps de la norme L2 sur le
domaine Ω de la différence entre la méthode de projection sur le domaine entier et la méthode par projection
locale sur D.

Sur le graphe de gauche, les courbes verte et violette sont très proches. Ce résultat est également montré
par le graphe de droite, qui montre une erreur croissante, montant jusqu’à 10−2. Cette erreur est plus élevée
que celle observée sur la methode itérative qui montrait une erreur ne dépassant pas 10−3 (figure 15), mais
elle reste moins grande que l’erreur prélevée sur la méthode présentée en section 4.3.1, qui montrait une
erreur allant au-delà de 10−1 (figure 16).

Cette méthode semble plus précise que la méthode explicite précédente, ce qui est lié à une meilleure
estimation explicite D du domaine Dopt. Il reste cependant à voir les limites de cette approche.
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Variation de la tolérance d’erreur ϵ̄

Figure 21 – Valeur de ϵ̂ (à gauche) et valeur de Errproj (à droite), en fonction de la tolérance ϵ̄

La Figure 21 se décompose en 2 graphes, le graphe de gauche représente la valeur de ϵ̂ en fonction de la
tolérance ϵ̄, et le graphe de droite représente la valeur de Errproj en fonction de la tolérance, la courbe verte
la valeur observé en utilisant le domaine de projection D, et la courbe violette représente Errproj obtenue
sur le même cas test en reprenant τ = 1, mais utilisant le domaine de projection Dopt.

Sur le graphe de gauche, on remarque que ϵ̂ augmente lorsque ϵ̄ diminue, ce qui montre que la méthode
de calcul explicite du domaine n’est pas adaptée au cas où la tolérance ϵ̄ tend vers 0. L’explication de cela
est donnée sur le graphe de droite, qui montre que l’utilisation de la projection sur Dopt fait tendre l’erreur
Errproj vers 0 avec une vitesse de convergence de 1 lorsque la tolérance tend vers 0, mais que l’utilisation
du domaine D, fait apparaitre la présence d’un minimum strictement positif de l’erreur de valeur 0.4, ce qui
est un minumum plus élevé que sur la méthode 1 comme le montre la figure 17 pour un même cas test, ce
qui n’est pas en adéquation en comparant les résultats obtenus sur les figure 16 et 20. La seule différence
avec la figure 20 est la valeur de τ . Il est donc nécéssaire d’en étudier les variations.

Variation de τ

Figure 22 – Valeur de ϵ̂ en utilisant le domaine D, en fonction de la valeur τ .

La Figure 22 représente la valeur de l’erreur de projection ϵ̂, sur un cas où le domaine explicite D est
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calculé à partir de différentes valeurs de τ .

Sur ce graphe, la valeur de τ fait varier la valeur de l’erreur de projection Errproj et pour τ = 0.7 on
s’aperçoit que l’erreur est très faible (d’une valeur de l’ordre de 0.01), ce qui est également illustré sur la
figure 20. Par comparaison avec la figure 18, l’erreur est plus forte pour la méthode 2 lorsque τ = 0.7 ce
résultat est en lien avec l’erreur relevée sur la figure 17 qui était plus élevé que sur la figure 21.

Dans la suite des observations, la valeur τ = 0.7 sera séléctionnée car c’est la valeur qui nous donne une
erreur la plus proche de l’erreur engendrée par le domaine optimal Dopt.

Variation du nombre de cellules :

Figure 23 – Valeur de ϵ̂ (à gauche) et valeur de Errproj (à droite), en fonction du maillage utilisé, avec
τ = 0.7

La figure 23 est composée de deux graphes. Le graphe de gauche représente la valeur de ϵ̂ en fonction
du nombre de cellules dans le domaine. Le graphe de droite représente l’erreur de projection Errproj sur
différents maillages avec en violet l’erreur obtenue à l’aide d’un domaine itératif Dopt, et en vert celle obtenue
à partir d’un domaine explicite D.

Sur le graphe de gauche, l’erreur ϵ̂ est négative pour des maillages avec des cellules de longueur plus
grande que δx = 10−2, la projection sur D donne un résultat globalement plus précis que celle sur Dopt. Ce
résultat est également présent sur le graphe de droite.

En comparant ces résultats avec ceux de la méthode 1 présents sur la figure 19, il apparait que les résul-
tats obtenus à l’aide de D de la seconde méthode sont plus précis, et que la méthode est utilisable pour des
maillages grossiers. Cependant il faudrait une plus grande base de données pour montrer si la méthode est
utilisable pour des maillages plus fins. Nous avons donc ici une contrainte technique qui nous empeche de
voir si le résultat serait tout autant efficace pour des maillages plus fins..

Cette méthode est donc utilisable mais peu utile pour notre travail puisque les cas qui nous intéressent
sont ceux possédant des maillages raffinés, puisqu’ils donnent une approche plus précise du résultat, et que
les temps de calculs sont plus longs.
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4.4 Méthode par majoration : D = [x̄τ − asupσ̄τ ; x̄τ + asupσ̄τ ]

Le but de ce troisième cas d’observation consiste à majorer le domaine optimal Dopt à l’aide d’un domaine
D, qui est centré en x̄τ . Pour ce faire, on note :

— σ̄τ,i, l’écart type empirique de l’erreur relevé à l’instant ti,
— x̄τ,i, la moyenne empirique de l’erreur à l’instant ti,
— Dopt,i = [xl,i, xr,i], le domaine optimal relevé à un instant ti.
Alors asup est donné par la formule

asup = max
i

(
max(

|xr,i − x̄τ,i|
στ,i

,
|x̄τ,i − xl,i|

στ,i
)

)
.

Nous nous mettons dans le cadre d’observations de la section 4.3.

Dans le cadre de l’analyse paramétrique de cette méthode, le paramètre τ ne sera pas observé, et fixé à
valeur 0.

Figure 24 – Superposition entre la solution exacte et l’approximation

La figure 24 se décompose en 4 courbes, la courbe violette représente la solution obtenue à partir de la
projection sur tout le domaine, la courbe verte représente l’approximation obtenue par projection sur D la
courbe bleue représente le domaine Dopt, et la courbe jaune représente D, obtenu à l’aide de la méthode par
majoration.

On apperçoit que les coubres vertes et violettes sont confondues, et que le domaine itératif (en bleu) est
plus petit que le domaine obtenu de manière explicite (en jaune). La superposition nous informe que cette
méthode donne une approximation proche de celui utilisant une projection sur tout le domaine (dont l’on
quantifiera l’erreur d’approximation dans la section 4.5). Ces deux résultats sont liés à la construction du
domaine D qui contient le domaine Dopt.

Variation de la tolérance d’erreur ϵ̄ :

La figure 25 se décompose en deux graphes. Le graphe de gauche est constitué de deux courbes. La courbe
violette représente la valeur de Errproj calculée en utilisant le domaine de projection D sous divers seuils de
tolérance ϵ̄, et la courbe verte représente la tolérance ϵ̄, en fonction de la tolérance ϵ̄, c’est la courbe d’une
fonction identité. Le graphe de droite représente la valeur du coefficient asup en fonction de la tolérance ϵ̄.
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Figure 25 – Erreur de projection Errproj en fonction de la tolérance ϵ̄ (à gauche). Valeur du coefficient
asup en fonction de la tolérance ϵ̄ (à droite)

Sur le graphique de gauche, l’erreur Errproj est plus faible que la tolérance ϵ̄. Le schéma converge à
l’ordre 1 vers le schéma de résolution de l’équation de BBM-KdV sur l’ensemble du domaine, lorsque la
tolérance ϵ̄ tend vers 0. Sur le graphe de droite, la réduction de la tolérance a pour effet d’augmenter la
valeur du coefficient asup, ce qui a pour effet d’agrandir le domaine D (puisque la valeur de τ = 0, l’écart
type στ est le même pour toute tolérance), et ainsi projeter sur un plus grand domaine, ce qui a pour effet de
réduire l’erreur de projection Errproj , comme l’atteste le graphe de gauche. Ce résultat est en concordance
avec celui présenté dans la figure 11 qui montre que la réduction de la tolérance ϵ̄ a pour effet d’augmenter
la longueur de Dopt

Variation du nombre de cellules :

Figure 26 – Valeur de Errproj selon différents maillages (à gauche). Valeur de asup selon différents maillages
(à droite).

La figure 26 est décomposée en deux graphes. Sur le graphe de gauche, la courbe violette représente
l’erreur de projection Errproj en fonction du maillage, et la courbe verte représente la tolérance d’erreur ϵ̄.
Sur le graphe de droite, il est représenté la valeur du coefficient asup sur différents maillages.

Sur le graphe de gauche, il apparait que l’erreur de projection Errproj diminue lorsque le maillage se raf-
fine. Sur le graphe de droite, il apparait que la valeur de asup varie peu entre les différents maillages observés
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(asup prends des valeurs entre 2.95 et 3.25), excepté en δx = 0.01 où le coefficient augmente pour prendre la
valeur 3.7. De plus, pour une valeur de asup égale sur deux maillages, l’erreur de projection Errproj diminue
lorsque le maillage se raffine.

4.5 Temps de calcul de la méthode explicite par majoration

Figure 27 – Comparasion entre les temps de calculs de différentes méthodes (à gauche). Norme L2 de
l’erreur d’approximation de la méthode explicite par majoration, en fonction du temps (à droite)

La figure 27 se décompose en deux graphes obtenus à partir de la résolution numérique du cas test de
la section 3.2.2 avec une durée de T = 5. Le graphe de gauche est composée de trois courbes, la courbe
violette représente le temps de calcul obtenu sur la projection d’un domaine entier (c’est la même courbe que
celle présente en figure 6), et la courbe verte représente le temps de calcul obtenu pour résoudre le problème
à l’aide de la méthode itérative (c’est la même courbe que celle présente en figure 15), et la courbe bleue
représente le temps de calcul avec une projection opérée sur un domaine D obtenu à l’aide de la méthode
explicite par majoration étudiée en section 4.4, les observations seront concentrées sur cette dernière. Le
graphe de droite représente l’erreur en norme L2 de la différence entre le résultat en u de la méthode par
projection sur tout le domaine Ω et, le résultat en u de obtenu par projection sur ce même domaine D. Cette
différence est étudiée en fonction du temps.

Sur le graphe de gauche, la courbe bleue, croit le moins vite parmi l’ensemble des courbes, ce qui signifie
que le temps de calcul pour cette méthode explicite est moins grand que la méthode de projection sur tout
le domaine. Par exemple, pour 100 000 cellules, ce qui représente δx = 10−4, le temps de calcul est de
2900 secondes pour la méthode de projection sur le domaine entier, tandis qu’il est de 825 secondes pour la
méthode explicite.

Sur Le graphe de droite, l’erreur croit en fonction du temps. L’erreur observée est faible et admet des
valeurs proche (avec parfois des valeures moins élevées) de celles observées pour la méthode itérative (figure
15 ). Ce graphe d’erreur nous montre alors que la méthode explicite de la section 4.4 est une méthode précise
pour résoudre numériquement le problème (1).

La méthode de détermination explicite du domaine de projection par un principe de majoration, présentée
dans la section 4.4, est donc une approche rapide et précise pour résoudre numériquement BBM-KdV (4).

28



5 Conclusion
Dans ce rapport de stage nous avons présenté, que l’équation de BBM-KdV peut s’écrire sous une forme

hyperbolique avec un terme source réalisant une projection sur un sous espace vectoriel de L2. D’un point de
vue numérique, cette nouvelle formulation se résouds par deux étapes (la première consiste en la résolution
d’une étape hyperbolique, et la seconde étape est une projection sur un sous espace vectoriel) s’éffectuant
successivement pour chaques pas de temps.
Le temps de calcul de la résolution est principalement occupé par la seconde étape de résolution qui nécessite
la résolution d’un système matriciel. Pour réduire le temps de calcul on se concentre sur l’étape de projection
sur un sous-domaine de l’espace observé. L’introduction d’un critère d’erreur a été effectué pour le délimiter.
La mise en place de ce sous-domaine a été réalisé de plusieurs méthodes dont certaines n’ont put être
concluante pour des raisons techniques, cependant deux d’entres elles ont étés retenues, pour des raisons
différentes.
La première est une approche itérative qui, en dépis de son temps de calcul trop élevé, nous a donné une
estimation du domaine optimal et nous a permis d’obtenir des valeurs objectifs pour les bords du domaine.
La seconde méthode est une méthode explicite qui repose sur une majoration du domaine optimal qui ap-
proxime numériquement la résolution d’un problème de KdV-BBM plus rapidement que l’une projection sur
l’ensemble du domaine (ce qui représente la méthode de résolution numérique par défaut), permettant de
répondre à nos attendus de stages.

Le modèle de KdV-BBM est un modèle simplifié, ne prenant pas en compte de la physique. Pour des
approches plus concrètes, on pourrait regarder le résultat que peux donner cette équation sur différentes
EDP, par exemple Green-Naghdi, qui peut s’écrire à l’aide de l’équation de Shallow-Water pour la partie
hyperolique avec une projection sur un sous espace vectoriel de L2 . On pourrait, dans ce cas également
observer comment définir le domaine optimal dans le cas plusieurs vagues (en le décomposant en plusieurs
domaines optimaux par exemple), comment le caractériser dans un espace de plusieurs dimensions, ou de
traiter un cas avec une bathymétrie.
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