Rapport de stage de Master 2 :

Méthode multi-échelle avec apprentissage

profond adaptatif pour les écoulements

JOUBERT Valentin

Master MACS 2023

Entreprise d’accueil : IMT Nord Europe

Tuteur entreprise : M. Modesar Shakoor / Tuteur université : M. Mehdi Badsi
Avril - Septembre 2023

INE Nantes
W7 Université

Y

IMT Nord Europe

Ecole Mines-Télécom
IMT-Université de Lille

Table des matiéres

I Introduction du sujet
1 Meéthode multi-échelle

2 Réseau de neurones artificiel : définition

IT Structure de notre réseau de neurones
1 Paramétres de notre réseau de neurones

2 Utilisation d’un auto-encodeur

IIT Intégration du réseau de neurones dans le solveur multi-
échelle

1 Communication des résultats des différentes échelles

2 Différence cas d’entrainement/cas concret

IV Réseau de neurones actif

V Reésultats

VI Conclusion

11

11

12

13

15

22

Premiére partie

Introduction du sujet

1 Méthode multi-échelle

Dans le cadre d’un probléme d’écoulement en milieu poreux, la résolution par un
solveur éléments finis classique n’est pas trés intéressant. En effet, la prise en compte
de petits obstacles nécessiterait que les cellules du maillage soit plus fines que ces
derniers et cela impliquerait un accroissement du temps de calcul non désirable.
Afin de pallier ce probléme, on utilise une méthode multi-échelle développée par le
CERI MP de 'IMT Nord-Europe (Shakoor & Park, [1]). Pour l'exécution de cette
méthode, on effectue deux résolutions de problémes. La premiére & grande échelle
sur un domaine noté QM (z) prendra en compte le domaine en son ensemble avec ses
conditions limites sans tenir compte des obstacles. Sur chaque point d’intégration du
maillage de ce premier domaine, on créé un sous-domaine (noté Q™(z)) comprenant

un obstacle généré en fonction des caractéristiques du milieu poreux.

* coarse scale velocity nodes
O coarse scale pressure nodes
» coarse scale integration points

+» fine scale velocity nodes
O fine scale pressure nodes
» fine scale integration points

figure 1 : Schéma représentant la structure de la méthode multi-échelle (tiré de [1])

Le probléme variationnel a résoudre sur 1’échelle la plus grande est le suivant.

Soient des conditions de Neumann ¢3 sur I'¥ et conditions de Dirichlet v} sur T'¥

2

Trouver v (z,t) € VM (t),p™ € L*(QM) tel que :

Jopr (FM (2, t).00M (2) + oM (2, t) - VpouM (2))da

() Tatl) — iy ade. oy D@)

Vool € VM (t)
vopM e L2(OM)

Avec 'espace
V() = {w e H'(QY)" w(z) = vp (2,1),¥(x,t) € Ty x [0,T]}

HY(OM) = {w € L*(QY),V,w € L*(Q")%}

Les fonctions fM(x,t) et o™ (z,t) sont des fonctions dépendantes de v (z,t) et
V.M (x,t) que 'on souhaite déterminer.

On introduit pour cela le deuxiéme probléme sur la plus petite échelle Q™ C R?, avec
des conditions de Dirichlet homogéne autour des obstacles I'y = 0 avec I'p; C 9Q™,
qu’il faudra résoudre sur chaque point d’intégration. Ce probléme est issu des mémes
équations que le probléme a grande échelle avec des conditions pour la conservativité
de notre systéme. On veut que la moyenne de la vitesse calculée sur le domaine le
plus fin soit égale a la vitesse calculée sur le point d’intégration associé du plus grand

domaine.

1
oM (2,t) = —— v (y, t)dy (2)
27 S

V" ={we H(Q")" w(z) =0,¥(z) € T}

de méme pour le gradient vitesse

1
vva(xu t) - W/ﬂ Vyvm(y7t)dy (3)

De plus on introduit la notion de puissance virtuelle (Blanco et al, [7]) sur la grande

et petite échelle (respectivement notées PM et P™) avec
PM(sVM sGM 5pM) = fM(x,t).6VM 4 oM sGM — pMir(6GM) (4)

V(VM 5GM 5pM) € RY x R x R
et
Pm(avM, SGM su™ 5p™, Sa, 63) =

8t yt V"™ (y,).V, o (y,t)).60™ (y)
|Qm’ / +2;LVSde” "y, t) : V0™ (y,t) dy
Y)Vy.0v™(y) — op™(y) Vo™ (y, t)
1 M
—dav. <|Qm| Qm (yut)dy_v (xvt»

1
27 Jo

—a.(W /Qm ™ (y, t)dy — SV (x,t))

=08+ (mr | V™ (g)dy = Voo (,1)) (5)

1
-5 (—m/ V00" (y, t)dy — SGM (z,t))
2] Jam
V(6VM (2,1),6GM (x,1)) € RxR™ V(5u™, 6p™) € V" L*(Q™), V(6a,68) € Rx R4

On impose aussi un équilibre entre ces deux valeurs. Finalement, le probléme varia-
tionnel sur la plus petite échelle est le suivant.

Trouver (v™(.,t),p™, a, B) € V™(x) x L*(Q™) x R? x R*d

avec (vM(x,t),pM) € VM(t) x L2(QM)

atyt +u™(y,). Vo (y,1)).60™ (y)
| / +2/LVSde” ™y, t) 1 V,00™(y, t) dy
Y)Vy.00™ (y) — op™(y)Vy.0™ (y, 1)

—6a<|91m| [ty = V(e 0)

1

—003: (W - V0" (y, t)dy — VoM (2,1)) (6)
1
—a-(m - ov™(y, t)dy)
B (o [Vyov™(y, dy) = 0

V(5u™, 5p™) € V™ x LA(Q™)
V(da,68) € RY x RP<d

Il est interessant de remarquer qu’on peut lier fM, oMdev et o, B comme indiqué
ci-dessous (preuve dans [1]) :

= a

et
O_M,dev —|-pr — ,8

On peut donc obtenir fM et gMdev

, nécessaires a la résolution sur la grande échelle,
en résolvant le probléme sur les petites. Toutefois, la résolution par éléments finis
du probléme variationnel & petite échelle (2) sur tout les points d’intégrations du
domaine QM et & chaque pas de temps est & proscrire puisqu’elle entrainerait une
augmentation du temps de calcul non désirable.

C’est dans ce cadre que s’inscrit mon stage dont l'objectif est de créer un réseau de

neurones capable de prédire o et 3 sans passer par la résolution éléments finis.

2 Réseau de neurones artificiel : définition

Un réseau de neurones artificiels est un systéme permettant, a partir de para-

metres d’entrées, de prédire un résultat voulu.

Neurones

Paramétres intermediaires
d'entrée

Prédiction

couche couche
d'entrée couche(s) intermédiaire(s) de sortie

figure 2 : Structure d’un réseau de neurone artificiel

La couche d’entrée contient les parameétres nécessaires a la prédiction. Chaque
neurone est le résultat d’'une fonction d’activation prenant en antécédent la somme
d’un réel (nommé biais) et d’'une combinaison linéaire des neurones de la couche
précédente. La fonction d’activation est la méme pour tout les neurones d’une méme
couche, seul la combinaison linéaire et le biais changent. Cette méthode est itérée
jusqu’a la couche de sortie contenant autant de neurones que 'on a de parameétres a
prédire.

On entraine notre réseau avec des données pré-calculées dont on connait le résul-
tat attendu en fonction des parameétres d’entrée. Cet entrainement est un probléme
d’optimisation qui consiste & minimiser I'erreur entre la sortie effective du réseau de
neurone et le résultat pré-calculé en jouant sur les poids des combinaison linéaires de
notre systéme et les biais. Dans le cadre du stage, il faudra modifier la structure d’un
réseau de neurone existant prédisant seulement la vitesse. Pour déterminer comment
modifier la structure final de notre réseau de neurone, il faut savoir quels sont les

parameétres nécessaires a la résolution par la méthode multi-échelle.

Deuxiéme partie
Structure de notre réseau de

neurones

1 Paramétres de notre réseau de neurones

Dans notre cas, le réseau de neurones servira notre résolution multi-échelle en
prédisant la solution des problémes sur I’échelle la plus fine. Pour construire un réseau
de neurones adapté, il faut déterminer les paramétres nécessaires a la résolution de
nos systémes et ceux qui seront utiles aux résolutions ultérieurs.

Les paramétres nécessaires a la résolution de ce probléme sont :

1. vM(z,t) et V,0M(z,t) la solution et son gradient calculés sur le point d’inté-
gration associé de I’échelle la plus grossiére et servant a la conservativité du
systéme entre les deux échelles. Ces parameétres sont de dimension respective

d et d* (6 au total pour nous en 2D).
2. dt un réel correspondant au pas de temps entre chaque itération.

3. v™(:, t—dt);...;™(:, t—oxdt) les solutions du probléme aux temps précédents

o™
ot(y,t)"

dépendra du choix de 'ordre o de la dérivée en temps. Cela augmentera le

sur la plus petite échelle pour le calcul de Le nombre de solutions

nombre de paramétres de o X N,, x d, avec N,, le nombre de noeuds sur le plus

petit domaine.

Nous aurons donc une couche d’entrée avec le nombre de neurones suivant.
N.=0ox N, xd+d+d*+1 (7)

Les paramétres nécessaires aux résolutions ultérieures des problémes sur les diffé-

rentes échelles sont :

1. v™(:,t) pour la méme raison et avec la méme dimension que vu précédemment.

2. P™ la puissance, un scalaire nécessaire pour la résolution du probléme a plus
grande échelle. Cette puissance nous donnera fM(z,t) et ™4 (z,t) puisque
(d’aprés (5)) nous pouvons les obtenir via la différentiation de la puissance
virtuelle en fonction v (z,t) et Vv (z,t). De plus, il nous faudra aussi les
dérivées seconde de v, pour l'utilisation de I’algorithme de Newton-Raphson
1]

Avec ces parameétres, on aura donc une couche de sortie avec le nombre de neurones
suivant.
Ny=N, xd+1 (8)

Pour le reste du réseau de neurones il est plus compliqué de choisir le nombre de
couches/neurones. Il est communément admis dans la littérature qu’un réseau avec
deux couches intermédiaires peut prédire la grande majorité des problémes sans faire
exploser sa complexité qui engendrerait un temps d’entrainement beaucoup plus long.
Pour ce qui est du nombre de neurones par couche, un choix trop élevé augmenterait
la complexité du réseau plus que nécessaire, mais un choix trop bas nous donnerait
un réseau trop peu précis. On peut tout de méme déterminer un nombre de neurones
sur les couches intermédiaires a ne pas dépasser (Khosravi et al, [3]) en fonction de
la quantité de données disponibles pour ’entrainement de notre réseau.

La minimisation du nombre de neurones est primordial afin de réduire le temps
de calcul. Si on ne peut réduire directement autant qu'on le souhaite le nombre
de neurones dans les couches intermédiaires sans dégrader notre résultat, il existe

d’autres moyens de le faire.

2 Utilisation d’un auto-encodeur

Un auto-encodeur est un réseau de neurone qui essaye de reproduire ses para-
metres d’entrée en sortie apres étre passé dans des couches intermédiaires possédant
moins de neurones que les couches aux extrémités. Cela nous permet d’encoder (res-
pectivement décoder) des données en isolant les opérations effectuées avant (respec-
tivement aprés) la couche intermédiaire. Dans notre cas il est intéressant d’en utiliser
un puisque notre réseau de neurones peut potentiellement, si le maillage sur la plus

petite échelle est trés fin, prendre un trés grand nombre de parameétres d’entrée.

Encodeur | . .
. Couche Couche . Couche
dentrée ntermediairer de sortie

- “_::—" >ec = 5

——= ea—

1

I } :‘

— ‘-“." .
."__, “Données . ._,_ @

...-1 ~
L
[
I
I

compressées : 3
i (Hm) I \.
Donne'es : ' Donnees (Vm)
d'enmee | __'reconstruites
o Décodeur

figure 3 : Schéma représentant la structure d’un auto-encodeur

En encodant v™ au temps initial et en entrainant notre réseau de neurone avec
les solutions encodées (notées H™) plutot qu’avec les valeurs en tous points des
solutions précédentes, nous réduirons drastiquement le nombre de neurones présents
notre réseau. Pour cela, nous utiliserons un auto-encodeur implémenté avant mon
arrivée.

Nous ferons donc nos prédictions avec les données compressées a chaque pas de temps
puis décompresserons la solution au temps final. Notre algorithme aura la structure

suivante :

|

Résolution i

grande échelle Vr‘_ﬁ VVB;'
I

|
. precicteur {7, Decodeur — VI

U U VU RS S I ———

|
Clrier Priet
Résolution et P |
grande échelle Vm va o
Solveur-multi Visualisation des
échelle résultats

figure 4 : Schéma représentant la structure de I’algorithme

Nous allons donc, pour chaque prédiction avec le réseau de neurone, récupérer les
paramétres VM et VVM du point d’intégration associé sur la grande échelle ainsi que
les solutions encodées H prédites précédemment puis prédire o, 3 et le nouveau
champs de vitesse encodé. La décompression des solutions encodées n’est pas néces-
saire a chaque pas de temps puisque le réseau sera entrainer a prédire en recevant
en entrée les solutions encodées. Toutefois, I'utilisation du décodeur reste obligatoire
pour la visualisation des résultats. Il faudra donc s’assurer que la compression de la
solution au temps initiale n’engendre pas une trop grande erreur qui risquerait de se
répercuter sur la qualité de prédiction de notre réseau.

Une fois la structure et les paramétres du réseau de neurones de prédiction et de
I’auto-encodeur fixés, on les construit dans un notebook Jupyter a I'aide de la bi-
bliothéque TensorFlow de Google, implémentée en Python. Le code élément finis qui
effectue la résolution du probléme sur la plus grande échelle est en C. Il faut donc
trouver un moyen de faire communiquer ces deux codes afin de pouvoir résoudre

notre probléme multi-échelle.

10

Troisiéme partie
Intégration du réseau de neurones

dans le solveur multi-échelle

1 Communication des résultats des différentes échelles

Il existe plusieurs maniéres de faire communiquer un code Python et un code C.
Dans notre cas, 'utilisation d’un réseau de neurones de TensorFlow nous a premiére-
ment amené a considérer 'utilisation de I’API TensorFlow pour le C. Son utilisation
aurait permis de charger le réseau de neurones sauvegardé depuis Python directement
dans le code C pour effectuer les prédictions nécessaires a la résolution du probléme
multi-échelle. Malheureusement, le manque de documentation nous & rapidement fait

changer notre choix.

Notre deuxiéme choix a été l'utilisation de 'API Python/C. Puisque nous ne
pouvions pas importer le réseau de neurones en C, nous avons pensé a lancer la
prédiction dans un script Python depuis le C et de récupérer les variables via un
module commun. Cette méthode fut plus concluante que la premiére puisque nous
avons réussi a effectuer des prédictions. Cependant, c’est le debuggage qui pose pro-
bléme avec cette API. 1l est difficile de suivre la gestion de la mémoire avec Valgrind

puisque les transitions Python/C sont inaccessibles.

Il existe un autre outil développé par TensorFlow, il s’agit de 1'outil de service
TensorFlow. Il permet d’utiliser un réseau de neurone enregistré sans I'importer en C.
cet outil est un serveur qu’on peut exécuter sur une autre machine que celle effectuant
le calcul éléments finis. Le code éléments finis va ensuite interroger le serveur et se
voir renvoyer les prédictions, et ce a travers une interface CURL. Cette derniére est
accessible en C avec la librairie libcurl, et ce avec trés peu d’effort de programmation.

C’est ce troisiéme choix que nous avons décidé de garder. Maintenant que nous avons

11

un réseau de neurones et un moyen de communiquer son résultat a notre solveur
éléments finis de la grande échelle. Il faut nous assurer que notre réseau ayant été
entrainé sur des cas potentiellement trés différents des cas qui vont étre rencontrés

lors des prochaines simulations puisse prédire correctement les solutions.

2 Différence cas d’entrainement /cas concret

Lors de I’entrainement de notre réseau de neurones, nous avions des cas ol toutes
les entrées ainsi que les sorties étaient normalisées pour une utilisation optimale de
notre réseau. Il faudra donc faire en sorte que pour les autres cas que ceux d’en-
trainement une normalisation soit faite. De plus, dans 'objectif de réduire la taille
de notre réseau, nous n’avons pas sorti fM(x,t) et o (z,t) mais la puissance
PM(z,t). Or, comme vu précédemment, ce n’est pas la puissance qui nous intéresse
pour les résolutions mais ses différentiations. Pour pouvoir faire la distinction entre
les cas d’entrainement et les cas que notre réseaux va rencontrer une fois enregistré,
nous avons un booléen qui, en fonction du cadre dans lequel le réseau de neurone est
utilisé, déterminera s’il y aura une normalisation des entrées, une dénormalisation
des sorties et des différentiations sur la puissance prédite. Ces différentiations seront

effectuées avec les fonctions fournies par la bibliothéque TensorFlow.

Méme en prenant en compte ces différences entre les prédictions d’entrainement
et les prédictions effectuées dans le cadre de la résolution multi-échelle. Nous ne
pouvons pas étre certains que tous les cas qui vont étre traités par notre réseau de
neurones auront une solution prédite avec une erreur d’approximation raisonnable. Il
faut anticiper le fait que le réseau risque d’étre confronté a des cas dont il n’a jamais
été entrainé a prédire convenablement la solution. Nous allons nous pencher sur les
fagons d’améliorer ce réseau de neurones afin d’éviter ces prédictions hasardeuses qui

se répercuterons sur le résultat de la simulation.

12

Quatriéme partie
Réseau de neurones actif

Mesurer 'incertitude d’un réseau de neurone revient a quantifier la confiance du
réseau envers sa prédiction. Cette incertitude peut étre issue de plusieurs facteurs et

peut donc étre séparée en deux groupes :

- L’incertitude aléatoire liée a la variabilité naturelle des données. En effet, si les
parameétres d’entrée sont issus de mesures, il se peut qu'une précision trop faible ou

un bruitage dans le recueil des données puisse affecter la prédiction.

- L’incertitude épistémique liée & la variabilité engendrée par le réseau. Le choix
des paramétres qui vont étre entrés dans le réseau ainsi que le choix de la structure
(nombre de couches, choix de la fonction d’activation) peuvent aussi impacter la pré-

diction.

C’est cette deuxiéme incertitude que I'on va chercher a caractériser.

Pour ce faire, nous allons générer de la variance dans nos prédictions. Nous ferons
ensuite plusieurs tirages consécutifs pour de méme données d’entrée et nous analyse-
rons les différents résultats prédis. Une variance faible dans les prédictions indiquera
une forte confiance du réseau sur la qualité du résultat. A I'inverse, une forte variance
indiquera une incertitude du réseau sur la prédiction de ce cas en particulier. Pour
générer cette variance nous allons introduire des dropouts dans notre réseau. Un

dropout permet, avec une probabilité p définie au préalable, d’annuler un neurone.

figure 5 : Schéma représentant I'utilisation de dropout.

13

Cette méthode introduit de la variance par le fait qu’a chaque itération d’une prédic-
tion, les neurones ne seront pas issus d’une combinaison linéaire des mémes neurones
de la couche précédentes. En utilisant cette technique au cours de ’entrainement,
cela permet aussi d’avoir une meilleure répartition des poids entre les neurones et
donc une assurance que tout les paramétres sur le couche initiale auront un impact
sur la prédiction. L’utilisation de dropouts nous intéresse surtout pour sa premiére
propriété puisque nous allons pouvoir étudier la variance des résultats aprées plusieurs
prédictions d’'un méme cas, nous aurons alors un apercu de la confiance du réseau sur
la prédiction. Une fois que nous aurons déterminé des cas avec une grande incertitude
de prédiction, nous pourrons améliorer notre réseau en ajoutant ces cas aux données
d’entrainement. Cette méthode permettra d’effectuer un entrainement plus efficace
avec un minimum de cas et donc de gagner du temps a la fois sur la génération de

données et sur le temps d’entrainement.

14

Cinquiéme partie
Résultats

Nous allons nous concentrer sur un maillage de la petite échelle en 2D com-
posé de 3172 points d’intégrations. Notre auto-encodeur sera entrainé a la compres-
sion/décompression du champs de vitesse sur ce maillage avec une couche intermé-
diaire composée de seulement 8 neurones. On choisi d’effectuer une approximation
d’ordre 2 pour la dérivée en temps. Notre réseau de neurone de prédiction prendra
donc 23 parameétres d’entrée pour une prédiction de 9 paramétres de sortie (7,8)
Nous aurons accés a un jeu de données composée de 1024 problémes pré-calculés
avec un solveur éléments-finis sur 101 pas de temps de 0.1 seconde. Cela représente
1024 x 101 = 103424 prédictions pour notre réseau qui fonctionne pour un seul pas

de temps a la fois.

1.9e+01

15

— 10

Vitesse

1.9e-03

o EHAT

. e Iavy, i,
- % an ek [W e oy e
R e)3 VS8
S R R e]

figure 6 : Exemple de champs de vitesse pré-calculée par un solveur éléments-finis

sur notre maillage

On répartis en trois groupes distincts avec les répartitions et objectifs suivants :

1. 60% des cas sont dédiés a ’entrainement des réseaux de neurones.

15

2. 20% des cas sont dédiés a la validation de 'entrainement des réseaux de neu-

rones.
3. 20% des cas sont dédiés aux test post-entrainement.

Les poids des neurones et les biais des réseaux sont donc optimisés sur le jeu d’en-
trainement jusqu’a avoir des résultats acceptables sur le jeu de validation. Ce qui est
acceptable est définit avant I’entrainement. Dans notre cas, on arréte I’entrainement
lorsque la prédiction du jeu de validation ne s’est pas améliorée pendant 30 itérations
d’entrainement successives. Nous observons ensuite le comportement des réseaux sur

le jeu test n’ayant jamais servi lors de I’entrainement ou de la validation.

0.0175 1 WM Puissance
B Champs de vitesse
0.0150 - B Autoencodeur

0.0125 A

0.0100 A

EQM

0.0075 A

0.0050 A

0.0025 A

0.0000 -

5000 6000 7000 8000 9000 10000
Test

figure 6 : Erreurs quadratiques moyennes (EQM) relatives sur tout les cas test
entre :
1. la puissance prédite et celle obtenue par la solution éléments-finis,
2. le champs de vitesse prédis et celui calculé par éléments-finis,
3. le champs de vitesse calculé par éléments-finis et la sortie aprés sa

compression /décompression.

16

L’erreur quadratique moyenne relative est calculée avec les solutions dénormalisées

comme ci-dessous :

3172)
zjo(vgéntree - vi,ngortie)
seme o =
1 erreur — N 3172
Z Z (U;n,entree)z
=0 2=0

On remarque que pour certains cas, I’erreur explose. Cela correspond & une génération
automatique de parameétres d’entrée qui a pris des valeurs éloignées de celles utilisées
pour 'entrainement de notre réseau.

En effet, la génération des cas étant aléatoires, il se peut que certains cas soient
vraiment singuliers. Pour vérifier cela, on regarde s’il existe des cas avec une puissance
supérieure a la puissance moyenne + 10 fois la variance. Pour nos cas, la puissance

moyenne est de

—— Casn°7
400000 ——— Cas n°®335
—— Cas n°386)
—— Cas n°821 [
—— (Cas n®956
- 300000 -
£
=
@
(8]
& 200000 -
7]
R
=
[
100000 A
0 <

0 20 40 60 80 100

Nombres de pas de temps

figure 7 : Cas avec une grande puissance a prédire.
On compare ces cas avec les prédictions effectuées par le réseau de neurone.

17

— Cas n°*7
80000 - Cas n°335
—— Cas n°386
—— Cas n°821
Cas n®956
~ 60000
E
2
< 40000 1
a
18]
(8]
c
]
@
2 20000 -
o
0 -

0 20 40 60 80 100

Nombres de pas de temps

figure 8 : Prédiction des cas avec une grande puissance.

Méme si les prédictions ont la bonne forme, les puissances prédites sont environ
5 fois trop petites. La majorité de ces cas étant déja compris dans les cas d’entrai-
nements, il faut trouver un moyen de ne pas prendre en compte ces cas particuliers.
Afin d’avoir une utilisation optimale de notre réseau de neurone, on va mesurer la
confiance de notre réseau vis-a-vis de sa prédiction afin de ne pas l'utiliser dans des
cas peu ou non entrainés. Pour ce faire, on calcule la variance des résultats aprés I'uti-
lisation de dropouts. On détermine premiérement le nombre d’itérations nécessaires

pour avoir une valeur représentative de la variance d’un résultat prédit.

18

0.14 -

0.12 A

e —— ——

A~ e e e R
0.10 A

0.08 -

Variance

0.06 A

0.04 1

0.02 |

0.00 -

0 200 400 600 800 1000
Nombre de tirages
figure 9 : Graphes représentant ’évolution de la variance des résultats normalisés

en fonction du nombre d’itérations

Nous pouvons remarquer que la variance des résultats se stabilise aux alentours
de 200 itérations. Toutefois, nous allons fixer le nombre d’itérations a 100 pour ef-
fectuer pour le calcul de variance puisque cela suffit & déterminer quelles prédictions
engendrent de grandes variances et lesquelles ne posent pas de problémes d’incerti-
tudes trop élevé. Maintenant que nous savons combien d’itérations faire pour obtenir
la variance d’une prédiction et donc quantifier la certitude du réseau sur cette der-
niére, nous pouvons vérifier la corrélation entre la variance et la précision des résultats

pour des cas tests générés de la méme fagon que les cas utilisés pour I'entrainement.

19

0.8

0.7 1

0.6

0.5

Variance

0.3 4

0.2 4

0.1 4

0.0 -

0.4 1

200 400 600 800 1000
Test

EQM

0.05

0.04 4

0.03 A

0.02 4

0.01

0 200 400 600

Test

figure 10 : Comparaison entre variance et erreur de prédiction

N puissance
Bm Champs de vitesse

1000

La figure 10 montre bien la corrélation entre 'incertitude de résultat, que 1’on

peut obtenir sans avoir les données calculées au préalable par un solveur éléments

finis, et l'erreur d’approximation. Il semble donc possible de détecter les cas que

le réseau prédit avec trop peu de précision. Tous les résultats précédents on été

obtenus sur un premier jeu de données généré avec des conditions initiales choisies

aléatoirement. Nous allons désormais appliquer le réseau a un cas concret résolu par

le solveur élément finis.

0.25 4

0.20

Variance

0.10 A

0.05

0.00

0.15 1

20 40 60 80 100

Test

EQM

0.00035 -

0.00030 -

0.00025 -

0.00020

0.00015 -

0.00010

0.00005 -

I puissance

0.00000 _M

0 20 40 60
Test

80 100

figure 11 : Comparaison entre variance et erreur de prédiction de la puissance sur

une deuxiéme jeu de données

20

Nous pouvons remarquer que I’erreur de prédiction de la puissance est plus faible pour
ce second jeu de données. Cela peut étre expliqué par le fait que la puissance prend
des valeurs moins grandes dans ce cas concret que dans les cas précédents générés
aléatoirement. Nous pouvons aussi remarquer que l'incertitude semble encore étre
corrélée a l'erreur de prédiction ce qui est bon signe pour une utilisation du réseau

sur des cas variés.

21

Sixiéme partie
Conclusion

Durant ce stage, nous sommes partis d'un autoencoeur et d'un réseau de neurone
ne prédisant que la vitesse. Nous avons ajouté la prédiction de la puissance et sa
différentiation, la communication avec le code C et ’estimation des incertitudes. Il
reste tout de méme des d’éléments a perfectionner avant de pouvoir avoir un sol-
veur multi-échelle utilisable. Notamment la capacité de prédire des cas plus variés en
améliorant l'apprentissage actif. En effet, la méthode de 'incertitude n’est pas mira-
culeuse car des cas fortement similaires engendrant une grande incertitude risquent
d’étre ajoutés plusieurs fois aux données d’entrainement. Il faudra donc trouver un
moyen de pallier cela (I'utilisation du partitionnement des données peut étre envi-
sagé).

J’ai personnellement beaucoup appris au cours de ce stage avec de nouvelles notions
notamment sur les réseaux de neurones, leurs fonctionnements et implémentations,
ainsi qu’un nouvel environnement de travail dans un bureau de recherche trés diffé-
rent des autres cadres de travail que j’ai pu connaitre auparavant. J’aimerai pour la
suite me faire une expérience du travail dans le privé afin de pouvoir faire un choix
de carriére professionnel plus éclairé.

Je remercie M. Modesar Shakoor de m’avoir donné 'opportunité d’effectuer ce stage
et d’acquérir cette expérience, ainsi que les personne m’ayant accompagnés durant
ces deux années de master, aussi bien enseignants que collégues de promotion ou de

stage.

22

Références

1]

2l

3]

4]
[5]

6]
7]

Modesar Shakoor and Chung Hae Park, Computational homogenization of uns-
teady flows with obstacles, 2022

Dmytro Vasiukov, José Mennesson, Krushna Shinde, Modesar Shakoor and
Vincent Itier , Dimensionality reduction through convolutional autoencoders

for fracture patterns prediction, 2023

Abbas Khosravi, Saeid Nahavandi and Doug Creighton,A prediction interval-
based approach to determine optimal structures of neural network metamodels,
2010

Yarin Gal,Uncertainty in Deep Learning, 2016

Ozan Sener and Silvio Savarese,Active learning for convolutional neural net-

work : a core-set approach, 2018
Lior Rokach and Oded Maimon, Clustering Methods, 2005

P. J. Blanco, P. J. S"anchez, E. A. de Souza Neto, and R. A. Feijoo, Variational
Foundations and Generalized Unified Theory of RVE-Based Multiscale Models,
2016.

23

