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Introduction

Le Centre d’Etudes et d’Expertise sur les Risques, ’Environnement, la Mobilité et I’Aménagement
(CEREMA) est un établissement public & caractére administratif placé sous la tutelle conjointe du mi-
nistre de la Transition écologique et solidaire, et du ministre de la Cohésion des territoires. Le CEREMA
développe des relations étroites avec les collectivités territoriales qui sont présentes dans ses instances de
gouvernance. Il a été créé le 1°* janvier 2014. Son siege est situé a Bron, sur le site de ’ancien CETE de
Lyon. Il compte 11 directions & travers le territoire national parmi lesquelles on cite :

CEREMA risque eaux et mer est la direction technique du CEREMA s’intéressant aux aménagements
maritimes et fluviaux. Elle développe des actions techniques et scientifiques dans le domaine notam-
ment des risques naturels (inondations, submersions, érosion), des transports fluviaux, maritimes et des
énergies marines. Basé & Margny-lés-Compiegne (département de I’Oise) en région Hauts-de-France, la
recherche est menée par des chercheurs du laboratoire commun d’hydraulique numérique, équipe com-
mune CEREMA-UTC-CNRS du Laboratoire de Mécanique Roberval de I’Université de Technologie de
Compiegne (UTC).

En France, le transport fluvial est en plein renouveau (nouveau projet transeuropéen de voies a grands
gabarits Seine-Nord-Europe) puisqu’il répond pleinement aux objectifs de développement durable. Tou-
tefois, le développement de ce mode de transport passe par I’étude de I'impact économique et écologique
du passage des bateaux sur les cours d’eau et 'entretien du réseau des voies navigables. Cet entretien
consiste a des opérations de dragage pour maintenir les profondeurs des chenaux de navigation et assurer
des conditions d’écoulement en période de crue ou a des opérations de restaurations des berges. Ces
opérations sont généralement cotiteuses car les volumes de matiére a extraire sont importants.

Par ailleurs, on peut retenir que I’écoulement fluvial joue un réle important dans les processus de retrait
de berges. Comme cet écoulement est influencé a son tour par la navigation, il est 1égitime alors de se
poser la question du role et de I'impact du passage des bateaux sur le retrait de berges accentué par
Pintensification du trafic fluvial sur certaines voies d’eau (et notamment I’Oise qui alimentera le Canal
Seine Nord-Europe). Se pose alors la question de la prédiction de la tenue & long terme des berges. A
notre connaissance, peu d’investigations portent sur I’étude de 1’érosion des berges induite par le trafic
fluvial. A I’heure actuelle, sont privilégiées des approches ”pragmatiques” qui s’appuient sur des for-
mulations analytiques simplifiées qui ne permettent pas de rendre compte de facon satisfaisante de la
complexité des phénomeénes physiques mis en jeu. L’érosion des berges est en effet la conjugaison de
plusieurs processus multi-physiques mettant en jeu I’écoulement fluide et son évolution sous l'effet du
passage d’un bateau mais également son interaction avec le milieu poreux que constitue la berge et dont
le niveau de saturation dépend de I’écoulement hydrodynamique.

Dans ce contexte, nous nous proposons de mettre en place une stratégie de modélisation numérique de
la tenue des berges sous écoulement hydrodynamique. La berge peut étre vue comme un milieu poreux
soumis a un chargement variable correspondant a 1’écoulement hydrodynamique induit par le passage
des bateaux. Sous l'effet de ce passage, le niveau de chargement et le niveau de saturation dans la berge
évoluent induisant éventuellement des surcharges locales du squelette solide de la berge conduisant a la



dégradation progressive de la berge.

L’objectif de ce travail est de développer un outil numérique couplant les équations régissant les écoulements
dans le sol avec la déformation du squelette solide. Ce manuscrit se compose de 4 parties comme suit :

- La premiere partie présente le contenu et de quelques rappels sur les milieux poreux, on donnera
des éléments utiles pour la suite de notre travail ;

- La deuxieme partie présente le couplage fluide-solide. L’écoulement fluide est gouverné par
I’équation de Richards décrivant les écoulements non-permanents dans les sols non saturés et
le solide est régi par I’équation d’équilibre mécanique (quasi-statique);

- La troisieme partie est consacrée a la résolution numérique. Ces équations ont été résolues dans
un cas uni-dimensionnel. Un modele est développé pour chacune des équations permettant de
les résoudre par la méthode des éléments finis et en appliquant I'algorithme de linéarisation de
THOMAS et la méthode itérative de Picard pour la formulation mixte (f — h) de I’équation de
Richards;

- Enfin dans la derniere partie, nous présentons des résultats numériques obtenus pour différents
cas-tests pour différents types de sols (sable et argile).

1.1 Erosion des berges

Phénomene naturel, généralement provoqué par le courant, participant au transport de la charge
solide et a la recharge sédimentaire du cours d’eau. Les érosions de berges sont a I'origine des migrations
de méandres, et garantissent le fonctionnement dynamique du cours d’eau.

1.1.1 Les causes d’érosion des berges

Il existe plusieurs causes d’érosion de berge, parmi lesquelles on peut citer :

- Variation des températures : C’est-a-dire, les changements de température est aussi respon-
sable de ’érosion. Les roches et les minéraux tels que la terre, le sable, I'argile, ... qui forment les
berges réagissent aux changements de température en gagnant et en perdant du volume;

- Les phénomeénes relatifs 4 ’exploitation de la voie fluviale : C’est-a-dire chocs de bateaux,
surcharges d’engins en créte lors des travaux, opération de dragage (risque de déstabilisation du
pied de berge) ;

- Les vagues produites par le vent, peuvent également nuire a la stabilité des berges. Leurs
impacts sur la berge est tres proche de celui des vagues générées par le passage des bateaux mais
beaucoup moins dégradant ;

- Le batillage : Ce battement de 1’eau sur les berges peut étre produit par le déplacement des
bateaux ou par le vent. En effet, lorsqu’un bateau se déplace dans ’eau, la surface de I’eau monte
et descend produisant des ondes. En s’infiltrant dans le sol de la berge, cette montée de la surface
de I'eau entraine le remplissage des pores vides, sature le milieu et augmente le poids du sol.

FIGURE 1.1 — Ondes de batillage générées par le passage des bateaux et des processus associée
de transport de sédiments (Shengcheng Ji, mars 2013)



1.1.2 Les types d’érosion des berges

Par I’action d’agression extérieure provoquée par I’homme ou par la nature, les fleuves et les rivieres
ont la capacité de couper leurs propres berges aussi bien a la verticale que latéralement (méandres). Ces
deux types d’érosion des berges peuvent s’expliquer par la navigation.

- Erosion latérale : Comme le terme I'indique, I’érosion latérale est 1’érosion qui se produit sur les
cOtés, elle consiste a 1’élargissement de la vallée par le recul des berges et conduit a la formation
d’une plaine alluviale.

- Erosion verticale : Elle consiste en I’approfondissement des lits des fleuves. En s’enfongant par
érosion, les cours d’eau creusent des vallées qui possedent un profil caractéristique en V. Ce type
d’érosion peut se faire par plusieurs mécanismes parmi lesquels on peut citer :

a) Le glissement : Ce mécanisme survient plutét dans des sols cohésifs qui sont capables de
retenir de grandes quantités d’eau, ce qui ajoute du poids a la berge et réduit les forces de
cohésion entre les particules (phénomene de lubrification). Par conséquent, le talus devient
encore plus sensible au décrochement. Lorsqu’on augmente la pente ou la hauteur d’un talus,
le poids du sol excede éventuellement les forces de cohésion qui le retiennent, le sommet de
la berge se fissure et le sol glisse en plaques (voir 1.2).

(a) Situation initiale (b) Phase de creusage (¢) Glissement de talus

FIGURE 1.2 — Mécanisme de rupture verticale par glissement (Université Mila)

b) La boulance : C’est une sorte de glissement qui s’observe fréquemment lorsqu’il y a résurgence
de la nappe phréatique dans le talus. Les sols stratifiés ou un horizon de sol pulvérulent se
trouve sur un horizon de sol cohésif sont les plus sensibles ‘a ce type d’érosion. Le phénomene
résulte de la pression de la nappe phréatique sur la berge lorsque le niveau de celle-ci est
supérieur au niveau de I’eau dans le cours d’eau.

FIGURE 1.3 — Mécanisme de rupture verticale par boulance (Université Mila)

1.1.3 Propositions de solutions

Ces dernieres années, de nombreux projets scientifiques ont été publiés concernant I’érosion des berges
due au trafic fluvial. Plusieurs techniques de protection de berge ont été proposées :

- Les techniques en génie végétal : Le génie végétal utilise les aptitudes des plantes, pour
apporter des solutions techniques & des problemes de protection des sols et plus particulierement
de lutte contre I’érosion. Les techniques de génie végétal s’inspirent des formations végétales
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naturelles (herbacées et/ou ligneuses), présentes sur les berges naturelles et capables de résister
a des contraintes fortes.

- Les techniques de génie civil : L’enrochement, la technique la plus fréquemment utilisée,
consiste a mettre en place des blocs sur la portion de berge a protéger ;

- Les techniques mixtes : Elles empruntent des savoir-faire aux deux domaines que sont le
génie civil et le génie végétal. Elles associent souvent des enrochements en pied de berge et des
techniques végétales en haut de berge.

Remarque 1.1.1 Dans le cadre de ce projet, nous allons nous intéresser a l’érosion du type verti-
cal. Le probléme d’érosion de berge verticale fait appel a la résolution d’un probléme couplant l'infiltra-
tion/Uécoulement du fluide dans un sol de la berge et la déformation du squelette solide.

1.2 Généralités sur les milieux poreux

Dans cette section nous présenterons les outils concernant le milieu poreux qui seront nécessaires a
la compréhension de la suite de notre projet.

1.2.1 Définition et caractéristiques d’un milieu poreux

Un milieu poreux est caractérisé par la présence d’une matrice solide constituée de grains dont la
distribution permet la présence de pores. Ces pores sont des vides pouvant étre remplis par un mélange
d’eau et d’air.

On distingue deux types de milieu poreux : saturé et non saturé. Le milieu est dit saturé en eau si les
pores sont compléetement remplis d’eau. Si une phase gazeuse y est présente, dans ce cas le milieu est dit
non saturé en eau.

Dans le cadre de ce projet, le milieu poreux considéré est le sol.
Soit V', un volume quelconque de sol. Ce volume est occupé par V,, le volume occupé par lair, V; le
volume d’eau et Vy le volume des particules solides. Par conséquent, nous pouvons écrire :

Vi=Vo+Vs=Vot Vi 4V (1.1)

A 1
Air
Vﬂ
V\l'
Vt VI
Ve Solide
¥

FIGURE 1.4 — Diagramme schématique du sol =~ FIGURE 1.5 — Représentation d’un milieu
poreux

- V4, volume de la phase gazeuse (air) ;
-V, volume de la phase liquide;

- Vs, volume des particules solides ;

- V., volume des vides;;

- Vi, volume total de 1’élément considéré.



Nous pouvons établir un certain nombre de relations visant a décrire ce volume. L’ensemble de ces
quantités sont exprimées a 1’échelle dite de Darcy, c’est-a-dire 1a ou la loi de Darcy s’applique aisément.
C’est-a-dire une échelle macroscopique ou le détail de la ” microstructure ” du sol n’est pas connu.

A D’échelle de Darcy, un méme point peut étre occupé par les 3 phases. Par conséquent ce point est défini
par des concepts de fractions de volumiques ou encore de saturation.

e La porosité : est définie comme le rapport entre le volume des vides et le volume total du sol.

p=" (12)

Vi

Le tableau (1.1) illustre quelques valeurs de porosité de certains matériaux.

Matériaux Porosité (%)
Craie sénonienne 31
Limon compacte 34

Sable grossier 39
Argile a silex 40
Sol a paturé 47

Tourbe 80

TABLE 1.1 — Pourcentage des pores selon le type du sol (OLLIER et POIREE, 1981)

e La teneur en eau volumique : elle est définie comme le rapport du volume d’eau et le volume
total du milieu considéré. v
l

0=— 1.3

7 (1.3

Remarque 1.2.1 Certaines valeurs de 0 peuvent étre considérées comme caractéristiques. Notons Osq¢

la teneur en eau saturée (représentant la teneur en eau volumique mazimale) et 0.5 la teneur en eau

résiduelle (représentant la teneur en eau volumique minimale dans le sol).
En fonction du type de sol, 0sq¢ sera compris entre 20 et 50% alors que 0,..s sera compris entre 0.1 et

10%.

e Le taux de saturation : est défini comme le rapport entre le volume d’eau et le volume des
vides, ou encore comme le rapport entre la teneur en eau volumique et la porosité :

§=t=2 (1.4)

1l est généralement exprimé en pourcentage et varie de 0% dans un sol sec & 100% dans un sol completement
saturé.

e la perméabilité k : est la capacité d’un milieu poreux a se laisser traverser par un fluide sous
Peffet d’un gradient de pression. Cette constante caractérise le milieu poreux étudié et elle est liée a la
forme des grains et & la porosité cinématique. L’ordre de grandeur se situe entre 10~7[m/s] pour des
graves et 102°[m/s] pour de Pargile.

e La conductivité hydraulique : exprime également la capacité d’un milieu poreux a laisser passer
un fluide sous l'effet d'un gradient de pression. Cette grandeur dépend a la fois des propriétés du milieu
mais également de celles du fluide.

K= Frg (1.5)
1
ol, p la masse volumique du fluide ('eau dans notre cas), p la viscosité dynamique du fluide, & la
perméabilité intrinseque et g ’accélération de la pesanteur.
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Remarque 1.2.2 La conductivité hydraulique K et la perméabilité k sont des scalaires dans le cas ot
le milieu poreux est isotrope ou bien dans le cas de l’écoulement unidirectionnel.

Mais dans le cas d’un milieu poreux en dimension 2 et anisotrope, la conductivité hydraulique est définie
par un tenseur symétrique de la forme :

avec,

kij
Ky =~ (1.6)
"

Remarque 1.2.3 La conductivité hydraulique et la perméabilité sont des fonctions strictement crois-
santes avec le degré de saturation du milieu poreux. Lorsque le milieu est saturé, la conductivité hydrau-
lique est maximale et nous parlons alors de conductivité hydraulique a saturation K.

k(m/s) Matériaux Niveau de perméabilité
1>k>1072 Graviers sans éléments fins Tres perméable
1072 > k£ > 10~* | Sables grossiers, graviers sableux sans éléments fins Perméable
107>k >10"° Sables moyens a fins, limon peu argileux Peu perméable
1079 > k>10"° Sables argileux Tres peu perméable
k<1078 Argileux homogéne Quasi imperméable

TABLE 1.2 — Exemple de vue générale sur différents types de sols et d’ordre de grandeur de la
perméabilité k.

e Pression capillaire : La pression capillaire p. exprimant 'effet des phénomenes capillaires aux
interfaces eau-air et des forces de liaison entre ’eau et le milieu est définie comme la différence entre la
pression de I’eau du sol et la pression atmosphérique.

Pc = Pa — Pw (17)
ol, p, est la pression de 'air et p,, est la pression de I'eau.
Dans la plupart des cas, on considere la pression atmosphérique constante de ordre de ... et elle est
donc souvent négligée (p, = 0).
DPe = —Pw (18)

e La charge hydraulique : La charge hydraulique constitue le moteur de ’écoulement. C’est une
grandeur qui représente 1’énergie mécanique de I’eau. Elle s’exprime en metres et est la somme de 1’énergie
cinétique, de ’énergie potentielle et du travail réalisé par les forces de pression. L’expression de la charge
découle de I’équation de Bernoulli qui exprime que la charge totale est constante le long d’une ligne de
courant et sous les hypotheses suivantes :

- Fluide incompressible : masse volumique constante ;

- Mouvement irrotationnel : écoulement non-tourbillonnaire ;

- Fluide parfait : effets visqueux négligeables, pas de pertes de charge par frottement.
La charge hydraulique totale s’exprime alors comme :

2
H=" 4,4+ P (1.9)
29 Pwg
Ou v est la vitesse du fluide et z est la profondeur dirigée verticalement vers le bas.

Le premier terme de cette expression représente donc 1’énergie cinétique, le second ’énergie potentielle
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de pesanteur et le dernier le travail des forces de pressions.
Dans un sol, nous pouvons considérer que la vitesse de I’eau est négligeable pour calculer la charge. Par
conséquent, la charge hydraulique peut simplement s’écrire de la facon suivante :

H=h+z (1.10)

N DPw . . e . . .,
ou h = —— est le potentiel de pression capillaire (expression de la pression d’eau, exprimée en terme

w
d’une hauteur d’eau).

e Notion de Contrainte effective : Pour les contraintes effectives, on a également recours a une
approche phénoménologique.
En effet, en mécanique des sols il est habituel de formuler le comportement du squelette solide en
contrainte effective, autrement dit de faire ’hypothése que la déformation (élastique) du squelette est
reliée au tenseur des contraintes effectives o’.
Le tenseur des contraintes effectives & été conceptuellement introduit par les travaux de Terzaghi (1925,
1943) reposant uniquement sur des observations expérimentales.
Pour interpréter cette définition, il convient alors de voir le milieu poreux considéré comme la superpo-
sition d’un milieu continu solide et d’un milieu continu fluide, ou la pression du fluide interstitiel, dit
aussi pression de pore, est définie en tout point du milieu continu associé.

Concretement, il est important de retenir que ce tenseur de contrainte est donné par une fonction de la
seule déformation du squelette €, et non par une fonction de € et de la pression de pore p.

En utilisant la conversation de la mécanique des milieux continus solides pour laquelle la compression
est négative, I’expression de la contrainte effective est :

oc=0o +pl (1.11)

- 0, le tenseur de contrainte totale;

- ¢/, le tenseur de contrainte effective;
- I, le tenseur identité ;

- p, la pression de pore.

Biot (1956) a constaté lors des ses travaux sur la propagation des ondes dans les milieux poreux que
I'influence de la pression sur le comportement macroscopique est régie par une variable supplémentaire B
écrite sous forme tensorielle, appelée tenseur de Biot. Cette variable de couplage hydromécanique modifie
alors ’équation (3.61) de la maniére suivante :

oc=0o + Bp (1.12)

ou B est le tenseur de Biot, avec B = I si le solide est incompressible.
On retrouve alors le tenseur des contraintes effectives initialement introduit par Terzaghi.

Remarque 1.2.4 Pour des sols secs p = 0 et 0 = o’

1.3 Equation de conservation de masse

On s’intéresse ici a l’écriture des équations de conservation de la masse de chacune des phases
constituant le milieu poreux .
La fraction volumique des particules d’'une phase « notée ¢, s’exprime en fonction de la porosité ¢ et
du taux de saturation S. Elle est définie telle que :

- Pour l'eau : ¢, = ¢S
- Pour lair : ¢ = ¢p(1 —5)
- Pour le solide : ¢ps =1—¢
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Le principe de conservation de la masse exprime le fait que, la masse d’eau M contenue dans un domaine
D donné reste constante dans le temps. C’est-a-dire :
La masse des particules dans la phase o contenue dans le domaine D s’écrit :

M, = /D P AV (1.13)

ou,
- ¢q, la porosité d'une phase «
- pPa, la masse volumique d’une phase «

Cette masse doit rester constante au cours du temps, c’est-a-dire :

dM,
T 0, vD (1.14)
L’équation (1.13) se réécrit :
d
%(pa(ba) dD =0, VYD (1.15)
D

En utilisant la dérivée particulaire d’une intégrale de volume, on obtient ainsi I’équation (1.16) qui est
I’équation de continuité de la phase a.

0 -
&(pa(ﬁa) + div(pa¢ava) =0 (1'16)

ol Va désigne la vitesse associée a un point de la phase a.
Ainsi I’équation (1.16) sur chaque phase s’écrit :

& (pa1 = 9) +div(p(1 - O)V2) =0 (solide) (1.17)
O (pu(09)) +div(pu(@S)Va) =0 (liquide) (1.18)
D (pald(1 = 8))) + div(pa(d(1 — S)HVa) =0 (air) (1.19)

ot

1.4 Loi de Darcy

L’eau s’écoulant dans un sol suit une trajectoire tortueuse guidée par le réseau de pores qui constituent
le sol. L’aptitude qu’a un sol a se laisser traverser par un sol dépend des différents parametres que nous
avons décrits précédemment. Darcy a décrit, dans son célebre article de 1856 (Darcy, 1856), une loi
expérimentale liant la vitesse d’écoulement de I’eau dans un sol saturé a la conductivité hydraulique et
au gradient de charge hydraulique.

Dans le cas d’un sol isotrope, la loi de Darcy généralisée s’écrit :

q= —S [V(pw + pwgz)} (1.20)

o,
- pPw, la masse volumique de 'eau ;
- Pw, la pression de 'eau;
- g, laccélération de la pesanteur;
- @, le vecteur vitesse de Darcy (débit) ;
- W, la viscosité dynamique du fluide;
- k, la perméabilité intrinseque;
- V, opérateur gradient.
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Cette équation reste valable si les hypotheses suivantes sont respectées :
- Le milieu est completement saturé.
- Le sol est relativement homogene.
- L’écoulement est laminaire.

- Les grains doivent étre assez fins. Lorsque ceux-ci sont trop grossiers, la vitesse de I’eau peut étre
élevée, rendant le flux turbulent.

On définit la vitesse de pore ou vitesse interstitielle V[m/s] par :

V= (1.21)

IR

Cette vitesse est celle a laquelle les particules fluides se déplacent réellement dans le sol.

Remarque 1.4.1 : La loi de Darcy permet de décrire les écoulements dans un milieu poreuz saturé. Elle
exprime la proportionnalité entre le flux d’eau, ou vecteur vitesse de filtration ¢ traversant une colonne
et l'opposé du gradient de charge hydraulique.

Bien qu’elle fut concue a lorigine pour les écoulements en milieux saturés, elle fut étendue par Ri-
chards en 1930 a ’écoulement en zone non saturée en stipulant que la constante de proportionnalité K
appelée conductivité hydraulique est fonction de la teneur en eau du sol.

1.5 Approche éléments finis 1D

Le probléme que nous résolvons étant unidimensionnel, nous présentons ici ’approche éléments finis
dans le cas 1D.
La méthode des éléments finis en une dimension (1D) est une technique numérique utilisée pour résoudre
des équations différentielles, en particulier des équations aux dérivées partielles (EDP), dans des systemes
unidimensionnels.
Cette méthode est largement utilisée dans de nombreux domaines de I'ingénierie et des sciences pour
résoudre une variété de problémes, tels que 1’équation de la chaleur, de diffusion, les équations de la
mécanique des structures, des problemes d’écoulement des fluides, et bien d’autres. Elle permet d’ob-
tenir des solutions numériques approchées (précises) pour des systémes complexes en décomposant le
domaine en éléments plus simples et en utilisant des fonctions de forme pour approcher la solution.

Soit  le domaine ouvert de R™ (ot n = 1,2 ou 3), de frontiere 02 et sur lequel on cherche a résoudre

une équation aux dérivées partielles, munie de conditions aux limites.
On va définir les espaces :

LP(Q) = {u : 0 — R, mesurable et telle que /Q [ulf <00, 1<p< oo}
L*(Q) = {u : 2 — R, mesurable et telle que /Q |u|? <oo}, espace des fonctions réelles a carré intégrable.
Pour tout entier m > 1,

H™(Q) = {u € L*(Q), /0% € L*(Q) Ya = (ay,...,an) € N" tel que |a| = a; + ... +a, < m}
H™(Q) est appelé espace de Sobolev d’ordre m.

Par extension, on voit aussi que H°(2) = L*(Q).
Dans le cas 1D, on écrit plus simplement pour I ouvert de R :

H™(I) = {u e L2(I) /... u™ ¢ LZ(I)}
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Cas 1D : On consideére in intervalle ouvert I =]a, b[ borné. Alors :
3 (Ja, b)) = {u € H' (Ja,b), u(a) = u(b) = 0}
L’espace L?(£2) est muni d'un produit scalaire (., .) et de sa norme associée définie par :

u € L*(Q), ve L) (u, v) :/Q|uv\dQ

lullZai) = (u, )

1.5.1 Principe des éléments finis

Nous rappelons rapidement la démarche de la méthode des éléments finis permettant de construire
le probleme discrétisé associé a la formulation variationnelle.
Le principe est ici présenté dans le cas 1D.

1 Principe de base : La méthode des éléments finis consiste & diviser un domaine unidimension-
nel en éléments finis, généralement des segments, afin de discrétiser le probléme continu en un
ensemble de petites régions ou éléments.

2 Approximation de la solution : A Dintérieur de chaque élément fini, la solution est approchée
par une fonction polynomiale (généralement de degré 1 ou 2) définie sur cet élément. Ces fonctions
polynomiales sont appelées fonctions de forme ou fonctions d’interpolation (N;(z;) = di5).

3 Assemblage des éléments : Ensuite, les contributions des différents éléments sont assemblées
pour former le systéme complet, correspondant & la formulation variationnelle discrétisée. L’opération
d’assemblage permet d’obtenir le probleme a résoudre.

4 Etablissement des équations : Les équations différentielles du probléme sont discrétisées
en équations algébriques en utilisant les approximations polynomiales a l'intérieur de chaque
élément. Le systeme d’équations résultant est peut étre linéaire ou non linéaire selon la nature
du probleme étudié .

5 Conditions aux limites : Les conditions aux limites, qu’elles soient de Dirichlet (fixant des
valeurs & certaines positions) ou de Neumann (fixant des valeurs de dérivées), sont appliquées
aux ncoeuds appropriés du maillage.

6 Résolution numérique : Le systeme d’équations résultant est résolu numériquement a l'aide
de méthodes telles que la méthode de Gauss ou des méthodes de résolution itératives pour des
systemes non linéaires.

7 Calcul de la solution : Une fois le systeéme résolu, on obtient une approximation numérique de la
solution sur tout le domaine 1D. Cette solution peut étre utilisée pour analyser le comportement
du systeme, en post-traitant la solution obtenue.

1.5.2 Méthode de Galerkin

Généralisé la méthode des éléments finis (MEF) et aussi certaines méthodes spectrales.
Ecrire la solution sous la forme d’une somme des fonctions de base.

Idée de la méthode

La démarche générale de la méthode des éléments finis est la suivante. On a une EDP a résoudre sur
un domaine £2. On écrit la formulation variationnelle de cette EDP, et on se ramene donc & un probleme
du type :

(PV) Trouver u € V tel que a(u,v) =4(v), YveV

ou V est un espace de Hilbert et v est la fonction test.
On va chercher une approximation de u par approximation interne (méthode de Galerkin). Pour cela, on
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définit un maillage du domaine €2, grace auquel on va définir un espace d’approximation V}, sous espace
vectoriel de V' de dimension finie Nj,. Le probleme approché est alors :

(PVy) Trouver uy € Vj, tel que Yup, € Vi, a(up, vy) = £(vg)

Le probleme approché (PV},) peut se s’écrire sous la forme d’un systéme linéaire ou non linéaire selon la
nature du probleme étudié.
On espere alors que cette solution approchée wuy soit une bonne estimation de la solution exacte wu,
c’est-a-dire que

lim ||up —ul| =0

limn [luy, —
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2

Modélisation du probleme couplé
fluide-solide

Dans ce chapitre, on cherche a modéliser le probleme couplé fluide-solide en unidimensionnel. Dans
un premier temps, nous donnons les descriptions de fluide (équation de Richards), solide (équation du
solide) et enfin fluide-solide (couplage). Cette modélisation sera faite en utilisant la méthode des éléments
finis 1D et en appliquant de ’algorithme de THOMAS pour la résolution du systéme linéaire.

2.1 Description du fluide (Equation de Richards cas 1D)

L’équation de Richards est une équation aux dérivées partielles non-linéaire décrivant le transfert de
I’eau dans les sols non saturés en conditions non permanentes. Cette équation fut obtenue par Richards
en 1931 et repose sur la combinaison de 1’équation de continuité et I’équation de Darcy. Cette équation,
nous le verrons, décrit comment ’évolution des flux dans le sol modifie sa teneur en eau au cours du
temps.

En prenant 1’équation de la phase liquide (1.18) et en se servant des équations (1.4) et (1.21), ainsi
nous trouvons 1’équation (2.1).

0pwl

C 4 div(pud) = 0 (2.1)

L’équation (2.1) peut étre simplifiée si la masse volumique de fluide p,, est supposée constante dans
le temps et dans l’espace :

00

5= —div(q) (2.2)

L’équation (2.2) signifie que la variation de teneur en eau 6 d’'un élément de sol équivaut au taux de
variation des flux entrants et sortants de cet élément.
L’équation de Richards est obtenue en injectant la loi Darcy (1.20) dans I’équation (2.2) :

ou,
- 0, la teneur en eau volumique;
- k, la perméabilité intrinseque;

-, la viscosité du fluide;
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- t est le temps.

L’équation de Richards (2.3) peut s’exprimer sous différentes formes : en fonction de 0, de h et de
6 — h (mixte).

e Formulation mixte 6 — h
D’apres ce qui précede, on a : h = RATAN Pw = hpwg et en considérant la loi de Darcy (1.20), on a :
Puw

7= _E [v(hpwg + png)}

|
=
S
€
s
A
>
+
W
~—
[

ou z est la profondeur dirigée verticalement positive vers le bas.
soit,

d=—-K(Vh+é,) (2.4)

ol, K correspond a la conductivité hydraulique décrite précédemment.
Dans le cas des écoulements en régime non saturé la conductivité hydraulique varie en fonction de la
teneur en eau volumique 6 et de la hauteur d’eau h. L’équation de Darcy prend alors la forme généralisée
(Darcy-Buckingham) pour les sols non saturés. Cette expression est tres similaire a la loi de Darcy : elle
exprime que le flux dans un sol non saturé est proportionnel au gradient de charge hydraulique mais
aussi a la conductivité hydraulique pour les sols non saturés. A la différence de I’équation de Darcy, la
conductivité hydraulique n’est pas constante mais est fonction de la hauteur d’eau h de 'eau.

§=—K(h)(Vh+¢.) (2.5)

A présent, il suffit de remplacer P'équation (2.5) dans I'équation (2.2) pour obtenir I'équation de Richards
(2.6) dite mixte car elle inclut explicitement 0 et h :

% = div(K(h)(Vh + é’z)) (2.6)

ou,
- t, est le temps;
- K(h), est la fonction de conductivité hydraulique dépendante de la hauteur d’eau h;

- Vh, est le gradient de la hauteur d’eau.

e Formulation en 6

Dans cette formulation, Childs et Collis-Georges introduisent en 1950 le terme D(6) représentant le
coefficient de diffusivité. Ce coefficient est défini comme le rapport entre la conductivité hydaulique et
la capacité d’humidité en eau, c’est-a-dire :

K(0)
D) = —= 2.
0= %0 (27)
avec C(0) = 8—2, la capacité d’humidité en eau. On obtient I’équation de Richards sous la forme de 6
(ot 'inconnue est 6).
00 .

ou K () est la fonction de conductivité hydraulique dépendante de la teneur volumique en eau.
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e Formulation en h

Dans un milieu non saturé, 1’équation (2.6) est exprimée en fonction de la hauteur d’eau h en
introduisant les effets de compressibilité des fluides comme suit :

20 _ o6 0n
ot Oh Ot
00 oy s
On pose C'(h) = h la capacité d’humidité.
On a alors,
00 oh
7 g 2.
5 = C3; (2.9)
On obtient donc la formulation en A
oh . .
C(h) 5 = d1v<K(h)(Vh + ez)) (2.10)

h
En régime stationnaire % =0, ce qui donne :
div(K(h)(Vh + é’z)) =0

Le mouvement de I’eau dans le sol est principalement conditionné par la conductivité hydraulique K,
du matériau qui dépend elle-méme du contenu en eau. En zone saturée, le flux d’eau se calcule facilement
car K est une constante. En revanche, en milieu non saturé, K varie en fonction des apports d’eau et le
flux adopte un comportement fortement transitoire.

En résumé, I’écoulement dans une zone non saturée est décrit par ’équation de Richards sous forme
unidimensionnelle sous la forme :

. oh 0 Oh 0K (h)
formulation en h C’(h)g = $<K(h)$> + 5, (2.11)
: a0 0 00 0K (0)
formulation en 6 5% = 82 (D(H)g) + 5, (2.12)
: . a0 0 oh 0K (h)
formulation mixte (6 — h) 5 = 5, (K<h)£) + o (2.13)

ol, z, est la profondeur dirigée verticalement vers le bas (positif vers le bas).

Remarque 2.1.1 I est difficile d’obtenir des solutions valides de ces équations en raison de la forte
non-linéarité entre K, C, D et h ou 6.

Cependant, ['utilisation de différentes méthodes de discrétisation dans la résolution numérique de ces
équations permet d’obtenir une précision différente.

Dans un article datant de 2013 (Caviedes-Voullitme et al.), les auteurs pointent les avantages et
inconvénients de chacune des formulations :

- Formulation en 6 : cette formulation a ’avantage d’étre exprimée uniquement en fonction de la
variable conservée. Cependant, il est impossible de résoudre cette forme en régime saturé car la
capacité hydraulique vaut 0 lorsque le sol est saturé, faisant tendre la diffusivité vers I'infini;

- Formulation en A : elle fournit des solutions continues, méme en saturation ;

- Formulation mixte 8 — h : cette formulation combine les avantages des 2 autres : elle est a la fois
conservatrice et fournit des solutions continues en régime saturé et non saturé.
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2.1.1 Caractéristiques des sols

Plusieurs modeles empiriques ont été développés pour décrire I’évolution de K en fonction de h (ou
6). Dans le cadre de ce projet, le modele utilisé est le modele de Van Genuchten (1980). Ici nous ferons
une breve description de quelques modeles de la littérature.

e Modele de Brooks et Corey (1964)

he\N
o(h) — 4 Ores + Oue = 0me) (35) s> (214
Osat sih < he
K(h) = K(Se(h) % (2.15)
s e o 90(h)
Le calcul de la capacité d’humidité C(h) est définie par : C'(h) = “on
soit,
N(Osat — Ores) (he \ N1
C(h) = —% (ﬁ) (2.16)
ou,
- 0,5, teneur en eau résiduelle ;
- BOsaqt, teneur en eau a saturation;
- he, pression d’entrée d’air;
- N, indice de distribution de taille de pore;
- M, constante définie par : M =2+ 3N ;
. . s O(h) — Ores
- Se, taux de saturation effective définie par : S.(h) = 9 0

Remarque 2.1.2 L’inconvénient de ce modéle est qu’il présente une rupture de pente au niveau de la
pression d’entrée d’air h., ce qui peut nuire d la convergence des méthodes de résolution (Brooks et
Corey, 1961).

e Modéle de Haverkamp et al. (1977)

esat - eres
g(h) = ares + 71 T |Ozh|ﬁ (2]_7)
K
Kh)=—— 2.1
") =T anp (2.18)
_ _ B—1
Oy = —2B0sat ~bred)lah (2.19)

(14 |ah|?)?

Ce modele a été présenté pour la premiére fois par Haverkamp et al., (1977). Il est beaucoup plus
robuste que le modele Brooks et Corey, 1964.
0.5 représente a nouveau la teneur en eau résiduelle, f,; la teneur en eau a saturation, alors que «, 3,
~v et A sont des parametres empiriques constants et dépendant de la nature du sol.
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e Modele de Van Genuchten (1980)

La premiere relation mise en avant par le modele de van Genuchten est celle décrivant le lien entre
la pression d’eau h et la teneur en eau 6.

esat - ares .
eres 1 <L in\m h < 0
o) =4 T W ekl © (2.20)

esat sih>0

K,S.(h)! [1 —(1- se(h)l/mw}2 sih<0

(2.21)
K, sih>0

~(Osat = Ores) [ m(nalah|"1)(1 + ah|")" 1]

C(h) = (1 + ‘ahln)%n

(2.22)
ou,
- «, pression d’entrée d’air;

- n, coefficient 1ié & la distribution de tailles de pores avec n > 1;
1 1
- m, parametre lié a la structure du sol défini par : m =1 — — et on prend la constante [ = —.
n

Ce modele est souvent utilisé dans les modeles numériques et a subit beaucoup de modification au cours
des dernieres années. Parmi ces modeles dérivés on peut citer celui de Broadbride and White, (1988) ou
de Mualem, (1976).

Il faut noter cependant que la formulation de Brooks et Corey donne des résultats corrects pour les
sols de texture grossiere. Par contre, les résultats deviennent moins fiables quand la texture du sol étudié
est assez fine (Van Genuchten et al., 1991). La formulation proposée par Van Genuchten (1980) permet
de mieux décrire la courbe de rétention pour des valeurs de teneur en eau proche de la saturation.

¢ Exemple de parameétres physiques pour différents types de sol

Type de sols Parametres
Osat | Ores | a(m™H) [ n Ks(m/s)
Sable 0.43 | 0.045 14.5 2.68 | 8.25 x107°
Sable limoneux | 0.41 | 0.057 12.4 2.28 | 4.05 x107°
Argile 0.38 | 0.068 0.8 1.09 | 5.55 x10~7
Argile sableuse | 0.38 | 0.100 2.7 1.23 | 3.33 x10~7

TABLE 2.1 — Les valeurs des parametres pour les fonctions 6(h) et K(h) de Van Genuchten
(1980) classées par texture de sol.

2.2 Description du solide cas 1D

Pour un domaine solide que 1'on suppose ne se déformer que selon z et soumis & son propre poids,
I’équation d’équilibre s’écrit :

do

0z

Si le solide est supposé élastique linéaire, on peut écrire la relation de comportement sous la forme
0 = Ksotide(2)e(2) oll €(z) est la déformation du solide.

+pag =0 (2.23)
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d
Dans le cas 1D, on a € = bl

z
La contrainte s’écrit alors vue par le solide considere

ou
= Kaprige(2) 22 2.24
o tide(2) 5~ (2.24)
En injectant équation (2.24) dans 1’équation (2.23), on obtient :
0 Ou
A K.iae ) g =0 2.25
—(Keotiae ()57 ) + o9 (2:25)

- Ksolide, le module de compressibilité du solide (qui dépend éventuellement de z) ;
- ps, la masse volumique du solide;
- u, le déplacement du solide selon z.

L’équation (2.25) est un probléme parabolique, I'inconnue est ici le déplacement du solide u(z). On peut
faire du contact avec des éléments finis.
Attention : On peut avoir facilement une solution analytique si Ksopiqe €St égal a une constante !

Trois méthodes de résolution en solide : élément finis, méthodes sans maillage et méthodes d’éléments
de frontiere.

Pour ce stage nous avons utilisé la méthode des éléments finis afin de modéliser et simuler le déplacement
du solide que nous allons considéré. Le solide est discrétisé en éléments finis & deux noeuds de numéro
courant k, k + 1 de coordonnées zy, zx11 et de longueur li.

Types de sol Kolide
Sable 6.333 x 10% Pa
Argile 4.166 x 108 Pa
Béton 1.5 x 10'Y Pa

TABLE 2.2 — Modules de compressibilité (Kgoiqe) de quelques matériaux

2.3 Description du couplage (fluide-solide cas 1D)

Normalement nous disposons de deux systemes d’équations aux dérivées partielles caractérisant le
comportement du solide d’une part, du fluide d’autre part.
On reprend ’équation d’équilibre suivante écrite pour le milieu complet considéré.

Jda
0z

o est ici la contrainte totale. Pour un milieu poreux, comme présenté précédemment au paragraphe (1.2),

+ psg = 0 (2'26)

la contrainte effective ¢’ est usuellement introduite en complément de la contrainte totale o.
Pour le cas 1D considéré ici, on peut écrire
o' =0+ apy (2.27)

o «v désigne le coefficient de Biot et o = 1 dans le cas des hypothéses de Terzaghi (voir paragraphe 1.1).
o’ peut étre considéré comme la part des contraintes totales o supportée par le squelette solide.

On a ainsi pour le squelette solide :

o' = Kgolide€, avec € = % (2.28)
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o' =0+ apy (2.29)
et I’équation d’équilibre du milieu poreux donne :

o

g = 2.
5, TP =0 (2.30)

En combinant les équations (2.28), (2.29) et (2.33) on obtient 1’équation

oo’ Opw
— —a— sg =0 2.31
0z @ 0z sy ( )
Or Py = Pwghqy, d’out 'équation
oo’ Oh.,
99 g =0 2.32
5, Pwdg_ t sy (2.32)
Finalement, on obtient
0 ou oh
a_ Ksoi 67> - w - s = 0 2.33
az( Hde 5 O‘pgaz tpag ( )

o,
- hy, la hauteur d’eau obtenue dans Richards;
- u, le déplacement du solide;

- pw, la masse volumique du fluide;

- ps, la masse volumique du solide;;

- ksolide, le module de compressibilité.

I’équation (2.33) couple la déformation du solide & ’écoulement fluide via la hauteur d’eau h,,. Le
prochain chapitre sera la résolution numérique par la méthode des éléments finis de ces équations.
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3

Résolution numérique

3.1 Résolution numérique : Richards 1D-EF

3.1.1 Formulation en h

Dans cette sous-section, nous effectuons la résolution par éléments finis de ’équation de Richards
sous sa forme h en une dimension.
Cette résolution sera effectué dans un domaine unidimensionnel matérialisé par une colonne verticale de
limite a et b (a est la surface et b le fond).

FIGURE 3.1 — Discrétisation du segment [a,b] en éléments finis P1

On considere le probleme modele suivant :

cmPr - 2 (rmP) -2~ e dans Ja b0, 1) o
h(a) = h(b) = 0

ou € est la déformation du solide, T est le temps final de la simulation, a et b représentent les extrémités
de la colonne (surface et fond).

i) Formulation faible

Soit V un espace des fonctions test (& déterminer) et s’autorise toutes les opérations. Pour obtenir
la formulation faible de (3.1), on multiplie I’équation (3.1) par une fonction test ¢ € V puis on intégre
sur le domaine [a, b], puis, on a :
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/ C(h wd —/ab;)Z(K(h)g]:)¢dz_/a OK ()

En effectuant une intégration par partie sur les termes de plus haut degré on obtient :

/c ¢d —[ /K ahawd +[ (h )w}:—/bf((h)‘?;fdw/bwdz (3.3)
&)

/a b ) dz (3.2)

—_—— ——
(4)

On fixe I'espace V pour que tous les termes aient un sens, on inclut également dans V' les conditions
aux limites du probleme.

Pour que les intégrales (1), (2), (3) et (4) aient un sens il faut : ¢ € L?(]a,b]) on € L?(Ja,b]) et

5 T 0z
a—qf € L?(]a, b]).
Un bon choix est de perdre ¢ € H*(Ja,b[) et h € H'((Ja,b[), donc choisir ¢ € H}(Ja,b]) garantit que les

b b
termes [K(h)?vj}} et [K(h)w} s’annulent car ¢ = 0 sur le bord de [a,b]. Donc V = H{(Ja, b]).
z a

La formulation faible de (3.1) s’écrit alors :

Trouver h € V tel que
q(h,v) +a(h,¥) =1(v), VeV

avec V = {1/1 € H'(Ja,b[),v = 0 sur le bord de [a,b]}. On pose :

/C ¢dz

o
’“@—/aK( o2 7 4

l(q/))/abéz/;dz/a K(h)g—fdz.

Pour résoudre le probleme (3.4) (dont il n’existe en général pas de solution analytique), on recherche
une solution numérique approchée hy. En élément finis, cette solution approchée est construite a partir
de deux données :

1. Un maillage M}, du domaine de calcul ;

2. Un choix d’interpolation p; sur ce maillage.

Pour notre domaine de calcul unidimensionnel Q@ = [a, b], le maillage correspond & découper ) en segments
(Voir figure (3.1)).
Ne

Soit Q = U er ol ex = [2k, Zk+1]-
k=1

i) Formulation discréte

On veut chercher une approximation par éléments finis de la solution du probleme (3.4). Pour cela,
on définit un maillage du domaine Q = [a, b] grace auquel on va définir un espace d’approximation Vj,
(sous espace vectoriel de V' et de dimension finie N,,).

On peut alors définir 'espace V},, sous-espace vectoriel de Hg (a,b) tel que :

Vi, = {tn, € C%(a,b) telle que ¢y, est affine sur chaque segment [z;, 2+1] et 1y (a) = ¥5,(b) = 0}
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Ne
ot C%(a,b) est 'ensemble des fonctions continues sur 2 = U ek

k=1
Le probleme approché sur V}, est :

Trouver hy, € Vj, tel que (3.5)
q(hn, ¥n) + alhn,n) = 1U(Yn),  Von € Vy '
En remarquant qu'une fonction de Vj, est entierement déterminée par ses valeurs en z1,...,2xn,, on
établit que la dimension de V}, est N, et qu'une base de V}, : (¢1,...,¥nN,), ol ¢; est définie par :
1 si i=7
pilz)) = 0ij = 0 sinon (3.6)

Vi=1,...,Np, Vj=1,...,N,.
ou d;; est le symbole de Kronecker. ¢; est appelé la fonction de base représentée sur la figure (3.2).

1 i % n

=

1 2 10 it n-1

FI1GURE 3.2 — Fonction de base ¢;

soit,
Zig1 — %
pi(z) = %
() = 2= 2 (3.7)
pirtls) = long

avec long = zj4+1 — 2;

En tenant compte de toutes ces notations, ’équation (3.5) s’écrit :

e % e %% B ne/ . B ne/ %
I;/ Ch)—, whdZJr;/Ek K(h)— =, dzf]; Ekewhdz ; ; K(h)=—~dz  (38)

On voit bien dans cette équation la partition du domaine & permis d’écrire I’équation variationnelle sur
chaque élément.

Ne
Remarque 3.1.1 Ii est noté que la somme Z ne désigne pas l’opération d’addition mais plutoét cor-

k=1
respond a [’opérateur assemblage des matrices élémentaires.

Sur ey, on peut donc décomposer la solution approchée h;, en une combinaison linéaire des fonctions de
base locale.

hi(2) =Y hyi(t)e; (3.9)

- @;(2), est la fonction de forme associées au noeud j ;
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- hj, est la valeur nodale de h(z) au noeud j.

La détermination des fonctions tests se fait en utilisant la méthode de Galerkin qui consiste a prendre ces
fonctions identiques aux fonctions de la base (1, = ¢;). Ainsi on injecte I’équation (3.9) dans ’équation
(3.8). Il vient :

8h (t) Op; 890] / - _/ dp;
/C %%dﬁzh /K e A L P

pour i = 1,2 (3.10)

j= 1

L’équation (3.10) peut s’écrire sous la forme matricielle :

M*H" + K**H® = B (3.11)

Le systeéme élémentaire (3.11) est non linéaire.
ou,

- M°®, est la matrice de masse élémentaire ;

- K®, est la matrice de rigidité élémentaire ;

- B, est le vecteur second membre élémentaire englobant toutes les contributions (terme source,

conditions aux limites ...)

- H est le vecteur élémentaire des composantes inconnues hq (t), hao(t).

avec

My = / C(h)p;pidz, pour tout 7,5 = 1,2

8 Op; .
Kf’“ / K(h % (p dz, pour tout 7,5 = 1,2

73 i )
B+ :/ Ep; dz —/ K(h) 1.4 dz, pour tout 7 = 1,2
ex r 0z

L’opération de I’assemblage des matrices et des vecteurs élémentaires nous donne un systeme non linéaire
de taille N, x N, suivant :

MH +KH =B (3.12)
ou,
- M, la matrice de masse globale;
- K, la matrice de rigidité globale;
- B, le vecteur globale second membre ;

- H, le vecteur globale des composantes inconnues hq(t), ho(t).

Comme Dintervalle [a,b] = J;<, ex; ex = [2k, 2241], ainsi on a :

M,;; = Z/ h)pjpidz pour tout 4,5 = 1,2

Ne

8 0p; .
K;j = Z/ K(h (pJ (pdz pour tout 4,5 =1,2

- ~ [ =00 :
B; = Ep; dz — K(h dz, our tout i = 1,2
X[ s [ KOG
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Pour la discrétisation temporelle de H et H, nous utilisons le schéma d’Euler implicite d’ordre 1

c’est-a-dire :

- h717,+1 o h'iL
, hi(tn+1) At
H-= . = (3.13)
ha(tn+1) hy ™t — hy
At
et
hl (thrl) h?+1
H= = (3.14)
hZ(tn-i-l) thhLl
Le calcul des fonctions K (h) et C(h) est une moyenne entre deux cellules définies par :
——  K(h K(h ——  C(h C(h
ou K(hy), K(ha), C(h1) et C(hg) sont les fonctions caractéristiques hydrodynamiques du sol.
e Calcul des coefficients de la matrice de masse élémentaire
On calcule les coefficients ij" en par la contributions de chaque noeud de 1’élément ey, :
Zit+1
My = [ Clhlpypids
Considérons par exemple I'élément e; = [z;, z;+1]. Sur cet élément, il n’y a que deux fonctions de

base non nulles : ¢; et @;11.

L’élément e; produira donc effectivement une contribution : M;j 1, My 2, May et Mso. Calculons les

contributions élémentaires de e; et disposons les sous la forme d’une matrice élémentaire 2 x 2

My M
M* = C(h)
Moy Mspo
avec
Zit1 1
My, = / C(h)g?dz = gC(h) long
1
Mio=Msy; = / C(h)pipir1dz = ECUL)ZOHQ
Zi
Zit1 1
Mo = / C(h)p?dz = gC(h) long
D’ou,
1
1 _
1—— 2
M = —C(h)long
3 1
- 1
2
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e Calcul des coefficients de la matrice de rigidité élémentaire
On calcule les coefficients Kfj’“ en sommant les contributions des différents éléments selon :

=0 Opi
K — K(h)=L22 g
( )Bz 8. *

23

Avec le méme raisonnement, on obtient la matrice de rigidité élémentaire suivante :

VaTinY 1 -1
C(h
ek = Tone (h) (3.17)
ong 1 1
e Calcul des composantes du second membre élémentaire
Chaque composante B;* du vecteur second-membre élémentaire est calculée par :
Zit1 Zi4+1 aK h
B* = At/ Ep;dz — At/ 7( )gpi dz
Zq Zi aZ
avec
_ Enew — €old
At
Donc,
Zi41 Zi4+1 a(Pi
B+ = / (Enew — Eold)pi dz — AtK(h)/ 5 dz (3.18)
Zi 2 z
0
OF Enew = %ﬂew et Eo1g = %. Ici le calcul local se fait sur 2 éléments, c’est-a-dire :
z z
®; 0i+1
@ °
1 2
donc,
dpi(z) dpit1(z)
new — Ter pew L —— 3.19
€ Uy az + Ugy az ( )
0p; Op;
Eold = uzlﬂd (PZ(Z) + uold (p,+1(2’) (320)

0z 2 0z

En injectant les équations (3.19) et (3.20) dans I’équation (3.18) et effectuant plusieurs calculs d’intégrations,
on obtient donc le second membre élémentaire (pour deux éléments) qui s’écrit :

1 1
5 (ui)ld _ U?ew> + 5 (ugew _ ugld) 1

B = | 1 — AtK(h) (3.21)
O\ new new O 1
ot ) 3o o)
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3.1.2 formulation mixte (6 — h)

Naturellement, il est tout a fait possible d’utiliser la méthode des éléments finis pour des problemes
non-linéaires comme dans notre cas de I’équation de Richards en forme mixte, la résolution de ce dernier
passera systématiquement par un processus de linéarisation et se fera de fagon itérative en utilisant la
méthode de Picard.

On considere la formulation mixte avec I’ajout de la porosité, de la capacité de stockage spécifique et du
terme source f :

90 6., 0n 0 (K " 8h) _ O0K(h) g (3.22)

o et e\ WE) m T,
ol
- f, le terme source;
- Ss, la capacité de stockage spécifique;

- K(h), la fonction de conductivité hydraulique dépendante de la hauteur d’eau.

Discrétisation spatiale

Pour résoudre de I’équation (3.22), nous utilisons la méthode des éléments finis de type Galerkin.
Le domaine initial est tout d’abord discrétisé sur un maillage €} contenant un nombre de point N, de
points. La technique de Galerkin permet d’obtenir une formulation faible de I’équation de Richards en
suivant :

e Formulation faible

En multipliant 1’équation (3.22) par ¢ et en intégrant sur [a,b], on obtient la formulation faible
suivante :

Trouver h € V tel que

o [° “0 _ oh b oh Oy b P b

el 29.2° Tl dy = — - 3.23

at/a 9(h)1/1dz+/a (statwder/a K(h)az ER dz /a K(h)az dz+/a fodz, ( )
Yy eV

e Formulation discréete

Apres avoir fait 'approximation de ’équation (3.23) par méthode de Galerkin, on pose :
np "p
hi(2) =Y @i (2)hi(t) et On(2) =D 0;(2)6;(t) (3.24)
Jj=1 j=1

Nous obtenons la formulation discrete (3.25)

N 00;() [ = ahjm/b 0N &, / 8o, Dpi
; ot /a%%dH; o o (beS)%%dH;hj(“ R

b ' b
:—/ K(h)%dz—k/ fyidz, Vi=1,...,n, Vo, €V (3.25)

L’écriture matricielle de 1’équation (3.25) est :

do(h) _dH
mPM N i = B (3.26)
di di
ou,

- M, la matrice globale de masse;
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- N, la matrice globale de masse relative a h;

- K, la matrice globale de rigidité ;

- B, le vecteur global second membre ;

- H, le vecteur des composantes inconnues hy (), ..., hy, (1).

L’équation (3.26) est un systeme d’équation non linéaire de taille n,, x n,.
Comme l'intervalle [a,b] = Jp<, ex; ex = [2k, 2-+1], ainsi on a les formes génériques :

M;; = Z/ Pjpidz
k=1"¢k
Ne 0
k=1"¢k

e Op; Op;
K, = K(h) =g
I ;/ek ( )8,2 92 ~*

Des essaies numériques ont montré que les expressions ci-dessus de M et N ne nous permettent pas de
conserver la masse. Pour remédier & cette inconvénient nous avons adopté la technique de condensation.
En effet, cette technique permet permet de transformer les matrices M et N en matrices diagonales.
Numériquement, cette technique rend la matrice globale du systeme a diagonale permet assurer la conver-
gence des méthodes itératives adoptées pour inverser le systéme linéaire issu de la linéarisation (méthode
de Picard ou méthode de Newton). La condensation de ces deux matrices est obtenue par :

St My = YNy =
M = et N= (3.27)
0 i 0 i £ J

La discrétisation temporelle

L’équation de Richards étant non linéaire, sa résolution est généralement basé sur un schéma itératif.
L’opération consiste a itérer successivement sur les valeurs de la teneur en eau et de la conductivité hy-
draulique jusqu’a ce qu'un critere de convergence soit satisfait. A chaque pas de temps, le schéma itératif
est initié en estimant la teneur en eau et la conductivité hydraulique a partir de la pression du pas de
temps précédent. Le potentiel de pression capillaire est alors recalculée, la teneur en eau et la conduc-
tivité hydraulique sont réévaluées puis I’équation de nouveau résolue. Le schéma itératif s’arréte quand
la différence de potentiel de pression capillaire entre les deux itérations satisfait un critere de convergence.

Il faut noter, il existe plusieurs schémas numériques permettant de discrétiser les termes temporels
de ’équation de Richards (Huyakorn et Pinder 1983), mais le schéma de Picard semble le plus répandu
de par sa facilité de programmation et sa robustesse. Celia et al. ont proposé une version modifiée du
schéma de Picard qui a I'avantage d’étre conservatif.

Nous avons choisit un schéma #-schéma pour la discrétisation en temps. Ce schéma englobe une variété
des schémas numériques d’ordre 1, 2, explicite, implicite, mixte, ... (selon la valeur du parametre 6).

Remarque 3.1.2 Pour ne pas confondre le paramétre 6 présent dans l’équation de Richards et celui du
0-schéma, dorénavant nous remplagcons le schéma 0-schéma par A-schéma.

A présent, la discrétisation temporelle par le schéma A-schéma de I’équation (3.26) nous donne :

At A Mt A
K(h"tY) . g = B(h") (3.28)

M- (W-H)_e(hn)_ (1—1)9n(h)> LN (H”‘H_Hn - (1_1)]_{n>+
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_ gn — gnt1 _ H™ — gntl
0" = AL et H" = A (Schéma de Backward Euler d’ordre 1.)

Dans notre cas, on prend A = 1 on retrouve le schéma d’Euler implicite d’ordre 1. L’équation (3.28)
s’écrit :

H(hn+1)_0(hn) Hn+1_Hn n4+1 n+1 __ n+1
M-<N>+N-<N>+K(h+)~H+ = B(h"t) (3.29)

Linéarisation

Nous remarquons que le systéme (3.29) est non-linéaire a cause des non-linéarité entre h, 8 et K. Pour
linéariser ce systéme, nous utilisons la méthode itérative de linéarisation de Picard comme décrite dans
List and Radu, 2016. Cette méthode est beaucoup utilisée pour la résolution numérique des équations
non-linéaires comme dans notre cas ’équation de Richards mixte.

Nous l'utilisons dans ce projet, le fait qu’elle est d’une part tres facile & mettre en oeuvre et d’autre part
elle a 'avantage de prévenir la symétrie du systeme discret résultant de I’équation de Richards.

Ainsi, la linéarisation par la méthode de Picard consiste a trouver (R"+1mH1) o vérifiant :

n+1lm-41\ _ n n+1lm—+1 _ n
M_Cm ) MhU+N'C{ H>+KmMUJﬂHMH:BmMMW

At At
m=0,1... (3.30)

En divisant I’équation (3.30) par At, nous obtenons 1’équation (3.31).

M- (9(hn+1’m+l) o g(hn)) +N- (Hn+1,m+1 o Hn) + AtK(thrl) . Hn+1,m+1 _ AtB(thrl,m)
(3.31)

Comme nous avons adopté un schéma numérique temporel totalement implicite, nous remarquons
dans 1’équation (3.31), nous nous confrontons a la difficulté de résoudre une équation & deux inconnues
(0n+1 et h”"‘l)_

Pour éviter cette difficulté, nous utilisons le développement de Chord proposé par Célia et al, 1990
(Taylor d’ordre 1) qui transforme durant les itérations I'inconnue §(h"T1m+1) en pntlm+l ot d’autres
parametres connus a l'itération m. donc,

1,m+1 1 QONHLm o m +1
e(hn-i- ,m ) — 9(h”+ ,m) + <8h) (hn ,m _ hn ,m) (332)
o0 ) \ R
ou = C(h™t1™). Ce terme correspond a la capacité d’humidité que nous avions défini précédemment.

En remplacant I’équation (3.32) dans le développement de Chord (3.31) et en regroupant les termes
en fonction de leur indice, nous obtenons le systéme de résolution final (3.33) qui est une méthode
d’itération de type Picard conservatrice de masse pour la formulation mixte de I’équation de Richards.

C(R™ 1) - M+ N + AtK(R"F0™) [ R = —AtB(R"HH™) — M- (R ™)

+M - C(R"TE™) g™ M- 9(R™) + N A™ (3.33)

On considere un systéme linéaire de n,, équations a n, inconnues que ’on écrit sous une forme matricielle :

Ah=b (3.34)
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- A =C(h"th™m) . M + N + At K(h"T1™) | la matrice tridiagonale ;

. 1,m+1
- h, le vecteur solution des composantes h}'" """

m+1;
- b= —-AtB(h"™m) — M - §(h"TL™) + M - C(hn ™) - pntbm L M- §(R™) + N A", le vecteur
second membre (de composantes b;).

a linstant ¢,41 et a 'itération de linéarisation

L’interprétation du systéme (3.34) signifie que pour chaque pas de temps At, on effectue des itérations
m jusqu’a la convergence.
Au passage de l'itération m a m + 1, on va résoudre un systéme linéaire tridiagonal dont la matrice et
le second membre dépendent des valeurs de l'itération m.

3.2 Résolution numérique : Solide 1D-EF

L’équation du solide 1D s’écrit sous la forme :
0

ou
a(mea ) +psg = 0 (3.35)

CL

La démarche de résolution par éléments finis de I’équation (3.35) est la méme que celle nous avons effectué
dans le cas de Richards 1D.

En multipliant I'équation (3.35) par ¢(z) et on intégre sur [a, b], ¢’est-a-dire

/ab [% (K“"“dpg ) + Peg}d)( Ydz =0

/a b % (Ksoude%)wz) dz + / " pag9(2) dz =0 (3.36)

I

On applique une intégration par partie & I, on a :

8

z) 0
I= Ksolide / Ksolzde ¢( )

0z

(3.37)

En injectant (3.37) dans (3.36), nous obtenons la formulation faible suivante :

Trouver u(z) € V tel que

b b
0 0 ou(b
*/a Ksolide 15(22) (g(ZZ) dz + /a psg¢(z) dz + Ksolide gi )¢(b) - Ksolide
VeV

ou(a)
0z

b(a) =0,  (3.38)

Pour la formulation discrete, on cherche une approximation par éléments finis de la solution du probleme
(3.38). On définit un maillage du domaine 2 = [a, b] grace auquel on va définir un espace d’approximation
Vi

Le probleme est donc :
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Trouver up(z) € V4, tel que
b b
oup(z) Oy (2 ou(b
_/a Ksolide ahz( ) ¢5£ ) dz + /a psg¢h (Z) dz + Ksolide %Qﬁ(b) - Ksolide
Vo € Vy,

outa)

(3.39)
On définit alors une base de V4 : (¢1,...,¢n,). On pose :

up(z) = z": vi(z)u; et ép(z) = Zp: 0, (2)p; (3.40)

ol
- @i(z) et @;(2), sont les fonctions de forme associées aux noeuds i et j;
- u,, est la valeur nodale de u(z) au noeud ;
- ¢y, est la valeur nodale de ¢(z) au noeud j.
Trouver uy, solution du probleme (3.39) revient & trouver u = (u1, ..., u,,)" tel que :
A
b Np Np b Np
—/ Ksotide (Z %( )Uz) (Z waj( )¢j) dz+/ Psg(zsﬁj(z)éf’i) dz
a i=1 o j=1 o a j=1
Ay Az B
Ou(b Ou(a
+ Ksolide%é(b) - Ksolide%gb(a) = 07 v¢(z)7 V{lea ey (ybn,,} (341)
c

Sous la forme matricielle, on a :

- . Uq
4 [000) 9mae) 00, ()
YU 0 0 0 T 0z
L J Un,
- 1 1
w000 005 00n,2] )
2 0z > 0z 7 0Oz :
- - d)np
Donc,
Op1(2)
b 0z U1
) 0 0o, (2
A= <¢1,...,¢np>/ Kootide : [ %Z(z),..., Soapz( )}dz :
@ Gtﬁnp(z) Up,
0z P
K
b ¢1(2)
B := <¢1,...,¢>np>/ Psg ; dz
¢ ‘Pnp(z)
. 4 Ou(b) ' ou(a)
C = Kolide 92 st(b) Kyolide D2 ¢(a)
ou
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- (a) correspond & ¢1 ;
- ¢(b) correspond a ¢,

donc,

[ _Ksolideagi(;) |
0
C:= <¢17'~-a¢np> :
0
ou(b)
Ksoi e o_
L tde =9z
Donc, en combinant A, B et C, équation (3.41) devient :
[ _Ksolideazi(:) |
u1 b ¢1(2) 0
(d)l,...,gbnp)(K +/ Psg : dz + : ) =0 (3.42)
a 0
unp @np(z) K ‘ au(b)
| solide B ]
Donc, V(¢1,...,¢n,), on a :
[ _Ksolidea’gi(j) ]
u1 b ¢1(2)
K{ @ = / psg : dz + : (3.43)
a 0
i o (2) o oul)
| solide Ep ]
On obtient un systeme d’équations suivant :
Ku=B

ou,
- K, la matrice globale rigide;
- B, le vecteur globale second membre ;

- u, le vecteur globale déplacement inconnu.

Comme l'intervalle [a,b] = J;<; ex; ex = [2k,2-41], ainsi on a la forme générique :

— dp; 0p; .
K;; = ; /ek Ksolide(a—; ER ) dz, pour tout ¢, = 1,2
e ou(b o)
B, = Z/ Psg¥i dz + I(solideM — Ksotide U(a)a pour tout ¢ =1, 2 (344)
= Jey 0z 0z

N n / s P .
ou y_,°, représente l'opération assemblage.

Maintenant nous allons effectué quelques cas pour la détermination de la matrice de rigidité et du
vecteur second membre élémentaire pour différentes conditions aux limites.
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e Premier test :
Pour ce test, on va considérer une condition de Neumann homogene & la surface (effort libre) et au fond
une condition de Dirichlet homogene (déplacement libre).

Pour ce cas test, on obtient la forme générique suivante :

8(,0-8901' ..
K = K(—J )d j=1,2
* /e,c tide\"p, 5, ) * I

B?‘ :/ Psgpidz, 1=1,2 (3.45)
ek

Pour lassemblage, grace aux fonctions de forme ;(z) et ;41 définies dans le cas de Richards 1D,
on arrive a calculer la matrice rigide élémentaire et le vecteur second membre élément, il faut noter ici,
on travaille toujours sur deux éléments. Nous obtenons :

1 -1
Ksoi e
o = _solide (3.46)
long 1 1
et
Be = 29 long (3.47)
2 1

e Deuxieme test :
Pour ce test, on impose un effort a la surface (Neumann non homogene) et au fond pas de déplacement
(Dirichlet homogene). C’est-a-dire :

{ Ksolideagi(;)z e = psgl (effort imposé en z = a) (3.48)
u®d) = 0
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ou 71, est la normale unitaire en a, 77, est la normale unitaire en b et [ est longueur entre a et b.
Pour ce cas tes, on voit bien le terme au bord apparait au second membre, on a :

Opj 0p; o
Kf]k = Lk Ksolide(% ai ) dZa )= 172
B:* :/ Psgp; dz + psgl, i=1,2 (3.49)
ek

On remarque le calcul de la matrice rigide élémentaire ne change pas comme dans le cas précédent, seul
le second membre qui change a cause de la condition de Neumann.
Donc le second membre s’écrit :

B — % long + psgl (3.50)

e Troisieme test :
Pour ce test, on impose le déplacement & la surface et au fond (Dirichlet non homogene), c’est-a-dire :

u(a) = p
{u(b) = al>+8 (3.51)

ou les parametres a = 0.001 et 5 = 0.01.
Ici la matrice rigide et le second membre restent les mémes que dans le cas du premier test.
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3.2.1 Résolution numérique : Fluide-solide 1D-EF

L’équation du couplage 1D s’écrit sous la forme :

0 ou Ohy,
—_— K o Tide — | — g —— sg =
9z ( solide 82> Pwd Oz + psg 0 (352)

CL

La démarche de résolution par éléments finis de I’équation (3.52) est la méme que celle nous avons effectué
dans les autres cas.

En multipliant I’équation (3.52) par v et en intégrant sur [a, b], on obtient la formulation faible sui-
vante :

Trouver u € V tel que

(PV) /b ou O

solide & &

ou b b b Ohy (3.53)
do = [Kaa 3] + [ ougvds= [ pugtvds  wwev

En utilisant la méthode de Galerkin, le probléeme approché de (3.53) est donné par :

Trouver u; € V, tel que

(PVa) /b dun O,

6uh b

dz = |:Ksoi e
z lid 32

o

lide 5y
S 0z 02 a

b b ahw
+ | psg¥ndz— [ pug—g=tndz  Vin €V
a a
(3.54)
Le probleme variationnelle approché (PV}) se rééerit sous la forme d’un systéme non linéaire. effet,

notons uy € R, j,...,n, les coordonnées de u;, dans la base des (¢;)1<j<n,-
Sur chaque eg, en décomposant la solution approchée uy, sur cette base sous la forme, on a :

up(2) = Z pj(2)u; (3.55)

Apres avoir appliquez la méthode de Galerkin (c’est-a-dire ¥, = ¢;), on se permet d’écrire la formulation
discrete du probleme (3.54) :

2
. - (99 0p5N . Ou(d) ) / |
2“ / Koaiar (Tt 52 ) de = Kuonae =5 20(0) = Keoriae =5 = la) + | pugorda

Ol .
- w ida :1,2 3.56
/Ekp 95, widz, i (3.56)

On obtient la forme matricielle suivante :

K u® = B (3.57)

ou,
- K est la matrice de rigidité élémentaire ;

- B® est le vecteur second membre élémentaire englobant toutes les contributions (terme source,
conditions aux limites . ..)

- u®, est le vecteur élémentaire des composantes inconnues u;(2), us(2).
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avec,

6 0
Kf" / K(h % % dz7 pour tout 4,5 = 1,2

Ohy, Ou(b 0
B =/ psgpi dz —/ pug—pidz+ Koonae 220 )wi(b) L) ¢i(a), pour touti=1,2
en z 0z 0z

(3.58)

Comme dans les paragraphes précédents, apres l'opération des matrices élémentaires et des vecteur
élémentaires, on obtient :

0p; 890 Ohy ou(b ou(a
Z Ksolzde( — Z/ PsgPi dz — png(pz) dz + KsolideTi)@i(b) - Ksolide%(pi(a)
=17 ¢k
(3.59)
pour tout 4,5 =1,2
Sous la forme matricielle on a :
Ku=B (3.60)

ou

8 0p; .
/ ('0] ('0 dz7 pour tout ¢, = 1,2

Ohy ou(b) du(a)
(/ PsgPi dz — /e Pwd—F_— 9z 2 dz) + Koolide —F— 2 %(b) - Ksolzdewﬂoz(a)

||
TTM3 u

pour tout 7 = 1,2

La matrice globale de rigidité K est la méme que celle déterminer dans la section (3.1.2), donc il
nous reste a déterminer le vecteur second membre élémentaire B¢*.

D’apres la relation (3.58), le calcul de B{* fait intervenir deux types d’intégrales. On décompose alors b
en deux vecteurs :

B:* = p* — q;* + terme aux bords (3.61)

avec

Ohy, ’
p;* —/ psgpidz et ot :/ psg=—g,-widz pour tout i =1,2
€L z

€k

Pour calculer ces intégrales on décompose 'intégrale sur le domaine [a,b] en somme d’intégrales
élémentaires sur chaque élément [z;, z;41].

c Zit1 . i+1 Ohy, )

e Calcul des vecteurs p;* et ¢;*

Il faut noter, on travaille localement sur deux éléments c’est-a-dire :

®; 0i+1
-] -]
1 2
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donc,
2

hu = Z hi’ @i = hy i + hy'pit

i=1

on a,
ahw 8902 a(pi+1
— =hy hy 3.63
0z Loz e 0z ( )
En remplagant 1’équation (3.63) dans q; de I’équation (3.62), et pour chaque élément le vecteur q s’écrit :
q
q = (3.64)
a2

ou,

Zit1 Ry Zit1 Ry
a1 = psg l/ o Z8 widz + / hy Pitl i dz] (obtenu & partir de I’élément 1)
z. z.

’ L0z 0z
Zi41 8 ) Zi41 8 X

d2 = Pf9 l/ hy 8921 wit1dz + / hy ?;1 Yit1 dz] (obtenu & partir de I’élément 2)
Zi Zi

Apres avoir effectuer quelques calculs sur les intégrales, finalement on obtient :

gp 1 w
qQ; = q2 = Tf(hlzu - hl) (3.65)
De méme pour le vecteur p, on a :
P:
p = (3.66)
P2
ou,
Zit+1
b = Psg/ p;dz, (obtenu a partir de I’élément 1)
’iZi+1
Py = psg/ pi+1dz, (obtenu & partir de 1’élément 2)
Une fois effectué des calculs sur les intégrales, on obtient :
9ps
P1 = P2 = 9 long (3.67)

avec long = z;41 — 2;

En combinant les équations (3.65) et (3.67), la relation (3.61) devient :

hy — hY
s ou(b oul(a
B = Poiong [ | - 92 + Koonae 220 0) = Komia. 2D a)  (3.69)
2 1 2 B _ 0z 0z
2 1

L’équation (3.68) représente le vecteur élémentaire (pour deux éléments) second membre du couplage
fluide-solide. On remarque bien dans cette équation on a la présence de h}’ et hy qui représentent les

vecteurs solutions de Richards.
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3.3 Erreur relative

L’erreur relative est un concept mathématique important utilisé pour évaluer la précision d’une
mesure, d’une approximation ou d’'un calcul par rapport a une valeur de référence ou a une grandeur
attendue. Elle permet de quantifier la différence entre une valeur obtenue et la valeur réelle, et elle est
souvent exprimée en pourcentage.

Comme nous savons toute méthode itérative nécessite un test d’arrét afin de limiter ’écart entre deux
itérations successives par une tolérance que nous notons tol.

‘lhn+1,m+1 _ hn+1,m||

Tt < tol (3.69)

Ce critere de convergence est bien adapté au schéma de Picard d’une part car la pression capillaire
constitue la base de Picard et d’autre part car il permet d’éviter des itérations inutiles et ainsi de
diminuer les temps de calcul quand une partie du domaine d’étude est fortement désaturée. En générale
la méthode de linéarisation de Picard converge en un nombre d’itération inférieur a 10.

Pour cette résolution, nous avons choisi ’algorithme de THOMAS qui est une méthode directe considérée
comme une variante de la méthode d’élimination de Gauss représenté par :

Algorithm 1 Algorithmes de résolution

10 t=(n+1)At
m=20 initialisation
hn+1,0 — pn

9n+1,0 — H(thrl,O)

Kn-l—l,O _ K(hn+l,0)

Cn+1,0 — C(hn+1,0)

Calcul des termes du systeme Cjj, M;;, Nyj, K;; et b;
30 Résolution du systeme (3.34) : A" LM+l —p

si |[hnTbmAl g tbm) < 4ol aller & 20

sinon faire :

m<+—m+1

hn+1,m « hn—l—l,m—i—l

9n+1,m — H(hn+1,m+1)

Kn-l—l,m « K(hn—l—l,m—l—l)

Cn+1,m «— C(hn+1,m+1)

aller 30
20 hn+1 — hn+1,m+l

9m+1 — e(hn+1,m+1)

Kn-l—l — K(hn—i—l,m-l—l)
Cn+1,m — C(hn+1,m+1)

h" = hn+1

n+<—mn+1 et aller a 10

Nous apportons une précision supplémentaire a cet algorithme pour le terme tol qui doit étre pris de
fagon & converger relativement rapidement, mais également & ne pas perdre en précision. Dans le cadre
de ce projet, nous prenons tol = 1078,
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4

Résultats

Dans ce chapitre, des résultats numériques en une dimensions sont présentés notamment les résultats
de Richards en formulation h et mixte, du solide et du probléeme couplé (fluide-solide). La méthode de
linéarisation considérée est la méthode de Picard. Nous nous concentrons sur la convergence et le temps
de calcul.

Grace a ces programmes, nous avons pu obtenir des simulations numériques que nous allons représenté
en différents cas tests pour valider nos codes.

4.1 Reésultats numériques de Richards et solide 1D

4.1.1 Résultats numériques de Richards 1D

Test 1 : Formulation en h

Dans ce cas-test, on s’intéresse de ’équation de Richards exprimée dans formulation en fonction de la
hauteur d’eau h. La capacité d’humidité C et la conductivité hydraulique K sont définis selon le modele
de Van Genuchten introduit dans le deuxiéme chapitre.

On travaille sur un domaine de 100 points et pour une profondeur de 0.6 m. La condition initiale est
h(z,0) = hinit = —10 m et les conditions limites de type Dirichlet sont h(0,t) = hiop = —0.75 m et
h(0.6,t) = hpor = —10 m. On considére que 'infiltration se produit sur une période de 3600, 10800 et
18000 secondes avec un pas de temps At = 10s. Nous avons utilisé la méthode des EF et I’algorithme de
THOMAS a été adopter pour résoudre le systeme tri-diagonal issu de la linéarisation.

Les différents parametres physiques considérés pour deux types de sols choisi sont donnés dans le tableau
(4.1) :

Sols Parameétres
Argile | Ky = 1.51E — 06 m/s, 054 = 0.4686, 0,5 = 0.106, o = 3.104m= 1, n=2
Sable | K;=9.22E — 05 m/s, Osqt = 0.368, Oy¢s = 0.102, « = 3.35 m L n=2

TABLE 4.1 — Quelques matériaux et leurs parametres.

Les résultats que nous présentons sont tirés de article (Shoshtari and Arash Adib, 2011) pour ¢ =
3600 s, t = 10800 s et ¢ = 18000 s, sauf I'article traite que le cas d’un sol de type sable, nous ajoutons un
autre type de sol qui n’est que l'argile. Les parametres physiques du sol sont celui de Van Genuchten. Le
but ici ce de ne pas de comparer nos résultats avec celui de I'article, mais c’est d’observer le comportement
de la solution et pour voir I’évolution de I'infiltration selon le type de sol. Il faut noter que I’enchainement
des figures représentées ici correspond & I’écoulement du temps (en seconde).
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e Sable

(a) Hauteur d’eau h (b) Teneur en eau 6(h)

FIGURE 4.1 — Résultat obtenu par la méthode des éléments finis, avec Ky = 9.22F — 05 m/s,
Osar = 0.368, Ores = 0.102, o = 3.35 m™ ', n = 2 & I'instant ¢ = 3600s, t = 10800s et t = 18000s

1]

(a) Hauteur d’eau h (b) Teneur en eau 6

FIGURE 4.2 — Présentation des résultats des simulation a l'instant ¢ = 1h, 3h et 5h obtenu par
Mohammad Mahmoodian Shoshtari and Arash Adib, 2011, en utilisant la méthode des volumes
finis.

Pour la modélisation numérique, le domaine d’écoulement est 0.6m. Le potentiel de pression h et la
teneur en eau 6 pour un sol sableux est utilisé. Finalement, les résultats obtenus dans 'article et ceux
obtenus a l'aide de la simulation numérique par la méthode des éléments finis sont présentés par les
figures (4.1) et (4.2).

Nous avons observé qu’elle confirme bien la variation linéaire du potentiel de pression avec des valeurs
négatives en zone non saturée laquelle correspond & la position du front de saturation (voir figure 4.1).
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o Argile

(a) Hauteur d’eau h (b) Teneur en eau 6(h)
(¢) Cond. hydraulique K (h) (d) Capacité capillaire C'(h)
(e) Saturation effective Se(h) (f) Pression d’eau p,,

FIGURE 4.3 — Evolution au cours de l'infiltration & 0.6 cm de profondeur

En observant les figures (4.1), (4.2) et (4.3), elles présentent les solutions obtenues par le modele

numérique 1D par la méthode des éléments finis au cours du temps. Nous remarquons que le modele
simule bien le mouvement d’infiltration du potentiel de pression capillaire (hauteur d’eau). Pour les
figure (4.1) et (4.3), nous remarquons aussi que le modele respecte les conditions aux limites imposées a
la surface et au fond de la colonne durant toute la période de la simulation.
Nous observons également sur les figures (4.1) et (4.3) que le profil du potentiel de pression capillaire
n’est pas le méme. Cette différence est due le fait que dans sur figure (4.1)) Uinfiltration ce fait de fagon
plus rapide car le sable est plus léger que I'argile. C’est pour la simple raison en voit du coté de 'argile
la propagation au cours du temps est tres long.
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Test 2 : Formulation en 6 — h

Dans ce cas test, on s’intéresse a I’équation de Richards mixte. La teneur en eau et la conductivité
hydraulique sont données par le modele de Van Genuchten pour le sable et 'argile.
e Cas-test 1

Nous représentons ici les résultats pour un maillage de 100 points, nous prenons les mémes données
du cas précédent (formulation en h). Pour vérifier le calcul précédent, dans 1’équation mixte (3.22) nous
allons tout d’abord ne pas tenir compte de la capacité de stockage spécifique et du terme source (c’est-
a~-dire Sy = 0 et f = 0). Dans ce cas nous obtenons la méme solution que celle de I’équation de Richards
linéaire (formulation en h).

(a) Hauteur d’eau h (b) Teneur en eau 6

FIGURE 4.4 — Cas sable : Ky = 9.22F — 05 m/s, 05t = 0.368, 05 = 0.102, a = 3.35 m™ !,
n = 2 pour t=3600 s, t=10800 s et t=18000 s avec At = 10s

(a) Hauteur d’eau h (b) Teneur en eau 6

FIGURE 4.5 — Cas argile : K; = 1.51E — 06 m/s, 054 = 0.4686, 0,5 = 0.106, o = 3.104m™1,
n = 2 pour t=3600 s, t=10800 s et t=18000 s avec At = 10s
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o Cas-test 2

On présente ici les résultats pour f = 0 et pour différentes valeurs de Ss. Il faut noter que ce test
est réalisé dans le cas du sable.

(a) Hauteur d’eau h (b) Teneur en eau 6

FIGURE 4.6 — Représentation de h et # pour At = 10s et S, = 0.05 m™!

(a) Hauteur d’eau h (b) Teneur en eau 6

FIGURE 4.7 — Représentation de h et @ pour At = 10s et Sy = 0.2 m~!
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(a) Hauteur d’eau h (b) Teneur en eau 6

FIGURE 4.8 — Représentation de h et @ pour At = 10s et S, = 0.8 m™!

(a) Hauteur d’eau h (b) Teneur en eau 6

FIGURE 4.9 — Représentation de h et @ pour At = 10s et S, = 3.2 m™!

Pour le terme source f et la capacité de stockage spécifique étant nul, on remarque sur la figure
(4.5) que les courbes de potentiel de pression capillaire et de la teneur en eau gardent la méme allure
au cours du temps. Ce pendant on note que le taux d’infiltration n’est plus le méme dans le cas ou la
capacité de stockage spécifique est non nulle. Nous constatons 'effet du capacité de stockage spécifique
qui agit sur le sol. Cette capacité de stockage spécifique joue un role capital dans linfiltration de l'eau.
On remarque pour Sy = 0.05m ™! Iinfiltration se fait plus rapide et on se trouve quasiment dans cas du
test 1 lorsque Sy = 0, cependant lorsque la capacité de stockage spécifique prend des valeurs plus grandes
nous constatons que le taux d’infiltration est tres lent et n’est plus le méme dans tout le domaine et
differe selon les différentes valeurs de Ss.

On observe aussi concernant les résultats de la teneur en eau (voir figures (4.5b) et (4.6b)) montrent
que le sol se sature au cours du temps. On voit bien le comportement de la hauteur h d’eau qui suit
Pévolution de la teneur en eau 6, ce qui affirme la liaison entre les deux variables (6 et h).
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4.1.2 Validation du modeéle Richards 1D (formulation en h)

Pour tester le code éléments finis 1D (1D-EF) développé dans le cadre de cette étude nous avons
construit une solution analytique pour un sol donné :

hew(2,t) = at(z — a)(z — b), (2,t) €10,4] x [0,T] (4.1)

En effet, cette équation sera utilisée pour calculer le terme source adéquats pour I’équation de Richards.
Enfin on impose a la fonction h., de vérifier I’équation de Richards pour aboutir alors a ’expression
d’un terme source f. Si I’on considere la formulation A de 1’équation de Richards alors la fonction he,
est la solution du probleme suivant :

h(z,0) = hinit(2) (4.2)
h(0,t) = huop(t)
h(z,t) = ho(t)

En pratique, si on fournit au modele la fonction f, K(h), C(h) et he, sur le bord 91, alors le modele
1D-EF doit fournir la solution h = h.; Il convient de noter la validation du code en comparaison avec
une solution analytique permet d’analyser le comportement du code de calcul développé. On cite par
exemple I'analyse de l'erreur, de la convergence et notamment 1’ordre de la précision qui est généralement
différent de ’ordre théorique.

La condition initiale est choisie constante, et on impose une condition de Dirichlet a la surface et au fond
de la colonne.
Pour ce probleme, on se donne un sol de conductivité hydraulique et de capacité d’humidité :

K(h)=p8 et C(h)=~ (4.3)
avec les parametres s’expriment de la maniére suivante :
a=10""m™, B=12x10"° et y=10"2

On veut fabriquer le terme source a partir de ces données.

Calcul du terme source f

En effectuant les calculs des dérivées on obtient :

Ohes

5 =a(z—a)(z—0b) (4.4)
0?hey

9.2 = 2at (4.5)

En injectant les équations (4.3), (4.4) et (4.6) dans I’équation de Richards (4.2), nous obtenons finalement
le terme source f :

f(z,t) =avy(z —a)(z = b) — 2a8t (4.6)
Le test a réaliser consiste a vérifier si on fournit au modele développé la fonction f, K(h), C(h) et hey
alors le modele 1D-EF est-il capable de fournir numériquement la solution A = hey 7

Conditions aux limites

Pour cela, on calcul hey(a,t) = hiop €t hey (b, 1) = hpor, avec a =0 et b = 4.
donc,

heg(a,t) = hp =0
{ hem (b7t) = hbot =0 (47)
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Pour la validation, Le domaine étudier est Q = [0, 4], il s’agit d’une colonne verticale de longueur 4
m contenant un sol de caractéristiques prédéfinies. Les deux extrémités de la colonne sont reliées a ’air
libre et le temps final de simulation est T' = 14400 secondes avec un pas de temps At = 10 s. La solution
initiale est h,: = 0 et les conditions aux limites de type Dirichlet sont données par 1’équation (4.7).

FIGURE 4.10 — La solution exacte de la hau- FIGURE 4.11 — La solution numérique de la
teur d’eau h a l'instant ¢ = 1800 s (en rouge) hauteur d’eau h & l'instant ¢ = 1800 s (en
et ¢ = 14400 s (en bleu) violet) et t = 14400 s (en vert)

FIGURE 4.12 — La solution exacte (en rouge et bleu) et la solution numérique (en violet et vert)
a I'instant ¢ = 1800s et ¢ = 14400s pour At = 10 s

Nous observons sur le figure (4.12) qu’il y a une bonne convergence de la méthode, car la solution
numérique calculée par le code 1D méthode des éléments finis est assez proche de la solution exacte. Nous
remarquons aussi que le modele respecte bien les conditions de Dirichlet qui ont été fixées a I'extrémité
de la colonne du domaine.
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4.1.3 Validation Richards 1D en formulation mixte

L’équation de Richards étant fortement non linéaire en milieu non saturé, il existe peu de solution
analytique permettant de tester la validité du schéma itératif. Cependant dans cette section nous prenons
une solution analytique comme nous ’avions dans les autres cas. Cette solution analytique permet de
vérifier la mise en oeuvre des algorithmes de base avant de tester la modele sur des cas plus réalistes.
On rappel I'équation de Richards non linéaire suivante :

29 6 _ 0h 0 oh OK(h)
ot oSa T (KWg) - = (45)
.00 060 00
ol = = o7 5 avec C(h) = o
léquation(3.69) devient :
oh 9. on 9 ohy  OK(h)
Oy + 5557 ~ (K ) - == (4.9)

On cherche a déterminer le terme source f. Pour cela, nous allons gardé les mémes conditions aux limites,
ainsi que la solution analytique que celui dans le cas de la validation de Richards 1D linéaire.
Pour valider notre code dans ce cas, on se donne les caractéristiques du sol suivante :

- la teneur en eau : (h) = h?;
- la conductivité hydraulique : K(h) = vh2 +1;
- la capacité capillaire (d’humidité) : C'(h) = 2h

Maintenant, il reste a déterminer le terme source f. Nous calculons les termes de 1'équation (4.9) et
les remplacés par la suite afin d’obtenir f.

oh
i a(z—a)(z—b)
) ohy 0 oh 9%h
E(K(h)&) = - (K0) - 5=+ K(h) 5
) K Oh 9%h
avee o (K(h) = 5 55t oz = 20
Donc,
0 oh 2ath
N | = 2
- (K(h) 82) e T 2at/h
et

OK(h) — OK(h)0h _ ath(2z —a—1b)
dz  Oh 09z  VR2+1

En remplacant tous les termes dans I’équation (4.9), finalement nous obtenons le terme source f
suivant :

(e —a)e— )+ D5 ey - (29 ) L Rz —ah)
f(z,t) =2ah(z —a)(z —b) + ) ( )(z =) (\/erz t\/ﬁ) \/W( )
4.10

pour le terme de capacité de stockage S = 0. on a :
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f(z,t) =2ah(z —a)(z —b) — (\/% + 2atv/h? 4+ 1) - C%_J:ll_b) (4.11)

Dans la pratique ce terme source sera dans le second membre et le h ici représente la fonction
analytique donnée.
A présent, nous représentons le résultat obtenu lors du test de validation de notre code.

Parameétres Type de sol
Caractéristique du sol | quelconque
6(h) h?
a[m™1] 107
C(h) 2h
K(h) VhZ+1
Ss[m~1 0

TABLE 4.2 — Parametres utilisés pour valider le modeéle dans le cas analytique pour n = 100.

Parameétres Valeurs
Longueur de la colonne 4m (en position verticale)
Condition initiale hinit =0
Condition & la limite supérieure hiop =0
Condition a la limite inférieur hpot = 0
Durée de simulation 14400s
Pas de temps At = 10s

TABLE 4.3 — Conditions utilisées pour valider le modele.

FIGURE 4.13 — Représentation de la solution exacte (en rouge) et la solution numérique (en
noir) & I'instant ¢t = 1800s et 14400s.
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4.1.4 Résultats numériques du solide 1D

Dans cette section, on s’intéresse de I’équation (3.35) et aux calculs effectués dans la sous-section
(3.2.2). On considere une profondeur de 0.6 m, d’axe 2 positive vers le bas. On veut simuler le déplacement
du solide selon deux types de sols (sable et argile). Pour ce faire on se donne les conditions aux limites
suivantes :

1. Les deux extrémités sont considérées libres (pas déplacement, ni effort imposé) ;
2. Effort imposé a la surface et libre au fond ;

3. Déplacements sont imposés sur les deux extrémités.

Nous obtenons les résultats suivants :

e Test 1 : Sable

(a) Effort libre & la surface et sans déplacement au (b) Effort appliqué & la surface et sans
fond déplacement au fond

(c) Déplacement appliqué & la surface et au fond

FIGURE 4.14 — Représentation du déplacement de solide u dans le cas d’un sable saturé avec
Kotide = 6.333 x 108 Pa et ps = 2000 kg/m3.
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o Test 2 : Argile

(a) Effort libre & la surface et sans déplacement au (b) Effort appliqué & la surface et sans
fond déplacement au fond

(¢) Déplacement appliqué a la surface et au fond

FIGURE 4.15 — Représentation du déplacement de solide u dans le cas de 'argile sableuse avec
Kotide = 4.166 x 108 Pa et ps = 1700 kg/m3.

Nous présentons ici les résultats numériques obtenus pour un maillage de 100 x 100 en utilisant
la méthode des éléments finis. Ces résultats représentent le déplacement du matériau (sable et argile)
exprimés en metre de densités p, = 1700kg/m3 et ps = 2000kg/m3. On observe sur les figures (4.14) et
(4.15) que le solide ne se déplacement pas de la méme distance, cela peut étre expliquer par perméabilité
et porosité du matériau. Par exemple dans le cas du sable (saturé) représenté par la figure (4.14) le sol
est plus perméable et son déplacement se fait assez rapidement contrairement dans le cas de l'argile qui
se fait moins vite pour des raisons due a la propriété physique du sol considéré.
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4.1.5 Validation du modeéle 1D solide

Pour tester le code éléments finis 1D solide (1D-EF), on s’intéresse de I’équation d’équilibre (2.25)
avec terme source f (& déterminer), on considére une profondeur de longueur | = 4m. Il faut noter ici le
Koiide n'est plus constant, il est remplacé par K(z) qui est une fonction de conductivité hydraulique du

6uto
sol. On considere les conditions aux limites & la surface une condition naturelle Tp = 0 (sans effort
z

appliqué), au fond une condition de Dirichlet upot(b) = e (b) (déplacement imposé) et une condition
initiale WUinit = 0.

O (KO +pug = f (4.12)

9z 2

Pour la validation, la méthode des éléments finis sera appliquer aussi pour ce probleme (4.12). En effet,
on se donne une solution exacte suivante :

Uez(2) = a2 + B (4.13)
Pour ce probleme, nous considérons un sol de conductivité hydraulique :
K(z) = Az (4.14)

e Calcul du terme source f

En effectuant le calcul de la dérivée partielle de u., on obtient :

OUey

0z

=2az (4.15)

En injectant les équations (4.14) et (4.15) dans 'équation (4.12), on a :

0
5, (2002%) + psg = f

Finalement, on obtient le terme source f donné par :

f(z) =4darz + psg (4.16)

avec les parameétres sont exprimés de la manieére suivante : & = 1073 et A = = 1072, avec la solution
initiale et les conditions aux limites sont données par :

Uinit = 0

Ouop  _ (4.17)
0z
Upot = 4ab + ﬁ

avec b =4m.
Le test a réaliser consiste & vérifier si on fournit au modele développé la fonction f, K(z) et e, sur le
bord 02, alors le modele 1D-EF est-il capable de fournir numériquement la solution u = e, ?

Comme on peut observer sur la figure (4.16) la solution calculée est confondu avec la solution exacte.
Pour voir la différence entre ces deux solutions, nous allons adopté une technique que l'on appelle la
sensibilité de la solution au maillage qui permet de calculer les erreurs entre la solution exacte et la
solution calculée pour différents maillages. Il s’agit de I'erreur relative afin de donne le maillage optimal.
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FIGURE 4.16 — Représentation de la solution exacte (en rouge) et la solution numérique (en
vert)

4.2 Reésultats numériques du couplage 1D

Pour ce test, il s’agit d’une profondeur de 0.6 m de longueur contenant le sable ot 'argile comme
types de sols. Pour le fluide, on considére les conditions aux limites de type Dirichlet(hyo: = —0.75m,
hiop = —10m) et la condition initiale est fixé & h;nir = —10m. On ce qui concerne le solide nous allons
considérer les mémes conditions aux limites que celles décrites dans la section (3.2.2). Le temps maximal
de simulation est de 18000 s avec un pas de temps At = 10s.

On veut tester notre modele de couplage entre I’équation de Richards et I’équation du solide 1D pour

deux types de sols (sable et argile). Nous représentons les résultats pour des différents cas tests comme
I'avons fait précédemment.

e Test 1 : Sable

(a) Hauteur d’eau h (b) Déplacement solide u

FIGURE 4.17 — Représentation de la hauteur d’eau h et du déplacement solide u : Effort libre
a la surface et sans déplacement au fond.
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(a) Hauteur d’eau h (b) Déplacement solide u

FIGURE 4.18 — Représentation de la hauteur d’eau h et du déplacement solide v : Effort appliqué
a la surface et sans déplacement au fond.

(a) Hauteur d’eau h (b) Déplacement solide u

FIGURE 4.19 — Représentation de la hauteur d’eau h et du déplacement solide w : Déplacement
appliqué & la surface et au fond.

e Test 2 : Argile
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(a) Hauteur d’eau h (b) Déplacement solide u

FIGURE 4.20 — Représentation de la hauteur d’eau h et du déplacement solide u : Effort libre
a la surface et sans déplacement au fond

(a) Hauteur d’eau h (b) Déplacement solide u

FIGURE 4.21 — Représentation de la hauteur d’eau h et du déplacement solide w : Effort appliqué
a la surface et sans déplacement au fond

(a) Hauteur d’eau h (b) Déplacement solide u

FIGURE 4.22 — Représentation de la hauteur d’eau h et du déplacement solide u : Déplacement
appliqué a la surface et au fond
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Pour un maillage de 100 points, on observe sur figures nous obtenons, I’évolution du front de la
hauteur d’eau et le déplacement du solide pour différent instant sont presque les mémes obtenu aux
résultats des cas-tests précédents. Il faut noter que ici le déplacement u dépend du temps qui vient de
I’équation de Richards. Ce qui valide le couplage fait entre les deux équations.

4.2.1 Comparaison des résultats de calculs

e Richards en formulation en h et en 6 — h

Forme de Richards At (en's) | Temps CPU (en s) | Nombre d’itérations
Formulation en h (cas linéaire) 10 13.637 -
120 1.147 -
320 0.444 -
Formulation en # — h (cas non linéaire) 10 86.073 3
120 14.466 6
320 6.839 8

TABLE 4.4 — Résultats numériques obtenus par MEF pour n = 200 et ¢t = 43200s.

(a) Hauteur d’eau h : Cas linéaire

(b) Hauteur d’eau h : Cas non linéaire

FIGURE 4.23 — Les figures (4.24a) et (4.24b) présentent 1’évolution de la hauteur d’eau au cours
de linfiltration a 0.6m de profondeur et sont obtenus a partir du tableau (4.4).

Forme de Richards At (en's) | Temps CPU (en s) | Nombre d’itérations
Formulation en h (cas linéaire) 10 27.458 -
120 2.307 -
320 0.862 -
Formulation en # — h (cas non linéaire) 10 158.387 3
120 26.140 6
320 12.144 8

TABLE 4.5 — Résultats numériques obtenus par MEF pour n = 200 et ¢t = 86400s.
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(a) Hauteur d’eau h : Cas linéaire (b) Hauteur d’eau h : Cas non linéaire

FIGURE 4.24 — Les figures (4.24a) et (4.24b) présentent I’évolution de la hauteur d’eau au cours
de l'infiltration & 0.6m de profondeur et sont obtenus & partir du tableau (4.5).

Pour les figures (4.23) et (4.24) montrent la variation du potentiel de pression h sur un domaine
d’écoulement de 0.6m pour les temps t = 43200s et ¢ = 86400s et pour les pas de temps At = 10,120
et 320 secondes, pour un maillage de 200 x 200 on observe que au bout de 43200 s que l'infiltration se
fait pas assez rapide, mais apres 86400 s ’eau continue de s’infiltrer en gardant la méme forme de la
hauteur d’eau que a 43200 s. Nous pouvons aussi observé que au bout de 86400 s le sol se sature presque
complétement (figure 4.24) surtout dans le cas de Richards linéaire. Pour ce type de maillage, nous disons
que le temps de calcul est assez raisonnable. De plus, on voit que la méthode est conservatrice car le
taux d’infiltration reste le méme dans tout le domaine.

e Couplage fluide-solide

Couplage | At (en s) | Temps CPU (en s) | Nombre d’itérations
Test 1 10 33.075 2
120 2.769 2
320 1.043 2
Test 2 10 33.324 2
120 2.783 2
320 1.049 2
Test 3 10 33.215 2
120 2.795 2
320 1.046 2

TABLE 4.6 — Résultats numériques obtenus par MEF pour n = 200 et ¢t = 43200s.
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(a) Hauteur d’eau h : Cas du couplage (b) Déplacement u : Cas du couplage

FIGURE 4.25 — Les figures (4.25a) et (4.25b) sont obtenus & partir du tableau (4.6) du test 1 en
considérant les conditions suivantes : pas d’effort et pas de déplacement aux deux extrémités
de la colonne.

(a) Hauteur d’eau h : Cas du couplage (b) Déplacement u : Cas du couplage

FIGURE 4.26 — Les figures (4.26a) et (4.26b) sont obtenus & partir du tableau (4.6) du test 2 en
considérant les conditions suivantes : effort imposé a la surface et pas de déplacement au fond
de la colonne.
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(a) Hauteur d’eau h : Cas du couplage (b) Déplacement u : Cas du couplage

FIGURE 4.27 — Les figures (4.27a) et (4.27b) sont obtenus & partir du tableau (4.6) du test 3 en
considérant les conditions suivantes : déplacement imposé aux deux extrémités de la colonne.

Les figures (4.25), (4.26) et (4.27) montrent la variation du potentiel de pression h et du déplacement
du solide u sur un domaine d’écoulement correspondant a z = 0.6m pour un temps t = 43200s et pour
les pas de temps At = 10,120 et 320 secondes.

4.3 Sensibilité de la solution au maillage

Un maillage de qualité est primordial pour obtenir une bonne convergence du calcul numérique et de

bons résultats lors de la simulation. Diverses configurations de maillage composée de cellules quadrilateres
ont été testées dans I'optique de déterminer le meilleur compromis entre la précision des résultats et la
durée nécessaire pour que le calcul converge. Apres avoir choisi une densité de maillage, trois tests de
sensibilité par rapport aux modeles 1D-EF régissant les écoulements dans le sol (test pour Richards
linéaire et non linéaire) et au déplacement du squelette solide a été effectué.
Nous étudions cette sensibilité dans le cas des validations des modeles (Richards linéaire, non linéaire et
solide 1D), Pour mener cette étude de test de sensibilité, nous avons mis a disposition de 07 maillages
nommés My, Ms, M3, My, Ms et Mg (voir tableaux (4.7), (4.8) et (4.9)). La sensibilité de la solution au
maillage consiste a rechercher :

1. Dépendance de la précision : La résolution numérique d’un probleme physique est généralement
plus précise avec un maillage fin et dense. Cela signifie qu'un maillage qui divise le domaine en
petites éléments permettra d’obtenir une solution plus précise;

2. Effet sur la stabilité : Un maillage grossier peut conduire & des instabilités numériques ou a des
oscillations dans la solution, en particulier pour les problemes comportant des gradient rapides.
Un maillage fin peut améliorer la stabilité numérique ;

3. Coiit de calcul : Un maillage plus fin implique généralement un cotit de calcul plus élevé, car
davantage d’éléments doivent étre résolus. Il est important de trouver un compromis entre la
précision souhaitée et la capacité de calcul disponible;

4. Validation et vérification : La sensibilité au maillage nécessite souvent une validation soignée
en utilisant des solutions analytiques ou des résultats expérimentaux lorsque cela est possible.
Cela permet de s’assurer que la solution numérique converge vers la vraie solution lorsque le
maillage se raffine;

5. Erreur de discrétisation : L’erreur de discrétisation, qui est 'erreur introduite par la discrétisation
numérique du probléme continu, dépend fortement de la qualité du maillage. En général, un
maillage plus fin réduit 'erreur de discrétisation.
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— Cas de Richards linéaire

Maillages | At (ens) | Temps CPU (en s) | Erreurs relatives
M, =100 10 0.231 3.29498 x 10~°
120 2.157 x 1072 3.29494 x 107
320 8.895 x 1073 3.29483 x 107°
M,y = 200 10 1.528 1.15618 x 10~°
120 0.134 1.15616 x 10~°
320 5.206 x 102 1.15613 x 107°
M5 = 400 10 10.270 4.07236 x 1076
120 0.847 4.07233 x 106
320 0.325 4.07220 x 106
M, = 800 10 41.372 1.43710 x 1076
120 3.654 1.43713 x 1076
320 1.325 1.43716 x 1076
Ms = 1600 10 161.047 5.07124 x 107
120 13.560 5.06985 x 10~
320 5.070 5.07367 x 107
Mg = 3200 10 1061.772 1.84997 x 10~ 7
120 94.411 1.77230 x 1077
320 34.872 1.83248 x 1077
M, = 6400 10 10014.475 4.2431 x 1078
120 803.030 5.47587 x 1078
320 323.813 7.50287 x 1078

TABLE 4.7 — Détermination de l'erreur relative pour différents maillages dans cas de Richards
linéaire (L’ordre de précision du modele 1D-EF).

— Cas du solide

Maillages (n,) | Temps CPU (en s) | Errreurs relatives
M, = 100 1.340 x 1073 1.209 x 10~°
My = 200 2.700 x 1073 4.158 x 107°
M3 = 400 7.620 x 1073 1.442 x 107°
M, = 800 2.413 x 1072 5.004 x 10~7
Ms = 1600 9.996 x 102 1.692 x 107
Mg = 3200 0.366 5.066 x 10~%
Mg = 6400 2.110 1.146 x 10~8

TABLE 4.8 — Détermination de I'erreur relative pour différents maillages dans le cas du solide
(L’ordre de précision du modele 1D-EF).
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— Cas de Richards non linéaire

Maillages | At (ens) | Temps CPU (en s) | Itérations | Erreurs relatives
M, = 100 10 3.571 10 2.834 x 1074
120 0.364 11 2.844 x 1074
320 0.160 12 2.861 x 104
M, = 200 10 19.426 10 2.382 x 1072
120 1.896 11 2.397 x 1074
320 0.769 12 2.423 x 104
Ms = 400 10 122.134 10 2.862 x 1072
120 11.503 11 2.883 x 1074
320 4.634 12 2.920 x 1074
M, = 800 10 476.722 10 3.882 x 10~*
120 51.881 11 3.911 x 10~*
320 18.146 12 3.964 x 10~*
Ms = 1600 10 1702.482 10 5.433 x 1074
120 169.690 11 5.474 x 1074
320 64.964 12 5.549 x 104
Mg = 3200 10 20173.840 10 7.664 x 1074
120 1985.916 11 7.723 x 1074
320 844.643 12 7.829 x 1074
M7 = 6400 10 89455.804 10 1.083 x 1073
120 11939.068 11 1.091 x 1073
320 5315.927 12 1.106 x 1073

TABLE 4.9 — Détermination de l'erreur relative pour différents maillages dans cas de Richards

non linéaire (L’ordre de précision du modele 1D-EF).

Remarque 4.3.1 Il est a noter toutefois les pas de discrétisation adoptés peuvent influencer les résultats
obtenus de facon plus ou moins remarquable, il convient donc pour chaque simulation d’étudier la sen-
sibilité des résultats afin de déduire des valeurs optimales qui permettent de concilier la précision et le

cout de calcul.
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Conclusion

5.1 Conclusion

Le transport fluvial comporte de nombreux atouts : il est fiable, rapide, ponctuel, écologique et
économique. Depuis quelques années, I’on assiste a un regain d’intérét pour le transport fluvial dont le
potentiel de développement est considérable. La route étant saturée et le rail ayant de grandes difficultés
a accroitre sa capacité de transport de fret, la voie d’eau apparait de plus en plus comme la solution
d’avenir. Effet, lors du passage d’un bateau se produit sur la surface de ’eau un phénomene qu’on appelle
batillage. Ce phénomene génere des ondes de vagues permettant un mouvement de monté-descendé du
niveau d’eau s’infiltrant dans la berge et entraine le remplissage des pores vides en provoquant la sa-
turation du milieu et une augmentation du poids du sol. Il fait parti des causes d’érosion les plus néfastes.

La modélisation numérique de ’érosion des berges due au trafic fluvial est une discipline en constante
évolution qui joue un role central dans la protection de nos ressources hydriques et de nos infrastructures
riveraines. Elle permet de mieux comprendre, de prédire et de gérer ce phénomene complexe, favorisant
ainsi un développement durable et une utilisation responsable de nos voies navigables.

Pour conclure, nous avons proposé trois parties :

1. La premiere partie concerne quelques rappels de généralités sur le milieu poreux pour la compréhension

de la suite du projet parmi on cite : I’équation de conservation de masse et la loi de Darcy qui
interviennent dans I’équation de Richards.

2. La deuxieme partie concerne la modélisation de I’écoulement dans le sol qui gouverne les équations
de Richards (en h, 6 et @ — h), ensuite nous avons donné un modele du solide régit par I’équation
d’équilibre du solide dont I'inconnue est le déplacement est u et le modele couplé (fluide-solide)
qui vient de la contrainte effective.

3. La troisieme partie : Elle est basée sur la résolution et résultats numériques. Pendant ce stage
pour la résolution numérique des modeles évoqués, concernant Richards nous sommes intéresse
de la formulation en h et 8 — h, un code a été développé en une dimension basé sur les méthodes
des éléments finis, une méthode itérative de linéarisation de Picard a été utilisé pour le cas
de Richards non linéaire (6 — h) et pour la résolution du systéme linéaire nous avons utilisé
Palgorithme de TDMA (Tridiagonal matrix algorithm) ou THOMAS. L’algorithme développé est
codé en Fortran 90. Nous avons effectué quelques cas tests pour deux types de sols (sable et argile)
en tenant compte des caratéristiques du sol de I'article Mohammad Mahmoodian Shoshtari and
Arash Adib, 2011 et de la these de Ayoub Charhabil qui sont donné par le modele Van Genuchten.
Ensuite un cas de validation & été effectué dans le cas du solide et de Richards (en h), pour cette
validation nous avons fabriqué un type de sol en donnant la conductivité hydraulique K (h), la
teneur en eau 6(h), la capacité capillaire C(h) et une solution analytique.

D’un point de vu numérique, nous avons trois codes qui fonctionnent pour le solide, de Richards (cas
linéaire et non linéaire) et du couplage (fluide-solide). I faut noter que ces modeles servent pour des
prédictions physiques.
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Du point de la physique, nous constatons que pour des propriétés qui correspond a de ’argile et le sable,
il n’a pas de différence de résultats donnés par l'algorithme de linéaire et celui donné par donné par
I’algorithme non linéaire. Cependant, il est intéressant a I’aide des deux outils que nous avons développer
c’est de voir si pour d’autres propriétés de sols ca l'intérét de faire du non linéaire. Pour ’analyse des
résultats numériques obtenus, nous pouvons dire que le modele numérique 1D élément fini développé
simule correctement 1’écoulement dans le sol et le déplacement du squelette solide. Les résultats sont
satisfaisants et qui peuvent étre améliorés.
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Liste des symboles

Symboles

At pas de discrétisation du temps

Az pas de discrétisation de la profondeur

I viscosité du fluide

v gradient en coordonnées cartésiennes
coefficient de Poisson

10) porosité

Ps masse volumique du solide

Puw masse volumique du fluide

o’ contrainte effective

o contrainte totale

0 Teneur en eau volumique

0res teneur en eau volumique résiduelle

Osat teneur en eau volumique saturée

€ déformation du squelette solide

q vecteur vitesse de Darcy

C(h) capacité capillaire

D(0) diffusivité sol-eau

E modele de Young

g accélération de la pesanteur

H Charge hydraulique

h potentiel de pression capillaire (hauteur d’eau)

he pression d’entrée d’air

K conductivité hydraulique

k perméabilité intrinseque

K conductivité hydraulique saturée

Koridge module de compressibilité du solide

n,m  parametre lié au sol

Pa pression de lair

Pw pression de I’eau
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Dimensions

Pa

kg/m?
kg/m3
Pa
Pa

m?/s



T n n W

taux de saturation

taux de saturation effective
capacité de stockage spécifique
temps

déplacement du solide

profondeur sous la surface du sol
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Annexe

5.2 Organisation de la programmation

Il existe une diversité de méthode numériques, depuis ces dernieres décennies, les sciences des
matériaux ont connu une renaissance grace aux développements des outils de simulation.
La résolution du probleme fluide, solde et d’un systeme couplé fluide-solide, est ramené a résoudre un
systeme d’équations différentielles qui nécessite 'utilisation de ces méthodes numériques d’ou la nécessité
d’élaborer un programme de calcul EF-1D.

Dans le cadre de ce projet, on souhaite mettre en place un algorithme capable de résoudre numériquement
le systeme d’équation discrétisées en chaque point de I'espace. Cet algorithme de programmation sera
écrit en langage FORTRAN 90 et nous avons utilisé :

- GCC version 9.4.10 (Ubuntu 9.4.10-1ubuntu~ 20.04.2) ;
- Outil de pré traitement : mise en données (fichier.dat) ;
- Outil de post-traitement : Gnuplot(pour la visualisation des résultats) ;

Type de programme : programmation en séquentielle.

5.2.1 Description des programmes

L’algorithme développé est organisé en sous programme suivant :

e Fluide et solide :

- richards.f90, solide.f90 : Programme principal qui fait appel a un ensemble de sous programme
(subroutines) ;

- input.dat : Dans lequel I’ensemble des données physiques et algorithmes du probleme sont
définis ;

- maillage.f90 : Permet de créer le maillage qui va servir de base dans la discrétisation;

- caract_sol.f90 : Contient les fonctions caractéristiques du sol étudié (0(h), K(h), C(h));

- mat_vect_elem.f90 : Calcul de matrice de rigidité élémentaire K *, de matrice de masse élémentaire
M;* et du vecteur second membre élémentaire B:* ;

- assembl.f90 : Calcul le vecteur d’assemblage B, de matrice d’assemblage rigide K et de matrice
d’assemblage de la masse M ;

- solver.f90 : Permet la résolution des systémes MH + KH = B(fluide) et Mu = B (solide) par
la méthode numérique TDMA (TriDiagonal Matrix Algorithm).

e Couplage :
- couplage.f90 : Programme principal qui fait appel & un ensemble de sous programme (subrou-
tines) ;
- input.dat : Dans lequel I’ensemble des données physiques et algorithmes du probleme sont
définis ;

- maillage.f90 : Permet de créer le maillage qui va servir de base dans la discrétisation ;
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- caract_sol.f90 : Contient les fonctions caractéristiques du sol étudié (0(h), K(h), C(h));

- mat_vect_elem_fluid.f90 : Calcul de matrice de rigidité élémentaire K;*, de matrice de masse
élémentaire M;* et du vecteur second membre élémentaire B;* ;

- mat_vect_elem_solid.f90 : Calcul de matrice de rigidité élémentaire Kf" et du vecteur second
membre élémentaire B{* ;

- assembl_fluid.f90 : Calcul le vecteur d’assemblage B, de matrice d’assemblage rigide K et de
matrice d’assemblage de la masse M ;

- assembl_solid.f90 : Calcul le vecteur d’assemblage B et de matrice d’assemblage rigide K ;

- solver.f90 : Permet la résolution du systeme fluide-solide par la méthode numérique TDMA
(TriDiagonal Matrix Algorithm).

5.2.2 Organigramme

Data Input
Lecture des données

I

Initialisation des matrices

I

Introduction des condi-
tions aux limites

I

Formation des matrices
de rigidité et de masse
élémentaire de chaque élément

I

Assemblage des matices

I

Application des condi-
tions aux limites

I

Résolution

I

Data Output
Résultats

FIGURE 5.1 — Organigramme
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5.2.3 Calcul des modules de compressibilité (K,,;s.) de quelques matériaux
Le module de compressibilité (Kyopide) est lié au module de Young F par le coefficient de Poisson
(v) :
E
3(1—2v)
ou F et le module de Young et v est le coefficient de Poisson.
- Pour le sable léger : E = 1.45 x 10® Pa, v = 0.20, soit Koiq. = 0.805 x 108 Pa
- Pour le sable saturé : £ = 1.9 x 108 Pa, v = 0.45, soit Koige = 6.333 x 108 Pa
- Pour I’argile sableuse : E = 2.5 x 108 Pa, v = 0.4, soit Koige = 4.166 x 10® Pa
- Pour le béton : E = 3.6 x 101° Pa, v = 0.20, soit Kgopiqe = 1.5 X 1010 Pa

Ksolide = (51)
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