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2



Dédicaces
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Je remercie tous les membres du jury pour leur présence et tous les enseignants du département des
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- Tous mes collègues de promotion : Antonin COUVEZ, Alice RAMBAUD, Bastien GROSSE,
Ghislain BOGNON, Gwendal LEGER, Kyliane LEBEAU, Lucie CHAILLOU, Valentin JOU-
BERT, Yohann JEZEQUEL ;

- Christ KOUASSI N’DA ancien étudiant de MACS ;

- Tous mes amis particulièrement mon ami Éloge Grekou YAO ;
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1

Introduction

Le Centre d’Etudes et d’Expertise sur les Risques, l’Environnement, la Mobilité et l’Aménagement
(CEREMA) est un établissement public à caractère administratif placé sous la tutelle conjointe du mi-
nistre de la Transition écologique et solidaire, et du ministre de la Cohésion des territoires. Le CEREMA
développe des relations étroites avec les collectivités territoriales qui sont présentes dans ses instances de
gouvernance. Il a été créé le 1er janvier 2014. Son siège est situé à Bron, sur le site de l’ancien CETE de
Lyon. Il compte 11 directions à travers le territoire national parmi lesquelles on cite :

CEREMA risque eaux et mer est la direction technique du CEREMA s’intéressant aux aménagements
maritimes et fluviaux. Elle développe des actions techniques et scientifiques dans le domaine notam-
ment des risques naturels (inondations, submersions, érosion), des transports fluviaux, maritimes et des
énergies marines. Basé à Margny-lès-Compiègne (département de l’Oise) en région Hauts-de-France, la
recherche est menée par des chercheurs du laboratoire commun d’hydraulique numérique, équipe com-
mune CEREMA–UTC–CNRS du Laboratoire de Mécanique Roberval de l’Université de Technologie de
Compiègne (UTC).

En France, le transport fluvial est en plein renouveau (nouveau projet transeuropéen de voies à grands
gabarits Seine-Nord-Europe) puisqu’il répond pleinement aux objectifs de développement durable. Tou-
tefois, le développement de ce mode de transport passe par l’étude de l’impact économique et écologique
du passage des bateaux sur les cours d’eau et l’entretien du réseau des voies navigables. Cet entretien
consiste à des opérations de dragage pour maintenir les profondeurs des chenaux de navigation et assurer
des conditions d’écoulement en période de crue ou à des opérations de restaurations des berges. Ces
opérations sont généralement coûteuses car les volumes de matière à extraire sont importants.

Par ailleurs, on peut retenir que l’écoulement fluvial joue un rôle important dans les processus de retrait
de berges. Comme cet écoulement est influencé à son tour par la navigation, il est légitime alors de se
poser la question du rôle et de l’impact du passage des bateaux sur le retrait de berges accentué par
l’intensification du trafic fluvial sur certaines voies d’eau (et notamment l’Oise qui alimentera le Canal
Seine Nord-Europe). Se pose alors la question de la prédiction de la tenue à long terme des berges. À
notre connaissance, peu d’investigations portent sur l’étude de l’érosion des berges induite par le trafic
fluvial. À l’heure actuelle, sont privilégiées des approches ”pragmatiques” qui s’appuient sur des for-
mulations analytiques simplifiées qui ne permettent pas de rendre compte de façon satisfaisante de la
complexité des phénomènes physiques mis en jeu. L’érosion des berges est en effet la conjugaison de
plusieurs processus multi-physiques mettant en jeu l’écoulement fluide et son évolution sous l’effet du
passage d’un bateau mais également son interaction avec le milieu poreux que constitue la berge et dont
le niveau de saturation dépend de l’écoulement hydrodynamique.

Dans ce contexte, nous nous proposons de mettre en place une stratégie de modélisation numérique de
la tenue des berges sous écoulement hydrodynamique. La berge peut être vue comme un milieu poreux
soumis à un chargement variable correspondant à l’écoulement hydrodynamique induit par le passage
des bateaux. Sous l’effet de ce passage, le niveau de chargement et le niveau de saturation dans la berge
évoluent induisant éventuellement des surcharges locales du squelette solide de la berge conduisant à la
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dégradation progressive de la berge.

L’objectif de ce travail est de développer un outil numérique couplant les équations régissant les écoulements
dans le sol avec la déformation du squelette solide. Ce manuscrit se compose de 4 parties comme suit :

- La première partie présente le contenu et de quelques rappels sur les milieux poreux, on donnera
des éléments utiles pour la suite de notre travail ;

- La deuxième partie présente le couplage fluide-solide. L’écoulement fluide est gouverné par
l’équation de Richards décrivant les écoulements non-permanents dans les sols non saturés et
le solide est régi par l’équation d’équilibre mécanique (quasi-statique) ;

- La troisième partie est consacrée à la résolution numérique. Ces équations ont été résolues dans
un cas uni-dimensionnel. Un modèle est développé pour chacune des équations permettant de
les résoudre par la méthode des éléments finis et en appliquant l’algorithme de linéarisation de
THOMAS et la méthode itérative de Picard pour la formulation mixte (θ − h) de l’équation de
Richards ;

- Enfin dans la dernière partie, nous présentons des résultats numériques obtenus pour différents
cas-tests pour différents types de sols (sable et argile).

1.1 Érosion des berges

Phénomène naturel, généralement provoqué par le courant, participant au transport de la charge
solide et à la recharge sédimentaire du cours d’eau. Les érosions de berges sont à l’origine des migrations
de méandres, et garantissent le fonctionnement dynamique du cours d’eau.

1.1.1 Les causes d’érosion des berges

Il existe plusieurs causes d’érosion de berge, parmi lesquelles on peut citer :

- Variation des températures : C’est-à-dire, les changements de température est aussi respon-
sable de l’érosion. Les roches et les minéraux tels que la terre, le sable, l’argile, ... qui forment les
berges réagissent aux changements de température en gagnant et en perdant du volume ;

- Les phénomènes relatifs à l’exploitation de la voie fluviale : C’est-à-dire chocs de bateaux,
surcharges d’engins en crête lors des travaux, opération de dragage (risque de déstabilisation du
pied de berge) ;

- Les vagues produites par le vent, peuvent également nuire à la stabilité des berges. Leurs
impacts sur la berge est très proche de celui des vagues générées par le passage des bateaux mais
beaucoup moins dégradant ;

- Le batillage : Ce battement de l’eau sur les berges peut être produit par le déplacement des
bateaux ou par le vent. En effet, lorsqu’un bateau se déplace dans l’eau, la surface de l’eau monte
et descend produisant des ondes. En s’infiltrant dans le sol de la berge, cette montée de la surface
de l’eau entrâıne le remplissage des pores vides, sature le milieu et augmente le poids du sol.

Figure 1.1 – Ondes de batillage générées par le passage des bateaux et des processus associée
de transport de sédiments (Shengcheng Ji, mars 2013)
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1.1.2 Les types d’érosion des berges

Par l’action d’agression extérieure provoquée par l’homme ou par la nature, les fleuves et les rivières
ont la capacité de couper leurs propres berges aussi bien à la verticale que latéralement (méandres). Ces
deux types d’érosion des berges peuvent s’expliquer par la navigation.

- Érosion latérale : Comme le terme l’indique, l’érosion latérale est l’érosion qui se produit sur les
côtés, elle consiste à l’élargissement de la vallée par le recul des berges et conduit à la formation
d’une plaine alluviale.

- Érosion verticale : Elle consiste en l’approfondissement des lits des fleuves. En s’enfonçant par
érosion, les cours d’eau creusent des vallées qui possèdent un profil caractéristique en V. Ce type
d’érosion peut se faire par plusieurs mécanismes parmi lesquels on peut citer :

a) Le glissement : Ce mécanisme survient plutôt dans des sols cohésifs qui sont capables de
retenir de grandes quantités d’eau, ce qui ajoute du poids à la berge et réduit les forces de
cohésion entre les particules (phénomène de lubrification). Par conséquent, le talus devient
encore plus sensible au décrochement. Lorsqu’on augmente la pente ou la hauteur d’un talus,
le poids du sol excède éventuellement les forces de cohésion qui le retiennent, le sommet de
la berge se fissure et le sol glisse en plaques (voir 1.2).

(a) Situation initiale (b) Phase de creusage (c) Glissement de talus

Figure 1.2 – Mécanisme de rupture verticale par glissement (Université Mila)

b) La boulance : C’est une sorte de glissement qui s’observe fréquemment lorsqu’il y a résurgence
de la nappe phréatique dans le talus. Les sols stratifiés où un horizon de sol pulvérulent se
trouve sur un horizon de sol cohésif sont les plus sensibles ‘a ce type d’érosion. Le phénomène
résulte de la pression de la nappe phréatique sur la berge lorsque le niveau de celle-ci est
supérieur au niveau de l’eau dans le cours d’eau.

Figure 1.3 – Mécanisme de rupture verticale par boulance (Université Mila)

1.1.3 Propositions de solutions

Ces dernières années, de nombreux projets scientifiques ont été publiés concernant l’érosion des berges
due au trafic fluvial. Plusieurs techniques de protection de berge ont été proposées :

- Les techniques en génie végétal : Le génie végétal utilise les aptitudes des plantes, pour
apporter des solutions techniques à des problèmes de protection des sols et plus particulièrement
de lutte contre l’érosion. Les techniques de génie végétal s’inspirent des formations végétales
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naturelles (herbacées et/ou ligneuses), présentes sur les berges naturelles et capables de résister
à des contraintes fortes.

- Les techniques de génie civil : L’enrochement, la technique la plus fréquemment utilisée,
consiste à mettre en place des blocs sur la portion de berge à protéger ;

- Les techniques mixtes : Elles empruntent des savoir-faire aux deux domaines que sont le
génie civil et le génie végétal. Elles associent souvent des enrochements en pied de berge et des
techniques végétales en haut de berge.

Remarque 1.1.1 Dans le cadre de ce projet, nous allons nous intéresser à l’érosion du type verti-
cal. Le problème d’érosion de berge verticale fait appel à la résolution d’un problème couplant l’infiltra-
tion/l’écoulement du fluide dans un sol de la berge et la déformation du squelette solide.

1.2 Généralités sur les milieux poreux

Dans cette section nous présenterons les outils concernant le milieu poreux qui seront nécessaires à
la compréhension de la suite de notre projet.

1.2.1 Définition et caractéristiques d’un milieu poreux

Un milieu poreux est caractérisé par la présence d’une matrice solide constituée de grains dont la
distribution permet la présence de pores. Ces pores sont des vides pouvant être remplis par un mélange
d’eau et d’air.
On distingue deux types de milieu poreux : saturé et non saturé. Le milieu est dit saturé en eau si les
pores sont complètement remplis d’eau. Si une phase gazeuse y est présente, dans ce cas le milieu est dit
non saturé en eau.

Dans le cadre de ce projet, le milieu poreux considéré est le sol.
Soit V , un volume quelconque de sol. Ce volume est occupé par Va, le volume occupé par l’air, Vl le
volume d’eau et Vs le volume des particules solides. Par conséquent, nous pouvons écrire :

Vt = Vv + Vs = Va + Vl + Vs (1.1)

Figure 1.4 – Diagramme schématique du sol Figure 1.5 – Représentation d’un milieu
poreux

où :

- Va, volume de la phase gazeuse (air) ;

- Vl, volume de la phase liquide ;

- Vs, volume des particules solides ;

- Vv, volume des vides ;

- Vt, volume total de l’élément considéré.
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Nous pouvons établir un certain nombre de relations visant à décrire ce volume. L’ensemble de ces
quantités sont exprimées à l’échelle dite de Darcy, c’est-à-dire là où la loi de Darcy s’applique aisément.
C’est-à-dire une échelle macroscopique où le détail de la ” microstructure ” du sol n’est pas connu.
A l’échelle de Darcy, un même point peut être occupé par les 3 phases. Par conséquent ce point est défini
par des concepts de fractions de volumiques ou encore de saturation.

• La porosité : est définie comme le rapport entre le volume des vides et le volume total du sol.

ϕ =
Vv
Vt

(1.2)

Le tableau (1.1) illustre quelques valeurs de porosité de certains matériaux.

Matériaux Porosité (%)

Craie sénonienne 31

Limon compacte 34

Sable grossier 39

Argile à silex 40

Sol a pâturé 47

Tourbe 80

Table 1.1 – Pourcentage des pores selon le type du sol (OLLIER et POIREE, 1981)

• La teneur en eau volumique : elle est définie comme le rapport du volume d’eau et le volume
total du milieu considéré.

θ =
Vl
Vt

(1.3)

Remarque 1.2.1 Certaines valeurs de θ peuvent être considérées comme caractéristiques. Notons θsat
la teneur en eau saturée (représentant la teneur en eau volumique maximale) et θres la teneur en eau
résiduelle (représentant la teneur en eau volumique minimale dans le sol).
En fonction du type de sol, θsat sera compris entre 20 et 50% alors que θres sera compris entre 0.1 et
10%.

• Le taux de saturation : est défini comme le rapport entre le volume d’eau et le volume des
vides, ou encore comme le rapport entre la teneur en eau volumique et la porosité :

S =
Vl
Vv

=
θ

ϕ
(1.4)

Il est généralement exprimé en pourcentage et varie de 0% dans un sol sec à 100% dans un sol complètement
saturé.

• la perméabilité k : est la capacité d’un milieu poreux à se laisser traverser par un fluide sous
l’effet d’un gradient de pression. Cette constante caractérise le milieu poreux étudié et elle est liée à la
forme des grains et à la porosité cinématique. L’ordre de grandeur se situe entre 10−7[m/s] pour des
graves et 1020[m/s] pour de l’argile.

• La conductivité hydraulique : exprime également la capacité d’un milieu poreux à laisser passer
un fluide sous l’effet d’un gradient de pression. Cette grandeur dépend à la fois des propriétés du milieu
mais également de celles du fluide.

K =
kρg

µ
(1.5)

où, ρ la masse volumique du fluide (l’eau dans notre cas), µ la viscosité dynamique du fluide, k la
perméabilité intrinsèque et g l’accélération de la pesanteur.

9



Remarque 1.2.2 La conductivité hydraulique K et la perméabilité k sont des scalaires dans le cas où
le milieu poreux est isotrope ou bien dans le cas de l’écoulement unidirectionnel.
Mais dans le cas d’un milieu poreux en dimension 2 et anisotrope, la conductivité hydraulique est définie
par un tenseur symétrique de la forme :

K =

(
Kxx Kxy

Kxy Kyy

)
avec,

Kij =
kijρg

µ
(1.6)

Remarque 1.2.3 La conductivité hydraulique et la perméabilité sont des fonctions strictement crois-
santes avec le degré de saturation du milieu poreux. Lorsque le milieu est saturé, la conductivité hydrau-
lique est maximale et nous parlons alors de conductivité hydraulique à saturation Ks.

k(m/s) Matériaux Niveau de perméabilité

1 > k > 10−2 Graviers sans éléments fins Très perméable

10−2 > k > 10−4 Sables grossiers, graviers sableux sans éléments fins Perméable

10−4 > k > 10−6 Sables moyens à fins, limon peu argileux Peu perméable

10−6 > k > 10−8 Sables argileux Très peu perméable

k < 10−8 Argileux homogène Quasi imperméable

Table 1.2 – Exemple de vue générale sur différents types de sols et d’ordre de grandeur de la
perméabilité k.

• Pression capillaire : La pression capillaire pc exprimant l’effet des phénomènes capillaires aux
interfaces eau-air et des forces de liaison entre l’eau et le milieu est définie comme la différence entre la
pression de l’eau du sol et la pression atmosphérique.

pc = pa − pw (1.7)

où, pa est la pression de l’air et pw est la pression de l’eau.
Dans la plupart des cas, on considère la pression atmosphérique constante de l’ordre de ... et elle est
donc souvent négligée (pa = 0).

pc = −pw (1.8)

• La charge hydraulique : La charge hydraulique constitue le moteur de l’écoulement. C’est une
grandeur qui représente l’énergie mécanique de l’eau. Elle s’exprime en mètres et est la somme de l’énergie
cinétique, de l’énergie potentielle et du travail réalisé par les forces de pression. L’expression de la charge
découle de l’équation de Bernoulli qui exprime que la charge totale est constante le long d’une ligne de
courant et sous les hypothèses suivantes :

- Fluide incompressible : masse volumique constante ;

- Mouvement irrotationnel : écoulement non-tourbillonnaire ;

- Fluide parfait : effets visqueux négligeables, pas de pertes de charge par frottement.

La charge hydraulique totale s’exprime alors comme :

H =
v2

2g
+ z +

pw
ρwg

(1.9)

Où v est la vitesse du fluide et z est la profondeur dirigée verticalement vers le bas.
Le premier terme de cette expression représente donc l’énergie cinétique, le second l’énergie potentielle
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de pesanteur et le dernier le travail des forces de pressions.
Dans un sol, nous pouvons considérer que la vitesse de l’eau est négligeable pour calculer la charge. Par
conséquent, la charge hydraulique peut simplement s’écrire de la façon suivante :

H = h+ z (1.10)

où h =
pw
ρwg

est le potentiel de pression capillaire (expression de la pression d’eau, exprimée en terme

d’une hauteur d’eau).

• Notion de Contrainte effective : Pour les contraintes effectives, on a également recours à une
approche phénoménologique.
En effet, en mécanique des sols il est habituel de formuler le comportement du squelette solide en
contrainte effective, autrement dit de faire l’hypothèse que la déformation (élastique) du squelette est
reliée au tenseur des contraintes effectives σ′.
Le tenseur des contraintes effectives à été conceptuellement introduit par les travaux de Terzaghi (1925,
1943) reposant uniquement sur des observations expérimentales.
Pour interpréter cette définition, il convient alors de voir le milieu poreux considéré comme la superpo-
sition d’un milieu continu solide et d’un milieu continu fluide, où la pression du fluide interstitiel, dit
aussi pression de pore, est définie en tout point du milieu continu associé.

Concrètement, il est important de retenir que ce tenseur de contrainte est donné par une fonction de la
seule déformation du squelette ε, et non par une fonction de ε et de la pression de pore p.
En utilisant la conversation de la mécanique des milieux continus solides pour laquelle la compression
est négative, l’expression de la contrainte effective est :

σ = σ′ + pI (1.11)

où :

- σ, le tenseur de contrainte totale ;

- σ′, le tenseur de contrainte effective ;

- I, le tenseur identité ;

- p, la pression de pore.

Biot (1956) a constaté lors des ses travaux sur la propagation des ondes dans les milieux poreux que
l’influence de la pression sur le comportement macroscopique est régie par une variable supplémentaire B
écrite sous forme tensorielle, appelée tenseur de Biot. Cette variable de couplage hydromécanique modifie
alors l’équation (3.61) de la manière suivante :

σ = σ′ +Bp (1.12)

où B est le tenseur de Biot, avec B = I si le solide est incompressible.
On retrouve alors le tenseur des contraintes effectives initialement introduit par Terzaghi.

Remarque 1.2.4 Pour des sols secs p = 0 et σ = σ′

1.3 Équation de conservation de masse

On s’intéresse ici à l’écriture des équations de conservation de la masse de chacune des phases
constituant le milieu poreux .
La fraction volumique des particules d’une phase α notée ϕα s’exprime en fonction de la porosité ϕ et
du taux de saturation S. Elle est définie telle que :

- Pour l’eau : ϕw = ϕS

- Pour l’air : ϕa = ϕ(1− S)
- Pour le solide : ϕs = 1− ϕ

11



Le principe de conservation de la masse exprime le fait que, la masse d’eauM contenue dans un domaine
D donné reste constante dans le temps. C’est-à-dire :
La masse des particules dans la phase α contenue dans le domaine D s’écrit :

Mα =

∫
D

ραϕα dV (1.13)

où,

- ϕα, la porosité d’une phase α

- ρα, la masse volumique d’une phase α

Cette masse doit rester constante au cours du temps, c’est-à-dire :

dMα

dt
= 0, ∀D (1.14)

L’équation (1.13) se réécrit :

∫
D

d

dt

(
ραϕα

)
dD = 0, ∀D (1.15)

En utilisant la dérivée particulaire d’une intégrale de volume, on obtient ainsi l’équation (1.16) qui est
l’équation de continuité de la phase α.

∂

∂t

(
ραϕα

)
+ div(ραϕαV⃗α) = 0 (1.16)

où V⃗α désigne la vitesse associée à un point de la phase α.
Ainsi l’équation (1.16) sur chaque phase s’écrit :

∂

∂t

(
ρs(1− ϕ)

)
+ div(ρs(1− ϕ)V⃗s) = 0 (solide) (1.17)

∂

∂t

(
ρw(ϕS)

)
+ div(ρw(ϕS)V⃗w) = 0 (liquide) (1.18)

∂

∂t

(
ρa(ϕ(1− S))

)
+ div(ρa(ϕ(1− S))V⃗a) = 0 (air) (1.19)

1.4 Loi de Darcy

L’eau s’écoulant dans un sol suit une trajectoire tortueuse guidée par le réseau de pores qui constituent
le sol. L’aptitude qu’a un sol à se laisser traverser par un sol dépend des différents paramètres que nous
avons décrits précédemment. Darcy a décrit, dans son célèbre article de 1856 (Darcy, 1856), une loi
expérimentale liant la vitesse d’écoulement de l’eau dans un sol saturé à la conductivité hydraulique et
au gradient de charge hydraulique.
Dans le cas d’un sol isotrope, la loi de Darcy généralisée s’écrit :

q⃗ = −k
µ

[
∇(pw + ρwgz)

]
(1.20)

où,

- ρw, la masse volumique de l’eau ;

- pw, la pression de l’eau ;

- g, l’accélération de la pesanteur ;

- q⃗, le vecteur vitesse de Darcy (débit) ;

- µ, la viscosité dynamique du fluide ;

- k, la perméabilité intrinsèque ;

- ∇, opérateur gradient.
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Cette équation reste valable si les hypothèses suivantes sont respectées :

- Le milieu est complètement saturé.

- Le sol est relativement homogène.

- L’écoulement est laminaire.

- Les grains doivent être assez fins. Lorsque ceux-ci sont trop grossiers, la vitesse de l’eau peut être
élevée, rendant le flux turbulent.

On définit la vitesse de pore ou vitesse interstitielle V⃗ [m/s] par :

V⃗ =
q⃗

θ
(1.21)

Cette vitesse est celle à laquelle les particules fluides se déplacent réellement dans le sol.

Remarque 1.4.1 : La loi de Darcy permet de décrire les écoulements dans un milieu poreux saturé. Elle
exprime la proportionnalité entre le flux d’eau, ou vecteur vitesse de filtration q⃗ traversant une colonne
et l’opposé du gradient de charge hydraulique.

Bien qu’elle fut conçue à l’origine pour les écoulements en milieux saturés, elle fut étendue par Ri-
chards en 1930 à l’écoulement en zone non saturée en stipulant que la constante de proportionnalité K
appelée conductivité hydraulique est fonction de la teneur en eau du sol.

1.5 Approche éléments finis 1D

Le problème que nous résolvons étant unidimensionnel, nous présentons ici l’approche éléments finis
dans le cas 1D.
La méthode des éléments finis en une dimension (1D) est une technique numérique utilisée pour résoudre
des équations différentielles, en particulier des équations aux dérivées partielles (EDP), dans des systèmes
unidimensionnels.
Cette méthode est largement utilisée dans de nombreux domaines de l’ingénierie et des sciences pour
résoudre une variété de problèmes, tels que l’équation de la chaleur, de diffusion, les équations de la
mécanique des structures, des problèmes d’écoulement des fluides, et bien d’autres. Elle permet d’ob-
tenir des solutions numériques approchées (précises) pour des systèmes complexes en décomposant le
domaine en éléments plus simples et en utilisant des fonctions de forme pour approcher la solution.

Soit Ω le domaine ouvert de Rn (où n = 1, 2 ou 3), de frontière ∂Ω et sur lequel on cherche à résoudre
une équation aux dérivées partielles, munie de conditions aux limites.
On va définir les espaces :

Lp(Ω) =
{
u : Ω −→ R, mesurable et telle que

∫
Ω

|u|p <∞, 1 ≤ p <∞
}

L2(Ω) =
{
u : Ω −→ R, mesurable et telle que

∫
Ω

|u|2 <∞
}
, espace des fonctions réelles à carré intégrable.

Pour tout entier m ≥ 1,

Hm(Ω) =
{
u ∈ L2(Ω), /∂αu ∈ L2(Ω) ∀α = (α1, . . . , αn) ∈ Nn tel que |α| = α1 + . . .+ αn ≤ m

}
Hm(Ω) est appelé espace de Sobolev d’ordre m.
Par extension, on voit aussi que H0(Ω) = L2(Ω).
Dans le cas 1D, on écrit plus simplement pour I ouvert de R :

Hm(I) =
{
u ∈ L2(I) / u′, . . . , u(m) ∈ L2(I)

}
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Cas 1D : On considère in intervalle ouvert I =]a, b[ borné. Alors :

H1
0 (]a, b[) =

{
u ∈ H1(]a, b[), u(a) = u(b) = 0

}
L’espace L2(Ω) est muni d’un produit scalaire ⟨. , .⟩ et de sa norme associée définie par :

u ∈ L2(Ω), v ∈ L2(Ω) ⟨u , v⟩ =
∫
Ω

|uv| dΩ

∥u∥2L2(Ω) = ⟨u , u⟩

1.5.1 Principe des éléments finis

Nous rappelons rapidement la démarche de la méthode des éléments finis permettant de construire
le problème discrétisé associé à la formulation variationnelle.
Le principe est ici présenté dans le cas 1D.

1 Principe de base : La méthode des éléments finis consiste à diviser un domaine unidimension-
nel en éléments finis, généralement des segments, afin de discrétiser le problème continu en un
ensemble de petites régions ou éléments.

2 Approximation de la solution : À l’intérieur de chaque élément fini, la solution est approchée
par une fonction polynomiale (généralement de degré 1 ou 2) définie sur cet élément. Ces fonctions
polynomiales sont appelées fonctions de forme ou fonctions d’interpolation (Ni(xj) = δij).

3 Assemblage des éléments : Ensuite, les contributions des différents éléments sont assemblées
pour former le système complet, correspondant à la formulation variationnelle discrétisée. L’opération
d’assemblage permet d’obtenir le problème à résoudre.

4 Établissement des équations : Les équations différentielles du problème sont discrétisées
en équations algébriques en utilisant les approximations polynomiales à l’intérieur de chaque
élément. Le système d’équations résultant est peut être linéaire ou non linéaire selon la nature
du problème étudié .

5 Conditions aux limites : Les conditions aux limites, qu’elles soient de Dirichlet (fixant des
valeurs à certaines positions) ou de Neumann (fixant des valeurs de dérivées), sont appliquées
aux nœuds appropriés du maillage.

6 Résolution numérique : Le système d’équations résultant est résolu numériquement à l’aide
de méthodes telles que la méthode de Gauss ou des méthodes de résolution itératives pour des
systèmes non linéaires.

7 Calcul de la solution : Une fois le système résolu, on obtient une approximation numérique de la
solution sur tout le domaine 1D. Cette solution peut être utilisée pour analyser le comportement
du système, en post-traitant la solution obtenue.

1.5.2 Méthode de Galerkin

Généralisé la méthode des éléments finis (MEF) et aussi certaines méthodes spectrales.
Écrire la solution sous la forme d’une somme des fonctions de base.

Idée de la méthode

La démarche générale de la méthode des éléments finis est la suivante. On a une EDP à résoudre sur
un domaine Ω. On écrit la formulation variationnelle de cette EDP, et on se ramène donc à un problème
du type :

(PV ) Trouver u ∈ V tel que a(u, v) = ℓ(v), ∀v ∈ V

où V est un espace de Hilbert et v est la fonction test.
On va chercher une approximation de u par approximation interne (méthode de Galerkin). Pour cela, on
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définit un maillage du domaine Ω, grâce auquel on va définir un espace d’approximation Vh sous espace
vectoriel de V de dimension finie Nh. Le problème approché est alors :

(PVh) Trouver uh ∈ Vh tel que ∀vh ∈ Vh a(uh, vh) = ℓ(vh)

Le problème approché (PVh) peut se s’écrire sous la forme d’un système linéaire ou non linéaire selon la
nature du problème étudié.
On espère alors que cette solution approchée uh soit une bonne estimation de la solution exacte u,
c’est-à-dire que

lim
h→0
||uh − u|| = 0
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2

Modélisation du problème couplé
fluide-solide

Dans ce chapitre, on cherche à modéliser le problème couplé fluide-solide en unidimensionnel. Dans
un premier temps, nous donnons les descriptions de fluide (équation de Richards), solide (équation du
solide) et enfin fluide-solide (couplage). Cette modélisation sera faite en utilisant la méthode des éléments
finis 1D et en appliquant de l’algorithme de THOMAS pour la résolution du système linéaire.

2.1 Description du fluide (Équation de Richards cas 1D)

L’équation de Richards est une équation aux dérivées partielles non-linéaire décrivant le transfert de
l’eau dans les sols non saturés en conditions non permanentes. Cette équation fut obtenue par Richards
en 1931 et repose sur la combinaison de l’équation de continuité et l’équation de Darcy. Cette équation,
nous le verrons, décrit comment l’évolution des flux dans le sol modifie sa teneur en eau au cours du
temps.

En prenant l’équation de la phase liquide (1.18) et en se servant des équations (1.4) et (1.21), ainsi
nous trouvons l’équation (2.1).

∂ρwθ

∂t
+ div(ρw q⃗) = 0 (2.1)

L’équation (2.1) peut être simplifiée si la masse volumique de fluide ρw est supposée constante dans
le temps et dans l’espace :

∂θ

∂t
= −div(q⃗) (2.2)

L’équation (2.2) signifie que la variation de teneur en eau θ d’un élément de sol équivaut au taux de
variation des flux entrants et sortants de cet élément.
L’équation de Richards est obtenue en injectant la loi Darcy (1.20) dans l’équation (2.2) :

∂θ

∂t
= div

[
k

µ

(
∇(pw + ρwgz

)]
(2.3)

où,

- θ, la teneur en eau volumique ;

- k, la perméabilité intrinsèque ;

- µ, la viscosité du fluide ;
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- t est le temps.

L’équation de Richards (2.3) peut s’exprimer sous différentes formes : en fonction de θ, de h et de
θ − h (mixte).

• Formulation mixte θ − h
D’après ce qui précède, on a : h =

pw
ρwg

⇒ pw = hρwg et en considérant la loi de Darcy (1.20), on a :

q⃗ = −k
µ

[
∇(hρwg + ρwgz)

]
= −kρwg

µ

[
∇(h+ z)

]
où z est la profondeur dirigée verticalement positive vers le bas.
soit,

q⃗ = −K(∇h+ e⃗z) (2.4)

où, K correspond à la conductivité hydraulique décrite précédemment.
Dans le cas des écoulements en régime non saturé la conductivité hydraulique varie en fonction de la
teneur en eau volumique θ et de la hauteur d’eau h. L’équation de Darcy prend alors la forme généralisée
(Darcy-Buckingham) pour les sols non saturés. Cette expression est très similaire à la loi de Darcy : elle
exprime que le flux dans un sol non saturé est proportionnel au gradient de charge hydraulique mais
aussi à la conductivité hydraulique pour les sols non saturés. À la différence de l’équation de Darcy, la
conductivité hydraulique n’est pas constante mais est fonction de la hauteur d’eau h de l’eau.

q⃗ = −K(h)(∇h+ e⃗z) (2.5)

À présent, il suffit de remplacer l’équation (2.5) dans l’équation (2.2) pour obtenir l’équation de Richards
(2.6) dite mixte car elle inclut explicitement θ et h :

∂θ

∂t
= div

(
K(h)(∇h+ e⃗z)

)
(2.6)

où,

- t, est le temps ;

- K(h), est la fonction de conductivité hydraulique dépendante de la hauteur d’eau h ;

- ∇h, est le gradient de la hauteur d’eau.

• Formulation en θ

Dans cette formulation, Childs et Collis-Georges introduisent en 1950 le terme D(θ) représentant le
coefficient de diffusivité. Ce coefficient est défini comme le rapport entre la conductivité hydaulique et
la capacité d’humidité en eau, c’est-à-dire :

D(θ) =
K(θ)

C(θ)
(2.7)

avec C(θ) =
∂θ

∂h
, la capacité d’humidité en eau. On obtient l’équation de Richards sous la forme de θ

(où l’inconnue est θ).

∂θ

∂t
= div

(
D(θ)∇θ +K(θ)

)
(2.8)

où K(θ) est la fonction de conductivité hydraulique dépendante de la teneur volumique en eau.
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• Formulation en h

Dans un milieu non saturé, l’équation (2.6) est exprimée en fonction de la hauteur d’eau h en
introduisant les effets de compressibilité des fluides comme suit :

∂θ

∂t
=
∂θ

∂h

∂h

∂t

On pose C(h) =
∂θ

∂h
la capacité d’humidité.

On a alors,

∂θ

∂t
= C(h)

∂h

∂t
(2.9)

On obtient donc la formulation en h

C(h)
∂h

∂t
= div

(
K(h)(∇h+ e⃗z)

)
(2.10)

En régime stationnaire
∂h

∂t
= 0, ce qui donne :

div
(
K(h)(∇h+ e⃗z)

)
= 0

Le mouvement de l’eau dans le sol est principalement conditionné par la conductivité hydraulique K,
du matériau qui dépend elle-même du contenu en eau. En zone saturée, le flux d’eau se calcule facilement
car K est une constante. En revanche, en milieu non saturé, K varie en fonction des apports d’eau et le
flux adopte un comportement fortement transitoire.

En résumé, l’écoulement dans une zone non saturée est décrit par l’équation de Richards sous forme
unidimensionnelle sous la forme :

formulation en h C(h)
∂h

∂t
=

∂

∂z

(
K(h)

∂h

∂z

)
+
∂K(h)

∂z
(2.11)

formulation en θ
∂θ

∂t
=

∂

∂z

(
D(θ)

∂θ

∂z

)
+
∂K(θ)

∂z
(2.12)

formulation mixte (θ − h) ∂θ

∂t
=

∂

∂z

(
K(h)

∂h

∂z

)
+
∂K(h)

∂z
(2.13)

où, z, est la profondeur dirigée verticalement vers le bas (positif vers le bas).

Remarque 2.1.1 Il est difficile d’obtenir des solutions valides de ces équations en raison de la forte
non-linéarité entre K, C, D et h ou θ.
Cependant, l’utilisation de différentes méthodes de discrétisation dans la résolution numérique de ces
équations permet d’obtenir une précision différente.

Dans un article datant de 2013 (Caviedes-Voullième et al.), les auteurs pointent les avantages et
inconvénients de chacune des formulations :

- Formulation en θ : cette formulation a l’avantage d’être exprimée uniquement en fonction de la
variable conservée. Cependant, il est impossible de résoudre cette forme en régime saturé car la
capacité hydraulique vaut 0 lorsque le sol est saturé, faisant tendre la diffusivité vers l’infini ;

- Formulation en h : elle fournit des solutions continues, même en saturation ;

- Formulation mixte θ− h : cette formulation combine les avantages des 2 autres : elle est à la fois
conservatrice et fournit des solutions continues en régime saturé et non saturé.
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2.1.1 Caractéristiques des sols

Plusieurs modèles empiriques ont été développés pour décrire l’évolution de K en fonction de h (ou
θ). Dans le cadre de ce projet, le modèle utilisé est le modèle de Van Genuchten (1980). Ici nous ferons
une brève description de quelques modèles de la littérature.

• Modèle de Brooks et Corey (1964)

θ(h) =

θres + (θsat − θres)
(he
h

)N
si h > he

θsat si h ≤ he
(2.14)

K(h) = Ks(Se(h))
N
M (2.15)

Le calcul de la capacité d’humidité C(h) est définie par : C(h) =
∂θ(h)

∂h
soit,

C(h) = −N(θsat − θres)
h2

(he
h

)N−1

(2.16)

où,

- θres, teneur en eau résiduelle ;

- θsat, teneur en eau à saturation ;

- he, pression d’entrée d’air ;

- N , indice de distribution de taille de pore ;

- M , constante définie par : M = 2 + 3N ;

- Se, taux de saturation effective définie par : Se(h) =
θ(h)− θres
θsat − θres

Remarque 2.1.2 L’inconvénient de ce modèle est qu’il présente une rupture de pente au niveau de la
pression d’entrée d’air he, ce qui peut nuire à la convergence des méthodes de résolution (Brooks et
Corey, 1964).

• Modèle de Haverkamp et al. (1977)

θ(h) = θres +
θsat − θres
1 + |αh|β

(2.17)

K(h) =
Ks

1 + |Ah|γ
(2.18)

C(h) =
−αβ(θsat − θres)|αh|β−1

(1 + |αh|β)2
(2.19)

Ce modèle a été présenté pour la première fois par Haverkamp et al., (1977). Il est beaucoup plus
robuste que le modèle Brooks et Corey, 1964.
θres représente à nouveau la teneur en eau résiduelle, θsat la teneur en eau à saturation, alors que α, β,
γ et A sont des paramètres empiriques constants et dépendant de la nature du sol.
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• Modèle de Van Genuchten (1980)

La première relation mise en avant par le modèle de van Genuchten est celle décrivant le lien entre
la pression d’eau h et la teneur en eau θ.

θ(h) =

θres +
θsat − θres

(1 + |αh|n)m
si h ≤ 0

θsat si h > 0
(2.20)

K(h) =

KsSe(h)
l
[
1− (1− Se(h)

1/m)m
]2

si h ≤ 0

Ks si h > 0
(2.21)

C(h) =
−(θsat − θres)

[
m(nα|αh|n−1)(1 + |αh|n)m−1

]
(1 + |αh|n)2m

(2.22)

où,

- α, pression d’entrée d’air ;

- n, coefficient lié à la distribution de tailles de pores avec n ≥ 1 ;

- m, paramètre lié à la structure du sol défini par : m = 1− 1

n
et on prend la constante l =

1

2
.

Ce modèle est souvent utilisé dans les modèles numériques et a subit beaucoup de modification au cours
des dernières années. Parmi ces modèles dérivés on peut citer celui de Broadbride and White, (1988) ou
de Mualem, (1976).

Il faut noter cependant que la formulation de Brooks et Corey donne des résultats corrects pour les
sols de texture grossière. Par contre, les résultats deviennent moins fiables quand la texture du sol étudié
est assez fine (Van Genuchten et al., 1991). La formulation proposée par Van Genuchten (1980) permet
de mieux décrire la courbe de rétention pour des valeurs de teneur en eau proche de la saturation.

• Exemple de paramètres physiques pour différents types de sol

Type de sols Paramètres
θsat θres α(m−1) n Ks(m/s)

Sable 0.43 0.045 14.5 2.68 8.25 ×10−5

Sable limoneux 0.41 0.057 12.4 2.28 4.05 ×10−5

Argile 0.38 0.068 0.8 1.09 5.55 ×10−7

Argile sableuse 0.38 0.100 2.7 1.23 3.33 ×10−7

Table 2.1 – Les valeurs des paramètres pour les fonctions θ(h) et K(h) de Van Genuchten
(1980) classées par texture de sol.

2.2 Description du solide cas 1D

Pour un domaine solide que l’on suppose ne se déformer que selon z et soumis à son propre poids,
l’équation d’équilibre s’écrit :

∂σ

∂z
+ ρsg = 0 (2.23)

Si le solide est supposé élastique linéaire, on peut écrire la relation de comportement sous la forme
σ = Ksolide(z)ε(z) où ε(z) est la déformation du solide.
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Dans le cas 1D, on a ε =
du

dz
.

La contrainte s’écrit alors vue par le solide considère

σ = Ksolide(z)
∂u

∂z
(2.24)

En injectant l’équation (2.24) dans l’équation (2.23), on obtient :

∂

∂z

(
Ksolide(z)

∂u

∂z

)
+ ρsg = 0 (2.25)

où

- Ksolide, le module de compressibilité du solide (qui dépend éventuellement de z) ;

- ρs, la masse volumique du solide ;

- u, le déplacement du solide selon z.

L’équation (2.25) est un problème parabolique, l’inconnue est ici le déplacement du solide u(z). On peut
faire du contact avec des éléments finis.
Attention : On peut avoir facilement une solution analytique si Ksolide est égal à une constante !

Trois méthodes de résolution en solide : élément finis, méthodes sans maillage et méthodes d’éléments
de frontière.
Pour ce stage nous avons utilisé la méthode des éléments finis afin de modéliser et simuler le déplacement
du solide que nous allons considéré. Le solide est discrétisé en éléments finis à deux noeuds de numéro
courant k, k + 1 de coordonnées zk, zk+1 et de longueur lk.

Types de sol Ksolide

Sable 6.333× 108 Pa

Argile 4.166× 108 Pa

Béton 1.5× 1010 Pa

Table 2.2 – Modules de compressibilité (Ksolide) de quelques matériaux

2.3 Description du couplage (fluide-solide cas 1D)

Normalement nous disposons de deux systèmes d’équations aux dérivées partielles caractérisant le
comportement du solide d’une part, du fluide d’autre part.
On reprend l’équation d’équilibre suivante écrite pour le milieu complet considéré.

∂σ

∂z
+ ρsg = 0 (2.26)

σ est ici la contrainte totale. Pour un milieu poreux, comme présenté précédemment au paragraphe (1.2),

la contrainte effective σ′ est usuellement introduite en complément de la contrainte totale σ.
Pour le cas 1D considéré ici, on peut écrire

σ′ = σ + αpw (2.27)

où α désigne le coefficient de Biot et α = 1 dans le cas des hypothèses de Terzaghi (voir paragraphe 1.1).
σ′ peut être considéré comme la part des contraintes totales σ supportée par le squelette solide.

On a ainsi pour le squelette solide :

σ′ = Ksolideε, avec ε =
∂u

∂z
(2.28)
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σ′ = σ + αpw (2.29)

et l’équation d’équilibre du milieu poreux donne :

∂σ

∂z
+ ρsg = 0 (2.30)

En combinant les équations (2.28), (2.29) et (2.33) on obtient l’équation

∂σ′

∂z
− α∂pw

∂z
+ ρsg = 0 (2.31)

or pw = ρwghw, d’où l’équation

∂σ′

∂z
− αρwg

∂hw
∂z

+ ρsg = 0 (2.32)

Finalement, on obtient
∂

∂z

(
Ksolide

∂u

∂z

)
− αρwg

∂hw
∂z

+ ρsg = 0 (2.33)

où,

- hw, la hauteur d’eau obtenue dans Richards ;

- u, le déplacement du solide ;

- ρw, la masse volumique du fluide ;

- ρs, la masse volumique du solide ;

- ksolide, le module de compressibilité.

l’équation (2.33) couple la déformation du solide à l’écoulement fluide via la hauteur d’eau hw. Le
prochain chapitre sera la résolution numérique par la méthode des éléments finis de ces équations.
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3

Résolution numérique

3.1 Résolution numérique : Richards 1D-EF

3.1.1 Formulation en h

Dans cette sous-section, nous effectuons la résolution par éléments finis de l’équation de Richards
sous sa forme h en une dimension.
Cette résolution sera effectué dans un domaine unidimensionnel matérialisé par une colonne verticale de
limite a et b (a est la surface et b le fond).

Figure 3.1 – Discrétisation du segment [a,b] en éléments finis P1

On considère le problème modèle suivant :
C(h)

∂h

∂t
− ∂

∂z

(
K(h)

∂h

∂z

)
− ∂K(h)

∂z
= ε̇ dans ]a, b[×]0, T ],

h(a) = h(b) = 0

(3.1)

où ε̇ est la déformation du solide, T est le temps final de la simulation, a et b représentent les extrémités
de la colonne (surface et fond).

i) Formulation faible

Soit V un espace des fonctions test (à déterminer) et s’autorise toutes les opérations. Pour obtenir
la formulation faible de (3.1), on multiplie l’équation (3.1) par une fonction test ψ ∈ V puis on intègre
sur le domaine [a, b], puis, on a :
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∫ b

a

C(h)
∂h

∂t
ψ dz −

∫ b

a

∂

∂z

(
K(h)

∂h

∂z

)
ψ dz −

∫ b

a

∂K(h)

∂z
ψ dz =

∫ b

a

ε̇ψ dz (3.2)

En effectuant une intégration par partie sur les termes de plus haut degré on obtient :∫ b

a

C(h)
∂h

∂t
ψ dz︸ ︷︷ ︸

(1)

=
[
K(h)

∂h

∂z
ψ
]b
a
−
∫ b

a

K(h)
∂h

∂z

∂ψ

∂z︸ ︷︷ ︸
(2)

dz +
[
K(h)ψ

]b
a
−
∫ b

a

K(h)
∂ψ

∂z
dz︸ ︷︷ ︸

(3)

+

∫ b

a

ε̇ψ dz︸ ︷︷ ︸
(4)

(3.3)

On fixe l’espace V pour que tous les termes aient un sens, on inclut également dans V les conditions
aux limites du problème.

Pour que les intégrales (1), (2), (3) et (4) aient un sens il faut : ψ ∈ L2(]a, b[),
∂h

∂z
∈ L2(]a, b[) et

∂ψ

∂z
∈ L2(]a, b[).

Un bon choix est de perdre ψ ∈ H1(]a, b[) et h ∈ H1((]a, b[), donc choisir ψ ∈ H1
0 (]a, b[) garantit que les

termes
[
K(h)

∂h

∂z
ψ
]b
a
et
[
K(h)ψ

]b
a
s’annulent car ψ = 0 sur le bord de [a, b]. Donc V = H1

0 (]a, b[).

La formulation faible de (3.1) s’écrit alors :

{
Trouver h ∈ V tel que

q(ḣ, ψ) + a(h, ψ) = l(ψ), ∀ψ ∈ V
(3.4)

avec V =
{
ψ ∈ H1(]a, b[), ψ = 0 sur le bord de [a, b]

}
. On pose :

q(ḣ, ψ) =

∫ b

a

C(h)
∂h

∂t
ψ dz ;

a(h, ψ) =

∫ b

a

K(h)
∂h

∂z

∂ψ

∂z
dz ;

l(ψ) =

∫ b

a

ε̇ψ dz −
∫ b

a

K(h)
∂ψ

∂z
dz .

Pour résoudre le problème (3.4) (dont il n’existe en général pas de solution analytique), on recherche
une solution numérique approchée hh. En élément finis, cette solution approchée est construite à partir
de deux données :

1. Un maillage Mh du domaine de calcul Ω ;

2. Un choix d’interpolation pk sur ce maillage.

Pour notre domaine de calcul unidimensionnel Ω = [a, b], le maillage correspond à découper Ω en segments
(Voir figure (3.1)).

Soit Ω =

ne⋃
k=1

ek où ek = [zk, zk+1].

ii) Formulation discrète

On veut chercher une approximation par éléments finis de la solution du problème (3.4). Pour cela,
on définit un maillage du domaine Ω = [a, b] grâce auquel on va définir un espace d’approximation Vh
(sous espace vectoriel de V et de dimension finie Np).
On peut alors définir l’espace Vh, sous-espace vectoriel de H1

0 (a, b) tel que :

Vh = {ψh ∈ C0(a, b) telle que ψh est affine sur chaque segment [zj , zj+1] et ψh(a) = ψh(b) = 0}
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où C0(a, b) est l’ensemble des fonctions continues sur Ω =

ne⋃
k=1

ek

Le problème approché sur Vh est :{
Trouver hh ∈ Vh tel que

q(ḣh, ψh) + a(hh, ψh) = l(ψh), ∀ψh ∈ Vh
(3.5)

En remarquant qu’une fonction de Vh est entièrement déterminée par ses valeurs en z1, . . . , zNp , on
établit que la dimension de Vh est Np, et qu’une base de Vh : (φ1, . . . , φNp

), où φi est définie par :

φi(zj) = δij =

{
1 si i = j
0 sinon

(3.6)

∀i = 1, . . . , Np, ∀j = 1, . . . , Np.
où δij est le symbole de Kronecker. φi est appelé la fonction de base représentée sur la figure (3.2).

Figure 3.2 – Fonction de base φi

soit, 
φi(z) =

zi+1 − z
long

φi+1(z) =
z − zi
long

(3.7)

avec long = zi+1 − zi

En tenant compte de toutes ces notations, l’équation (3.5) s’écrit :

ne∑
k=1

∫
ek

C(h)
∂hh
∂t

ψh dz +

ne∑
k=1

∫
ek

K(h)
∂hh
∂z

∂ψh

∂z
dz =

ne∑
k=1

∫
ek

ε̇ψh dz −
ne∑
k=1

∫
ek

K(h)
∂ψh

∂z
dz. (3.8)

On voit bien dans cette équation la partition du domaine à permis d’écrire l’équation variationnelle sur
chaque élément.

Remarque 3.1.1 Il est noté que la somme

ne∑
k=1

ne désigne pas l’opération d’addition mais plutôt cor-

respond à l’opérateur assemblage des matrices élémentaires.

Sur ek, on peut donc décomposer la solution approchée hh en une combinaison linéaire des fonctions de
base locale.

hh(z) =
2∑

j=1

hj(t)φj (3.9)

où

- φj(z), est la fonction de forme associées au noeud j ;

25



- hj , est la valeur nodale de h(z) au noeud j.

La détermination des fonctions tests se fait en utilisant la méthode de Galerkin qui consiste à prendre ces
fonctions identiques aux fonctions de la base (ψh = φi). Ainsi on injecte l’équation (3.9) dans l’équation
(3.8). Il vient :

2∑
j=1

∂hj(t)

∂t

∫
ek

C(h)φiφj dz +
2∑

j=1

hj(t)

∫
ek

K(h)
∂φi

∂z

∂φj

∂z
dz =

∫
ek

ε̇φi dz −
∫
ek

K(h)
∂φi

∂z
dz

pour i = 1, 2 (3.10)

L’équation (3.10) peut s’écrire sous la forme matricielle :

MekḢ
ek

+KekHek = Bek (3.11)

Le système élémentaire (3.11) est non linéaire.
où,

- Mek , est la matrice de masse élémentaire ;

- Kek , est la matrice de rigidité élémentaire ;

- Bek , est le vecteur second membre élémentaire englobant toutes les contributions (terme source,
conditions aux limites . . .)

- Hek , est le vecteur élémentaire des composantes inconnues h1(t), h2(t).

avec

Mek
ij =

∫
ek

C(h)φjφi dz, pour tout i, j = 1, 2

Kek
ij =

∫
ek

K(h)
∂φj

∂z

∂φi

∂z
dz, pour tout i, j = 1, 2

Bek
i =

∫
ek

ε̇φi dz −
∫
ek

K(h)
∂φi

∂z
dz, pour tout i = 1, 2

L’opération de l’assemblage des matrices et des vecteurs élémentaires nous donne un système non linéaire
de taille Np ×Np suivant :

MḢ +KH = B (3.12)

où,

- M, la matrice de masse globale ;

- K, la matrice de rigidité globale ;

- B, le vecteur globale second membre ;

- H, le vecteur globale des composantes inconnues h1(t), h2(t).

Comme l’intervalle [a, b] =
⋃ne

k=1 ek ; ek = [zk, zz+1], ainsi on a :

Mij =

ne∑
k=1

∫
ek

C(h)φjφi dz pour tout i, j = 1, 2

Kij =

ne∑
k=1

∫
ek

K(h)
∂φj

∂z

∂φi

∂z
dz pour tout i, j = 1, 2

Bi =

ne∑
k=1

∫
ek

ε̇φi dz −
ne∑
k=1

∫
ek

K(h)
∂φi

∂z
dz, pour tout i = 1, 2
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Pour la discrétisation temporelle de Ḣ et H, nous utilisons le schéma d’Euler implicite d’ordre 1
c’est-à-dire :

Ḣ =

 ḣ1(tn+1)

ḣ2(tn+1)

 =


hn+1
1 − hn1

∆t

hn+1
2 − hn2

∆t

 (3.13)

et

H =

 h1(tn+1)

h2(tn+1)

 =

 hn+1
1

hn+1
2

 (3.14)

Le calcul des fonctions K(h) et C(h) est une moyenne entre deux cellules définies par :

K(h) =
K(h1) +K(h2)

2
, C(h) =

C(h1) + C(h2)

2
(3.15)

où K(h1), K(h2), C(h1) et C(h2) sont les fonctions caractéristiques hydrodynamiques du sol.

• Calcul des coefficients de la matrice de masse élémentaire

On calcule les coefficients Mek
ij en par la contributions de chaque noeud de l’élément ek :

Mek
ij =

∫ zi+1

zi

C(h)φjφi dz

Considérons par exemple l’élément ei = [zi, zi+1]. Sur cet élément, il n’y a que deux fonctions de
base non nulles : φi et φi+1.
L’élément ei produira donc effectivement une contribution : M1,1, M1,2, M2,1 et M2,2. Calculons les
contributions élémentaires de ei et disposons les sous la forme d’une matrice élémentaire 2× 2

Mek = C(h)

 M1,1 M1,2

M2,1 M2,2


avec

M1,1 =

∫ zi+1

zi

C(h)φ2
i dz =

1

3
C(h) long

M1,2 =M2,1 =

∫ zi+1

zi

C(h)φiφi+1 dz =
1

6
C(h) long

M2,2 =

∫ zi+1

zi

C(h)φ2
i dz =

1

3
C(h) long

D’où,

Mek =
1

3
C(h) long


1

1

2

1

2
1

 (3.16)
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• Calcul des coefficients de la matrice de rigidité élémentaire

On calcule les coefficients Kek
ij en sommant les contributions des différents éléments selon :

Kek =

∫ zi+1

zi

K(h)
∂φj

∂z

∂φi

∂z
dz

Avec le même raisonnement, on obtient la matrice de rigidité élémentaire suivante :

Kek =
C(h)

long

 1 −1

−1 1

 (3.17)

• Calcul des composantes du second membre élémentaire

Chaque composante Bek
i du vecteur second-membre élémentaire est calculée par :

Bek
i = ∆t

∫ zi+1

zi

ε̇φi dz −∆t

∫ zi+1

zi

∂K(h)

∂z
φi dz

avec

ε̇ =
εnew − εold

∆t

Donc,

Bek
i =

∫ zi+1

zi

(εnew − εold)φi dz −∆tK(h)

∫ zi+1

zi

∂φi

∂z
dz (3.18)

or εnew =
∂unew
∂z

et εold =
∂uold
∂z

. Ici le calcul local se fait sur 2 éléments, c’est-à-dire :

donc,

εnew = unew1

∂φi(z)

∂z
+ unew2

∂φi+1(z)

∂z
(3.19)

εold = uold1

∂φi(z)

∂z
+ uold2

∂φi+1(z)

∂z
(3.20)

En injectant les équations (3.19) et (3.20) dans l’équation (3.18) et effectuant plusieurs calculs d’intégrations,
on obtient donc le second membre élémentaire (pour deux éléments) qui s’écrit :

Bek =


1

2

(
uold1 − unew1

)
+

1

2

(
unew2 − uold2

)
1

2

(
uold1 − unew1

)
+

1

2

(
unew2 − uold2

)
−∆tK(h)

 −1
1

 (3.21)
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3.1.2 formulation mixte (θ − h)

Naturellement, il est tout a fait possible d’utiliser la méthode des éléments finis pour des problèmes
non-linéaires comme dans notre cas de l’équation de Richards en forme mixte, la résolution de ce dernier
passera systématiquement par un processus de linéarisation et se fera de façon itérative en utilisant la
méthode de Picard.
On considère la formulation mixte avec l’ajout de la porosité, de la capacité de stockage spécifique et du
terme source f :

∂θ

∂t
+
θ

ϕ
Ss
∂h

∂t
− ∂

∂z

(
K(h)

∂h

∂z

)
− ∂K(h)

∂z
= f (3.22)

où

- f , le terme source ;

- Ss, la capacité de stockage spécifique ;

- K(h), la fonction de conductivité hydraulique dépendante de la hauteur d’eau.

Discrétisation spatiale

Pour résoudre de l’équation (3.22), nous utilisons la méthode des éléments finis de type Galerkin.
Le domaine initial est tout d’abord discrétisé sur un maillage Ω contenant un nombre de point Np de
points. La technique de Galerkin permet d’obtenir une formulation faible de l’équation de Richards en
suivant :

• Formulation faible

En multipliant l’équation (3.22) par ψ et en intégrant sur [a, b], on obtient la formulation faible
suivante :


Trouver h ∈ V tel que

∂

∂t

∫ b

a

θ(h)ψ dz +

∫ b

a

θ

ϕ
Ss
∂h

∂t
ψ dz +

∫ b

a

K(h)
∂h

∂z

∂ψ

∂z
dz = −

∫ b

a

K(h)
∂ψ

∂z
dz +

∫ b

a

fψ dz,

∀ψ ∈ V

(3.23)

• Formulation discrète

Après avoir fait l’approximation de l’équation (3.23) par méthode de Galerkin, on pose :

hh(z) =

np∑
j=1

φj(z)hj(t) et θh(z) =

np∑
j=1

φj(z)θj(t) (3.24)

Nous obtenons la formulation discrète (3.25)

np∑
j=1

∂θj(t)

∂t

∫ b

a

φjφi dz +

np∑
j=1

∂hj(t)

∂t

∫ b

a

( θ
ϕ
Ss

)
φjφi dz +

np∑
j=1

hj(t)

∫ b

a

K(h)
∂φj

∂z

∂φi

∂z
dz

= −
∫ b

a

K(h)
∂φi

∂z
dz +

∫ b

a

fφi dz, ∀i = 1, . . . , np, ∀φi ∈ V (3.25)

L’écriture matricielle de l’équation (3.25) est :

M
dθ(h)

dt
+N

dH

dt
+K(h)H = B(h) (3.26)

où,

- M, la matrice globale de masse ;
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- N, la matrice globale de masse relative à h ;

- K, la matrice globale de rigidité ;

- B, le vecteur global second membre ;

- H, le vecteur des composantes inconnues h1(t), . . . , hnp
(t).

L’équation (3.26) est un système d’équation non linéaire de taille np × np.
Comme l’intervalle [a, b] =

⋃ne

k=1 ek ; ek = [zk, zz+1], ainsi on a les formes génériques :

Mij =

ne∑
k=1

∫
ek

φjφi dz

Nij =

ne∑
k=1

∫
ek

( θ
ϕ
Ss

)
φjφi dz

Kij =

ne∑
k=1

∫
ek

K(h)
∂φj

∂z

∂φi

∂z
dz

Des essaies numériques ont montré que les expressions ci-dessus de M et N ne nous permettent pas de
conserver la masse. Pour remédier à cette inconvénient nous avons adopté la technique de condensation.
En effet, cette technique permet permet de transformer les matrices M et N en matrices diagonales.
Numériquement, cette technique rend la matrice globale du système à diagonale permet assurer la conver-
gence des méthodes itératives adoptées pour inverser le système linéaire issu de la linéarisation (méthode
de Picard ou méthode de Newton). La condensation de ces deux matrices est obtenue par :

M =


∑np

j=1 Mij i = j

0 i ̸= j
et N =


∑np

j=1 Nij i = j

0 i ̸= j
(3.27)

La discrétisation temporelle

L’équation de Richards étant non linéaire, sa résolution est généralement basé sur un schéma itératif.
L’opération consiste à itérer successivement sur les valeurs de la teneur en eau et de la conductivité hy-
draulique jusqu’à ce qu’un critère de convergence soit satisfait. A chaque pas de temps, le schéma itératif
est initié en estimant la teneur en eau et la conductivité hydraulique à partir de la pression du pas de
temps précédent. Le potentiel de pression capillaire est alors recalculée, la teneur en eau et la conduc-
tivité hydraulique sont réévaluées puis l’équation de nouveau résolue. Le schéma itératif s’arrête quand
la différence de potentiel de pression capillaire entre les deux itérations satisfait un critère de convergence.

Il faut noter, il existe plusieurs schémas numériques permettant de discrétiser les termes temporels
de l’équation de Richards (Huyakorn et Pinder 1983), mais le schéma de Picard semble le plus répandu
de par sa facilité de programmation et sa robustesse. Celia et al. ont proposé une version modifiée du
schéma de Picard qui a l’avantage d’être conservatif.
Nous avons choisit un schéma θ-schéma pour la discrétisation en temps. Ce schéma englobe une variété
des schémas numériques d’ordre 1, 2, explicite, implicite, mixte, . . . (selon la valeur du paramètre θ).

Remarque 3.1.2 Pour ne pas confondre le paramètre θ présent dans l’équation de Richards et celui du
θ-schéma, dorénavant nous remplaçons le schéma θ-schéma par λ-schéma.

A présent, la discrétisation temporelle par le schéma λ-schéma de l’équation (3.26) nous donne :

M ·

(
θ(hn+1)− θ(hn)

λ∆t
−
( 1
λ
− 1
)
θ̄n(h)

)
+N ·

(
Hn+1 −Hn

λ∆t
−
( 1
λ
− 1
)
H̄n

)
+

K(hn+1) ·Hn+1 = B(hn+1) (3.28)

30



où

θ̄n =
θn − θn+1

∆t
et H̄n =

Hn −Hn+1

∆t
(Schéma de Backward Euler d’ordre 1.)

Dans notre cas, on prend λ = 1 on retrouve le schéma d’Euler implicite d’ordre 1. L’équation (3.28)
s’écrit :

M ·

(
θ(hn+1)− θ(hn)

∆t

)
+N ·

(
Hn+1 −Hn

∆t

)
+K(hn+1) ·Hn+1 = B(hn+1) (3.29)

Linéarisation

Nous remarquons que le système (3.29) est non-linéaire à cause des non-linéarité entre h, θ etK. Pour
linéariser ce système, nous utilisons la méthode itérative de linéarisation de Picard comme décrite dans
List and Radu, 2016. Cette méthode est beaucoup utilisée pour la résolution numérique des équations
non-linéaires comme dans notre cas l’équation de Richards mixte.
Nous l’utilisons dans ce projet, le fait qu’elle est d’une part très facile à mettre en oeuvre et d’autre part
elle à l’avantage de prévenir la symétrie du système discret résultant de l’équation de Richards.

Ainsi, la linéarisation par la méthode de Picard consiste à trouver (hn+1,m+1)m≥0 vérifiant :

M ·

(
θ(hn+1,m+1)− θ(hn)

∆t

)
+N ·

(
Hn+1,m+1 −Hn

∆t

)
+K(hn+1) ·Hn+1,m+1 = B(hn+1,m),

m = 0, 1 . . . (3.30)

En divisant l’équation (3.30) par ∆t, nous obtenons l’équation (3.31).

M ·
(
θ(hn+1,m+1)− θ(hn)

)
+N ·

(
Hn+1,m+1 −Hn

)
+∆tK(hn+1) ·Hn+1,m+1 = ∆tB(hn+1,m)

(3.31)

Comme nous avons adopté un schéma numérique temporel totalement implicite, nous remarquons
dans l’équation (3.31), nous nous confrontons à la difficulté de résoudre une équation à deux inconnues
(θn+1 et hn+1).
Pour éviter cette difficulté, nous utilisons le développement de Chord proposé par Célia et al, 1990
(Taylor d’ordre 1) qui transforme durant les itérations l’inconnue θ(hn+1,m+1) en hn+1,m+1 et d’autres
paramètres connus à l’itération m. donc,

θ(hn+1,m+1) = θ(hn+1,m) +
( ∂θ
∂h

)n+1,m

(hn+1,m+1 − hn+1,m) (3.32)

où
∂θ

∂h
= C(hn+1,m). Ce terme correspond à la capacité d’humidité que nous avions défini précédemment.

En remplaçant l’équation (3.32) dans le développement de Chord (3.31) et en regroupant les termes
en fonction de leur indice, nous obtenons le système de résolution final (3.33) qui est une méthode
d’itération de type Picard conservatrice de masse pour la formulation mixte de l’équation de Richards.

[
C(hn+1,m) ·M+N+∆tK(hn+1,m)

]
hn+1,m+1 = −∆tB(hn+1,m)−M · θ(hn+1,m)

+M · C(hn+1,m) · hn+1,m +M · θ(hn) +Nhn (3.33)

On considère un système linéaire de np équations à np inconnues que l’on écrit sous une forme matricielle :

Ah = b (3.34)

où
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- A = C(hn+1,m) ·M+N+∆tK(hn+1,m), la matrice tridiagonale ;

- h, le vecteur solution des composantes hn+1,m+1
i à l’instant tn+1 et à l’itération de linéarisation

m+ 1 ;

- b = −∆tB(hn+1,m) −M · θ(hn+1,m) +M · C(hn+1,m) · hn+1,m +M · θ(hn) +Nhn, le vecteur
second membre (de composantes bi).

L’interprétation du système (3.34) signifie que pour chaque pas de temps ∆t, on effectue des itérations
m jusqu’à la convergence.
Au passage de l’itération m à m + 1, on va résoudre un système linéaire tridiagonal dont la matrice et
le second membre dépendent des valeurs de l’itération m.

3.2 Résolution numérique : Solide 1D-EF

L’équation du solide 1D s’écrit sous la forme :
∂

∂z

(
Ksolide

∂u

∂z

)
+ ρsg = 0

CL

(3.35)

La démarche de résolution par éléments finis de l’équation (3.35) est la même que celle nous avons effectué
dans le cas de Richards 1D.

En multipliant l’équation (3.35) par ϕ(z) et on intègre sur [a, b], c’est-à-dire

∫ b

a

[ ∂
∂z

(
Ksolide

∂u

∂z

)
+ ρsg

]
ϕ(z) dz = 0∫ b

a

∂

∂z

(
Ksolide

∂u

∂z

)
ϕ(z) dz︸ ︷︷ ︸

I

+

∫ b

a

ρsgϕ(z) dz = 0 (3.36)

On applique une intégration par partie à I, on a :

I =
[
Ksolide

∂u(z)

∂z
ϕ(z)

]b
a
−
∫ b

a

Ksolide
∂u(z)

∂z

∂ϕ(z)

∂z
dz (3.37)

En injectant (3.37) dans (3.36), nous obtenons la formulation faible suivante :


Trouver u(z) ∈ V tel que

−
∫ b

a

Ksolide
∂u(z)

∂z

∂ϕ(z)

∂z
dz +

∫ b

a

ρsgϕ(z) dz +Ksolide
∂u(b)

∂z
ϕ(b)−Ksolide

∂u(a)

∂z
ϕ(a) = 0,

∀ϕ ∈ V

(3.38)

Pour la formulation discrète, on cherche une approximation par éléments finis de la solution du problème
(3.38). On définit un maillage du domaine Ω = [a, b] grâce auquel on va définir un espace d’approximation
Vh.
Le problème est donc :
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
Trouver uh(z) ∈ Vh tel que

−
∫ b

a

Ksolide
∂uh(z)

∂z

∂ϕh(z)

∂z
dz +

∫ b

a

ρsgϕh(z) dz +Ksolide
∂u(b)

∂z
ϕ(b)−Ksolide

∂u(a)

∂z
ϕ(a) = 0,

∀ϕ ∈ Vh
(3.39)

On définit alors une base de Vh : (φ1, . . . , φnp
). On pose :

uh(z) =

np∑
i=1

φi(z)ui et ϕh(z) =

np∑
j=1

φj(z)ϕi (3.40)

où

- φi(z) et φj(z), sont les fonctions de forme associées aux noeuds i et j ;

- ui, est la valeur nodale de u(z) au noeud i ;

- ϕi, est la valeur nodale de ϕ(z) au noeud j.

Trouver uh solution du problème (3.39) revient à trouver u = (u1, . . . , unp)
T tel que :

−

A︷ ︸︸ ︷∫ b

a

Ksolide

( np∑
i=1

∂φi(z)

∂z
ui

)
︸ ︷︷ ︸

A1

( np∑
j=1

∂φj(z)

∂z
ϕj

)
︸ ︷︷ ︸

A2

dz+

∫ b

a

ρsg
( np∑

j=1

φj(z)ϕi

)
︸ ︷︷ ︸

B

dz

+Ksolide
∂u(b)

∂z
ϕ(b)−Ksolide

∂u(a)

∂z
ϕ(a)︸ ︷︷ ︸

C

= 0, ∀ϕ(z), ∀{ϕ1, . . . , ϕnp
} (3.41)

Sous la forme matricielle, on a :

A1 =

[
∂φ1(z)

∂z
,
∂φ2(z)

∂z
, . . . ,

∂φnp
(z)

∂z

]
u1
...
unp


A2 =

[
∂φ1(z)

∂z
,
∂φ2(z)

∂z
, . . . ,

∂φnp(z)

∂z

]
ϕ1
...
ϕnp


Donc,

A := ⟨ϕ1, . . . , ϕnp
⟩
∫ b

a

Ksolide


∂φ1(z)

∂z
...

∂φnp (z)

∂z

[∂φ1(z)

∂z
, . . . ,

∂φnp
(z)

∂z

]
dz

︸ ︷︷ ︸
K


u1
...
unp



B := ⟨ϕ1, . . . , ϕnp⟩
∫ b

a

ρsg


φ1(z)

...
φnp(z)

 dz

C := Ksolide
∂u(b)

∂z
ϕ(b)−Ksolide

∂u(a)

∂z
ϕ(a)

où

33



- φ(a) correspond à ϕ1 ;

- φ(b) correspond à ϕnp .

donc,

C := ⟨ϕ1, . . . , ϕnp⟩



−Ksolide
∂u(a)
∂z

0
...
0

Ksolide
∂u(b)

∂z


Donc, en combinant A, B et C, l’équation (3.41) devient :

⟨ϕ1, . . . , ϕnp
⟩

(
−K


u1
...
unp

+

∫ b

a

ρsg


φ1(z)

...
φnp

(z)

 dz +



−Ksolide
∂u(a)
∂z

0
...
0

Ksolide
∂u(b)

∂z


)

= 0 (3.42)

Donc, ∀⟨ϕ1, . . . , ϕnp
⟩, on a :

K


u1
...
unp

 =

∫ b

a

ρsg


φ1(z)

...
φnp

(z)

 dz +



−Ksolide
∂u(a)
∂z

0
...
0

Ksolide
∂u(b)

∂z


(3.43)

On obtient un système d’équations suivant :

Ku = B

où,

- K, la matrice globale rigide ;

- B, le vecteur globale second membre ;

- u, le vecteur globale déplacement inconnu.

Comme l’intervalle [a, b] =
⋃ne

k=1 ek ; ek = [zk, zz+1], ainsi on a la forme générique :

Kij =

ne∑
k=1

∫
ek

Ksolide

(∂φj

∂z

∂φi

∂z

)
dz, pour tout i, j = 1, 2

Bi =

ne∑
k=1

∫
ek

ρsgφi dz +Ksolide
∂u(b)

∂z
−Ksolide

∂u(a)

∂z
, pour tout i = 1, 2 (3.44)

où
∑ne

k=1 représente l’opération assemblage.

Maintenant nous allons effectué quelques cas pour la détermination de la matrice de rigidité et du
vecteur second membre élémentaire pour différentes conditions aux limites.
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• Premier test :
Pour ce test, on va considérer une condition de Neumann homogène à la surface (effort libre) et au fond
une condition de Dirichlet homogène (déplacement libre).

Pour ce cas test, on obtient la forme générique suivante :

Kek
ij =

∫
ek

Ksolide

(∂φj

∂z

∂φi

∂z

)
dz i, j = 1, 2

Bek
i =

∫
ek

ρsgφi dz, i = 1, 2 (3.45)

Pour l’assemblage, grâce aux fonctions de forme φi(z) et φi+1 définies dans le cas de Richards 1D,
on arrive à calculer la matrice rigide élémentaire et le vecteur second membre élément, il faut noter ici,
on travaille toujours sur deux éléments. Nous obtenons :

Kek =
Ksolide

long

 1 −1

−1 1

 (3.46)

et

Bek =
ρsg

2
long

 1

1

 (3.47)

• Deuxième test :
Pour ce test, on impose un effort à la surface (Neumann non homogène) et au fond pas de déplacement
(Dirichlet homogène). C’est-à-dire :{

Ksolide
∂u(a)

∂z
z⃗ · n⃗a = ρsgl (effort imposé en z = a)

u(b) = 0
(3.48)
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où n⃗a est la normale unitaire en a, n⃗b est la normale unitaire en b et l est longueur entre a et b.
Pour ce cas tes, on voit bien le terme au bord apparâıt au second membre, on a :

Kek
ij =

∫
ek

Ksolide

(∂φj

∂z

∂φi

∂z

)
dz, i, j = 1, 2

Bek
i =

∫
ek

ρsgφi dz + ρsgl, i = 1, 2 (3.49)

On remarque le calcul de la matrice rigide élémentaire ne change pas comme dans le cas précédent, seul
le second membre qui change à cause de la condition de Neumann.
Donc le second membre s’écrit :

Bek =
ρsg

2
long

 1

1

+ ρsgl (3.50)

• Troisième test :
Pour ce test, on impose le déplacement à la surface et au fond (Dirichlet non homogène), c’est-à-dire :{

u(a) = β
u(b) = αl2 + β

(3.51)

où les paramètres α = 0.001 et β = 0.01.
Ici la matrice rigide et le second membre restent les mêmes que dans le cas du premier test.
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3.2.1 Résolution numérique : Fluide-solide 1D-EF

L’équation du couplage 1D s’écrit sous la forme :
∂

∂z

(
Ksolide

∂u

∂z

)
− ρwg

∂hw
∂z

+ ρsg = 0

CL

(3.52)

La démarche de résolution par éléments finis de l’équation (3.52) est la même que celle nous avons effectué
dans les autres cas.

En multipliant l’équation (3.52) par ψ et en intégrant sur [a, b], on obtient la formulation faible sui-
vante :

(PV )


Trouver u ∈ V tel que∫ b

a

Ksolide
∂u

∂z

∂ψ

∂z
dz =

[
Ksolide

∂u

∂z
ψ
]b
a
+

∫ b

a

ρsgψ dz −
∫ b

a

ρwg
∂hw
∂z

ψ dz ∀ψ ∈ V
(3.53)

En utilisant la méthode de Galerkin, le problème approché de (3.53) est donné par :

(PVh)


Trouver uh ∈ Vh tel que∫ b

a

Ksolide
∂uh
∂z

∂ψh

∂z
dz =

[
Ksolide

∂uh
∂z

ψh

]b
a
+

∫ b

a

ρsgψh dz −
∫ b

a

ρwg
∂hw
∂z

ψh dz ∀ψh ∈ Vh
(3.54)

Le problème variationnelle approché (PVh) se réécrit sous la forme d’un système non linéaire. effet,
notons uh ∈ R, j, . . . , np les coordonnées de uh dans la base des (φj)1≤j≤np

.
Sur chaque ek, en décomposant la solution approchée uh sur cette base sous la forme, on a :

uh(z) =
2∑

j=1

φj(z)uj (3.55)

Après avoir appliquez la méthode de Galerkin (c’est-à-dire ψh = φi), on se permet d’écrire la formulation
discrète du problème (3.54) :

2∑
j=1

uj

∫
ek

Ksolide

(∂φi

∂z

∂φj

∂z

)
dz = Ksolide

∂u(b)

∂z
φ(b)−Ksolide

∂u(a)

∂z
φ(a) +

∫
ek

ρsgφi dz

−
∫
ek

ρwg
∂hw
∂z

φi dz, i = 1, 2 (3.56)

On obtient la forme matricielle suivante :

Kek uek = Bek (3.57)

où,

- Kek , est la matrice de rigidité élémentaire ;

- Bek , est le vecteur second membre élémentaire englobant toutes les contributions (terme source,
conditions aux limites . . .)

- uek , est le vecteur élémentaire des composantes inconnues u1(z), u2(z).
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avec,

Kek
ij =

∫
ek

K(h)
∂φj

∂z

∂φi

∂z
dz, pour tout i, j = 1, 2

Bek
i =

∫
ek

ρsgφi dz −
∫
ek

ρwg
∂hw
∂z

φi dz +Ksolide
∂u(b)

∂z
φi(b)−Ksolide

∂u(a)

∂z
φi(a), pour tout i = 1, 2

(3.58)

Comme dans les paragraphes précédents, après l’opération des matrices élémentaires et des vecteur
élémentaires, on obtient :

ne∑
k=1

∫
ek

Ksolide

(∂φi

∂z

∂φj

∂z

)
uj dz =

ne∑
k=1

∫
ek

(
ρsgφi dz − ρwg

∂hw
∂z

φi

)
dz +Ksolide

∂u(b)

∂z
φi(b)−Ksolide

∂u(a)

∂z
φi(a)

(3.59)

pour tout i, j = 1, 2
Sous la forme matricielle on a :

Ku = B (3.60)

où

Kij =

ne∑
k=1

∫
ek

K(h)
∂φj

∂z

∂φi

∂z
dz, pour tout i, j = 1, 2

Bi =

ne∑
k=1

(∫
ek

ρsgφi dz −
∫
ek

ρwg
∂hw
∂z

φi dz
)
+Ksolide

∂u(b)

∂z
φi(b)−Ksolide

∂u(a)

∂z
φi(a)

pour tout i = 1, 2

La matrice globale de rigidité K est la même que celle déterminer dans la section (3.1.2), donc il
nous reste à déterminer le vecteur second membre élémentaire Bek .

D’après la relation (3.58), le calcul de Bek
i fait intervenir deux types d’intégrales. On décompose alors b

en deux vecteurs :

Bek
i = pek

i − qek
i + terme aux bords (3.61)

avec

pek
i =

∫
ek

ρsgφi dz et qek
i =

∫
ek

ρfg
∂hw
∂z

φi dz pour tout i = 1, 2

Pour calculer ces intégrales on décompose l’intégrale sur le domaine [a, b] en somme d’intégrales
élémentaires sur chaque élément [zi, zi+1].

pek
i =

∫ zi+1

zi

ρsgφi dz, qek
i =

∫ zi+1

zi

ρfg
∂hw
∂z

φi dz, i = 1, 2 (3.62)

• Calcul des vecteurs peki et qeki

Il faut noter, on travaille localement sur deux éléments c’est-à-dire :
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donc,

hw =
2∑

i=1

hwi φi = hw1 φi + hw2 φi+1

on a,

∂hw
∂z

= hw1
∂φi

∂z
+ hw2

∂φi+1

∂z
(3.63)

En remplaçant l’équation (3.63) dans qi de l’équation (3.62), et pour chaque élément le vecteur q s’écrit :

qek =

 q1

q2

 (3.64)

où,

q1 = ρfg

[∫ zi+1

zi

hw1
∂φi

∂z
φi dz +

∫ zi+1

zi

hw2
∂φi+1

∂z
φi dz

]
(obtenu à partir de l’élément 1)

q2 = ρfg

[∫ zi+1

zi

hw1
∂φi

∂z
φi+1 dz +

∫ zi+1

zi

hw2
∂φi+1

∂z
φi+1 dz

]
(obtenu à partir de l’élément 2)

Après avoir effectuer quelques calculs sur les intégrales, finalement on obtient :

q1 = q2 =
gρf
2

(
hw2 − hw1

)
(3.65)

De même pour le vecteur p, on a :

pek =

 p1

p2

 (3.66)

où,

p1 = ρsg

∫ zi+1

zi

φi dz, (obtenu à partir de l’élément 1)

p2 = ρsg

∫ zi+1

zi

φi+1 dz, (obtenu à partir de l’élément 2)

Une fois effectué des calculs sur les intégrales, on obtient :

p1 = p2 =
gρs
2
long (3.67)

avec long = zi+1 − zi
En combinant les équations (3.65) et (3.67), la relation (3.61) devient :

Bek =
gρs
2
long

 1

1

− gρf
2

 hw2 − hw1

hw2 − hw1

+Ksolide
∂u(b)

∂z
φi(b)−Ksolide

∂u(a)

∂z
φi(a) (3.68)

L’équation (3.68) représente le vecteur élémentaire (pour deux éléments) second membre du couplage
fluide-solide. On remarque bien dans cette équation on a la présence de hw1 et hw2 qui représentent les
vecteurs solutions de Richards.
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3.3 Erreur relative

L’erreur relative est un concept mathématique important utilisé pour évaluer la précision d’une
mesure, d’une approximation ou d’un calcul par rapport à une valeur de référence ou à une grandeur
attendue. Elle permet de quantifier la différence entre une valeur obtenue et la valeur réelle, et elle est
souvent exprimée en pourcentage.
Comme nous savons toute méthode itérative nécessite un test d’arrêt afin de limiter l’écart entre deux
itérations successives par une tolérance que nous notons tol.

∥hn+1,m+1 − hn+1,m∥
∥hn+1,m+1∥

≤ tol (3.69)

Ce critère de convergence est bien adapté au schéma de Picard d’une part car la pression capillaire
constitue la base de Picard et d’autre part car il permet d’éviter des itérations inutiles et ainsi de
diminuer les temps de calcul quand une partie du domaine d’étude est fortement désaturée. En générale
la méthode de linéarisation de Picard converge en un nombre d’itération inférieur à 10.

Pour cette résolution, nous avons choisi l’algorithme de THOMAS qui est une méthode directe considérée
comme une variante de la méthode d’élimination de Gauss représenté par :

Algorithm 1 Algorithmes de résolution

10 t = (n+ 1)∆t
m = 0 initialisation
hn+1,0 = hn

θn+1,0 = θ(hn+1,0)
Kn+1,0 = K(hn+1,0)
Cn+1,0 = C(hn+1,0)
Calcul des termes du système Cij , Mij , Nij , Kij et bi

30 Résolution du système (3.34) : Ahn+1,m+1 = b
si ∥hn+1,m+1 − hn+1,m∥ < tol aller à 20
sinon faire :
m←− m+ 1
hn+1,m ←− hn+1,m+1

θn+1,m ←− θ(hn+1,m+1)
Kn+1,m ←− K(hn+1,m+1)
Cn+1,m ←− C(hn+1,m+1)
aller 30

20 hn+1 = hn+1,m+1

θm+1 = θ(hn+1,m+1)
Kn+1 = K(hn+1,m+1)
Cn+1,m = C(hn+1,m+1)
hn = hn+1

n←− n+ 1 et aller à 10

Nous apportons une précision supplémentaire à cet algorithme pour le terme tol qui doit être pris de
façon à converger relativement rapidement, mais également à ne pas perdre en précision. Dans le cadre
de ce projet, nous prenons tol = 10−8.

40



4

Résultats

Dans ce chapitre, des résultats numériques en une dimensions sont présentés notamment les résultats
de Richards en formulation h et mixte, du solide et du problème couplé (fluide-solide). La méthode de
linéarisation considérée est la méthode de Picard. Nous nous concentrons sur la convergence et le temps
de calcul.
Grâce à ces programmes, nous avons pu obtenir des simulations numériques que nous allons représenté
en différents cas tests pour valider nos codes.

4.1 Résultats numériques de Richards et solide 1D

4.1.1 Résultats numériques de Richards 1D

Test 1 : Formulation en h

Dans ce cas-test, on s’intéresse de l’équation de Richards exprimée dans formulation en fonction de la
hauteur d’eau h. La capacité d’humidité C et la conductivité hydraulique K sont définis selon le modèle
de Van Genuchten introduit dans le deuxième chapitre.
On travaille sur un domaine de 100 points et pour une profondeur de 0.6 m. La condition initiale est
h(z, 0) = hinit = −10 m et les conditions limites de type Dirichlet sont h(0, t) = htop = −0.75 m et
h(0.6, t) = hbot = −10 m. On considère que l’infiltration se produit sur une période de 3600, 10800 et
18000 secondes avec un pas de temps ∆t = 10s. Nous avons utilisé la méthode des EF et l’algorithme de
THOMAS à été adopter pour résoudre le système tri-diagonal issu de la linéarisation.
Les différents paramètres physiques considérés pour deux types de sols choisi sont donnés dans le tableau
(4.1) :

Sols Paramètres

Argile Ks = 1.51E − 06 m/s, θsat = 0.4686, θres = 0.106, α = 3.104m−1, n = 2

Sable Ks = 9.22E − 05 m/s, θsat = 0.368, θres = 0.102, α = 3.35 m−1, n = 2

Table 4.1 – Quelques matériaux et leurs paramètres.

Les résultats que nous présentons sont tirés de l’article (Shoshtari and Arash Adib, 2011) pour t =
3600 s, t = 10800 s et t = 18000 s, sauf l’article traite que le cas d’un sol de type sable, nous ajoutons un
autre type de sol qui n’est que l’argile. Les paramètres physiques du sol sont celui de Van Genuchten. Le
but ici ce de ne pas de comparer nos résultats avec celui de l’article, mais c’est d’observer le comportement
de la solution et pour voir l’évolution de l’infiltration selon le type de sol. Il faut noter que l’enchâınement
des figures représentées ici correspond à l’écoulement du temps (en seconde).
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• Sable

(a) Hauteur d’eau h (b) Teneur en eau θ(h)

Figure 4.1 – Résultat obtenu par la méthode des éléments finis, avec Ks = 9.22E − 05 m/s,
θsat = 0.368, θres = 0.102, α = 3.35 m−1, n = 2 à l’instant t = 3600s, t = 10800s et t = 18000s
[1]

(a) Hauteur d’eau h (b) Teneur en eau θ

Figure 4.2 – Présentation des résultats des simulation à l’instant t = 1h, 3h et 5h obtenu par
Mohammad Mahmoodian Shoshtari and Arash Adib, 2011, en utilisant la méthode des volumes
finis.

Pour la modélisation numérique, le domaine d’écoulement est 0.6m. Le potentiel de pression h et la
teneur en eau θ pour un sol sableux est utilisé. Finalement, les résultats obtenus dans l’article et ceux
obtenus à l’aide de la simulation numérique par la méthode des éléments finis sont présentés par les
figures (4.1) et (4.2).
Nous avons observé qu’elle confirme bien la variation linéaire du potentiel de pression avec des valeurs
négatives en zone non saturée laquelle correspond à la position du front de saturation (voir figure 4.1).

42



• Argile

(a) Hauteur d’eau h (b) Teneur en eau θ(h)

(c) Cond. hydraulique K(h) (d) Capacité capillaire C(h)

(e) Saturation effective Se(h) (f) Pression d’eau pw

Figure 4.3 – Évolution au cours de l’infiltration à 0.6 cm de profondeur

En observant les figures (4.1), (4.2) et (4.3), elles présentent les solutions obtenues par le modèle
numérique 1D par la méthode des éléments finis au cours du temps. Nous remarquons que le modèle
simule bien le mouvement d’infiltration du potentiel de pression capillaire (hauteur d’eau). Pour les
figure (4.1) et (4.3), nous remarquons aussi que le modèle respecte les conditions aux limites imposées à
la surface et au fond de la colonne durant toute la période de la simulation.
Nous observons également sur les figures (4.1) et (4.3) que le profil du potentiel de pression capillaire
n’est pas le même. Cette différence est due le fait que dans sur figure (4.1)) l’infiltration ce fait de façon
plus rapide car le sable est plus léger que l’argile. C’est pour la simple raison en voit du coté de l’argile
la propagation au cours du temps est très long.
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Test 2 : Formulation en θ − h
Dans ce cas test, on s’intéresse à l’équation de Richards mixte. La teneur en eau et la conductivité

hydraulique sont données par le modèle de Van Genuchten pour le sable et l’argile.

• Cas-test 1

Nous représentons ici les résultats pour un maillage de 100 points, nous prenons les mêmes données
du cas précédent (formulation en h). Pour vérifier le calcul précédent, dans l’équation mixte (3.22) nous
allons tout d’abord ne pas tenir compte de la capacité de stockage spécifique et du terme source (c’est-
à-dire Ss = 0 et f = 0). Dans ce cas nous obtenons la même solution que celle de l’équation de Richards
linéaire (formulation en h).

(a) Hauteur d’eau h (b) Teneur en eau θ

Figure 4.4 – Cas sable : Ks = 9.22E − 05 m/s, θsat = 0.368, θres = 0.102, α = 3.35 m−1,
n = 2 pour t=3600 s, t=10800 s et t=18000 s avec ∆t = 10s

(a) Hauteur d’eau h (b) Teneur en eau θ

Figure 4.5 – Cas argile : Ks = 1.51E − 06 m/s, θsat = 0.4686, θres = 0.106, α = 3.104m−1,
n = 2 pour t=3600 s, t=10800 s et t=18000 s avec ∆t = 10s
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• Cas-test 2

On présente ici les résultats pour f = 0 et pour différentes valeurs de Ss. Il faut noter que ce test
est réalisé dans le cas du sable.

(a) Hauteur d’eau h (b) Teneur en eau θ

Figure 4.6 – Représentation de h et θ pour ∆t = 10s et Ss = 0.05 m−1

(a) Hauteur d’eau h (b) Teneur en eau θ

Figure 4.7 – Représentation de h et θ pour ∆t = 10s et Ss = 0.2 m−1
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(a) Hauteur d’eau h (b) Teneur en eau θ

Figure 4.8 – Représentation de h et θ pour ∆t = 10s et Ss = 0.8 m−1

(a) Hauteur d’eau h (b) Teneur en eau θ

Figure 4.9 – Représentation de h et θ pour ∆t = 10s et Ss = 3.2 m−1

Pour le terme source f et la capacité de stockage spécifique étant nul, on remarque sur la figure
(4.5) que les courbes de potentiel de pression capillaire et de la teneur en eau gardent la même allure
au cours du temps. Ce pendant on note que le taux d’infiltration n’est plus le même dans le cas ou la
capacité de stockage spécifique est non nulle. Nous constatons l’effet du capacité de stockage spécifique
qui agit sur le sol. Cette capacité de stockage spécifique joue un rôle capital dans l’infiltration de l’eau.
On remarque pour Ss = 0.05m−1 l’infiltration se fait plus rapide et on se trouve quasiment dans cas du
test 1 lorsque Ss = 0, cependant lorsque la capacité de stockage spécifique prend des valeurs plus grandes
nous constatons que le taux d’infiltration est très lent et n’est plus le même dans tout le domaine et
diffère selon les différentes valeurs de Ss.
On observe aussi concernant les résultats de la teneur en eau (voir figures (4.5b) et (4.6b)) montrent
que le sol se sature au cours du temps. On voit bien le comportement de la hauteur h d’eau qui suit
l’évolution de la teneur en eau θ, ce qui affirme la liaison entre les deux variables (θ et h).
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4.1.2 Validation du modèle Richards 1D (formulation en h)

Pour tester le code éléments finis 1D (1D-EF) développé dans le cadre de cette étude nous avons
construit une solution analytique pour un sol donné :

hex(z, t) = αt(z − a)(z − b), (z, t) ∈ [0, 4]× [0, T ] (4.1)

En effet, cette équation sera utilisée pour calculer le terme source adéquats pour l’équation de Richards.
Enfin on impose à la fonction hex de vérifier l’équation de Richards pour aboutir alors à l’expression
d’un terme source f . Si l’on considère la formulation h de l’équation de Richards alors la fonction hex
est la solution du problème suivant :

C(h)
∂h

∂t
− ∂

∂z

(
K(h)

∂h

∂z

)
− ∂K(h)

∂z
= f dans Ω = [a, b]

h(z, 0) = hinit(z)

h(0, t) = htop(t)

h(z, t) = hbot(t)

(4.2)

En pratique, si on fournit au modèle la fonction f , K(h), C(h) et hex sur le bord ∂Ω, alors le modèle
1D-EF doit fournir la solution h = hex Il convient de noter la validation du code en comparaison avec
une solution analytique permet d’analyser le comportement du code de calcul développé. On cite par
exemple l’analyse de l’erreur, de la convergence et notamment l’ordre de la précision qui est généralement
différent de l’ordre théorique.
La condition initiale est choisie constante, et on impose une condition de Dirichlet à la surface et au fond
de la colonne.
Pour ce problème, on se donne un sol de conductivité hydraulique et de capacité d’humidité :

K(h) = β et C(h) = γ (4.3)

avec les paramètres s’expriment de la manière suivante :

α = 10−5m−1, β = 1.2× 10−5 et γ = 10−2

On veut fabriquer le terme source à partir de ces données.

Calcul du terme source f

En effectuant les calculs des dérivées on obtient :

∂hex
∂t

= α(z − a)(z − b) (4.4)

∂2hex
∂z2

= 2αt (4.5)

En injectant les équations (4.3), (4.4) et (4.6) dans l’équation de Richards (4.2), nous obtenons finalement
le terme source f :

f(z, t) = αγ(z − a)(z − b)− 2αβt (4.6)

Le test à réaliser consiste à vérifier si on fournit au modèle développé la fonction f , K(h), C(h) et hex
alors le modèle 1D-EF est-il capable de fournir numériquement la solution h = hex ?

Conditions aux limites

Pour cela, on calcul hex(a, t) = htop et hex(b, t) = hbot, avec a = 0 et b = 4.
donc, {

hex(a, t) = htop = 0
hex(b, t) = hbot = 0

(4.7)
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Pour la validation, Le domaine étudier est Ω = [0, 4], il s’agit d’une colonne verticale de longueur 4
m contenant un sol de caractéristiques prédéfinies. Les deux extrémités de la colonne sont reliées à l’air
libre et le temps final de simulation est T = 14400 secondes avec un pas de temps ∆t = 10 s. La solution
initiale est hinit = 0 et les conditions aux limites de type Dirichlet sont données par l’équation (4.7).

Figure 4.10 – La solution exacte de la hau-
teur d’eau h à l’instant t = 1800 s (en rouge)
et t = 14400 s (en bleu)

Figure 4.11 – La solution numérique de la
hauteur d’eau h à l’instant t = 1800 s (en
violet) et t = 14400 s (en vert)

Figure 4.12 – La solution exacte (en rouge et bleu) et la solution numérique (en violet et vert)
à l’instant t = 1800s et t = 14400s pour ∆t = 10 s

Nous observons sur le figure (4.12) qu’il y a une bonne convergence de la méthode, car la solution
numérique calculée par le code 1D méthode des éléments finis est assez proche de la solution exacte. Nous
remarquons aussi que le modèle respecte bien les conditions de Dirichlet qui ont été fixées à l’extrémité
de la colonne du domaine.
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4.1.3 Validation Richards 1D en formulation mixte

L’équation de Richards étant fortement non linéaire en milieu non saturé, il existe peu de solution
analytique permettant de tester la validité du schéma itératif. Cependant dans cette section nous prenons
une solution analytique comme nous l’avions dans les autres cas. Cette solution analytique permet de
vérifier la mise en oeuvre des algorithmes de base avant de tester la modèle sur des cas plus réalistes.
On rappel l’équation de Richards non linéaire suivante :

∂θ

∂t
+
θ

ϕ
Ss
∂h

∂t
− ∂

∂z

(
K(h)

∂h

∂z

)
− ∂K(h)

∂z
= f (4.8)

où
∂θ

∂t
=
∂θ

∂h

∂

∂t
avec C(h) =

∂θ

∂h

l’équation(3.69) devient :

C(h)
∂h

∂t
+
θ

ϕ
Ss
∂h

∂t
− ∂

∂z

(
K(h)

∂h

∂z

)
− ∂K(h)

∂z
= f (4.9)

On cherche à déterminer le terme source f . Pour cela, nous allons gardé les mêmes conditions aux limites,
ainsi que la solution analytique que celui dans le cas de la validation de Richards 1D linéaire.
Pour valider notre code dans ce cas, on se donne les caractéristiques du sol suivante :

- la teneur en eau : θ(h) = h2 ;

- la conductivité hydraulique : K(h) =
√
h2 + 1 ;

- la capacité capillaire (d’humidité) : C(h) = 2h

Maintenant, il reste à déterminer le terme source f . Nous calculons les termes de l’équation (4.9) et
les remplacés par la suite afin d’obtenir f .

∂h

∂t
= α(z − a)(z − b)

∂

∂z

(
K(h)

∂h

∂z

)
=

∂

∂z

(
K(h)

)
· ∂h
∂z

+K(h)
∂2h

∂z2

avec
∂

∂z

(
K(h)

)
=
∂K

∂h
· ∂h
∂z

et
∂2h

∂z2
= 2αt

Donc,

∂

∂z

(
K(h)

∂h

∂z

)
=

2αth√
h2 + 1

+ 2αt
√
h2 + 1

et

∂K(h)

∂z
=
∂K(h)

∂h

∂h

∂z
=
αth(2z − a− b)√

h2 + 1

En remplaçant tous les termes dans l’équation (4.9), finalement nous obtenons le terme source f
suivant :

f(z, t) = 2αh(z − a)(z − b) + αh2Ss

ϕ
(z − a)(z − b)−

( 2αth√
h2 + 1

+ 2αt
√
h2 + 1

)
− αth(2z − a− b)√

h2 + 1
(4.10)

pour le terme de capacité de stockage Ss = 0. on a :
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f(z, t) = 2αh(z − a)(z − b)−
( 2αth√

h2 + 1
+ 2αt

√
h2 + 1

)
− αth(2z − a− b)√

h2 + 1
(4.11)

Dans la pratique ce terme source sera dans le second membre et le h ici représente la fonction
analytique donnée.
A présent, nous représentons le résultat obtenu lors du test de validation de notre code.

Paramètres Type de sol

Caractéristique du sol quelconque

θ(h) h2

α[m−1] 10−5

C(h) 2h

K(h)
√
h2 + 1

Ss[m
−1] 0

Table 4.2 – Paramètres utilisés pour valider le modèle dans le cas analytique pour n = 100.

Paramètres Valeurs

Longueur de la colonne 4m (en position verticale)
Condition initiale hinit = 0

Condition à la limite supérieure htop = 0
Condition à la limite inférieur hbot = 0

Durée de simulation 14400s
Pas de temps ∆t = 10s

Table 4.3 – Conditions utilisées pour valider le modèle.

Figure 4.13 – Représentation de la solution exacte (en rouge) et la solution numérique (en
noir) à l’instant t = 1800s et 14400s.
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4.1.4 Résultats numériques du solide 1D

Dans cette section, on s’intéresse de l’équation (3.35) et aux calculs effectués dans la sous-section
(3.2.2). On considère une profondeur de 0.6m, d’axe z⃗ positive vers le bas. On veut simuler le déplacement
du solide selon deux types de sols (sable et argile). Pour ce faire on se donne les conditions aux limites
suivantes :

1. Les deux extrémités sont considérées libres (pas déplacement, ni effort imposé) ;

2. Effort imposé à la surface et libre au fond ;

3. Déplacements sont imposés sur les deux extrémités.

Nous obtenons les résultats suivants :

• Test 1 : Sable

(a) Effort libre à la surface et sans déplacement au
fond

(b) Effort appliqué à la surface et sans
déplacement au fond

(c) Déplacement appliqué à la surface et au fond

Figure 4.14 – Représentation du déplacement de solide u dans le cas d’un sable saturé avec
Ksolide = 6.333× 108Pa et ρs = 2000 kg/m3.
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• Test 2 : Argile

(a) Effort libre à la surface et sans déplacement au
fond

(b) Effort appliqué à la surface et sans
déplacement au fond

(c) Déplacement appliqué à la surface et au fond

Figure 4.15 – Représentation du déplacement de solide u dans le cas de l’argile sableuse avec
Ksolide = 4.166× 108Pa et ρs = 1700 kg/m3.

Nous présentons ici les résultats numériques obtenus pour un maillage de 100 × 100 en utilisant
la méthode des éléments finis. Ces résultats représentent le déplacement du matériau (sable et argile)
exprimés en mètre de densités ρs = 1700kg/m3 et ρs = 2000kg/m3. On observe sur les figures (4.14) et
(4.15) que le solide ne se déplacement pas de la même distance, cela peut être expliquer par perméabilité
et porosité du matériau. Par exemple dans le cas du sable (saturé) représenté par la figure (4.14) le sol
est plus perméable et son déplacement se fait assez rapidement contrairement dans le cas de l’argile qui
se fait moins vite pour des raisons due à la propriété physique du sol considéré.
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4.1.5 Validation du modèle 1D solide

Pour tester le code éléments finis 1D solide (1D-EF), on s’intéresse de l’équation d’équilibre (2.25)
avec terme source f (à déterminer), on considère une profondeur de longueur l = 4m. Il faut noter ici le
Ksolide n’est plus constant, il est remplacé par K(z) qui est une fonction de conductivité hydraulique du

sol. On considère les conditions aux limites à la surface une condition naturelle
∂utop
∂z

= 0 (sans effort

appliqué), au fond une condition de Dirichlet ubot(b) = uex(b) (déplacement imposé) et une condition
initiale uinit = 0.

∂

∂z

(
K(z)

∂u

∂z

)
+ ρsg = f (4.12)

Pour la validation, la méthode des éléments finis sera appliquer aussi pour ce problème (4.12). En effet,
on se donne une solution exacte suivante :

uex(z) = αz2 + β (4.13)

Pour ce problème, nous considérons un sol de conductivité hydraulique :

K(z) = λz (4.14)

• Calcul du terme source f

En effectuant le calcul de la dérivée partielle de uex on obtient :

∂uex
∂z

= 2αz (4.15)

En injectant les équations (4.14) et (4.15) dans l’équation (4.12), on a :

∂

∂z
(2αλz2) + ρsg = f

Finalement, on obtient le terme source f donné par :

f(z) = 4αλz + ρsg (4.16)

avec les paramètres sont exprimés de la manière suivante : α = 10−3 et λ = β = 10−2, avec la solution
initiale et les conditions aux limites sont données par :

uinit = 0
∂utop
∂z

= 0

ubot = 4αb+ β

(4.17)

avec b = 4m.
Le test à réaliser consiste à vérifier si on fournit au modèle développé la fonction f , K(z) et uex sur le
bord ∂Ω, alors le modèle 1D-EF est-il capable de fournir numériquement la solution u = uex ?

Comme on peut observer sur la figure (4.16) la solution calculée est confondu avec la solution exacte.
Pour voir la différence entre ces deux solutions, nous allons adopté une technique que l’on appelle la
sensibilité de la solution au maillage qui permet de calculer les erreurs entre la solution exacte et la
solution calculée pour différents maillages. Il s’agit de l’erreur relative afin de donne le maillage optimal.
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Figure 4.16 – Représentation de la solution exacte (en rouge) et la solution numérique (en
vert)

4.2 Résultats numériques du couplage 1D

Pour ce test, il s’agit d’une profondeur de 0.6 m de longueur contenant le sable où l’argile comme
types de sols. Pour le fluide, on considère les conditions aux limites de type Dirichlet(hbot = −0.75m,
htop = −10m) et la condition initiale est fixé à hinit = −10m. On ce qui concerne le solide nous allons
considérer les mêmes conditions aux limites que celles décrites dans la section (3.2.2). Le temps maximal
de simulation est de 18000 s avec un pas de temps ∆t = 10s.

On veut tester notre modèle de couplage entre l’équation de Richards et l’équation du solide 1D pour
deux types de sols (sable et argile). Nous représentons les résultats pour des différents cas tests comme
l’avons fait précédemment.

• Test 1 : Sable

(a) Hauteur d’eau h (b) Déplacement solide u

Figure 4.17 – Représentation de la hauteur d’eau h et du déplacement solide u : Effort libre
à la surface et sans déplacement au fond.
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(a) Hauteur d’eau h (b) Déplacement solide u

Figure 4.18 – Représentation de la hauteur d’eau h et du déplacement solide u : Effort appliqué
à la surface et sans déplacement au fond.

(a) Hauteur d’eau h (b) Déplacement solide u

Figure 4.19 – Représentation de la hauteur d’eau h et du déplacement solide u : Déplacement
appliqué à la surface et au fond.

• Test 2 : Argile
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(a) Hauteur d’eau h (b) Déplacement solide u

Figure 4.20 – Représentation de la hauteur d’eau h et du déplacement solide u : Effort libre
à la surface et sans déplacement au fond

(a) Hauteur d’eau h (b) Déplacement solide u

Figure 4.21 – Représentation de la hauteur d’eau h et du déplacement solide u : Effort appliqué
à la surface et sans déplacement au fond

(a) Hauteur d’eau h (b) Déplacement solide u

Figure 4.22 – Représentation de la hauteur d’eau h et du déplacement solide u : Déplacement
appliqué à la surface et au fond
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Pour un maillage de 100 points, on observe sur figures nous obtenons, l’évolution du front de la
hauteur d’eau et le déplacement du solide pour différent instant sont presque les mêmes obtenu aux
résultats des cas-tests précédents. Il faut noter que ici le déplacement u dépend du temps qui vient de
l’équation de Richards. Ce qui valide le couplage fait entre les deux équations.

4.2.1 Comparaison des résultats de calculs

• Richards en formulation en h et en θ − h

Forme de Richards ∆t (en s) Temps CPU (en s) Nombre d’itérations

Formulation en h (cas linéaire) 10 13.637 –
120 1.147 –
320 0.444 –

Formulation en θ − h (cas non linéaire) 10 86.073 3
120 14.466 6
320 6.839 8

Table 4.4 – Résultats numériques obtenus par MEF pour n = 200 et t = 43200s.

(a) Hauteur d’eau h : Cas linéaire (b) Hauteur d’eau h : Cas non linéaire

Figure 4.23 – Les figures (4.24a) et (4.24b) présentent l’évolution de la hauteur d’eau au cours
de l’infiltration à 0.6m de profondeur et sont obtenus à partir du tableau (4.4).

Forme de Richards ∆t (en s) Temps CPU (en s) Nombre d’itérations

Formulation en h (cas linéaire) 10 27.458 –
120 2.307 –
320 0.862 –

Formulation en θ − h (cas non linéaire) 10 158.387 3
120 26.140 6
320 12.144 8

Table 4.5 – Résultats numériques obtenus par MEF pour n = 200 et t = 86400s.
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(a) Hauteur d’eau h : Cas linéaire (b) Hauteur d’eau h : Cas non linéaire

Figure 4.24 – Les figures (4.24a) et (4.24b) présentent l’évolution de la hauteur d’eau au cours
de l’infiltration à 0.6m de profondeur et sont obtenus à partir du tableau (4.5).

Pour les figures (4.23) et (4.24) montrent la variation du potentiel de pression h sur un domaine
d’écoulement de 0.6m pour les temps t = 43200s et t = 86400s et pour les pas de temps ∆t = 10, 120
et 320 secondes, pour un maillage de 200 × 200 on observe que au bout de 43200 s que l’infiltration se
fait pas assez rapide, mais après 86400 s l’eau continue de s’infiltrer en gardant la même forme de la
hauteur d’eau que à 43200 s. Nous pouvons aussi observé que au bout de 86400 s le sol se sature presque
complètement (figure 4.24) surtout dans le cas de Richards linéaire. Pour ce type de maillage, nous disons
que le temps de calcul est assez raisonnable. De plus, on voit que la méthode est conservatrice car le
taux d’infiltration reste le même dans tout le domaine.

• Couplage fluide-solide

Couplage ∆t (en s) Temps CPU (en s) Nombre d’itérations

Test 1 10 33.075 2
120 2.769 2
320 1.043 2

Test 2 10 33.324 2
120 2.783 2
320 1.049 2

Test 3 10 33.215 2
120 2.795 2
320 1.046 2

Table 4.6 – Résultats numériques obtenus par MEF pour n = 200 et t = 43200s.

58



(a) Hauteur d’eau h : Cas du couplage (b) Déplacement u : Cas du couplage

Figure 4.25 – Les figures (4.25a) et (4.25b) sont obtenus à partir du tableau (4.6) du test 1 en
considérant les conditions suivantes : pas d’effort et pas de déplacement aux deux extrémités
de la colonne.

(a) Hauteur d’eau h : Cas du couplage (b) Déplacement u : Cas du couplage

Figure 4.26 – Les figures (4.26a) et (4.26b) sont obtenus à partir du tableau (4.6) du test 2 en
considérant les conditions suivantes : effort imposé à la surface et pas de déplacement au fond
de la colonne.
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(a) Hauteur d’eau h : Cas du couplage (b) Déplacement u : Cas du couplage

Figure 4.27 – Les figures (4.27a) et (4.27b) sont obtenus à partir du tableau (4.6) du test 3 en
considérant les conditions suivantes : déplacement imposé aux deux extrémités de la colonne.

Les figures (4.25), (4.26) et (4.27) montrent la variation du potentiel de pression h et du déplacement
du solide u sur un domaine d’écoulement correspondant à z = 0.6m pour un temps t = 43200s et pour
les pas de temps ∆t = 10, 120 et 320 secondes.

4.3 Sensibilité de la solution au maillage

Un maillage de qualité est primordial pour obtenir une bonne convergence du calcul numérique et de
bons résultats lors de la simulation. Diverses configurations de maillage composée de cellules quadrilatères
ont été testées dans l’optique de déterminer le meilleur compromis entre la précision des résultats et la
durée nécessaire pour que le calcul converge. Après avoir choisi une densité de maillage, trois tests de
sensibilité par rapport aux modèles 1D-EF régissant les écoulements dans le sol (test pour Richards
linéaire et non linéaire) et au déplacement du squelette solide a été effectué.
Nous étudions cette sensibilité dans le cas des validations des modèles (Richards linéaire, non linéaire et
solide 1D), Pour mener cette étude de test de sensibilité, nous avons mis a disposition de 07 maillages
nommés M1, M2, M3, M4, M5 et M6 (voir tableaux (4.7), (4.8) et (4.9)). La sensibilité de la solution au
maillage consiste à rechercher :

1. Dépendance de la précision : La résolution numérique d’un problème physique est généralement
plus précise avec un maillage fin et dense. Cela signifie qu’un maillage qui divise le domaine en
petites éléments permettra d’obtenir une solution plus précise ;

2. Effet sur la stabilité : Un maillage grossier peut conduire à des instabilités numériques ou à des
oscillations dans la solution, en particulier pour les problèmes comportant des gradient rapides.
Un maillage fin peut améliorer la stabilité numérique ;

3. Coût de calcul : Un maillage plus fin implique généralement un coût de calcul plus élevé, car
davantage d’éléments doivent être résolus. Il est important de trouver un compromis entre la
précision souhaitée et la capacité de calcul disponible ;

4. Validation et vérification : La sensibilité au maillage nécessite souvent une validation soignée
en utilisant des solutions analytiques ou des résultats expérimentaux lorsque cela est possible.
Cela permet de s’assurer que la solution numérique converge vers la vraie solution lorsque le
maillage se raffine ;

5. Erreur de discrétisation : L’erreur de discrétisation, qui est l’erreur introduite par la discrétisation
numérique du problème continu, dépend fortement de la qualité du maillage. En général, un
maillage plus fin réduit l’erreur de discrétisation.
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− Cas de Richards linéaire

Maillages ∆t (en s) Temps CPU (en s) Erreurs relatives

M1 = 100 10 0.231 3.29498× 10−5

120 2.157× 10−2 3.29494× 10−5

320 8.895× 10−3 3.29483× 10−5

M2 = 200 10 1.528 1.15618× 10−5

120 0.134 1.15616× 10−5

320 5.206× 10−2 1.15613× 10−5

M3 = 400 10 10.270 4.07236× 10−6

120 0.847 4.07233× 10−6

320 0.325 4.07220× 10−6

M4 = 800 10 41.372 1.43710× 10−6

120 3.654 1.43713× 10−6

320 1.325 1.43716× 10−6

M5 = 1600 10 161.047 5.07124× 10−7

120 13.560 5.06985× 10−7

320 5.070 5.07367× 10−7

M6 = 3200 10 1061.772 1.84997× 10−7

120 94.411 1.77230× 10−7

320 34.872 1.83248× 10−7

M7 = 6400 10 10014.475 4.2431× 10−8

120 803.030 5.47587× 10−8

320 323.813 7.50287× 10−8

Table 4.7 – Détermination de l’erreur relative pour différents maillages dans cas de Richards
linéaire (L’ordre de précision du modèle 1D-EF).

− Cas du solide

Maillages (np) Temps CPU (en s) Errreurs relatives

M1 = 100 1.340× 10−3 1.209× 10−5

M2 = 200 2.700× 10−3 4.158× 10−6

M3 = 400 7.620× 10−3 1.442× 10−6

M4 = 800 2.413× 10−2 5.004× 10−7

M5 = 1600 9.996× 10−2 1.692× 10−7

M6 = 3200 0.366 5.066× 10−8

M6 = 6400 2.110 1.146× 10−8

Table 4.8 – Détermination de l’erreur relative pour différents maillages dans le cas du solide
(L’ordre de précision du modèle 1D-EF).
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− Cas de Richards non linéaire

Maillages ∆t (en s) Temps CPU (en s) Itérations Erreurs relatives

M1 = 100 10 3.571 10 2.834× 10−4

120 0.364 11 2.844× 10−4

320 0.160 12 2.861× 10−4

M2 = 200 10 19.426 10 2.382× 10−4

120 1.896 11 2.397× 10−4

320 0.769 12 2.423× 10−4

M3 = 400 10 122.134 10 2.862× 10−4

120 11.503 11 2.883× 10−4

320 4.634 12 2.920× 10−4

M4 = 800 10 476.722 10 3.882× 10−4

120 51.881 11 3.911× 10−4

320 18.146 12 3.964× 10−4

M5 = 1600 10 1702.482 10 5.433× 10−4

120 169.690 11 5.474× 10−4

320 64.964 12 5.549× 10−4

M6 = 3200 10 20173.840 10 7.664× 10−4

120 1985.916 11 7.723× 10−4

320 844.643 12 7.829× 10−4

M7 = 6400 10 89455.804 10 1.083× 10−3

120 11939.068 11 1.091× 10−3

320 5315.927 12 1.106× 10−3

Table 4.9 – Détermination de l’erreur relative pour différents maillages dans cas de Richards
non linéaire (L’ordre de précision du modèle 1D-EF).

Remarque 4.3.1 Il est à noter toutefois les pas de discrétisation adoptés peuvent influencer les résultats
obtenus de façon plus ou moins remarquable, il convient donc pour chaque simulation d’étudier la sen-
sibilité des résultats afin de déduire des valeurs optimales qui permettent de concilier la précision et le
cout de calcul.
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5

Conclusion

5.1 Conclusion

Le transport fluvial comporte de nombreux atouts : il est fiable, rapide, ponctuel, écologique et
économique. Depuis quelques années, l’on assiste à un regain d’intérêt pour le transport fluvial dont le
potentiel de développement est considérable. La route étant saturée et le rail ayant de grandes difficultés
à accrôıtre sa capacité de transport de fret, la voie d’eau apparâıt de plus en plus comme la solution
d’avenir. Effet, lors du passage d’un bateau se produit sur la surface de l’eau un phénomène qu’on appelle
batillage. Ce phénomène génère des ondes de vagues permettant un mouvement de monté-descendé du
niveau d’eau s’infiltrant dans la berge et entrâıne le remplissage des pores vides en provoquant la sa-
turation du milieu et une augmentation du poids du sol. Il fait parti des causes d’érosion les plus néfastes.

La modélisation numérique de l’érosion des berges due au trafic fluvial est une discipline en constante
évolution qui joue un rôle central dans la protection de nos ressources hydriques et de nos infrastructures
riveraines. Elle permet de mieux comprendre, de prédire et de gérer ce phénomène complexe, favorisant
ainsi un développement durable et une utilisation responsable de nos voies navigables.

Pour conclure, nous avons proposé trois parties :

1. La première partie concerne quelques rappels de généralités sur le milieu poreux pour la compréhension
de la suite du projet parmi on cite : l’équation de conservation de masse et la loi de Darcy qui
interviennent dans l’équation de Richards.

2. La deuxième partie concerne la modélisation de l’écoulement dans le sol qui gouverne les équations
de Richards (en h, θ et θ−h), ensuite nous avons donné un modèle du solide régit par l’équation
d’équilibre du solide dont l’inconnue est le déplacement est u et le modèle couplé (fluide-solide)
qui vient de la contrainte effective.

3. La troisième partie : Elle est basée sur la résolution et résultats numériques. Pendant ce stage
pour la résolution numérique des modèles évoqués, concernant Richards nous sommes intéresse
de la formulation en h et θ− h, un code à été développé en une dimension basé sur les méthodes
des éléments finis, une méthode itérative de linéarisation de Picard à été utilisé pour le cas
de Richards non linéaire (θ − h) et pour la résolution du système linéaire nous avons utilisé
l’algorithme de TDMA (Tridiagonal matrix algorithm) ou THOMAS. L’algorithme développé est
codé en Fortran 90. Nous avons effectué quelques cas tests pour deux types de sols (sable et argile)
en tenant compte des caratéristiques du sol de l’article Mohammad Mahmoodian Shoshtari and
Arash Adib, 2011 et de la thèse de Ayoub Charhabil qui sont donné par le modèle Van Genuchten.
Ensuite un cas de validation à été effectué dans le cas du solide et de Richards (en h), pour cette
validation nous avons fabriqué un type de sol en donnant la conductivité hydraulique K(h), la
teneur en eau θ(h), la capacité capillaire C(h) et une solution analytique.

D’un point de vu numérique, nous avons trois codes qui fonctionnent pour le solide, de Richards (cas
linéaire et non linéaire) et du couplage (fluide-solide). Il faut noter que ces modèles servent pour des
prédictions physiques.
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Du point de la physique, nous constatons que pour des propriétés qui correspond à de l’argile et le sable,
il n’a pas de différence de résultats donnés par l’algorithme de linéaire et celui donné par donné par
l’algorithme non linéaire. Cependant, il est intéressant à l’aide des deux outils que nous avons développer
c’est de voir si pour d’autres propriétés de sols ça l’intérêt de faire du non linéaire. Pour l’analyse des
résultats numériques obtenus, nous pouvons dire que le modèle numérique 1D élément fini développé
simule correctement l’écoulement dans le sol et le déplacement du squelette solide. Les résultats sont
satisfaisants et qui peuvent être améliorés.
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Liste des symboles

Symboles Dimensions

∆t pas de discrétisation du temps s

∆z pas de discrétisation de la profondeur m

µ viscosité du fluide –

∇ gradient en coordonnées cartésiennes –

ν coefficient de Poisson Pa

ϕ porosité –

ρs masse volumique du solide kg/m3

ρw masse volumique du fluide kg/m3

σ′ contrainte effective Pa

σ contrainte totale Pa

θ Teneur en eau volumique –

θres teneur en eau volumique résiduelle –

θsat teneur en eau volumique saturée –

ε déformation du squelette solide –

q⃗ vecteur vitesse de Darcy m/s

C(h) capacité capillaire m−1

D(θ) diffusivité sol-eau m2/s

E modèle de Young Pa

g accélération de la pesanteur m/s2

H Charge hydraulique m

h potentiel de pression capillaire (hauteur d’eau) m

he pression d’entrée d’air m

K conductivité hydraulique m/s

k perméabilité intrinsèque m2/s

Ks conductivité hydraulique saturée m/s

Ksolide module de compressibilité du solide Pa

n,m paramètre lié au sol –

pa pression de l’air Pa

pw pression de l’eau Pa
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S taux de saturation %

Se taux de saturation effective –

Ss capacité de stockage spécifique 1/m

t temps s

u déplacement du solide m

z profondeur sous la surface du sol m
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Annexe

5.2 Organisation de la programmation

Il existe une diversité de méthode numériques, depuis ces dernières décennies, les sciences des
matériaux ont connu une renaissance grâce aux développements des outils de simulation.
La résolution du problème fluide, solde et d’un système couplé fluide-solide, est ramené à résoudre un
système d’équations différentielles qui nécessite l’utilisation de ces méthodes numériques d’où la nécessité
d’élaborer un programme de calcul EF-1D.

Dans le cadre de ce projet, on souhaite mettre en place un algorithme capable de résoudre numériquement
le système d’équation discrétisées en chaque point de l’espace. Cet algorithme de programmation sera
écrit en langage FORTRAN 90 et nous avons utilisé :

- GCC version 9.4.10 (Ubuntu 9.4.10-1ubuntu∼ 20.04.2) ;

- Outil de pré traitement : mise en données (fichier.dat) ;

- Outil de post-traitement : Gnuplot(pour la visualisation des résultats) ;

- Type de programme : programmation en séquentielle.

5.2.1 Description des programmes

L’algorithme développé est organisé en sous programme suivant :

• Fluide et solide :

- richards.f90, solide.f90 : Programme principal qui fait appel à un ensemble de sous programme
(subroutines) ;

- input.dat : Dans lequel l’ensemble des données physiques et algorithmes du problème sont
définis ;

- maillage.f90 : Permet de créer le maillage qui va servir de base dans la discrétisation ;

- caract sol.f90 : Contient les fonctions caractéristiques du sol étudié (θ(h), K(h), C(h)) ;

- mat vect elem.f90 : Calcul de matrice de rigidité élémentaireKek
i , de matrice de masse élémentaire

Mek
i et du vecteur second membre élémentaire Bek

i ;

- assembl.f90 : Calcul le vecteur d’assemblage B, de matrice d’assemblage rigide K et de matrice
d’assemblage de la masse M ;

- solver.f90 : Permet la résolution des systèmes MḢ +KH = B(fluide) et Mu = B (solide) par
la méthode numérique TDMA (TriDiagonal Matrix Algorithm).

• Couplage :

- couplage.f90 : Programme principal qui fait appel à un ensemble de sous programme (subrou-
tines) ;

- input.dat : Dans lequel l’ensemble des données physiques et algorithmes du problème sont
définis ;

- maillage.f90 : Permet de créer le maillage qui va servir de base dans la discrétisation ;
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- caract sol.f90 : Contient les fonctions caractéristiques du sol étudié (θ(h), K(h), C(h)) ;

- mat vect elem fluid.f90 : Calcul de matrice de rigidité élémentaire Kek
i , de matrice de masse

élémentaire Mek
i et du vecteur second membre élémentaire Bek

i ;

- mat vect elem solid.f90 : Calcul de matrice de rigidité élémentaire Kek
i et du vecteur second

membre élémentaire Bek
i ;

- assembl fluid.f90 : Calcul le vecteur d’assemblage B, de matrice d’assemblage rigide K et de
matrice d’assemblage de la masse M ;

- assembl solid.f90 : Calcul le vecteur d’assemblage B et de matrice d’assemblage rigide K ;

- solver.f90 : Permet la résolution du système fluide-solide par la méthode numérique TDMA
(TriDiagonal Matrix Algorithm).

5.2.2 Organigramme

Début

Data Input
Lecture des données

Initialisation des matrices

Introduction des condi-
tions aux limites

Formation des matrices
de rigidité et de masse

élémentaire de chaque élément

Assemblage des matices

Application des condi-
tions aux limites

Résolution

Data Output
Résultats

Figure 5.1 – Organigramme
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5.2.3 Calcul des modules de compressibilité (Ksolide) de quelques matériaux

Le module de compressibilité (Ksolide) est lié au module de Young E par le coefficient de Poisson
(ν) :

Ksolide =
E

3(1− 2ν)
(5.1)

où E et le module de Young et ν est le coefficient de Poisson.

- Pour le sable léger : E = 1.45× 108 Pa, ν = 0.20, soit Ksolide = 0.805× 108 Pa

- Pour le sable saturé : E = 1.9× 108 Pa, ν = 0.45, soit Ksolide = 6.333× 108 Pa

- Pour l’argile sableuse : E = 2.5× 108 Pa, ν = 0.4, soit Ksolide = 4.166× 108 Pa

- Pour le béton : E = 3.6× 1010 Pa, ν = 0.20, soit Ksolide = 1.5× 1010 Pa
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[4] M Boujoudar, A Beljadid and A Taik : Modelling of unsaturated flow through porous media
using meshless methods, Canadian Society of Civil Engineering Annual Conference, 2021.

[5] Tables des masses volumiques de diverses substances.
https ://www.techno-science.net/glossaire-definition/Masse-volumique-page-2.html

[6] GEO5 Logiciel : Aide Contextuelle,
https ://www.finesoftware.fr/aide-contextuelle/geo5/fr/module-secant-du-sol-es-01/

[7] Wikipedia :
• https ://fr.wikipedia.org/wiki/Coefficient de Poisson
• https ://fr.wikipedia.org/wiki/Module de Young

[8] M. TH. Van Genuchten : A Closed-form Equation for Predicting the Hydraulic Conductivity
of Unsaturated Soils. Soil Sci. Soc. Am. J. Vol. 44(5) pages. 892-898, 1980.

[9] T. Bunsri1, M. Sivakumar and D. Hagare : Applications of Hydraulic Properties Models on
Microscopic Flow in Unsaturated Porous Media, Journal of Applied Fluid Mechanics, Vol. 2,
No. 2, pages 1-11, 2009

[10] K. Nasrifar and D. Mowla : Modelling Transient Unsaturated Flow Problems Using Control
Volume Numerical Methods, Scientia Iranica, Vol.9, No. 1. pages 59-65.

[11] Caviedes-Voullième et al. : Verification, conservation, stability and efficiency of a finite vo-
lume method for the 1D Richards equation, Journal of Hydrology, Volume 480, Pages 69-84,
February 2013.

[12] Florian List and Florin A. Radu : A study on iterative methods for solving Richards’ equation,
pages 342-346, 2016
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