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Introduction

This is a Mémoire written for the internship for the Master 2 - MFA at Nantes’ university.
Our objective is to establish estimates on the lower bound of Schrödinger operators of the

form H = −∆−V , with V non-negative and locally integrable. Through these estimate, we will
be able to deduce some sufficient conditions for the operator to be positive.

We will use methods of harmonic analysis, especially a good-lambda inequality, to prove that
the Riesz potentials (−∆)

−s/2 and Bessel potentials
(
λ2 −∆

)−s/2 are bounded by an appropriate
fractional maximal function. This will then allow us to find the desired estimate in Corollary
3.1.

In the first part, we will gives the various Harmonic analysis and Spectral analysis we will
need in the following parts.

The second part is dedicated to the study of Riesz Potentials, and we will establish a nec-
essary and sufficient condition for a weighted version of the classical Hardy-Littlewood-Sobolev
inequality to hold. One of the result proved here will be important for the proof of the main
result.

In the third and last part, we will study the Schrödinger operator, and establish some results
on the lower bound of its spectrum that will allow us to get the desired estimates.
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1. Preliminaries results
1.1 Covering lemmas
We will first clarify several terms and notations that will be used throughout this document.

Definition 1.1. The term cube is used to refer to an hypercube with sides parallel to the coor-
dinate axis. That is to say, a cube of length l > 0 is a cartesian product :

Q = [x1, x1 + l)× · · · × [xn, xn + l)

With x = (x1, . . . , xn) ∈ Rn. The intervals in the definition might also be taken to be closed
or open. In the later case, then Q will be a ball B(c, r) for the norm |x|∞ = sup{|x1|, . . . , |xn|}.
The center and radius of Q will refer to the centers and radius of this ball. We also have r = l/2.

Definition 1.2. The characteristic function of a set E is :

1E(x) =

{
1, x ∈ E
0, x /∈ E

Definition 1.3. The cardinal of a set E is :

#E =
∑
x∈E

1E(x)

If E is countable, and ∞ if E is uncountable.

Definition 1.4. The diameter of a set E is :

diam(E) = sup{d(x, y); x, y ∈ E}

1.1.1 A Besicovitch type lemma
Theorem 1.1. [2] Let A be a bounded subset of Rn. For each x ∈ A a closed cube Q(x) with
positive radius, centered at x is given,. Then, one can choose, from among the givens cubes
{Q(x)}x∈A, a sequence {Qk}k covering A :

A ⊂
⋃
k

Qk (1.1.1)

And such that there is a constant θn depending only on the dimension, such that any point
of Rn is in at most θn cubes. That is to say :∑

k

1Qk ≤ θn (1.1.2)
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Proof. We note rx the radius of Q(x), and define a0 by :

a0 = sup{rx : x ∈ A} (1.1.3)

If a0 = ∞ then there is a cube that will cover A entirely, and there’s nothing left to do. If
a0 <∞, then we choose a cube Q1 such that :

Q1 = Q(x1) ∈ {Q(x) : x ∈ A}, r1 = rx1
>
a0

2
(1.1.4)

We now construct a sequence {Qk} such that :

an = sup

{
rx : x ∈ A \

n⋃
k=1

Qk

}
(1.1.5)

Qn+1 = Q(xn+1), xn+1 ∈ A \
n⋃
k=1

Qk, rn+1 = rxn+1
>
an
2

(1.1.6)

With the Qi thus defined, we have, if i 6= j :

1

3
Qi ∩

1

3
Qj = ∅ (1.1.7)

Indeed, if i > j, then xi /∈ Qj and, rj ≤ ai < 2ri. Then let y ∈ 1
3Qi. We have :

ri < |xi − xj |∞ ≤
1

3
ri + |y − xj |∞

Then since ri ≥ 2rj , we get :

|y − xj | >
1

3
rj

And so y /∈ 1
3Qj .

Now let’s prove the first part of the theorem. First, if the sequence {Qk} is finite, i.e. if at
some step n, there’s no possible cube we can chose. Then A ⊂

⋃
kQk is trivial.

If the sequence of cubes is infinite, then we necessarily must have rk → 0. Indeed, let’s look
at the set : ⋃

k≥1

Qk

Since A is bounded, then it must be bounded, and so of finite measure. But, by (1.1.7), its
measure is more than :

m

⋃
k≥1

1

3
Qk

 =
∑
k≥1

(
2rk
3

)n
For this to be finite, we must have rk → 0. But then take :

x ∈ A \
⋃
k≥1

Qk

We have rx ≤ ak ≤ 2rk for all k ≥ 1. But then this must mean that rx = 0. But we require
rx > 0 for all x ∈ A, so we have a contradiction, and we must have :
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A ⊂
⋃
k≥1

Qk (1.1.8)

We have proved the first part. For the second, let x ∈ Rn. By doing a translation if necessary,
we can consider x to be the origin. Then the coordinates hyperplanes split the space into 2n

quadrants. We will show that for each quadrant the number of cubes with center in this quadrant
is bounded by a constant that depends only on the dimension.

By changing coordinates if necessary, we can assume we work in the following quadrant :

P = {y ∈ Rn : ∀k, 1 ≤ k ≤ n, yk ≥ 0} (1.1.9)

Then let i0 be an integer such that Qi0 is the first cube with center in P containing x. Then
if we consider the cube of center x and radius ri, its intersection with P is contained in Qi.

Now, let Qj be another cube with center in P and containing x. Necessarily, j > i so xj /∈ Qi.
Then rj > ri since Qj contains the origin 0. But we also have rj < 2ri. Moreover, 1

3Qk∩
1
3Qj = ∅

whenever k 6= j. Notice that the region of P with |y|∞ ≤ 2ri is a cube of radius ri. Then, the
following lemma gives us the desired upper bound on the number of cubes.

Lemma 1.1. Let Q be a cube of radius r. Q a collection of disjoint cubes with center in Q and
radius greater than δr, with δ > 0.

Then the cardinal of Q is bounded by a constant depending only on the dimension n and the
parameter δ.

Proof. We have : ⋃
k

Qk ⊆ (1 + δ)Q

Then since the cubes are disjoints, taking the lebesgue measure of those sets we get :

δn#Q ≤ (1 + δ)n

Thus #Q ≤ (1 + 1/δ)n.

We apply the lemma to the 1
3Qk with center in P .

Then x is in at most 4n cubes in each of the 2n quadrants. Thus :∑
k≥1

1Qk ≤ 8n (1.1.10)

1.1.2 Whitney decomposition
Theorem 1.2. [8] Let F be a non empty, proper closed subset of Rn. Ω = F c. Then there’s a
sequence of cubes Q = {Qk} such that :

1. Ω =
⋃
kQk

2. Qk ∩Ql = ∅ if k 6= l.

3. There exists constants c1, c2 such that : c1diam(Qk) ≤ d(Qk, F ) ≤ c2diam(Qk).
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Proof. We letMk be the collection of dyadic cubes of length 2−k.

Ωk =
{
x ∈ Ω : c2−k < d(x, F ) ≤ c2−k+1

}
(1.1.11)

Where c is a positive constant to be fixed later. We have Ω =
⋃
k Ωk. We take an initial collection

of cube :

Q0 =
⋃
k

{Q ∈Mk : Q ∩ Ωk 6= ∅} (1.1.12)

We take a cube Q ∈ Q0, let k be such that Q ∈Mk. Then there is a x ∈ Q ∩ Ωk and so :

d(Q,F ) ≤ c2−k+1 (1.1.13)

Take x ∈ Q ∩ Ωk, y ∈ Q, z ∈ F . We have

d(y, z) ≥ d(x, z)− d(x, y) (1.1.14)

This holds for all z ∈ F , and all y ∈ Q, thus

d(Q,F ) ≥ d(x, F )− diam(Q) > c2−k − diam(Q) (1.1.15)

Then :

c2−k − diam(Q) < d(Q,F ) ≤ c2−k+1 (1.1.16)

Since diam(Q) =
√
n2−k, if we take c = 2

√
n, then

diam(Q) < d(Q,F ) ≤ 4 diam(Q) (1.1.17)

Thus all the cubes in Q0 satisfies the third condition with constants c1 = 1, c2 = 4. But the
second condition is not satisfied.

For a cube Q ∈ Q0, let Q′ ∈ Q0 such that Q ⊆ Q′. Then by 1.1.17 diam(Q′) < 4 diam(Q).
Thus there exists a maximal dyadic cube in Q0 containing Q.

Thus Q, the subset of Q0 comprised of maximal dyadic cubes satisfying 1.1.17, satifies all
three conditions.

Remark 1.1. Taking c = (1 + δ)
√
n, with δ > 0, we can get

δdiam(Q) < d(Q,F ) < 2(1 + δ)diam(Q) (1.1.18)

1.2 Interpolation
Definition 1.5. An operator T is quasilinear if there exist κ > 0 such that, whenever Tf1 and
Tf2 are defined, so is T (f1 + f2) and :

|T (f1 + f2)| ≤ κ (|Tf1|+ |Tf2|) (1.2.1)

We let (X,µ) and (Y, ν) be measure spaces. f a measurable function defined over X, T and
operator such that Tf is defined over Y .

We let :

µf (λ) = µ{x ∈ X : |f(x)| > λ}, νh(λ) = ν{y ∈ Y : |h(y)| > λ} (1.2.2)
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Definition 1.6. Let 1 ≤ r, s ≤ ∞. An operator T is of type (r, s) or of strong type (r, s) if Tf
is defined in Lr(µ) and if :

‖Tf‖Ls(ν) ≤M‖f‖Lr(µ) (1.2.3)

The least M such that the estimate holds is the (r, s) norm of T .
For s <∞, T is of weak type (r, s), if :

νTf (λ) ≤
(
M

λ
‖f‖r

)s
(1.2.4)

The least M such that the estimate holds is the weak (r, s) norm of T .
If s =∞, weak type (r, s) is defined as equivalent to strong type (r, s).

Proposition 1.1. Let f be a measurable function. Then :
ˆ
X

|f(x)|p dµ(x) =

ˆ ∞
0

pλp−1µf (λ) dλ (1.2.5)

Theorem 1.3 (Marcinkiewicz). [9] 1 ≤ p1, q1, p2, q2 ≤ ∞, with pi ≤ qi and q1 6= q2. Let T be
a quasilinear operator that is simultaneously of weak types (p1, q1) and (p2, q2), with norms M1

and M2 respectively. Then for any (p, q) with :

1

p
=

1− θ
p1

+
θ

p2
,

1

q
=

1− θ
q1

+
θ

q2
; θ ∈ (0, 1) (1.2.6)

T is of strong type (p, q) and we have :

‖Tf‖q ≤ KM1−θ
1 Mθ

2 ‖f‖p (1.2.7)

Where K = K(θ, κ, p1, q1, p2, q2) is independant of f , and stays bounded if p1, q1, p2, q2 are
fixed and θ stays away from 0 and 1.

Proof. We can suppose without loss of generality that p2 ≥ p1.
Let f ∈ Lp(X,µ), f = f ′ + f ′′ with f ′(x) = f(x) if |f(x)| < 1 and f ′(x) = 0 if |f(x)| > 1.

Then f ′ ∈ Lp2 and f ′′ ∈ Lp1 . thus Tf ′ and Tf ′′ exists, by hypothesis, and then so does
Tf = T (f ′ + f ′′).

We first consider the case when q1, q2 <∞.

‖Tf‖qLq(ν) =

ˆ ∞
0

qλq−1νTf (λ) dλ = (2κ)q
ˆ ∞

0

qλq−1νTf (2κλ) dλ (1.2.8)

Now let z > 0, f = f1 + f2, with :

f1(x) =

{
f(x) if |f(x)| ≤ z
ei arg fz if |f(x)| > z

(1.2.9)

We have

|f1| = min(|f |, z), |f | = |f1|+ |f2| (1.2.10)

We write µi = µfi and νi = νTfi . We have :
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νTf (2κλ) ≤ ν1(λ) + ν2(λ)

≤
(
M1

λ
‖f1‖p1

)q1
+

(
M2

λ
‖f2‖p2

)q2
By (1.2.10), we have :

µ1(λ) =

{
µf (λ) if λ ≤ z
0 if λ > z

, µ2(λ) = µf (λ+ z) (1.2.11)

Thus

‖f1‖p1p1 =

ˆ z

0

p1t
p1−1µf (t) dt, ‖f2‖p2p2 =

ˆ ∞
z

p2(t− z)p2−1µf (t) dt

Then the integral in (1.2.8) is bounded by :

Mq1
1 pk11

ˆ ∞
0

λq−q1−1

(ˆ z

0

tp1−1µf (t) dt

)k1
dλ

+Mq2
2 pk22

ˆ ∞
0

λq−q2−1

(ˆ ∞
z

tp2−1µf (t) dt

)k2
dλ (1.2.12)

With ki = qi
pi
≥ 1. The idea is then to take for z a monotone function of λ and then choose

the right parameters. We note P the first integral in (1.2.12), Q the second. We have :

P
1
k1 = sup

χ

ˆ ∞
0

λq−q1−1

ˆ z(λ)

0

tp1−1µf (t) dt χ(λ) dλ

Q
1
k2 = sup

ω

ˆ ∞
0

λq−q2−1

ˆ ∞
z(λ)

(t− z)p2−1µf (t) dt ω(λ) dλ

(1.2.13)

Where χ and ω are taken among nonegative, measurable functions satisfying respectively :

ˆ ∞
0

χ(λ)k
′
1λq−q1−1 dλ ≤ 1

ˆ ∞
0

ω(λ)k
′
2λq−q2−1 dλ ≤ 1

(1.2.14)

Indeed, by Hölder’s inequality, P
1
k1 is larger than the integral inside the supremum for all

such χ. There’s equality if and only if :

χ(λ)k
′
1 = c

(ˆ z

0

tp1−1µf (t) dt

)k1
,

ˆ ∞
0

χ(λ)k
′
1λq−q1−1 dλ = 1

And since c in the first equation is arbitrary, we can choose it so that the second is satisfied.
Now take p2 > p1 and q1 > q2. We let :

z =

(
λ

A

)ξ
(1.2.15)
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With A, ξ > 0 to be determined. We have

ˆ ∞
0

λq−q1−1

ˆ z

0

tp1−1µf (t) dtχ(λ) dλ =

ˆ ∞
0

tp1−1µf (t)

ˆ ∞
At

1
ξ

χ(λ)λq−q1−1 dλ dt

≤
ˆ ∞

0

tp1−1µf (t)

(ˆ ∞
At

1
ξ

λq−q1−1 dλ

) 1
k1

dt

≤
(
Aq−q1

q1 − q

) 1
k1
ˆ ∞

0

tp1−1− q−q1k1ξ µf (t) dt

(1.2.16)

Then :

P ≤ Aq−q1

q1 − q

(ˆ ∞
0

tp1−1− q−q1k1ξ µf (t) dt

)k1
(1.2.17)

We do for Q, and we get. The integral in the sup in (1.2.13) is :

ˆ ∞
0

(t− z)p2−1µf (t)

ˆ At
1
ξ

0

ω(λ)λq−q2−1 dλ dt

≤
ˆ ∞

0

tp2−1µf (t)

ˆ At
1
ξ

0

λq−q2−1 dλ


1
k2

dt

≤
(
Aq−q2

q − q2

) 1
k2
ˆ ∞

0

tp2−1− q−q2k2ξ µf (t) dt

(1.2.18)

And thus we have :

‖Tf‖qq ≤ (2κ)qq

(
Mq1

1 pk11

Aq−q1

q1 − q

(ˆ ∞
0

tp1−1− q−q1k1ξ µf (t) dt

)k1
+ Mq2

2 pk22

Aq−q2

q − q2

(ˆ ∞
0

tp2−1− q−q2k2ξ µf (t) dt

)k2)
(1.2.19)

Now we choose ξ so that the power of t in both integral is equal to p − 1. For it to be true
in the first integral, we need :

ξ =
(q − q1)p1

(p− p1)q1
=

1
q1
− 1

q
1
p1
− 1

p

1
p
1
q

But :

1

q1
=

1

1− θ

(
1

q
− θ

q2

)
, and

1

q1
− 1

q
=
−θ

1− θ

(
1

q2
− 1

q

)
The same holds for p, so we have :

ξ =

1
q2
− 1

q
1
p2
− 1

p

1
p
1
q
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And so we can write ξ the two following ways :

ξ =
p1(q − q1)

q1(p− p1)
=
p2(q − q2)

q2(p− p2)
(1.2.20)

But the term on the right is the one such that p2 − (q − q2)/k2ξ = p. And so we get :

‖Tf‖qq ≤ (2κ)qq

(
Mq1

1

(
p1

p

)k1 Aq−q1
q1 − q

‖f‖pk1p +Mq2
2

(
p2

p

)k2 Aq−q2
q − q2

‖f‖pk2p

)
(1.2.21)

Now we choose A so that in both terms of the sum, M1, M2 and ‖f‖p have the same power.
Or more precisely such that :

Aq−q1Mq1
1 ‖f‖pk1p = Aq−q2Mq2

2 ‖f‖pk2p

We get :

A = M
−q1
q2−q1

1 M
q2

q2−q1
2 ‖f‖

k2−k1
q2−q1
p

We now verify that we get the desired result when we plug this back in (1.2.21). For this,
note that :

q − q1

q2 − q1
=

q

q2

1
q1
− 1

q
1
q1
− 1

q2

=
θ

q2
q = 1− 1− θ

q1
q

Then we have :

q1 − q1
q − q1

q2 − q1
= (1− θ)q, q2

q − q1

q2 − q1
= θq

And :

pk1 + p(k2 − k1)
q − q1

q2 − q1
= p

(
k2 − q

1− θ
q1

(k2 − k1)

)
= p

(
q2

p2
− q

(
1

q
− θ

q2

)
q2

p2
+

1− θ
p1

q

)
= pq

(
θ

p2
+

1− θ
p1

)
= q

Thus we finally get :

‖Tf‖q ≤ (2κ)

((
p1

p

)k1 q

q1 − q
+

(
p2

p

)k2 q

q − q2

) 1
q

M1−θ
1 Mθ

2 ‖f‖p (1.2.22)

If q1 < q2, then, by taking z =
(
λ
A

)ξ
but with ξ < 0, we get in the same way (1.2.22), except

with q − q1 and q2 − q instead of q1 − q and q − q2.
The proofs of the cases q1 = q2 and q1 =∞ are similar.
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1.3 Maximal function
We define the Hardy-Littlewood maximal function by :

Mf(x) = sup
Q∈Q(x)

 
Q

|f(y)| dy (1.3.1)

Where Q(x) refers to the collection of all cubes of Rn containing x. We can also define the
centered maximal function where we instead take the cubes with center x. There are constants
c, C such that, for all real x :

cMcf(x) ≤Mf(x) ≤ CMcf(x) (1.3.2)

It is also possible to take the sups over balls rather than cubes. The resulting functions are
also equivalent to M .

We also define Md the dyadic maximal functions where the supremum is taken over dyadic
cubes containing x. The dyadic maximal function is interesting because of the following result :
if f ∈ L1 and λ > 0, then

{x ∈ Rn : Mdf(x) > λ} =
⋃
k

Qk

Where the Qk are maximal dyadic cubes such that
ffl
Qk
f(x) dx > λ.

We have, as a consequence of Theorems 1.1 and 1.3 :

Proposition 1.2. M is of type (p, p) for all p with 1 < p ≤ ∞, and of weak type (1,1).

M is clearly bounded on L∞, and the weak L1 estimate follows from the following slightly
more general result and the equivalence of centered and uncentered maximal functions :

Proposition 1.3. Let µ be a positive Borel measure. We let Mµ be the maximal function defined
by :

Mµf(x) = sup
Q∈Q(x)

1

µ(Q)

ˆ
Q

|f(x)| dµ(x)

With Q(x) being the collection of cubes with center x. Then there is a θn > 0 depending only
on the dimension n such that :

µ{x ∈ Rn : Mµf(x) > λ} ≤ θn
λ

ˆ
Rn

|f(x)| dµ(x) (1.3.3)

Proof. We let Eλ = {Mµf > λ}. Then for any x ∈ Eλ there is a cube with center x, such that :

1

µ(Qx)

ˆ
Qx

|f(x)| dµ(x) > λ

Thus by Theorem 1.1 there is a subsequences {Qk} of the {Qx : x ∈ Eλ}, and a constant θn
depending only on the dimension n, such that any point of Rn is in at most θn of the Qk, and
such that the Qk cover Eλ. Then :

µ(Eλ) ≤
∑
k

µ(Qk) ≤
∑
k

1

λ

ˆ
Qk

|f(x)| dµ(x) ≤ θn
λ

ˆ
Rn

|f(x)| dµ(x)

Which is what we wanted to show.
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1.4 Calderón-Zygmund decomposition
We let Q0 be a cube of Rn, and f ∈ L1(Q0). We define, for λ > 0,

Eλ = {x ∈ Q0 : Md,0f(x) > λ}

Md,0 refers to the dyadic maximal functions of Q0, where the supremum is taken over the
dyadic cubes of Q0, i.e. if we have :

Q0 =

n∏
i=1

[xi, xi + l)

Then the dyadic cubes of Q0 are those cubes Q of the form :

Q =

n∏
i=1

[
xi +

ki
2m

l, xi +
ki + 1

2m
l

)
Where k1, . . . , kn,m are non-negative integers with 0 ≤ ki < 2m, 1 ≤ i ≤ n.
Now we let :

λ0 =

 
Q0

|f(x)| dx

Then, for λ > λ0, Eλ =
⋃
kQk, with Qk maximal dyadic such that

ffl
Qk
|f(x)| dx > λ. Then

Qk ( Q0 and so, with Q∗k being the dyadic parent of Qk :

λ ≤
 
Qk

|f(x)| dx ≤ 2n
 
Q∗k

|f(x)| dx ≤ 2nλ (1.4.1)

Now if κ > 1, then Eκλ ∩ Qk =
⋃
lQk,l, with Qk,l maximal dyadic cube in Qk such thatffl

Qk,l
|f(x)| dx > κλ, and we have :

κλ ≤
 
Qk,l

|f(x)| dx ≤ 2nκλ (1.4.2)

Indeed, either Qk,l ( Qk and we do as previously, or Qk,l = Qk and then we use (1.4.1) and
λ ≤ κλ. To summarize :

Proposition 1.4. With the same notations, we have :

Eλ =
⋃
k

Qk, Eκλ =
⋃
k,l

Qk,l

With Qk,l ⊂ Qk for all k, l, Qk ∩Qk′ = ∅ if k 6= k′ and Qk,l ∩Qk,l′ = ∅ if l 6= l′. Moreover :

λ ≤
 
Qk

|f(x)| dx ≤ 2nλ (1.4.3)

κλ ≤
 
Qk,l

|f(x)| dx ≤ 2nκλ (1.4.4)

12



1.5 Weights
In all that follows, w is a locally integrable positive function, and dµ = w(x)dx

Definition 1.7. Let 1 < p < ∞. We says that w satisfies the Ap condition, or that w ∈ Ap if,
there exists a constant Cp such that for all cubes Q ⊂ Rn, we have :

 
Q

w

( 
Q

w−
1
p−1

)p−1

≤ Cp (1.5.1)

If p = 1 we says that w ∈ A1 if, there is a constant C such that for all cubes Q ⊂ Rn :
 
Q

w ≤ ess inf
Q

w (1.5.2)

We also define A∞ to be the union of the Ap :

A∞ =
⋃
p≥1

Ap (1.5.3)

Proposition 1.5. Let 1 ≤ p < ∞, then w ∈ Ap if and only if the Hardy Littlewood maximal
function M is of weak type (p, p) for the measure µ.

Proof. First if p > 1. Suppose that the maximal function is of weak type (p, p) Then for λ > 0,
f ∈ Lp(µ), we have :

µ{Mf(x) > λ} ≤ C 1

λp

ˆ
Rn

|f(x)|p w(x)dx

Let Q be a cube of Rn, and λ =
ffl
Q
|f(x)| dx. Then for all x ∈ Q and for ε > 0, we have

Mf(x) > λ− ε. If f is not 0 almost everywhere on Q, then for ε small enough, then λ− ε > 0
and :

µ(Q) ≤ C 1

(λ− ε)p

ˆ
Rn

|f(x)|p w(x)dx

This for all ε with λ > ε > 0, thus, using the given value of λ :( 
Q

|f(x)| dx

)p
≤ C 1

µ(Q)

ˆ
Rn

|f(x)|p w(x)dx (1.5.4)

Taking f = (ε+w)−
1
p−11Q for ε > 0, f ∈ Lp, and so applying (1.5.4) and taking ε→ 0 with

the monotone convergence theorem, we get :
 
Q

w

( 
Q

w−
1
p−1

)p
≤ C

ˆ
Q

w−
1
p−1

Now conversely, if (1.5.1) is true. First we will shows that (1.5.4) holds. Indeed, let Q ⊂ Rn

and f ∈ Lp(Q, µ). Then by Hölder’s inequality :

 
Q

|f(x)| dx ≤
(

1

m(Q)

ˆ
Rn

|f(x)|p w(x)dx

) 1
p
( 

Q

w(x)−
p′
p

) 1
p′

But p′/p = 1/(p− 1), and so by (1.5.1), we have :
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Q

|f(x)| dx ≤
(

1

m(Q)

ˆ
Rn

|f(x)|p w(x)dx

) 1
p
(
m(Q)

µ(Q)

) 1
p

Which reduces to (1.5.4).
Now, take :

Mµf(x) = sup
Q∈Q(x)

1

µ(Q)

ˆ
Q

|f(y)| w(x)dx (1.5.5)

Where Q(x) is the collection of all cubes with center x. Then by (1.5.4), Mf(x)p ≤Mµf(x).
But Mµ is of weak type (1, 1) for µ, so M is of weak type (p, p) for µ.

Now suppose that p = 1, and M is of weak type (1, 1). Then by (1.5.4) :
 
Q

w ≤ C 1´
Q
|f | dx

ˆ
Rn

|f | dµ

Let x ∈ Q, and ε > 0 such that B(x, ε) ⊂ Q, where B(x, ε) refers to the euclidian ball of
center x and with radius ε. Then taking f = 1B(x,ε), we have

 
Q

w ≤ C
 
B(x,ε)

w(x)dx

Then by Lebesgue’s differentiation theorem, for almost every x ∈ Q,
 
Q

w ≤ Cw(x)

And so w is an A1 weight. Conversely, if w ∈ A1, then :

C

ˆ
Q

|f(x)| w(x)dx ≥
 
Q

w

ˆ
Q

|f(x)| dx = µ(Q)

 
|f(x)| dx

And so (1.5.4) holds, and we prove M is of weak type (1, 1) as when p > 1.

Corollary 1.1. Let 1 ≤ p ≤ q ≤ ∞, then Ap ⊂ Aq.

Proof. Let w ∈ Ap.
We will first prove L∞(dµ) = L∞(dx). This is equivalent to say that a set is negligible for

µ if and only if it is negligible for the Lebesgue measure. Naturally, since dµ = w(x)dx, then if
a set is negligble for the Lebesgue measure, it is negligible for µ. Moreover since w ∈ Ap, then
w−1/(p−1) is locally integrable and so is finite almost everywhere. Then w−1 is also finite almost
everywhere. dx = w(x)−1dµ, and so if a set is negligible for µ, it is negligible for the Lebesgue
measure.

Thus, for the measure µ, the maximal function is of weak type (p, p) and of type (∞,∞),
and by the Marcinkiewicz interpolation theorem, it is of type (q, q), and so w ∈ Aq

Proposition 1.6. Let w be in A∞. Then µ is a doubling measure. There is a constant C > 0
such that if Q is a cube in Rn, then

µ(2Q) ≤ Cµ(Q) (1.5.6)
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Proof. w ∈ A∞, then w ∈ Ap for some p > 1, and, in (1.5.4), taking f = 1κ−1Q, with κ > 1,
then :

κ−np =

(
m(κ−1Q)

m(Q)

)p
≤ Cµ(κ−1Q)

µ(Q)

And so, for κ > 1, and Q a cube of Rn :

µ(κQ) ≤ Cκnpµ(Q) (1.5.7)

And so µ is a doubling measure.

We also have the following characterizations of A∞ weight :

Proposition 1.7. A weight w is in A∞ if and only if one of the following equivalent condition
is satisfied :

1. There exist δ, ε ∈ (0, 1) such that, for all cubes Q ⊂ Rn and E ⊂ Q

(m(E) < δm(Q))⇒ (µ(E) < εµ(Q)) (1.5.8)

2. The weight w is a A∞ weight if and only if, there exist a r > 1, and a constant C such
that for all cubes Q ⊂ Rn,

( 
Q

wr
) 1
r

≤ c
 
Q

w (1.5.9)

3. A weight w is in A∞ if and only if, for all ε > 0, there exists δ > 0 such that, for every
cube Q ⊂ Rn and every E ⊂ Q

(m(E) < δm(Q))⇒ (µ(E) < εµ(Q)) (1.5.10)

The second property is called the Reverse-Hölder. We will only prove that the last property
follows from it. The same results are also true if we replace cubes with euclidian balls.

Proof. Indeed, we have, for f measurable, non-negative :

 
Q

f(x) w(x)dx ≤
( 

Q

f(x)r
′

dx

) 1
r′
( 

Q

w(x)r dx

) 1
r

≤ c
( 

Q

f(x)r
′

dx

) 1
r′
 
Q

w(x)dx

Taking f = 1E , we then have :

µ(E) ≤ c
(
m(E)

m(Q)

) 1
r′

µ(Q) ≤ cδ 1
r′ µ(Q)

Then for δ =
(
ε
c

)r′ , (1.5.10) holds.
Another consequence of reverse Hölder is the following theorem :

Theorem 1.4 (Muckhenhoupt). Let w be an Ap weight, for 1 < p < ∞. Then, there is some
ε > 0 such that w ∈ Ap−ε.
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1.6 Spectral Analysis

1.6.1 Operators on Hilbert space
We let H be a Hilbert space, and T a linear operator on H with domain D(T ). We will be
interested in operators for which D(T ) is a dense subspace of H. The graph of T is the set
Γ(T ) = {(ψ, Tψ) ; ψ ∈ D(T )}. T is closed if its graph is a closed subspace of H ×H.

An operator on H T ′ is an extension of T if Γ(T ) ⊂ Γ(T ′). T is closable if it has a closed
extension. We write T ⊂ T ′ to say that T ′ is an extension of T . Every closable operator T has
a smallest closed extension, called its closure, and denoted by T .

We denote by I : H → H the identity operator Iφ = φ.

Definition 1.8. Let T be a densely defined linear operator on H. Define D(T ∗) by :

D(T ∗) = {φ ∈ H; ∃η ∈ H,∀ψ ∈ D(T ), 〈Tψ, φ〉 = 〈ψ, η〉} (1.6.1)

When D(T ) is dense, then η is uniquely determined, and we define, for any φ ∈ D(T ∗),
T ∗φ = η. By the Riesz lemma, φ ∈ D(T ∗) if and only if |〈Tψ, φ〉| ≤ C‖ψ‖ for all ψ ∈ D(T ).

T ∗ is called the adjoint of T .

Theorem 1.5. Let T be a densely defined operator on a Hilbert space H, then :

1. T ∗ is closed.

2. T is closable if and only if D(T ∗) is dense. If so, then T = T ∗∗

3. If T is closable then T
∗

= T ∗.

Definition 1.9. A densely defined operator T is called symmetric if T ⊂ T ∗. Equivalently, T
is symmetric if and only if :

∀φ, ψ ∈ D(T ), 〈Tφ, ψ〉 = 〈φ, Tψ〉 (1.6.2)

T is called self-adjoint if T = T ∗, i.e. if and only if T is symmetric and D(T ) = D(T ∗).
A symmetric operator T is essentially self-adjoint if its closure is self-adjoint.

Theorem 1.6 (Basic criterion for self-adjointness). Let T be a symmetric operator on H. The
following statements are equivalent :

1. T is self-adjoint.

2. T is closed and Ker(T ∗ ± i) = {0}.

3. Ran(T ± i) = H

Where Ker(T ) = {φ ∈ D(T ); Tφ = 0} and Ran(T ) = {Tφ; φ ∈ D(T )}.

Corollary 1.2. Let T be a symmetric operator on H. The following statements are equivalent :

1. T is essentially self-adjoint.

2. Ker(T ∗ ± i) = {0}.

3. Ran(T ± i) are dense.
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1.6.2 The spectral theorem
Let T be a closed operator on a Hilbert space H. The resolvent set of T is the subset of the
λ ∈ C such that λI − T is a bijection of D(T ) onto H with a bounded inverse. If λ ∈ ρ(T ), then
Rλ(T ) = (λI − T )−1 is called the resolvent of T at λ.

The spectrum σ(T ) is the complement of the resolvent. The point spectrum of T is the set
of eigenvalues of T , i.e. the λ such that Ker(λI − T ) 6= {0}. The discrete spectrum σdisc(A)
is the set of eigenvalues of T of finite multiplicity, which are isolated points of the spectrum.
The essential spectrum σess(A) is the complement of the discrete spectrum. In other words, it
contains the element of the spectrum which are not eigenvalues, as well as eigenvalues of infinite
multiplicities and limites points of the point spectrum.

The spectrum is a closed subset of the complex plane. If T is bounded, then it is a compact
set. If T is symmetric, then σ(T ) ⊂ R.

Theorem 1.7 (Spectral theorem, multiplication operator form). [5] Let A be a self-adjoint
operator on a separable Hilbert space H with domain D(A). Then there is a measure space
(M,µ), with µ a finite measure, an unitary operator U : H → L2(M, dµ), and a real-valued
function a : M → R, which is finite almost everywhere, such that :

1. ψ ∈ D(A) if and only if a(·)(Uψ)(·) ∈ L2(M,dµ).

2. If φ ∈ U(D(A)), then (UAU−1φ)(x) = a(x)φ(x).

Idea of the proof. We first prove the spectral theorem for bounded self-adjoint operators. Using
the basic criterion of self-adjointness, we can show that (A ± i)−1 are bounded operators, and
use the spectral theorem for them.

One of the interest of the spectral theorem is that it allow us to define functional calculus
on self-adjoint operators. If h is a bounded Borel function on R we define h(A) = U−1Th(a)U ,
where Tm is the operator on L2 defined by Tmψ(x) = m(x)ψ(x). In this way we get :

Theorem 1.8 (Spectral theorem, functional calculus form). Let A be a self-adjoint operator on
H. Then there is a unique map Φ from the bounded Borel functions on R into the bounded linear
operators on H so that :

1. Φ is an algebraic *-homomorphism, i.e. it is an algebra homomorphism and Φ
(
f̂
)

= Φ(f)∗.

2. Φ is norm-continuous, that is ‖Φ(h)‖L(H) ≤ ‖h‖∞.

3. Let hn be a sequence of bounded Borel functions with hn(x)→ x for each x and |hn(x)| ≤ |x|
for all x and n. Then, for any ψ ∈ D(A), limn→∞Φ(hn)ψ = Aψ.

4. If hn(x) → h(x) pointwise and if the sequence ‖hn‖∞ is bounded, then Φ(hn) → Φ(h)
strongly, i.e. for all ψ, ‖Φ(hn)ψ − Φ(h)ψ‖ → 0.

5. If Aψ = λψ, then Φ(h)ψ = h(λ)ψ.

6. If h ≥ 0, then Φ(h) ≥ 0.

Example 1.1. If we take the Fourier transform F for the operator A = −∆ on L2(Rn), with
domain D(A) = {ψ ∈ L2; ∆ψ ∈ L2}, then we have F(−∆ψ)(ξ) = 4π2|ξ|2Fψ(ξ). We have
M = Rn, dµ = dx, U = F , a(ξ) = 4π2|ξ|2. Though in this case, µ isn’t a finite measure.

We can now define h(−∆) by F(h(−∆)ψ)(ξ) = h
(
4π2|ξ|2

)
Fψ(ξ).
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This representation also let us study the spectrum of −∆. λ is in the resolvent set if and only
if there is a constant c > 0 such that, for almost every ξ ∈ Rn,

∣∣4π2|ξ|2 − λ
∣∣ ≥ c. This happen

if and only if λ is not a non-negative real number. Thus σ(−∆) = [0,+∞). Since the spectrum
has no isolated point, then σess(−∆) = σ(−∆) = [0,+∞).

The following criterion is useful to determine the spectrum of an operator :

Theorem 1.9 (Weyl’s criterion). Let A be a self-adjoint operator. Then λ ∈ σ(A) if and only
if there exists {ψn}∞n=1 in D(A) so that for all n ≥ 1, ‖ψn‖ = 1 and limn→∞ ‖(A − λ)ψn‖ = 0.
λ ∈ σess(A) if and only if the {ψn} can be chosen to be orthogonal.

Proposition 1.8. Let (M,µ) be a measure space, with µ a finite measure. Let a be a measurable,
real-valued function on M , which is finite almost everywhere. We define the operator A on
L2(M,µ) by D(A) =

{
ψ ∈ L2(M,µ); aψ ∈ L2(M,µ)

}
, and Aψ = aψ. Then A is self-adjoint

and its spectrum is the essential range of A :

σ(A) =
{
λ ∈ R; ∀ε > 0, µ

(
a−1(λ− ε, λ+ ε

)
> 0
}

(1.6.3)

Proof. That A is symmetric is clear. Let ψ ∈ D(A∗), and χN = 1{|f(x)|≤N}. Then by the
monotone convergence theorem,

‖A∗ψ‖ = lim
N→∞

‖χNA∗ψ‖

= lim
N→∞

(
sup
‖φ‖=1

|〈φ, χNA∗ψ〉|

)

= lim
N→∞

(
sup
‖φ‖=1

|〈AχNφ, ψ〉|

)

= lim
N→∞

(
sup
‖φ‖=1

|〈φ, χNaψ〉|

)
= lim
N→∞

‖χNaψ‖

(1.6.4)

Thus aψ ∈ L2(M,µ), so ψ ∈ D(A), and A is self-adjoint.
Now, let λ ∈ R. (A−λ)ψ(x) = (a(x)−λ)ψ(x). λ ∈ ρ(A) if and only if (A−λ) has a bounded

inverse. When this inverse exist, then

(A− λ)−1φ(x) =
1

a(x)− λ
φ(x) (1.6.5)

And conversely, if the right hand side define a bounded operator on L2(M), then the inverse
of A − λ exists and is bounded. A multiplication operator on L2 is bounded if and only if the
multiplier is in L∞.

Thus λ is in the resolvent set of A if and only if (a − λ)−1 is essentially bounded. That is
equivalent to say that there is a constant C > 0 such that for almost every x ∈ M , we have
(a(x)− λ)−1 ≤ C, or equivalently, (a(x)− λ) ≥ 1/C > 0, i.e. there is a constant ε > 0 such that
µ
(
a−1(λ− ε, λ+ ε)

)
= 0.

And so λ is in the resolvent set if and only if λ is not in the essential range of A.

Proposition 1.9. Let A be a self-adjoint operator, then we have :

inf
‖ψ‖=1

〈Aψ, ψ〉 = inf σ(A) (1.6.6)
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Proof. By the spectral theorem, we can see A as a multiplication operator on a L2(M,µ) space
with µ a finite measure. Then 〈Aψ, ψ〉 =

´
M
a(x)|ψ(x)|2 dx ≥ ess infx a(x)‖ψ‖2 = ess infx a(x),

if ‖ψ‖ = 1.
Now assume ess infx a(x) = c ∈ R. Then for all ε > 0, there is a non-negligible set E on

which c ≤ a(x) < c+ ε. Taking ψ = 1
µ(E)1/2

1E , we have c ≤ 〈Aψ, ψ〉 ≤ (c+ ε)‖ψ‖2 = c+ ε. And
so :

inf
‖ψ‖=1

〈Aψ, ψ〉 = ess inf
x

a(x) = inf σ(A) (1.6.7)

If ess infx a(x) = −∞, then for all C > 0, the measure of the set E = {a(x) < −C} is
non-zero. Taking again ψ = 1

µ(E)1/2
1E , 〈Aψ, ψ〉 ≤ −C. Thus inf〈Aψ, ψ〉 = −∞.

1.6.3 Quadratic forms
Definition 1.10. A quadratic form is a map q : Q(q)×Q(q)→ C, where Q(q) is a dense linear
subspace of H called the form domain, such that q(·, ψ) is conjugate linear and q(φ, ·) is linear
for φ, ψ ∈ Q(q). If q(φ, ψ) = q(ψ, φ) we say that q is symmetric. If q(φ, φ) ≥ 0 for all φ ∈ Q(q),
q is called positive, and if q(φ, φ) ≥ −M‖φ‖2 for some M we say that q is semibounded.

Definition 1.11. Let q be a semibounded quadratic form, q(φ, φ) ≥ −M‖φ‖2. q is called closed
if Q(q) is complete under the norm :

‖φ‖+1 =
√
q(φ, φ) + (M + 1)‖φ‖2 (1.6.8)

If q is closed and D ⊆ Q(q) is dense in Q(q) in the ‖ · ‖+1 norm, then D is called a form
core for q.

The ‖ · ‖+1 norm comes from the inner product 〈ψ, φ〉+1 = q(ψ, φ) + (M + 1)〈ψ, φ〉.

Theorem 1.10. If q is a closed semibounded quadratic form, then q is the quadatic form of a
unique self-adjoint operator.

Theorem 1.11 (Friedrichs extension). [6] Let A be a positive symmetric operator, and let
q(φ, ψ) = 〈φ, Aψ〉 for φ, ψ ∈ D(A). Then q is a closable quadratic form and its closure q̂
is the quadratic form of a unique self adjoint operator Â. Â is a positive extension of A, and the
lowere bound of its spectrum is the lower bound of q. Further, Â is the only self-adjoint exten-
sion of A whose domain is contained in the form domain of q̂. Then q is a closable quadratic
form and its closure q̂ is the quadratic form of a unique self adjoint operator Â. Â is a positive
extension of A, and the lower bound of its spectrum is the lower bound of q. Further, Â is the
only self-adjoint extension of A whose domain is contained in the form domain of q̂.

Example 1.2. We define the Schrödinger operator H = −∆ − V , V ∈ L1
loc, with domain

D(H) =
{
ψ ∈ L2; ∆ψ ∈ L2, V ψ ∈ L2

}
. If H is densely defined and semibounded, then the

Friedrichs extension Ĥ exists.
The quadratic form 〈∇φ, ∇ψ〉+ 〈φ, V ψ〉 actually always is well defined at least on C∞c . If it

is semibounded, and if it is closable, then its closure is associated with a self-adjoint operator. It
allows us to give a sense to −∆− V even when its domain wouldn’t be dense.
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2. Fractional integrals
2.1 Riesz Potentials
In the following chapter, we define the Riesz Potentials Iα by :

Iαf(x) = cα,n

ˆ
Rn

f(y)

|x− y|n−α
dy, 0 < α < n (2.1.1)

Defining Kα by :

Kα(x) = cα,n|x|α−n (2.1.2)

Then :

Iαf = Kα ∗ f (2.1.3)

K is locally integrable, and bounded on {|x| > 1}, so Iα is well defined at least for f ∈ S(Rn).
We choose cα,n such that the following is true :

Proposition 2.1.
F(Kα)(ξ) = |2πξ|−α (2.1.4)

Where we use for the Fourier transform :

Ff(ξ) = f̂(ξ) =

ˆ
Rn

f(x)e−2iπx·ξ dx

Thus F (Iαf) (ξ) = |2πξ|−αFf(ξ) and, Iα = (−∆)
−α/2.

Proof. For t > 0 and x ∈ Rn, we define

gt(x) = e−4π2t|x|2 (2.1.5)

We have :

ĝt(ξ) =
1

(4tπ)n/2
e−
|ξ|2
4t

Notice that we have, for γ > 0 :

ˆ ∞
0

tγe−4π2t|x|2 dt

t
=

(
1

2π|x|

)2γ ˆ ∞
0

sγe−s
ds

s

=
Γ (γ)

(2π)
2γ

1

|x|2γ
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On the other hand, we have :(
1

2
√
π

)n ˆ ∞
0

tγ−
n
2 e−

|ξ|2
4t

dt

t
=

Γ
(
n
2 − γ

)
22γπn/2

1

|ξ|n−2γ

And we just need to justify that :

F
(ˆ ∞

0

gt(·)tγ
dt

t

)
(ξ) =

ˆ ∞
0

ĝt(ξ)t
γ dt

t
(2.1.6)

We let Gγ(x) refers to :

Gγ(x) =

ˆ ∞
0

gt(x)tγ
dt

t
= Cγ,n|x|−2γ

For γ < n/2, Gγ ∈ L1 +L∞, and so Gγ is a tempered distribution and its Fourier transform
is well defined. We let

Gγ,N (x) =

ˆ N

1
N

gt(x)tγ
dt

t

Then for φ ∈ S(Rn) :

〈Gγ,N , φ〉 =

ˆ
Rn

ˆ N

1/N

gt(x)tγφ(x)
dt

t
(2.1.7)

We have |Gγ,N (x)φ(x)| ≤ Gγ(x)φ(x) which is integrable since Gγ ∈ L1 +L∞ and φ is rapidly
decreasing, so Gγ,N → Gγ in the sense of tempered distributions, and so FGγ,N → FGγ in the
sense of tempered distributions.

〈FGγ,N , φ〉 =

ˆ
Rn

ˆ
Rn

(ˆ N

1/N

gt(x)tγ
dt

t

)
φ(ξ)e−2iπx·ξ dξ dx

=

ˆ
Rn

φ(ξ)

ˆ N

1/N

tγ
ˆ
Rn

gt(x)e−2iπx·ξ dx
dt

t
dξ

=

ˆ
Rn

φ(ξ)

ˆ N

1/N

ĝt(ξ)t
γ dt

t
dξ

(2.1.8)

The changes in order of integration is justified as Gγ,N is integrable as we have :

|Gγ,N (x)| ≤ Nγ+1

(
N − 1

N

)
e−4π2|x|2/N

And (t, x) 7→ gt(x)tγ−1e−2iπx·ξ is integrable on (1/N,N)×Rn.
And so :

FGγ,N (ξ) =

ˆ N

1/N

ĝt(ξ)t
γ dt

t
→

ˆ ∞
0

ĝt(ξ)t
γ dt

t
(2.1.9)

Then for γ = n−α
2

F

(
Γ
(
n−α

2

)
Γ
(
α
2

) 1

2απn/2
|x|−(n−α)

)
= |2πξ|−α (2.1.10)
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Theorem 2.1 (Hardy-Littlewood-Sobolev). Let α ∈ (0, n), p ∈ (1, n/α). Let 1
q = 1

p −
α
n , i.e.

q = np/(n− pα). Then

‖Iαf‖Lq ≤ C(n, p, α)‖f‖Lp (2.1.11)

For p = 1, we instead have the following, for 1
q = 1− α

n :

m{x ∈ Rn : |Iαf(x)| > λ} ≤ C(n, α)

(
‖f‖L1

λ

)q
(2.1.12)

In the following, we will take Iαf(x) =
´
Rn f(y)|x − y|α−n dy, since the constant does not

meaningfully impact the results.

Proof. For K(x) = |x|α−n, we let K = K1 +K∞, with :

K1(x) =

{
K(x) x ≤ µ
0 x > µ

K∞(x) =

{
0 x ≤ µ
K(x) x > µ

Where µ > 0 is a constant. Then K1 ∈ L1, thus, for all f ∈ Lp, K1 ∗ f ∈ Lp. Meanwhile,
K∞ ∈ Lp

′
. Indeed, if p > 1, we have 1

p >
α
n , thus

1
p′ < 1− α

n , i.e. p
′(n− α) > n and K∞(x)p

′
is

integrable. Thus, for all f ∈ Lp, K∞ ∗ f ∈ L∞. If p = 1, then K2 ∈ L∞ is obvious.
And so Iαf is defined for all f ∈ Lp, 1 ≤ p < n

α .
We will prove that the following weak type estimate holds for all 1 < p < n

α :

m{x ∈ Rn : |Iαf(x)| > λ} ≤ Cn,α,p
(
‖f‖p
λ

)q
(2.1.13)

It is sufficient to show that (2.1.13) for ‖f‖p = 1. Then just apply it to f
‖f‖p with λ

‖f‖p . It is
also sufficient to prove that (2.1.13) holds but for {|Iαf | > 2λ} instead.

Then we estimate :

m{|K1 ∗ f | > λ} ≤
‖K1 ∗ f‖pp

λp
≤ ‖K1‖p1

λp
= c1

(
µα

λ

)p
Since :

‖K1‖1 = c

ˆ µ

0

rα−1 dr = c1µ
α

But we also have :

‖K∞ ∗ f‖∞ ≤ ‖K∞‖p′ = c2µ
−nq

Since :

‖K∞‖p′ = c

(ˆ ∞
µ

r(α−n)p′+n−1 dr

) 1
p′

= c2µ
α−n+ n

p′ = c2µ
−nq

Then take µ such that c2µ−
n
q = λ, i.e. µ = c3λ

− q
n . Then ‖K∞ ∗ f‖∞ ≤ λ and so, since

αpq
n = q − p :
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m{|Iαf | > 2λ} ≤ m{|K1 ∗ f | > λ} ≤ c4λ−( qpαn +p) = c4

(
‖f‖p
λ

)q

2.2 Weighted estimates
We now search for the locally integrable functions V such that we have a weighted equivalent to
the Hardy-Littlewood Sobolev inequality. Specifically, we want to have :

‖Iαf(x)V (x)‖q ≤ C‖Iαf(x)V (x)‖p (2.2.1)

B. Muckenhoupt and R.L. Wheeden established in [4] that this inequality holds if and only
V is such that there exist a constant c > 0, such that for all cubes Q ⊂ Rn, we have :( 

Q

V (x)q dx

) 1
q
( 

Q

V (x)−p
′

dx

) 1
p′

≤ c (2.2.2)

This is equivalent to V q ∈ Ar with r = 1 + q
p′ .

In order to establish those estimates, we will use the following fractional maximal function :

Mαf(x) = sup
r>0

m(Q)−1+α
n

ˆ
Q(x,r)

|f(y)| dy (2.2.3)

Where Q(x, r) is the cube of center x and radius r.

2.2.1 Estimates on Mαf

In the following, for λ > 0 we let

Eλ = {x ∈ Rn : Mαf(x) > λ} (2.2.4)

We first show the following weak-type estimate :

Theorem 2.2. Let 0 < α < n, 1 < p < n
α , and

1
q = 1

p −
α
n . Let V be a locally integrable and

non-negative function satisfying (2.2.2). Then, there is a constant C(n, α, p, V ), independant of
f , such that, for all λ > 0 :(ˆ

Eλ

V (x)q dx

) 1
q

≤ C(n, α, p, V )

λ

(ˆ
Rn

|f(x)V (x)|p dx

) 1
p

(2.2.5)

Proof. Let R > 0, we let Eλ,R = Eλ ∩ {|x| < R}. By definition, for each x ∈ Eλ,R, there is a
cube Qx with center x such that :

m(Qx)−1+α/n

ˆ
Qx

|f(y)| dy > λ

Then using Theorem 1.1, we extract a subsequence of cubes {Qk}k such that any point of
Rn is in at most θn of the cubes. Then since p/q ≤ 1 we have
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(ˆ
Eλ,R

V (x)q dx

) p
q

≤

(∑
k

ˆ
Qk

V (x)q dx

) p
q

≤
∑
k

(ˆ
Qk

V (x)q dx

) p
q

(2.2.6)

Moreover we have, for all k :

λ < m(Qk)−1+α/n

ˆ
Qk

|f(x)| dx (2.2.7)

So that :

(ˆ
Eλ,R

V (x)q dx

) p
q

≤
∑
k

(
m(Qk)−1+α/n

λ

ˆ
Qk

|f(x)| dx

(ˆ
Qk

V (x)q dx

) 1
q

)p
By Hölder, we have :

ˆ
Qk

|f(x)| dx ≤
(ˆ

Qk

|f(x)V (x)|p dx

) 1
p
(ˆ

Qk

V (x)−p
′

dx

) 1
p′

And finally, since 1/p′ + 1/q = 1− α/n, using (2.2.2) :(ˆ
Eλ,R

V (x)q dx

) p
q

≤
∑
k

( c
λ

)p ˆ
Qk

|f(x)V (x)|p dx

And so, since no x ∈ Rn is in more than θn of the cubes Qk, we get :(ˆ
Eλ,R

V (x)q dx

) 1
q

≤ cθ1/p
n

1

λ

(ˆ
Rn

|f(x)V (x)|p dx

) 1
p

(2.2.8)

This, for all R > 0, and so taking R→∞, we get (2.2.5).

We can now use Theorem 2.2 to prove the following norm inequality :

Theorem 2.3. Let 0 < α < n, 1 < p < n
α ,

1
q = 1

p −
α
n . V a locally integrable and non-negative

function satisfying (2.2.2). Then there is a constant C independant of f such that :(ˆ
Rn

|Mαf(x)V (x)|q dx

) 1
q

≤ C
(ˆ

Rn

|f(x)V (x)|p dx

) 1
p

(2.2.9)

Proof. w = V q satisfies Ar, for r = 1 + q
p′ . Thus, there is a r1 with 1 < r1 < r such that w

satisfies Ar1 . r1 = 1 + q1
p′1
, 1 < p1 < p, and 1

q1
= 1

p1
− α

n .
Indeed, let p1, q1 be defined as such, we simply need to check 1 < p1 < p. Notice that p1 < p

if and only if q1 < q. But q1(1− 1/p1) < q(1− 1/p), but then rewriting p, p1 in term of q, q1, we
get q1 < q. p1 > 1 simply because otherwise, we would have r1 ≤ 1.

Thus, by Theorem 2.2, letting dµ = w(x)dx, we have :
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µ{x ∈ Rn : Mαf(x) > λ} ≤ C

λq1

(ˆ
Rn

|f(x)V (x)|p dx

) q1
p1

We define a sublinear operator T by :

Tg(x) = Mα

(
g(x)w(x)

α
n

)
(2.2.10)

And we let g(x) be such that f(x) = g(x)w(x)α/n. Then :

µ{x ∈ Rn : Tg(x) > λ} ≤ C

λq

(ˆ
Rn

|g(x)|p1w(x) dx

) q1
p1

(2.2.11)

And so, for the measure µ, T is of weak type (p1, q1)
In the same way, w ∈ Ar2 with r < r2, r2 = 1 + q2

p′2
, p < p2 <

n
α , and T is of weak type

(p2, q2). Since we have 1
qi

= 1
pi
− α

n ,
1
q = 1

p −
α
n . For the θ ∈ (0, 1) such that 1

p = 1−θ
p1

+ θ
p2
, we

have 1
q = 1−θ

q1
+ θ

q2
.

Then by the Marcinciewicz interpolation theorem, T is of strong type (p, q) for the measure
µ. That is to say :(ˆ

Rn

∣∣Mα

(
gw

α
n

)
(x)
∣∣q w(x)dx

) 1
q

≤ C
(ˆ

Rn

|g(x)|p w(x)dx

) 1
p

(2.2.12)

Then for g(x) = f(x)w(x)
−α
n we get, since −αpn = p

q − 1 we get (2.2.9).

2.2.2 Comparison of Iαf and Mαf

Theorem 2.4. Let 0 < α < n, w be an A∞ weight and 0 < q < ∞. Then there is a constant
C, independant of f , such that we have :

ˆ
Rn

|Iαf(x)|q w(x)dx ≤ C
ˆ
Rn

|Mαf(x)|q w(x)dx (2.2.13)

As well as :

sup
λ>0

λqµ{x ∈ Rn : |Iαf(x)| > λ} ≤ C sup
λ>0

λqµ{x ∈ Rn : |Mαf(x)| > λ} (2.2.14)

Lemma 2.1. There exist positive constants C,K, such that, if λ > 0, γ > 0 and κ > K, and if
f ≥ 0 and Q is a cube such that there is a x ∈ Q with Iαf(x) ≤ λ, then :

m{x ∈ Q : Iαf(x) > κλ, Mαf(x) ≤ γλ} ≤ C
(γ
κ

) n
n−α

m(Q) (2.2.15)

Proof. We let g = f12Q, h = f − g. By Theorem 2.1 :

m

{
x ∈ Rn : |Iαg(x)| > κλ

2

}
≤ C

(
1

κλ

ˆ
Rn

|g(x)| dx

) n
n−α

Let t ∈ Q be such thatMαf(t) ≤ γλ. If there’s no such t, then the lemma is trivial. Let P be
the cube of center t, with sides parallel to the axes and three time as long as Q. Then 2Q ⊂ P
and :
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ˆ
Rn

|g(x)| dx ≤
ˆ
P

|f(x)| dx ≤ m(P )1−αnMαf(t) ≤ γλm(3Q)1−αn

Then :

m

{
x ∈ Rn : |Iαg(x)| > κλ

2

}
≤ C

(γ
κ

) n
n−α

m(3Q) (2.2.16)

Now let s ∈ Q such that Iαf(s) ≤ λ. Then there is a L ≥ 1, depending only on n such that
if y /∈ 2Q and x ∈ Q,

|s− y| ≤ L|x− y|

Indeed, |s − y| ≤ |s − x| + |x − y|. But x ∈ Q, y /∈ 2Q, so |x − y| ≥ d (Q, (2Q)c). But this
distance is exactly the radius of Q, and diam(Q) ≤ 2

√
nrQ. Thus :

|s− y| ≤
(
1 + 2

√
n
)
|x− y|

Iαh(x) ≤ Ln−α
ˆ
Rn\2Q

f(y)

|s− y|n−α
dy ≤ Ln−αIαf(s) ≤ Ln−αλ (2.2.17)

Then take K = 2Ln−α. If κ ≥ K, then we have Iαh(x) ≤ κλ
2 . We thus have :

{x ∈ Q : Iαf(x) > κλ} ⊂
{
x ∈ Q : Iαg(x) >

κλ

2

}
Then either there is a t ∈ Q with Iαf(t) ≤ γλ and we can apply (2.2.16), or there isn’t and

the measure of the set we’re trying to estimate is zero. In both case, (2.2.15) holds.

proof of the theorem. Let f be locally integrable. We can assume f ≥ 0 : replacing f by |f |,
we only increase the left sides of (2.2.13) and (2.2.14). We first take f with compact support.
{Iαf > λ} is an open set.

Indeed, if f is essentially bounded and with compact support K, then :

|Iαf(x)− Iαf(z)| ≤ ‖f‖∞
ˆ
K

∣∣∣∣ 1

|x− y|n−α
− 1

|z − y|n−α

∣∣∣∣ dy

And by Lebesgue’s dominated convergence theorem, then integral goes to 0 as z → x. Now,
we let fm = f1{f<m} +m1{f≥m}. Since f has compact support, so does fm.

fm is increasing, and for all x ∈ Rn, fm(x)→ f(x). By the dominated convergence theorem,
for all x ∈ Rn, Iαfm(x)→ Iαf(x), and Iαfm is also an increasing sequence. Thus :

{Iαf > λ} =
⋃
m∈N

{Iαfm > λ}

And so {Iαf > λ} is open. We use Theorem 1.2 :

{x ∈ Rn : Iαf(x) > λ} =
⋃
j

Qj

With the Qj being disjoint cubes such that for each cube Qj , there is a x ∈ Qj with |Iαf(x)| ≤
λ. Then for :

Ej = {x ∈ Qj : Iαf(x) > κλ, Mαf(x) ≤ γλ}
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By the lemma applied to 4Qj :

m(Ej) ≤ C4n
(γ
κ

) n
n−α

m(Qj)

Where we take κ = min(1, K), and for δ > 0 associated, in the A∞ condition satisfied by w,
with ε = 1

2κ
−q. Then, we let Γ be such that C4n

(
Γ
κ

)n/(n−α)
= δ. Then, for all γ ≤ Γ, we have :

µ(Ej) ≤
1

2
κ−qµ(Qj)

Then :

µ{Iαf > κλ, Mαf ≤ γλ} ≤
1

2
κ−qµ{Iαf > λ} (2.2.18)

And so :

µ{Iαf > κλ} ≤ µ{Mαf > γλ}+
1

2
κ−qµ{Iαf > λ} (2.2.19)

Now we let Q be a cube containing the support of f . Then, if x /∈ 3Q, if P is the smallest cube
with center x containing Q, and u the point of Q closest to x. Then there’s is a L, depending
only on the dimension n and L ≥ 1, such that :

m(P ) ≤ L|x− u|n

Indeed. First, since x /∈ 3Q, then |x−u| ≥ 2rQ. Moreover, rP ≤ |x−u|+ 2rQ, since the cube
with this as radius and centered in x with contain Q : Indeed, let y ∈ Q, then :

|x− y|∞ ≤ |u− x|∞ + |u− y|∞ ≤ |u− x|+ 2rQ

Thus rP ≤ 2|x− u|. And so :

m(P ) ≤ 4n|x− u|n

Then :

Iαf(x) ≤ 1

|x− u|n−α

ˆ
P

f(y) dy ≤ Lnm(P )1−αn
ˆ
P

f(y) dy ≤ LnMαf(x)

Then for γ = min(Γ, 1/Ln), we have :

{Iαf > λ} ∩ (3Q)c ⊂ {Mαf > γλ}

And :

µ{Iαf > κλ} ≤ 2µ{Mαf > γλ}+
1

2
κ−qµ({Iαf > λ} ∩ 3Q) (2.2.20)

Then :

κ−q
ˆ κN

0

λq−1µ{Iαf > λ} dλ ≤ 2γ−q
ˆ γN

0

λq−1µ{Mαf > λ} dλ+

1

2
κ−q

ˆ N

0

λq−1µ({Iαf > λ} ∩ 3Q) dλ (2.2.21)
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Since w is locally integrable, this last integral is finite, and smaller than half of that in the
left side. Thus :

1

2
κ−q

ˆ κN

0

λq−1µ{Iαf > λ} dλ ≤ 2γ−q
ˆ γN

0

λq−1µ{Mαfhλ} dλ

And taking N → +∞

‖Iαf‖qLq(µ) ≤ 4

(
κ

γ

)q
‖Mαf‖qLq(µ)

Now, to prove (2.2.14), we start again from (2.2.20), multiply by λq, and take the supremum
for 0 ≤ λ ≤ N . We have :

sup
0≤λ≤N

λqµ{Iαf > κλ} ≤ 2 sup
0≤λ≤N

λqµ{Mαf > γλ}+
1

2
κ−q sup

0≤λ≤N
λqµ ({Iαf > λ} ∩ 3Q)

(2.2.22)
Then a change of variables gives :

κ−q sup
0≤λ≤κN

λqµ{Iαf > λ} ≤ 2γ−q sup
0≤λ≤γN

λqµ{Mαf > λ}+

1

2
κ−q sup

0≤λ≤N
λqµ ({Iαf > λ} ∩ 3Q) (2.2.23)

Since the last term is finite, and less than half the left side, we finally get, after takingN →∞,
the desired :

sup
0≤λ

λqµ{Iαf > λ} ≤ 4

(
κ

γ

)q
sup
0≤λ

λqµ{Mαf > λ} (2.2.24)

2.2.3 Norm inequality for Iα

Theorem 2.5. Let 0 < α < n, 1 < p < n
α ,

1
q = 1

p −
α
n . Let V be a locally integrable non-negative

function satisfying (2.2.2). Then there is a constant C independant of f such that :(ˆ
Rn

|Iαf(x)V (x)|q dx

) 1
q

≤ C
(ˆ

Rn

|f(x)V (x)|p dx

) 1
p

(2.2.25)

If p = 1, 1
q = 1− α

n , and if V is such that there is a constant c such that for all cubes Q :
 
Q

V (x)q dx ≤ c ess inf
x∈Q

V (x)q (2.2.26)

Then for λ > 0 :
ˆ
{Iαf>λ}

V (x)q dx ≤ C
(

1

λ

ˆ
Rn

|f(x)V (x)| dx

)q
(2.2.27)
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Proof. If V satisfy (2.2.2), then V q satisfies Ar for some r > 1, and if it satisfies (2.2.26) then
V q satisfies A1. In both case, V q is an A∞ weight, and so by Theorem 2.4, we have :

ˆ
Rn

|Iαf(x)V (x)|q dx ≤ C
ˆ
Rn

(Mαf(x)V (x))
q

dx

And, with dµ = V (x)q dx :

sup
λ>0

λqµ{x ∈ Rn : |Iαf(x)| > λ} ≤ C sup
λ>0

λqµ{x ∈ Rn : Mαf(x) > λ}

Then using either Theorem 2.3 (for the norm inequality) or Theorem 2.2 (for the weak-type
estimate), we get (2.2.25) or (2.2.27)

Theorem 2.6. Let 0 < α < n, 1 < p < n
α ,

1
q = 1

p −
α
n . Let V be a locally integrable non-negative

function, and assume that there is a constant C such that for all f , λ > 0, we have :

ˆ
{Iαf>λ}

V (x)q dx ≤ C 1

λq

(ˆ
Rn

|f(x)V (x)|p dx

) q
p

(2.2.28)

Then V satisfy (2.2.2) if p > 1, and (2.2.26) if p = 1.

Proof. First, if p > 1. Let Q be a cube of Rn. Let A =
´
Q
V (x)−p

′
dx. If A = 0 then trivially

(2.2.2) is satisfied. If A =∞, then 1/V (x) is not in Lp
′
. Thus, there exist a g ∈ Lp such that :

ˆ
Q

g(x)

V (x)
dx =∞

Let f = g
V 1Q. Then Iαf(x) =∞ for all x ∈ Rn, and, so :

ˆ
Q

V (x)q dx ≤
ˆ
Rn

V (x)q dx ≤ C 1

λq
‖g‖qp

This for all λ > 0, so
´
V (x)q dx = 0, and (2.2.2) is satisfied.

Now if 0 < A <∞, let f = V −p
′
1Q. Then we have, for all x ∈ Q, |x−y| ≤

√
nm(Q)

1
n . Then

there is a c > 0 not depending on f such that :

Iαf(x) =

ˆ
Q

f(y)

|x− y|n−α
dy ≥ cAm(Q)−1+α

n

Taking this as λ, we get :(ˆ
Q

V (x)q dx

) 1
q

≤ C 1

cA
m(Q)1−αn

(ˆ
Q

V (x)−p
′

dx

) 1
p

So, by the definition of A :

( 
Q

V (x)q dx

) 1
q
( 

Q

V (x)−p
′

dx

)− 1
p

≤ C

c
m(Q)1−αn−

1
q+ 1

p

(ˆ
Q

V (x)−p
′

dx

)−1

Which reduces to (2.2.2), with C independant of Q.
If p = 1, let Q be a cube in Rn, A = ess infy∈Q V (y). If A = ∞ then (2.2.26) is true.

Otherwise, for all ε > 0, there exist a subset E ⊂ Q with positive measure such that V (x) < A+ε
for all x ∈ E. Let f = 1E , then for x ∈ Q :
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Iαf(x) ≥ cm(E)m(Q)−1+α
n

And with this as λ :(ˆ
Q

V (x)q dx

) 1
q

≤ C

c
m(E)−1m(Q)1−αn

ˆ
E

V (x) dx

But
´
E
V (x) dx ≤ m(E)(A+ ε), and so, for all ε > 0 :(ˆ

Q

V (x)q dx

) 1
q

≤ Cm(Q)
1
q (A+ ε)

And thus (2.2.26) holds.
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3. Spectrum of the Schrödinger
operator
The following is based on the article of Martin Schechter[7].

We are interested in the operator of Schrödinger of the form H = −∆−V with the potential
V a non-negative, locally integrable function. Our objective will be to establish estimates on
−µ2, the lower bound of the spectrum of H, and to give some conditions for the operator to be
positive.

We let Cλ(V ) be the smallest constant satisfying :

〈V ψ, ψ〉 ≤ Cλ(V )
(
‖∇ψ‖2 + λ2‖ψ‖2

)
, ψ ∈ C∞c (3.0.1)

This is equivalent to 〈(−∆−Cλ(V )−1V )ψ, ψ〉 ≥ −λ2‖ψ‖2. Thus if 〈Hψ, ψ〉 ≥ −λ2‖ψ‖2 then
Cλ(V ) ≤ 1.

3.1 Estimating Cλ(V )

The goal of this section will be to gives estimates on Cλ(V ).
For a locally finite Borel measure µ, we define :

Gs,λ = (λ2 −∆)
s
2 , Gs λdµ(x) =

ˆ
Rn

Gs,λ(x− y) dµ(y) (3.1.1)

Where we write Gs,λ(x) for the kernel of the operator Gs,λ.

Is,δdµ(x) =

ˆ
B(x,δ)

|x− y|s−n dµ(y), 0 < s ≤ n (3.1.2)

Ms,δdµ(x) = sup
r<δ

(
rs−n

ˆ
B(x,r)

dµ(x)

)
, 0 ≤ s ≤ n, Msdµ = Ms,∞dµ (3.1.3)

3.1.1 Study of Is,δ
Theorem 3.1. There is a constant Cs,q, depending only on s, n and q such that :

‖Is,δdµ‖q ≤ Cs,q ‖Ms,δdµ‖q (3.1.4)

Proof. Define, for t > 0,

St = {x ∈ Rn : Is,δdµ(x) > t} (3.1.5)
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If St 6= Rn, then we can apply Theorem 1.2, to get

St =

∞⋃
j=1

Qj (3.1.6)

Where the Qj are disjoints and each cube satisfy :

1

2
diamQj < d(Qj , S

c
t ) ≤ 3 diam(Qj) (3.1.7)

We additionally want for all cubes to satisfy :

ρ = 4 diam(Qj) ≤ δ (3.1.8)

Which we obtain by subdivising the cubes. We may lose (3.1.7), in which case we can ensure
that δ ≤ 2ρj . That is to say, we get a decomposition of St into cubes Qj , each satisfying (3.1.8),
and each cube will satisfy either (3.1.7) or :

δ ≤ 2ρj (3.1.9)

Now let b, d > 0, and define :

Ej =
{
x ∈ Qj ; Is,δ/2dµ(x) > tb, Ms,δdµ(x) ≤ td

}
(3.1.10)

Let Q be one of the Qj , and E the associated Ej set. If Q satisfy both 3.1.8 and 3.1.9, then :

tbm(E) ≤
ˆ
Q

Is,δ/2dµ(x) dx

≤
ˆ
Q

ˆ
B(x,δ/2)

|x− y|s−n dµ(y) dx

≤
ˆ ˆ

|x−y|<δ/2
x∈Q

|x− y|s−n dx dµ(y)

≤ ω

s

(
δ

2

)s
µ (Q+ δ/2)

(3.1.11)

Where ω refers to the surface of the unit sphere of Rn, since
´
B(0,R)

|x|s−n dx = ω
sR

s, and
Q + δ/2 is the set of points y ∈ Rn such that d(y,Q) ≤ δ/2. This set is contained in the ball
with center x0 and radius diam(Q) + (δ/2) ≤ (ρ/4) + (δ/2) ≤ 3δ/4, by (3.1.8). We thus have,
using (3.1.9), and since x0 ∈ E :

tbm(E) ≤ ω

s

(
δ

2

)s(
ρ

4
+
δ

2

)n−s
Ms,δdµ(x0)

≤ ω

s
ρs
(

5ρ

4

)n−s
td

≤ ω

s

(
5

4

)n−s
tdρn

≤ ω

s
4s5n−sn

n
2 tdm(Q)

(3.1.12)
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And so we get :

m(E) ≤ ω

s
4s5n−sn

n
2
d

b
m(Q) = cn,s

d

b
m(Q) (3.1.13)

And (3.1.13) is also true if E is empty.
Now, if 2ρ < δ, then Q satisfy (3.1.7) and (3.1.8). Let x1 ∈ Sct , such that d(x1, Q) <

4 diam(Q). If x ∈ Q then |x− x1| < ρ. Then for any point y such that |y − x| > ρ, we have :

|y − x1| ≤ |y − x|+ |x− x1| < 2|y − x| (3.1.14)

Hence since ρ < δ/2, we have :

Is,δ/2dµ(x) = Is,ρdµ(x) +

ˆ
ρ≤|y−x|<δ/2

|y − x|s−n dµ(y)

≤ Is,ρdµ(x) + 2n−s
ˆ
|y−x1|<δ

|y − x1|s−n dµ(y)

≤ Is,ρdµ(x) + 2n−sIs,δdµ(x1)

≤ Is,ρdµ(x) + 2n−st

(3.1.15)

Now take b = 2n+1−s. If x ∈ E, then

tb < Is,ρdµ(x) +
tb

2
(3.1.16)

And so :

tb

2
< Is,ρdµ(x) (3.1.17)

Thus :

E ⊆
{
x ∈ Q; Is,ρdµ(x) >

tb

2
, Ms,δdµ(x) ≤ td

}
(3.1.18)

Hence :

tb

2
m(E) ≤

ˆ
Q

Is,ρdµ(x) dx

≤
ˆ ˆ

|x−y|<ρ
x∈Q

|x− y|s−n dx dµ(y)

≤
(ω
s

)
ρsµ(Q+ ρ)

(3.1.19)

Since 2ρ < δ, and Q + ρ is contained in a ball of radius diam(Q) + ρ = 5ρ/4 < δ about any
point of Q, we get, if x0 ∈ E :

tb

2
m(E) ≤

(ω
s

)
ρs
(

5ρ

4

)n−s
Ms,δdµ(x0)

≤
(ω
s

)(5

4

)n−s
(4 diam(Q))

n
td

(3.1.20)
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And so we get :

m(E) ≤
(ω
s

)
22s+15n−sn

n
2

(
d

b

)
m(Q) (3.1.21)

And (3.1.21) is also valid if E is empty. Notice that the constant in this last equation is
greater than the one in (3.1.13), so (3.1.21) holds for all cubes Qj . Now, summing over all cubes,
we get :

m
{
Is,δ/2dµ(x) ≥ tb, Ms,δdµ(x) ≤ td

}
≤ Cn,sdm(St), b ≥ 2n+1−s (3.1.22)

With Cn,s = ω5n−snn/223s−n/s.
Now, we get :

m
{
Is,δ/2dµ(x) ≥ tb

}
≤ Cn,sdm(St) +m{Ms,δ > td} (3.1.23)

Integrating against qtq−1 dt from 0 to N , we get :

ˆ N

0

m
{
Is,δ/2dµ > tb

}
qtq−1 dt ≤ Cn,sd

ˆ N

0

m(St)qt
q−1 dt+

ˆ N

0

m{Ms,δdµ > td}qtq−1 dt

Changes of variables give :

b−q
ˆ Nb

0

m
{
Is,δ/2dµ > τ

}
qτ q−1 dτ ≤ Cn,sd

ˆ N

0

m(St)qt
q−1 dt+d−q

ˆ Nd

0

m{Ms,δdµ > τ}qτ q−1 dτ

And letting N →∞, we have :

∥∥Is,δ/2dµ
∥∥q
q
≤ Cn,sdbq ‖Is,δdµ‖qq +

(
b

d

)q
‖Ms,δdµ‖qq (3.1.24)

And so : ∥∥Is,δ/2dµ
∥∥
q
≤ C1/q

n,s d
1/qb ‖Is,δdµ‖q +

b

d
‖Ms,δdµ‖q (3.1.25)

But we also have :

Is,δdµ(x) = Is,δ/2dµ(x) +

ˆ
δ/2≤|y−x|<δ

|x− y|s−n dµ(y)

≤ Is,δ/2dµ(x) + 2n−sMs,δdµ(x)

(3.1.26)

Thus :

‖Is,δdµ‖q − 2n−s ‖Ms,δdµ‖q ≤
∥∥Is,δ/2dµ

∥∥
q

(3.1.27)

And so :

‖Is,δdµ‖q ≤ C
1/q
n,s d

1/qb ‖Is,δdµ‖q +

(
b

d
+ 2n−s

)
‖Ms,δdµ‖q (3.1.28)

Take 1/d = Cn,s2
qbq, i.e. d1/q = 2−1b−1C

−1/q
n,s . Then

34



‖Is,δ‖q ≤
(
2bd−1 + 2n−s+1

)
‖Ms,δdµ‖q (3.1.29)

With b = 2n−s+1, we have :

‖Is,δ‖q ≤ b
(
2d−1 + 1

)
‖Ms,δdµ‖q = Cn,s,q ‖Ms,δdµ‖q (3.1.30)

3.1.2 Study of Gs,λ

Theorem 3.2. There is a constant C ′s,n,q depending only on those parameters, such that :

‖Gs,λdµ‖q ≤ C
′
s,n,q

∥∥Ms,1/λdµ
∥∥
q

(3.1.31)

Proof. We will use the following result by Aronszajn-Smith[1] : Gs,λ(x) satisfies

Gs,λ(x) ≤

{
c0|x|s−n, λ|x| ≤ 1,

c1λ
n−s|λx|γe−λ|x|, λ|x| > 1.

(3.1.32)

With γ = (n− s− 1)/2, and the cj do not depend on λ. We let :

G̃s,λ(x) =

{
0, λ|x| ≤ 1,

Gs,λ(x), λ|x| > 1.
(3.1.33)

We have : ∥∥∥(Gs,λ − G̃s,λ)dµ
∥∥∥
q
≤ c0

∥∥Is,1/λdµ
∥∥
q

(3.1.34)

And so, using Theorem 3.1, to prove Theorem 3.2, it will suffices to show that for some
constant C depending only on n, s, q, we have :∥∥∥G̃s,λdµ

∥∥∥
q
≤ C

∥∥Ms,1/λdµ
∥∥
q

(3.1.35)

Now, using (3.1.32) and the definition of G̃s,λ, we have :

G̃s,λdµ(y) ≤ c1
ˆ
λ|x−y|>1

λn−s |λ(x− y)|γ e−λ|x−y| dµ(x)

≤ c1λn−s
∞∑
k=1

ˆ
k<λ|x−y|<k+1

(k + 1)γe−k dµ(x)

(3.1.36)

The set Rk = {k < |x| < k + 1} can be covered by N(k) balls of radius 1 and centers
z(1), . . . , zN(k), with N(k) ≤ c2kn−1.

Indeed, we let A ⊂ Rk be maximal such that for all x, y ∈ A, x 6= y, then |x− y| > 1. Then
if x ∈ Rk, there is a y ∈ A such that |x − y| ≤ 1, otherwise A would not be maximal. Thus
Rk ⊂

⋃
x∈AB(x, 1). Moreover the balls with center in A and with radius 1/2 are disjoints, and

we also have : ⋃
x∈A

B

(
x,

1

2

)
⊆ B

(
0, k +

3

2

)
\B

(
0, k − 1

2

)
(3.1.37)
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And so :

2−n#A ≤
(
k +

3

2

)n
−
(
k − 1

2

)n
∼ c kn−1 (3.1.38)

And so we can indeed impose N(k) ≤ c2kn−1.
Then the set k < λ|x| < k + 1 can be covered by N(k) balls with centers z(1)/λ, . . . , zN(k)/λ

with radius 1/λ. Then :

G̃s,λdµ(y) ≤ c1λn−s
∞∑
k=1

(k + 1)γe−k
N(k)∑
j=1

ˆ
|x−y−z(j)/λ|<1/λ

dµ(x)

≤ c1
∞∑
k=1

(k + 1)γe−k
N(k)∑
j=1

Ms,1/λdµ

(
y +

z(j)

λ

) (3.1.39)

And finally : ∥∥∥G̃s,λdµ
∥∥∥
q
≤ c1

∞∑
k

N(k)(k + 1)γe−k
∥∥Ms,1/λdµ

∥∥
q

(3.1.40)

And (3.1.35) holds.

3.1.3 Estimate on Cλ(V )

Theorem 3.3. For each p > 1, there is a constant Cp, depending only on n and p such that :

Cλ(V ) ≤ Cp sup
x

(
M2p,1/λV (x)p

)1/p
, λ ≥ 0. (3.1.41)

Moreover, there is a constant C1 depending only on n such that :

Cλ(V ) ≥ C1M2,1/λV (3.1.42)

Proof. Let δ = 1/λ, and define :

Kp = sup
x

(M2p,δV
p)

1
p (3.1.43)

For q = 2p > 2, then by Hölder’s inequality we have :

M1,δ

(
V

1
2ψ
)
≤Mq,δ

(
V
q
2

) 1
q

M0,δ

(
|ψ|q

′
) 1
q′

= K
1
2
pM

(
|ψ|q

′
) 1
q′ (3.1.44)

And so : ∥∥∥M1,δ

(
V

1
2ψ
)∥∥∥

2
≤ K

1
2
p

∥∥∥∥M0,δ

(
|ψ|q

′
) 1
q′
∥∥∥∥

2

= K
1
2
p ‖M0,δ|ψ|‖

1
q′
2
q′

(3.1.45)

Then since q′ < 2 we have, since M0,δ is bounded on Lr for all r > 1 :∥∥∥M1,δ

(
V

1
2ψ
)∥∥∥

2
≤ CK

1
2
p ‖ψ‖2 (3.1.46)

Then by Theorem 3.2, we have :
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∥∥∥G1,λ

(
V

1
2ψ
)∥∥∥

2
≤ CC ′s,n,2K

1
2
p ‖ψ‖2 (3.1.47)

The adjoint of G1,λV
1/2 is V 1/2G1,λ, since both V 1,2 and G1,λ = (λ2−∆)−1/2 are self-adjoint,

and so we have : ∥∥∥V 1
2G1,λφ

∥∥∥
2
≤ CC ′s,n,2K

1
2
p ‖φ‖2 (3.1.48)

If we let φ̂(ξ) =
(
λ2 + |ξ|2

) 1
2 ψ̂(ξ), then :

‖φ‖22 = λ2‖ψ‖22 + ‖∇ψ‖22 (3.1.49)

And :

〈V ψ, ψ〉 =
∥∥∥V 1

2G1,λφ
∥∥∥2

2
≤ C2(C ′s,n,2)2Kp‖φ‖22 (3.1.50)

Finally :

〈V ψ, ψ〉 ≤ C2(C ′s,n,2)2Kp

(
λ2‖ψ‖22 + ‖∇ψ‖22

)
(3.1.51)

Which gives (3.1.41) by the definition of Kp.
Now, to prove (3.1.42), let φ be a test function equal to 1 on |x| < 1 and to 0 on |x| > 2. Let

z ∈ Rn and define :

φλ(x) = φ (λ(x− z)) (3.1.52)

Then :

〈V φλ, φλ〉 ≤ Cλ(V )
(
λ2‖φλ‖22 + ‖∇φλ‖22

)
≤ Cλ(V )λ2−n (‖φ‖22 + ‖∇φ‖22

)
≤ Cλ2−nCλ(V )

(3.1.53)

Hence :

λn−2

ˆ
λ|x−z|<1

V (x) dx ≤ CCλ(V ) (3.1.54)

Since λ 7→ Cλ(V ) is decreasing, then for all positives r ≤ 1/λ :

r2−n
ˆ
|x−z|<r

V (x) dx ≤ CC1/r(V ) ≤ CCλ(V ) (3.1.55)

And so M2,1/λV (z) ≤ CCλ(V ), for all z ∈ Rn.

The following corollary will finally gives u the desired estimates on µ2, but we will first need
to establish some facts on Cλ(V ) before proving it. This result was initially established by C.
Fefferman and D-H Phong, see [3] for their proof.
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Corollary 3.1. If −µ2 is the lowest point of the spectrum of −∆− V , then :

µ2 ≤ sup
δ>0

(
2Cpδ

−2 sup
x

(M2p,δV
p)

1/p − δ−2

)

≤ sup
x,δ

2Cp

(
δ−n

ˆ
B(x,δ)

V (y)p dy

)1/p

− δ−2

 (3.1.56)

And :

µ2 ≥ sup
δ>0

(
C1δ

−2 sup
x
M2,δV − δ−2

)
≥ sup

x,δ

(
C1δ

−n
ˆ
B(x,δ)

V (y) dy − δ−2

) (3.1.57)

Corollary 3.2. If CppM2pV
p ≤ 1 then µ = 0

3.2 Properties of Cλ(V )

Theorem 3.4. Cλ(V ) is continuous in λ in [0,∞).

Proof. Let A ≥ 0, suppose that for all ν > λ, we have Cν(V ) ≤ A. Then Cλ(V ) ≤ A. Indeed,
we have :

〈V ψ, ψ〉 ≤ A
(
‖∇ψ‖2 + ν2‖ψ‖2

)
, ψ ∈ C∞c (3.2.1)

And so taking ν → λ,

〈V ψ, ψ〉 ≤ A
(
‖∇ψ‖2 + λ2‖ψ‖2

)
, ψ ∈ C∞c (3.2.2)

And Cλ(V ) ≤ A.
Next, suppose λ > 0 and, for all ν < λ, Cν(V ) ≥ A, then Cλ(V ) ≥ A. Indeed, if Cλ(V ) ≤

A− ε, with ε > 0, we can find for each ν a function ψν ∈ C∞c such that :

‖∇ψν‖2 + ν2 ‖ψν‖2 = 1 (3.2.3)

And :

Cν(V )− ε

2
≤ 〈V ψν , ψν〉 ≤ Cλ(V )

(
‖∇ψν‖2 + λ2‖ψν‖2

)
(3.2.4)

Then by (3.2.3) we have :

A− ε

2
≤ Cλ(V )

(
1 +

(
λ2 − ν2

)
‖ψν‖2

)
≤ Cλ(V )

λ2

ν2
(3.2.5)

Indeed,

‖ψν‖2 =
1− ‖∇ψν‖2

ν2
≤ 1

ν2
(3.2.6)

And so 1 + (λ2 − ν2)‖ψν‖2 ≤ λ2/ν2. Now if we let ν → λ; we get :
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A− ε

2
≤ Cλ(V ) ≤ A− ε (3.2.7)

Which is a contradiction. Thus Cλ(V ) ≥ A.
Moreover Cλ(V ) is a decreasing function of λ. Combined with the above properties, if ε > 0,

then there is a δ > 0 such that, for all ν ∈ (λ − δ, λ), Cλ(V ) ≤ Cν(V ) ≤ Cλ(V ) + ε. And so
Cλ(V ) = inf{Cν(V ), ν < λ}. Similarly, Cλ(V ) = sup{Cν(V ), ν > λ}.

Thus, λ 7→ Cλ(V ) is continuous.

Theorem 3.5. Let −µ2 be the lowest point of the spectrum of H = −∆− V , then :

µ2 = inf
Cλ(V )≤1

λ2 = sup
Cλ(V )>1

λ2

= inf
Cλ(V )≤1

λ2Cλ(V ) = sup
Cλ(V )>1

λ2Cλ(V )
(3.2.8)

In particular :

• If the set {Cλ(V ) ≤ 1} is empty, then µ =∞.

• If the set {Cλ(V ) > 1} is empty, then µ = 0.

Proof. If Cλ(V ) ≤ 1, then

〈V ψ, ψ〉 ≤ Cλ(V )
(
‖∇ψ‖2 + λ2‖ψ‖2

)
(3.2.9)

implies :

−Cλ(V )λ2‖ψ‖2 ≤ ‖∇ψ‖2 − 〈V ψ, ψ〉 = 〈Hψ, ψ〉 (3.2.10)

Then taking the infimum for ‖ψ‖ = 1, we get :

−Cλ(V )λ2 ≤ −µ2 (3.2.11)

And so :

µ2 ≤ λ2Cλ(V ) ≤ λ2 (3.2.12)

If Cλ(V ) > 1, then for any ε > 0, there is a ψ ∈ C∞c , ‖ψ‖ = 1, such that :

〈V ψ, ψ〉 ≥ (Cλ(V )− ε)
(
‖∇ψ‖2 + λ2‖ψ‖2

)
(3.2.13)

Thus :

(1 + ε− Cλ(V ))‖∇ψ‖2 ≥ 〈Hψ, ψ〉+ λ2 (Cλ(V )− ε) ‖ψ‖2 (3.2.14)

For ε small enough, then this is non-positive. Then :

〈Hψ, ψ〉 ≤ −λ2(Cλ(V )− ε) (3.2.15)

And so µ2 ≥ λ2(Cλ(V )− ε). Taking ε→ 0, we get :

µ2 ≥ λ2Cλ(V ) ≥ λ2, Cλ(V ) > 1. (3.2.16)
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From this, if µ 6= 0, we must have Cµ(V ) ≤ 1. But this is also true if µ = 0 : then, since, for
any λ with Cλ(V ) > 1, we have µ2 > λ, then for any λ > 0, Cλ(V ) ≤ 1. Then by continuity, we
also have Cµ(V ) ≤ 1.

Now, by (3.2.12), if µ 6= 0, we have :

Cµ(V ) = 1 (3.2.17)

Moreover, (3.2.12) also implies :

µ2 ≤ inf
Cλ(V )≤1

λ2Cλ(V ) ≤ inf
Cλ(V )≤1

λ2 (3.2.18)

And with (3.2.17), equality holds. Similarly,

µ2 ≥ sup
Cλ(V )>1

λ2Cλ(V ) ≥ sup
Cλ(V )>1

λ2 (3.2.19)

And if µ2 > supCλ(V )>1 λ
2, then there is a positive ν such that µ2 > ν2 > supCλ(V )>1 λ

2.
Thus ν < µ and Cν(V ) ≤ 1. Which is a contradiction with (3.2.18). Thus there is equality, and
the theorem holds.

Corollary 3.3.
µ2 ≤ sup

λ
λ2 (2Cλ(V )− 1) (3.2.20)

µ2 ≥ sup
λ
λ2 (Cλ(V )− 1) (3.2.21)

Proof. If Cλ(V ) > 1, then λ2 ≤ λ2(2Cλ(V ) − 1). Then taking the supremum over the set
Cλ(V ) > 1, we get :

µ2 ≤ sup
Cλ(V )>1

λ2 (2Cλ(V )− 1) (3.2.22)

And the right hand side is clearly less than that of (3.2.20).
If Cλ(V ) > 1, then λ2Cλ(V ) ≥ λ2(Cλ(V )− 1), and if Cλ(V ) ≤ 1, then the right hand side is

non-positive. Then :

µ2 ≥ sup
Cλ(V )>1

λ2 (Cλ(V )− 1) = sup
λ
λ2 (Cλ(V )− 1) (3.2.23)

Proof of Corollary 3.1. By (3.2.20) and Theorem 3.3, (3.1.41), we have :

µ2 ≤ sup
λ>0

λ2

(
2Cp sup

x

(
M2p,1/λV

p
) 1
p − 1

)
≤ sup

δ>0

(
2Cpδ

−2 sup
x

(M2p,δV
p)

1
p − δ−2

) (3.2.24)

And so the first inequality of (3.1.56) holds. The right hand side is equal to :

K = sup
x,δ

(
2Cpδ

−2 (M2p,δV
p)

1
p − δ−2

)
(3.2.25)
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We will show it is actually equal to the second expression in (3.1.56), which we will write L.
Recall :

L = sup
x,δ

2Cp

(
δ−n

ˆ
|y−x|<δ

V (y)p dy

) 1
p

− δ−2


We have (

δ−n
ˆ
|y−x|<δ

V (y)p dy

) 1
p

≤ L+ δ−2

2Cp
, δ > 0 (3.2.26)

And so :

(M2p,δV
p)

1
p ≤ δ2L+ 1

2Cp
(3.2.27)

And we finally get :

µ2 ≤ K ≤ sup
x,δ

(
δ−2

(
δ2L+ 1

)
− δ−2

)
= L (3.2.28)

And so, since K ≥ L is obvious, we have K = L.
Similarly, using (3.2.21) and Theorem 3.3, (3.1.42), we have :

µ2 ≥ sup
λ>0

λ2
(
C1M2,1/λV − 1

)
≥ sup

δ>0

(
C1δ

−2 sup
x
M2,δV − δ−2

) (3.2.29)

Which is the first expression of (3.1.57). We obtain the second in the same way as above.

Proof of Corollary 3.2. Taking λ = 0 in (3.1.41), we have :

C0(V ) ≤ Cp (M2pV
p)

1
p (3.2.30)

Then, if CppM2pV
p ≤ 1, using Theorem 3.5, µ = 0.

Corollary 3.4. If V (x) satisfy the A∞ condition, then there is a p > 1 such that :

Cλ(V ) ≤ Np
∥∥M2,1/λV

∥∥
∞ (3.2.31)

Proof. With p > 1 such that the reverse Hölder holds, there is a constant Lp such that :

(M2p,δV
p)

1
p ≤ LpM2,δV (3.2.32)

Then using Theorem 3.3 :

Cλ(V ) ≤ CpLp sup
x
M2,1/λV (3.2.33)
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