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Introduction

This is a Mémoire written for the internship for the Master 2 - MFA at Nantes’ university.

Our objective is to establish estimates on the lower bound of Schrédinger operators of the
form H = —A -V, with V non-negative and locally integrable. Through these estimate, we will
be able to deduce some sufficient conditions for the operator to be positive.

We will use methods of harmonic analysis, especially a good-lambda inequality, to prove that

the Riesz potentials (—A)fs/2 and Bessel potentials (/\2 — A) /2 are bounded by an appropriate
fractional maximal function. This will then allow us to find the desired estimate in Corollary
3.1.

In the first part, we will gives the various Harmonic analysis and Spectral analysis we will
need in the following parts.

The second part is dedicated to the study of Riesz Potentials, and we will establish a nec-
essary and sufficient condition for a weighted version of the classical Hardy-Littlewood-Sobolev
inequality to hold. One of the result proved here will be important for the proof of the main
result.

In the third and last part, we will study the Schrédinger operator, and establish some results
on the lower bound of its spectrum that will allow us to get the desired estimates.
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1. Preliminaries results

1.1 Covering lemmas

We will first clarify several terms and notations that will be used throughout this document.

Definition 1.1. The term cube is used to refer to an hypercube with sides parallel to the coor-
dinate axis. That is to say, a cube of length [ > 0 is a cartesian product :

Q:[x17551+l) Xoeee X [In7$n+l)

With x = (z1,...,2,) € R™. The intervals in the definition might also be taken to be closed
or open. In the later case, then Q will be a ball B(c,r) for the norm |x|s = sup{|z1|,...,|za|}.
The center and radius of Q will refer to the centers and radius of this ball. We also have r =1/2.

Definition 1.2. The characteristic function of a set E is :
1, z€FE
1g(z)=<"
5(@) {07 v ¢ E

Definition 1.3. The cardinal of a set E is :

#E=> 1g(z)

el

If E is countable, and oo if E is uncountable.

Definition 1.4. The diameter of a set E is :

diam(E) = sup{d(z,y); z,y € E}

1.1.1 A Besicovitch type lemma

Theorem 1.1. [2] Let A be a bounded subset of R™. For each x € A a closed cube Q(x) with
positive radius, centered at x is given,. Then, one can choose, from among the givens cubes

{Q(x)},ca, a sequence {Qy},, covering A :

Ac|Jox (1.1.1)
k

And such that there is a constant 0, depending only on the dimension, such that any point
of R™ is in at most 0, cubes. That is to say :

> 1o, <6, (1.1.2)
k



Proof. We note r, the radius of Q(x), and define ag by :

ag = sup{r; : x € A}

(1.1.3)

If ag = oo then there is a cube that will cover A entirely, and there’s nothing left to do. If

ag < 00, then we choose a cube ()1 such that :

Q1=Q() €{Q) iz e A}, r=ry >

We now construct a sequence {Qy} such that :

an:sup{rz:meA\ OQk}

k=1
n
Qn+1 - Q(xn—i-l)v Tn+1 S A\ U Qk7 Tn+1 = Twn+1

k=1
With the @; thus defined, we have, if i # j :

1 1
gQimng =9

Indeed, if ¢ > j, then z; ¢ Q; and, r; < a; < 2r;. Then let y € %Qz We have :

1
ri < lwi = Tjloo < 37+ Y — @jle
Then since r; > 2r;, we get :

1
ly — ;] > 37

And soy ¢ %Qj.

(1.1.4)

(1.1.5)

(1.1.6)

(1.1.7)

Now let’s prove the first part of the theorem. First, if the sequence {Qy} is finite, i.e. if at

some step n, there’s no possible cube we can chose. Then A C |J, Qy is trivial.

If the sequence of cubes is infinite, then we necessarily must have r; — 0. Indeed, let’s look

at the set :

U @«

k>1

Since A is bounded, then it must be bounded, and so of finite measure. But, by (1.1.7), its

measure is more than :
1 2\ "
m — = —
Usze ] -2 (%)
k>1 k>1

For this to be finite, we must have r;, — 0. But then take :

IGA\UQk

k>1

We have r, < ap < 27 for all £ > 1. But then this must mean that r, = 0. But we require

r, > 0 for all z € A, so we have a contradiction, and we must have :



Ac e (1.1.8)

E>1
We have proved the first part. For the second, let x € R". By doing a translation if necessary,
we can consider x to be the origin. Then the coordinates hyperplanes split the space into 2"
quadrants. We will show that for each quadrant the number of cubes with center in this quadrant
is bounded by a constant that depends only on the dimension.
By changing coordinates if necessary, we can assume we work in the following quadrant :
P={yeR":Vk,1<k<n,y, >0} (1.1.9)

Then let ip be an integer such that @;, is the first cube with center in P containing z. Then
if we consider the cube of center x and radius r;, its intersection with P is contained in Q);.

Now, let @); be another cube with center in P and containing x. Necessarily, j > i so z; ¢ Q;.
Then r; > r; since (); contains the origin 0. But we also have r; < 2r;. Moreover, %Qkﬂ%Qj =9
whenever k # j. Notice that the region of P with |y|o < 2r; is a cube of radius ;. Then, the
following lemma gives us the desired upper bound on the number of cubes.

Lemma 1.1. Let Q be a cube of radius r. Q a collection of disjoint cubes with center in Q and
radius greater than dr, with § > 0.

Then the cardinal of Q is bounded by a constant depending only on the dimension n and the
parameter §.

Proof. We have :
Uarc+oe
k
Then since the cubes are disjoints, taking the lebesgue measure of those sets we get :
M#HA < (1+0)"

Thus #0Q < (14 1/8)™. O

We apply the lemma to the %Qk with center in P.
Then z is in at most 4™ cubes in each of the 2" quadrants. Thus :

D g, <8" (1.1.10)
k>1

1.1.2 Whitney decomposition

Theorem 1.2. [8] Let F' be a non empty, proper closed subset of R™. Q = F¢. Then there’s a
sequence of cubes Q = {Qy} such that :

1.2 =U, Qr
2. QrNQ =9 if k #1.
3. There exists constants c1,co such that : cidiam(Qx) < d(Qk, F) < codiam(Qy).



Proof. We let M, be the collection of dyadic cubes of length 2.

Q={zec: 27% <d(z,F) < 027k+1} (1.1.11)

Where c is a positive constant to be fixed later. We have 2 = |, 2. We take an initial collection
of cube :

Q= Qe Mi: QN # 2} (1.1.12)
k
We take a cube Q € Qg, let k be such that Q € My. Then there is a x € Q Ny and so :

d(Q,F) < 27 M1 (1.1.13)
Take . € QN Qy, y € Q, z € F. We have

Ay, 2) > d(z, 2) - d(z,y) (1.114)
This holds for all z € F, and all y € Q, thus

d(Q, F) > d(z, F) — diam(Q) > ¢27% — diam(Q) (1.1.15)
Then :

27" — diam(Q) < d(Q, F) < 27" (1.1.16)
Since diam(Q) = /n27%, if we take ¢ = 2y/n, then

diam(Q) < d(Q, F) < 4diam(Q) (1.1.17)

Thus all the cubes in Qg satisfies the third condition with constants ¢; = 1, co = 4. But the
second condition is not satisfied.

For a cube Q € Qq, let Q' € Q such that Q@ C Q'. Then by 1.1.17 diam(Q’) < 4 diam(Q).
Thus there exists a maximal dyadic cube in Qg containing Q.

Thus Q, the subset of Qg comprised of maximal dyadic cubes satisfying 1.1.17, satifies all
three conditions. O

Remark 1.1. Taking ¢ = (14 6)+/n, with 6 > 0, we can get

ddiam(Q) < d(Q, F) < 2(1 + §)diam(Q) (1.1.18)

1.2 Interpolation

Definition 1.5. An operator T is quasilinear if there exist k > 0 such that, whenever T f1 and
T fo are defined, so is T(f1 + f2) and :

IT(fr+ f2)l < £ (ITH]+ T f2]) (1.2.1)

We let (X, pu) and (Y, v) be measure spaces. f a measurable function defined over X, T' and
operator such that T f is defined over Y.
We let :

prA) = ple e X [f(@)] > A}, vn(A) =viy €Y : [h(y)] > A} (1.2.2)



Definition 1.6. Let 1 <r,s < oo. An operator T is of type (r,s) or of strong type (r,s) if Tf
is defined in L™ (u) and if :
ITfllLs@wy < M fllzr (1.2.3)

The least M such that the estimate holds is the (r,s) norm of T
For s < 0o, T is of weak type (r,s), if :

vr) < (511 (12,0

The least M such that the estimate holds is the weak (r,s) norm of T.
If s = oo, weak type (r,s) is defined as equivalent to strong type (r,s).

Proposition 1.1. Let f be a measurable function. Then :
J @l au@) = [ parug ) ax (1.25)
0

Theorem 1.3 (Marcinkiewicz). [9] 1 < p1,q1,p2,92 < oo, with p; < q; and q1 # q2. Let T be
a quasilinear operator that is simultaneously of weak types (p1,q1) and (p2,q2), with norms M,
and My respectively. Then for any (p,q) with :
1 1-6 6 1 1-6 0

= +

—, - = +—; 0€(0,1) (1.2.6)
P m op2 4 @

T is of strong type (p,q) and we have :

ITfllq < KM{MY| f]l, (1.2.7)

Where K = K(0,k,p1,q1,D2,q2) is independant of f, and stays bounded if p1,q1,p2,q2 are
fized and 0 stays away from 0 and 1.

Proof. We can suppose without loss of generality that py > p;.

Let f € LP(X,p), f = f + f/ with f'(z) = f(z) if |f(z)] < 1and f/(z) =0if |f(z)| > 1.
Then f' € LP2 and f” € LP*. thus Tf' and Tf" exists, by hypothesis, and then so does
Tf=T(f + ).

We first consider the case when ¢, g < 0.

1Ty = /0 g " torp () dX = (2&)‘1/0 g\ wrp(262) dX (1.2.8)
Now let z > 0, f = fi + fo, with :
_ @) ifff(r) <2
fi(z) = {eiargfz it ()] > = (1.2.9)

We have

|fil = min(|f[,2), |f]=[f]+]f] (1.2.10)
We write yu; = py, and v; = vpy,. We have :



vr(26X) < vi(A) + v2(X)

]\41 q1 ]\42 q2
< (/\|f1||p1> + ()\|f2||p2>

By (1.2.10), we have :

uamz{gﬂ” S by =p+2) (1.2.11)

Thus

ngz/pﬂfmwwmHﬁ%z/‘mWww*www
0 z

Then the integral in (1.2.8) is bounded by :

0 z ks
M{nplfl/ A1 (/ Py (t) dt) dA
0 0
e’} S k2
+M§2p§2/ N2zl (/ tpz—lluf(t) dt) dr  (1.2.12)
0 z

With k; = % > 1. The idea is then to take for z a monotone function of A and then choose
the right parameters. We note P the first integral in (1.2.12), @ the second. We have :

) o z(X)
P :sup/ Xl‘ql_l/ 1 (1) dt (V) dA
x 0 0 (1.2.13)

oo oo
Q% = sup/ )\q_qz_l/ (t — 2)P> g (t) dtw(N) dA
w Jo z(N\)

Where x and w are taken among nonegative, measurable functions satisfying respectively :

/ YA)FATaT gy < 1
o (1.2.14)

/ wA)F2 N2 ) < 1
0

Indeed, by Holder’s inequality, P s larger than the integral inside the supremum for all
such x. There’s equality if and only if :

z k1 S
xw“=4/ﬂ“mmmﬁ, [t an =
0 0

And since c in the first equation is arbitrary, we can choose it so that the second is satisfied.
Now take ps > p1 and g1 > q2. We let :

z= @)6 (1.2.15)



With A, £ > 0 to be determined. We have

[t [t any an= [ o [ xoonee ot dvar
0 0 0

At¢€

s/ P (1) (/ S ATTat dA) dt  (1.2.16)
0 At€

1
Ad—q \ kr [° _q_a-a
<< ) [ 0
0

9 —4q

Then :

Ad—an o _i_g=a1 Fa
P — (/0 P () dt) (1.2.17)

We do for @, and we get. The integral in the sup in (1.2.13) is :

o7} At%
/ (t — z)PrlM(t)/ wNATT 2L q) dt
0 0

ko

[e'e] At%
< / th_lluf(t) / A9—92=1 g\ dt (1.2.18)
0 0

1
o d e )
: (Aq ) k2 / R TORY
T\ g2 0

And thus we have :

— o0 k
q q q1, k1 Ad—a p1—1-44 '
||Tqu < (2r)%q | M{"py a—q t 18 Mf(t) dt
- 0

_ k
M2 ko Ad—ae > Pz*lfiqk_qg ’
+ My~ py t 2 ,Uf(t) de (1.2.19)
0

q—Qq2

Now we choose £ so that the power of ¢ in both integral is equal to p — 1. For it to be true
in the first integral, we need :

1 11
P el 1Y/ S T
P-p)an -1

1_1<1_9> and 1_1__9(1_1>
a 1-0\q¢ ¢/’ @ q 1-0\q g

The same holds for p, so we have :

But :




And so we can write £ the two following ways :

_prilg—q1) _ p2(g— @)
Calp—p) @0 —p2) (1:2:20)

But the term on the right is the one such that ps — (¢ — g2)/k2 = p. And so we get :

kl — k‘g —
Aq q1 Aq q2
Mﬂ@é@@%(MT<?> m_quh+M?(f) q_%wmb> (1.2.21)

Now we choose A so that in both terms of the sum, M;, M> and || f||, have the same power.
Or more precisely such that :
AT g = AT Mg

We get :

—q1 ka—kj

A= MM
We now verify that we get the desired result when we plug this back in (1.2.21). For this,
note that :

Then we have :

And :

- 19
pk1 4+ p(k2 — k1) e Zp(kz—Q(kQ—lﬁ))
g2 — q1 q1

q2 1 0\ g 1—6
=p|l-—aq|l-—— )=+ q
D2 q 42/ P2 P1

(9 1—6)
=pq|—+
D2 p1

=4q

Thus we finally get :

k1 ka %
1T fllq < (2) ((?) S <m> _qq2> MEOMYf (1.2.22)

q1—4q p q

If ¢1 < g2, then, by taking z = (%)6 but with £ < 0, we get in the same way (1.2.22), except
with ¢ — ¢; and ¢ — ¢ instead of ¢ — ¢ and g — ¢o.

The proofs of the cases ¢ = g2 and ¢; = 0o are similar. O

10



1.3 Maximal function

We define the Hardy-Littlewood maximal function by :
Mf(x) = sup f |f(y)| dy (1.3.1)
QeQ(x)
Where Q(x) refers to the collection of all cubes of R™ containing z. We can also define the
centered maximal function where we instead take the cubes with center z. There are constants
¢, C such that, for all real x :

eM,f(x) < Mf(z) < CM.f(x) (13.2)

It is also possible to take the sups over balls rather than cubes. The resulting functions are
also equivalent to M.

We also define My the dyadic maximal functions where the supremum is taken over dyadic
cubes containing . The dyadic maximal function is interesting because of the following result :
if f € L' and A > 0, then

{r eR": Myf(x) > )\} = UQk
k
Where the Q) are maximal dyadic cubes such that ka f(z) dz > A
We have, as a consequence of Theorems 1.1 and 1.3 :
Proposition 1.2. M is of type (p,p) for all p with 1 < p < 0o, and of weak type (1,1).

M is clearly bounded on L, and the weak L' estimate follows from the following slightly
more general result and the equivalence of centered and uncentered maximal functions :

Proposition 1.3. Let i be a positive Borel measure. We let M,, be the mazimal function defined

by :

M, f(z) = sup / fla

QeQ(z) M

With Q(x) being the collection of cubes with center x. Then there is a 6,, > 0 depending only
on the dimension n such that :

plr € R" : M, f(xz) > A} < 97” / i |f(z)] du(zx) (1.3.3)

Proof. We let Ex = {M, f > A}. Then for any x € E there is a cube with center x, such that :

1
5 /Q 7@ dute) > A

Thus by Theorem 1.1 there is a subsequences {Q} of the {Q, : € E\}, and a constant 6,
depending only on the dimension n, such that any point of R is in at most 6,, of the @)y, and
such that the Qx cover Ey. Then :

EA<ZMQ,€<Z/ ol du(e) < 3 [ 1) due)

Which is what we wanted to show. O

11



1.4 Calder6on-Zygmund decomposition

We let Qg be a cube of R", and f € L*(Qqg). We define, for A > 0,

Ex={z€Qo: Maof(z) > A}
Mg, refers to the dyadic maximal functions of @)y, where the supremum is taken over the

dyadic cubes of Qq, i.e. if we have :

n

Qo = [[ lwi,zi +1)

i=1
Then the dyadic cubes of Qg are those cubes @ of the form :

= k; ki+1
Q:H[Jci—I—le,xi—l— + l)
i=1

2m

Where k1, ..., k,, m are non-negative integers with 0 < k; < 2™ 1 <i < n.
Now we let :

Xo =f0 ()] da

Then, for A > Ag, Ex = J,, @k, with @ maximal dyadic such that ka |f(z)] dz > A. Then
Qr € Qo and so, with @}, being the dyadic parent of Qy, :

)\S][ |f(:17)|d9:§2”][ |f(z)] de < 27X (1.4.1)
K Qr

Now if k > 1, then E.\ N Qr = U, Qr,i, with Qx; maximal dyadic cube in @ such that
kal |f(x)] dz > kA, and we have :

KA < ][ |f(z)| dz < 2"kA (1.4.2)
Q1

Indeed, either Qx; € Q) and we do as previously, or Q; = Qj and then we use (1.4.1) and
A < kA. To summarize :

Proposition 1.4. With the same notations, we have :
Ex={JQk Eua=J0k
k k1

With Qx,, C Qg for allk, |, QxNQr =@ if k # k' and Qr N Qi = @ if l #1'. Moreover :

A< ][ f(2)] dz < 27\ (1.4.3)
Qk
KA < ][ |f(x)] de < 2"kA (1.4.4)
Qr,

12



1.5 Weights

In all that follows, w is a locally integrable positive function, and dp = w(z)dz

Definition 1.7. Let 1 < p < co. We says that w satisfies the A, condition, or that w € A, if,
there exists a constant Cp such that for all cubes Q C R"™, we have :

]éw <fQ w‘pil)pl <C, (1.5.1)

If p =1 we says that w € Ay if, there is a constant C such that for all cubes Q C R™ :

][ w < essinf w (1.5.2)
Q Q
We also define Ao to be the union of the A, :
A =] 4y (1.5.3)
p>1

Proposition 1.5. Let 1 < p < oo, then w € A, if and only if the Hardy Littlewood mazimal
function M is of weak type (p, p) for the measure p.

Proof. First if p > 1. Suppose that the maximal function is of weak type (p, p) Then for A > 0,
f € LP(u), we have :
1
pMf@) >N < O [ 1@l wi)da
RTL

Let @ be a cube of R™, and A = f, [f(z)| dz. Then for all z € @ and for ¢ > 0, we have
Mf(x) > X —e. If fisnot 0 almost everywhere on @, then for € small enough, then A —e > 0
and :

MQ) < Oy [ 1@ wie)da

This for all € with A > ¢ > 0, thus, using the given value of A :

Q)

Taking f = (e + w)_v%l]lQ for e > 0, f € LP, and so applying (1.5.4) and taking ¢ — 0 with
the monotone convergence theorem, we get :

1 p 1
fw<][ w_Pl> §C/ w1
Q Q Q

Now conversely, if (1.5.1) is true. First we will shows that (1.5.4) holds. Indeed, let @ C R™
and f € LP(Q, ). Then by Holder’s inequality :

(7{9 7= dx>p <0 /Rn |f(@)[P w(z)dw (1.5.4)

1
7

fueia< (g [ ser wein) (f v s)’

But p'/p=1/(p — 1), and so by (1.5.1), we have :

13



ﬁu@wnsQJQ/pumwmwmf(ﬁg);

Which reduces to (1.5.4).
Now, take :

Mﬂ@zggmﬁ /u )| w(z (1.5.5)

Where Q(z) is the collection of all cubes with center z. Then by (1.5.4), M f(x)? < M, f(z).
But M, is of weak type (1, 1) for p, so M is of weak type (p, p) for pu.
Now suppose that p =1, and M is of weak type (1, 1). Then by (1.5.4) :

fw<cbum./'ﬂw

Let z € @, and £ > 0 such that B(x,e) C @, where B(x,¢) refers to the euclidian ball of
center z and with radius . Then taking f = 1p(, ), we have

][ w< C w(z)dx
Q B(w,e)

Then by Lebesgue’s differentiation theorem, for almost every = € @,

]éw < Cw(x)

And so w is an A; weight. Conversely, if w € Ay, then :

/u e m>f /u|m~<@fwmm

And so (1.5.4) holds, and we prove M is of weak type (1, 1) as when p > 1. O
Corollary 1.1. Let 1 <p < g < oo, then A, C Ay.

Proof. Let w € Ay,

We will first prove L>°(du) = L*°(dz). This is equivalent to say that a set is negligible for
w if and only if it is negligible for the Lebesgue measure. Naturally, since du = w(x)dx, then if
a set is negligble for the Lebesgue measure, it is negligible for ;. Moreover since w € A, then
w~ (=1 ig Jocally integrable and so is finite almost everywhere. Then w~! is also finite almost
everywhere. dz = w(z)~'dy, and so if a set is negligible for y, it is negligible for the Lebesgue
measure.

Thus, for the measure u, the maximal function is of weak type (p,p) and of type (o0, 00),
and by the Marcinkiewicz interpolation theorem, it is of type (¢, ¢), and so w € 4, O

Proposition 1.6. Let w be in Asy. Then p is a doubling measure. There is a constant C > 0
such that if Q is a cube in R™, then

1(2Q) < Cu(Q) (1.5.6)

14



Proof. w € Ay, then w € A, for some p > 1, and, in (1.5.4), taking f = 1,-1¢, with £ > 1,
then :

o (M QY ¢ e Q)
= (M) <o
And so, for k > 1, and @ a cube of R™ :

H(kQ) < Cr™(Q) (L5.7)

And so i is a doubling measure. O

We also have the following characterizations of A, weight :

Proposition 1.7. A weight w is in As if and only if one of the following equivalent condition
is satisfied :

1. There exist 6, € € (0,1) such that, for all cubes @ C R™ and E C Q

(m(E) < m(Q)) = (u(E) < en(Q)) (1.5.8)

2. The weight w is a A weight if and only if, there exist a r > 1, and a constant C such

that for all cubes Q C R™,
1
(][ w’“) < c][ w (1.5.9)
Q Q

3. A weight w is in A if and only if, for all € > 0, there exists 6 > 0 such that, for every
cube Q C R™ and every E C Q

(m(E) < m(Q)) = (u(E) < en(Q)) (15.10)

The second property is called the Reverse-Holder. We will only prove that the last property
follows from it. The same results are also true if we replace cubes with euclidian balls.

Proof. Indeed, we have, for f measurable, non-negative :

{1 wtorae < (£ s dm)"'l’ (f oy dx>¢
<c <][Q fl@) dx) ' ]é w(z)de

U=

Taking f = 1g, we then have :

u(E) <ec () ’ Q) < ed+ p(Q)

Then for 6 = (§)7J, (1.5.10) holds. O

c

Another consequence of reverse Holder is the following theorem :

Theorem 1.4 (Muckhenhoupt). Let w be an A, weight, for 1 < p < co. Then, there is some
€ >0 such that w € A,_..
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1.6 Spectral Analysis

1.6.1 Operators on Hilbert space

We let H be a Hilbert space, and T a linear operator on H with domain D(T). We will be
interested in operators for which D(T') is a dense subspace of H. The graph of T is the set
(T) ={(¥,Ty); ¢ € D(T)}. T is closed if its graph is a closed subspace of H x H.

An operator on H 77 is an extension of T if I'(T) C T'(T"). T is closable if it has a closed
extension. We write T' C T” to say that T” is an extension of T'. Every closable operator T has
a smallest closed extension, called its closure, and denoted by T.

We denote by I : H — H the identity operator 1¢ = ¢.

Definition 1.8. Let T be a densely defined linear operator on H. Define D(T™*) by :

D(T") ={¢ € H; In € H,Yy € D(T), (T, ¢) = (¢, )} (1.6.1)

When D(T') is dense, then n is uniquely determined, and we define, for any ¢ € D(T*),
T*¢ =n. By the Riesz lemma, ¢ € D(T*) if and only if |{T, ¢)| < C||¢| for allp € D(T).
T* is called the adjoint of T.

Theorem 1.5. Let T be a densely defined operator on a Hilbert space H, then :

1. T* 1is closed.
2. T is closable if and only if D(T*) is dense. If so, then T = T**
8. If T is closable then T =T~

Definition 1.9. A densely defined operator T is called symmetric if T C T*. FEquivalently, T
is symmetric if and only if :

Vo, v € D(T), (T, ) = (¢, TY) (1.6.2)

T is called self-adjoint if T =T, i.e. if and only if T is symmetric and D(T) = D(T*).
A symmetric operator T is essentially self-adjoint if its closure is self-adjoint.

Theorem 1.6 (Basic criterion for self-adjointness). Let T be a symmetric operator on H. The
following statements are equivalent :

1. T is self-adjoint.
2. T is closed and Ker(T* £14) = {0}.
3. Ran(T'+4)=H
Where Ker(T) = {¢ € D(T); T¢ = 0} and Ran(T) = {T'¢; ¢ € D(T)}.
Corollary 1.2. Let T be a symmetric operator on H. The following statements are equivalent :
1. T is essentially self-adjoint.
2. Ker(T* + 1) = {0}.
3. Ran(T +1) are dense.
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1.6.2 The spectral theorem

Let T be a closed operator on a Hilbert space H. The resolvent set of T is the subset of the
A € C such that \I — T is a bijection of D(T') onto H with a bounded inverse. If A € p(T), then
RA(T) = (M —T)~ ! is called the resolvent of T at .

The spectrum o(T) is the complement of the resolvent. The point spectrum of T is the set
of eigenvalues of T, i.e. the A such that Ker(A — T') # {0}. The discrete spectrum ocg;sc(A)
is the set of eigenvalues of T of finite multiplicity, which are isolated points of the spectrum.
The essential spectrum oess(A) is the complement of the discrete spectrum. In other words, it
contains the element of the spectrum which are not eigenvalues, as well as eigenvalues of infinite
multiplicities and limites points of the point spectrum.

The spectrum is a closed subset of the complex plane. If T is bounded, then it is a compact
set. If T is symmetric, then o(T) C R.

Theorem 1.7 (Spectral theorem, multiplication operator form). [5]/ Let A be a self-adjoint
operator on a separable Hilbert space H with domain D(A). Then there is a measure space
(M, ), with p a finite measure, an unitary operator U : H — L?>(M,du), and a real-valued
function a : M — R, which is finite almost everywhere, such that :

1. v € D(A) if and only if a(-)(Uv)(-) € L*(M,dpu).
2. If € U(D(A)), then (UAU1¢)(z) = a(z)p(x).

Idea of the proof. We first prove the spectral theorem for bounded self-adjoint operators. Using
the basic criterion of self-adjointness, we can show that (A +4)~! are bounded operators, and
use the spectral theorem for them. O

One of the interest of the spectral theorem is that it allow us to define functional calculus
on self-adjoint operators. If h is a bounded Borel function on R we define h(A4) = U’lTh(a)U,
where T}, is the operator on L? defined by T,,1(z) = m(x)y(x). In this way we get :

Theorem 1.8 (Spectral theorem, functional calculus form). Let A be a self-adjoint operator on
H. Then there is a unique map ® from the bounded Borel functions on R into the bounded linear
operators on H so that :

1. ® is an algebraic *-homomorphism, i.e. it is an algebra homomorphism and ® (f) =d(f)*.

2. @ is norm-continuous, that is ||®(h)| 2y < [|h|oo-

3. Let h,, be a sequence of bounded Borel functions with h,,(x) — x for each x and |hy,(z)| < ||
for all x and n. Then, for any ¥ € D(A), lim,_ o ®(h, ) = A,

4. If hp(x) — h(x) pointwise and if the sequence ||hnlleo is bounded, then ®(h,) — ®(h)
strongly, i.e. for all 1, ||®(hy)y — ®(h)] — 0.

5. If AY = M, then ®(h)yY = h(N\)1.
6. If h > 0, then ®(h) > 0.

Example 1.1. If we take the Fourier transform F for the operator A = —A on L*(R™), with
domain D(A) = {¢ € L% Ay € L?}, then we have F(—Av)(€) = 4n?|E[2Fp(E). We have
M =R", du=dz, U=F, a(§) = 47%|¢|%. Though in this case, ji isn’t a finite measure.

We can now define h(—A) by F(h(—=A))(€) = h (472[¢]?) Fu(€).
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This representation also let us study the spectrum of —A. X is in the resolvent set if and only
if there is a constant ¢ > 0 such that, for almost every £ € R™, |4n?|¢|? — )\| > c. This happen
if and only if A is not a non-negative real number. Thus o(—A) = [0,400). Since the spectrum
has no isolated point, then cess(—A) = a(—A) = [0, +00).

The following criterion is useful to determine the spectrum of an operator :

Theorem 1.9 (Weyl’s criterion). Let A be a self-adjoint operator. Then A € o(A) if and only
if there exists {1 }oo, in D(A) so that for allm > 1, ||¢,]| = 1 and lim,, . [|[(A — X),|| = 0.
A € 0ess(A) if and only if the {1} can be chosen to be orthogonal.

Proposition 1.8. Let (M, u) be a measure space, with p a finite measure. Let a be a measurable,
real-valued function on M, which is finite almost everywhere. We define the operator A on

L?(M,pu) by D(A) = {1/1 € L2(M, p); ayp € L*(M, u)}, and AY = ap. Then A is self-adjoint
and its spectrum is the essential range of A :
o(A)={AeR;Ve>0,u(a" (A=, A+¢) >0} (1.6.3)

Proof. That A is symmetric is clear. Let ¢ € D(A*), and xny = lyjz)<n}- Then by the
monotone convergence theorem,

A"l = Jim [xx A"
—00

= lim (Sup |<¢7XNA*¢>|>

N—o00

lgll=1
= Jim (sup |<AXN¢,¢>|> (1.6.4)
=00 \ Jlgll=1

= lim (sup |<¢,XNC“/J>|>

N=oo | jlg|=1
= 1.
Jim [xway|

Thus ayp € L2(M, p), so 1 € D(A), and A is self-adjoint.

Now, let A € R. (A—X)Y(x) = (a(x) —A\)p(x). A € p(A) if and only if (A — A) has a bounded
inverse. When this inverse exist, then

(A=N)""(2) = ——~— () (1.6.5)

And conversely, if the right hand side define a bounded operator on L?(M), then the inverse
of A — ) exists and is bounded. A multiplication operator on L? is bounded if and only if the
multiplier is in L.

Thus ) is in the resolvent set of A if and only if (a — A\)~! is essentially bounded. That is
equivalent to say that there is a constant C' > 0 such that for almost every x € M, we have
(a(z) — A\)~t < C, or equivalently, (a(z) —A) > 1/C > 0, i.e. there is a constant € > 0 such that
p(at(A—e,A+¢)) =0.

And so A is in the resolvent set if and only if A is not in the essential range of A. O

Proposition 1.9. Let A be a self-adjoint operator, then we have :

|\1};ﬁ£1<A¢’ ) =info(A) (1.6.6)
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Proof. By the spectral theorem, we can see A as a multiplication operator on a L?(M, i) space
with y a finite measure. Then (Av, ¢) = [, a( 2 dx > essinf, a(x)|¢||2 = essinf, a(z),
i [l = 1.

Now assume essinf, a(z) = ¢ € R. Then for all € > 0, there is a non-negligible set E on
which ¢ < a(x) < ¢+¢. Taking ¢ = E)1/2 1g, we have ¢ < (A, ) < (c+e)||v]|> = c+e. And

SO :
||zipﬂ£1<Aw7 1) = essinf a(x) = inf o(A) (1.6.7)
If essinf, a(x) = —oo, then for all C > 0, the measure of the set £ = {a(w) <—-C}is
non-zero. Taking again ¢ = u(E)1/2 1g, (AY, ¥) < —C. Thus inf(Ay, ¢) = . O

1.6.3 Quadratic forms

Definition 1.10. A quadratic form is a map q : Q(q) X Q(q) — C, where Q(q) is a dense linear
subspace of H called the form domain, such that q(-,v) is conjugate linear and q(¢,-) is linear

for ¢.4 € Q(q). If q(¢,¥) = q(¥, $) we say that q is symmetric. If q(¢,¢) > 0 for all ¢ € Q(q),
q is called positive, and if q(¢,¢) > —M||¢||* for some M we say that q is semibounded.

Definition 1.11. Let g be a semibounded quadratic form, q(¢, ¢) > —M||¢||?. q is called closed
if Q(q) is complete under the norm :

I6ll+1 = Va(é, ) + (M + 1)]|¢]]2 (1.6.8)

If q is closed and D C Q(q) is dense in Q(q) in the || - ||+1 norm, then D is called a form
core for q.

The || - ||+1 norm comes from the inner product (¢, ¢)11 = q(¥, &) + (M + 1){v, ¢).

Theorem 1.10. If q is a closed semibounded quadratic form, then q is the quadatic form of a
unique self-adjoint operator.

Theorem 1.11 (Friedrichs extension). [6/ Let A be a positive symmetric operator, and let
q(o, ) = (¢, AY) for ¢,p € D(A). Then q is a closable quadratic form and its closure §
is the quadratic form of a unique self adjoint operator A. Ais a positive extension of A, and the
lowere bound of its spectrum is the lower bound of q. Further, A is the only self-adjoint exten-
sion of A whose domain is contained in the form domain of §. Then q is a closable quadratic
form and its closure § is the quadratic form of a unique self adjoint operator A Aisa positive

extension of A, and the lower bound of its spectrum is the lower bound of q. Further, A is the
only self-adjoint extension of A whose domain is contained in the form domain of q.

Example 1.2. We define the Schrédinger operator H = —A =V, V € L, ., with domain
D(H) = {1/) el AYpel? Vye LQ}. If H is densely defined and semibounded, then the
Friedrichs extension H exists.

The quadratic form (Vo, V) + (¢, V) actually always is well defined at least on C°. If it
is semibounded, and if it is closable, then its closure is associated with a self-adjoint operator. It
allows us to give a sense to —A — 'V even when its domain wouldn’t be dense.
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2. Fractional integrals

2.1 Riesz Potentials

In the following chapter, we define the Riesz Potentials I, by :

L f(x) Ca’n/ f(y)

R |7 —y["
Defining K, by :

Ky (z) = can

x|a—n
Then :

Iaf:Ka*f

dy, 0<a<n

(2.1.1)

(2.1.2)

(2.1.3)

K is locally integrable, and bounded on {|z| > 1}, so I, is well defined at least for f € S(R").

We choose ¢, ,, such that the following is true :

Proposition 2.1.
F(Kqa)(&) = [2mg] "

Where we use for the Fourier transform :

FI&) = f(&) = (z)e 2 dy

R
Thus F (Io.f) (£) = [27¢|7“F £ () and, I, = (=A) /2.

Proof. For t > 0 and z € R", we define

We have :

Notice that we have, for v > 0 :

2
/OO tve*4ﬂ2t\xl2ﬁ — 1 k /Oo sve*SE
0 t 27|z 0 s

(2.1.4)

(2.1.5)



On the other hand, we have :

1 n/ootv—’ge—'i'tzdtzr(g_’y) 1
2\/77- 0 t 922y /2 |£‘n72'y

And we just need to justify that :

([ ) o= [ aen s (2.1.6)

We let G (z) refers to :
dt

Gola) = [ gt G = Colal ™
0

For v <n/2, G, € L'+ L*, and so G, is a tempered distribution and its Fourier transform
is well defined. We let

N dt
Gov(o) = [ o) S

N

dt
Gy N, ® / / gi(x)t(z (2.1.7)
nJ1/N

We have |G, v (z)d(z)| < G (x)¢(x) which is integrable since G., € L' + L> and ¢ is rapidly
decreasing, so G,y — G in the sense of tempered distributions, and so FG., vy — FG,, in the
sense of tempered distributions.

) /mﬂ(/mt tf)m&ﬂmfam
/n /1/Nﬂ/ngt Jo 2T da gd& (2.1.8)

:/y@[mm@f%

The changes in order of integration is justified as G, n is integrable as we have :

Then for ¢ € S(R") :

|G%N($)| < ny+1 (N _ Jif) e—47‘—2|m|2/N

And (t,x) — g4(z)t7~te=2"2¢ is integrable on (1/N, N) x R™.

And so :
N 00
. di . dt
Fan©= [ aerd- [ aerd (2.19)
1/N t 0 t
Then for v = 5=
T (n;a) 1 ( ) _
BT T ) = 2mg " 2.1.10
d ( r(g) 20772 o] |2m¢] ( )
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5 =
aP(I_q p:

Theorem 2.1 (Hardy-Littlewood-Sobolev)
g =np/(n —pa). Then

Let a € (0,n), p € (1,n/a). Let 1 = % -2 e
o fllLe < C(n,p,a )IIme (2.1.11)
For p =1, we instead have the following, for + =1 il
n . ||f||L1 !
m{z e R": |I,f(x)] > A\} < C(n,a) - (2.1.12)
In the following, we will take I, f(z fR" y)|z — y|*™™ dy, since the constant does not
meaningfully impact the results
Proof. For K(z) =

|z|*~™, we let K = K7 + Ko, with

Kl<x>={f(’”) ziz Koo(x>={0 TEn

K(z) z>p
Where p > 0 is a constant. Then K; € L', thus, for all f € LP, K| * f € LP. Meanwhile
Ko €L”, ) ] :

Indeed, if p > 1 wehave%> 2 thus & <1—2 je p/(n—a)>nand Ky (z)? is
integrable. Thus, for all f € LP,

ox feL® If p=1, then Ky € L™ is obvious
And so I, f isdefined forall fe LP, 1 <p< 2

We will prove that the following weak type es‘?imate holds for all 1 < p <

e € R |faf(@)] > A} < Cry (1L12)]

(2.1.13)
It is sufficient to show that (2.1.13) for || f||, = 1. Then just apply it to Hff\l with HfH . Itis
also sufficient to prove that (2.1.13) holds but for {|I, f| > 2\} instead
Then we estimate :

Ky« f|P Kq|P
il g > < P I

p
1. (H
ST S _Cl<)\>

Since :
o
1K1l = c/ ot dr = ¢ pu®
0
But we also have :
1K oo % flloo < [ Koollpr = cap™ 4
Since :

o y
|Ksclly = ¢ ( [ rtesmwten dr) _
”w

Then take p such that cop

k3
q

= czu
A, ie. p= csA"n. Then |[Ku * flloe < A and so, since
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~(z=ap) _ . (ISlp !
m{|Iof| > 22} < m{|K; * f| > A} < eqA =ca|

2.2 Weighted estimates

We now search for the locally integrable functions V' such that we have a weighted equivalent to
the Hardy-Littlewood Sobolev inequality. Specifically, we want to have :

[ af @)V (2)llq < CllLaf(@)V ()]l (2.2.1)
B. Muckenhoupt and R.L. Wheeden established in [4] that this inequality holds if and only
V' is such that there exist a constant ¢ > 0, such that for all cubes @ C R"™, we have :

1

(72 V() da:)é (]é Viz)? dx> Y <o (2.2.2)

This is equivalent to V4 € A, withr =1+ £,
In order to establish those estimates, we will use the following fractional maximal function :

r>0

Mduwwwm@>H?L()ﬂMdy (2.2.3)

Where Q(x,r) is the cube of center x and radius r.

2.2.1 Estimates on M, f

In the following, for A > 0 we let

Ey={xeR": M,f(z) > )} (2.2.4)
We first show the following weak-type estimate :

o

~. Let V be a locally integrable and

Theorem 2.2. Let0 < a <n, 1 <p <2 and ; = ;
non-negative function satisfying (2.2.2). Then, there is a constant C(n,a,p, V), independant of
f, such that, for all X >0 :

</Ex e dx)é = M </ @V )P dx>; (2.2.5)

Proof. Let R > 0, we let E\ g = Ex N {|z| < R}. By definition, for each x € E) g, there is a
cube @, with center x such that :

m@nﬂﬂm/“vwn@>x

x

Then using Theorem 1.1, we extract a subsequence of cubes {Q}, such that any point of
R™ is in at most 6,, of the cubes. Then since p/q < 1 we have
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P
q

<3

(/ V(x)? dx) < (Z/ V(z)? dx)
Brm B ) (2.2.6)
< Vix)? d:c)
3L
Moreover we have, for all k :
A <ml(@u) e [ |f(a)| do (2:27)

k

So that :

( vy da:)q gzk: (HM/Q f(2)] da (/Q V(2)? dx>é>p

By Hoélder, we have :

/)c |f(z)| do < </k F(2)V ()| dx); </k v dx)”l'

And finally, since 1/p' +1/q¢ =1 — a/n, using (2.2.2) :

(EX,RV qd$>q<2( )/ (@)V (@) dz

And so, since no x € R” is in more than 6,, of the cubes Q, we get :
1 1
q 1 E
/ Vi) dz | < cbl/rE ( / F @)V ()| da:) (2.2.8)
Ex g A
This, for all R > 0, and so taking R — oo, we get (2.2.5). O
We can now use Theorem 2.2 to prove the following norm inequality :
Theorem 2.3. Let0 <a<n,1<p<?Z, q:%
function satisfying (2.2.2). Then there is a constant

— 2. V a locally integrable and non-negative
t C independant of f such that :

(/ Mo f(2)V (@) dx) ‘<c (/ V@) d:c) ' (2.2.9)

Proof. w = V9 satisfies Ar, forr =1 + . Thus, there is a r; with 1 < r; < 7 such that w

satisfies A, . r1_1+ , 1< p1 <p, and o —p%—%

Indeed, let py, q1 be deﬁned as such, we simply need to check 1 < p; < p. Notice that p; < p
if and only if ¢1 < ¢. But ¢1(1 —1/p1) < q(1 — 1/p), but then rewriting p, p; in term of ¢, ¢, we
get ¢1 < q. p1 > 1 simply because otherwise, we would have r; < 1.

Thus, by Theorem 2.2, letting dp = w(z)dz, we have :
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q1

i € R™: Maf(z) > A} < qu (/ F(2)V ()P da:) "
We define a sublinear operator T" by :
Tg(z) = M, (g(x)w(x)%) (2.2.10)

And we let g(z) be such that f(z) = g(z)w(x)*/". Then :

pu{z e R" : Tg(x) > A} < % (/Rn lg(z)|P w(x) dx) " (2.2.11)

And so, for the measure u, T is of weak type (p1,q1)

In the same way, w € A,, with r < ry, 79 = 1+ Z—?, p < p2 < %, and T is of weak type
2
i 1 _ 1 _ a1l _1_ « 1 _ 1-6 0
(p2, q2). Since we have =y T mg =y For the 6 € (0,1) such that 5= o we
have X =1=0 4 &
q q1 q2°
Then by the Marcinciewicz interpolation theorem, T is of strong type (p, q) for the measure

. That is to say :

([ 1 o) @ w(m)dx)é <o([ watr w(w)dx)’l’ (2212

Then for g(z) = f(z)w(z)™ we get, since —22 = B —1 we get (2.2.9). O

2.2.2 Comparison of I,f and M, f

Theorem 2.4. Let 0 < a < n, w be an Ay weight and 0 < g < co. Then there is a constant
C, independant of f, such that we have :

/n [Iof(2)]? w(z)de < C - Mo f ()] w(x)dz (2.2.13)

As well as :
sup Xu{x € R" : |Iof(z)] > A} < CsupMpu{z € R": |M,f(z)| > A} (2.2.14)
A>0 A>0

Lemma 2.1. There exist positive constants C, K, such that, if A > 0, v >0 and k > K, and if
f >0 and Q is a cube such that there is a x € Q with I, f(x) < A, then :

n

m{z € Q: Inf(z) > K\, Mof(z) <AA} < C (%) T m(Q) (2.2.15)

Proof. We let g = flag, h = f —g. By Theorem 2.1 :

KA 1 e
" — 5 < —
m{x eR": |Ig(z)| > 5 } <C (n)\ /Rn lg(x)] dx)

Let t € @ be such that M, f(t) < ~yA. If there’s no such ¢, then the lemma is trivial. Let P be
the cube of center ¢, with sides parallel to the axes and three time as long as ). Then 2QQ C P
and :
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[ lot@) do < [ 15@)] do < m(P)E Maf(e) < Am(3Q)
n P
Then :
A ey
m{:ﬂ ER": |Log(z)| > “} <C (1) m(3Q) (2.2.16)
2 K
Now let s € @ such that I, f(s) < A. Then there is a L > 1, depending only on n such that
ify ¢ 2Q and = € Q,
s —y| < Ljz — |
Indeed, |[s —y| < |s—z|+ |z —y|- But z € Q, y ¢ 2Q, so |x —y| > d(Q, (2Q)¢). But this
distance is exactly the radius of @, and diam(Q) < 2y/nrg. Thus :

s —yl < (1+2vn) |z —y|

Lh(z) < L”*a/ TW) gy < pr=eq, f(s) < LN (2.2.17)

Rm\2Q |5 — Y[

Then take K =2L"~%. If kK > K, then we have I, h(z) < % We thus have :

{re: I,f(x) > KA} C {xGQ: Ing(z) > I{)\}

2
Then either there is a t € @ with I, f(¢) < v\ and we can apply (2.2.16), or there isn’t and
the measure of the set we're trying to estimate is zero. In both case, (2.2.15) holds. O

proof of the theorem. Let f be locally integrable. We can assume f > 0 : replacing f by |f],
we only increase the left sides of (2.2.13) and (2.2.14). We first take f with compact support.
{I.f > A} is an open set.

Indeed, if f is essentially bounded and with compact support K, then :

1 1
|$_y|nfoc |Z_y|nfa

Laf(2) = Lnf ()] < [l /K dy

And by Lebesgue’s dominated convergence theorem, then integral goes to 0 as z — x. Now,
we let fo, = fl{r<my +mlfr>py). Since f has compact support, so does f,.

fm 1s increasing, and for all x € R", f,,(z) — f(z). By the dominated convergence theorem,
for all z € R", I, fm(z) = I, f(x), and I, f,, is also an increasing sequence. Thus :

{Iaf > /\} = U {Iafm > /\}

meN
And so {I,f > A} is open. We use Theorem 1.2 :
{r eR": I,.f(x) > \} = UQj
J

With the @, being disjoint cubes such that for each cube @, thereis a x € Q; with |1, f(z)| <
A. Then for :

E;={z e Q) : I.f(x) > kA Myf(z) <yA}
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By the lemma applied to 4Q); :

m(E;) < C4" (%) T m(Qy)
Where we take x = min(1, K), and for § > 0 associated, in the A, condition satisfied by w,
with € = 3579, Then, we let I' be such that C4™ (g)n/(n_a) = §. Then, for all v < T, we have :

1
n(Ej) < 5{"#(%)
Then :

1
p{Iof > 6A, Mof <A} < §n_qu{laf > A} (2.2.18)
And so :
1
p{Iof > cA} < p{M,f >~} + iﬁ_q/ﬁ{faf > A} (2.2.19)
Now we let @) be a cube containing the support of f. Then, if z ¢ 3Q, if P is the smallest cube

with center x containing @), and u the point of @) closest to x. Then there’s is a L, depending
only on the dimension n and L > 1, such that :

m(P) < Lz — ul|"

Indeed. First, since ¢ 3Q, then |z —u| > 2rg. Moreover, rp < |z —u|+ 2rg, since the cube
with this as radius and centered in x with contain Q : Indeed, let y € @, then :

2 = Yloo < Ju =2l + |u = yloo < fu—2|+2rg
Thus rp < 2|z — u|. And so :

m(P) < 4"z — ul|”
Then :

Lof(z) < % / fly) dy < L"m(P)'~% / fy) dy < L" M, f(x)
|z — ul P P

Then for v = min(T", 1/L™), we have :

{Laf > AN (BQ)° C{Maf > A}
And :

p{Iof > kXY <2u{Myf >~yA\} + %m_qu({laf > A}N3Q) (2.2.20)
Then :

YN

KN
/(q/ NI, f > A dX < 277"/ XU MG f > A} dA+
0 0

1 N
w—Q/ N u({ILf > AN 3Q) dA  (2.2.21)
2 0
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Since w is locally integrable, this last integral is finite, and smaller than half of that in the
left side. Thus :

1 kN YN
5;@—0/ NI f > A dX < 27—Q/ AL M, FRAY dA
0 0

And taking N — 400

q
K
M fl120 < 4 (v) 1Mo %,

Now, to prove (2.2.14), we start again from (2.2.20), multiply by A?, and take the supremum
for 0 < A < N. We have :

1
sup N p{Ilof > rA} <2 sup Ap{M,f >~} + 5/@7‘1 sup NMpu({Iof > A} N3Q)
N 0<ASN 0<ASN

0<A<
(2.2.22)
Then a change of variables gives :

k™9 sup ANp{l,f > A} <2977 sup Np{M,f > A\}+
0<A<KN 0<A<AN

1
-k~ % sup NMu({I.f>A}N3Q) (2.2.23)
2 o<acw

Since the last term is finite, and less than half the left side, we finally get, after taking N — oo,
the desired :

q
sup N p{Iof > A} < 4 <”> sup Np{ Mo f > A} (2.2.24)
0<A Y/ 0

O

2.2.3 Norm inequality for /,

Theorem 2.5. Let0 <a<n,1<p< 2, 1= %— >. Let V be a locally integrable non-negative

a’E

function satisfying (2.2.2). Then there is a constant C independant of f such that :

([ sevora) <o ([ revera)’ (2.2.25)
Ifp=1, % =1- 2% and if V is such that there is a constant ¢ such that for all cubes Q :
][ V(z)? dz < cessinf V()9 (2.2.26)
Q zEQ
Then for A >0 :
1 q
/ V(z)Ide <C (/ |f(z)V (2)] dx) (2.2.27)
{I,f>X} A n
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Proof. It V satisfy (2.2.2), then V¢ satisfies A, for some r > 1, and if it satisfies (2.2.26) then
V4 satisfies A;. In both case, V9 is an A, weight, and so by Theorem 2.4, we have :

| s@vapdr<c [ 0ff@Ve)

Rn
And, with dp =V (z)? dz :
sup Mu{x € R : |I,f(z)| > A} < Csup Npu{z € R" : M, f(z) > A}
A>0 A>0

Then using either Theorem 2.3 (for the norm inequality) or Theorem 2.2 (for the weak-type
estimate), we get (2.2.25) or (2.2.27) O

Theorem 2.6. Let0<a<n,1<p<Z, 1_ 1%— &. Let V be a locally integrable non-negative

function, and assume that there is a constant C such that for all f, A > 0, we have :

/ V(2)! dz < C - ( / F(2)V ()| dac) ’ (2.2.28)
{1 f>A} A
Then V satisfy (2.2.2) if p > 1, and (2.2.26) if p=1.

Proof. First, if p > 1. Let @ be a cube of R™. Let A = fQ V(x)*p/ dx. If A =0 then trivially
(2.2.2) is satisfied. If A = oo, then 1/V (z) is not in L?". Thus, there exist a g € L? such that :

9(z)
dz = o0
/Q V(x)
Let f = &1¢g. Then I, f(x) = oo for all z € R™, and, so :

1
/ V(@) de < [ V(@) dz < C—]lg|
o R X

This for all A > 0, so [V (2)? dz =0, and (2.2.2) is satisfied.

Now if 0 < A < o0, let f = V~?"1. Then we have, for all z € Q, |z —y| < v/nm(Q)=. Then
there is a ¢ > 0 not depending on f such that :

Taking this as A, we get :

i 1 . , »
(/ V(x)d dm) <C—m(Q)' ™" < V(x)™? dm)
Q cA Q
So, by the definition of A :

V(z)? da ' V(z)™? da ;gfm(Q)l_Z_(lﬁ‘; Vi(z)™" da -
Q Q Q

Which reduces to (2.2.2), with C independant of Q.

If p=1,let Q be a cube in R", A = essinfycg V(y). If A = oo then (2.2.26) is true.
Otherwise, for all € > 0, there exist a subset E C () with positive measure such that V(z) < A+¢
for all x € E. Let f = 1g, then for x € @ :
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And with this as X :

| Q

(/V qda:>1 < Cm(E) m(Q) —%/EV(x)dx

But [, V(z) dz < m(E)(A+¢), and so, for all e > 0 :

([ ver dx)é < Om(@)h (At )

And thus (2.2.26) holds.
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3. Spectrum of the Schrodinger
operator

The following is based on the article of Martin Schechter|7].

We are interested in the operator of Schrédinger of the form H = —A — V with the potential
V' a non-negative, locally integrable function. Our objective will be to establish estimates on
— 2, the lower bound of the spectrum of H, and to give some conditions for the operator to be
positive.

We let C\ (V) be the smallest constant satisfying :

Vo, ) < CA(V) (IVeIP + X2 wl?), v ece (3.0.1)

This is equivalent to ((—A—Cy(V)~IV), ¥) > —A2||¢||%. Thus if (He, 1) > —A2|]1)||? then
C)\(V) <1.

3.1 Estimating C)(V)

The goal of this section will be to gives estimates on Cy (V).
For a locally finite Borel measure pu, we define :

Gs,k = (AQ - A)%7 Gs )\d,U,(J?) = R Gs,)\(x - y) d:u(y) (311)

Where we write G »(x) for the kernel of the operator G .

Is sdp(x) = / |z —yl° " du(y), 0<s<n (3.1.2)
B(z,0)
M, sdp(x) = sup <r5_”/ d,u(x)) , 0<s<n, Mdp = M oodp (3.1.3)
r<d B(z,r)

3.1.1 Study of I,;

Theorem 3.1. There is a constant Cs 4, depending only on s, n and q such that :

s,5dplly < Csq [ M 5dull, (3.1.4)

Proof. Define, for t > 0,

Sy ={x € R": I, sdu(z) >t} (3.1.5)
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If S; # R™, then we can apply Theorem 1.2, to get

S=J@ (3.1.6)
j=1
Where the @; are disjoints and each cube satisfy :

1
3 diam@; < d(Q;,S;) < 3diam(Q,) (3.1.7)
We additionally want for all cubes to satisfy :

p=4diam(Q;) < ¢ (3.1.8)

Which we obtain by subdivising the cubes. We may lose (3.1.7), in which case we can ensure
that 6 < 2p;. That is to say, we get a decomposition of S; into cubes @, each satisfying (3.1.8),
and each cube will satisfy either (3.1.7) or :

0 < 2p; (3.1.9)
Now let b,d > 0, and define :

E; = {J; € Qj; I 5/2du(x) > th, M, sdu(z) < td} (3.1.10)
Let @ be one of the @);, and E the associated F; set. If Q) satisfy both 3.1.8 and 3.1.9, then :

tbm(E) < / I 5/2du(x) dz

Q
s// |z —y|*™" du(y) dz
@ Bwof) (3.1.11)
< _ S—n
*//wfm«s/z‘x y|*" da dp(y)
zeQ

<2(3) n@+or

Where w refers to the surface of the unit sphere of R", since fB(o R) |z|*~" dz = “R®, and
Q + /2 is the set of points y € R™ such that d(y,Q) < /2. This set is contained in the ball

with center g and radius diam(Q) + (6/2) < (p/4) + (6/2) < 36/4, by (3.1.8). We thus have,
using (3.1.9), and since z¢ € F :

w 6 S 6 n—s
tbm(E) < " <2 (Z + 2) Ms,ddﬂ(l”o)
< gps (ip) td
$ (3.1.12)

w (5\"°
<= (= tdp™
<2(3)

< Yyspn—spitd m(Q)
s
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And so we get :

nd d
m(E) < %485”_87155771(@) = Cn,s3m(Q) (3.1.13)
And (3.1.13) is also true if E is empty.
Now, if 2p < §, then @ satisfy (3.1.7) and (3.1.8). Let 27 € Sf, such that d(z1,Q) <

4diam(Q). If z € @ then |x — 21| < p. Then for any point y such that |y — x| > p, we have :

ly —x1] < |y —z| + | — 21| < 2|y — 2| (3.1.14)

Hence since p < §/2, we have :

I 5/2dp(x) = L5 pdp(x) +/ ly — " du(y)
p<|ly—z|<ds/2
< L pdp(z) +2"7° / ly — "7 dp(y) (3.1.15)
ly—z1|<d

< L pdp(z) + 27 L, sdpu(1)

< I, ,du(z) + 2"~
Now take b = 2"*+1=5 If x € F, then

tb

tb < I, pdp(z) + 5 (3.1.16)
And so :
tb
5 < I, pdp(x) (3.1.17)
Thus :
tb
EClzeQ; I ,du(r) > 5 M, sdp(z) < td (3.1.18)
Hence :
tb
—m(E) S/ I, ,dp(x) de
2 Q
< _ sS—n 1.
< /|Q o~ 4l dz dp(y) (3.1.19)

< (%) P (@ + p)

Since 2p < §, and @ + p is contained in a ball of radius diam(Q) + p = 5p/4 < § about any
point of @, we get, if xg € F :

n(E) < (f) s <5p>ns M sdp(zo)

p
i (3.1.20)
<4> (4 diam(Q))" td



And so we get :

n d

m(E) < ( )22S+15” n¥ <b> m(Q) (3.1.21)
And (3.1.21) is also valid if E is empty. Notice that the constant in this last equation is
greater than the one in (3.1.13), so (3.1.21) holds for all cubes @);. Now, summing over all cubes,

we get :

S

m{I 52dp(z) > th, M, sdu(z) < td} < Cpsdm(Sy), b>2"H1s (3.1.22)

With C), ¢ = wb"~*n"/223571 /s,
Now, we get :

m{]s75/2du(x) > tb} < Oy sdm(Sy) + m{M, s > td} (3.1.23)
Integrating against ¢t¢~! dt from 0 to IV, we get :

N N
/ m{Iss/0dp > th}qt?™" dt < C, Sd/ m(Sy)qt?™! dt+/ m{ M, sdp > td}qt?™" dt
0

Changes of variables give :

Nb Nd
b_q/ m{lss/p2dp > 7her?tdr < Cmd/ m(Sy)qt?™" dit+d” q/ m{M,sdp > r}qr?" dr
0 0
And letting N — oo, we have :
| Zs,5/2dp||? < Chnsdb || I sdpe]| 2 + b q||M dp|? (3.1.24)
5,0/2041 g > bnys 5,0 A q d 5,64 q -1
And so :
[5,62dn]],, < CRZdY 0 | I 5dpall, + IIMS sdpll, (3.1.25)

But we also have :

I sdp(w) = I 5/2du(z) +/ |z —y|*™" du(y)
§/2<|y—a|<6

(3.1.26)
<y 5/0dp(z) + 2" M, sdp(x)
Thus :
s sdpell, = 2"~ (1Mo sdpell,, < || Lo .5/2dm], (3.1.27)
And so :
b
I1s.sdull, < C/2d"/ b |1, sdpull, + (d + 2“) M. sdul, (3.1.28)

Take 1/d = C,, ,29b7, i.e. d/4 = 2-1p=1C;, /9. Then
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11,501, < (2bd™" + 277 F1) || M sdp]], (3.1.29)
With b = 2"+ we have :

1s5ll, <b(2d7 +1) (| M 5dpll, = Crs.q | M 5dull, (3.1.30)
O
3.1.2 Study of G;
Theorem 3.2. There is a constant C;M depending only on those parameters, such that :
1Gsadull, < Ctg [ Moapndp, (3.1.31)

Proof. We will use the following result by Aronszajn-Smith[1] : G x(z) satisfies

colz|®™, Az <1,
Goa(o) < 3.1.32
@) < {cmsmveml, Az| > 1. (8.1.32)

With v = (n — s — 1)/2, and the ¢; do not depend on A\. We let :

~ 0, Az| <1,
Go(z) = 3.1.33
A(®) {GS,A(@, Aa| > 1. (8.1.33)
We have :
|(Gur—Gin) dqu < co |[Toapndul], (3.1.34)

And so, using Theorem 3.1, to prove Theorem 3.2, it will suffices to show that for some
constant C depending only on n, s, ¢, we have :

Hés,,\dMHq < O||M, 1 adn]), (3.1.35)

Now, using (3.1.32) and the definition of 687,\, we have :

Corda) Zer [ N =)o duo)
Az—y|>1
oo (3.1.36)
<oy | (k41 dua)
k=1"F

<A|z—y|<k+1

The set R, = {k <|z| <k+1} can be covered by N(k) balls of radius 1 and centers
2 2N with N(k) < ek L

Indeed, we let A C Ry be maximal such that for all x,y € A, x # y, then |z — y| > 1. Then
if x € Ry, there is a y € A such that |z — y| < 1, otherwise A would not be maximal. Thus
Ry € Uyea B(x,1). Moreover the balls with center in A and with radius 1/2 are disjoints, and

we also have :
1 1
U B (az 2) CB (0, k+ 3) \ B (0, k— 2) (3.1.37)

z€A
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And so :
— 3 " 1 " n—1
2TMHA L k+§ — kfi ~ck (3.1.38)

And so we can indeed impose N (k) < cok™~!
Then the set k < A|z| < k+ 1 can be covered by N (k) balls with centers z() /X, ..., 2N /)
with radius 1/A. Then :
o N(k)
Gordily) < 0= Y (ke 17e S [ dpu(x)
1 j=1 lz—y—20) /A|<1/A
(3.1.39)
e 0 v d (9
<c 1) —
< kZ:: + Z smu(er)\)
And finally :
HGMduH <c12N )k +1)7e " || My 1 jadp], (3.1.40)
O

And (3.1.35) holds.

3.1.3 Estimate on C,(V)
Theorem 3.3. For each p > 1, there is a constant Cp, depending only on n and p such that

CA(V) < Cpsup (Mo 1 3V (2)P)7, A >0. (3.1.41)

Moreover, there is a constant C7 depending only on n such that

Ca(V) > C1My 1)\ V (3.1.42)
Proof. Let § =1/, and define :
K, = sup (Mo, sVP)7 (3.1.43)
For ¢ = 2p > 2, then by Holder’s inequality we have
7 1 7
Mis (Vi) < My (VE ) Mos (lo1?) " =K M (jul” )" (3.1.44)
And so :
1 N 3
|ans (vie)||, < &5 305 (1017) ™| = 57 I0doslolI (3.1.45)
2
Then since ¢’ < 2 we have, since My s is bounded on L” for all » > 1
(3.1.46)

1 1
s (Vi) |, < cxi vl
Then by Theorem 3.2, we have :
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HGM (Véiﬁ) H2 < CCL o5 (0] (3.1.47)

The adjoint of Gl,AVl/Q is V1/2G17,\, since both V12 and Gy = (\? —A)_1/2 are self-adjoint,
and so we have :

[viciag, < et .55 6l (3.1.48)

If we let 6(€) = (A2 + [€]2)? 9(€), then :

o112 = A2l + V][5 (3.1.49)
And :
1 2
(Vip, ) = ||[VEGiag|| < C3(CL 2 Kol (3.1.50)
Finally :
(Vi ) < C*(CL,0)2Kp (M10]l5 + IVY]I3) (3.1.51)

Which gives (3.1.41) by the definition of K.
Now, to prove (3.1.42), let ¢ be a test function equal to 1 on |z| < 1 and to 0 on || > 2. Let
z € R" and define :

PA(x) = ¢ (A(z - 2)) (3.1.52)
Then :
(Vor, 6x) < Or(V) (N[16all5 + [ Vorl3)
< WINPT (o3 + IV ell3) (3.1.53)
< ONCL(V)
Hence :
A2 / V(z) de < CC\(V) (3.1.54)
Alz—z|<1
Since A — C\ (V) is decreasing, then for all positives r < 1/A:
r2n / V(z) dz < CCy (V) < CCOA(V) (3.1.55)
|lz—z|<r
And so My 1,3V (z) < CCO\(V), for all z € R". O

The following corollary will finally gives u the desired estimates on p?, but we will first need
to establish some facts on Cy (V') before proving it. This result was initially established by C.
Fefferman and D-H Phong, see [3] for their proof.
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Corollary 3.1. If —u? is the lowest point of the spectrum of —A —V, then :

p? < sup (20p52 sup (M2p75\/p)1/p — 52>
6>0 x

1/p (3.1.56)
< sup (26’,, (6‘”/ V(y)P dy) - 6_2)
z,0 B(z,0)

And :

/f > sup (6’15_2 sup Ma sV — 5_2)
>0 T

sup (i [ v dy -5
x,0 B(z,6)

Corollary 3.2. If COM,VP <1 then p=0

(3.1.57)

3.2 Properties of C,(V)

Theorem 3.4. C)(V) is continuous in X in [0, 00).

Proof. Let A > 0, suppose that for all v > X\, we have C,(V) < A. Then C,(V) < A. Indeed,

we have :

Vo, ) < A(IVYI? +20l)?), vece (3.2.1)
And so taking v — X,

Vb, ) < A(|VY)* + X|v)?), vece (3.2.2)

And C,\(V) < A.
Next, suppose A > 0 and, for all v < A\, C,,(V) > A, then Cy(V) > A. Indeed, if C\(V) <
A — e, with € > 0, we can find for each v a function ¢, € C2° such that :

IVl + V2 [ | =1 (3.2.3)
And :
CoV) = 5 < (Vihu, 1) < Ca(V) (IV80 12 + X290 1) (3.2.4)
Then by (3.2.3) we have :
2
A= S <O 1+ R =) [l?) < V)Y (3.2.5)

Indeed,

1|1 = (3.2.6)

And so 1+ (A% — 2) |9, ]|2 < A2/v2. Now if we let v — \; we get :

_ 2
L[V 2 _ 1
v2 Y
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A—S<O(V)<A-c

Which is a contradiction. Thus C\(V) > A.

(3.2.7)

Moreover Cy(V) is a decreasing function of \. Combined with the above properties, if € > 0,
then there is a 6 > 0 such that, for all v € (A = §,A), Cx(V) < C,(V) < Cr\(V) + €. And so

C\(V) =inf{C,(V), v < A}. Similarly, Cy(V) = sup{C,(V), v > A}.
Thus, A — C,(V) is continuous.

Theorem 3.5. Let —u? be the lowest point of the spectrum of H = —A —V, then :

2 . 2 2
= inf A= su A
a Ca(V)<1 CA(VF))>1

= inf XNOy(V)= sup NO\(V

Cr(V)<1 (V) cA(VI))>1 (V)

In particular :

o If the set {C\(V) < 1} is empty, then p = oo.

o If the set {C\(V) > 1} is empty, then p = 0.
Proof. It Cx\(V) <1, then

(Vip, ) < CA(V) (IVI17 + A [19]%)

implies :

—Ca(V)N[el? < IVl — (Vip, &) = (HY, )
Then taking the infimum for ||¢|| =1, we get :

—C)\(V)Az < —,u2
And so :

2 < N2O\(V) < A2

If Cx\(V) > 1, then for any € > 0, there is a ¢ € CS°, ||¢|| = 1, such that :

(Vo ) > (CA(V) =€) (IVY)1? + A[1]%)
Thus :

(L+e = CV)IVY(? = (HY, &) + 2 (CA(V) =€) ¢

For € small enough, then this is non-positive. Then :

(Hy, ) < =X}CA\(V) —¢)
And so p? > A\2(C\(V) —€). Taking ¢ — 0, we get :

2 > A20\(V) > A%, Cy(V) > 1.
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From this, if @ # 0, we must have C,,(V') < 1. But this is also true if x = 0 : then, since, for
any A with C\(V) > 1, we have u? > A, then for any A > 0, Cy(V) < 1. Then by continuity, we
also have C,(V) < 1.

Now, by (3.2.12), if u # 0, we have :

C.(vV)=1 (3.2.17)

Moreover, (3.2.12) also implies :

p? < inf A2C\(V) < inf A2 (3.2.18)
c(V)<t cr(V)<1
And with (3.2.17), equality holds. Similarly,
p? > sup ANCO\(V) > sup A2 (3.2.19)
CA(V)>1 Cr(V)>1

And if p? > SUPC, (v)>1 A2, then there is a positive v such that p? > v? > SUPC, (v)>1 A2,
Thus v < p and C, (V) < 1. Which is a contradiction with (3.2.18). Thus there is equality, and

the theorem holds. O
Corollary 3.3.
p? < sup A2 (205 (V) — 1) (3.2.20)
A
p? >sup A2 (CA(V) — 1) (3.2.21)
A

Proof. If Cx(V) > 1, then A\ < A2(2C\(V) — 1). Then taking the supremum over the set
CA\(V) > 1, we get :

p? < osup A (204,(V) —1) (3.2.22)
Cr(V)>1

And the right hand side is clearly less than that of (3.2.20).
If O\(V) > 1, then A2C5 (V) > X\2(Cx(V) — 1), and if C5 (V) < 1, then the right hand side is
non-positive. Then :

p? > sup A (CA(V) —1) =sup A (Cy(V) — 1) (3.2.23)
Ca(V)>1 A

O

Proof of Corollary 3.1. By (3.2.20) and Theorem 3.3, (3.1.41), we have :

)

=

©? < sup \? <2C’p sup (Map 1/3V?)

A>0 (3.2.24)
< sup (2Cp5_2 sup (Mo, sVP)? — 5_2>
6>0 T
And so the first inequality of (3.1.56) holds. The right hand side is equal to :
K = sup (20,,6—2 (May sVP)» — 5—2) (3.2.25)

z,0
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We will show it is actually equal to the second expression in (3.1.56), which we will write L.
Recall :

L =sup | 2C, (5_”/ V)P dy| —o62
z,0 ly—z|<§

We have
1
PoOL40672
5 / VP dy| <=2~ >0 (3.2.26)
ly—z|<8 2017
And so :
1 8L +1
M. Py < 3.2.27
(MapsV?)} < 5 (3227
And we finally get :
p? <K <sup (62 (6°L+1) -6 %) =L (3.2.28)
z,0

And so, since K > L is obvious, we have K = L.
Similarly, using (3.2.21) and Theorem 3.3, (3.1.42), we have :

p? > sup A\ (C1 M1,V — 1)
A>0
(3.2.29)

> sup (C’152 sup My sV — 52>
>0 z
Which is the first expression of (3.1.57). We obtain the second in the same way as above. [
Proof of Corollary 3.2. Taking A =0 in (3.1.41), we have :
Co(V) < C, (My, VP)¥ (3.2.30)
Then, if CP M, VP <1, using Theorem 3.5, u = 0. O

Corollary 3.4. If V() satisfy the A condition, then there is a p > 1 such that :

CA(V) < Ny [ M2V (3.2.31)

Proof. With p > 1 such that the reverse Holder holds, there is a constant L, such that :

(May sVP)? < L,Ma sV (3.2.32)

Then using Theorem 3.3 :
CA(V) < CpLysup My 1,V (3.2.33)
O
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