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balint

23
8.1 Régressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Utilisation des τW ′

opt−i−j
. . . . . . . . . . . . . . . . . . . . . . . 25

9 Conclusion 26
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1 Résumé

Mon stage s’est déroulé à l’UFR STAPS (Sciences et Techniques des Acti-
vités Physiques et Sportives) d’Université Paris-Cité, au sein de l’équipe d’ac-
cueil 7329. Cette équipe est le versant universitaire de l’Institut de Recherche
bio-Médicale et d’Épidémiologie du Sport (IRMES), basé à l’Institut National
du Sport, de l’Expertise et de la Performance (INSEP). En plus de mon tra-
vail quotidien à l’UFR STAPS, j’ai assisté à quelques réunions de recherche à
l’IRMES.

Après une mention rapide de ma contribution à un projet de mise en re-
lation de la charge d’entrâınement avec la performance, nous enchâınerons sur
mon projet principal.

Celui-ci consistait à modéliser l’effort intermittent maximal.
A partir du concept de la puissance critique et de la relation puissance-durée, qui
à une valeur de puissance associe la durée pendant laquelle un individu peut la
maintenir, nous avons pu mettre en évidence deux paramètres propres à chaque
individu : la puissance critique (CP ) et la réserve d’énergie W ′. Ces paramètres
ont pu être estimés en utilisant trois modèles mathématiques différents faisant
le lien entre la puissance et la durée : le modèle linéaire à deux paramètres,
le modèle hyperbolique à trois paramètres et le modèle Omni-domain Power-
Duration (OmPD).
Une fois ces paramètres obtenus, ils ont pu être injectés dans deux différents
modèles mathématiques, représentant la quantité d’énergie restant à un indi-
vidu au cours d’un exercice physique avec alternance de phases de travail et de
phases de récupération : les modèles W ′

balint
et W ′

balode
.

L’exploitation des données à notre disposition a montré l’incapacité de ces deux
modèles à prédire l’épuisement des sujets. Un travail d’individualisation sur le
terme τW ′ impliqué dans la récupération dans le modèle W ′

balint
nous a pour

finir permis d’améliorer les résultats obtenus.
Les codes ont été implémentés en Python.
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2 Mise en relation de la charge d’entrâınement
avec la performance

En parallèle du projet développé dans les parties ci-après, je suis intervenue
en tant qu’aide sur le projet de stage d’élèves de master 1 STAPS (mention
Entrâınement et Optimisation de la Performance Sportive (EOPS) - Parcours
Physiologie de l’Entrâınement, de l’Optimisation de la Performance Sportive et
de la Nutrition (PEOPSN)).

Leur objectif était de comparer des modèles mathématiques de mise en re-
lation d’une charge d’entrâınement avec une réponse à l’entrâınement. Ils dis-
posaient pour ce faire de données concernant les charges d’entrâınement hebdo-
madaires de six cyclistes sur piste spécialistes du 200 m de niveau élite évoluant
à l’INSEP. Pour chaque sujet et chaque semaine, ils avaient les valeurs de la
charge d’entrâınement :

— à vélo en zone d’intensité 3-5
— à vélo en zone d’intensité 1-2
— musculaire
— en zone d’intensité 3-5 (à vélo en zone d’intensité 3-5 + musculaire)
— à vélo au total (à vélo en zone d’intensité 3-5 + à vélo en zone d’intensité

1-2)
— totale (musculaire + à vélo au total)

et pour certaines semaines des valeurs de réponses à l’entrâınement également
à savoir :

— la concentration en testostérone dans la salive avant l’entrâınement
— la différence entre la concentration en testostérone dans la salive avant

et après l’entrâınement
— la concentration en cortisol dans la salive avant l’entrâınement
— le rapport entre la concentration en testostérone et en cortisol dans la

salive avant l’entrâınement
— le score au questionnaire SFMS (Société Française de Médecine du Sport

- questionnaire de dépistage de surentrâınement)
— la performance (en pourcentage de la meilleure performance)
Ils devaient comparer la capacité de plusieurs méthodes (corrélation de Pear-

son, corrélation à mesures répétées, modèle de Banister, modèle de Busso,
modèle REDI), à lier la charge d’entrâınement à la performance.
Le modèle de Banister prend en entrée la charge d’entrâınement et repose sur
le principe que la performance à une date t peut s’expliquer par tous les en-
trâınements antérieurs à cette date. Selon lui, les entrâınements ont sur la per-
formance à la fois une influence négative (fatigue), et une influence positive
(aptitude), toutes deux exponentiellement décroissante de la date qui sépare la
performance de l’entrâınement.

P (t) = P0 + k1

t−1∑
j=1

wje
− t−j

τ1 − k2

t−1∑
j=1

wje
− t−j

τ2
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avec P (t) la performance à la date t, P0 la performance de base, wj la charge
d’entrâınement à la date j, k1 (respectivement k2) le paramètre de gain et τ1
(respectivement τ2) la constante de temps de l’aptitude (respectivement de la
fatigue).
Le modèle de Busso est similaire à celui de Banister mais fait varier le paramètre
de fatigue dans le temps en fonction de la charge d’entrâınement.

P (t) = P0 + k1

t−1∑
j=1

wje
− t−j

τ1 −
t−1∑
j=1

kj2wje
− t−j

τ2

avec kj2 = k3
∑j

i=1 wie
− t−j

τ3 .
Le modèle Robust Exponential Decreasing Index (REDI) reformule quant à lui
la charge d’entrâınement de la manière suivante :

REDIλ(t) =
1∑N

i=0 α
λ
i

N∑
i=0

αλ
i wi

où λ est un paramètre qui peut être ajusté afin de diminuer la charge et

αλ
i =

{
0 si la valeur de wi n’est pas connue
e−λi sinon

Ma contribution a été de leur fournir des codes en langage R à partir d’ar-
ticles et de codes déjà existants, leur permettant pour chacun des sujets, chaque
type de charge d’entrâınement, chaque type de réponse à l’entrâınement et cha-
cun des modèles de mise en relation de la charge d’entrâınement avec la réponse
à l’entrâınement d’obtenir la valeur du coefficient de détermination.
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Figure 1 – Exemple de retour d’un des codes - Mise en relation de la charge
d’entrâınement totale par le modèle de Busso avec la performance pour le sujet
1
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3 Introduction

Les entrâınements sportifs peuvent être menés à différentes intensités (modérée,
lourde, sévère ou extrême) et se déployer sur un large éventail de durées.

Introduit par Scherrer et Monod, le concept de la puissance critique [3]
établit un lien entre une durée t (en s) et la puissance maximale qu’un indi-
vidu peut maintenir pendant cette durée Pmax(t) (en W). Les premiers modèles
mathématiques établis permettent d’obtenir la valeur de Pmax(t) pour des en-
trâınements compris entre environ 2-3 min et 30 min, moyennant la connaissance
de quelques paramètres (modèle linéaire à deux paramètres). Depuis, dans le
but d’avoir accès à des valeurs de Pmax(t) pour des valeurs plus basses ou plus
élevées de t, plusieurs autres modèles ont été créés (modèle hyperbolique à trois
paramètres et modèle OmPD par exemple) [1, 2, 4, 5, 6].
La représentation graphique de Pmax(t) pour un individu est une hyperbole. La
limite de la courbe (quand t → ∞) est définie comme étant la puissance cri-
tique CP . Il s’agit d’une puissance a priori déployable indéfiniment - en pratique
plutôt jusqu’à environ 30 min.
L’aire des rectangles de côtés (Pmax(t) − CP ) et t est définie comme étant W ′

(en J). Il s’agit d’une réserve finie d’énergie utilisable par l’individu. Pendant
toute activité physique nécessitant une puissance supérieure à CP , il pioche
dans cette réserve. Une fois que toute l’énergie a été utilisée, il est épuisé.
Notons de plus, maxP la valeur maximale de puissance qu’il peut déployée.

Figure 2 – Domaine d’application de plusieurs modèles Pmax(t) - [4]

6



Il existe deux méthodes principales de récupération des paramètres CP , W ′

et maxP .
La première méthode est celle du 3-min all-out test [1]. Elle se base sur la
supposition que la puissance atteinte par un individu à la fin d’une phase d’en-
trâınement de 3 min pendant laquelle il lui a été demandé de déployer la puis-
sance maximale qu’il pouvait correspond à CP . La valeur de W ′ est obtenue en
calculant l’aire entre la courbe représentant la puissance déployée par l’individu
au cours du test et la droite d’équation y = CP . Pour finir, maxP correspond
à la puissance maximale produite par l’individu au cours du test.
La seconde méthode est celle qui sera utilisée dans ce projet. Elle consiste à
récupérer, pour un individu, des valeurs de Pmax(t) correspondant à quelques
valeurs de t choisies. Ensuite, à partir des points (ti, Pmax(ti)) obtenus, nous
pouvons récupérer les paramètres CP , W ′ et maxP via une régression.

Considérons un exercice intermittent, c’est-à-dire constitué d’une alternance
de phases d’exercice à une puissance inférieure à CP et de phases d’exercice à
une puissance supérieure à CP .

Notons W ′
bal(t) la quantité d’énergie (en J) qu’il reste à un individu à l’ins-

tant t d’un exercice intermittent. C’est la portion de W ′ que l’individu a à sa
disposition à l’instant t.
Considérons que pendant un exercice intermittent,W ′

bal(0) = W ′ (réserve d’énergie
pleine) et que W ′

bal(t) décrôıt lorsque l’individu s’exerce au-dessus de CP (l’in-
dividu se fatigue) et crôıt sinon (l’individu récupère).
Ainsi, en ayant accès à CP , W ′ et à la valeur de W ′

bal(t) à tout instant t
d’un exercice intermittent, nous pouvons donc en théorie prédire l’arrêt de l’en-
trâınement par un individu, c’est-à-dire l’instant auquel W ′

bal(t) = 0 (réserve
d’énergie vide).
Dans ce projet, nous utiliserons les modèles W ′

balint
et W ′

balode
qui ont été créés

pour être utilisés dans le cadre d’entrâınements d’intensité sévère (ils ont parfois
été utilisés sur des entrâınements d’intensité extrême) [7, 8].

Notre objectif est d’observer les résultats obtenus lors de la récupération
des paramètres via différents modèles Pmax(t) et les résultats obtenus lors de la
modélisation de la réserve d’énergie restante pendant un entrâınement intermit-
tent par les modèles W ′

balint
et W ′

balode
. Nous tenterons ensuite d’améliorer les

résultats obtenus concernant la représentation de l’énergie restante.

4 Définition des modèles

4.1 Premier objectif : récupération des paramètres

Notre premier objectif sera d’obtenir les valeurs des paramètres CP et W ′

propres à un individu.
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A partir des données à notre disposition, la récupération des paramètres
voulus nécessitera de réaliser une régression.
La fonction utilisée pour cette régression dépendra du modèle choisi pour représenter
Pmax(t).

Soit une suite de N points, (ti, Pmaxi)i=1,...,N où Pmaxi = Pmax(ti) pour tout
i = 1, ..., N .

4.1.1 Modèle linéaire à deux paramètres

Le modèle linéaire à deux paramètres se base sur la formule suivante [1, 2,
4, 5, 6] :

Pmax(t) =
W ′

t
+ CP

Il suppose qu’il existe une relation de linéarité entre la puissance maximale
déployable par un individu pendant une durée et l’inverse de cette durée.

En multipliant les deux côtés de l’équation par t, nous obtenons la formule
suivante :

Wmax(t) = Pmax(t) ∗ t = W ′ + CP ∗ t (1)

où Wmax(t) est le travail maximal productible pendant la durée t.
La relation devient linéaire par rapport au temps.

Posons Wmaxi
= Pmaxi

∗ ti.
En ajustant la formule (1) aux points (ti,Wmaxi

), nous obtiendrons une régression
linéaire (notée Wmaxreg

(t)). Nous pourrons obtenir CP en récupérant le coeffi-
cient directeur de Wmaxreg(t) et W

′ en récupérant son ordonnée à l’origine.
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Figure 3 – Wmaxi(ti) et Wmaxreg(t) pour le sujet 1

4.1.2 Modèle hyperbolique à trois paramètres

Soit A un ensemble.
Notons :

1A(x) =

{
1 si x ∈ A
0 sinon

Le modèle hyperbolique à trois paramètres se base sur la formule suivante
[2, 4, 5, 6] :

t(P ) =

(
W ′

P − CP
+

W ′

CP −maxP

)
∗ 1{Q tel que ( W ′

Q−CP + W ′
CP−maxP )>0}(P )

En ajustant la fonction f(P ) =
(

b
P−a + b

a−c

)
∗ 1{Q tel que ( b

Q−a+ b
a−c )>0}(P )

aux (Pmaxi , ti) et en notant treg la régression ainsi obtenue :

treg(P ) =
bopt

P − aopt
+

bopt
aopt − copt

∗ 1{
Q tel que

(
bopt

Q−aopt
+

bopt
aopt−copt

)
>0

}(P ) (2)

nous obtiendrons les paramètres voulus en posant :
— CP = aopt
— W ′ = bopt
— maxP = copt
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Figure 4 – ti(Pmaxi) et treg(P ) pour le sujet 1

4.1.3 Modèle OmPD

Le modèle OmPD se base sur la formule suivante [4, 6] :

Pmax(t) =

{
W ′

t

(
1− exp

(
−tmaxP−CP

W ′

))
+ CP si t ≤ TCPmax

W ′

t

(
1− exp

(
−tmaxP−CP

W ′

))
+ CP −A ln

(
t

TCPmax

)
si t > TCPmax

où TCPmax est la durée maximale pendant laquelle CP peut être maintenue
et A est une constante qui décrit la vitesse de déclin en puissance lorsque t
augmente.
Étant donnés les ti dont nous disposerons, nous nous trouverons exclusivement
dans le cas t ≤ TCPmax = 1800s.
Nous ajusterons donc la fonction f(t) = b

t

(
1− exp

(
−t c−a

b

))
+a aux (ti, Pmaxi)

et noterons Pmaxreg
(t) la régression ainsi obtenue.

Pmaxreg
(t) =

bopt
t

(
1− exp

(
−t

copt − aopt
bopt

))
+ aopt (3)

Nous poserons ensuite :
— CP = aopt
— W ′ = bopt
— maxP = copt
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(a) Pmaxi(ti) et Pmaxreg(t) pour le sujet 1
en utilisant trois points de régression

(b) Pmaxi(ti) et Pmaxreg(t) pour le sujet 1
en utilisant quatre points de régression

4.1.4 Définition de l’erreur

Définissons à présent l’erreur pour chacun des modèles :

Modèle linéaire à deux paramètres

erreur =

√√√√ N∑
i=1

|Wmaxi
−Wmaxreg

(ti)|2 (4)

Modèle hyperbolique à trois paramètres

erreur =

√√√√ N∑
i=1

|ti − treg(Pmaxi
)|2 (5)

Modèle OmPD

erreur =

√√√√ N∑
i=1

|Pmaxi
− Pmaxreg

(ti)|2 (6)

Les régressions obtenues minimiseront ces erreurs par définition de la fonc-
tion Python curve fit utilisée.

4.2 Deuxième objectif : modélisation de la réserve d’énergie

Une fois obtenus les paramètres CP et W ′ propres à un individu, notre
deuxième objectif est de modeler W ′

bal(t).
Plusieurs modèles sont encore une fois disponibles.
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4.2.1 Modèle W ′
balint

Modèle Avec ce modèle [1, 7, 8], W ′
balint

est définie par :

W ′
balint(t) = W ′ −

∫ t

0

[
exp

(
− (t− u)

τW ′

)]
W ′

exp (u) du (7)

où
—

τW ′ = 546 ∗ exp (−0.01 ∗DCP ) + 316 (8)

est la constante de reconstitution de W ′ avec DCP la différence entre
CP et la moyenne des puissances de récupération sous CP

— W ′
exp(u) est une fonction représentant la quantité de W ′ utilisée à l’ins-

tant u

W ′
exp(u) =

{
0 si P (u) ≤ CP∫
(P (u)− CP ) du si P (u) > CP

(9)

La quantité d’énergie restante à un instant t est égale à la différence entre
la quantité d’énergie maximale et la somme des énergies dépensées à chaque
instant précédant t, chacune de ces énergies étant rechargées exponentiellement.

Revenons sur les coefficients 546, 0.01 et 316 dans la formule de τW ′ . Ils
proviennent d’un article détaillant entre autres une expérience visant à étudier
le lien entre τW ′ et DCP . A partir de données concernant des entrâınements in-
termittents effectués par un groupe d’individus, les auteurs ont déterminé, pour
chaque combinaison (sujet, entrâınement), la valeur de τW ′ telle queW ′

balint
(Tfinal) =

0 où Tfinal désigne l’instant où le sujet atteint l’épuisement. Les coefficients ont
ensuite été obtenus grâce à un ajustement de la formule a ∗ exp (−kx) + b sur
les valeurs de τW ′ en fonction de DCP . Ils sont utilisés par défaut.

En ce qui concerne la correspondance de τW ′ à un élément concret, nous
n’avons rien trouvé dans la littérature.
Cependant, nous avons remarqué qu’après une phase de travail d’un entrâınement
intermittent, un individu a récupéré 63 % de sa réserve d’énergie W ′, τW ′ se-
condes après le début de sa phase de récupération. Il récupère ensuite 37 % de
la quantité d’énergie qu’il a récupérée durant les τW ′ secondes précédentes et
ce toutes les τW ′ secondes jusqu’à remplissage de sa réserve ou retour dans une
phase d’exercice.

Version discrète

W ′
balint,j = W ′ −

j∑
i=1

exp

(
− (j − i)

τW ′

)
W ′

exp,i∆ui

avec :

W ′
exp,i =

{
0 si Pi ≤ CP
(Pi − CP )∆ui si Pi > CP

12



où i est le i-e segment du temps total divisé en n segments, j est le segment pour
lequel nous souhaitons calculer W ′

balint
et Pi est la puissance constante déployée

pendant les ∆ui secondes (ici ∆ui = 1 s pour tout i) du segment i.

4.2.2 Modèle W ′
balode

Modèle Ce modèle [8] se base sur les hypothèses suivantes :
— lorsque P > CP , la portion de W ′ disponible diminue à une vitesse égale

à P − CP
— lorsque P < CP , la portion de W ′ disponible augmente à une vitesse

proportionnelle à :
— la portion de W ′ disponible par rapport à W ′ (plus il y a de l’énergie

disponible moins elle est récupérée rapidement)
— la différence entre CP et P

D’où :

d W ′
balode

dt
=

 − (P (t)− CP ) si P (t) ≥ CP(
1−

W ′
balode

W ′

)
(CP − P (t)) si CP > P (t)

(10)

Ainsi, W ′
bal(t) est définie par :

W ′
balode

(tb) =

{
W ′

balode
(ta)− (P − CP ) (tb − ta) si P ≥ CP

W ′ −
(
W ′ −W ′

balode
(ta)

)
exp

(
−
(
CP−P
W ′

)
(tb − ta)

)
si CP ≥ P

(11)
où ta et tb sont des instants arbitraires qui délimitent des périodes où P est
constante.

Version discrète

W ′
balode,i

=

{
W ′

balode,i−1 − (Pi − CP )∆ui si Pi ≥ CP

W ′ −
(
W ′ −W ′

balode,i−1

)
exp

(
−
(
CP−Pi

W ′

)
∆ui

)
si CP ≥ Pi

5 Description des données à disposition

Nous avons commencé par travailler sur un premier fichier de données conte-
nant, pour un sujet unique, et pour 35 entrâınements issus d’un modèle gra-
phique précédemment proposé [9] :

— l’intensité de l’entrâınement (en pourcentage de la PMA (Puissance Maxi-
male Aérobie : plus petite puissance à laquelle la consommation d’oxygène
d’un individu est maximale pendant un effort physique))

— le nombre total de répétitions de l’exercice (à répartir entre les séries)
— la durée d’une répétition de l’exercice
— le nombre de séries
— la durée de récupération entre les répétitions (en min)
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— la durée de récupération entre les séries (en min)
entre autres.

Pour obtenir des points (ti, Pmax(ti)) afin de récupérer les paramètres CP
et W ′ propres à l’individu, nous avons du réaliser une première régression en
amont de celle effectuée pour la récupération des paramètres.
De plus, l’étendue de la liste des points ti obtenue était plutôt restreinte : les ti
étaient compris entre 2 min 16 s et 9 min 3 s.
Aussi, il semblerait que les durées de récupération imposée au sujet pendant les
entrâınements ait été fixées à des valeurs beaucoup trop élevées. Cela a entrâıné
une infatigabilité du sujet selon les deux modèles W ′

balint
et W ′

balode
.

Figure 6 – W ′
balint

(t) et W ′
balode

(t) avec CP et W ′ selon le modèle linéaire à 2
paramètres pour l’entrâınement 25

Pour toutes ces raisons, nous avons ensuite décidé de travailler sur un autre
jeu de données.

Soient (Pmaxi
)i=1,...,4 et (ti)i=1,...,4, deux suites de quatre points tels que

pour tout i = 1, ..., 4, l’individu étudié peut soutenir la puissance Pmaxi
(en W)

pendant ti secondes (ie. Pmaxi = Pmax(ti)).

Posons :
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i ti (en s) équivalent de ti (en min et s)
1 6 6 s
2 120 2 min
3 480 8 min
4 1500 25 min

Table 1 – (ti)i=1,...,4

Les données ont été obtenues en faisant effectuer des exercices à vélo à des
sujets.
Nous avons à notre disposition un fichier contenant pour neuf individus différents,
les valeurs de (Pmaxi

)i=1,...,4.

âge taille (en cm) masse (en kg) quantité d’entrâınement (en heure/semaine)
27± 8 178± 6 70± 6 7± 3

Table 2 – Moyennes ± écart-type arrondies à l’unité d’informations concernant
les sujets

Figure 7 – Extrait du fichier de données représentant les valeurs de Pmax2
=

Pmax(120) pour quelques sujets - Nous pouvons y lire que pour le sujet Jérôme
(sujet n°4), Pmax2 = 294 W.

Nous avons également pour chacun des individus et pour cinq entrâınements
(à vélo) différents (soit 45 combinaisons au total), les puissances déployées à
chaque seconde de l’entrâınement.
Décrivons ces entrâınements :

— Entrâınement 1 : Le sujet travaille à une puissance égale à sa PMA pen-
dant 2 min, puis récupère à 0 W pendant 2 min et ainsi de suite jusqu’à
ce qu’il abandonne.

— Entrâınement 2 : Le sujet sprinte pendant 6 s, puis récupère à 0 W
pendant 2 min et ainsi de suite jusqu’à ce que la puissance qu’il déploie
pendant le sprint diminue de 10 % par rapport à son premier sprint ou
qu’il abandonne.

— Entrâınement 3 : Le sujet travaille à une puissance égale à 200 % de
sa PMA pendant 30 s, puis récupère à 0 W pendant 2 min et ainsi de
suite jusqu’à ce que la puissance qu’il déploie pendant la phase de travail
diminue de 10 % par rapport à sa première phase de travail ou qu’il
abandonne.
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— Entrâınement 4 : Le sujet travaille à une puissance égale à sa PMA pen-
dant 30 s, puis à une puissance égale à 50 % de sa PMA pendant 30 s et
ainsi de suite jusqu’à ce que la puissance qu’il déploie pendant la phase
de travail à PMA diminue de 10 % ou qu’il abandonne.

— Entrâınement 5 : Le sujet travaille à Pmax4
pendant 10 min, puis récupère

à 0 W pendant 5 min et ainsi de suite jusqu’à ce que la puissance qu’il
déploie pendant la phase de travail diminue de 10 % ou qu’il abandonne.

Les entrâınements 1, 4 et 5 sont des entrâınements d’intensité sévère. Les
entrâınements 2 et 3 sont quant à eux d’intensité extrême.

Figure 8 – Puissances déployées par le sujet 1 au cours de l’entrâınement 1 -
CP calculée par le modèle hyperbolique à 3 paramètres
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Figure 9 – Tableau représentant les valeurs de puissances déployées à cha-
cune des 20 premières secondes de l’entrâınement 2 pour quelques sujets - Nous
pouvons y lire que le sujet Zoé (sujet n°2), travaille pendant les six premières
secondes de son entrâınement à 476 W.

Les sujets 3 et 4 ont mal mâıtrisé leurs séances et ont, de plus, trop évolué
en terme de capacités au cours d’elles. Ils ne seront donc pas pris en compte
dans la suite.

6 Récupération des paramètres

6.1 Résultats

Notons :

1. Modèle linéaire à deux paramètres

2. Modèle hyperbolique à trois paramètres

3. Modèle OmPD (en utilisant les trois points de régression (ti, Pmaxi
)i=2,...,4)

4. Modèle OmPD (en utilisant les quatre points de régression (ti, Pmaxi
)i=1,...,4)
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Modèle Linéaire Hyperbolique OmPD OmPD
à deux à trois (3 points (4 points

Sujet paramètres paramètres de régression) de régression)

1
CP = 174 W CP = 151 W CP = 161 W CP = 191 W
W ′ = 25811 J W ′ = 67640 J W ′ = 42842 J W ′ = 18184 J

maxP = 433 W maxP = 407 W maxP = 1073 W

2
CP = 111 W CP = 56 W CP = 79 W CP = 126 W
W ′ = 13697 J W ′ = 176913 J W ′ = 64220 J W ′ = 6764 J

maxP = 191 W maxP = 191 W maxP = 582 W

5
CP = 330 W CP = 313 W CP = 321 W CP = 341 W
W ′ = 17168 J W ′ = 46873 J W ′ = 29180 J W ′ = 11869 J

maxP = 496 W maxP = 481 W maxP = 1400 W

6
CP = 301 W CP = 287 W CP = 293 W CP = 312 W
W ′ = 15946 J W ′ = 41760 J W ′ = 26501 J W ′ = 11182 J

maxP = 461 W maxP = 445 W maxP = 1076 W

7
CP = 231 W CP = 203 W CP = 215 W CP = 249 W
W ′ = 23596 J W ′ = 77098 J W ′ = 44301 J W ′ = 15415 J

maxP = 436 W maxP = 423 W maxP = 1559 W

8
CP = 194 W CP = 147 W CP = 168 W CP = 215 W
W ′ = 21902 J W ′ = 129474 J W ′ = 59051 J W ′ = 12301 J

maxP = 345 W maxP = 341 W maxP = 1237 W

9
CP = 202 W CP = 170 W CP = 184 W CP = 219 W
W ′ = 18850 J W ′ = 87013 J W ′ = 43422 J W ′ = 11204 J

maxP = 342 W maxP = 337 W maxP = 1092 W

Moyenne
CP = 220 W CP = 190 W CP = 203 W CP = 236 W
W ′ = 19567 J W ′ = 89510 J W ′ = 44217 J W ′ = 12417 J

maxP = 386 W maxP = 375 W maxP = 1146 W

écart-type
CP = 69 W CP = 81 W CP = 76 W CP = 67 W
W ′ = 4045 J W ′ = 44692 J W ′ = 12888 J W ′ = 3328 J

maxP = 96 W maxP = 89 W maxP = 287 W

Table 3 – Valeurs individuelles, moyennes et écart-types des CP et W ′ estimés
en fonction du modèle de représentation de Pmax(t) utilisé

6.2 Calcul des erreurs

Étant donné les points de régression à notre disposition, les calculs d’erreur
deviennent :

Modèle linéaire à deux paramètres

erreur =

√√√√ 4∑
i=2

|Wmaxi
−Wmaxreg

(ti)|2 (12)
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Modèle hyperbolique à trois paramètres

erreur =

√√√√ 4∑
i=1

|ti − treg(Pmaxi
)|2 (13)

Modèle OmPD (3 points de régression)

erreur =

√√√√ 4∑
i=2

|Pmaxi
− Pmaxreg

(ti)|2 (14)

Modèle OmPD (4 points de régression)

erreur =

√√√√ 4∑
i=1

|Pmaxi
− Pmaxreg

(ti)|2 (15)

Modèle Moyenne ± écart-type de l’erreur (arrondis à l’unité)
1 9646± 2084 J
2 6± 0 s
3 6 ∗ 10−10 ± 9 ∗ 10−10 W
4 20± 4 W

Table 4 – Moyennes ± écart-type arrondies à l’unité des erreurs en fonction
du modèle utilisé

Les régressions ne sont pas réalisées sur les mêmes variables selon le modèle
utilisé. L’erreur du modèle 1 est une erreur sur le travail en joules, alors que celle
du modèle 2 est sur le temps en secondes, et celles des modèles 3 et 4 sont sur
la puissance en watts. Nous ne pouvons donc pas définir le modèle dont l’erreur
est la plus faible comme étant le plus efficace.
De plus, les paramètres de CP , W ′ et maxP étant propres à un individu, nous
n’avons pas à notre disposition de valeurs cibles qu’ils auraient du prendre.

Cependant, nous nous permettons tout de même d’observer que les valeurs
des réserves d’énergie W ′ obtenues via les modèles 2 et 3 sont très élevées et
que les valeurs de maxP obtenues sont plutôt basses par rapport aux valeurs
habituellement trouvées dans la littérature. En observant les courbes du modèle
2 représentant t(P ), nous remarquons que la valeur de maxP estimée par le
modèle est même plus faible que Pmax1

= Pmax(6) (2).
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7 Modélisation de la réserve d’énergie

Observons à présent les valeurs des moyennes ± écart-types de W ′
balint

(Tfinal)
et W ′

balode
(Tfinal) obtenues en fonction du modèle utilisé pour récupérer les pa-

ramètres CP et W ′.

Modèle Moyenne ± écart-type
Moyenne ±

écart-type des valeurs absolues

1
W ′

balint
(Tfinal) = 7301± 8472 J W ′

balint
(Tfinal) = 9370± 6105 J

W ′
balode

(Tfinal) = 11735± 7796 J W ′
balode

(Tfinal) = 12949± 5549 J

2
Moyennes et écart-types non calculables car Moyennes et écart-types non calculables car
certains entrâınements sont non intermittents certains entrâınements sont non intermittents

3
W ′

balint
(Tfinal) = 28827± 14242 J W ′

balint
(Tfinal) = 28842± 14211 J

W ′
balode

(Tfinal) = 24732± 13485 J W ′
balode

(Tfinal) = 26015± 10805 J

4
Moyennes et écart-types non calculables car Moyennes et écart-types non calculables car
certains entrâınements sont non intermittents certains entrâınements sont non intermittents

Figure 10 – Moyennes ± écart-type des valeurs et des valeurs absolues des
W ′

balint
(Tfinal) et W

′
balode

(Tfinal) sur tous les sujets et tous les entrâınements en
fonction du modèle Pmax(t) utilisé pour récupérer les paramètres CP et W ′

Modèle Moyenne ± écart-type
Moyenne ±

écart-type des valeurs absolues

1
W ′

balint
(Tfinal) = 11404± 7279 J W ′

balint
(Tfinal) = 11949± 6344 J

W ′
balode

(Tfinal) = 12188± 9550 J W ′
balode

(Tfinal) = 14211± 6146 J

2
Moyennes et écart-types non calculables car Moyennes et écart-types non calculables car
certains entrâınements sont non intermittents certains entrâınements sont non intermittents

3
W ′

balint
(Tfinal) = 31731± 13014 J W ′

balint
(Tfinal) = 31731± 13014 J

W ′
balode

(Tfinal) = 22104± 14519 J W ′
balode

(Tfinal) = 24242± 10569 J

4
Moyennes et écart-types non calculables car Moyennes et écart-types non calculables car
certains entrâınements sont non intermittents certains entrâınements sont non intermittents

Figure 11 – Moyennes ± écart-type des valeurs et des valeurs absolues des
W ′

balint
(Tfinal) et W

′
balode

(Tfinal) sur tous les sujets et les entrâınements sévères
(1, 4 et 5) en fonction du modèle Pmax(t) utilisé pour récupérer les paramètres
CP et W ′
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Modèle Moyenne ± écart-type
Moyenne ±

écart-type des valeurs absolues

1
W ′

balint
(Tfinal) = 1147± 6069 J W ′

balint
(Tfinal) = 5502± 2806 J

W ′
balode

(Tfinal) = 11056± 3788 J W ′
balode

(Tfinal) = 11056± 3788 J

2
W ′

balint
(Tfinal) = 68611± 45673 J W ′

balint
(Tfinal) = 68611± 45673 J

W ′
balode

(Tfinal) = 65687± 39889 J W ′
balode

(Tfinal) = 65687± 39889 J

3
W ′

balint
(Tfinal) = 24470± 14880 J W ′

balint
(Tfinal) = 24509± 14816 J

W ′
balode

(Tfinal) = 28673± 10608 J W ′
balode

(Tfinal) = 28673± 10608 J

4
W ′

balint
(Tfinal) = −4930± 5499 J W ′

balint
(Tfinal) = 5607± 4807 J

W ′
balode

(Tfinal) = 5972± 3000 J W ′
balode

(Tfinal) = 5972± 3000 J

Figure 12 – Moyennes ± écart-type des valeurs et des valeurs absolues
des W ′

balint
(Tfinal) et W ′

balode
(Tfinal) sur tous les sujets et les entrâınements

extrêmes (2 et 3) en fonction du modèle Pmax(t) utilisé pour récupérer les pa-
ramètres CP et W ′

Nous remarquons que pour certaines combinaisons de modèle Pmax(t), sujet
et entrâınement, les valeurs du paramètre CP estimées sont telles que le sujet ne
travaille jamais au-dessous ou jamais au-dessus de sa CP . Ainsi, l’entrâınement
ne peut être qualifié d’intermittent puisqu’il n’implique pas d’alternance entre
des phases de travail et des phases de récupération.

Comme nous pouvons le voir sur les tableaux (10), (11) et (12), que nous
considérions la totalité des entrâınements ou que nous les regroupions par in-
tensité, aucune des moyennes des réserves d’énergie à l’épuisement n’est nulle,
ni même comprise entre −1000 et 1000 J en valeur absolue. L’un des objectifs
de ces modèles étant de représenter l’épuisement d’un individu en s’annulant à
la fin de l’entrâınement, ils semblent donc échouer.
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Figure 13 – W ′
balint

, W ′
balode

et puissance déployée au cours d’une portion de
l’entrâınement 4 pour le sujet 2
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8 Individualisation du terme τW ′ du modèleW ′
balint

Tentons d’obtenir des résultats plus satisfaisants en travaillant sur la constante
de récupération τW ′ du modèle W ′

balint
.

Dans la suite, nous n’utiliserons plus que le modèle linéaire à deux pa-
ramètres pour récupérer CP et W ′. Les mêmes opérations auraient pu être
effectuées en utilisant les autres modèles, mais les modèles hyperbolique à trois
paramètres et OmPD à quatre points de régression estiment des valeurs de CP
telles qu’au moins une séance n’est pas intermittente pour au moins un sujet,
et le modèle OmPD à trois points de régression semble estimer des valeurs de
W ′ plutôt élevées et des valeurs de maxP plutôt faibles.

8.1 Régressions

Comme expliqué dans la section (4.2.1), les coefficients de la formule de τW ′

utilisée (8) ont été obtenus via une régression sur les sujets d’un article. Or,
ces coefficients n’ont pas de raison d’être adaptés à nos sujets. Cherchons donc
l’équivalent de cette formule pour notre groupe d’individus.

Notons τW ′
ref
, la valeur de τW ′ obtenue par application de la formule (8).

Pour chaque combinaison sujet/entrâınement, calculons une valeur optimale de
τW ′ notée τW ′

opt
de la manière suivante :

1. Fixons τW ′ = 100 s et τW ′
bis

= τW ′
ref
.

2. Calculons la valeur de W ′
balint

(Tfinal) pour cette valeur de τW ′ .
* Si W ′

balint
(Tfinal) < 0, alors :

— si la valeur absolue de W ′
balint

(Tfinal) calculée en utilisant ce τW ′

est inférieure à celle deW ′
balint

(Tfinal) calculée en utilisant τW ′−1,
fixons τW ′

opt
= τW ′ .

— sinon, fixons τW ′
opt

= τW ′ − 1.

* Sinon :
— si la valeur absolue de W ′

balint
(Tfinal) calculée en utilisant ce τW ′

est inférieure à celle de W ′
balint

(Tfinal) calculée en utilisant τW ′
bis

,
fixons τW ′

bis
= τW ′

puis,
— si τW ′ < 10000, augmentons τW ′ d’une seconde et reprenons à

l’étape 2.
— sinon τW ′

opt
= τW ′

bis
.

Notons τW ′
opt−i−j (respectivement τW ′

ref−i−j), la valeur de τW ′
opt

(respecti-

vement τW ′
ref

) pour le sujet i ∈ {1, 2, 5, 6, 7, 8, 9} et pour l’entrâınement j ∈
{1, 2, 3, 4, 5}. Notons, de plus, DCPi−j , la valeur de DCP correspondant à l’en-
trâınement j ∈ {1, 2, 3, 4, 5} du sujet i ∈ {1, 2, 5, 6, 7, 8, 9}.
Restreignons nous aux entrâınements d’intensité sévère et calculons τW ′

opt−i−j

et DCPi−j , pour tout i ∈ {1, 2, 5, 6, 7, 8, 9} et pour tout j ∈ {1, 4, 5}.
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Entrâınement 1 4 5
τW ′

ref
(en s) 496 711 533

τW ′
opt

(en s) 855 1106 4116

DCP 111 32 92

Table 5 – τW ′
opt−2−j - Valeurs de τW ′

ref
, τW ′

opt
et de DCP obtenues pour les

entrâınements sévères du sujet 2

Essayons à présent d’ajuster la fonction a∗exp (−kx)+b aux points
(
DCPi−j , τW ′

opt−i−j

)
.

Figure 14 – τW ′
opt−i−j en fonction de DCPi−j pour le modèle 1

L’ajustement des paramètres a, k et b aux points
(
DCPi−j , τW ′

opt−i−j

)
se-

lon la formule a ∗ exp (−kx) + b échoue (même en retirant les points issus de
l’entrâınement 5 qui représentent quatre des cinq points d’ordonnée supérieure
à 8000 s).
Nous ne pouvons donc pas mettre en évidence une formule de τW ′ qui serait
équivalente à la formule standard avec des coefficients adaptés à nos sujets.

Nous suspectons l’influence de la puissance déployée pendant les phases de
travail de l’exercice intermittent sur la valeur de la constante de récupération.
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Cependant, d’autres tentatives de régression, en essayant cette fois d’ajuster à

la même formule que précédemment les points
(
DCPi−j , τW ′

opt−i−j ∗ Pmoyi−j

)
puis

(
DCPi−j ∗ Pmoyi−j

, τW ′
opt−i−j

)
où Pmoyi−j

désigne la moyenne des puis-

sances déployées pendant les phases de travail échouent également.

8.2 Utilisation des τW ′
opt−i−j

Le groupe de sujets n’étant pas homogène, ils n’ont pas de raison d’avoir un
τW ′ semblable.
Nous laissons donc de côté l’idée d’adapter la formule (8) à nos données et nous
observons l’impact de l’utilisation des τW ′

opt−i−j pour i ∈ {1, 2, 5, 6, 7, 8, 9} et

pour j ∈ {1, 4, 5}, sur W ′
balint

(Tfinal).

Moyenne ± écart-type
τW ′

refmoy
(en s) 472± 111

τW ′
optmoy

(en s) 3408± 3676

Table 6 – Moyennes ± écart-type des valeurs de τW ′
ref−i−j et τW ′

opt−i−j sur

tous les sujets et sur les entrâınements sévères (1, 4 et 5)

Nous observons que la formule (8) semble sous-estimer la constante de récupération.

Calculons les moyennes ± écart-type de W ′
balint

(Tfinal) selon que τW ′ soit
calculé en utilisant (8) ou de manière optimale pour chaque sujet et pour chaque
entrâınement.

Mode de calcul de τW ′ Via la formule (8) Via la méthode optimale
moyenne ± écart-type des W ′

balint
(Tfinal) (en J) 11404± 7279 614± 1500

moyenne ± écart-type des |W ′
balint

(Tfinal)| (en J) 11949± 6344 619± 1498

Table 7 – Moyennes ± écart-type des valeurs et des valeurs absolues des
W ′

balint
(Tfinal) sur les entrâınements sévères (1, 4 et 5) en fonction du mode

de calcul de τW ′

L’utilisation des τW ′
opt−i−j permet comme prévu de diminuer W ′

balint
(Tfinal)
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Figure 15 – W ′
balint

, W ′
balode

et W ′
balint

avec τW ′ optimal pour l’entrâınement 4
du sujet 2

9 Conclusion

Notre objectif d’améliorer les résultats obtenus lors de la modélisation d’un
entrâınement intermittent par le modèle W ′

balint
via une individualisation de τW ′

semble fonctionner.

Cependant, l’efficacité de ce modèle pour l’exercice intermittent est forte-
ment dépendante des paramètres CP et W ′. Nos calculs ne nous permettent
pas de nous assurer de la supériorité d’un modèle de détermination de ces pa-
ramètres sur les autres. De même, il n’est pas possible d’émettre un avis valable
sur l’efficacité des modèles W ′

balint
et W ′

balode
dans la modélisation du stock

d’énergie d’un individu précis au cours d’un entrâınement donné sans une ob-
servation de ce cas à la loupe.

La piste la plus évidente d’amélioration du modèle pour gérer les entrâınements
semble être l’individualisation du terme τW ′ . D’après les résultats obtenus, cette
piste semble une solution pour rendre le modèle utilisable.

Sans mise en évidence de l’existence d’un τW ′ identique ou au moins sem-
blable chez un individu pour des entrâınements de même intensité, le modèle ne
pourra être utilisé à des fins prédictives. Cette valeur de τW ′ pourrait être fixée
comme étant la moyenne des τW ′

opt
obtenus pour les entrâınements antérieurs

de même intensité de cet individu, et ainsi varier en fonction des améliorations
et des dégradations de ces performances au cours du temps.
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La mise en place de valeurs τW ′ valables au sein de groupes d’individus prati-
quant la même activité serait d’une aide encore plus grande pour la planification
de l’activité physique.

Le terme DCP de la formule standard de détermination de τW ′ (8) est cal-
culé en amont de l’entrâınement comme étant la différence entre la moyenne des
puissances déployées pendant les phases de récupération et la puissance critique
CP . Un re-calcul de ce terme à chaque seconde pourrait peut-être, en échange
d’une complexification du calcul de W ′

balint
(t), améliorer les résultats obtenus.
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A Annexes

Sujet W ′
balint

(Tfinal) W ′
balode

(Tfinal) W ′
balint

(Tfinal) avec τW ′ optimal

ENTRAÎNEMENT 1

1 1763 2917 -8
2 4913 7555 -2
5 8162 11106 -2
6 8143 10758 0
7 17818 21513 2
8 12941 18096 -13
9 12629 16711 -8

ENTRAÎNEMENT 4

1 -5728 -21251 -14
2 3398 2577 2
5 9862 14178 0
6 9243 14001 0
7 14074 14856 2672
8 4307 3788 4
9 7072 9492 1

ENTRAÎNEMENT 5

1 22385 19744 0
2 13130 13465 0
5 16002 17145 3
6 15117 14948 2720
7 23538 23592 0
8 21862 21897 1300
9 18845 18850 6241

Moyenne ± écart-type

11404± 7279 12188± 9550 614± 1500

Moyenne ± écart-type des valeurs absolues

11949± 6344 14211± 6146 619± 1498

Table 8 – W ′
balint

, W ′
balode

et W ′
balint

avec τW ′ optimal (en J) pour les en-
trâınements sévères (1, 4 et 5) de tous les sujets avec CP et W ′ estimés via le
modèle linéaire à deux paramètres
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Sujet τW ′
ref

τW ′
opt

ENTRAÎNEMENT 1

1 412 456
2 496 855
5 336 708
6 343 784
7 381 1289
8 406 806
9 407 1049

ENTRAÎNEMENT 4

1 746 545
2 711 1106
5 438 2293
6 456 1652
7 536 10000
8 606 845
9 569 1176

ENTRAÎNEMENT 5

1 412 2523
2 533 4116
5 342 2312
6 373 10000
7 437 9056
8 477 10000
9 504 10000

Moyenne ± écart-type

472± 111 3408± 3676

Table 9 – τW ′
ref

et τW ′
opt

(en s) pour les entrâınements sévères (1, 4 et 5) de

tous les sujets avec CP et W ′ estimés via le modèle linéaire à deux paramètres
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