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1 Introduction

Leibniz algebras are a generalization of Lie algebras, where we do not require the bracket [−,−] : h×h→
h to be antisymmetric. They were introduced in the 1960’s by A. Bloh. J.-L. Loday and his collaborators
used them in the early 1990’s to study, among other things, the cyclic homology of associative algebras.
Our goal is to use a result from J. Feldvoss and F. Wagemann ([3]) to obtain a version of Theorem 3.1 of
[7] from J.-L. Loday and T. Pirashvili in the case where we have a Leibniz algebra h which is not a Lie
algebra, and to compute the Ext groups in the category of finite-dimensional h-bimodules.

1.1 Leibniz Algebras

Definition 1.1. A (left) Leibniz algebra over a field k is a vector space h equipped with a bilinear map :

[−,−] : h× h −→ h

called Leibniz bracket, that satisfies the (left) Leibniz identity :

[x, [y, z]] = [[x, y] , z] + [y, [x, z]]∀x, y, z ∈ h (1)

Remark 1.2. We can also define a right Leibniz algebra by asking our bracket to satisfy the right Leibniz
identity instead : [[x, y] , z] = [[x, z] , y]+[x, [y, z]], but we will only be concerned with left Leibniz algebras.

Example 1.3. Every Lie algebra is also a Leibniz algebra. It is easy to see that the Jacobi and Leibniz
identities are equivalent if we impose the antisymmetry of the bracket.

For every Leibniz algebra h, we have short exact sequence :

0 −→ Leib(h) −→ h −→ hLie −→ 0 (2)

where Leib(h) is the Leibniz kernel of h, that is the two-sided ideal generated by the elements [x, x] for
x ∈ h ; and hLie := h/Leib(h).
By what has been said in Example 1.3, hLie is a Lie algebra, called the canonical Lie algebra associated to
h

Definition 1.4. A left Leibniz algebra is called semisimple if 0, Leib(h), and h are the only two sided
ideals of h, and Leib(h) $ [h, h].

Proposition 1.5. If h is a simple Leibniz algebra, then hLie is a simple Lie algebra and Leib(h) is a simple
hLie-module.

This proposition is a direct consequence of the correspondence theorem for ideals.
For a deeper study of Leibniz algebras, see for example [2].
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1.2 Lebniz bimodules

Definition 1.6. Let h be a Leibniz algebra. A h-bimodule is a vector space M over k equipped with two
bilinear maps :

[−,−]L : h×M −→M

and
[−,−]R : M × h −→M

which satisfy the following relations ∀x, y ∈ h,∀m ∈M :

[x, [y,m]L]L = [[x, y] ,m]L + [y, [x,m]L]L (LLM)

[x, [m, y]R]L = [[x,m]L , y]R + [m, [x, y]]R (LML)

[m, [x, y]]R = [[m,x]R , y]R + [x, [m, y]R]L (MLL)

Remark 1.7. If M is a h-bimodule, M has a natural hLie-module structure (in the Lie sense). Indeed one
can define a left action of hLie as follows :

hLie ×M −→M

(x̄,m) 7−→ [x,m]L

Note that this is well defined, since two lifts of x̄ differ by an element of Leib(h), which acts in a trivial
way by the identity (LLM) :

[x, [x,m]L]L = [[x, x] ,m]L + [x, [x,m]L]L

implying :
[[x, x] ,m]L = 0

We now define some particular classes of bimodules that will be of use in what follows.

Definition 1.8. Let h be a Leibniz algebra, and M a Leibniz bimodule.
If

[x,m]L = − [m,x]R ∀x ∈ h,∀m ∈M

then M is said to be symmetric and denoted M s.
If

[m,x]R = 0 ∀x ∈ h,∀m ∈M

then M is said to be antisymmetric and denoted Ma.
If M is both symmetric and antisymmetric, then M is trivial.

For every h-bimodule M , there is a short exact sequence of h-bimodules :

0 −→M0 −→M −→M/M0 −→ 0

where M0 = Spank([x,m]L + [m,x]R).
Note that by constructionM/M0 is a symmetric h-bimodule, and thatM0 is an antisymmetric h-bimodule.
Indeed, by summing the relations (LML) and (MLL) of the Definition 1.6, we obtain ∀x, y ∈ h, ∀m ∈M :

[[x,m]L , y]R + [[m,x]R , y]R = 0

proving that the right action of h on the generators of M0 is trivial.
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Remark 1.9. We can also define a left h-module as being a vector space M over k equipped with a
bilinear map :

[−,−]L : h×M −→M

satisfying the relation (LLM) of Definition 1.4.
We will sometimes be interested in viewing such a module as a h-bimodule, and a natural way to do this

is to turn it into either a symmetric or antisymmetric bimodule, the right action then being respectively
described by the left one or trivial.

With this we have all we need to find the simple objects in the category of finite-dimensional h-
bimodules.

Theorem 1.10. The simple objects in the category of h-bimodules of finite dimension are exactly the
modules of the form Ma and M s, where M is a simple hLie-module.

Démonstration. We first show that all the simple objects are of this type.
Let M be a simple h-bimodule. Since we have the exact sequence :

0 −→M0 −→M −→M/M0 −→ 0

andM is simple, then the h-subbimoduleM0 ofM is eitherM or 0. In the first caseM is an antisymmetric
bimodule, and in the second M is a symmetric bimodule. We now need to show that M is also a simple
left hLie-module.

If M is antisymmetric, then we are not concerned with the right action, and by construction of the
hLie-module structure given in the Remark 1.5, we see that M can not have nontrivial hLie-submodules.

If M is symmetric then the same argument holds since the right action being defined by the left one
means that for all x ∈ h, the [x,−]L- and [−, x]R-invariants subspaces coincide.

Now we need to prove the converse. Let M be a simple hLie-module. We can see M as a h-module,
via the projection on hLie, and then endow it with a natural structure of symmetric or antisymmetric
h-bimodule as per Remark 1.7. It is then clear that since M has no nontrivial hLie-submodules, M can
not have a nontrivial h-subbimodule either.

1.3 Universal enveloping algebra

Definition 1.11. Let h be a Leibniz algebra. Given two copies hl and hr of h generated respectively by
the elements lx and rx for x ∈ h, we define the universal enveloping algebra of h as the unital associative
algebra :

UL(h) := T (hl ⊕ hr)/I

where T (hl⊕hr) :=

∞⊕
n=0

(hl⊕hr)⊗n is the tensor algebra of hl⊕hr and I is the two-sided ideal of h generated

by the elements :

l[x,y] − lx ⊗ ly + ly ⊗ lx
r[x,y] − lx ⊗ ry + ry ⊗ lx

ry ⊗ (lx + rx)

For a Lie algebra g, there is an equivalence between being a g-module and being a U(g)-module, where
U(g) is the universal algebra of g. The following theorem allows us to establish the same kind of connection
between the structure of h-bimodule and left UL(h)-module.

Theorem 1.12. Let h be a Leibniz algebra. There is an equivalence of categories between the category
of h-bimodules and the category of UL(h)-modules.
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Démonstration. LetM be a h-bimodule. We will define, step by step, a morphism of unital and associative
algebras UL(h) −→ End(M).
First define a linear map :

hl ⊕ hr −→ End(M)

lx + ry 7−→ (m 7→ [x,m]L + [m, y]R)

We can extend this map in a unique way to a morphism of algebras T (hl ⊕ hr) −→ End(M). Now we see
that the axioms (LLM) and (LML) imply that the first two families of generators of the ideal I are sent
to zero. Moreover by summing the relations (LML) and (MLL) we saw that we obtain the relation

[[x,m]L , y]R + [[m,x]R , y]R = 0

showing that the last family of generators is also sent to zero. This proves that we obtain an algebra
homomorphism UL(h) −→ End(M).

Conversely, if M is a lef UL(h)-module, we can define two linear maps :

[−,−]L : h×M −→M

(x,m) 7−→ [x,m]L = lx.m

and

[−,−]R : M × h −→M

(m,x) 7−→ [m,x]R = rx.m

And we can check that these two maps verify the axioms (LLM), (LML), (MLL).

We included the proof of this result, because given one of the two structures, it explicitely tells us how
to obtain the other : the action of lx corresponds to the left action [x,−]L while the action ry corresponds
to the right action [−, y]R.

Proposition 1.13. Let h be a Leibniz algebra. There is a U(hLie)-module isomorphism :

η : U(hLie)⊕ U(hLie)⊗ h −→ UL(h)

x̄ 7−→ lx

1⊗ y 7−→ ry

Under this isomorphism the product structure on U(hLie)⊕U(hLie)⊗h is induced by the product structure
of U(hLie) and the formulas ∀x, y ∈ h :

(1⊗ x)ȳ = ȳ ⊗ x− 1⊗ [y, x]

(1⊗ x)(1⊗ y) = −ȳ ⊗ x

For the proof of this proposition, see [6], Proposition (2.4). Be careful, for the authors work with right
Leibniz algebras.

Finally we want to establish a connection between U(hLie)-modules and UL(h)-modules. To this end
we define the following algebras homomorphisms :

d0 : UL(h) −→ U(hLie)

d0(lx) = x̄

d0(rx) = 0

and :
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d1 : UL(h) −→ U(hLie)

d1(lx) = x̄

d1(rx) = −x̄

These definitions give well defined algebras homomorphisms. We shall only check it for d0. We have :

d0(l[x,y] − lx ⊗ ly + ly ⊗ lx) = [x, y]− x̄ȳ + ȳx̄ = 0

d0(r[x,y] − lx ⊗ ry + ry ⊗ lx) = 0

d0(ry ⊗ (lx + rx)) = 0

With these, given a U(hLie)-module, we can see it as a UL(h)-module either via d0 or via d1. The
former gives an antisymmetric h-bimodule, while the latter gives a symmetric h-bimodule. Moreover, since
they are surjective (their image contains the generators of U(hLie)), this allows us to consider U(hLie) as
the quotient UL(h)/Ker(di) for i ∈ {0, 1}.

1.4 Leibniz cohomology

Let h be a Leibniz algebra, and M be a h-module. We define a cochain complex

CLn(h,M), dLn}n≥0

by :

CLn(h,M) = Hom(h⊗n,M)

dLn : CLn(h,M) −→ CLn+1(h,M)

with :

dLnω(x0, ..., xn) =

n−1∑
i=0

(−1)i [xi, ω(x0, ..., x̂i, ..., xn)]L + (−1)n−1 [ω(x0, ..., xn−1), xn]R

+
∑

0≤i<j≤n
(−1)i+1ω(x0, ..., x̂i, ..., xj−1, [xi, xj ] , xj+1, ..., xn)

Definition 1.14. Let h be a Leibniz algebra, and M be a h-module. The cohomology of h with coefficients
in M is the cohomology of the cochain complex {CLn(h,M), dLn}n≥0.

HLn(h,M) = Hn({CLn(h,M), dLn}n≥0) ∀n ≥ 0

Remark 1.15. By definition CL0(h,M) = M and dL0m(x) = − [m,x, ]R. Therefore, we have :

HL0(h,M) = {m ∈M, [m,x]R = 0 ∀x ∈ h}

This is the submodule of right invariants. Note that if M is antisymmetric, then HL0(h,M) = M .

2 Ext in the category of Leibniz bimodules

We are now interested in computing the Ext groups in the category of h-bimodules. From now on, we
will consider a finite-dimensional left Leibniz algebra h over a field of characteristc zero k.
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2.1 Change of rings spectral sequence

In this section, we will give details on the construction of two spectral sequences, yielding the following
proposition :

Proposition 2.1. Let h be a Leibniz algebra, let X be a h-bimodule, and Y and Z be left h-modules.
There are two spectral sequences :

Epq
2 = Hp(hLie, Hom(Y,HLq(h, X))) =⇒ Extp+q

UL(h)(Y
a, X)

Epq
2 = Hp(hLie, Hom(Z,ExtqUL(h)(U(hLie)

s, X))) =⇒ Extp+q
UL(h)(Z

s, X)

Démonstration. We will focus on the first of the two, following the construction given in the subsections
1 to 4 of Chapter XVI from [1]. We are mostly interested in constructing the spectral sequence given in
Case 4 page 350 of the book.

Let Y be a left U(hLie)-module, and X be a left UL(h)-module. Given our algebra homomorphism

d0 : UL(h) −→ U(hLie)

we can see Y as a UL(h)-module, via :

x.m := d0(x).m ∀x ∈ UL(h), ∀m ∈ Y

When we do so, we will write Ỹ .
Given X, we can also construct a new U(hLie)-module (d0)X := HomUL(h)(Ũ(hLie), X), and we have

an adjunction :

HomUL(h)(Ỹ , X) = HomUL(h)( ˜U(hLie)⊗U(hLie) Y ,X)

= HomU(hLie)(Y,
(d0)X)

Now, using a projective resolution P ∗U(hLie)
−→ Y of Y , and an injective resolution X −→ I∗UL(h) of X,

we obtain the bicomplex :
A∗,∗ = HomUL(h)(P̃

∗
U(hLie)

, I∗UL(h))

of which we can compute cohomology in different ways.
First, we consider HI(A∗,∗) the cohomology of A∗,∗ with respect to the first variable. It is another double
complex, with horizontal differential zero, and vertical differential induced by the differential of I∗UL(h).
We can also look at HII(A∗,∗), the cohomology of A∗,∗ with respect to the second variable, which is a
double complex with vertical differential zero, and horizontal differential induced by the differential of
P̃ ∗U(hLie)

.
We can go one step further and consider HIIHI(A∗,∗), and HIHII(A∗,∗), and by doing this, we claim that
we are able to compute the E2 term of our spectral sequence.

To see this, notice that the previous adjunction gives us two different ways to write a left exact functor,
which is contravariant in the first variable and covariant in the second variable :

T (Y,X) = HomUL(h)(Ỹ
a, X) = HomUL(h)( ˜U(hLie)⊗U(hLie) Y ,X)

= HomU(hLie)(Y,
(d0)X)

where we consider Ỹ a, because the left UL(h) action on Ỹ is given by d0. Applying it to our resolutions,
we can then compute :

Hp,q
II (T (P p

U(hLie)
, IqUL(h))) = Hp,q

II (HomU(hLie)(P
∗
U(hLie)

, HomUL(h)(U(hLie), I
∗
UL(h))))

= Hq(HomU(hLie)(P
p
U(hLie)

, HomUL(h)(U(hLie), I
∗
UL(h))))

' HomU(hLie)(P
p
U(hLie)

, Hq(HomUL(h)(U(hLie), I
∗
UL(h))))

= HomU(hLie)(P
p
U(hLie)

, ExtqUL(h)(U(hLie), X)))
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Where the isomorphism is given by Proposition 6.1a pp65-66 in Chapter IV of [1].
This in turn yields :

Hp,q
I HII(T (P p

U(hLie)
, IqUL(h))) ' Ext

p
U(hLie)

(M,ExtqUL(h)(U(hLie)
a, X))

By Theorem (3.4) of [7], we have an isomorphism

HL∗(h, X) ' Ext∗UL(h)(U(hLie)
a, X)

Moreover, we have that

ExtpU(hLie)
(Y,HLq(h, X)) = ExtpU(hLie)

(k ⊗ Y,HLq(h, X))

= ExtpU(hLie)
(k,Hom(Y,HLq(h, X)))

' Hp(hLie, Hom(Y,HLq(h, X)))

And Hp,q
I HII(T (P p

U(hLie)
, IqUL(h))) gives us the left term of our first spectral sequence

Hp(hLie, Hom(Y,HLq(h, X)))

To see that it converges to Extp+q
UL(h)(Y

a, X), we need to study Hp,q
II HI(T (P p

U(hLie)
, IqUL(h))). Similar

computations give that

Hp,q
II HI(T (P p

U(hLie)
, IqUL(h)) ' Ext

q
UL(h)(Tor

U(hLie)
p (U(hLie), Y ), X)

But, since U(hLie) is a free U(hLie)-module, it is flat, and we have

TorU(hLie)
p (U(hLie), Y ) = U(hLie)⊗U(hLie) Y for p = 0

= 0 for p ≥ 1

in turn yielding

Hp,q
II HI(T (P p

U(hLie)
, IqUL(h))) ' Ext

q
UL(h)(Ỹ

a, X) for p = 0

' 0 for p ≥ 1

Now, since we are working with first quadrant spectral sequences, we have the convergence :

Hp,q
I HII(T (P p

U(hLie)
, IqUL(h))) Hp+q(A∗)p

and
Hp,q

II HI(T (P p
U(hLie)

, IqUL(h))) Hp+q(A∗)q

where A∗ is the single complex associated to A∗,∗.
This allow us to conclude, because the computations for Hp,q

II HI(T (P p
U(hLie)

, IqUL(h)) show that the spectral
sequence collapses, and we finally find that

Epq
2 = Hp(hLie, Hom(Y,HLq(h, X))) =⇒ Extp+q

UL(h)(Y
a, X)

For the second spectral sequence, the work is the same, apart from the fact we use d1 instead of d0,
thus making symmetric bimodules appear instead of antisymmetric bimodules.
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2.2 Study of ExtqUL(h)(U(hLie)
s, X))

In the previous proposition, we were able to identify Ext∗UL(h)(U(hLie)
a, X) to the Leibniz cohomology

HL∗(h, X). What about Ext∗UL(h)(U(hLie)
s, X) ? In this section, we will give a proof of a generalization of

Proposition 2.3 of [7], in order to give a relation between Ext∗UL(h)(U(hLie)
s, X) and Leibniz cohomology.

In order to do so, we will have to introduce a shift in the homological degree which will be responsible for
nontrivial Ext groups in what will follow.

Proposition 2.2. Let h be a Leibniz algebra, and M be a h-bimodule. There are isomorphisms :

Exti+1
UL(h)(U(hLie)

s,M) ' Hom(h, HLi(h,M)) for i > 0

' Cokerf for i = 0
' Kerf for i = -1

where f : M −→ Hom(h, HL0(h,M)) is given by :

f(m)(h) = [h,m]L + [m,h]R ∀h ∈ h, ∀m ∈M

Démonstration. Let M be a h-bimodule, and

f : M −→ Hom(h, HL0(h,M))

f(m)(h) = [h,m]L + [m,h]R

We first want to show that Ext0UL(h)(U(hLie)
s,M) = Kerf . But by definition

Ext0UL(h)(U(hLie)
s,M) = HomUL(h)(U(hLie)

s,M)

We then define the map :

ev : HomUL(h)(U(hLie)
s,M) −→M

ϕ 7−→ ϕ(1)

And we have :

Lemma 2.3. Im(ev) ⊂ Kerf , and the corestriction ev|Kerf of ev to Kerf is an isomorphism of inverse :

µ : Kerf −→ HomUL(h)(U(hLie)
s,M)

m 7−→ ϕm : (1 7→ m)

Démonstration. — Im(ev) ⊂ Kerf :
First notice that Kerf = {m ∈ M, [h,m]L + [m,h]R = 0 ∀h ∈ h}, which in terms of the action
of UL(h) translate to : {m ∈M, lh.m = −rh.m ∀h ∈ h}.
Now let m ∈ Im(ev), there exists ϕ ∈ HomUL(h)(U(hLie)

s,M) such that m = ϕ(1). From there we
get ∀h ∈ h :

lh.m = lh.ϕ(1) = ϕ(lh.1)

(∗) = ϕ(−rh.1)

= −rh.ϕ(1)

= −rh.m

Where the (∗) equality comes from the fact that we are considering U(hLie) as the left UL(h)-module
U(hLie)

s. This means that m ∈ Kerf .
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— ev|Kerf is an isomorphism :
For all m ∈M , ϕm defines a UL(h)-module homomorphism and one can check that ev|Kerf ◦µ = id
and µ ◦ ev|Kerf = id, therefore ev|Kerf is an isomorphism with inverse µ.

We have proved the degree zero equality of the proposition.
We now want to show that Ext1UL(h)(U(hLie)

s,M) = Cokerf .
Consider UL(h)⊗ h as a left UL(h)-module with the following action ∀x ∈ h,∀r, s ∈ UL(h) :

s.(r ⊗ x) = sr ⊗ x

Define a homomorphism of left UL(h)-modules by :

f1 : UL(h)⊗ h −→ UL(h)

1⊗ h 7−→ lh + rh

Then f1 factors through f2 : U(hLie)
a ⊗ h −→ UL(h). Indeed we have the following commutative

diagram :

UL(h)⊗ h UL(h)

U(hLie)
a ⊗ h

0

f1

d0⊗id
f2

(D)

and define f2(d0(x)⊗h) := f1(x⊗h) which is well-defined : if x, y ∈ UL(h) are such that d0(x) = d0(y),
then f1(x⊗h) = f1(y⊗h). Indeed if x− y ∈ Kerd0, then x = y+ z̄ with z̄ ∈< rz, z ∈ h >. Therefore, the
relation ry(lx + rx) = 0 in UL(h) implies that f1(x⊗ h) = f1(y ⊗ h).
We now want to show the injectivity of f2. Considering the diagram (D), it is sufficient to prove :

Lemma 2.4. Kerf1 = Ker(d0 ⊗ id)

Démonstration. — Ker(d0 ⊗ id) ⊂ Kerf1 :
Let α ∈ Ker(d0 ⊗ id). Then α =

∑
i

(ai ⊗ xi) with ai ∈< rz, z ∈ h > and xi ∈ h. By linearity, we

can assume without loss of generality that ai = birzici with bi, ci ∈ UL(h) and zi ∈ h. Then

f1(α) =
∑
i

ai(lxi + rxi)

=
∑
i

birzici(lxi + rxi)

But ci ∈ UL(h), and we can also assume that it is a monomial in some lyj and ryj . We are then in
one of three cases :
1. ci = (...)ryj

In this case the relation ry(lx + rx) = 0 gives us immediatly that birzici(lxi + rxi) = 0.
2. ci contains at least one element of the type ryj but not in last position.

We will proceed by induction on the position of the last element of the type ryj in ci. The base
step having been treated in case 1.
Consider the rightmost such element, say rym . It is therefore followed by a lyn . We can then apply
the relation r[x,y]− lxry +rylx = 0 in UL(h), which in our case reads : rym lyn = lynrym−r[yn,ym].
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This yields two monomials, whose rightmost element of the type ryj is one place closer to the
right than in ci. By an iterating this process, we are left with some numbers of monomials but
whose last element is always a ryj . Case 1 then gives us that birzici(lxi + rxi) = 0.

3. ci contains no element of the type ryj
Then consider rzici instead of just ci, and apply case 2 to it.

This shows that Ker(d0 ⊗ id) ⊂ Kerf1.
— Kerf1 ⊂ Ker(d0 ⊗ id) :

Let α ∈ Kerf1 ⊂ UL(h)⊗ h. This means that α =
∑
i

ai ⊗ xi with ai ∈ UL(h) xi ∈ h.

We need to show that ai ∈< rz, z ∈ h >, assuming (which we can) that ai is a monomial in some
ryj and lyj .
The ai that contain an element of the type ryj are in < rz, z ∈ h >, and the first part of the
proof tells us that for these f1(ai ⊗ xi) = 0. We are therefore left only with ai of the type :
ai = λi1...ip lyi1 ...lyip , λi1...ip ∈ k. We want to show that all of the coefficients λi1...ip are zero.
Since α ∈ Kerf1, we are in the situation :∑

i

λi1...ip lyi1 ...lyip (lxi + rxi) = 0 (∗)

Using the isomorphism in Proposition 1.13, (∗) can be reduced to :
∑
i

λi1...ip lyi1 ...lyip lxi = 0∑
i

λi1...ip lyi1 ...lyip rxi = 0

Here we are only interested in the second equation. Note that without loss of generality, we can
suppose the (lyi1 ...lyip )i to be linearly independant (we use the Poincaré-Birkhoff-Witt Theorem to
get a basis of U(hLie) which we then transfer in UL(h) using Proposition 1.13). This implies that
the (lyi1 ...lyip rxi)i are linearly independent, which in turn implies that all the λi1...ip are zero. This
means that all of the ai in α are in < rz, z ∈ h >, which means that Kerf1 ⊂< rz, z ∈ h > ⊗h =
Ker(d0 ⊗ id).

We have therefore showed that Kerf1 = Ker(d0 ⊗ id).

This lemma implies that f2 is injective. This therefore gives us the following short exact sequence :

0 U(hLie)
a ⊗ h UL(h) Cokerf2 0

f2

But by construction, Im(f2) is the left ideal < lx + rx, x ∈ h >, which is equal to Ker(d1) (see Section
1.3). This implies that Coker(f2) is the quotient UL(h)/Ker(d1), that is Im(d1), and the short exact
sequence above becomes :

0 U(hLie)
a ⊗ h UL(h) U(hLie)

s 0
f2

This short exact sequence yields the following long exact sequence in cohomology :

0 −→ HomUL(h)(U(hLie)
s,M) −→ HomUL(h)(UL(h),M) −→ HomUL(h)(U(hLie)

a ⊗ h,M)

−→ Ext1UL(h)(U(hLie)
s,M) −→ Ext1UL(h)(UL(h),M) −→ Ext1UL(h)(U(hLie)

a ⊗ h,M)

−→ Ext2UL(h)(U(hLie)
s,M) −→ (...)

10



Now, by noticing the obvious identification HomUL(h)(UL(h),M) = M , and the fact that, UL(h) being a
free UL(h)-module, it is projective, and therefore Ext1UL(h)(UL(h),M) = 0, we can extract the following
exact sequence :

0→ HomUL(h)(U(hLie)
s,M)→M → HomUL(h)(U(hLie)

a ⊗ h,M)→ Ext1UL(h)(U(hLie)
s,M)→ 0

To obtain the desired isomorphism, we want to relate it to the exact sequence we get from f :

0 −→ Ker(f) −→M −→ Hom(h, HL0(h,M)) −→ Coker(f) −→ 0

and conclude by using the 5-lemma. We can send M onto M via the identity map. We then construct an
isomorphism

HomUL(h)(U(hLie)
a ⊗ h,M) −→ Hom(h, HL0(h,M))

Notice that since U(hLie)
a ⊗ h is a quotient of UL(h) ⊗ h, it is generated, as a UL(h)-module, by the

elements 1⊗ h, for h ∈ h. We can now define a map :

HomUL(h)(U(hLie)
a ⊗ h,M) −→ Hom(h, HL0(h,M))

ϕ 7−→ ϕ̃

where ϕ̃(h) := ϕ(1⊗ h), for h ∈ h. The image of ϕ̃ lies in HL0(h,M), for :[
ϕ̃(h), h′

]
R

=
[
ϕ(1⊗ h), h′

]
R

= ϕ(rh′ .(1⊗ h)

= 0

using the fact that ϕ is a UL(h)-morphism, and the fact that we are considering the UL(h)-module
U(hLie)

a ⊗ h.
We can then construct its inverse, by :

Hom(h, HL0(h,M)) −→ HomUL(h)(U(hLie)
a ⊗ h,M)

u 7−→ ϕu

with ϕu : x̄ ⊗ h 7→ x.u(h) where x̄ denotes the class of x ∈ UL(h) in the quotient U(hLie)
a (see Section

1.3).
This yields the following diagram :

M HomUL(h)(U(hLie)
a ⊗ h,M) Ext1UL(h)(U(hLie)

s,M) 0 0

M Hom(h, HL0(h,M)) Coker(f) 0 0

∼ (∗)
f

where the arrow (∗) : Ext1UL(h)(U(hLie)
s,M) −→ Coker(f) is given by functoriality of the Coker.

To conclude, we just need to prove that this diagramm is commutative. It is sufficient to show that it
is the case for the square :

M HomUL(h)(U(hLie)
a ⊗ h,M)

M Hom(h, HL0(h,M))

∼

f

Notice that for the arrow M −→ HomUL(h)(U(hLie)
a ⊗ h,M) we identified

M ' HomUL(h)(UL(h),M)

11



via the map m 7−→ (ψm : u 7→ u.m). This arrow is therefore given by ψm 7−→ ψm ◦ f2, that is :

ū⊗ x 7−→ ψm(f2(ū⊗ x)) = ψm(f2(d0(u)⊗ x))

= ψm(f1(u⊗ x))

= ψm(u(lx + rx))

= u(lx + rx).m

Since U(hLie)
a ⊗ h is generated as a UL(h)-module by the elements 1 ⊗ x for x ∈ h, we can check the

commutativity of the diagramm only on these elements. By explicitely writing the maps in question we
get :

m = ψm (1⊗ x 7−→ (lx + rx).m)

m (x 7−→ [x,m]L + [m,x]R)
f

which by Theorem 1.12 proves the commutativity of the square, and therefore of the diagramm. The
5 lemma then tells us the arrow (∗) is an isomorphism, and we obtain the second isomorphism of the
proposition.

To get the higher degree isomorphisms, notice that the long exact sequence in cohomology we found
earlier goes as follow :

...→ExtiUL(h)(UL(h),M) −→ ExtiUL(h)(U(hLie)
a ⊗ h,M) −→ Exti+1

UL(h)s(U(hLie),M)

−→ Exti+1
UL(h)(UL(h),M)→ ...

But Ul(h) being a free Ul(h)-module, it is projective, hence

ExtiUL(h)(UL(h),M) = Exti+1
UL(h)(UL(h),M)

= 0

and this for all i. We thus obtain :

0 −→ ExtiUL(h)(U(hLie)
a ⊗ h,M) −→ Exti+1

UL(h)s(U(hLie),M) −→ 0

Now, in order to conclude, we use the fact that :

ExtiUL(h)(U(hLie)
a ⊗ h,M) = Hom(h, ExtiUL(h)(U(hLie)

a,M))

which is obtain from the classical Hom / Tens adjunction, and the fact that :

ExtiUL(h)(U(hLie)
a,M) = HLi(h,M)

For a proof of the last equality, see [6] Theorem (3.4). Note that the authors work with right Leibniz
algebras.

This gives us all the promised isomorphisms, therefore concluding the proof.

2.3 Computing the Ext groups

In this section, we want to give a generalized version of Theorem 3.1 of [7], and give an explicit
computation of the groups Ext∗UL(h)(M,N) for simple finite-dimensional h-bimodules. To do so, we use
the following Theorem from [3] :
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Theorem 2.5. Let h be a finite-dimensional semisimple left Leibniz algebra over a field of characteristic
zero, and let M be a finite-dimensional h-module. Then HLn(h,M) = 0 for every integer n ≥ 2, and there
is a five-term exact sequence :

0 −→M0 −→ HL0(h,M) −→MhLie
sym −→ Homh(had,l,M0) −→ HL0(h,M) −→ 0

Moreover, if M is symmetric, then HLn(h,M) = 0 for every integer n ≥ 1.

With this result, we can now prove :

Theorem 2.6. Let h be a finite dimensional simple Leibniz algebra over a field of characteristic zero k. All
groups Ext2UL(h)(M,N) between simple finite dimensional h-bimodules are zero, except Ext2UL(h)(M

s,Na),
with M ∈ {Leib(h)?, h?Lie} and N ∈ {Leib(h), hLie} which is one dimensional.
Moreover, we have that :

— Ext1UL(h)(M
s, k), and Ext1UL(h)(k,N

a) are one dimensional, for M and N ∈ {Leib(h), hLie} ;
— Ext1UL(h)(M

s, Na) ' HomU(hLie
(M, N̂), where

N̂ := Coker(h : N −→ Hom(h, N)) h(n)(x) := [n, x]R

— All other groups Ext1UL(h)(M,N) between simple finite-dimensional h-bimodulesM and N are zero.

Démonstration. We will compute Ext∗UL(h)(M,N) for every combination of finite-dimensional h-bimodules
M and N .

— Case 1 : M = N = k is the trivial h-bimodule.
We apply Proposition 2.1 to Y = X = k. By Theorem 2.5, HLq(h, k) = 0 for q ≥ 1, since k being
trivial, it is also symmetric. Therefore, we obtain :

Ext∗UL(h)(k, k) ' H∗(hLie, k)

— Case 2 : M = k is the trivial h-bimodule, and N is a nontrivial simple symmetric h-bimodule.
We apply Proposition 2.1 to Y = k, and X = N . Once again by Theorem 2.5, we get :

ExtnUL(h)(k,N
s) = 0 for n ≥ 1

— Case 3 : M = k is the trivial h-bimodule, and N is a nontrivial simple antisymmetric h-bimodule.
We have :

HLq(h, Na) ' 0 for q > 1, by Theorem 2.5
' HomU(hLie)(h, N) for q = 1

' N for q = 0, since N is antisymmetric

Since N is a nontrivial simple antisymetric h-bimodule, it is also a nontrivial simple hLie-module,
and therefore H∗(hLie, N) = 0 by Whitehead’s theorem. Now using Proposition 2.1, we find :

Ext∗UL(h)(k,N
a) ' H∗−1(hLie, HomU(hLie)(h, N))

' H∗−1(hLie, k)⊗HomU(hLie)(h, N)

The second isomorphism is given in [4], Theorem 2.1.8 pp74-75, or in [5], Theorem 13.
Since h might not be a simple hLie-module, we can not just apply Schur’s lemma to the group
HomU(hLie)(M, h). But this is where the short exact sequence

0 −→ Leib(h) −→ h −→ hLie −→ 0 (3)
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comes in handy. As a sequence of left hLie-modules it actualy splits, yielding the decomposition

h = Leib(h)⊕ hLie

and since h is a simple Leibniz algebra, this is the decomposition of h in simple hLie-modules.
Now, since M is also a simple hLie-module, we get that if M ' Leib(h) or M ' hLie (as a left
hLie-module), then

H∗−1(hLie, k)⊗HomU(hLie)(M, h) ' H∗−1(hLie, k)

If this is not the case, then

H∗−1(hLie, k)⊗HomU(hLie)(M, h) ' 0

— Case 4 : M is a nontrivial simple antisymmetric h-bimodule, and N is a simple symmetric h-
bimodule.
Using Theorem 2.5, we have HLq(h, N s) = 0 for q ≥ 1. Moreover, because HL0(h, Na) = Nh is
a trivial h-bimodule, and since we can identify Hom(M,HL0(h, N s) ' M? ⊗ Ng with the direct
sum of dim(Ng) copies of M? we find that Hp(hLie, Hom(M,HL0(h, Na))) ' Hp(hLie,M

?)⊕ ...⊕
Hp(hLie,M

?) = 0, since M being a simple nontrivial hLie-module, so is M?. Thus yielding :

Ext∗UL(h)(M
a, N s) = 0

— Case 5 : M is a nontrivial simple antisymmetric representation, and N is simple and antisymmetric.
Here, Theorem 2.5 apply again, and we have that HLq(h, Na) 6= 0 only when q ∈ {0, 1}. We check
that HL1(h, Na) is a trivial left h-module. By definition of the chain complex defining Leibniz
cohomology, we have that CL1(h, Na) = Hom(h, N). Now for a morphism ϕ ∈ Hom(h, N) to be
annihilated by the differential dL1 means satisfying :

dL1ϕ(x, y) := [x, ϕ(y)]L − ϕ([x, y]) = 0 ∀x, y ∈ h

Which is exactly to say that the left action of h on the module Hom(h, N) is trivial. Therefore, the
same arguments used in Case 4 still apply, and we get that Epq

2 = 0 for q > 0, and :

Ext∗UL(h)(M
a, Na) = 0

— Case 6 : M is a nontrivial simple symmetric representation, and N = k is the trivial h-bimodule.
We apply Proposition 2.2 to k to find :

ExtiUL(h)((U(hLie)
s, k) ' 0 if i > 1

' h if i = 1
' k if i = 0

because since in this case, the f in Proposition 2.2 is zero. We can now plug this in the second
spectral sequence of Proposition 2.1, with X = k, and Z = M , to obtain :

Ext∗UL(h)(M
s, k) ' H∗−1(hLie, Hom(M, h))

' H∗−1(hLie, k)⊗HomU(hLie)(M, h)

Using the same arguments as in Case 3, we get that if M ' Leib(h) or M ' hLie, then

H∗−1(hLie, k)⊗HomU(hLie)(M, h) ' H∗−1(hLie, k)

If this is not the case, then

H∗−1(hLie, k)⊗HomU(hLie)(M, h) ' 0
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— Case 7 : M and N are both simple nontrivial symmetric h-bimodules.
Applying Proposition 2.2 to N s, and because N is a symmetric h-bimodule, we find that

ExtiUL(h)(U(hLie)
s ' 0 i ≥ 1

' N if i = 0

Now using the second spectral sequence of Proposition 2.1, we get :

Ext∗UL(h)(M
s, N s) ' H∗(hLie, Hom(M,N))

' H∗(hLie, k)⊗HomhLie
(M,N)

And once again, since M and N are simple hLie-modules, this vector space is nonzero only if
M ' N , in which case, it is isomorphic to H∗(hLie, k).

— Case 8 : M is a simple nontrivial symmetric h-bimodule, and N is a simple nontrivial antisymmetric
h-bimodule.
By Proposition 2.2, we have :

ExtiUL(h)(U(hLie)
s, Na) ' 0 for i > 2

' Hom(h, HomU(hLie)(h, N)) for i = 2

' Coker(h) for i = 1
' Ker(h) for i = 0

The h appearing here is due to the fact that N is an antisymmetric h-bimodule. Moreover, since N
is supposed to be nontrivial and h is a h-module homomorphism, Ker(h) = 0. Therefore we have
that Epq

2 = 0 for q > 2 and q = 0. For the remaining values of q, we have isomorphisms

Ep1
2 ' H

p(hLie, Hom(M, N̂))

' Hp(hLie, k)⊗HomU(hLie)(M, N̂)

and

Ep2
2 ' H

p(hLie, Hom(M,Hom(h, HomU(hLie)(h, N))))

' Hp(hLie, k)⊗HomU(hLie)(M,Hom(h, HomU(hLie)(h, N)))

The first isomorphism tells us that Ext1UL(h)(M
s, Na) ' HomU(hLie)(M, N̂).

To use the second isomorphism, we need to proceed as in Case 6, since h is not a priori a simple
hLie-module, although with a bit more cases.
— If N 6' Leib(h) or N 6' hLie :

Then HomU(hLie)(h, N) ' 0, yielding Ep2
2 = 0

— If N ' Leib(h) or N ' hLie :
Then HomU(hLie)(h, N) ' k, and we have

Ep2
2 ' H

p(hLie, Hom(M, h?))

' Hp(hLie, k)⊗HomU(hLie)(M, h?)

Now we need to do the same work for HomU(hLie)(M, h?). Since h is a simple Leibniz algebra,
so is its dual h?. Moreover, the exactness of the functor Hom(M,−) gives us the short exact
sequence

0 −→ Leib(h)? −→ h? −→ h?Lie −→ 0

and the decomposition of h? = Leib(h)? ⊕ h?Lie as a left hLie-module. We therefore are in one of
the following cases :
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— If M 6' Leib(h)? or M 6' h?Lie :
Then HomU(hLie)(M, h?) ' 0, and Ep2

2 = 0.
— If M ' Leib(h)? or M ' h?Lie :

Then HomU(hLie)(M, h?) ' k, and we get

Ep2
2 ' H

p(hLie, k)⊗HomU(hLie)(M, h?)

' Hp(hLie, k)

In order to get the promised vanishing of the Ext groups, we just use the fact that

H1(hLie, k) ' H2(hLie, k) ' 0

and this concludes our proof.

Remark 2.7. Notice that the only difference between our proof and the one of Theorem 3.1 in [7] is our
treatment of the cases where the first variable of the Ext functor is a symmetric bimodule, and the second
is an antisymmetric bimodule, where we can not just use Schur’s Lemma as the authors did.

Furthemore, we can see that the nontrivial Ext groups arise only when the shift in homological degree
from Proposition 2.2 appears.

Moreover as in [7], this Theorem actually gives us a way to express all the Ext groups between simple
h-bimodules in terms of the usual Chevalley-Eileberg cohomology groups.
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