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Introduction

This rapport is based on the paper [BG16].

Enumerative geometry aims to count how many geometric figures satisfy given
conditions. The most basis example is that: How many lines passing through 2 dis-
tinct points? A natural extension of this question is the problem: How many rational
curves of degree d pass through (3d − 1) generic points in the complex projective
plane? (The number (3d− 1) is exactly the dimension of the space of rational (genus
0) degree d curves in CP2). This can be done by recursion by using Kontsevich’s
formula.

This formula is quite surprising relevant to a notion in symplectic geometry
(which is Gromov’s pseudoholomorphic curves), hence the number answering for
the problem turns into the number called Gromov-Witten invariant. Indeed, Gromov-
Witten invariant is a rigorous mathematical definition required moduli space of sta-
ble maps. So we can say the problem of counting rational curves in a projective
space as the problem of finding the Gromov-Witten invariant.

In the context of enumerative real algebraic geometry, some of the invariants
were discovered by Welschinger. In particular, Welschinger invariants are real ana-
logues of certain Gromov-Witten invariants.

In this rapport, we concern about the Gromov-Witten invariant and Welschinger
invariant of CP3. The number of rational curves of degree d passing through 2d
generic points in CP3 is the Gromov-Witten invariant of CP3, denoted by GWCP3(d).
If we consider the real case, then the number of real rational curves of degree d pass-
ing through 2d real generic points in CP3 counted with sign is the Welschinger in-
variant of CP3, denoted by WRP3(d, l). In Chapter 1, we prepare some backgrounds
that we will use to study these invariants.

Following the idea of Kollár: there exists 2d distinct points in a degree 4 ellip-
tic curve such that the number of rational curves of degree d passing through them
are indeed GWCP3(d). These curves are also contained in a non-singular quadric Q
which is in the pencil of quadric induced by this elliptic curve. Now we just count
how many non-singular quadrics do we have (via elliptic curves corresponded) and
how many curves lie on each quadric ( that is invariant and that is exactly the num-
ber of curves of bidegree (a, d− a) lying on Q and passing through (2d− 1) points,
denoted by GWCP1×CP1(a, d− a)). At the end of Chapter 2, we construct the relation
between two invariants GWCP3(d) and GWCP1×CP1(a, d− a).

Once again, by Kollár’s idea, but this time we note that the invariant is defined as
the number of curves of degree d counted with sign, then we need to define the sign
for each curve. It is done by studying certain real normal bundles (which are not
easy to visualize). In order to determine the Welschinger invariant WRP3(d, l), we
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find the answer for two questions: How many REAL non-singular quadrics do we
have? What is the invariant in each quadric? (that is the number of curves counted
with sign of bidegree (a, d − a) lying on Q and passing through (2d − 1) distinct
points, denoted by WRP1×RP1((a, d − a), l)). At the end of Chapter 3, we construct
the relation between two invariants WRP3(d, l) and WRP1×RP1((a, d− a), l).
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Chapter 1

Preliminaries

In this chapter, we recall some properties came from elliptic curves, especially about
the elliptic curve as base locus of a pencil of quadrics. We also give the statement
and a proof of Kollár’s theorem which is the spirit of the two main theorems in the
following chapters. And we introduce some remarks about normal bundles - the
important tool used for real enumerative problem.

1.1 Elliptic curves

1.1.1 Complex elliptic curves

We works over the algebraically closed field k = k̄, for example k = C.
We consider a complex elliptic curve C0 equipped with a distinguished point p0.
The set of points on this elliptic curve over a field k under point addition, denoted
by C0(k), form a commutative group with the point at infinity (O = (0 : 1 : 0)) is the
identity.
Given m a positive integer. Considering a homomorphism of groups:

[m] : C0(k) −→ C0(k)

P 7−→ mP

This homomorphism allows us define the torsion points on C0.

Definition 1.1.1. The m− torsion point of elliptic curve C0 is the kernel of the homomor-
phism [m].
i.e. P is the m−torsion point of C0 if mP = O.

Example 1. Given an elliptic curve C0 : y2 = f (x) with deg( f ) = 3, char(k) 6= 2. Let
xi, i ∈ {1, 2, 3} be the solutions of f (x) = 0, then
{2−torsion points of C0}
={P ∈ C0 : 2P = O}
={O, P1, P2, P3 where Pi = (xi, 0)}

Property 1.1.2. The m−torsion points of C0 form a subgroup of C0(k) with cardinal m2.

Geometrically, an elliptic curve over the complex numbers is obtained as a quo-
tient of the complex plane by a lattice, i.e. C0 = C/Λ, such that p0 is the orbit of O.
Recall: A lattice Λ of the complex numbers C is an additive subgroup free of rank
two that generates C as a real vector space. One can write Λ = uZ + vZ; u, v ∈ C.
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FIGURE 1.1: Two different fundamental domains for lattice of C0 in
case m = 3

1.1.2 Real elliptic curves

Now we suppose that C0 is real with its real part RC0 is nonempty containing p0.
Since we have C0 = C/Λ is real, that implies either Λ = uZ + ivZ; u, v ∈ R or
Λ = uZ + uZ, u ∈ C. Thus, there are two cases for RC0 associated.

• Case 1: Λ = uZ + ivZ; u, v ∈ R then RC0 = R/uZ t (R + iv
2 )/uZ. That

means RC0 has two connected components, one contains p0. In this case, if
m is even, RC0 contains exactly 2m of real m−torsion points. If m is odd, RC0
contains exactly m of real m−torsion points, all lie on the connected component
of RC0 containing p0 (see Figure 1.1 left for the case m = 3).

• Case 2: Λ = uZ + uZ, u ∈ C then RC0 = R/(u + ū)Z. That means RC0 has
only one connected components . In this case, for all m, RC0 contains exactly
m of real m−torsion points (see Figure 1.1 right for the case m = 3).

1.2 Pencils of quadrics

1.2.1 Complex pencils of quadric

Firstly, we need to give the definition of complete intersection which we will use
frequently in the sequel.

Definition 1.2.1. A projective variety X ⊂ CPn of codimension m is a complete inter-
section if it is the intersection of m hypersurfaces that meet transversally at each point of
intersection.

For example, a degree 4 elliptic curve is the complete intersection of two irre-
ducible quadric surfaces in CP3.

Property 1.2.2. ([Har97], Remark 6.4.1, p352)
If Y is a non-singular curve in CP3, which is the complete intersection of non-singular
surfaces of degree a, b for every a, b ≥ 1 then gY = 1

2 (ab(a + b− 4) + 1).

Property 1.2.3. A curve C lying in quadric Q is of bidegree (d, d) iff it is the complete
intersection of Q, i.e. it is the intersection of Q with a degree d surface in CP3.



1.2. Pencils of quadrics 5

We note that the space of quadrics in CP3 is isomorphic to CP9. Now we imag-
ine that we are in the 9−dimentional projective space (with its ’points’ are quadrics),
then there is a unique ’line’ passing through two ’points’ in CP9, this ’line’ is called
the pencil of quadrics in CP3, denoted by Q. Two non-singular quadrics in Q in-
tersect at a degree 4 elliptic curve. Indeed, let C = Q1 ∩ Q2 then deg(C) = 4 and
since C is the complete intersection of two quadrics surfaces so genus of C, gC satis-
fies gC = 1

2 (2× 2× (2 + 2− 4)) + 1 = 1 . Inversely, every non-degenerate degree 4
elliptic curve C0 in CP3 can define a pencil of quadricsQ with base locus C0. (that is
a family of quadrics containing C0)

Let Picr(C0) be the set of complex divisors of degree r in the Picard group of
the complex elliptic curve C0. Let h ∈ Pic4(C0) be the hyperplane section class (the
hyperplane class of the non-singular quadric surface restricts to C0). Since a non-
singular quadric in CP3 is isomorphic to CP1 ×CP1, at every point in this quadric,
there are exactly two lines of CP3, which lie on the quadric, passing through. Let
D1, D2 be two lines representing two families of lines in this quadric (we can say:
D1 = {P1} ×CP1, D2 = CP1 × {P2} where P1, P2 are two fixed points in CP1).

In a non-singular quadric Q ofQ, C0 is of bidegree (2, 2) (because of the property
of complete intersection). On Q, we can define two elements Ei in Pic2(C0) by taking
Ei = Di ∩ C0 and we also have E1 + E2 = h. Conversely, given E ∈ Pic2(C0), we can
construct a quadric QE (either singular if 2E = h or non-singular if E 6= h− E) in Q.
As a consequence, we get a ramified covering of degree 2 map:

πQ : Pic2(C0) −→ Q

E 7−→ QE

In the complex pencil of quadrics Q, we always get 4 ramifcation (or critical) values
of πQ (i.e. 4 singular quadrics in Q). This is because there are four critical points
of πQ, these points are exactly the solutions of the equation 2E = h, where these
solutions have form E + Ei with 2Ei = 0 and since C0 is the complex elliptic curve,
we have 22 = 4 of 2−torsion points Ei, then there are four solutions of the equation
2E = h.

1.2.2 Real pencils of quadrics

Now, we suppose that C0 is a real elliptic curve with its real part is nonempty then
the corresponding pencil Q is real with its real part RQ. If Q ∈ Q is a regular
value then π−1

Q (RQ) consists of two points (real or complex conjugate). If Q ∈ Q
is a critical value then π−1

Q (RQ) consists of only one point. Therefore, we have 3
possibilities for the map πQ|RC0

:

• When RC0 is not connected and the equation 2E = h have no real solution
E ∈ Pic2(RC0) (in this case h does not lie on the real part of C0 which contains
p0) then there is no real singular quadrics in RQ.

• When RC0 is not connected and the equation 2E = h have 4 real solutions
E ∈ Pic2(RC0) (in this case h lies on the real part of C0 which contains p0) then
there are 4 real singular quadrics in RQ.

• When RC0 is connected then the equation 2E = h have only 2 real solutions
E ∈ Pic2(RC0) and there are 2 real singular quadrics in RQ.
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1.3 Kollár’s theorem

In all cases, an elliptic curve and a pencil of quadrics mean complex elliptic curve
and complex pencil of quadrics.
There are some results that we use repeatedly in this text.

Theorem 1.3.1. (Bézout’s theorem) ([Har97], p47)
Let Y, Z be varieties of dimensions r, s and of degree d, e in CPn. Assume that Y, Z are in
a sufficiently general position so that all irreducible components of Y ∩ Z have dimension
r + s− n (assume that r + s− n ≥ 0). For each irreducible component W of Y ∩ Z, define
the intersection multiplicity i(Y, Z; W) of Y and Z along W. Then we have:

Σi(Y, Z; W)× degW = de

For example, in CP3, a quadric surface (a variety of dimension 2, degree 2) and a
degree d irreducible curve (a variety of dimension 1, degree d) intersect at 2d points
counted with multiplicity. Otherwise, this curve is contained in the quadric.

Theorem 1.3.2. (Adjunction formula), ([Har97], Proposition 1.5, p361):
If C is a non-singular curve of genus gC on the non-singular surface Q and K is the canonical
divisor on Q then

2gC − 2 = C(C + K)

For example, for every a, b ≥ 1, there are non-singular curves of bidegree (a, b)
which lie on a non-singular quadric surface with degree d = a + b and genus
g = (a− 1)(b− 1).

Theorem 1.3.3. (Kollár’s theorem)
Let k be an algebraically closed field.
Let C0 ⊂ CP3 be a non-degenerate degree 4 elliptic curve. Let X ⊂ C0 be the configuration
of 2d general points. Let Q be the pencil of quadrics induced by C0. Let C(X ) be the set of
connected rational curves of degree d in CP3 passing through X (so not containing C0).
Then, every curves C in C(X ) is irreducible and contained in a non-singular quadric Q of
Q.
Furthermore, Q = πQ(E) where E ∈ Pic2(C0) and πQ : Pic2(C0) → Q is a ramified
covering of degree 2 map. E is a solution of the equation:

(d− 2a)E = (d− a)h−X (∗)

with condition 0 ≤ a < d
2 and h is the hyperplane class of Q restricted to C0.

And C ∼ aD1 + (d− a)D2 (linear equivalence in Q) where D1, D2 are two lines in Q such
that D1 ∩ C0 = E, D2 ∩ C0 = h− E.

Proof. The idea of the proof is based on ([Kol14], Proposition 3). Supposing that C
is irreducible then we show that it is contained in some quadric Q of Q and show
that Q = πQ(E) with E satisfies the equation (∗) and C is of bidegree (a, d− a). To
conclude, we need to exclude the case C is reducible.

Step 1: If C is an irreducible curve of degree d over k (i.e. C has only one ir-
reducible component), then C is contained in some quadric Q (singular or non-
singular). ( That is because our curve is defined over an algebraically closed field
then there are points in C\X contained in C0 then contained in some quadric, so
there are more than 2d = deg(C) × deg(Q) intersection points of C and Q. By Bé-
zout’s theorem, C ⊂ Q).
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Let H be the hyperplane class of Q and h = H|C0 (i.e. h = H ∩ C0).
If the quadric Q is singular then 2C ∼ dH. Since C 6= C0 then 2X = 2C ∩ C0 ∼ dh.
That is impossible as with generic configuration, the former varies by varying one
point of the points of X but the latter is constant.
Thus the quadric Q is non-singular, then C is of bidegree (a, b), a 6= b, a + b = d.
Otherwise, if a = b, i.e. bideg C = ( d

2 , d
2 ), then C ∼ d

2 H. Since C 6= C0 then
X = C ∩ C0 ∼ d

2 h. It’s impossible as above argument.
Moreover, we can choose on Q such that C is of bidegree (a, b), a < b, a + b = d (i.e.
C is of bidegree (a, d− a), 0 ≤ a < d

2 ).

Note that C0 is of bidegree (2, 2) in Q, and C is of bidegree (a, d − a) (C does
not contain C0), so applying the formula of intersection points of curves in a quadric
surface: ](C ∩ C0) = (2, 2)× (a, d− a) = 2d. We can write X = C ∩ C0. We choose
two lines D1, D2 representing two families of lines in Q, such that C0 ∼ 2D1 + 2D2
and (D1 ∩ C0, D2 ∩ C0) = (E, h− E). So Q = πQ(E) where πQ is the map defined in
the last section. Note that both C and C0 lie on Q, we obtain:

X = C0 ∩ C ∼ (d− a)E + a(h− E) = ah + (d− 2a)E

Or
(d− 2a)E = (d− a)h−X

Therefore, we get E is the solution of the equation:

(d− 2a)E = (d− a)h−X ; 0 ≤ a <
d
2

Step 2: Suppose that C is reducible, i.e C = ∑
i

Ci where Ci is of degree di such

that 0 < di < d and Ci does not contain C0.

• Claim 1. Every Ci passes through exactly 2di points of X .
Otherwise, if one of the irreducible curves in C, let’s call Ci, passes through
more than 2di points in X . Then ](Ci ∩ Q) > 2di, ∀Q ∈ Q. By Bézout’s theo-
rem, Ci ⊂ Q, ∀Q ∈ Q, that means Ci ≡ C0, contradiction.
As a consequence, different Ci passes through different points of X .

• Claim 2. C = ∑
i

Ci is contained in only one quadric of Q.

Otherwise, suppose that there are two different irreducible curves lying in dif-
ferent quadrics, i.e. Ci ⊂ Qi, Cj ⊂ Qj. Then Ci ∩ Cj ⊂ Qi ∩ Qj = C0, that
implies two different curves Ci 6= Cj pass through the same points in X (ex-
clusively).

• Claim 3. There does not exist such a reducible curve C = ∑
i

Ci satisfied.

If Ci is of bidegree (ai, di − ai) then by Claim 1, Ci passes through the set of 2di
points of X , denoted by Xi. By Step 1, we get:

Xi ∼ aih + (di − 2ai)E

But we also have:
X ∼ ah + (d− 2a)E

Then:
(d− 2a)Xi ∼ ai(d− 2a)h + (di − 2ai)(d− 2a)E
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⇒ (d− 2a)Xi ∼ (di − 2ai)X + (ai(d− 2a)− a(di − 2ai))h

⇒ (d− 2a)Xi − (di − 2ai)X ∼ (aid− adi)h

It’s impossible because the former varies whenever Xi 6= X while the latter is
constant.

In conclusion for Step 2: C is irreducible.
In conclusion for both step, for a generic configuration of 2d points X ⊂ C0, every
connected rational curves of degree d in CP3 passing through X is irreducible and
contained in a non-singular quadric Q of Q.

Remark:

Firstly, this theorem builds the relation between irreducible rational curves in
CP3 and in CP1×CP1: counting connected (irreducible) rational curves C of degree
d passing through 2d distinct points on an elliptic curve C0 ⊂ CP3 is equivalent to
counting quadrics in the pencils of quadrics induced by C0 then counting the irre-
ducible rational curves of bidegree (a, d− a) passing through 2d distinct points on
each quadric (we will prove in Chapter 2 that in fact every such curve only need to
pass through (2d− 1) distinct points on C0).

Secondly, it turns the enumerative problem of quadrics into of elliptic curves: to
count such quadrics, we can count solutions of the equation (∗) which are divisors
of degree 2 of Pic(C0).

Thirdly, this method works over the real case as well, that is counting real rational
curves of degree d passing through 2d generic points in CP3 and their relationship
with real rational curves in CP1 × CP1. To apply this method to the real case, we
note about choosing the real configuration containing at least one real point.

1.4 Normal bundles

We are familiar with the definition of normal bundle in term of differential geom-
etry which is based on the notion of orthogonal complement of a vector subspace.
However, it is no longer applicable in the algebraic situation. In algebraic geometry,
we observe that the orthogonal complement is in fact isomorphic to the quotient of
two vector bundles. That is the point we exploit, see [Sha13].

1.4.1 Complex normal bundles

Definition 1.4.1. Let j : Y → X be an algebraic immersion. The normal bundle of Y in X,
denoted by NY/X, is the quotient of the pull-back of the tangent bundle of X to the tangent
bundle of Y.
i.e. Let TX, TY be the tangent bundles of X, Y respectively, then

NY/X = j∗TX/TY

A normal bundle is in fact a vector bundle of rank (n− k), where n and k are the
rank of the vector bundle TX, TY respectively.

Example 2. If Y ⊂ X is a non-singular hypersurface, then the normal bundle NY/X is a
line bundle.
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Let Q be a non-singular quadric surface in CP3 and f be an algebraic immersion
f : CP1 → CP3 such that f (CP1) ⊂ Q, then we can define the following normal
bundles:

f ∗(N f (CP1)/Q) = f ∗TQ/TCP1 := N ′,

f ∗(N f (CP1)/CP3) = f ∗TCP3/TCP1 := N ,

NQ/CP3 = TCP3|Q/TQ := NQ.

We have a short exact sequence of normal bundles over CP1:

0→ N ′ → N → f ∗NQ → 0 (∗∗)

Remark: This is the exact sequence of holomorphic vector bundles over CP1 so
it does not split in general.

Property 1.4.2. The exact sequence (∗∗) splits iff f (CP1) ⊂ Q is a complete intersection.

Recall:
A short exact sequence 0 → B → A π−→ C → 0 splits if there exists a section C σ−→ A
such that π ◦ σ = 1C, or equivalently, A = B⊕ C.

There is another definition which plays an important role in the sequel.

Definition 1.4.3. Let f : CP1 → CP3 be an algebraic immersion and d be the degree of
f (CP1). Then f is balanced if N is isomorphic to the direct sum of two holomorphic line
subbundles of degree (2d− 1), i.e. N = O(2d− 1)⊕O(2d− 1).

Property 1.4.4. Let f : CP1 → CP3 be an algebraic immersion such that f (CP1) ⊂ Q and
bidegree of f (CP1) is (a, b) with a 6= b. Then f is balanced.

1.4.2 Real normal bundles

If f and Q are real such that its real part RQ is homeomorphic to RP1 ×RP1, then
the restriction of f to RP1 is fRP1 : RP1 → RP3 and f (RP1) ⊂ RQ. We also have
the corresponding real normal bundles RN ′, RN , RNQ and a short exact sequence
of real normal bundles over RP1:

0→ RN ′ → RN → f ∗
RP1RNQ → 0

Remark: This is the exact sequence of smooth vector bundles over RP1 (so it
always splits).
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Chapter 2

Gromov-Witten invariants of CP3

and of CP1×CP1

In this chapter, we study rational curves of degree d in complex projective space CP3

and the idea of counting these curves is the same as in the case of counting curves
in complex projective plane CP2 (using moduli space of stable maps), but it needs
more additional arguments and it has an interesting relation with counting curves
in CP1×CP1. In order to do the counting curve problem, we parametrize our curve
in CP3 (resp. in CP1 × CP1) by a balanced immersion (resp. immersion). And a
balanced immersion (resp. immersion) can be considered as a regular point of an
evaluation map. Then we deal with the counting map problem.

2.1 Definitions of Gromov-Witten invariants

Given d be a positive integer and a, b be non-negative integers.

2.1.1 Gromov-Witten invariants of CP3: GWCP3(d)

Definition 2.1.1. The Gromov-Witten invariant of CP3, denoted by GWCP3(d), is the num-
ber of rational curves of degree d passing through a generic configuration of 2d points in CP3.

One can write:
GWCP3(d) = ]{C: rational curves of degree d pass through 2d generic points in CP3}.

Why is 2d points?
The space of rational curves of degree d in CP3 has dimension 4d. Indeed, consider
the holomorphic map:

φ : CP1 −→ CP3

[x : y] 7−→ [g1(x, y) : g2(x, y) : g3(x, y) : g4(x, y)]

where gi(x, y) are homogeneous polynomials of degree d for all i ∈ {1, 2, 3, 4} with
no common factor. Since each gi(x, y) has (d + 1) coefficients, then for all gi(x, y)
with i ∈ {1, 2, 3, 4}we have 4(d + 1) coefficients. A rational curve of degree d in CP3

can be identified with a class of holomorphic map φ as follows:
[g1(x, y) : g2(x, y) : g3(x, y) : g4(x, y)] and λ× [g1(x, y) : g2(x, y) : g3(x, y) : g4(x, y)]
define the same curve (so we subtract one coefficient) and if u : CP1 → CP1 is an
automorphism of CP1 then φ and φ ◦ u define the same curve (so we subtract 3 more
coefficients). Thus we get the number of coefficients presenting rational curves of
degree d in CP3 or the dimension of the space of rational curves of degree d in CP3
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is 4(d + 1)− 1− 3 = 4d.

Let V be the subspace of all rational curves of degree d in CP3 passing through
2d generic points in CP3. We first observe that, the passage of a point make the
dimension decrease by 2 since the subspace of all rational curves of degree d in CP3

passing through a point in CP3 has codimension 2. The same holds for passage of
other points, if they are in general position with the previous ones. It follows that
the dimension of V is 4d− 2× 2d = 0, i.e. V contains certain number of points which
we want to count.

Proposition 2.1.2. For a configuration of 2d points X in CP3 (not necessarily generic), if a
rational curve of degree d in CP3 passing through X is parametrized by a balanced immer-
sion f : CP1 → CP3, then the number of these balanced immersions is exactly GWCP3(d).
In particular, for a generic configuration of 2d points in CP3, all rational curves of degree d
passing through them are parametrized by balanced immersions.

Then, we can write:
GWCP3(d) = ]{ f : CP1 → CP3 balanced immersions: deg f (CP1) = d, X ⊂ f (CP1)}

2.1.2 Gromov-Witten invariants of CP1 ×CP1: GWCP1×CP1(a, b)

Definition 2.1.3. The Gromov-Witten invariant of CP1×CP1, denoted by GWCP1×CP1(a, b),
is the number of rational curves of bidegree (a, b) passing through a generic configuration of
2(a + b)− 1 points in CP1 ×CP1 .

One can write:
GWCP1×CP1(a, b) = ]{C: rational curves of bidegree (a, b) pass through 2(a + b)− 1
generic points in CP1 ×CP1}.

Why is 2(a + b)− 1 points?
The space of rational curves of bidegree (a, b) in CP1 ×CP1 has dimension
2(a + b)− 1. Indeed, consider the holomorphic map:

φ : CP1 −→ CP1 ×CP1

[x : y] 7−→ ([g1(x, y) : g2(x, y)], [g3(x, y) : g4(x, y)])

where g1(x, y), g2(x, y) are homogeneous polynomials of degree a with no common
factor; g3(x, y), g4(x, y) are homogeneous polynomials of degree b with no com-
mon factor. We write gi instead of gi(x, y) for short. Since g1, g2 has (a + 1) coef-
ficients and g3, g4( has (b + 1) coefficients then, for all gi, i ∈ {1, 2, 3, 4}, we have
2(a + 1) + 2(b + 1) = 2(a + b) + 4 coefficients.
A rational curve of bidegree (a, b) in CP1 × CP1 can be identified with a class of
holomorphic map φ as follows:
([g1 : g2], [g3 : g4]) and (λ1 × [g1 : g2], λ2 × [g3 : g4]) define the same curve (so we
subtract 2 coefficients) and if u : CP1 → CP1 is an automorphism of CP1 then φ
and φ ◦ u define the same curve (so we subtract 3 more coefficients). Thus we get
the number of coefficients presenting rational curves bidegree (a, b) in CP1 × CP1

or the dimension of the space of rational curves of bidegree (a, b) in CP1 × CP1 is
2(a + b) + 4− 2− 3 = 2(a + b)− 1.

Let U be the subspace of all rational curves of bidegree (a, b) passing through
2(a + b) − 1 generic points in CP1 × CP1. We observe that, the passage of a point
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make the dimension decrease by 1 (the same as in the case of rational curves of de-
gree d passing through (3d− 1) generic points in CP2 ). The same holds for passage
of other points since they are in generic position. It follows that the dimension of U
is 0, i.e. U contains certain number of points which we want to count.

Proposition 2.1.4. For a configuration of (2d− 1) points Y in CP1×CP1 (not necessarily
generic), if a rational curve of bidegree (a, d − a) passing through Y is parametrized by
an immersion f : CP1 → CP1 × CP1, then the number of these immersions is exactly
GWCP1×CP1(a, d− a).
In particular, for a generic configuration of (2d− 1) points in CP1×CP1, all rational curves
of bidegree (a, d− a) passing through them are parametrized by balanced immersions.

Then, we can write:
GWCP1×CP1(a, d− a) = ]{ f : CP1 → CP1 ×CP1 immersions: bidegree of f (CP1) is
(a, d− a) and Y ⊂ f (CP1)}.

By Kollár’s idea, there exists a particular configuration of 2d distinct points in
CP3 (resp. a particular configuration of (2d− 1) distinct points in CP1×CP1) which
are in fact contained in a degree 4 elliptic curve such that the number of rational
curves of degree d in CP3 (resp. the number of rational curves of bidegree (a, d− a)
in CP1 × CP1) passing through them is the Gromov-Witten invariant of CP3 (resp.
the Gromov-Witten invariant of CP1 × CP1). We will see how it works in the next
section.

2.2 A (balanced) immersion as a regular point of an evalua-
tion map

In all cases, a quadric Q means a non-singular quadric.

We consider the evaluation map on the moduli space of stable maps in two fol-
lowing cases:

• Case 1: LetM∗(CP3, d) be the moduli space of stable maps (up to reparametriza-
tion) f from (CP1; x1, . . . , x2d) with 2d marked points to CP3, whose image has
degree d, i.e.

M∗(CP3, d) = { f : (CP1; x1, . . . , x2d) −→ CP3 : deg( f (CP1)) = d}/ ∼

where f ([x : y]) = [g1(x, y) : g2(x, y) : g3(x, y) : g4(x, y)] ∈ CP3, gi(x, y) are
homogeneous polynomials of degree d with no common factor, we write gi in-
stead of gi(x, y) for short, then [g1 : . . . : g4] ∼ λ[g1 : . . . : g4], and f ∼ f ◦ u
with u ∈ Aut(CP1). Then this moduli space has dimension 4d + 2d = 6d.

Let ev1 be an evaluation map defined as:

ev1 :M∗(CP3, d) −→ (CP3)2d

f 7−→ ( f (x1), . . . , f (x2d))

• Case 2: Let M∗(Q, (a, d − a)) be the moduli space of stable maps (up to
reparametrization) f from (CP1; x1, . . . , x2d−1) with (2d− 1) marked points to
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a non-singular quadric Q ' CP1 ×CP1 , whose image has bidegree (a, d− a),
i.e.

M∗(Q, (a, d− a)) = { f : (CP1; x1, . . . , x2d−1) −→ Q : bideg( f (CP1)) = (a, d− a)}/ ∼

where f ([x : y]) = ([g1(x, y) : g2(x, y)], [g3(x, y) : g4(x, y)]) ∈ CP1 × CP1,
gi(x, y) are homogeneous polynomials of degree a, i ∈ {1, 2} with no common
factor, gj(x, y) are homogeneous polynomials of degree (d− a), j ∈ {3, 4}with
no common factor. We write gi instead of gi(x, y) for short, then we have
([g1 : g2], [g3 : g4]) ∼ (λ1[g1 : g2], λ2[g3 : g4]), and f ∼ f ◦ u, u ∈ Aut(CP1).
This implies the moduli space has dimension (2d− 1) + (2d− 1) = 4d− 2.

Let ev2 be an evaluation map defined as:

ev2 :M∗(Q, (a, d− a)) −→ Q2d−1

f 7−→ ( f (x1), . . . , f (x2d−1))

By [Web05, lemma 1.2], we have two followings results:

Lemma 2.2.1. A stable map f ∈ M∗(CP3, d) is a regular point of ev1 iff f is a balanced
immersion from CP1 to CP3.

Lemma 2.2.2. A stable map f ∈ M∗(Q, (a, d − a)) is a regular point of ev2 iff f is an
immersion from CP1 to CP1 ×CP1.

Let C0 be a non-degenerate degree 4 elliptic curve in CP3.

We can choose a particular configuration X of 2d distinct points in CP3 such that
every f = ev−1

1 (X ) is a balanced immersion, i.e X is a regular value of ev1. Then
the number of rational curves of degree d passing through such X is exactly the
Gromov-Witten invariant of CP3.

If X is a configuration of 2d distinct points lying on C0 then we can choose such
X in C0 satisfied. Indeed, let Vn be the set of configurations of n distinct points on
C0, Vn ⊂ (C0)n ⊂ (CP3)n. We have f ({x1, . . . , x2d}) = X ∈ V2d. Applying Sard’s
theorem to the holomorphism ev1, there is a dense open subset U ⊂ V2d such that
ev1 is regular on U. Thus, we choose X ∈ U ⊂ V2d, we get ev−1

1 (X ) is a regular point
of ev1.

By Kollár’s theorem, if X is a generic configuration of 2d points lying on C0,
then all connected rational curves of degree d passing through X are contained in
a quadric Q which is in the pencil of quadrics induced by C0. Moreover, if Y ⊂ X
as a configuration of (2d − 1) distinct points lying on C0 then we can choose such Y
that the number of rational curves of bidegree (a, d − a) passing through them on
each quadric is exactly the Gromov-Witten invariant of CP1 ×CP1. By the same ar-
gument, applying Sard’s theorem to holomorphism ev2, there exists U′ ⊂ V2d−1 a
dense open subset such that ev−1

2 (Y) is a regular point of ev2 for all Y ∈ U′ ⊂ V2d−1.
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2.3 Relation between two GW-invariants: GWCP3(d) and GWCP1×CP1(a, b)

Theorem 2.3.1. Let d be a positive integer then:

GWCP3(d) = ∑
0≤a< d

2

(d− 2a)2GWCP1×CP1(a, d− a)

Proof. Let C0 ⊂ CP3 be a non-degenerate degree 4 elliptic curve.
Let X ⊂ C0 be a configuration of 2d distinct points, i.e. X ∈ V2d; let Y ⊂ C0 be a
configuration of (2d− 1) distinct points of X , i.e. Y ⊂ X ,Y ∈ V2d−1.
Let C(X ) be the set of connected rational curves of degree d in CP3 containing X
(then every C ∈ C(X ) is irreducible).
Let Q ∈ Q be a non-singular quadric in the pencil of quadrics induced by C0.
Let CQ,a(Y) be the set of irreducible rational curves of bidegree (a, d− a) in Q con-
taining Y .

We have CQ,a(Y) ⊂ C(X ), i.e. every curve in CQ,a(Y) containing Y ⊂ X then
contains X . Indeed, suppose that Cd, C′d are two curves of bidegree (a, d− a) such
that Cd ∩ C0 = p1 + p2 + . . . + p2d and C′d ∩ C0 = p′1 + p2 + . . . + p2d. Since C0 is
of bidegree (2, 2) and D1, D2 are two families of lines in Q such that D1 ∩ C0 = E,
D2 ∩ C0 = h− E then we have linear equivalences:

Cd ∩ C0 ∼ a(h− E) + (d− a)E ∼ C′d ∩ C0

Thus p1 ∼ p′1, but p1, p′1 are in the elliptic curve C0 so p1 = p′1. That means all
curves passing through (2d − 1) points in the configuration of 2d points X in C0
pass through the last point for free.

Now we consider:
C(X ) = { connected rational curves of degree d in CP3, contain X}

= { f : CP1 → CP3 balanced immersions: deg f (CP1) = d, X ⊂ f (CP1)}.

On the one hand, by Lemma 2.2.1, if we choose X ∈ U ⊂ V2d is a regular value
of ev1, then ](C(X )) = GWCP3(d).

On the other hand, by Kollár’s theorem, every curve in C(X ) is contained in a
quadric Q ∈ Q then has bidegree (a, d− a). Moreover, this quadric is the image un-
der πQ of E ∈ Pic2(C0), which can exist if 0 ≤ a < d

2 . We note that CQ,a(Y) ⊂ C(X ).
Therefore,
C(X ) =

⋃
0≤a< d

2

⋃
Q∈Q
{ f : CP1 → Q immersions, bidegree of f (CP1) is (a, d − a),

Y ⊂ f (CP1)}.

By the property of the torsion points in Chapter 1, we have exactly (d − 2a)2

solutions in Pic2(C0) of the equation:

(d− 2a)E = (d− a)h−X ; 0 ≤ a <
d
2

(∗)

(Indeed, the solutions of the equation (∗) have form E + Ei where (d − 2a)Ei = 0
and the number of (d− 2a)−torsion points in C0 is (d− 2a)2, that means there are
(d− 2a)2 quadrics associated in Q). Thus,
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C(X ) =
⋃

0≤a< d
2

⋃
Q=πQ(E)

(d−2a)E=(d−a)h−X
Y⊂X

{ f : CP1 → Q immersions, bideg f (CP1) = (a, d− a),Y ⊂ f (CP1)}

=
⋃

0≤a< d
2

⋃
Q=πQ(E)

(d−2a)E=(d−a)h−X
Y⊂X

CQ,a(Y)

By Lemma 2.2.2, if we choose Y ∈ U′ ⊂ V2d−1 is a regular value of ev2, then
](CQ,a(Y)) = GWCP1×CP1(a, d− a), that is the number of elements of C(X ) in each
quadric Q of Q.

Thus,

](C(X )) = ∑
0≤a< d

2

∑
Q=πQ(E)

(d−2a)E=(d−a)h−X
Y⊂X

](CQ,a(Y))

Remark:

• GWCP1×CP1(a, b) = GWCP1×CP1(b, a).
Indeed, GWCP1×CP1(a, b) is the number of rational curves passing through a
configuration of (2d− 1) general points in CP1 ×CP1 and intersecting D1, D2
at a and b points respectively. We fix a configuration in CP1 ×CP1, we change
the role of (D1, D2) into (D2, D1) then the number of curves doesn’t change but
they now have bidegree (b, a).

• GWCP1×CP1(1, 0) = 1 and GWCP1×CP1(a, 0) = 0, ∀a > 1.
Indeed, GWCP1×CP1(1, 0) is the number of lines in the family D1 which pass
through 1 point in CP1 × CP1. But every point in CP1 × CP1 is the intersec-
tion of exactly two lines, one in the family D1, the other in the family D2. So
GWCP1×CP1(1, 0) = GWCP1×CP1(0, 1) = 1.
Otherwise, GWCP1×CP1(a, 0) is the number of rational curves which intersect
D1 at a points but don’t intersect D2 (up to isotopy class, these curves are col-
lection of a lines in the same family D2) and pass through 2a− 1 ≥ 3 general
points in CP1 × CP1. Since 2a − 1 points are general, they can not lie in the
same line, so there doesn’t exist any such curve. Thus, GWCP1×CP1(a, 0) = 0
for every a > 1.

For every 0 ≤ a < d
2 (more precisely, if d is odd, then a ∈ {1, 2, . . . , d−1

2 }; if d
is even, then a ∈ {1, 2, . . . , d−2

2 }), there are exactly (d− 2a)2 non-singular quadrics
Q: Q = πQ(E). On each quadric, there are ](Ca(Y)) = GWCP1×CP1(a, d− a) ratio-
nal curves of bidegree (a, d− a) containing Y , i.e. (d− 2a)2 × GWCP1×CP1(a, d− a)
curves in C(X ).

Hence, for all d ≥ 1,

](C(X )) = ∑
0≤a< d

2

(d− 2a)2GWCP1×CP1(a, d− a).



2.3. Relation between two GW-invariants: GWCP3(d) and GWCP1×CP1(a, b) 17

Example 3. Compute the Gromov-Witten invariants in the case d = 4.

Let X be a configuration of 8 distinct points on the elliptic curve C0. Then

GWCP3(4) = (4− 2)2GWCP1×CP1(1, 3) + 42GWCP1×CP1(0, 4)

We have GWCP1×CP1(0, 4) = 0, so we only need to compute GWCP1×CP1(1, 3).
In each quadric, there is a unique rational curve C of bidegree (1, 3) passing through X .
Indeed, C can be viewed as the graph of a degree 3 map:

CP1 −→ CP1

[x : y] 7−→ [g1(x, y) : g2(x, y)]

where gi(x, y) = aix3 + biy3 + cix2y + dixy2; i ∈ {1, 2}. Passing through 7 distinct points
gives 7 linear equations on the 8 coefficients then gives a unique pair (g1(x, y), g2(x, y)) up
to scalar. Thus, GWCP1×CP1(1, 3) = 1. Therefore, GWCP3(4) = 4× 1 = 4.
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Chapter 3

Welschinger invariants of CP3 and
of CP1×CP1

In this chapter, we consider real rational curves so we don’t simply count curves
but curves with sign. We need to define the sign for each real curve in CP3 and
in CP1 × CP1 such that we can make the comparison between their Welschinger
invariants. That can be done thanks to their link with the real normal bundles RN ′.

3.1 Definitions of Welschinger invariants:

3.1.1 Welschinger invariants of CP1 ×CP1: WRP1×RP1((a, b), l)

Let a, b be two nature numbers, a + b = d.
Let Y be a real generic configuration of (2d− 1) points (including l pairs of complex
conjugated points) in CP1 × CP1. Let RC(Y) be the set of all real rational curves
of bidegree (a, b) in CP1 × CP1 passing through Y . For each curve C in RC(Y),
we define its sign, denoted by sRP1×RP1(C), so that there exists an invariant only
depending on a, b and l in Y . This invariant is called the Welschinger invariant of
CP1 ×CP1, denoted by WRP1×RP1((a, b), l).

Definition 3.1.1.

WRP1×RP1((a, b), l) := ∑
C∈RC(Y)

(−1)s
RP1×RP1 (C)

On the one hand, we define sRP1×RP1(C) as the number of elliptic real nodes
(they are the intersection points of two complex conjugated branches) of C.

On the other hand, we are looking for the parity of this sign, i.e. sRP1×RP1(C)
mod 2, so we can describe it by the following. We know that, by a generic config-
uration Y , every curve C ∈ RC(Y) is parametrized by a real algebraic immersion
f : CP1 → CP1 × CP1 with bideg f (CP1) = (a, b) and Y ⊂ f (CP1). We also have
fRP1 : RP1 → RP1 ×RP1 is an immersion.

A trivialization of the tangent bundle over RP1 deduces a trivialization φ0 over
the tangent bundle of its product:

φ0 : T(RP1 ×RP1) −→ RP1 ×RP1 ×R2

By the canonical orientation and scalar product on R2, we can deduce an orienta-
tion and a Riemannian metric on T(RP1×RP1). Taking the pull-back of this tangent
bundle by the immersion fRP1 , we deduce a trivialization and a Riemannian metric
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on f ∗
RP1 T(RP1 × RP1). In f ∗

RP1 T(RP1 × RP1) , we have a natural R−subbundle
TRP1 by the universal propriety of the pull-back, (TRP1 is a rank 1 real vector bun-
dle over RP1) and we call E its orthogonal R−subbundle (E is also a rank 1 real
vector bundle over RP1).

Note that, we have an isomorphism RP1 ' S1, so we can choose a non-vanishing
smooth section σT : RP1 → TRP1 and then choose a section σE : RP1 → E such that
(σT, σE) is a positive basis of f ∗

RP1 T(RP1 ×RP1).

Suppose we have a non-vanishing map g : S1 → R2. Dividing by the norm, we
obtain a map g : S1 → S1, z 7→ g(z), and we can count how many times g(z) goes
around S1 when z goes around S1. The map g : S1 → S1 is the Gauss map, and the
number of times g(z) rotates is the Gauss index of g. For examples, the Gauss map
z 7→ c with c is a constant has Gauss index 0; the Gauss map z 7→ z(resp.z 7→ z̄ = 1

z )
has Gauss index 1 (resp. −1). Let N be the parity of the degree of the Gauss map of
f (RP1), that is the Gauss index of the Gauss map from f (RP1) to R2. We have the
following lemma.

Lemma 3.1.2. Let f : CP1 → CP1 ×CP1 be a real algebraic immersion then:

sRP1×RP1( f (CP1)) = N mod 2

Proof. We fix an orientation for f (RP1).

If f (CP1) has bidegree (a, b), then f (CP1) has exactly (a− 1)(b− 1) nodes. Note
that a node of f (RP1) is exactly a hyperbolic node of f (CP1). By smoothing each
node of f (RP1) according to the orientation of f (RP1), we obtain a collection γ of
n disjoint oriented circles embedded in RP1 ×RP1. Hence, the Gauss index of the
Gauss map of f (RP1) is the sum of the Gauss index of the Gauss map of all γi ∈ γ
and the Gauss index of the Gauss map of γi is either 0, 1 or −1. Note that whenever
we smooth a node, the number of embedded circles is changed by 1. After smooth-
ing, we get n = 1 + k mod 2.

Moreover, the oriented circles embedded in RP1×RP1 are either of the (p, q)−class
with pgcd(p, q) = 1 or of the (0, 0)−class in H1(RP1 × RP1, Z). The ones are of
the (p, q)−class have Gauss index 0 (see the presenting of these circles on Figure
3.1, with an orientation, the Gauss map associated is constant); the ones are of the
(0, 0)−class have Gauss index ±1 (see the presenting of these circles on Figure 3.1,
with an orientation, the Gauss map associated is orientation preserving or not , this
implies the Gauss index is 1 or −1 respectively).
Indeed, if γi is not a trivial class, up to isotopy, it is parametrized by an embed-
ding S1 → S1 × S1, t 7→ (pt, qt) where p, q ∈ Z∗, see ([Hat03], Torus knots, p47). If
pgcd(p, q) = d then this embedding is a (d : 1) map, since this map is injective so
d = 1. Moreover, if γi are not of (0, 0)−class and they are all disjoint, then such γi
are of the same class (p, q). Otherwise, suppose that γi is of class (p, q), γj is of class
(p′, q′) 6= (p, q) then ](γi ∩ γj) = pq′ − qp′ 6= 0, i.e γi intersects γj, contradiction.
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FIGURE 3.1: Examples of homology classes on the torus

Thus, we can suppose that (up to orientation) there are m oriented circles of γ be-
ing of the same class (p, q) ∈ H1(S

1 × S1; Z), (pgcd(p, q) = 1). Therefore, there are
(n−m) oriented circles in γ are of the class (0, 0) ∈ H1(S

1× S1; Z) with Gauss index
±1. We can write f (RP1) be of the class m(p, q).

Remark: If C is of bidegree (a, b) then RC is of bidegree (a, b) mod 2.

So (a, b) = m(p, q) mod 2. Since pgcd(p, q) = 1 then: if m is even then a ∨ b is
even, so (a− 1)(b− 1) is odd; if m is odd then a∨ b and a∧ b are odd, so (a− 1)(b− 1)
is even. Thus, we have (a− 1)(b− 1) = m− 1 mod 2.

In conclusion, we have:
sRP1×RP1( f (CP1)) = ] (elliptic nodes of f (CP1))

= ](nodes of f (CP1)) - ](hyperbolic nodes of f (CP1)) mod 2
= (a− 1)(b− 1)− k mod 2
= (m− 1− k) mod 2
= ((1 + k)−m) mod 2
= (n−m) mod 2
= ] (oriented cirles in RP1×RP1) -](oriented circles in RP1×RP1

of Gauss index 0) mod 2
= ] (oriented cirles in RP1 ×RP1 of Gauss index ±1) mod 2
= (degree of Gauss map of f (RP1)) mod 2
= N mod 2.

That completed the proof of the lemma.

3.1.2 Welschinger invariants of CP3: WRP3(d, l)

Let d be a nature number.
Let X be the real generic configuration of 2d points (including l pairs of complex
conjugated points) in CP3. Let RC(X ) be the set of all real rational curves of degree
d in CP3 passing through X . For each curve C in RC(X ), we define its sign, denoted
by sRP3(C), so that there exist an invariant only depending on d and l in X . This
invariant is called Welschinger invariant of CP3, denoted by WRP3(d, l).
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Definition 3.1.3.
WRP3(d, l) := ∑

C∈RC(X )

(−1)s
RP3 (C)

Now we need to define sRP3(C) for every curve C ∈ RC(X ).

For a real generic configuration X , every curve C ∈ RC(X ) is parametrized
by a real balanced algebraic immersion f : CP1 → CP3 with deg f (CP1) = d and
X ⊂ f (CP1). We also have fRP1 : RP1 → RP3 is an immersion.

We fix an orientation on RP3. We can choose a compatible trivialization φ0 of the
tangent bundle over RP3:

φ0 : TRP3 −→ RP3 ×R3

The canonical Euclidean scalar product on R3 deduces a Riemannian metric on
RP3. Taking the pull-back of the tangent bundle TRP3 by the immersion fRP1 ,
we deduce a trivialization and a Riemannian metric on f ∗

RP1 TRP3. In f ∗
RP1 TRP3,

we have a natural R−subbundle TRP1 by the universal propriety of the pull-back
(TRP1 is a rank 1 real vector bundle over RP1) and we callNR its orthogonal R−subbundle
(NR is a rank 2 real vector bundle over RP1) .

Fixing an orientation on RP1, we can choose a positive orthonormal section
σT : RP1 → TRP1. We can also choose a line R−subbundle E of NR together
with its non-vanishing section σE such that (σT, σE) is an orthonormal section of
TRP1 ⊕ E. Then there is a unique way to choose the second section σN of NR to
make (σT, σE, σN) form a positive orthonormal section of f ∗

RP1 TRP3.

Topologically, we have a homeomorphism RP1 ' S1/{antipodal points} = S1.
Note that SO3(R) = { positively orthonormal basis of R3} and π1(SO3(R)) = Z2.
Thus, the section (σT, σE, σN) defines a loop in SO3(R) (that is the continuous map
S1 → SO3(R); u 7→ (σT(u), σE(u), σN(u))). In fact, this loop is characterized by the
section of the line R−subbundle E ofNR, σE. From now, we can associate a number
for the line R− subbundle E of NR, denoted by s(E), be either 0 or 1, depending
whether the loop characterized in π1(SO3(R)) is trivial or non-trivial respectively.

Remark: s(E) depends on the isotopy class of E as a line R− subbundle of NR

and on the homotopy class of the restriction of the trivialization φ0 to TRP3| f (RP1).
At the end of this section, we fix the trivialization φ0, so s(E) only depends on the
isotopy class of E. We will emphasize on the line R−subbundles ofNR which realize
two different isotopy classes then define two different loops in π1(SO3(R)). That is
the case of line R− subbundles ofNR of degree (2d− 2) which we are interested in.

We distinguish the holomorphic line R−subbundle of NR of degree (2d− 1) or
(2d− 2) in the consequence of the following lemma.

Lemma 3.1.4. Let f : CP1 → CP3 be a real balanced immersion with deg f (CP1) = d
(so N ' O(2d − 1) ⊕ O(2d − 1) := H ⊕ K). A holomorphic line subbundle of N is
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in 1 − 1 correspondence with a rational function F : CP1 → CP1: its fiber over u has
equation w = F(u)z where u, z, w are complex numbers and (u, (z, w)), (u, z), (u, w) are
local coordinates of N , H, K respectively; its degree is 2d− 1− degF.
In particular, a holomorphic line R−subbundle of N is in 1− 1 correspondence with a real
rational function FRP1 : RP1 → RP1.

Proof. Let M be a holomorphic line subbundle ofN . Let u, z, w be complex numbers
as in the statement. The slope of a fiber of M over u varies depending on the posi-
tion of u ∈ CP1, so it corresponds to the rational function F : CP1 → CP1; u 7→ F(u).
Then its fiber over u is Mu : w = F(u)z.

To determine the degree of M, we can count the number of zeros and poles of its
section σM. In fact, when F(u) = 0 then w = 0, so the zeros of σM is equal to the
zeros of the section of H = O(2d− 1), so the number of zeros of σM is (2d− 1). The
poles of σM is the points u where F(u) = +∞ (that is when z = 0, w 6= 0, in other
words, when the fiber Mu ≡ Ku), so the number of poles of σM is degF. Therefore,
M ' O(2d− 1− degF).

Remark: The Riemannian metric on RP3 allows us to identify NR with RN .

As the consequence, depending on degree of the real rational map FRP1 we can
determine the holomorphic line R−subbundle of N associated:

• When degFRP1 = 0, i.e. FRP1(u) = constant, ∀u, then up to real isotopy, there is
a unique holomorphic line R−subbundle of N of degree (2d− 1).

• When degFRP1 = 1, i.e. FRP1(u) = Au+B
Cu+D , AD − BC 6= 0, then depending

whether the value of AD − BC is positive or negative, i.e. FRP1 is orienta-
tion preserving or not, and up to real isotopy, there are two holomorphic line
R−subbundles of N of degree (2d − 2), let’s call L and L′ respectively. In
other words, we distinguish two (real isotopy classes of) holomorphic line
R−subbundles ofN of degree (2d− 2) depending on whether their real fibers
rotate positively or negatively in local holomorphic coordinate of N . We al-
ways choose L belonged to the former case and L′ belonged to the latter case. Since
the difference between L and L′ is exactly one full rotation , so s(L) 6= s(L′).

In conclusion, for a generic configuration X , the sign of a curve C ∈ RC(X ) is
defined to be equal to the number s(L), i.e. sRP3(C) := s(L) ∈ {0, 1}.

Remark: We fix a trivialization φ0 such that for a line D ⊂ CP3 : sRP3(D) = 0.

3.2 Relation between two W-invariants WRP3(d, l) and WRP1×RP1((a, b), l)

In this section, we always suppose that Q is a real quadric in CP3 whose real part is
homeomorphic to the torus, i.e. RQ ' RP1 ×RP1.
We also suppose that D1, D2 are real and f : CP1 → CP3 is a real algebraic immer-
sion.

Remark: If s(RN ′1) = s(RND1/Q) = 0, we say (D1, D2) form a positive basis.

In the Proposition 3.2.1 and Proposition 3.2.2), we suppose that f (CP1) ⊂ Q with
bideg( f (CP1)) = (a, b) in the positive basis with a 6= b and a + b = d. In here, our
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convention is s(RN ′1) = 0 and s(RN ′2) = 1. That means the line R−bundle RN ′1
defines a trivial loop in π1(SO3(R)) while RN ′2 defines a non-trivial one.

Recall: If E is a line R−subbundle of N then one of its sections σE defines a loop
in π1(SO3(R)). We have s(E) ∈ {0, 1}. Precisely, if the loop in π1(SO3(R)) defined
by E is non-trivial then s(E) = 1 and s(E) = 0 otherwise.

Thus, the line R−bundle RN ′ = f ∗TRQ/TRP1 also defines a loop in π1(SO3(R)),
and the line R−bundle TRQ|γi /Tγi will define a loop in π1(SO3(R)) for each γi ∈ γ
defined as in Lemma 3.1.2.

Now, let’s see how is the relation between sRP3( f (CP1)), sRP1×RP1( f (CP1)) and
s(RN ′) in the two following propositions.

Proposition 3.2.1.

s(RN ′) = sRP1×RP1( f (CP1)) + b mod 2.

Proof. Firstly, we fix an orientation on RP1 and smooth each node of f (RP1) simi-
larly as in the proof of Lemma 2.2.1, we obtain a collection γ of n disjoint oriented
circles γi embedded in RP1 ×RP1. Moreover, γi is either of the trivial class or of
(p, q)−class with pgcd(p, q) = 1 in the homology group H1(RP1 ×RP1, Z).

Secondly, we consider the loops in π1(SO3(R)) defined in two ways: one way
by the line R−bundle RN ′, we denote the loop associated γ̃; the other way by the
line R− bundles TRQ|γi /Tγi, we denote the loops associated γ̃i. We have a free
homotopy (homotopy of free base points) of loops in π1(SO3(R)) :

γ̃ ∼ ∏
γi∈γ

γ̃i

Then

s(RN ′) = ∑
γi∈γ

s(TRQ|γi /Tγi) = ∑
γi∈γ

s(RNγi/RQ)

⇒ s(RN ′) = ∑
γi∈(0,0)−class

s(RNγi/RQ) + ∑
γj∈(p,q)−class

s(RNγj/RQ)

(I) (I I)

Consider (I):
We know that for each γi of class (0, 0) ∈ H1(RP1×RP1; Z), (i.e. γi and [RD1], [RD2]
have no intersection point counted with sign), RNγi/RQ defines a non-trivial loop in
π1(SO3(R)), then s(RNγi/RQ) = 1, ∀γi ∈ (0, 0)− class. By Lemma 2.2.1, we have
proven ]{ circles in γ of class (0, 0)} ≡ sRP1×RP1( f (CP1)) mod 2.

So (I) = Σγi∈(0,0)−classs(RNγi/RQ) = sRP1×RP1( f (CP1)) mod 2.

Consider (I I):
We have γj is of (p, q)− class, i.e. γj ∼ p[RD1] + q[RD2]. So RNγj/RQ defines p
times loop defined by RN ′1 and q times loop defined by RN ′2 in π1(SO3(R)). In
other words, for each circle γj of class (p, q) ∈ H1(RP1 ×RP1; Z), pgcd(p, q) = 1,
RNγj/RQ defines p times trivial loop and q times non-trivial loop in π1(SO3(R)).
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FIGURE 3.2: Intersection points of f (CP1) with fε(CP1)

Since s(RN ′1) = 0 and s(RN ′2) = 1, we have:

s(RNγj/RQ) = q× s(RN ′2) = q

Suppose that there are m circles in γ being of the (p, q)−class.

∑
γj∈(p,q)−class

s(RNγj/RQ) = m× s(RNγj/RQ) = mq = b mod 2

Note that (a, b) = (mp, mq) mod 2 implies mq = b mod 2.

So (I I) = b.

In conclusion,

s(RN ′) = sRP1×RP1( f (CP1)) + b mod 2

If a line R−subbundle of RN has degree (2d− 2) then it can realize the isotopy
class either L or L′. The next proposition confirms that RN ′ is the case and realize
the isotopy class L when a > b and L′ otherwise.

Proposition 3.2.2. RN ′ realizes the isotopy class L if and only if a > b.

Proof. We need to prove that N ′ is a line subbundle of N of degree (2d− 2) where
d = a + b. Then we find a suitable way to determine the isotopy class of its real part.
Lastly, we show that RN ′ and L have the same isotopy class only when a > b.

Step 1: N ′ is the line subbundle of N of degree 2d− 2.
We have N ′ = f ∗TQ/TCP1, then it is a line bundle over CP1, let N ′ = O(h). To
determine h, we count the vanishing points of non-zero smooth section of N ′ and
note that whenever we have a node of f (CP1) then the two intersecting points of
f (CP1) ∩ fε(CP1) around this node are not counted. See Figure 3.2.

Moreover, on a non-singular quadric surface, two curves f (CP1) and fε(CP1)
are both of bidegree (a, b) so ]( f (CP1) ∩ fε(CP1)) = (a, b)× (a, b) = ab + ab = 2ab
and by adjunction formula, f (CP1) has exactly (a− 1)(b− 1) nodes.
Therefore,
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h = ]( f (CP1) ∩ fε(CP1))− 2× ]{nodes ∈ f (CP1)}
= 2ab− 2× (a− 1)(b− 1)
= 2(a + b)− 2
= 2d− 2.

That means N ′ = O(2d− 2).

Step 2: One way to define the isotopy class of RN ′.

Recall: When f is balanced, if degFRP1 = 0, there is a unique isotopy class of holo-
morphic line R−subbundle ofN of degree (2d− 1), let’s call H. If degFRP1 = 1, there
are two isotopy classes of holomorphic line R−subbundles of N of degree (2d− 2)
whose real fibers rotate positively or negatively in local holomorphic coordinate of
N , we call them L and L′ respectively.

Suppose that we have H such that fibers over u0: Hu0 and RN ′u0 are coincide,
then looking at u > u0, we see that the fibers over u: Hu = Hu0 but RN ′u 6= RN ′u0 .
So RN ′ might be in the isotopy class either L or L′. Therefore, we need to find such
u0 and H.

Let C0 ⊂ Q be a real elliptic curve of bidegree (2, 2) with RC0 6= ∅ and C0
intersects f (CP1) transversely at p0 = f (u0), u0 ∈ RP1. Let Q be the real pen-
cil of quadrics induced by C0. We have f (CP1) ∩ C0 = {p0, p1, . . . , p2d−1}. Let fε

be a first order real deformation of f in the pencil Q such that: for all ε, we have
fε(CP1) ∩ C0 = {pε, p1, . . . , p2d−1}.

This deformation corresponds to a non-null real holomorphic section σ of N ,
σ : CP1 → N such that σ( f−1(C0\{p0})) = 0 and σ( f−1(p0)) = σ(u0) 6= 0 (equiva-
lent to σ( f−1(C0\{p0})) ∈ TCP1 and σ(u0) /∈ TCP1). Let H be the line holomorphic
R−subbundle of N of degree (2d− 1) such that Hu0 =< σ(u0) >. Then we claim
that:

• σ is also a section on H, i.e. σ(u) ∈ Hu, ∀u ∈ CP1.
Indeed, σ induces a holomorphic section of the line bundle N/H, σN/H :
CP1 → N/H. We have deg(N/H) = 2d − 1, i.e. N/H = O(2d − 1) but
σN/H vanishes at 2d points of f−1(C0) so it is a null-section.

• The fibers over u0: Hu0 ≡ N ′u0 .
Indeed, σ(u0) corresponds to the pull-back of the deformation of p0 to pε and
p0, pε ∈ C0 ⊂ Q so −−→p0 pε ∈ TQu0 . Since p0 6= pε so −−→p0 pε ∈ TQ/T f (CP1), so
σ(u0) ∈ f ∗(TQ/T f (CP1)) = N ′.

• The direction of σ(u0) determines the isotopy class realized by RN ′.

Indeed, for Q ∈ Q, let σQ be a holomorphic section of TCP3/TQ and let
RσQ be a fixed smooth non-vanishing section of TRP3/TRQ (we can fix di-
rection of RσQ because of the orientation on RP3 and RQ). Since C0 ⊂ Q then
σQ(C0) = 0, then RQ\RC0 is divided into two parts depending on the direc-
tion of σQ. Let RQ+ ⊂ RQ\RC0 be the one which σQ and RσQ have the same
direction. This choice (of σQ and RσQ) together with a choice of orientation on
RP1 induce an orientation on f (RP1) such that f (RP1) points toward RQ+ at
f (u0).
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FIGURE 3.3: One way to define the isotopy class of RN ′

Remark: We can identify f ∗(TRP3/TRQ) with RN ′⊥ ⊂ RN , this implies
∀u ∈ RP1, f ∗(RσQ(u)) ∈ RN ′⊥. We have a split short exact sequence of real
normal bundles over RP1: 0→ RN ′ → RN → f ∗

RP1RNQ → 0.

Therefore, for u ∈ RP1 which is close enough to u0, we can decompose vector
σ(u) ∈ RN depending on vectors σ(u0) ∈ RN ′ and f ∗(RσQ(u)) ∈ N ′⊥ as
follows:

σ(u) = g1(u)× σ(u0) + g2(u)× f ∗(RσQ(u))

Where g1, g2 are smooth functions of u such that g1(u0) = 1, g2(u0) = 0 and
g2(u) > 0, ∀u > u0.
That means the choice of σQ and RσQ also induces an orientation of the fiber
RNu0 together with a half-plane Π ⊂ RN\RN ′ which contains σ(u), ∀u > u0.
The orientation of this fiber (i.e. the direction of the vector σ(u0) ∈ RN ′)
decides the direction of the rotation from RN ′ to H.

Step 3: Compare the isotopy class of RN ′ and L.

By the two steps above, we have RN ′ is the holomorphic line R−subbundle of
N of degree (2d− 2) and its isotopy class is determined by σ(u0). So whether the
direction of σ(u0) makes its fibers rotate positively in the half-plane Π, the isotopy
class of RN ′ and L are the same.

One the one hand, we have pε ∈ fε(CP1) ∩ C0, pε = p0 + ε p̄0 6= p0, then
p′ε(0) = p̄0 6= 0 is the direction of deformation from p0 to pε. The direction of
the vector σ(u0) in fact corresponds to the direction of the vector p′ε(0).

On the other hand, we have

fε(CP1) ∼ aD1,ε + bD2,ε = (a− b)D1,ε + bH

⇒ fε(CP1) ∩ C0 ∼ (a− b)(D1,ε ∩ C0) + b(H ∩ C0) = (a− b)E1,ε + bh ∈ Pic2d(C0).

So pε ∈ fε(CP1) ∩ C0 ∼ (a − b)E1,ε + bh. If a > b then the direction of the vector
p′ε(0) is the same as the direction of the line D1. If a < b then the direction of the
vector p′ε(0) is opposite the direction of the line D1.

Therefore, the direction of σ(u0) is the same as of the line D1 iff a > b.
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We only need to check for the case d = 1, i.e. given a real line D in CP3, if
f (CP1) = D then RN ′ realizes the isotopy class L iff (a, b) = (1, 0) (or D ∼ D1).

Recall that we are working on the positive basis (D1, D2), i.e. s(RN ′1) = 0 and
s(RN ′2) = 1.

Indeed, by definition, sRP3(D) = s(L(D)) where L(D) is the (real isotopy classes
of) holomorphic line R−subbundles of N of degree (2d− 2) = 0 whose real fibers
rotate positively in local holomorphic coordinate of N . By convention in the last
section, sRP3(D) = 0 so s(L(D)) = 0.

• If D ∼ D1, i.e. D has bidegree (a, b) = (1, 0), then sRP3(D1) = sRP3(D) = 0,
this implies s(L(D1)) = 0. Moreover, s(RN ′1) = 0 so s(RN ′1) = s(L(D1)),
i.e. RN ′1 realizes the isotopy class L(D1).

• If D ∼ D2, i.e. D has bidegree (a, b) = (0, 1), then sRP3(D2) = sRP3(D) = 0,
this implies s(L(D2)) = 0. But 1 = s(RN ′2) 6= s(L(D2)) = 0, i.e. RN ′2 does
not realize the isotopy class L(D2).

In conclusion, RN ′ realizes the isopoty class L iff a > b.

As the consequence of the proposition 3.2.2, if a < b then RN ′ realizes the iso-
topy class L′, i.e. s(RN ′) = s(L′) = s(L)− 1 mod 2.

As the consequence of Proposition 3.2.1 and Proposition 3.2.2, we have found the
relation between sRP3( f (CP1)) and sRP1×RP1( f (CP1)):

• If a > b then sRP3( f (CP1)) = s(L) = s(RN ′) = sRP1×RP1( f (CP1)) + b mod 2.

• If a < b then sRP3( f (CP1)) = s(L) = s(RN ′) + 1 = sRP1×RP1( f (CP1)) + b + 1
mod 2.

According to Kollár’s theorem, there exists 0 ≤ a < d
2 such that f (CP1) has bidegree

(a, d − a) or (d − a, a) in the positive basis (D1, D2) of Q. Moreover, We are under
the condition a + b = d , d is odd, so a and (d− a) have different parity. Therefore,
we have:

• If a is even then b is odd, so sRP3( f (CP1)) = sRP1×RP1( f (CP1)) mod 2.

• If a is odd then b is even, so sRP3( f (CP1)) = sRP1×RP1( f (CP1)) + 1 mod 2.

In other words, sRP3( f (CP1)) = sRP1×RP1( f (CP1)) + a mod 2, for all 0 ≤ a < d
2 .

Theorem 3.2.3. Let d be an odd positive integer and 0 ≤ l < d, then:

WRP3(d, l) = ∑
0≤a< d

2

(−1)a(d− 2a)WRP1×RP1((a, d− a), l)

Remark: G.Milkhalkin proved that when d is even and 0 ≤ l < d then one has
WRP3(d, l) = 0. One has also calculated WRP3(d, d) in a non-trivial method.

Proof. Recall: We have proven in Theorem 2.3.1 that: GWCP1×CP1(0, 1) = 1 and
GWCP1×CP1(0, a) = 0, ∀a > 1. That implies WRP3(1, 0) = WRP1×RP1((0, 1), 0) = 1
and WRP1×RP1((0, a), l) = 0, ∀a > 1, ∀0 ≤ l < a.
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We now consider the case d > 1 odd.
First, using Kollár’s theorem and the propriety of the torsion points in chapter 1, we
have exactly (d− 2a) real solutions in Pic2(RC0) of the equation:

(d− 2a)E = (d− a)h−X (∗)

(Indeed, (d − 2a) is odd so there are only (d − 2a) of real (d − 2a)−torsion points
Ei in RC0 for both cases of RC0 and the solutions of the equation (∗) is of the form
E + Ei, that means there are (d− 2a) real quadrics RQ associated in Q.)

Remark: we need to choose X as a real configuration containing at least one real
point. Otherwise, if X contains all complex conjugate point pairs then we can not
choose the real configuration Y ⊂ X of (2d− 1) points so that we can connect two
Welschinger invariants.

By the same argument as in Chapter 2, we can choose X as a real configura-
tion of 2d distinct points (with at least one real point) in the elliptic curve C0 and
choose Y as a real configuration of (2d− 1) distinct points in C0, Y ⊂ X so that the
number of rational curves of degree d counted with sign passing through such X is
exactly the Welschinger invariant of CP3 and the number of rational curves of bide-
gree (a, d− a) counted with sign passing through such Y is exactly the Welschinger
invariant of CP1 ×CP1.

Recall that:
The Welschinger invariant of CP1×CP1 is WRP1×RP1((a, b), l) = ∑

C∈RC(Y)
(−1)s

RP1×RP1 (C),

The Welschinger invariant of CP3 is WRP3(d, l) = ∑
C∈RC(X )

(−1)s
RP3 (C).

Thus, for all d > 1 odd:

WRP3(d, l) = ∑
C∈RC(X )

(−1)s
RP3 (C)

= ∑
f :CP1→CP3real,balanced,immersion

X⊂ f (CP1)

(−1)s
RP3 ( f (CP1))

=

{ (d− 2)×∑ f :CP1→Q real,immersion
Y⊂ f (CP1)

−(−1)s
RP1×RP1 ( f (CP1)) i f a = 1,

...
1×∑ f :CP1→Q real,immersion

Y⊂ f (CP1)

(−1)
d−1

2 (−1)s
RP1×RP1 ( f (CP1)) i f a = d−1

2 .

= ∑
0<a< d

2

(−1)a(d− 2a) ∑
f :CP1→Q real,immersion

Y⊂ f (CP1)

(−1)s
RP1×RP1 ( f (CP1))

= ∑
0<a< d

2

(−1)a(d− 2a)WRP1×RP1((a, d− a), l)

Remark: We can prove WRP3(d, l) = 0 for all d even and for all 0 ≤ l < d by this
method.
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Indeed, suppose that RC0 has one connected component, then the equation (∗)
still has exactly (d− 2a) real solutions.

According to Kollár’s theorem, there exists 0 ≤ a < d
2 such that f (CP1) has

bidegree (a, d− a) or (d− a, a) in the positive basis (D1, D2) of Q. We have proven
that: if f (CP1) has bidegree (a, b) in the positive basis then, one has

sRP3( f (CP1)) =

{
sRP1×RP1( f (CP1)) + b + 1, if a < b
sRP1×RP1( f (CP1)) + b, if a > b

Since d is even then a and (d− a) have the same parity. In the first case, if a is even
then sRP3( f (CP1)) = sRP1×RP1( f (CP1))+ 1 mod 2; otherwise sRP3( f (CP1)) = sRP1×RP1( f (CP1))
mod 2. In the second case, if a is even then sRP3( f (CP1)) = sRP1×RP1( f (CP1))
mod 2; otherwise sRP3( f (CP1)) = sRP1×RP1( f (CP1)) + 1 mod 2.

In other words,

• If bideg f (CP1) = (a, d − a) then sRP3( f (CP1)) = sRP1×RP1( f (CP1)) + a + 1
mod 2.

• If bideg f (CP1) = (d− a, a) then sRP3( f (CP1)) = sRP1×RP1( f (CP1))+ a mod 2.

Then, for all d even and 0 ≤ l < d:

WRP3(d, l) = ∑
0≤a< d

2

(d− 2a)((−1)a+1WRP1×RP1((a, d− a), l)+ (−1)aWRP1×RP1((d− a, a), l))

Since WRP1×RP1((a, d− a), l) = WRP1×RP1((d− a, a), l) then WRP3(d, l) = 0 for all d
even and 0 ≤ l < d.

Example 4. Compute the Welschinger invariants in the following cases:

• d = 1. Since WRP1×RP1((0, 1), 0) = 1, then WRP3(1, 0) = 1.

• d = 2. Since WRP1×RP1((0, 2), l) = 0, then WRP3(2, l) = 0.

• d = 3. Since WRP1×RP1((0, 3), l) = 0, then WRP3(3, l) = −WRP1×RP1((1, 2), l) for
all l ∈ {0, 1, 2}. By the same method as shown in Example 3, we have:
WRP1×RP1((1, 2), l) = 1, then WRP3(3, l) = −1.

• d = 4. Since WRP1×RP1((0, 4), l) = 0 and d is even then:
WRP3(4, l) = 2× (−1)2×WRP1×RP1((1, 3), l) + 2× (−1)3×WRP1×RP1((3, 1), l)
for all l ∈ {0, 1, 2, 3}.
We have: WRP1×RP1((1, 3), l) = WRP1×RP1((3, 1), l) = 1, then WRP3(3, l) = 0.

• d = 5. Similarly, WRP1×RP1((0, 5), l) = 0 and WRP1×RP1((1, 4), l) = 1. Thus,
WRP3(5, l) = −3 + WRP1×RP1((2, 3), l) for all l ∈ {0, . . . , 4}.
In this case, computing WRP1×RP1((2, 3), l) needs more argument than in this rap-
port.
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Conclusion

In this rapport, we have constructed the relation between Gromov-Witten-Welschinger
invariants of CP3 and CP1 × CP1 by the particular method. As the consequence,
we can turn the enumerative problem of counting rational curves (or real rational
curves with sign) of degree d passing by certain number of points in the 3− di-
mensional projective space CP3 into an easier enumerative problem, it is counting
rational curves (or real rational curves with sign) of bidegree (a, b) passing by cer-
tain number of points in the 2− dimensional projective space CP1 × CP1. We give
some examples about computation in some simple cases.

The questions might be asked as: Can we using these methods to solve other
problems in enumerative geometry which are more complicated? Or are there any
other methods to count more effectively? The relationship between Gromov-Witten
invariant and Welschinger invariant might be interesting? For example of some
other enumerative problems: counting curves with higher genus; counting rational
curves in higher projective space; counting surfaces with some fixed conditions...
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