
Rapport de stage:

Etude de méthodes spectrales discontinues pour le calcul

haute performance

Organisme d’accueil: Centre Européen de Recherche et de Formation Avancée en Calcul
Scientifique (CERFACS) - Equipe AAM

Encadrants: Guillaume Daviller et Nadir-Alexandre Messaï
Référent universitaire: Mehdi Badsi

Marie Compain
M2 MACS - Nantes Université

du 2 Avril au 30 Septembre 2024

1

Rapport de stage Marie Compain

Résumé

Ce rapport de stage présente une adaptation de la méthode Face-Upwinded Spectral Ele-
ment (FUSE) [8] à la méthode des Différences Spectrales (SD) pour la résolution de lois de
conservation hyperboliques. Cette nouvelle méthode est décrite pour des cas scalaires linéaires
et non linéaires en 1D, et des cas linéaires et de systèmes en 2D. De plus, une preuve de sta-
bilité des deux méthodes est présentée pour un maillage hexahédrique 2D. La méthode FUSE
est ensuite validée sur plusieurs cas tests et comparée à la méthode SD. Il est observé que
les erreurs L2 commises pour les deux méthodes sont du même ordre de grandeur. Enfin, une
analyse de la complexité algorithmique des deux méthodes montrent que la méthode FUSE
requiert moins d’opérations que la méthode SD standard. Ceci est validé par des tests 1D et
2D sur coeurs CPU et cartes GPU, qui montrent que le temps de calcul de la méthode FUSE
est plus bas que celui de la méthode.

2

Rapport de stage Marie Compain

Table des matières

Remerciements 5

1 Introduction 6

2 Différences spectrales 8
2.1 Méthode en 1D . 8

2.1.1 Notations et discrétisation spatiale . 8
2.1.2 Interpolation et extrapolation . 9
2.1.3 Algorithme de résolution numérique . 9

2.2 Méthode en 2D/3D . 11
2.2.1 Notations et discrétisation spatiale . 11
2.2.2 Algorithme de résolution numérique . 13

3 Nouvelle méthode : la méthode FUSE 15
3.1 Introduction de la méthode . 15
3.2 Application de la méthode FUSE aux différences spectrales 16

3.2.1 Cas linéaire 1D . 16
3.2.2 Cas scalaire non linéaire 1D . 19
3.2.3 Cas linéaire 2D . 23
3.2.4 Cas d’un système non linéaire 2D . 23

4 Stabilité en 2D de la méthode SD et de la méthode FUSE 27

5 Tests numériques 35
5.1 Présentation de HOPPS . 35
5.2 Cas linéaire en 1D . 35

5.2.1 Condition initiale continue . 36
5.2.2 Condition initiale discontinue . 40

5.3 Cas scalaire non linéaire en 1D . 41
5.3.1 Condition initiale continue . 41
5.3.2 Problème de Riemann . 42

5.4 Cas linéaire en 2D . 46
5.5 Cas d’un système en 2D : les équations d’Euler . 48

3

Rapport de stage Marie Compain

6 Analyse de performance 53
6.1 Complexité algorithmique . 53
6.2 Tests de performance . 55

6.2.1 Tests en 1D avec HOPPS . 55
6.2.2 Tests en 2D avec HOPPS . 56

7 Conclusions et perspectives 59

4

Rapport de stage Marie Compain

Remerciements

Je tiens à remercier tout d’abord Guillaume et Nadir, pour m’avoir si bien accueillie, aidée et
encadrée tout au long de ce stage. Un grand merci aussi à Alexandre, qui était toujours là pour
répondre à mes questions sur HOPPS et m’aider à débuguer le code, ainsi qu’aux autres collègues
qui ont été très accueillants et très sympathiques durant ces six mois : merci Etienne, Thomas,
Fabien, Félicia et Jules.

Je remercie aussi l’équipe pédagogique du master MACS de Nantes Université, pour leur bien-
veillance, leur pédagogie et leur écoute pendant ces deux années.

Enfin je voulais remercier les amis que j’ai rencontré pendant mes études, pour leur soutien et
pour avoir toujours été là, dans les bons comme dans les mauvais moments. Un grand merci, entre
autres, à Quentin, Hugo, Solenne, Imène et Matthieu.

5

Rapport de stage Marie Compain

1 Introduction

Les simulations numériques jouent un rôle essentiel en mécanique des fluides, autant dans la
recherche que dans la conception industrielle. En effet, les essais peuvent être coûteux en terme de
matériel, de temps et de main d’oeuvre. L’alternative de la simulation numérique est plus fiable,
plus rapide et plus économique. De plus, elle permet d’accéder à des grandeurs inaccessibles à
l’expérience. A titre d’illustration, citons la caractérisation des mouvements de très petite échelle
caractéristiques de la turbulence.

La mécanique des fluides numérique (CFD pour Computational Fluid Dynamics) est un des
axes de recherche principaux du CERFACS. Les phénomènes physiques à simuler en CFD étant
complexes, la taille des problèmes à résoudre nécessite souvent d’utiliser des supercalculateurs. Ces
derniers sont de plus en plus hybrides, c’est-à-dire composés de noeuds avec coeurs CPU mais aussi
de cartes GPU. Et parmi ces cartes, plusieurs types existent. C’est pourquoi il est essentiel d’adap-
ter les codes CFD à ces nouvelles architectures. C’est dans ce contexte que le CERFACS a décidé
de développer un code de calcul CFD haute performance, nommé HOPPS, dont la parallélisation
dépend de Kokkos [10]. Cette librairie C++ permet en effet d’automatiser la portabilité de HOPPS
sur différentes architectures matérielles.

Depuis une vingtaine d’années, les méthodes numériques d’ordre élevé ont émergé en CFD
comme une alternative aux méthodes utilisées jusque-là. En effet, les méthodes d’ordre élevé per-
mettent de gagner en précision à un coût de calcul moins important que les méthodes volumes
finis classiques. Elles ont aussi des niveaux de dissipation numérique beaucoup plus faibles. Parmi
les méthodes d’ordre élevé les plus connues, nous pouvons citer la méthode Galerkin Discontinu
(DG) [2]. Cependant, bien qu’elle soit précise, son coût de calcul est en général assez grand. C’est
pourquoi des alternatives à cette méthode ont été construites. Nous avons par exemple la méthode
Reconstruction par Flux (FR) [3], qui est plus rapide que la méthode DG mais renvoie des solutions
moins précises, ou bien la méthode des Différences Spectrales (SD) [5], qui se trouve à mi-chemin
entre les méthodes FR et DG en terme de coût de calcul et de précision [11]. Le choix du CERFACS
s’est donc porté sur cette méthode numérique pour ses solveurs CFD.

Soit la loi de conservation suivante :

∂tU+∇.f(U) = 0 sur Ω× [0, T], (1.1)

avec Ω ∈ Rd, d = 1, 2, 3, le domaine physique, T ∈ R∗
+, U = (Ui)1≤i≤Neq

le vecteur des incon-
nues, où Neq est le nombre d’inconnues du système, et f(U) le flux. Il peut s’agir, par exemple, des

6

https://cerfacs.fr/
https://kokkos.org/kokkos-core-wiki/index.html

Rapport de stage Marie Compain

équations d’Euler ou des équations de Navier-Stokes.

La méthode SD approche chaque composante du vecteur solution U par un polynôme d’ordre p
en utilisant l’interpolation de Lagrange. Ainsi, pour définir ce polynôme, il nous faut la valeur de Ui

à p+ 1 points. Ces points seront appelés les points solution. Nous aurons aussi besoin d’approcher
le flux f(U) par un polynôme, mais cette fois d’ordre p + 1 pour être consistant avec l’ordre de
U. Il nous faudra alors p + 2 points d’interpolation, appelés points flux. Les points solution et les
points flux n’étant usuellement pas collocalisés, la méthode SD utilise une étape d’extrapolation
afin d’exprimer U aux points flux.

Or il a été démontré par Jameson [4] que la stabilité de la méthode SD ne dépendait pas de la
localisation des points solution. Il a donc été proposé par Pan et al. [8] de collocaliser les points
solution avec certains points flux.

L’objectif de ce stage est de caractériser les possibilités que nous offre cette nouvelle méthode,
nommée Face-Upwinded Spectral Element (FUSE), en terme de stabilité et de coût de calcul, en
faisant une étude théorique de stabilité et en implémentant par la suite cette méthode numérique
dans HOPPS.

Ce rapport de stage se décompose comme suit : dans la section 2, nous rappellerons le principe
de la méthode SD standard en 1D puis en 2D et 3D pour des maillages hexahédriques. La partie
3 décrira la méthode FUSE et son équivalence avec la méthode SD, ainsi que l’extension de cette
méthode à des problèmes non linéaires. Dans la section 4, une preuve de stabilité en 2D sera
présentée pour un maillage hexahédrique de la méthode SD et de la méthode FUSE étendue aux
SD. Ensuite, dans la section 5, nous nous intéresserons aux résultats numériques obtenus. Enfin, la
partie 6 concernera l’analyse et la comparaison de la performance des deux méthodes.

7

Rapport de stage Marie Compain

2 Différences spectrales

Nous détaillerons dans cette partie la méthode SD en 1D puis en 2D et 3D expliquée par Marchal
[6].

2.1 Méthode en 1D

2.1.1 Notations et discrétisation spatiale

Considérons un système d’équations hyperboliques en 1D :

∂U

∂t
(x, t) +

∂E

∂x
(x, t) = 0, ∀(x, t) ∈ Ω× [0, T], (2.1)

où Ω = [a, b], a < b ∈ R, T ∈ R∗
+, U est le vecteur solution et E = E(U) est le vecteur flux de U.

Nous discrétisons l’espace Ω en Ne éléments. La méthode des Différences Spectrales repose sur
le fait que nous résolvons l’équation (2.1) sur le segment [0, 1], appelé domaine isoparamétrique et
dont la variable sera notée ξ ∈ [0, 1]. Nous appliquerons donc une transformation Fe de l’espace
isoparamétrique vers la cellule e ∈ J1, NeK du maillage. La jacobienne de cette transformation sera
notée J . En appliquant cette transformée, nous obtenons, pour chaque cellule, le système dans
l’espace isoparamétrique :

∂Û

∂t
+
∂Ê

∂ξ
= 0, (2.2)

avec Û = |J |U et Ê = |J |ξxE, où ξx =
∂ξ

∂x
.

Dans cet espace isoparamétrique, nous supposons que Û est un polynôme (par rapport à ξ) de
degré p. Nous avons donc besoin de connaître Û sur p+1 points de [0, 1]. Ces points seront appelés
points solution et leur nombre sera noté :

NSP = p+ 1. (2.3)

La stabilité de la méthode ne dépendant pas de la localisation des points solution, comme prouvé
dans l’article [4], nous utilisons usuellement les p+ 1 points de Gauss-Tchebychev :

ξSP = [ξSP (i)]1≤i≤NSP
=

[
1

2

(
1− cos

(
2i− 1

2NSP
π

))]
1≤i≤NSP

. (2.4)

Pour la discrétisation du flux, il faut que ∂Ê
∂ξ soit consistant avec ∂Û

∂t , ce dernier étant de degré

8

Rapport de stage Marie Compain

p en ξ. Donc Ê sera un polynôme de degré p + 1, et il nous faut par conséquent p + 2 points
d’interpolation. Nous les appellerons points flux et leur nombre sera noté :

NFP = p+ 2. (2.5)

Les p points flux intérieurs seront les points de Gauss-Legendre, et les deux points restants seront
les extrémités du segment isoparamétrique, soit ξFP (1) = 0 et ξFP (NFP) = 1. Cette distribution
de points est utilisée car elle ne rend pas le schéma instable, comme démontré dans [4].

2.1.2 Interpolation et extrapolation

Pour interpoler et extrapoler Û et Ê, nous utiliserons l’interpolation de Lagrange. Soit la base
de polynômes de Lagrange de degré p associés aux points solution et évalués au point ξ :

LSP (ξ) = [Li,SP (ξ)]1≤i≤NSP
=

 NSP∏
k=1,k ̸=i

ξ − ξSP (k)

ξSP (i)− ξSP (k)


1≤i≤NSP

. (2.6)

Nous pouvons, de façon analogue, définir une base de polynômes de Lagrange de degré p + 1

associés aux points flux :

LFP (ξ) = [Li,FP (ξ)]1≤i≤NFP
=

 NFP∏
k=1,k ̸=i

ξ − ξFP (k)

ξFP (i)− ξFP (k)


1≤i≤NFP

. (2.7)

Alors nous pouvons exprimer Û (respectivement Ê) dans la base (2.6) (resp. dans la base (2.7)).

Nous aurons aussi besoin de dériver Ê aux points solution, donc de la dérivée des polynômes
Li,FP par rapport à ξ, dont l’expression est donnée par :

∂Li,FP

∂ξ
(ξ) =

NFP∑
k=1,k ̸=i

NFP∏
m=1,m̸=k

(ξ − ξFP (m))

NFP∏
k=1,k ̸=i

(ξFP (i)− ξFP (k))

, ∀i ∈ J1, NFP K. (2.8)

2.1.3 Algorithme de résolution numérique

Nous commençons par initialiser le maillage, ξx, la jacobienne |J |, les vecteurs de points ξSP

et ξFP . Nous initialisons aussi ÛSP = |J |USP , le tenseur des solutions dans l’espace isoparamé-
trique évaluées aux points solution de tous les éléments e ∈ J1, NeK du maillage. USP correspond
au tenseur des solutions dans le domaine physique évaluées aux points solution de tous les éléments

9

Rapport de stage Marie Compain

e ∈ J1, NeK du maillage. UFP et ÛFP sont définis de manière analogue pour les points flux.

Soit un élément e du maillage. A un instant donné 0 ≤ tn ≤ T , le vecteur solution aux points
solution Ûe

SP est connu. Nous pouvons donc l’extrapoler aux points flux tel que :

Ûe
FP =

[
U

e
(ξFP (i))

]
1≤i≤NFP

, (2.9)

où :

U
e
(ξ) =

NSP∑
i=1

Ûe
SP (i)Li,SP (ξ). (2.10)

Nous pouvons donc évaluer le vecteur flux Êe
FP aux points flux. Nous commençons par calculer

les éléments intérieurs de ce vecteur :

[
Êe

FP (i)
]
2≤i≤NFP−1

=
[
Ê
(
U

e
(ξFP (i))

)]
2≤i≤NFP−1

. (2.11)

Puis, pour assurer la continuité du flux sur tout le domaine physique, un solveur de Riemann
est utilisé à chaque interface entre deux éléments. Après cela, le flux est défini de façon unique sur
tous les points flux. Nous pouvons donc dériver Êe

FP aux points solution en calculant :(
∂Ê

∂ξ

)e

SP

=

[
NFP∑
k=1

Êe
FP (k)

∂Lk,FP

∂ξ
(ξSP (i))

]
1≤i≤NSP

. (2.12)

Enfin, nous récupérons Ûe
SP au temps suivant tn+1 en résolvant numériquement (avec n’importe

quel schéma d’intégration temporel explicite) l’équation :

dÛe
SP

dt
= −

(
∂Ê

∂ξ

)e

SP

. (2.13)

Si E est une fonction de U mais aussi de ∇U (par exemple dans les équations de Navier-Stokes),
nous avons besoin de calculer le gradient de U aux points flux. Comme pour le flux, Ûe

FP n’est pas
défini de façon unique aux interfaces. Il existe plusieurs méthodes pour obtenir la continuité de U,
Sun et al. [9] proposent la méthode suivante : aux interfaces, nous utilisons la moyenne arithmétique
des deux valeurs pour chaque solution U i =

Ui
L+Ui

R

2 , 1 ≤ i ≤ Neq, où Neq est le nombre de variables
conservatives dans le système, U i la ième variable, et U i

L (respectivement U i
R) l’état de U i à gauche

(respectivement à droite) de l’interface. Nous évaluons ensuite la dérivée de Û aux points solution :(
∂Û

∂ξ

)e

SP

=

[
NFP∑
k=1

Ûe
FP (k)

∂Lk,FP

∂ξ
(ξSP (i))

]
1≤i≤NSP

. (2.14)

10

Rapport de stage Marie Compain

Cependant pour calculer le flux il nous faut l’évaluation de ce gradient aux points flux :

(
∂Û

∂ξ

)e

FP

=

NSP∑
k=1

(
∂Û

∂ξ

)e

k,SP

Lk,SP (ξFP (i))


1≤i≤NFP

. (2.15)

Cette quantité n’est pas continue aux interfaces. Nous utilisons ici encore la moyenne arithmé-

tique à chaque interface : ∂Ui

∂ξ =
∂Ui

L
∂ξ +

∂Ui
R

∂ξ

2 . Ainsi, nous pouvons maintenant évaluer le flux aux
points flux.

2.2 Méthode en 2D/3D

Nous pouvons étendre la méthode présentée dans la partie 2.1 à des maillages hexahédriques en
2D et 3D.

2.2.1 Notations et discrétisation spatiale

Nous considérons ici le système d’équations :

∂U

∂t
+∇.f(U) = 0 sur Ω× [0, T], (2.16)

avec Ω ⊂ Rd, d = 2, 3 la dimension de l’espace physique, T ∈ R∗
+, U le vecteur des variables

conservatives et f le flux. Nous pouvons réécrire l’équation (2.16) dans le cas 3D (le cas 2D est
analogue) sous la forme :

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0, (2.17)

avec E (respectivement F et G) le flux dans la direction x (respectivement directions y et z).

Comme en 1D nous souhaitons passer du domaine physique au domaine isoparamétrique. Pour
un maillage hexahédrique, il s’agit du domaine [0, 1]d. La transformation du domaine isoparamé-
trique au domaine physique s’écrit :

11

Rapport de stage Marie Compain

x(ξ, η, ζ) =
k∑

i=1

Mi(ξ, η, ζ)x
e
i , (2.18)

y(ξ, η, ζ) =
k∑

i=1

Mi(ξ, η, ζ)y
e
i , (2.19)

z(ξ, η, ζ) =
k∑

i=1

Mi(ξ, η, ζ)z
e
i , (2.20)

avec k le nombre de points utilisés pour définir l’élément e (par exemple 8 pour définir un hexahèdre
en 3D), (xei , yei , zei) les coordonnées physiques des points utilisés pour définir e, et Mi définie pour
les SD telle que :

Mi(ξ, η, ζ) = Lξi,e(ξ)Lηi,e(η)Lζi,e(ζ), (2.21)

où Lξi,e (respectivement Lηi,e et Lζi,e) est le polynôme de Lagrange 1D (défini dans la partie
2.1.2) au point ξi (resp. ηi et ζi) utilisant les autres coordonnées ξk (resp. ηk et ζk), k ̸= i, qui
définissent l’élément e, avec (ξi, ηi, ζi) étant les coordonnées isoparamétriques du point (xei , y

e
i , z

e
i).

La preuve du passage en coordonnées isoparamétriques est détaillée dans le rapport [6]. Par
conséquent nous obtenons le système dans l’espace isoparamétrique sous forme conservative suivant :

∂Û

∂t
+
∂Ê

∂ξ
+
∂F̂

∂η
+
∂Ĝ

∂ζ
= 0, (2.22)

où Û = |J |U, Ê = |J |(ξxE+ ξyF+ ξzG), F̂ = |J |(ηxE+ ηyF+ ηzG) et Ĝ = |J |(ζxE+ ζyF+ ζzG).

Pour généraliser la méthode en 2D ou 3D, nous répétons le même processus qu’en 1D pour
chaque dimension. Donc nous aurons dans un espace de dimension d, le nombre de points solution
suivant pour un élément de degré p :

NSP = (p+ 1)d. (2.23)

Nous prenons cette fois encore pour chaque direction les points de Gauss-Tchebychev. L’expres-
sion d’un point solution sera donc :

(ξiSP , η
j
SP , ζ

k
SP) = (ξSP (i), ξSP (j), ξSP (k)). (2.24)

De plus, il y aura un total de NFP points flux, avec :

12

Rapport de stage Marie Compain

NFP = d(p+ 2)(p+ 1)d−1, (2.25)

et dans chaque direction (p+ 2)(p+ 1)d−1 points.

Soit les points flux dans la direction ξ. Nous prendrons pour la coordonnée pour cette direction la
distribution de points flux utilisée en 1D définie dans la partie 2.1.1. Pour les deux autres directions
η et ζ, nous utiliserons les points solution 1D. Nous obtenons donc pour un point flux dans la
direction ξ l’expression suivante :

(ξiFP , η
j
FP , ζ

k
FP)ξ = (ξFP (i), ξSP (j), ξSP (k)), (i, j, k) ∈ J1, p+ 2K × J1, p+ 1Kd−1. (2.26)

De manière analogue, les points flux dans les directions η et ζ seront :

(ξiFP , η
j
FP , ζ

k
FP)η = (ξSP (i), ξFP (j), ξSP (k)), (i, j, k) ∈ J1, p+ 1K × J1, p+ 2K × J1, p+ 1K, (2.27)

(ξiFP , η
j
FP , ζ

k
FP)ζ = (ξSP (i), ξSP (j), ξFP (k)), (i, j, k) ∈ J1, p+ 1Kd−1 × J1, p+ 2K. (2.28)

2.2.2 Algorithme de résolution numérique

Soit un temps donné 0 ≤ tn ≤ T et un élément du maillage e. Nous connaissons le vecteur
solution aux points solution Ûe

SP =
[
Ûe(i, j, k)

]
1≤i,j,k≤p+1

. Nous pouvons donc l’extrapoler aux

points flux dans chaque direction :

Ûe
FP,ξ =

[
Ūe(ξFP (i), ξSP (j), ξSP (k))

]
1≤i≤p+2

1≤j,k≤p+1
, (2.29)

Ûe
FP,η =

[
Ūe(ξSP (i), ξFP (j), ξSP (k))

]
1≤j≤p+2
1≤i,k≤p+1

, (2.30)

Ûe
FP,ζ =

[
Ūe(ξSP (i), ξSP (j), ξFP (k))

]
1≤k≤p+2
1≤i,j≤p+1

, (2.31)

où :

Ūe(ξ, η, ζ) =

p+1∑
i=1

p+1∑
j=1

p+1∑
k=1

Ûe
SP (i, j, k)Li,SP (ξ)Lj,SP (η)Lk,SP (ζ). (2.32)

Nous pouvons donc maintenant évaluer les vecteurs flux dans toutes les directions aux points

13

Rapport de stage Marie Compain

flux intérieurs : [
Êe

FP (i, j, k)
]
2≤i≤NFP−1
1≤j,k≤p+1

=
[
Ê(Ûe

FP (i, j, k))
]
2≤i≤NFP−1
1≤j,k≤p+1

, (2.33)[
F̂e

FP (i, j, k)
]
2≤j≤NFP−1
1≤i,k≤p+1

=
[
F̂(Ûe

FP (i, j, k))
]
2≤j≤NFP−1
1≤i,k≤p+1

, (2.34)[
Ĝe

FP (i, j, k)
]
2≤k≤NFP−1
1≤i,j≤p+1

=
[
Ĝ(Ûe

FP (i, j, k))
]
2≤k≤NFP−1
1≤i,j≤p+1

. (2.35)

Comme en 1D, nous résolvons un problème de Riemann sur les bords de l’élément pour avoir
une valeur unique du flux aux interfaces. Ainsi nous pouvons maintenant dériver Ê (respectivement
F̂ et Ĝ) par rapport à ξ (resp. η et ζ) aux points solution :

(
∂Ê

∂ξ

)e

SP

=

[
p+2∑
l=1

p+1∑
m=1

p+1∑
n=1

Êe
FP (l,m, n)

∂Ll,FP

∂ξ
(ξiSP)Lm,SP (η

j
SP)Ln,SP (ζ

k
SP)

]
1≤i,j,k≤p+1

, (2.36)

(
∂F̂

∂η

)e

SP

=

[
p+1∑
l=1

p+2∑
m=1

p+1∑
n=1

F̂ e
FP (l,m, n)Ll,SP (ξ

i
SP)

∂Lm,FP

∂η
(ηjSP)Ln,SP (ζ

k
SP)

]
1≤i,j,k≤p+1

, (2.37)

(
∂Ĝ

∂ζ

)e

SP

=

[
p+1∑
l=1

p+1∑
m=1

p+2∑
n=1

Ĝe
FP (l,m, n)Ll,SP (ξ

i
SP)Lm,SP (η

j
SP)

∂Ln,FP

∂ζ
(ζkSP)

]
1≤i,j,k≤p+1

. (2.38)

Enfin nous intégrons temporellement pour obtenir Ûe
SP au temps suivant :

dÛe
SP

dt
= −

(
∂Ê

∂ξ
+
∂F̂

∂η
+
∂Ĝ

∂ζ

)e

SP

. (2.39)

14

Rapport de stage Marie Compain

3 Nouvelle méthode : la méthode FUSE

3.1 Introduction de la méthode

Pan et al. [8] présentent une nouvelle méthode d’ordre élevé pour la résolution numérique des
équations hyperboliques en 1D et en 2D et 3D, nommée "Face-Upwinded Spectral Element" (abré-
gée en FUSE). Nous introduirons brièvement dans ce paragraphe le principe de cette nouvelle
méthode en 1D telle qu’expliquée dans le papier.

Considérons l’équation hyperbolique 1D qui est de la forme :

∂tu+ ∂xf(u) = 0 sur Ω× [0, T], (3.1)

avec Ω = [0, 1], T ∈ R∗
+. Cette équation peut être réécrite sous la forme :

∂tu+ a(u)∂xu = 0 sur Ω× [0, T]. (3.2)

Le domaine physique Ω est partitionné en éléments K ∈ Th tel que Ω =
⋃

K∈Th

K. Deux ensembles

de points sont définis pour chaque élément K :
— L’ensemble des points solution {s0, ..., sp}, p ≥ 0, qui sont utilisés pour discrétiser la solution

u.
— L’ensemble des points flux {f0, ..., fq}, avec q ≥ p, qui sont utilisés pour discrétiser le flux f .

Soit les espaces de fonctions suivants :

Vs(Th) =
{
v ∈ H1(Ω) : v|K ∈ Pp,∀K ∈ Th

}
, (3.3)

Vf (Th) =
{
v ∈ H1(Ω) : v|K ∈ Pq,∀K ∈ Th

}
, (3.4)

où Pp est l’espace des polynômes de degré p. Soit la base {ϕsi} (respectivement
{
ϕfi

}
) de l’espace

Vs(Th) (resp. Vf (Th)), où les ϕsi sont des polynômes interpolateurs associés aux points si (resp.
associés aux points fi) définis tels que :

ϕsi (sj) = δij et ϕfi (fj) = δij , (3.5)

avec δij définie telle que :

δij =

 1 si i = j,

0 sinon.
(3.6)

15

Rapport de stage Marie Compain

Le papier [8] propose de prendre les polynômes utilisés en méthode des éléments finis usuelle-
ment. Ainsi soit uh l’approximation de u dans l’espace Vs et fh l’approximation de f dans l’espace
Vf . L’algorithme de résolution numérique sera donc à chaque pas de temps, sur une cellule :

1. Le polynôme solution est formé : uh(x) =
∑p

i=0 ϕ
s
i (x)uh(si).

2. Le flux fh est évalué à chaque point flux fh(fi) = f(uh(fi)), pour i = 0, ..., q.

3. Le polynôme fh est formé : fh(x) =
∑q

i=0 ϕ
f
i (x)fh(fi).

4. La dérivée de fh est évaluée à chaque point solution et est utilisée pour l’intégration tempo-
relle.

Cependant sur les interfaces de chaque cellule, ∂xfh a en général plusieurs valeurs. Il faut donc
choisir une valeur unique. L’article [8] propose un exemple où p = q = 2, donc les points solution
et les points flux coïncident. Nous ferons aussi le choix de prendre des points équidistants. Notons
donc :

h = si − si−1 = fi − fi−1. (3.7)

Notons aussi si,k le i-ème point solution du k-ème élément Kk ∈ Th. Alors l’évaluation de la
dérivée de fh au point solution intérieur sera :

f ′h(s1,k) =
1

2h
fh(fi+1,k)−

1

2h
fh(fi−1,k). (3.8)

Pour les points sur le bord de l’élément k, le choix de f ′h dépend du signe de a(u) = f ′(u).
L’article [8] propose de prendre par exemple pour le point s2,k :

f ′h(s2,k) =

 3
2hfh(f2,k)−

2
hfh(f1,k) +

1
2hfh(f0,k) si a(s2,k) > 0,

− 3
2hfh(f0,k+1) +

2
hfh(f1,k+1)− 1

2hfh(f2,k+1) si a(s2,k) < 0.
(3.9)

3.2 Application de la méthode FUSE aux différences spectrales

Dans la partie 2.3.1 de l’article [8] est présenté un parallèle entre la méthode FUSE et les dif-
férences spectrales pour un domaine 1D. Nous présenterons donc cette équivalence et nous l’adap-
terons à des problèmes non linéaires et des maillages hexahédriques 2D. Par abus de langage, nous
appellerons aussi cette extension FUSE.

3.2.1 Cas linéaire 1D

Dans cette partie, nous cherchons à résoudre numériquement l’équation de transport linéaire
suivante :

∂tu+ ∂xE(u) = 0 sur Ω× [0, T], (3.10)

16

Rapport de stage Marie Compain

où E(u) = cu, avec c ∈ R la vitesse de transport.

De façon analogue à la méthode SD, l’espace est discrétisé en Ne éléments et nous utilisons une
transformation de chaque cellule K dans l’espace isoparamétrique pour résoudre :

∂û

∂t
+
∂Ê

∂ξ
= 0 sur [0, 1]× [0, T], (3.11)

avec ξ ∈ [0, 1], û = |J |u et Ê = |J |ξxE, où ξx = ∂ξ
∂x .

A l’intérieur de chaque cellule K, nous utilisons toujours NSP = p + 1 points solution et
NFP = p + 2 points flux pour l’interpolation de la solution et du flux. La distribution des points
flux reste la même, c’est-à-dire que nous utilisons les points de Gauss-Legendre pour les p points
intérieurs, et ξFP (1) = 0 et ξFP (NFP) = 1 pour les deux points restants aux bords, car comme
expliqué précédemment, cette localisation des points flux ne rend pas le schéma instable. Cependant
la stabilité ne dépend pas de la distribution des points solution, c’est pourquoi nous ferons le choix
dans cette nouvelle méthode de collocaliser les points solution avec les points flux. Or comme il y
a un point solution de moins que de points flux, Pan et al. [8] proposent de choisir la localisation
des points solution en fonction du sens du flux, qui est déterminé par le signe de c. Ainsi le choix
de la distribution des points solution se fera de la manière suivante :

— Si c > 0, les points solution seront les p + 1 points flux les plus à droite, soit : ξSP =

[ξFP (i)]2≤i≤NFP
;

— Si c < 0, les points solution seront les p + 1 points flux les plus à droite, soit : ξSP =

[ξFP (i)]1≤i≤NFP−1.

La figure 3.1 illustre la différence de disposition des points solution entre la méthode SD standard
et la méthode FUSE.

0 1

Figure 3.1 – Position des points solution en 1D pour les différentes méthodes avec p = 2 : pour
la méthode SD standard ; pour la méthode FUSE quand c < 0 ; pour la méthode FUSE quand
c > 0.

Cette nouvelle localisation des points solution permet de ne pas avoir à extrapoler Û aux points
flux. Nous obtenons donc l’algorithme 1 de résolution numérique.

L’étape du solveur de Riemann peut être évitée car pendant l’étape "d’extrapolation", nous

17

Rapport de stage Marie Compain

Algorithm 1 Algorithme de résolution d’une équation de transport linéaire 1D

1: Lire le maillage, en déduire le déterminant de la jacobienne |J | et la métrique ξx.
2: Calculer le vecteur de points flux ξFP , en déduire le vecteur de points solution ξSP .
3: Initialiser ÛSP = |J |USP aux points solution.
4: for iter de 1 à Niter do
5: for e de 1 à Ne do
6: Remplir le vecteur solution aux points flux :
7: if c > 0 then
8:

[
Ûe

FP (i)
]
2≤i≤NFP

= Ûe
SP .

9: Ûe
FP (1) = Ûe−1

FP (NFP).
10: else
11:

[
Ûe

FP (i)
]
1≤i≤NFP−1

= Ûe
SP .

12: Ûe
FP (NFP) = Ûe+1

FP (1).
13: end if
14: end for
15: Appliquer les conditions aux limites à ÛFP .
16: for e de 1 à Ne do
17: Calculer le flux aux points flux :

[
Êe(i)

]
2≤i≤NFP−1

=
[
Ê
(
Ûe
FP (i)

)]
2≤i≤NFP−1

18: Dériver Êe aux points solution :
(

∂Ê
∂ξ

)e
SP

=
[∑NFP

k=1 Êe(k)
∂Lk,FP

∂ξ (ξSP (i))
]
1≤i≤NSP

19: Mettre à jour Ûe
SP en résolvant dÛe

SP

dt = −
(

∂Ê
∂ξ

)e
SP

avec un schéma d’intégration tem-
porel.

20: end for
21: end for

18

Rapport de stage Marie Compain

récupérons la valeur de U au point flux manquant de la cellule d’à côté. Comme nous tenons
compte du sens du flux pour le maillage, utiliser un schéma décentré (upwind) pour le solveur de
Riemann nous donnerait exactement la même valeur de U à ce point-là.

3.2.2 Cas scalaire non linéaire 1D

Nous nous plaçons maintenant dans le cas scalaire où E n’est pas forcément une fonction linéaire
de u et nous supposons que nous pouvons réécrire l’équation (2.1) telle que :

∂u

∂t
+ a(u)

∂u

∂x
= 0, (3.12)

où a(u) = E′(u).

Avec un a plus général, le "sens" du flux n’est pas forcément le même sur tout le domaine et à
tous les temps tn. Dans ce cas-là, Pan et al. [8] ne proposent pas d’équivalence entre la méthode
présentée et la méthode SD. Cependant, comme vu pour le cas linéaire, l’idée de collocaliser les
points solution avec les points flux permet de faire moins d’opérations qu’une extrapolation classique
(cf. partie 6 pour une analyse des complexités algorithmiques de chaque méthode numérique). Il a
donc été décidé de garder cette idée de collocalisation en non linéaire. Deux manières de faire ont
ainsi été identifiées :

1. La position des points solution change en fonction du sens du flux d’un élément à l’autre et
d’une itération à l’autre. En effet, notons EGodunov la valeur unique sur l’interface déterminée
par le solveur de Riemann, uL (respectivement uR) la valeur de la solution sur la cellule à
gauche de l’interface (resp. à droite). Alors le solveur de Godunov pour une fonction E

monotone sera :

EGodunov =

E(uL) si E
′(uL) < 0,

E(uR) si E
′(uR) > 0.

(3.13)

Ainsi si le flux est monotone sur les deux cellules partageant une interface, nous pouvons
collocaliser les points solution avec les points flux suivant le sens du flux de la même manière
qu’en linéaire ce qui nous permet ainsi d’éviter d’utiliser un solveur de Riemann. Et pour les
cellules où le sens est amené à changer, il suffit de faire la méthode SD classique et d’utiliser
un solveur de Riemann.

De façon plus formelle, soit e un élément du maillage de l’espace Ω. Notons ueL la valeur
de u sur l’interface gauche de la cellule e, et ueR sa valeur sur l’interface droite à un temps
tn donné. Les points solution seront définis de la manière suivante :

— Si a(ueL) > 0 et a(ueR) > 0 : nous supposons alors qu’il n’y a pas de changement de sens

19

Rapport de stage Marie Compain

du flux au sein de la cellule, donc nous choisirons les points solution comme les p + 1

points flux les plus à droite : ξSP = [ξFP (i)]2≤i≤NFP
;

— Si a(ueL) < 0 et a(ueR) < 0 : nous supposons ici encore qu’il n’y a pas de changement de
sens du flux au sein de la cellule, donc nous choisirons les points solution comme les p+1

points flux les plus à gauche : ξSP = [ξFP (i)]1≤i≤NFP−1 ;
— Sinon on prend les points de Gauss-Tchebychev comme pour la méthode SD standard :

ξSP =
[
1
2

(
1− cos

(
2i−1
2NSP

π
))]

1≤i≤NSP

.

Cette manière de faire nous donne l’algorithme 2 de résolution numérique.

2. La position des points solution est déterminée à l’initialisation et ne change pas d’une itéra-
tion à l’autre. Pour choisir quelle position de points flux à prendre, la moyenne de la condition
initiale ū0 = 1

|Ω|
∫
Ω
u0(x)dx est calculée. Ainsi :

— Si ū0 ≥ 0, nous choisirons les points solution comme les p+1 points flux les plus à droite :
ξSP = [ξFP (i)]2≤i≤NFP

;
— Si ū0 < 0, nous choisirons les points solution comme les p + 1 points flux les plus à

gauche : ξSP = [ξFP (i)]1≤i≤NFP−1.
Cette deuxième manière de faire nous amène à l’algorithme 3 de résolution numérique. C’est
cet algorithme qui a été implémenté dans HOPPS.

20

Rapport de stage Marie Compain

Algorithm 2 Algorithme de résolution d’une équation de transport non linéaire 1D

1: Lire le maillage, en déduire le déterminant de la jacobienne |J | et la métrique ξx.
2: Calculer le vecteur de points flux ξFP et les différents vecteurs de points solution ξSP .
3: Evaluer aux interfaces a(U), en déduire la disposition de points solution ξSP pour chaque cellule.
4: Initialiser ÛSP = |J |USP aux points solution.
5: for iter de 1 à Niter do
6: for e de 1 à Ne do
7: Remplir le vecteur solution aux points flux :
8: if a(Ue

L) > 0 et a(Ue
R) > 0 then

9:
[
Ûe
FP (i)

]
2≤i≤NFP

= Ûe
SP .

10: Ûe
FP (1) = Ûe−1

FP (NFP).
11: else if a(Ue

L) < 0 et a(Ue
R) < 0 then

12:
[
Ûe
FP (i)

]
1≤i≤NFP−1

= Ûe
SP .

13: Ûe
FP (NFP) = Ûe−1

FP (1).
14: else
15: Extrapoler Û aux points flux : Ûe

FP =
[
U

e
(ξFP (i))

]
1≤i≤NFP

, avec U
e
(ξ) =∑NSP

i=1 Ûe
SP (i)Li,SP (ξ).

16: end if
17: end for
18: Appliquer les conditions aux limites à ÛFP .
19: Evaluer à chaque interface a(U).
20: for e de 1 à Ne do
21: Calculer le flux aux points flux intérieurs :

[
Êe(i)

]
2≤i≤NFP−1

=[
Ê
(
Ûe

FP (i)
)]

2≤i≤NFP−1

22: end for
23: Utiliser un solveur de Riemann aux interfaces du maillage qui voisinent une cellule avec une

disposition de points solution de Gauss-Tchebychev pour obtenir une valeur unique du flux sur
tout le domaine physique.

24: for e de 1 à Ne do
25: Dériver Êe aux nouveaux points solution :

(
∂Ê
∂ξ

)e
SP

=[∑NFP

k=1 Ê
e(k)

∂Lk,FP

∂ξ (ξSP (i))
]
1≤i≤NSP

.

26: Mettre à jour Ûe
SP en résolvant dÛe

SP

dt = −
(

∂Ê
∂ξ

)e
SP

avec un schéma d’intégration tem-
porel.

27: end for
28: end for

21

Rapport de stage Marie Compain

Algorithm 3 Algorithme de résolution d’une équation de transport non linéaire 1D à points fixes

1: Lire le maillage, en déduire le déterminant de la jacobienne |J | et la métrique ξx.
2: Calculer le vecteur de points flux ξFP .
3: Evaluer ū0, en déduire la disposition de points solution ξSP sur tout le domaine.
4: Initialiser ÛSP = |J |USP aux points solution.
5: for iter de 1 à Niter do
6: for e de 1 à Ne do
7: Remplir le vecteur solution aux points flux :
8: if ū0 ≥ 0 : then
9:

[
Ûe
FP (i)

]
2≤i≤NFP

= Ûe
SP .

10: Ûe
FP (1) =

∑NSP

i=1 Ûe
SP (i)Li,SP (ξFP (1)).

11: else
12:

[
Ûe
FP (i)

]
1≤i≤NFP−1

= Ûe
SP .

13: Ûe
FP (NFP) =

∑NSP

i=1 Ûe
SP (i)Li,SP (ξFP (NFP)).

14: end if
15: end for
16: Appliquer les conditions aux limites à ÛFP .
17: for e de 1 à Ne do
18: Calculer le flux aux points flux intérieurs :

[
Êe(i)

]
2≤i≤NFP−1

=[
Ê
(
Ûe

FP (i)
)]

2≤i≤NFP−1

19: end for
20: Utiliser un solveur de Riemann aux interfaces du maillage pour obtenir une valeur unique

du flux sur tout le domaine physique.
21: for e de 1 à Ne do
22: Dériver Êe aux points solution :

(
∂Ê
∂ξ

)e
SP

=
[∑NFP

k=1 Ê
e(k)

∂Lk,FP

∂ξ (ξSP (i))
]
1≤i≤NSP

.

23: Mettre à jour Ûe
SP en résolvant dÛe

SP

dt = −
(

∂Ê
∂ξ

)e
SP

avec un schéma d’intégration tem-
porel.

24: end for
25: end for

22

Rapport de stage Marie Compain

3.2.3 Cas linéaire 2D

Soit l’équation de transport linéaire suivante :

∂tu+∇.f(u) = 0 sur Ω× [0, T], (3.14)

que l’on peut réécrire telle que :

∂tu+ ∂xE(u) + ∂yF (u) = 0, (3.15)

où Ω ⊂ R2, f(u) =

(
E(u)

F (u)

)
=

(
cxu

cyu

)
, cx, cy ∈ R des constantes.

Nous souhaitons généraliser la méthode FUSE proposée pour un modèle 1D à ce modèle 2D avec
maillage hexahédrique. Nous voulons donc à nouveau collocaliser les points solution par rapport
aux points flux afin d’éviter l’étape d’extrapolation. Comme pour la méthode SD standard, nous
avons encore (p + 1)2 points solution et (p + 2)(p + 1) points flux dans chaque direction, soit un
total de 2(p+2)(p+1) points flux. Notons les points flux dans le domaine isoparamétrique tels que :

— Dans la ξ-direction : [(ξFP , ηFP)]ξ = [(ξFP (i), ηSP (j))]1≤i≤p+2
1≤j≤p+1

— Dans la η-direction : [ξFP , ηFP)]η = [(ξSP (i), ηFP (j))]1≤i≤p+1
1≤j≤p+2

Soit les points solution (ξSP (i), ηSP (j))1≤i,j≤p+1, avec :

ξSP =

 [(ξFP (i))ξ]2≤i≤p+2 si cx > 0,

[(ξFP (i))ξ]1≤i≤p+1 sinon,
et ηSP =

 [(ηFP (i))ξ]2≤i≤p+2 si cy > 0,

[(ηFP (i))ξ]1≤i≤p+1 sinon.

La figure 3.2 illustre la différence de position des points solution et flux entre la méthode SD et
la méthode FUSE. Nous obtenons ainsi l’algorithme de résolution numérique 4.

3.2.4 Cas d’un système non linéaire 2D

Nous nous intéressons maintenant au cas non linéaire en 2D, plus particulièrement à un système
2D, dont nous rappelons la forme ci-dessous :

∂tU+ ∂xE(U) + ∂yF(U) = 0 sur Ω× [0, T]. (3.16)

Comme pour le cas non linéaire en 1D, Pan et al. [8] ne proposent pas d’équivalence entre leur
méthode et les différences spectrales. Dans le cas d’un système, les solutions peuvent ne pas aller
toutes dans le même "sens". Une première idée pour adapter l’algorithme FUSE 2 proposé en sca-

23

Rapport de stage Marie Compain

Algorithm 4 Algorithme de résolution d’une équation de transport linéaire 2D

1: Lire le maillage, en déduire le déterminant de la jacobienne |J | et la métrique ξx, ηy.
2: Calculer les vecteurs de points flux [(ξFP , ηFP)]ξ et [(ξFP , ηFP)]η, en déduire le vecteur de

points solution [(ξSP ,ηSP)].
3: Initialiser ÛSP = |J |USP aux points solution.
4: for iter de 1 à Niter do
5: for e de 1 à Ne do
6: Remplir les vecteurs solution aux points flux dans chaque direction :
7: if cx > 0 then
8:

[
Ûe
FP,ξ(i, j)

]
2≤i≤p+2
1≤j≤p+1

= Ûe
SP .

9:
[
Ûe
FP,ξ(1, j)

]
1≤j≤p+1

=
[
Ûe−1
SP (p+ 2, j)

]
1≤j≤p+1

.

10: else
11:

[
Ûe
FP,ξ(i, j)

]
1≤i≤p+1
1≤j≤p+1

= Ûe
SP .

12:
[
Ûe
FP,ξ(p+ 2, j)

]
1≤j≤p+1

=
[
Ûe+1
SP (1, j)

]
1≤j≤p+1

.

13: end if
14: if cy > 0 then
15:

[
Ûe
FP,η(i, j)

]
1≤i≤p+1
2≤j≤p+2

= Ûe
SP .

16:
[
Ûe
FP,η(i, 1)

]
1≤i≤p+1

=
[
Ûe−1
SP (i, p+ 2)

]
1≤i≤p+1

.

17: else
18:

[
Ûe
FP,η(i, j)

]
1≤i≤p+1
1≤j≤p+1

= Ûe
SP .

19:
[
Ûe
FP,η(i, p+ 2)

]
1≤i≤p+1

=
[
Ûe+1
SP (i, 1)

]
1≤i≤p+1

.

20: end if
21: end for
22: Appliquer les conditions aux limites à ÛFP,ξ et ÛFP,η.
23: for e de 1 à Ne do
24: Calculer les flux dans chaque direction aux points flux : Êe = Ê(Ûe

FP,ξ) et F̂e =

F̂(Ûe
FP,η).

25: Dériver les flux aux points solution :
26:

(
∂Ê
∂ξ

)e
SP

=
[∑p+2

k=1

∑p+1
l=1 Ê

e(k, l)
∂Lk,FP

∂ξ (ξSP (i))Ll,SP (ηSP (j))
]
1≤i,j≤p+1

et

27:
(

∂F̂
∂η

)e
SP

=
[∑p+1

k=1

∑p+2
l=1 F̂

e(k, l)Ll,SP (ξSP (i))
∂Lk,FP

∂η (ηSP (j))
]
1≤i,j≤p+1

28: Mettre à jour Ûe
SP en résolvant dÛe

SP

dt = −
(

∂Ê
∂ξ

)e
SP

−
(

∂F̂
∂η

)e
SP

avec un schéma d’inté-
gration temporel.

29: end for
30: end for

24

Rapport de stage Marie Compain

(a) Méthode SD standard. (b) Méthode FUSE avec cx > 0 et cy > 0.

Figure 3.2 – Positions des différents points en 2D pour la méthode SD et la méthode FUSE avec
p = 2 : pour les points solution ; pour les points flux dans la direction x ; pour les points flux
dans la direction y.

laire 1D serait de prendre une disposition de points différente pour chaque composante du vecteur
solution. Cependant cela serait coûteux en terme de temps de calcul et nous ferait perdre le temps
de calcul gagné en évitant des solveurs de Riemann. C’est pourquoi il a été décidé de ne garder que
l’idée de fixer les points solution à l’initialisation pour un système 2D.

Afin de choisir l’emplacement des points solution, nous pouvons par exemple nous appuyer
comme en 1D sur la condition initiale d’une des composantes du vecteur solution. Pour les équations
d’Euler par exemple, en s’appuyant sur le cas test du COVO (cf. partie 5.5), nous choisissons

l’emplacement des points solution en fonction de la condition initiale de la vitesse V0 =

(
u0

v0

)
, soit

ū0 =
∫
Ω
u0(x)dx dans la direction x, et de v̄0 =

∫
Ω
v0(y)dy dans la direction y. Nous obtenons donc

l’algorithme de résolution numérique 5.

25

Rapport de stage Marie Compain

Algorithm 5 Algorithme de résolution d’un système 2D

1: Lire le maillage, en déduire le déterminant de la jacobienne |J | et la métrique ξx, ηy.
2: Calculer les vecteurs de points flux [(ξFP , ηFP)]ξ et [(ξFP , ηFP)]η.
3: Calculer ū0 et v̄0, en déduire le vecteur de points solution [(ξSP , ηSP)].
4: Initialiser ÛSP = |J |USP aux points solution.
5: for iter de 1 à Niter do
6: for e de 1 à Ne do
7: Remplir les vecteurs solution aux points flux dans chaque direction :
8: if ū0 > 0 then
9:

[
Ûe
FP,ξ(i, j)

]
2≤i≤p+2
1≤j≤p+1

= Ûe
SP .

10: for k de 1 à p+ 1 do
11: Ûe

FP,ξ(1, k) =
∑NSP

i=1

∑NSP

j=1 Û
e
i,SPLi,SP (ξFP (1))Lj,SP (ηSP (k)).

12: end for
13: else
14:

[
Ûe
FP,ξ(i, j)

]
1≤i≤p+1
1≤j≤p+1

= Ûe
SP .

15: for k de 1 à p+ 1 do
16: Ûe

FP,ξ(p+ 2, k) =
∑NSP

i=1

∑NSP

j=1 Û
e
i,SPLi,SP (ξFP (p+ 2))Lj,SP (ηSP (k)).

17: end for
18: end if
19: if v̄0 > 0 then
20:

[
Ûe
FP,η(i, j)

]
1≤i≤p+1
2≤j≤p+2

= Ûe
SP .

21: for k de 1 à p+ 1 do
22: Ûe

FP,ξ(k, 1) =
∑NSP

i=1

∑NSP

j=1 Û
e
i,SPLi,SP (ξSP (k))Lj,SP (ηFP (1)).

23: end for
24: else
25:

[
Ûe
FP,η(i, j)

]
1≤i≤p+1
1≤j≤p+1

= Ûe
SP .

26: for k de 1 à p+ 1 do
27: Ûe

FP,ξ(k, p+ 2) =
∑NSP

i=1

∑NSP

j=1 Û
e
i,SPLi,SP (ξSP (k))Lj,SP (ηFP (p+ 2)).

28: end for
29: end if
30: end for
31: Appliquer les conditions aux limites à ÛFP,ξ et ÛFP,η.
32: Utiliser un solveur de Riemann aux interfaces du maillage pour obtenir une valeur unique

du flux sur tout le domaine physique.
33: for e de 1 à Ne do
34: Calculer les flux dans chaque direction aux points flux : Êe = Ê(Ûe

FP,ξ) et F̂e =

F̂(Ûe
FP,η).

35: Dériver les flux aux points solution :
36:

(
∂Ê
∂ξ

)e
SP

=
[∑p+2

k=1

∑p+1
l=1 Ê

e(k, l)
∂Lk,FP

∂ξ (ξSP (i))Ll,SP (ηSP (j))
]
1≤i,j≤p+1

et

37:
(

∂F̂
∂η

)e
SP

=
[∑p+1

k=1

∑p+2
l=1 F̂

e(k, l)Ll,SP (ξSP (i))
∂Lk,FP

∂η (ηSP (j))
]
1≤i,j≤p+1

38: Mettre à jour Ûe
SP en résolvant dÛe

SP

dt = −
(

∂Ê
∂ξ

)e
SP

−
(

∂F̂
∂η

)e
SP

avec un schéma d’inté-
gration temporel.

39: end for
40: end for 26

Rapport de stage Marie Compain

4 Stabilité en 2D de la méthode SD et de la méthode FUSE

Nous souhaitons dans cette partie démontrer la stabilité théorique de la méthode SD et de
la méthode FUSE. L’article [4] démontre la stabilité de la méthode SD en 1D, en n’utilisant pas
d’expression particulière des points solution. C’est pourquoi la méthode FUSE est aussi stable
en 1D. Nous voulons maintenant prouver que les deux méthodes sont stables pour un maillage
hexahédrique 2D.

Proposition 1 Soit la loi de conservation suivante : ∂tu+∇.f(u) = 0 dans Ω× [0, T],

u = g sur ∂Ω× [0, T],
(4.1)

avec Ω ⊂ R2 le domaine physique, ∂Ω le bord de Ω, T ∈ R∗
+, g ∈ L2(∂Ω) la condition aux limites

et f(u) = cu =

(
cx

cy

)
u =

(
fx

fy

)
le flux, où c est la vitesse d’advection.

Soit le maillage conforme de Ω noté Th composé de quadrangles K tel que Ω =
⋃

K∈Th

K. Soit la

distribution de points flux dans la direction x :

{(ξFP (i), ηFP (j)), (i, j) ∈ J1, p+ 2K × J1, p+ 1K}ξ = {(ξFP (i), ξSP (j)), (i, j) ∈ J1, p+ 2K × J1, p+ 1K} ,

et dans la direction y :

{(ξFP (i), ηFP (j)), (i, j) ∈ J1, p+ 1K × J1, p+ 2K}η = {(ξSP (i), ξFP (j)), (i, j) ∈ J1, p+ 1K × J1, p+ 2K} ,

où p est l’ordre du schéma SD utilisé, ξSP = [ξSP (i)]1≤i≤p+1 sont les points solution 1D, et
ξFP = [ξFP (i)]1≤i≤p+2 sont les points flux définis tels que les p points intérieurs sont les p points
de Gauss-Legendre, et ξFP (1) = 0 et ξFP (p+ 2) = 1.

Alors le schéma SD est stable avec cette disposition de points flux sous la norme :

∥u∥ =

∫
K

u2 + ∑
α=(αx,αy)
αx+αy=2p

aα(∂
αu)2

 dx, (4.2)

où les aα sont des constantes positives à déterminer, et l’opérateur ∂α est défini tel que :
∂αu = ∂αx

∂xαx

∂αy

∂yαy u.

27

Rapport de stage Marie Compain

De plus, le schéma FUSE est aussi stable sous la norme (4.2) avec cette disposition de points
flux.

Preuve Nous souhaitons montrer la stabilité de la méthode numérique SD pour une équation de
transport linéaire en 2D avec un maillage hexahédrique, c’est-à-dire que nous souhaitons montrer
que :

∂t∥u∥2 ≤ 0. (4.3)

Soit l’espace isoparamérique K̂ = [−1, 1]2. Nous pouvons définir une transformation FK de K̂
dans chaque cellule K telle que :

FK : K̂ → K

x̂ 7→ x.

Notons xi =

(
xi

yi

)
, i = 1, ..., 4, les sommets qui définissent le quadrangle K. Afin que FK(t(0, 0)) =

x1, FK(t(1, 0)) = x2, FK(t(1, 1)) = x3 et FK(t(0, 1)) = x4, nous avons :

FK(x̂) =

(
x3 + x1 − x2 − x4

y3 + y1 − y2 − y4

)
ξη +

(
x2 − x1

y2 − y1

)
ξ +

(
x4 − x1

y4 − y1

)
η +

(
x1

y1

)
, (4.4)

où x̂ =

(
ξ

η

)
.

Notons JK la jacobienne de FK . Alors l’équation (4.1) devient sur K̂ :

∂tû+∇.̂f(û) = 0, (4.5)

avec û = |JK |u et f̂ =

(
|JK |(ξxfx + ξyfy)

|JK |(ηxfx + ηyfy)

)
, où ξx = ∂ξ

∂x (ξy, ηx et ηy sont définis de manière

analogue).

Soit les espaces de fonctions suivants :

Vh =
{
v ∈ L2(Ω)| ∀K ∈ Th, |JK |v|K ∈ Qp(K̂)

}
, (4.6)

Fh =
{
g ∈ (L2(Ω))2| ∀K ∈ Th, JKg|K ∈ Q̃p+1(K̂)

}
, (4.7)

où Qp(K̂) désigne les polynômes de degré p et x et en y (soit de degré global 2p) et Q̃p+1 est
défini tel que :

28

Rapport de stage Marie Compain

Q̃p+1(K̂) =

{(
L1(x)L2(y)

L3(x)L4(y)

)
, L1, L4 ∈ Pp+1([−1, 1]), L2, L3 ∈ Pp([−1, 1])

}
, (4.8)

avec Pp([−1, 1]) désignant l’ensemble des polynômes de degré p sur [−1, 1].

Notons uh l’approximation de u dans l’espace Vh et fh = cuh l’approximation de f dans Fh.
Alors uh et fh vérifient :

∂tuh +∇.fh = 0 sur Ω× [0, T]. (4.9)

Pour toute cellule K de Th, fh|K est construit à partir de uh|K . Or uh n’est pas forcément continu
sur Ω. Mais pour obtenir la conservation du flux, fh|K doit, quant à lui, être continu. Un solveur de
Riemann est donc utilisé à chaque interface entre deux cellules pour rétablir la continuité du flux,
que nous pouvons alors décomposer ainsi :

fh = cuh + fc, (4.10)

où fc est la correction apportée sur le bord de K par le solveur de Riemann. Alors, en remplaçant
fh par son expression dans l’équation (4.9), nous obtenons :

∂tuh = −∇.(cuh)−∇.fc. (4.11)

L’équation (4.11) est multipliée par uh puis intégrée sur un élément du maillage K. Une inté-
gration par parties nous donne ainsi :

1

2

∫
K

∂tu
2
hdx = −

∫
K

uh∇.(cuh)dx+

∫
K

fc.∇uhdx−
∫
∂K

uhf
c.ndσ. (4.12)

Or : ∫
K

uh∇.(cuh)dx =

∫
∂K

u2hc.ndσ −
∫
K

uh∇.(cuh)dx

=⇒
∫
K

uh∇.(cuh)dx =
1

2

∫
∂K

u2hc.ndσ.

Donc :

1

2
∂t∥uh∥2L2(K) = −1

2

∫
∂K

u2hc.ndσ +

∫
K

fc.∇uhdx−
∫
∂K

uhf
c.ndσ. (4.13)

Notons γh =
⋃

K∈Th

∂K le squelette de Th. Les deux termes de bord peuvent être signés. En effet,

en sommant ces termes pour tout K ∈ Th, nous pouvons les réécrire comme une somme sur les

29

Rapport de stage Marie Compain

arêtes du squelette du maillage :

−
∑

K∈Th

∫
∂K

(
1

2
u2hc.n+ uhf

c.n)dσ = −
∑

e∈γh\∂Ω

∫
e

(
1

2
u21c.n1 + u1f

c
1 .n1 +

1

2
u22c.n2 + u2f

c
2 .n2

)
dx

−
∑
e∈∂Ω

∫
e

(
1

2
u2hc.n+ uhf

c.n)dx, (4.14)

où K1 et K2 sont les quadrangles tels que K1 ∩ K2 = e, u1 = uh|K1
et u2 = uh|K2

, et n1 la
normale unitaire sortante de K1 par e, n2 la normale unitaire sortante de K2 par e. Soit le flux de
Godunov entre les cellules KL et KR défini tel que :

fGh = c

(
1 + signe(c.nL)

2
uL +

1− signe(c.nR)

2
uR

)
. (4.15)

Alors fc = fGh − cuh. Ainsi :

−
∑

K∈Th

∫
∂K

(
1

2
u2hc.n+uhf

c.n)dσ = −
∑

e∈γh\∂Ω

∫
e

(
−1

2
u21c.n1 + u1f

G
1 .n1 − 1

2
u22c.n2 + u2f

G
2 .n2

)
dx

−
∑
e∈∂Ω

∫
e

(−1

2
u2hc.n+ uhf

G.n)dx. (4.16)

Notons ne = n1 = −n2 la normale unitaire de l’arête e. Ici nous ferons le choix de c.ne > 0.
Alors :

−1

2
u21c.n1 + fG1 .n1 − 1

2
u22c.n2 + u2f

G
2 .n2 = c.ne

(
−1

2
u21 + u21 +

1

2
u22 − u1u2

)
= c.ne(u1 − u2)

2 > 0.

Ainsi :

−
∑

e∈γh\∂Ω

∫
e

(
−1

2
u21c.n1 + u1f

G
1 .n1 − 1

2
u22c.n2 + u2f

G
2 .n2

)
dx < 0. (4.17)

Il reste la somme des arêtes sur le bord de Ω. Il existe plusieurs cas de figure selon les conditions
aux limites utilisées. Le cas où il n’y a pas de flux est trivial. Pour le cas où la frontière est séparée
en une partie entrante et une partie sortante, nous avons :

30

Rapport de stage Marie Compain

— Sur la frontière sortante, c.ne > 0. Le flux prendra la valeur cuh sur la frontière. Ainsi :

−1

2
u2hc.n+ u2hc.n =

1

2
u2hc.n > 0. (4.18)

D’où :
−
∫
e

(−1

2
u2hc.n+ uhf

G.n)dx < 0. (4.19)

— Sur la frontière entrante, c.ne < 0. Le flux prendra donc la valeur d’entrée qui sera notée
cue. Alors :

−
(
−1

2
u2hc.ne + uhuec.ne

)
= −c.ne(

1

2
u2e −

1

2
(ue − uh)

2) < −c.ne
1

2
u2e. (4.20)

Cette quantité est positive, mais il s’agit d’une contribution à l’énergie uniquement liée à
ce qui est injecté dans le système physique. Ainsi en prenant ue = 0, le terme est bien négatif.

Le terme sur la frontière de Ω et le terme sur γh\∂Ω sont bien tous deux négatifs. Donc :

−
∑

K∈Th

∫
∂K

(
1

2
u2hc.n+ uhf

c.n)dσ < 0. (4.21)

Or le terme
∫
K
fc.∇uhdx dans l’équation (4.13) n’est pas signé. C’est pourquoi nous allons uti-

liser la norme (4.2).

Ainsi appliquer l’opérateur ∂α à (4.11) nous donne :

∂t∂
αuh = −∂α(∇.cuh))− ∂α(∇.fc). (4.22)

En multipliant l’équation (4.22) par ∂αuh et en intégrant, nous obtenons :∫
K

1

2
∂t(∂

αuh)
2dx = −

∫
K

∂α(∇.(cuh))∂αuhdx−
∫
K

∂α(∇.fc)∂αuhdx. (4.23)

Donc en sommant sur les coefficients α nous avons finalement :∫
K

1

2
∂t

(∑
α

aα(∂
αuh)

2

)
dx = −

∫
K

∂α(∇.(cuh))∂αuhdx−
∫
K

∑
α

aα∂
α(∇.fc)∂αuhdx. (4.24)

D’où, en sommant l’équation (4.13) et l’équation (4.24), nous obtenons au final pour toute cellule
K :

31

Rapport de stage Marie Compain

1

2
∂t∥uh∥2 = −

∫
K

∂α(∇.(cuh))∂αuhdx− 1

2

∫
∂K

u2hc.ndσ −
∫
∂K

uhf
c.ndσ

+

∫
K

fc.∇uhdx−
∫
K

∑
α

aα∂
α(∇.fc)∂αuhdx. (4.25)

Nous souhaitons alors montrer que :

−
∫
K

∂α(∇.(cuh))∂αuhdx+

∫
K

fc.∇uhdx−
∫
K

∑
α

aα∂
α(∇.fc)∂αuhdx = 0. (4.26)

Or uh est de degré p en x et en y, donc
∫
K
∂α(∇.(cuh))∂αuhdx = 0. Cela nous donne finalement

le critère suivant à respecter :∫
K

fc.∇uhdx−
∫
K

∑
α

aα∂
α(∇.fc)∂αuhdx = 0. (4.27)

Il nous suffit donc de trouver les coefficients aα tels que le critère (4.27) est rempli pour tout uh
et fc sur toute cellule K. On se place alors dans K̂. Le critère (4.27) devant être vrai pour tout uh,
il doit rester vrai pour un élément li(x)lj(y) de la base de K̂. Nous prendrons li (respectivement lj)
le polynôme de Lagrange interpolé aux p+1 points solution dans la direction x (resp. y) et associé
au point xi (resp. xj).

De même, le critère (4.27) doit rester vrai en particulier pour un flux nul dans la direction y

(le cas où le flux dans la direction x est nul est symétrique). Il s’agit d’une équation de transport
linéaire et nous supposerons que cx > 0. C’est pourquoi la correction de Godunov sera nulle sur le

côté droit de la cellule. Donc le critère (4.27) reste vrai pour une correction

(
l̂1(x)lj(y)

0

)
, où l̂1 est

le polynôme de Lagrange interpolé aux p+ 2 points flux et associé au point flux x̂1. Alors :

∇(li(x)lj(y)) =

(
l′i(x)lj(y)

li(x)l
′
j(y)

)
, ∇.

(
l̂1(x)lj(y)

0

)
= l̂′1(x)lj(y),

∂α(li(x)lj(y)) = l
(αx)
i (x)l

(αy)
j (y), ∂α

(
∇.

(
l̂1(x)lj(y)

0

))
= l̂

(αx+1)
1 (x)l

(αy)
j (y).

En remplaçant dans l’équation (4.27), nous obtenons :∫
K̂

l′i(x)lj(y)l̂1(x)lj(y)dx−
∫
K̂

∑
α

aαl
(αx)
i (x)l

(αy)
j (y)l̂

(αx+1)
1 (x)l

(αy)
j (y)dx = 0.

Or quand α ̸= (p, p), soit αx ≥ p + 1 soit αy ≥ p + 1. Et comme li et lj sont de degré p,

32

Rapport de stage Marie Compain

soit l(αx)
i (x) = 0 soit l(αy)

j (y) = 0. Donc la somme se réduit à α = (p, p). Ainsi il nous suffit de
déterminer le coefficient a = a(p,p) tel que :

∫
K̂

l′i(x)lj(y)l̂1(x)lj(y)dx− a

∫
K̂

l
(p)
i (x)l

(p)
j (y)l̂

(p+1)
1 (x)l

(p)
j (y)dx = 0 (4.28)

=⇒
∫ 1

−1

l2jdy

∫ 1

−1

l̂1l
′
idx− a

∫ 1

−1

(l
(p)
j)2dy

∫ 1

−1

l
(p)
i l̂

(p+1)
1 dx = 0. (4.29)

Nous noterons dans la suite Ij =
∫
K̂
l2jdy et aj le coefficient dominant de lj . Alors l(p)j = p!aj .

Nous prendrons à partir de maintenant les p points flux intérieurs dans la direction x égaux aux
points de Gauss-Legendre. Le polynôme l̂1 peut donc être exprimé tel que :

l̂1(x) = (−1)p
1

2
(1− x)Lp(x), (4.30)

avec Lp le polynôme de Legendre de degré p. Son coefficient dominant sera noté cp. Il peut être
déterminé grâce à la formule de Rodrigues :

Lp(x) =
1

2p
1

p!

∂p

∂xp
(x2 − 1)p

=
1

2p
1

p!

∂p

∂xp
(x2p + ...)

=
1

2p
1

p!

(2p)!

p!
xp + ...

=
1× 3× 5× ...× (2p− 1)

p!
xp + ...

Lp étant orthogonal à tout polynôme de degré inférieur à p, nous avons :∫ 1

−1

l̂1l
′
idx = (−1)p+1 1

2

∫ 1

−1

xLp(x)l
′
i(x)dx

= (−1)p+1 1

2

∫ 1

−1

Lp(x)(aipx
p + ...)dx

= (−1)p+1 1

2

aip

cp

∫ 1

−1

Lp(x)cpx
pdx

= (−1)p+1 1

2

aip

cp

(∫ 1

−1

Lp(x)
2dx−

∫ 1

−1

Lp(x)(cp−1x
p−1 + ...)dx

)
= (−1)p+1 1

2

2pai
(2p+ 1)cp

,

33

Rapport de stage Marie Compain

car
∫ 1

−1
Lp(x)

2dx = 2
2p+1 .

Nous avons aussi que l̂(p+1)
1 = (−1)p+1 1

2 (p+ 1)!cp. Nous obtenons donc :

Ij(−1)p+1 1

2

2pai
(2p+ 1)cp

− a× 4(p!)2a2j (−1)p+1 1

2
(p+ 1)!cpp!aj = 0. (4.31)

En simplifiant, nous avons finalement l’expression suivante de a :

a =
p

2(2p+ 1)(p!)3(p+ 1)!c2p

Ij
a2j

> 0, (4.32)

car Ij =
∫ 1

−1
l2jdy > 0.

Cette preuve ne dépendant pas de la position des points solution, nous pouvons donc l’appliquer
à la méthode SD et à la méthode FUSE.

34

Rapport de stage Marie Compain

5 Tests numériques

5.1 Présentation de HOPPS

HOPPS (High Order Performance Portable Solvers) est un code de calcul développé par le
CERFACS. Il a été créé dans un premier temps pour déterminer si la librairie Kokkos pouvait être
pertinente dans un contexte de codes CFD. Les résultats obtenus étant prometteurs, il a été décidé
de continuer de le développer afin de simuler numériquement des cas et configurations physiques de
la mécanique des fluides.

HOPPS se présente sous la forme d’un module Python, c’est-à-dire que les solveurs, les modèles,
etc. peuvent être manipulés grâce à un script Python, indépendamment de l’architecture utilisée.
Le coeur du module est quant à lui développé en C++. Il est construit autour de quatre grandes
abstractions de base, représentées par des classes :

— Le maillage (Mesh) qui contient la définition du domaine de calcul (noeuds, éléments,
bords...).

— Le domaine (Field) qui contient les valeurs des solutions. Cette structure dépend de la
méthode numérique utilisée.

— Le solveur (Solver) exécute la méthode numérique utilisée.
— Le modèle (Model) définit le système physique à résoudre.

Pour l’instant, HOPPS comporte seulement quelques modèles (advection linéaire, advection-
diffusion, Euler, Navier-Stokes) résolus numériquement avec les méthodes SD, FUSE et LBM (mé-
thode Lattice-Boltzmann). Il n’utilise actuellement que des maillages hexahédriques et les seules
conditions aux limites possibles sont des conditions périodiques.

Durant ce stage, le modèle d’advection linéaire a été ajouté à HOPPS en 1D et en 2D. De plus,
la méthode FUSE en linéaire et non linéaire avec points fixes a été codée en 1D et en 2D.

5.2 Cas linéaire en 1D

Rappelons l’équation de transport linéaire 1D à résoudre dans cette section :

∂tu+ ∂x(cu) = 0 sur Ω× [0, T], (5.1)

où c ∈ R est la vitesse d’advection. La condition initiale sera notée :

u0(x) = u(x, 0), x ∈ Ω. (5.2)

35

https://kokkos.org/kokkos-core-wiki/index.html

Rapport de stage Marie Compain

Alors la solution exacte de ce problème est :

u(x, t) = u0(x− ct). (5.3)

5.2.1 Condition initiale continue

La méthode FUSE ainsi que la méthode SD standard ont été implémentées en Python afin de
réaliser les tests numériques de cette section. Le schéma en temps utilisé est SSPRK3 [1].

Nous commençons par utiliser la condition initiale régulière suivante :

u0(x) = sin(x). (5.4)

Nous prendrons Ne = 200 cellules, un ordre de p = 2, le nombre CFL égal à cfl = 0.1 et
comme temps de fin Tfin = 0.2 s. Le domaine sur lequel nous souhaitons résoudre numériquement
l’équation (5.2) sera Ω = [0, 2π] et les conditions aux bords seront périodiques. Enfin la vitesse
d’advection sera c = 1 m.s−1.

Les solutions obtenues pour la méthode SD standard et avec notre nouvelle méthode sont pré-
sentées sur le graphique 5.1.

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.1 – Solutions obtenues pour les deux méthodes au temps Tfin = 0.2 s.

Nous pouvons observer dans les deux cas que le tracé de la solution exacte est superposé à celui
de la solution approchée. Cela se confirme en regardant les erreurs commises dans le tableau 5.1.

36

Rapport de stage Marie Compain

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.00012375407340802663 0.00012375594675248264
∥uex − uapp∥L∞(Ω) 6.98227616634517e-05 6.982137484967676e-05

Table 5.1 – Erreurs commises pour les deux méthodes.

Les erreurs observées sont dans les deux cas sensiblement les mêmes. En changeant le temps
de fin de la simulation, nous observons la même chose avec Tfin = 1.0 s sur le graphique 5.2 et le
tableau 5.2.

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.2 – Solutions obtenues pour les deux méthodes au temps Tfin = 1.0 s.

Erreur SD FUSE
∥uex − uapp∥L2(Ω) 0.0006188560324894134 0.0006188579063737881
∥uex − uapp∥L∞(Ω) 0.0003491540095723611 0.00034915099054544374

Table 5.2 – Erreurs commises pour les deux méthodes.

En calculant l’erreur L2 entre la solution exacte et la solution calculée pour les deux méthodes
et différents ordres p, nous obtenons les courbes de convergence présentées dans le graphique 5.3.

37

Rapport de stage Marie Compain

Figure 5.3 – Courbes de convergence pour l’équation de transport 1D avec une condition initiale
régulière.

Les pentes des différentes courbes sont notées dans le tableau 5.3. A chaque ordre, nous pouvons
observer que les pentes calculées pour chaque méthode correspondent à la pente théorique de p+1.
Nous pouvons aussi noter que les courbes de convergence de la méthode FUSE sont légèrement au
dessus de celles de la méthode SD standard, mais elles restent cependant du même ordre de grandeur.

Ordre polynomial p Pente SD standard Pente FUSE Pente théorique
1 2.012232346766273 2.0122189701835658 2
2 3.0183691219219737 3.0183601377659666 3
3 4.024506496456029 4.024500759719532 4
4 5.030644405764189 5.030643163855714 5
5 5.712218777154561 5.989586210747027 6

Table 5.3 – Pentes des courbes d’erreur pour la méthode standard et la nouvelle méthode.

Avec cette condition initiale régulière, nous décidons de faire des tests de nombre CFL pour
différents p et différents Ne. Le critère de stabilité retenu sera que l’erreur ∥Uex − Uapp∥L∞(Ω) soit
inférieure à 10−4 au bout de 1000 itérations. Les courbes 5.4 à 5.6 sont ainsi obtenues.

Nous observons que les nombres CFL calculés numériquement pour la méthode FUSE sont, de
façon générale, légèrement plus petits que ceux calculés pour la méthode SD standard, ce qui est

38

Rapport de stage Marie Compain

Figure 5.4 – Nombres CFL calculés pour les méthodes SD et FUSE avec p = 3.

Figure 5.5 – Nombres CFL calculés pour les méthodes SD et FUSE avec p = 4.

Figure 5.6 – Nombres CFL calculés pour les méthodes SD et FUSE avec p = 5.

cohérent avec le fait que les erreurs commises par la méthode FUSE sont plus grandes que celles
commises par la méthode SD.

39

Rapport de stage Marie Compain

5.2.2 Condition initiale discontinue

Nous souhaitons maintenant faire des tests en utilisant une condition initiale discontinue :

u0(x) =

 1 si x < |Ω|
2 ,

2 sinon.
(5.5)

Nous gardons les mêmes paramètres que pour les figures 5.1, mais nous prenons cette fois des
conditions de Dirichlet aux bords. Les graphiques 5.7 sont alors obtenus.

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.7 – Solutions obtenues pour les deux méthodes au temps Tfin = 0.2 s.

Remarque 1 Les oscillations observées au niveau des discontinuités correspondent au phénomène
de Runge. En effet, nous utilisons une interpolation de Lagrange pour calculer la solution numé-
rique. Pour atténuer les oscillations, nous pouvons utiliser des filtres pour capturer au mieux les
discontinuités, comme celui présenté dans l’article [7] par exemple.

Nous obtenons pour ce test les erreurs présentées dans le tableau 5.4.

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.056510447983416146 0.06144398575267277
∥uex − uapp∥L∞(Ω) 0.29650406161978915 0.3774852677684635

Table 5.4 – Erreurs commises pour les deux méthodes avec une condition initiale discontinue et
un temps de fin Tfin = 0.2 s.

Nous pouvons observer dans les deux cas des oscillations de la solution approchée autour de la
discontinuité, et le même ordre de grandeur au niveau des erreurs, bien qu’elles soient en peu plus
grandes pour la méthode FUSE.

40

Rapport de stage Marie Compain

5.3 Cas scalaire non linéaire en 1D

5.3.1 Condition initiale continue

Afin de tester un cas scalaire non linéaire en 1D, nous allons résoudre numériquement l’équation
de Burgers, qui est de la forme :

∂u

∂t
+

∂

∂x
f(u) = 0, (5.6)

avec f(u) = u2

2 . Nous pouvons réécrire l’équation (5.6) sous forme non conservative :

∂u

∂t
+ a(u)

∂u

∂x
= 0, (5.7)

où a(u) = f ′(u) = u.

Nous utiliserons tout d’abord la condition initiale continue suivante :

u0(x) = sin(x). (5.8)

Dans ce cas-là, la solution de l’équation (5.6) jusqu’à la date T ∗ =
−1

min
x0∈R

d

dx0
a(u0(x0))

= 1 sera :

u(x, t) = sin(x0), (5.9)

avec x0 qui vérifie :

x0 + sin(x0)t = x. (5.10)

La méthode SD et la méthode FUSE avec adaptation des points solution ont été implémentées
en Python pour les tests présentés dans cette partie. Le schéma d’intégration temporel utilisé est
SSPRK3. Le domaine physique est Ω = [0, 2π], nous prendrons comme ordre p = 3, Ne = 200 élé-
ments et un nombre CFL cfl = 0.1. Au temps Tfin = 0.5 s, nous obtenons les solutions numériques
présentées dans les graphiques 5.8, ainsi que les erreurs notées dans le tableau 5.5.

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.000216576844387351 0.0008262291953209899

Table 5.5 – Erreurs commises pour les deux méthodes pour la résolution de l’équation de Burgers
avec une condition initiale continue.

Nous constatons à nouveau que les erreurs L2 pour les deux méthodes sont du même ordre de

41

Rapport de stage Marie Compain

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.8 – Solutions obtenues pour les deux méthodes au temps Tfin = 0.5 s.

grandeur, avec une erreur un peu plus grande pour la méthode FUSE par rapport à la méthode
SD.

Pour ce test nous aurions aussi pu comparer les deux algorithmes FUSE présentés dans la partie
3.2.2 entre eux.

5.3.2 Problème de Riemann

A présent, nous souhaitons faire des tests pour la résolution d’un problème de Riemann, c’est-
à-dire résoudre numériquement l’équation (5.6) avec une condition initiale qui sera de la forme :

u0(x) =

 uL si x < |Ω|
2 ,

uR sinon.
(5.11)

Rappelons que dans le cas de l’équation de Burgers (où le flux f(u) = u2

2 est convexe) :

— Si uL > uR, une onde de choc se forme. La solution exacte du problème sera donc :

u(x, t) =

 uL si x < σt,

uR si x > σt.
(5.12)

avec σ donné par la relation de Rankine-Hugoniot : −σ(f(uR)− f(uL)) + (uR − uL) = 0.
— Si uL < uR, nous obtenons une onde de raréfaction. La solution du problème de Riemann

42

Rapport de stage Marie Compain

sera alors :

u(x, t) =


uL si x < f ′(uL)t+

|Ω|
2 ,

a−1

(
x− |Ω|

2

t

)
si f ′(uL)t+

|Ω|
2 < x < f ′(uR)t+

|Ω|
2 ,

uR si x > f ′(uR)t+
|Ω|
2 .

(5.13)

Commençons par le cas uL < uR :

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.9 – Solutions pour les deux méthodes au temps Tfin = 0.5 s, avec uL = 1 et uR = 2.

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.09703445344280012 0.1759846919409523
∥uex − uapp∥L∞(Ω) 0.04143962289541436 0.0839102766051455

Table 5.6 – Erreurs commises pour les deux méthodes, avec uL = 1 et uR = 2.

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.3907881028483392 0.3754874514921302
∥uex − uapp∥L∞(Ω) 0.25111260836707316 0.21331038157672033

Table 5.7 – Erreurs commises pour les deux méthodes, avec uL = −2 et uR = −1.

43

Rapport de stage Marie Compain

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.10 – Solutions pour les deux méthodes au temps Tfin = 0.5 s, avec uL = −2 et uR = −1.

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.11 – Solutions pour les deux méthodes au temps Tfin = 0.5 s, avec uL = −2 et uR = 1.

44

Rapport de stage Marie Compain

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.3412755073302644 0.3420729408260379
∥uex − uapp∥L∞(Ω) 0.20506785652385684 0.18020683210521948

Table 5.8 – Erreurs commises pour les deux méthodes, avec uL = −2 et uR = 1.

Les trois tests présentés (graphiques 5.9 à 5.11 et tableaux 5.6 à 5.8) montrent des erreurs si-
milaires pour les deux méthodes, qui sont confirmées par les graphiques : en effet, comme pour le
transport linéaire d’une discontinuité, des oscillations apparaissent au début et à la fin de l’onde de
détente, et ce pour les SD standard ou la méthode FUSE.

Passons maintenant au cas uL > uR :

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.12 – Solutions pour les deux méthodes au temps Tfin = 0.5 s, avec UL = 2 et UR = 1.

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.29793274475712844 0.339785204026162
∥uex − uapp∥L∞(Ω) 0.22869260545869796 0.2186648980745085

Table 5.9 – Erreurs commises pour les deux méthodes, avec uL = 2 et uR = 1.

Erreur calculée SD FUSE
∥uex − uapp∥L2(Ω) 0.2973578514977129 0.339785204026162
∥uex − uapp∥L∞(Ω) 0.22759868389194038 0.2186648980745085

Table 5.10 – Erreurs commises pour les deux méthodes, avec uL = −1 et uR = −2.

Comme pour les cas d’ondes de détente, nous observons, grâce aux tableaux 5.9 - 5.10 et aux
graphiques 5.12 - 5.13, aussi des erreurs similaires pour les deux méthodes et des oscillations au

45

Rapport de stage Marie Compain

(a) Méthode SD standard. (b) Méthode FUSE.

Figure 5.13 – Solutions pour les deux méthodes au temps Tfin = 0.5 s, avec uL = −1 et uR = −2.

niveau des chocs à peu près semblables tant pour le SD que pour la méthode FUSE.

5.4 Cas linéaire en 2D

Commençons les tests en 2D par l’équation de transport linéaire, définie telle que :

∂tu+∇.f(u) = 0 sur Ω× [0, T], (5.14)

avec Ω ⊂ R2 le domaine physique et f(u) = cu le flux, où c =

(
cx

cy

)
est la vitesse d’advection.

Notons la condition initiale du problème u0 telle que :

u0(x) = u(x, 0), x ∈ Ω. (5.15)

Alors la solution exacte de (5.14) sera :

u(x, t) = u0(x− ct). (5.16)

Afin d’effectuer les tests ci-dessous, la méthode FUSE a été implémentée dans HOPPS (cf. partie
5.1), ainsi que le modèle d’advection linéaire (5.14). Nous utiliserons pour les tests présentés dans
cette section le schéma d’intégration temporelle SSPRK3. De plus, le solveur de Riemann utilisé
pour les SD standards sera le schéma décentré, aussi appelé schéma "upwind".

Dans un premier temps, nous ferons un test où les vitesses d’advection dans les directions x et
y seront cx = cy = 1 m.s−1, le domaine de calcul sera Ω = [0, L]2 avec L = 1 m. Le nombre de

46

Rapport de stage Marie Compain

cellules sera Ne = N2 avec N = 10 et le nombre CFL sera cfl = 0.2. Nous utiliserons la condition
initiale suivante :

u0
(
t(x, y)

)
= exp

(
−
(
x− L

2

)2
+
(
y − L

2

)2
σ2

)
, (5.17)

avec σ = 0, 1. A l’instant t = 0, 3 s, les solutions approchées avec les méthodes SD et FUSE sont
présentées sur la figure 5.14. Les erreurs L2 pour chaque méthode sont notées dans le tableau 5.11.

(a) Méthode SD. (b) Méthode FUSE.

Figure 5.14 – Solution au temps t = 0.000172461 s obtenue avec les différentes méthodes.

Nous pouvons observer que l’erreur commise par la méthode FUSE est un peu plus grande que
celle commise par la méthode SD standard, ce que nous avions déjà observé en 1D.

Erreur SD FUSE
∥uex − uapp∥L2(Ω) 0.0010072067199307648 0.001098513187613855

Table 5.11 – Erreurs L2 obtenues à t = 0.3 s pour les différentes méthodes numériques.

Nous souhaitons maintenant voir si, de façon similaire à ce qui a été fait en 1D, nous obtenons
à nouveau des courbes de convergence de pente p + 1 pour différents p. Ainsi, en faisant varier N
nous obtenons les courbes présentées sur la figure 5.15.

Nous observons à nouveau que les erreurs commises par la méthode FUSE sont plus grandes

47

Rapport de stage Marie Compain

Figure 5.15 – Courbes de convergence de l’erreur L2 des méthodes SD et FUSE pour la résolution
de l’équation de transport linéaire 2D.

Ordre polynomial p Pente SD Pente FUSE Pente théorique
2 2.996000824302383 2.9987169114878056 3
3 3.998522303898951 3.9985872560963345 4
4 4.993531009661508 4.998535235697732 5
5 5.997849683027483 5.998509940282256 6

Table 5.12 – Pentes des courbes d’erreur L2 pour la méthode SD et la méthode FUSE.

que celles commises par la méthode SD. Cependant elles restent du même ordre de grandeur, et
l’ordre de convergence reste en p+ 1, comme nous le montre le tableau 5.12.

5.5 Cas d’un système en 2D : les équations d’Euler

Dans cette section nous nous penchons sur le cas d’un système hyperbolique en 2D : les équations
d’Euler, définies telles que : 

∂tρ+∇.(ρV) = 0,

∂t(ρV) +∇.(ρV ⊗V) +∇p = 0,

∂t(ρE) +∇.(ρEV + pV) = 0,

(5.18)

48

Rapport de stage Marie Compain

avec ρ la densité du fluide (en kg.m−3), V =

(
u

v

)
sa vitesse (en m.s−1), p la pression (en Pa), E

l’énergie totale par unité de masse (en J.kg−1) telle que E = p
ρ(γ−1) +

∥V∥2

2 , où γ est le rapport des
chaleurs spécifiques à pression et volume constant. En réécrivant le système (5.18) sous la forme
(2.17), nous avons :

U =


ρ

ρu

ρv

ρE

 , E(U) =


ρu

ρu2 + p

ρuv

ρ(E + p)u

 , et F(U) =


ρv

ρuv

ρv2 + p

ρ(E + p)v

 .

Afin de vérifier si notre méthode fonctionne pour ce système, nous allons considérer le test
d’une COnvection de VOrtex (COVO) sur le domaine Ω = [0, L]2, avec L = 0.1 m. Soit la fonction
suivante :

ψ(x, y) = Γ exp

(
−r

2

2

)
, (5.19)

avec :

r =

√
(x− xc)2 + (y − yc)2

Rc
, (5.20)

où Γ est la force du vortex, Rc son rayon et (xc, yc) son centre. Alors la condition initiale pour

la vitesse V0 =

(
u0

v0

)
sera :

u0 = U∞ + ∂yψ et v0 = −∂xψ, (5.21)

avec U∞ = M∞
√
γRgazT∞ la vitesse du fluide sans perturbation, Rgaz la constante du gaz et

M∞ le nombre de Mach. De manière analogue T∞, ρ∞ et p∞ seront respectivement la température,
densité et pression du fluide sans perturbation. Les conditions initiales pour ces quantités seront :

T0 = T∞ −
Γ2 exp

(
− r2

R2
c

)
2CpR2

c

, (5.22)

ρ0 = ρ∞

(
T0
T∞

) 1
γ−1

, (5.23)

p0 = ρ0RgazT0. (5.24)

Les valeurs des constantes utilisées dans les conditions initiales (5.21)-(5.24) sont présentées
dans le tableau 5.13.

49

Rapport de stage Marie Compain

Constantes Valeur
γ (-) 1,4

Rgaz (J.kg−1.K) 287
Cp (J.kg−1.K) γRgaz

γ−1

M∞ (-) 0,5
p∞ (Pa) 101300
T∞ (K) 300

ρ∞ (kg.m−3) 1,17170407
Rc (m) L

20

xc (m) L
2

yc (m) L
2

Γ (m2.s−1) 0, 04U∞Rc
√
e

Table 5.13 – Tableau des valeurs des différentes constantes utilisées à l’initialisation du COVO.

Notons donc la condition initiale :

U0 =


ρ0

ρ0u0

ρ0v0

ρ0E0

 . (5.25)

Alors la solution exacte de ce problème sera :

U(x, t) = U0(x− c∞t), (5.26)

avec c∞ =

(
U∞

0

)
.

Dans un premier temps, nous prendrons comme ordre p = 4, comme nombre de cellules Ne = N2

avec N = 16, comme nombre CFL cfl = 0.2 et le schéma d’intégration temporelle RK54. Nous
obtenons donc au temps t = 0.000172461 s les solutions présentées sur la figure 5.16 pour la densité ρ.

Erreur SD FUSE
∥ρex − ρapp∥L2(Ω) 2.0638254376962932e-07 2.076265289437885e-07

Table 5.14 – Erreurs L2 obtenues pour la variable ρ à t = 0.000172461 s pour les différentes
méthodes numériques.

Nous observons à nouveau grâce aux erreurs L2 données dans le tableau 5.14 que les solutions
numériques calculées avec les deux méthodes sont similaires, avec une erreur un petit peu plus
grande pour la méthode FUSE, ce que nous avions déjà remarqué pour les cas d’advection linéaire.

50

Rapport de stage Marie Compain

(a) Méthode SD. (b) Méthode FUSE.

Figure 5.16 – Densité ρ au temps t = 0.000172461 s obtenue avec les différentes méthodes.

Nous souhaitons donc faire à nouveau les courbes de convergence pour plusieurs ordres p. Nous
obtenons ainsi le graphique 5.17 et les pentes des courbes sont notées dans le tableau 5.15.

Ordre polynomial p Pente SD Pente FUSE Pente théorique
2 2.995668678345321 2.9940116980981473 3
3 3.994490399203938 3.993475252437675 4
4 4.993933309211478 4.993231994444279 5
5 5.866559387453854 5.964326894123795 6

Table 5.15 – Pentes des courbes d’erreur L2 pour la méthode SD et la méthode FUSE.

Comme pour le modèle d’advection linéaire en 1D et 2D, nous obtenons bien un ordre de
convergence de p+1 pour les deux méthodes. Nous pouvons aussi observer que, à l’instar de ce qui
a été obtenu pour le transport linéaire, l’erreur commise par la méthode FUSE est plus grande que
celle commise par la méthode SD standard.

51

Rapport de stage Marie Compain

Figure 5.17 – Courbes de convergence de l’erreur L2 pour la densité ρ des méthodes SD et FUSE
pour la résolution des équations d’Euler 2D.

52

Rapport de stage Marie Compain

6 Analyse de performance

6.1 Complexité algorithmique

Nous souhaitons quantifier le gain en termes d’opérations de la méthode FUSE par rapport à
la méthode SD pour le cas d’une équation de transport linéaire en 1D.

Soit Ne le nombre de cellules du maillage, NSP = p+1 le nombre de points solution par cellule
et NFP = p + 2 le nombre de points flux. A un temps tn donné, l’étape d’extrapolation coûte
NeNFPNSP opérations pour la méthode SD standard, tandis qu’il y a seulement NeNSP opéra-
tions pour la méthode FUSE. Appliquer les conditions aux limites coûte 2 opérations pour chaque
méthode. L’étape de calcul du flux aux points intérieurs vaut Ne(NFP − 2) pour les SD standard,
mais elle coûte NeNFP pour la méthode FUSE car nous n’utilisons pas de solveur de Riemann donc
nous pouvons aussi calculer le flux aux points au bord de chaque cellule. Soit cRiemann la complexité
du solveur de Riemann utilisé, alors cette étape vaut NecRiemann pour la méthode SD. Cependant,
comme expliqué précédemment, il n’y a pas besoin de cette étape pour la méthode FUSE. L’éva-
luation de la dérivée aux points solution coûte NeNSPNFP opérations dans les deux cas. Enfin,
en notant cRK la complexité du schéma d’intégration temporelle choisi, alors l’étape d’intégration
temporelle coûte NeNSP cRK opérations. Au total, en notant Niter le nombre d’itérations en temps :

— Pour la méthode SD :

Niter (NeNFPNSP + 2 +Ne(NFP − 2) +NecRiemann +NeNSPNFP +NeNSP cRK)O(1)

=

(
1 +

2

NeNFPNSP
+
NFP − 2 + cRiemann

NFPNSP
+
cRK

NFP

)
O(NiterNeNFPNSP).

— Pour la méthode FUSE :

Niter (NeNSP + 2 +NeNFP +NeNSPNFP +NeNSP cRK)O(1)

=

(
1

NFP
+

2

NeNFPNSP
+

1

NSP
+ 1 +

cRK

NFP

)
O(NiterNeNFPNSP).

Nous pouvons donc noter que les deux algorithmes ont une complexité en O(NiterNeNFPNSP).
Cependant la constante pour la méthode FUSE est plus petite que celle pour la méthode SD.

Nous souhaitons à présent comparer le nombre d’opérations pour les différents algorithmes
présentés pour une équation non linéaire 1D. La méthode SD reste la même qu’en linéaire. pour
l’algorithme FUSE où la position des points flux évolue, nous noterons Nn

FUSE le nombre de cellules
où, à un temps tn donné, les points solution sont collocalisés avec certains points flux, et Nn

SD le

53

Rapport de stage Marie Compain

nombre de cellules où les points solution sont les points de Gauss-Tchebychev. Ainsi, pour tout tn,
Nn

SD +Nn
FUSE = Ne.

A un temps tn donné, l’étape d’extrapolation coûte NeNSP + NeNSP = 2NeNSP pour l’al-
gorithme avec points fixés, tandis qu’elle en coûte Nn

FUSENSP + Nn
SDNSPNFP pour l’algorithme

avec points adaptatifs. L’application des conditions aux limites coûte 2 opérations pour les deux
algorithmes. Le calcul du flux aux points intérieurs vaut Ne(NFP − 2) opérations pour l’algorithme
avec points fixés, mais elle en vaut Nn

FUSENFP + Nn
SD(NFP − 2) pour le deuxième algorithme.

Pour l’étape du solveur de Riemann, nous avons, comme pour la méthode SD usuelle, NecRiemann

opérations pour l’algorithme avec points fixés, mais nous en avons seulement (Nn
SD + 1)cRiemann

pour l’algorithme avec points adaptatifs. Ce dernier contient une étape supplémentaire où a(u) est
calculé à chaque interface afin d’adapter la position des points solution pour l’itération suivante.
Cette étape vaut donc Ne+1 opérations. Enfin, les étapes de dérivation du flux aux points solution
et l’intégration temporelle valent NeNFPNSP +NeNSP cRK opérations pour les deux algorithmes.
Tout cela nous donne finalement :

— Pour l’algorithme avec points fixés :

Niter (2NeNSP + 2 +Ne(NFP − 2) +NecRiemann +NeNSPNFP +NeNSP cRK)O(1)

=

(
2

NFP
+

2

NeNFPNSP
+
NFP − 2 + cRiemann

NFPNSP
+ 1 +

cRK

NFP

)
O(NiterNeNFPNSP).

— Pour l’algorithme avec points adaptatifs :

Niter (N
n
FUSENSP +Nn

SDNSPNFP + 2 +Nn
FUSENFP +Nn

SD(NFP − 2)

+(Nn
SD + 1)cRiemann +Ne + 1 +NeNSPNFP +NeNSP cRK)O(1),

=

(
1 +

1

NSP
+
cRK + 1

NFP
+

1

NSPNFP
+

3 + cRiemann

NeNFPNSP

+
Nn

SD

Ne

(
1− 1

NFP
+
cRiemann − 2

NSPNFP

))
O(NiterNeNFPNSP).

Ainsi, en admettant que Nn
SD reste constant pour chaque itération, l’algorithme avec points

adaptatifs vaut plus d’opérations que l’algorithme avec points fixés lorsque :

Nn
SD = NSD >

NeNSP +NecRiemann − 2Ne − cRiemann −Ne − 1

NSPNFP −NSP − 2 + cRiemann
= Nmax

SD . (6.1)

A titre d’illustation, fixons Niter = 1000, cRK = 3, cRiemann = 10 et Ne = 100000. En faisant
varier NSD, nous obtenons les graphiques 6.1 pour p = 2 et p = 3.

54

Rapport de stage Marie Compain

(a) p = 2. (b) p = 3.

Figure 6.1 – Nombre d’opérations des deux algorithmes en fonction de NSD.

Pour l’exemple avec p = 2, Nmax
SD = 58822, et pour p = 3, Nmax

SD = 45832. Nous pouvons donc
observer qu’en augmentant p nous faisons baisser Nmax

SD . En conséquence, l’algorithme avec points
adaptatifs est plus intéressant en terme de coût de calcul pour des cas avec peu de variations dans
le sens du flux. Par exemple, pour le cas de l’équation de Burgers avec la condition initiale (5.8)
sur le domaine [0, 2π], il est plus intéressant d’utiliser l’algorithme 2 car il n’y a un changement de
signe de a(u) = u qu’à x = π.

6.2 Tests de performance

6.2.1 Tests en 1D avec HOPPS

Nous souhaitons maintenant comparer la performance des deux méthodes, mais aussi comparer
les performances obtenues sur différentes architectures matérielles. Pour ce faire, nous allons utiliser
un des supercalculateurs du CERFACS, nommé Kraken, qui dipose de noeuds composés de coeurs
CPU, mais aussi de cartes GPU Nvidia A30. Nous ferons des tests avec ce qui a été implémenté
dans HOPPS.

Commençons par des tests pour le modèle d’advection linéaire en 1D sur le domaine Ω = [0, 6π]

et pour un ordre p = 5. Les temps CPU pour 10 coeurs CPU et pour 1 carte GPU sont présentés dans
le graphique 6.2 pour différents nombres de degrés de liberté, c’est-à-dire NDoF = Ne×(p+1) en 1D.

Nous pouvons noter dans un premier temps que, en GPU comme en CPU, la méthode FUSE est
plus rapide que la méthode SD, ce qui est cohérent avec les complexités algorithmiques calculées
dans le paragraphe 6.1. En notant TSD le temps de calcul pour la méthode SD et TFUSE le temps

55

Rapport de stage Marie Compain

(a) Temps CPU pour 10 coeurs CPU. (b) Temps GPU pour 1 carte GPU.

Figure 6.2 – Temps CPU/GPU pour la résolution numérique avec la méthode FUSE et la méthode
SD du modèle de transport linéaire 1D avec p = 5 pour différents nombres de degrés de liberté.

NDoF
TSD−TFUSE

TSD
GPU TSD−TFUSE

TSD
CPU

120000 0.03157929 0.1280321
240000 0.0644844 0.16905409
360000 0.06384301 0.14354575
480000 0.0606742 0.16304394

Table 6.1 – Différence relative de temps GPU et CPU entre la méthode FUSE et la méthode SD
pour le modèle d’advection linéaire 1D pour différents nombres de degrés de liberté NDoF .

de calcul pour la méthode FUSE, le tableau 6.1 réunit les différences relatives entre le temps CPU
(ou GPU) de la méthode FUSE et de la méthode SD par rapport au temps de la méthode SD.
Nous pouvons ainsi observer un gain d’environ 6% du temps pour la méthode FUSE par rapport
à la méthode SD sur carte GPU. Pour le calcul sur CPU, nous gagnons même de 12% à 16% de
temps CPU. Une étude de scalabilité aurait potentiellement pu expliquer cette différence de gain
de temps de calcul entre CPU et GPU.

Nous pouvons aussi observer que les temps de calcul pour 1 carte GPU sont nettement plus
petits que ceux obtenus avec 10 coeurs CPU.

6.2.2 Tests en 2D avec HOPPS

Nous souhaitons effectuer le même type de tests que ceux présentés dans la partie 6.2.1 pour des
cas 2D. Nous commençons par le modèle d’advection linéaire 2D sur le domaine Ω = [0, 1]2 avec un
ordre p = 5. Nous présentons dans le graphique 6.3 le temps CPU et GPU pour différents nombres

56

Rapport de stage Marie Compain

de degrés de liberté NDoF = Ne(p+ 1)2.

(a) Temps CPU pour 25 coeurs CPU. (b) Temps GPU pour 1 carte GPU.

Figure 6.3 – Temps CPU/GPU pour la résolution numérique avec la méthode FUSE et la méthode
SD du modèle de transport linéaire 2D avec p = 5 pour différents nombres de degrés de liberté.

Nous observons à nouveau que, sur GPU comme sur CPU, le temps de calcul pour la méthode
FUSE est plus petit que celui de la méthode SD standard. Grâce au tableau 6.2 qu’à partir de 105

degrés de liberté, nous gagnons 3 à 7% de temps de calcul sur GPU et environ 4% sur CPU.

NDoF
TSD−TFUSE

TSD
GPU TSD−TFUSE

TSD
CPU

90000 -0.08754912 0.00465952
360000 0.03756522 0.04175313
1440000 0.05422712 0.04469892
5760000 0.07954531 0.03966221

Table 6.2 – Différence relative de temps GPU et CPU entre la méthode FUSE et la méthode SD
pour le modèle d’advection linéaire 2D pour différents nombres de degrés de liberté NDoF .

Regardons enfin les temps CPU et GPU pour la résolution des équation d’Euler en 2D avec la
méthode SD et la méthode FUSE (avec points fixes). Nous obtenons le graphique 6.4 (a) pour les
calculs lancés sur 25 coeurs CPU et le graphique 6.4 (b) pour ceux lancés sur 1 carte GPU.

Nous pouvons faire les mêmes observations que pour les cas linéaires : la méthode FUSE est
plus rapide que la méthode SD, même si nous pouvons voir grâce au tableau 6.3 que le gain de
temps est moins conséquent sur CPU que sur GPU.

57

Rapport de stage Marie Compain

(a) Temps CPU pour 25 coeurs CPU. (b) Temps GPU pour 1 carte GPU.

Figure 6.4 – Temps CPU/GPU pour la résolution numérique avec la méthode FUSE et la méthode
SD des équations d’Euler 2D avec p = 5 pour différents nombres de degrés de liberté.

NDoF
TSD−TFUSE

TSD
GPU TSD−TFUSE

TSD
CPU

360000 0.00524574 0.07538979
1440000 0.00980509 0.02490826
2250000 0.0842039 0.02904119
3240000 0.11064584 0.01663689

Table 6.3 – Différence relative de temps GPU et CPU entre la méthode FUSE et la méthode SD
pour les équations d’Euler 2D pour différents nombres de degrés de liberté NDoF .

58

Rapport de stage Marie Compain

7 Conclusions et perspectives

Pendant ce stage, nous avons adapté la méthode FUSE au formalisme des Différences Spectrales,
en collocalisant les points solution avec certains points flux. Nous avons montré qu’elle était stable
en 1D et en 2D avec maillages hexahédriques. Elle a été implémentée pour des cas linéaires et non
linéaires 1D et 2D dans HOPPS. Les tests numériques effectués ont montré que, bien que les erreurs
commises par la méthode FUSE soient un peu plus grandes que celles de la méthode SD standard,
elles restent du même ordre de grandeur et l’ordre de convergence en p+1 est conservé. Une étude
de la complexité algorithmique des deux méthodes a montré que la méthode FUSE a un coût plus
bas en termes d’opérations que la méthode SD. Ceci a été confirmé par les temps de calcul CPU et
GPU en 1D et en 2D, qui se sont avérés plus rapides pour la méthode FUSE que pour la méthode SD.

Les deux algorithmes proposés en scalaire n’ont pas pu être comparés numériquement pendant
ce stage, l’algorithme avec points adaptatifs pourrait donc être, à l’avenir, codé dans HOPPS. De
plus, nous pourrions faire des tests en 3D pour des maillages hexahédriques. De même, la méthode
pourrait être adaptée pour les cas d’équations avec un flux visqueux (notamment les équations de
Navier-Stokes) afin de réaliser des cas tests sur des configurations physiques plus réalistes. Enfin,
la structure tensorisée des maillages hexahédriques nous a permis de généraliser la méthode 1D au
cas 2D assez facilement. Une adaptation aux maillages triangulaires pourrait donc être une autre
piste de travail à explorer.

59

Rapport de stage Marie Compain

Références

[1] Marlon Mesquita Lopes Cabreira et Renan de S Teixeira. « Strong Stability Preserving
Runge-Kutta Methods Applied to Advection-Diffusion Problem ». In : XLI Ibero-Latin Ame-
rican Congress on Computational Methods in Engineering. T. 2. 02. 2020.

[2] Jan S Hesthaven et Tim Warburton. Nodal discontinuous Galerkin methods : algorithms,
analysis, and applications. Springer Science & Business Media, 2007.

[3] Hung T Huynh. « A flux reconstruction approach to high-order schemes including disconti-
nuous Galerkin methods ». In : 18th AIAA computational fluid dynamics conference. 2007,
p. 4079.

[4] Antony Jameson. « A proof of the stability of the spectral difference method for all orders
of accuracy ». In : Journal of Scientific Computing 45 (1-3 oct. 2010), p. 348-358. issn :
08857474. doi : 10.1007/s10915-009-9339-4.

[5] Yen Liu, Marcel Vinokur et Zhi Jian Wang. « Spectral difference method for unstructured
grids I : Basic formulation ». In : Journal of Computational Physics 216.2 (2006), p. 780-801.

[6] Thomas Marchal. Extension of the Spectral Difference method to combustion. Avr. 2022.

[7] Nadir-Alexandre Messaï, Guillaume Daviller et Jean-François Boussuge. « Artificial viscosity-
based shock capturing scheme for the Spectral Difference method on simplicial elements ».
In : Journal of Computational Physics 504 (mai 2024), p. 112864. issn : 00219991. doi :
10.1016/j.jcp.2024.112864.

[8] Yulong Pan et Per-Olof Persson. « A Face-Upwinded Spectral Element Method ». In : (juin
2023).

[9] Yushi Sun, Z. J. Wang et Yen Liu. « High-Order Multidomain Spectral Difference Method
for the Navier-Stokes Equations on Unstructured Hexahedral Grids ». In : Communications
in Computational Physics 2 (2 avr. 2006), p. 310-333.

[10] Christian R. Trott et al. « Kokkos 3 : Programming Model Extensions for the Exascale
Era ». In : IEEE Transactions on Parallel and Distributed Systems 33.4 (2022), p. 805-817.
doi : 10.1109/TPDS.2021.3097283.

[11] Meilin Yu, Z. J. Wang et Yen Liu. « On the accuracy and efficiency of discontinuous Galerkin,
spectral difference and correction procedure via reconstruction methods ». In : Journal of
Computational Physics 259 (fév. 2014), p. 70-95. issn : 10902716. doi : 10.1016/j.jcp.
2013.11.023.

60

https://doi.org/10.1007/s10915-009-9339-4
https://doi.org/10.1016/j.jcp.2024.112864
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.1016/j.jcp.2013.11.023
https://doi.org/10.1016/j.jcp.2013.11.023

	Remerciements
	Introduction
	Différences spectrales
	Méthode en 1D
	Notations et discrétisation spatiale
	Interpolation et extrapolation
	Algorithme de résolution numérique

	Méthode en 2D/3D
	Notations et discrétisation spatiale
	Algorithme de résolution numérique

	Nouvelle méthode: la méthode FUSE
	Introduction de la méthode
	Application de la méthode FUSE aux différences spectrales
	Cas linéaire 1D
	Cas scalaire non linéaire 1D
	Cas linéaire 2D
	Cas d'un système non linéaire 2D

	Stabilité en 2D de la méthode SD et de la méthode FUSE
	Tests numériques
	Présentation de HOPPS
	Cas linéaire en 1D
	Condition initiale continue
	Condition initiale discontinue

	Cas scalaire non linéaire en 1D
	Condition initiale continue
	Problème de Riemann

	Cas linéaire en 2D
	Cas d'un système en 2D: les équations d'Euler

	Analyse de performance
	Complexité algorithmique
	Tests de performance
	Tests en 1D avec HOPPS
	Tests en 2D avec HOPPS

	Conclusions et perspectives

