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Résumé

Ce rapport de stage présente une adaptation de la méthode Face-Upwinded Spectral Ele-
ment (FUSE) [8] & la méthode des Différences Spectrales (SD) pour la résolution de lois de
conservation hyperboliques. Cette nouvelle méthode est décrite pour des cas scalaires linéaires
et non linéaires en 1D, et des cas linéaires et de systémes en 2D. De plus, une preuve de sta-
bilité des deux méthodes est présentée pour un maillage hexahédrique 2D. La méthode FUSE
est ensuite validée sur plusieurs cas tests et comparée a la méthode SD. Il est observé que
les erreurs L% commises pour les deux méthodes sont du méme ordre de grandeur. Enfin, une
analyse de la complexité algorithmique des deux méthodes montrent que la méthode FUSE
requiert moins d’opérations que la méthode SD standard. Ceci est validé par des tests 1D et
2D sur coeurs CPU et cartes GPU, qui montrent que le temps de calcul de la méthode FUSE

est plus bas que celui de la méthode.
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1 Introduction

Les simulations numériques jouent un roéle essentiel en mécanique des fluides, autant dans la
recherche que dans la conception industrielle. En effet, les essais peuvent étre cotliteux en terme de
matériel, de temps et de main d’oeuvre. L’alternative de la simulation numérique est plus fiable,
plus rapide et plus économique. De plus, elle permet d’accéder a des grandeurs inaccessibles a
Iexpérience. A titre d’illustration, citons la caractérisation des mouvements de trés petite échelle

caractéristiques de la turbulence.

La mécanique des fluides numérique (CFD pour Computational Fluid Dynamics) est un des
axes de recherche principaux du CERFACS. Les phénoménes physiques & simuler en CFD étant
complexes, la taille des problémes a résoudre nécessite souvent d’utiliser des supercalculateurs. Ces
derniers sont de plus en plus hybrides, c’est-a-dire composés de noeuds avec coeurs CPU mais aussi
de cartes GPU. Et parmi ces cartes, plusieurs types existent. C’est pourquoi il est essentiel d’adap-
ter les codes CFD a ces nouvelles architectures. C’est dans ce contexte que le CERFACS a décidé
de développer un code de calcul CFD haute performance, nommé HOPPS, dont la parallélisation
dépend de Kokkos [10]. Cette librairie C++ permet en effet d’automatiser la portabilité de HOPPS

sur différentes architectures matérielles.

Depuis une vingtaine d’années, les méthodes numériques d’ordre élevé ont émergé en CFD
comme une alternative aux méthodes utilisées jusque-la. En effet, les méthodes d’ordre élevé per-
mettent de gagner en précision & un colt de calcul moins important que les méthodes volumes
finis classiques. Elles ont aussi des niveaux de dissipation numérique beaucoup plus faibles. Parmi
les méthodes d’ordre élevé les plus connues, nous pouvons citer la méthode Galerkin Discontinu
(DG) [2]. Cependant, bien qu’elle soit précise, son cotit de calcul est en général assez grand. C’est
pourquoi des alternatives & cette méthode ont été construites. Nous avons par exemple la méthode
Reconstruction par Flux (FR) [3], qui est plus rapide que la méthode DG mais renvoie des solutions
moins précises, ou bien la méthode des Différences Spectrales (SD) [5], qui se trouve & mi-chemin
entre les méthodes FR et DG en terme de cott de calcul et de précision [11]. Le choix du CERFACS

s’est donc porté sur cette méthode numérique pour ses solveurs CFD.

Soit la loi de conservation suivante :

0, U+ V.f(U) =0 sur Q x [0,T7, (1.1)

avec ) € R, d = 1,2,3, le domaine physique, T € R%, U = (Ui)1<i<n., le vecteur des incon-

nues, ot N4 est le nombre d’inconnues du systéme, et £(U) le flux. Il peut s’agir, par exemple, des


https://cerfacs.fr/
https://kokkos.org/kokkos-core-wiki/index.html
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équations d’Euler ou des équations de Navier-Stokes.

La méthode SD approche chaque composante du vecteur solution U par un polynéme d’ordre p
en utilisant 'interpolation de Lagrange. Ainsi, pour définir ce polynome, il nous faut la valeur de U;
a p+ 1 points. Ces points seront appelés les points solution. Nous aurons aussi besoin d’approcher
le flux £f(U) par un polynome, mais cette fois d’ordre p + 1 pour étre consistant avec l'ordre de
U. Il nous faudra alors p + 2 points d’interpolation, appelés points flux. Les points solution et les
points flux n’étant usuellement pas collocalisés, la méthode SD utilise une étape d’extrapolation

afin d’exprimer U aux points flux.

Or il a été démontré par Jameson [4] que la stabilité de la méthode SD ne dépendait pas de la
localisation des points solution. Il a donc été proposé par Pan et al. [8] de collocaliser les points

solution avec certains points flux.

L’objectif de ce stage est de caractériser les possibilités que nous offre cette nouvelle méthode,
nommée Face-Upwinded Spectral Element (FUSE), en terme de stabilité et de cotit de calcul, en

faisant une étude théorique de stabilité et en implémentant par la suite cette méthode numérique
dans HOPPS.

Ce rapport de stage se décompose comme suit : dans la section 2, nous rappellerons le principe
de la méthode SD standard en 1D puis en 2D et 3D pour des maillages hexahédriques. La partie
3 décrira la méthode FUSE et son équivalence avec la méthode SD, ainsi que ’extension de cette
méthode & des problémes non linéaires. Dans la section 4, une preuve de stabilité en 2D sera
présentée pour un maillage hexahédrique de la méthode SD et de la méthode FUSE étendue aux
SD. Ensuite, dans la section 5, nous nous intéresserons aux résultats numériques obtenus. Enfin, la

partie 6 concernera l’analyse et la comparaison de la performance des deux méthodes.
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2 Différences spectrales

Nous détaillerons dans cette partie la méthode SD en 1D puis en 2D et 3D expliquée par Marchal

[6]-

2.1 Méthode en 1D

2.1.1 Notations et discrétisation spatiale
Considérons un systéme d’équations hyperboliques en 1D :

oU OE
S @)+ 5 (@) =0, V(1) € @ x (0,7, (2.1)

o Q =[a,b],a <beR, T cR’, U est le vecteur solution et E = E(U) est le vecteur flux de U.

Nous discrétisons ’espace €2 en N, éléments. La méthode des Différences Spectrales repose sur
le fait que nous résolvons 1’équation (2.1) sur le segment [0, 1], appelé domaine isoparamétrique et
dont la variable sera notée £ € [0, 1]. Nous appliquerons donc une transformation F. de lespace
isoparameétrique vers la cellule e € [1, N ] du maillage. La jacobienne de cette transformation sera
notée J. En appliquant cette transformée, nous obtenons, pour chaque cellule, le systéme dans

I’espace isoparamétrique :

oUu ok
Bt T =0 (22)
. " . 23
avec U =|J|U et E = |J|¢,E, ou &, = e
X

Dans cet espace isoparamétrique, nous supposons que U est un polynéme (par rapport a &) de
degré p. Nous avons donc besoin de connaitre U sur p+ 1 points de [0, 1]. Ces points seront appelés

points solution et leur nombre sera noté :

Ngp =p+ 1. (2.3)

La stabilité de la méthode ne dépendant pas de la localisation des points solution, comme prouvé

dans Darticle [4], nous utilisons usuellement les p + 1 points de Gauss-Tchebychev :

. 1 2i—1
€sp = [Esp(Di<i<ng, = {2 (1 — cos (2]\7 W))} : (2.4)
sp 1<i<Nsp
Pour la discrétisation du flux, il faut que % soit consistant avec %, ce dernier étant de degré
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p en & Donc E sera un polynéme de degré p + 1, et il nous faut par conséquent p + 2 points

d’interpolation. Nous les appellerons points flux et leur nombre sera noté :

Npp =p+2. (2.5)

Les p points flux intérieurs seront les points de Gauss-Legendre, et les deux points restants seront
les extrémités du segment isoparamétrique, soit £pp(1) = 0 et Epp(Npp) = 1. Cette distribution

de points est utilisée car elle ne rend pas le schéma instable, comme démontré dans [4].

2.1.2 Interpolation et extrapolation

Pour interpoler et extrapoler U et E, nous utiliserons I'interpolation de Lagrange. Soit la base

de polyndomes de Lagrange de degré p associés aux points solution et évalués au point ¢ :

Nsp

§—&sp(k)
L =L i = —_— . 2.6
sp(§) = [Lisp(§)i<i<ngp H Eor(i) — Esp(R) (2.6)
1<i<Nsp
Nous pouvons, de fagon analogue, définir une base de polynémes de Lagrange de degré p + 1

associés aux points flux :

Nrp

Lrp(€) = [Lirp(©hicnes = | ] sf — &rp(k)

p(i) — &rp(k) @7

1<i<Nrp

Alors nous pouvons exprimer U (respectivement E) dans la base (2.6) (resp. dans la base (2.7)).
Nous aurons aussi besoin de dériver E aux points solution, donc de la dérivée des polynémes
L; pp par rapport & &, dont ’expression est donnée par :

Nrp Nrpp

Z H (€ —&rp(m))

R . Vi € [1, Nepl. (28)
H (gpp(l) - fFP(k))
k=1 ki

2.1.3 Algorithme de résolution numérique

Nous commencons par initialiser le maillage, &, la jacobienne |.J|, les vecteurs de points €gp
et £rp. Nous initialisons aussi Ugp = |J|Usp, le tenseur des solutions dans l’espace isoparamé-
trique évaluées aux points solution de tous les éléments e € [1, N.] du maillage. Ugp correspond

au tenseur des solutions dans le domaine physique évaluées aux points solution de tous les éléments
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e € [1, N.] du maillage. Upp et Upp sont définis de maniére analogue pour les points flux.

Soit un élément e du maillage. A un instant donné 0 < ¢, < T, le vecteur solution aux points

solution fjg p est connu. Nous pouvons donc Iextrapoler aux points flux tel que :

O =[O €rp@)],__ - (29)
= Z USp (i) Lisp(£)- (2.10)

Nous pouvons donc évaluer le vecteur flux E% p aux points flux. Nous commencons par calculer

les éléments intérieurs de ce vecteur :
fre z} - [E (T (rrli )} . 2.11
e, Er@)],_ v (2.11)
Puis, pour assurer la continuité du flux sur tout le domaine physique, un solveur de Riemann

est utilisé a chaque interface entre deux éléments. Aprés cela, le flux est défini de fagon unique sur

tous les points flux. Nous pouvons donc dériver E%., aux points solution en calculant :

@6
858

Enfin, nous récupérons U%p au temps suivant ¢,,41 en résolvant numériquement (avec n’'importe

Nrp

Z 5 p (1) 2L (sspu))] : (2.12)

0
¢ 1<i<Nsp

quel schéma d’intégration temporel explicite) 'équation :

d0¢ ok
dfp = <a§> (2.13)

Si E est une fonction de U mais aussi de VU (par exemple dans les équations de Navier-Stokes),

nous avons besoin de calculer le gradient de U aux points flux. Comme pour le flux, fJ% p N'est pas
défini de fagon unique aux interfaces. Il existe plusieurs méthodes pour obtenir la continuité de U,
Sun et al. [9] proposent la méthode suivante : aux interfaces, nous utilisons la moyenne arithmétique

des deux valeurs pour chaque solution U* = UL;UR 1<i<N,

eq> Ol Vg est le nombre de variables

conservatives dans le systéme, U’ la iéme variable, et U} (respectivement U%) I'état de U* & gauche

(respectivement a droite) de l'interface. Nous évaluons ensuite la dérivée de U aux points solution :

@6
855

Nrp
lz G5 () ZEEE (6 i) . (2.14)

0
¢ 1<i<Nsp

10
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Cependant pour calculer le flux il nous faut I’évaluation de ce gradient aux points flux :

L\ € Ngp A\ €
(%g) Z <%§> Li,sp(&rp(i)) . (2.15)

FP k=1 k,SP 1<i<Npp

Cette quantité n’est pas continue aux interfaces. Nous utilisons ici encore la moyenne arithmé-
) aul " aul
tique a chaque interface : % = 2. Ainsi, nous pouvons maintenant évaluer le flux aux

points flux.

2.2 Méthode en 2D /3D

Nous pouvons étendre la méthode présentée dans la partie 2.1 & des maillages hexahédriques en
2D et 3D.

2.2.1 Notations et discrétisation spatiale

Nous considérons ici le systéme d’équations :

88—{; + V.f(U) =0 sur Q x [0,T7, (2.16)

avec  C R%, d = 2,3 la dimension de I'espace physique, T' € R%, U le vecteur des variables
conservatives et f le flux. Nous pouvons réécrire 1’équation (2.16) dans le cas 3D (le cas 2D est

analogue) sous la forme :

U OE OF  9G

= - Z - = 2.1
ot " ox Toy T or Y (2.17)

avec E (respectivement F et G) le flux dans la direction x (respectivement directions y et z).
Comme en 1D nous souhaitons passer du domaine physique au domaine isoparamétrique. Pour

un maillage hexahédrique, il s’agit du domaine [0,1]?. La transformation du domaine isoparamé-

trique au domaine physique s’écrit :

11
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2(&,1,¢) = ZMenc 5 (2.18)

y(&n.¢) = ZM (&, Qw5 (2.19)
=1

2(&m,¢) = ZMﬁnC : (2:20)

avec k le nombre de points utilisés pour définir I’élément e (par exemple 8 pour définir un hexaheédre
en 3D), (a5, y¢, 2¢) les coordonnées physiques des points utilisés pour définir e, et M; définie pour
les SD telle que :

Mi(&mg) = LEi,e(i)Lm,e(n)LCi,e(CL (2'21>

ot L, . (respectivement L,, . et L¢, ) est le polynome de Lagrange 1D (défini dans la partie
2.1.2) au point &; (resp. n; et ¢;) utilisant les autres coordonnées & (resp. nx et (i), k # i, qui

définissent 1’élément e, avec (&;,7;,¢;) étant les coordonnées isoparamétriques du point (x5, yf, z§).

La preuve du passage en coordonnées isoparamétriques est détaillée dans le rapport [6]. Par

conséquent nous obtenons le systéme dans 1’espace isoparamétrique sous forme conservative suivant :
afJ OB +Z oF P o oG

E3 ¢

ot U= |J|U, E= |J|(€wE+§yF+€ZG)v F= |J|(77wE+77yF+772G) et G = ‘J|(CIE+CyF+CzG)'

=0, (2.22)

Pour généraliser la méthode en 2D ou 3D, nous répétons le méme processus qu’en 1D pour
chaque dimension. Donc nous aurons dans un espace de dimension d, le nombre de points solution

suivant pour un élément de degré p :

Nsp = (p+ 1) (2.23)

Nous prenons cette fois encore pour chaque direction les points de Gauss-Tchebychev. L’expres-

sion d’un point solution sera donc :

(Expo s Chp) = (Esp(i), Esp (), Esp (k). (2.24)

De plus, il y aura un total de Npp points flux, avec :

12
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Npp=d(p+2)(p+1)"", (2.25)

et dans chaque direction (p + 2)(p + 1)?~! points.

Soit les points flux dans la direction £. Nous prendrons pour la coordonnée pour cette direction la
distribution de points flux utilisée en 1D définie dans la partie 2.1.1. Pour les deux autres directions
1 et ¢, nous utiliserons les points solution 1D. Nous obtenons donc pour un point flux dans la

direction £ I'expression suivante :

(ErpTrp: Crp)e = (Epp(0),Esp (), Esp(K)), (i, 5, k) € [Lp +2] x [1,p + 1] (2.26)

De maniére analogue, les points flux dans les directions 7 et ¢ seront :

(gi‘PanéPa C];‘P)n = (£SP(i)a£FP(j)7£SP(k))7 (iajv k) € H]-vp + ]-]] X [[Lp + 2]] X [[Lp + 1]]7 (227)
(Erp rps Cip)e = (Esp(i),Esp(5), Erp(K)), (3,5, k) € [Lp+ 1] x [1,p+2]. (2.28)

2.2.2 Algorithme de résolution numérique

Soit un temps donné 0 < ¢, < T et un élément du maillage e. Nous connaissons le vecteur

solution aux points solution fJg p = {f)’e(i, 7, k)} <iingont’ Nous pouvons donc Iextrapoler aux
<i,j,k<p+
points flux dans chaque direction :
USpe = [0°(Erp(i),€5p(j), Esp (k)] 1<i<pra (2.29)
1<j,k<p+1
A%P,n = [U°(&sp (i), Erp (), Esp(K))] 1<i<pta (2.30)
1<i,k<p+1
Ugpe = [0°(€sp(0):85p () Erp ()] 12hgp (2.31)
S4,)5p
ou :
B p+1p+1p+1 R
Uc(&n, Q) = ZZ ZUZ“P(Z',]} k)Lisp(§)Lj,sp(n)Li,sp(C)- (2.32)
i=1 j=1 k=1

Nous pouvons donc maintenant évaluer les vecteurs flux dans toutes les directions aux points

13
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flux intérieurs :

A B

[FFP(%]JC)} 2<j<Npp—1
1<ik<p+1

by e . . _

[GFP(Zajvk)} 2<k<Npp—1
1<i,j<p+1

B(T5p (5,1, 1) iy
1<] k<p+1

F(U%‘P(ivj’ k)):| 2<j<Npp-—17
- 1<i,k<p+1

1<i,j<p+1

_G(ﬂ%P(iv Js k))} 2<k<Npp—1"

(2.33)
(2.34)

(2.35)

Comme en 1D, nous résolvons un probléme de Riemann sur les bords de 1’élément pour avoir

une valeur unique du flux aux interfaces. Ainsi nous pouvons maintenant dériver E (respectivement

F et G) par rapport a £ (resp. 1 et {) aux points solution :

p+1

aE p+2 p+1 aLl p ‘ ‘
<§> [Z Z ZEFP l,m,n) 8’5 (€5p)Lin,sp(nhp)Ln,sp(CEp)
spP =1 m=1n=1
aﬁ' e p+1 p+2 p+1 8Lm )
() = [ > Fpp(lom.n)Lisp(€sp) 5= (1sp) Lu,sp(CSp)
g SP =1 m=1n=1 n
oG\ " ARy ARy A 9L,
(C) [ Z ZGFP (I, m,n)Ly,sp(E5p) Lim,sp(Mhp) a’CFP (CEp)
SP =1 m=1n=1

Enfin nous intégrons temporellement pour obtenir ﬁes p au temps suivant :

d0%p
dt

23

(3

ok

aF+a<‘;
¢

3

14

. (2.36)
1<i,j,k<p+1
. (2.37)
1<i,j,k<p+1
(2.38)
1<i,j,k<p+1
(2.39)



Rapport de stage Marie Compain

3 Nouvelle méthode : la méthode FUSE

3.1 Introduction de la méthode

Pan et al. [8] présentent une nouvelle méthode d’ordre élevé pour la résolution numeérique des
équations hyperboliques en 1D et en 2D et 3D, nommée "Face-Upwinded Spectral Element" (abré-
gée en FUSE). Nous introduirons briévement dans ce paragraphe le principe de cette nouvelle

méthode en 1D telle qu’expliquée dans le papier.
Considérons ’équation hyperbolique 1D qui est de la forme :

O+ Oy f (u) = 0 sur  x [0,T7, (3.1

avec = [0,1], T € R%.. Cette équation peut étre réécrite sous la forme :

0w + a(u)0yu = 0 sur Q x [0, 7. (3.2)

Le domaine physique (2 est partitionné en éléments K € T}, tel que §2 = U K. Deux ensembles
KeTy,
de points sont définis pour chaque élément K :

— L’ensemble des points solution {sg, ..., s, }, p > 0, qui sont utilisés pour discrétiser la solution
U.

— L’ensemble des points flux { fo, ..., fy}, avec ¢ > p, qui sont utilisés pour discrétiser le flux f.

Soit les espaces de fonctions suivants :

Vi(Ty) = {v e H(Q) : v € P,, VK € T}, }, (3.3)
Vi(Ty) = {ve H'(Q) :vx €Py,VK € T} }, (3.4)

ot P, est I'espace des polyndmes de degré p. Soit la base {¢{} (respectivement {cb{}) de l'espace
Vs(Th) (resp. Vi(T})), ou les ¢f sont des polynémes interpolateurs associés aux points s; (resp.

associés aux points f;) définis tels que :

3 (s;) = 0y et ¢! (f;) = b, (3.5)
avec §;; définie telle que :
1sii=j,
0ij = (3.6)
0 sinon.

15
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Le papier [8] propose de prendre les polynomes utilisés en méthode des éléments finis usuelle-
ment. Ainsi soit u, ’approximation de u dans I'espace V et f, 'approximation de f dans l’espace
V;. L’algorithme de résolution numérique sera donc a chaque pas de temps, sur une cellule :

1. Le polynome solution est formé : uy(z) = >0 &5 (x)un(s;).

2. Le flux f, est évalué a chaque point flux f,(f;) = f(un(fi)), pour i =0,...,q.

3. Le polynome fj est formé : fi(z) =Y ¢, ¢{(x)fh(fz)

4. La dérivée de fj est évaluée a chaque point solution et est utilisée pour I'intégration tempo-

relle.

Cependant sur les interfaces de chaque cellule, 0, f; a en général plusieurs valeurs. Il faut donc
choisir une valeur unique. L’article [8] propose un exemple ott p = ¢ = 2, donc les points solution
et les points flux coincident. Nous ferons aussi le choix de prendre des points équidistants. Notons
donc :

h=si—si-1=fi— fi-1. (3.7)

Notons aussi s; ; le i-éme point solution du k-éme élément Kj, € Tj. Alors I'évaluation de la

dérivée de fj, au point solution intérieur sera :

fr(s16) = %fh(f’ﬁl,k) - %fh(fi—l,k) (3.8)

Pour les points sur le bord de I'élément k, le choix de f; dépend du signe de a(u) = f'(u).

L’article [8] propose de prendre par exemple pour le point sg i :

2 fn(for) — 2 fu(fre) + 50 fu(for) sia(sar) >0,

— o fr(fors1) + 2 fa(free1) — 5 fa(fes1) sia(szr) <O.

fn(s2) = (39)

3.2 Application de la méthode FUSE aux différences spectrales

Dans la partie 2.3.1 de Darticle [8] est présenté un paralléle entre la méthode FUSE et les dif-
férences spectrales pour un domaine 1D. Nous présenterons donc cette équivalence et nous ’adap-
terons & des problémes non linéaires et des maillages hexahédriques 2D. Par abus de langage, nous

appellerons aussi cette extension FUSE.

3.2.1 Cas linéaire 1D

Dans cette partie, nous cherchons a résoudre numériquement 1’équation de transport linéaire

suivante :
Opu+ 0, E(u) =0 sur Q x [0,T7, (3.10)
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ou E(u) = cu, avec ¢ € R la vitesse de transport.

De facon analogue a la méthode SD, 'espace est discrétisé en N, éléments et nous utilisons une

transformation de chaque cellule K dans l’espace isoparamétrique pour résoudre :

du OF

8—?+6—§:0sur [0,1] x 0,77, (3.11)
avec £ € [0,1], & = |J|u et E = |J|&,E, on &, = %.
A Tintérieur de chaque cellule K, nous utilisons toujours Ngp = p + 1 points solution et

Npp = p+ 2 points flux pour U'interpolation de la solution et du flux. La distribution des points
flux reste la méme, c’est-a-dire que nous utilisons les points de Gauss-Legendre pour les p points
intérieurs, et Epp(1) = 0 et Epp(Npp) = 1 pour les deux points restants aux bords, car comme
expliqué précédemment, cette localisation des points flux ne rend pas le schéma instable. Cependant
la stabilité ne dépend pas de la distribution des points solution, c’est pourquoi nous ferons le choix
dans cette nouvelle méthode de collocaliser les points solution avec les points flux. Or comme il y
a un point solution de moins que de points flux, Pan et al. [8] proposent de choisir la localisation
des points solution en fonction du sens du flux, qui est déterminé par le signe de c. Ainsi le choix

de la distribution des points solution se fera de la maniére suivante :

— Si ¢ > 0, les points solution seront les p + 1 points flux les plus & droite, soit : £gp =

[fFP(i)]zgigNFp )
— Si ¢ < 0, les points solution seront les p + 1 points flux les plus & droite, soit : £gp =

[fFP(i)hgigNFp—l'

La figure 3.1 illustre la différence de disposition des points solution entre la méthode SD standard
et la méthode FUSE.

—ue ¢ —@— *: R
0 1

FIGURE 3.1 — Position des points solution en 1D pour les différentes méthodes avec p = 2 : @ pour
la méthode SD standard ; ¥ pour la méthode FUSE quand ¢ < 0; % pour la méthode FUSE quand
c>0.

Cette nouvelle localisation des points solution permet de ne pas avoir a extrapoler U aux points

flux. Nous obtenons donc l’algorithme 1 de résolution numérique.

L’étape du solveur de Riemann peut étre évitée car pendant ’étape "d’extrapolation", nous
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Algorithm 1 Algorithme de résolution d’une équation de transport linéaire 1D

1: Lire le maillage, en déduire le déterminant de la jacobienne |J| et la métrique &,.

2: Calculer le vecteur de points flux £gp, en déduire le vecteur de points solution &g p.
3: Initialiser Ugp = |J|Ugp aux points solution.

4: for iter de 1 & Ny do

5: for ede 1 a4 N, do

6: Remplir le vecteur solution aux points flux :
7: if ¢ > 0 then
o) =0
wp(1) 2<i<Npp SP
9: #p(1) = U%p (Npp).
10: else
10: U5 (0)] =0,
050 o, = Osr
12: U5 p(Nrp) = UFE (1)
13: end if
14: end for
15: Appliquer les conditions aux limites & Ugp.
16: for ede 1 a4 N, do
17: Calculer le flux aux points flux : [Ee(z)} = [E (UI?P(Z))}
2<i<Npp—1 2<i<Npp—1
18: Dériver E¢ aux points solution : ( ) [ZNFP Be(k )81”“ P (Esp(i ))}
1<i<Nsp
19: Mettre a jour ﬁ $p en résolvant dUSP = — (%?)S avec un schéma d’intégration tem-
P
porel.
20: end for
21: end for
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récupérons la valeur de U au point flux manquant de la cellule d’a c6té. Comme nous tenons
compte du sens du flux pour le maillage, utiliser un schéma décentré (upwind) pour le solveur de

Riemann nous donnerait exactement la méme valeur de U a ce point-la.

3.2.2 Cas scalaire non linéaire 1D

Nous nous plagons maintenant dans le cas scalaire ot E/ n’est pas forcément une fonction linéaire

de u et nous supposons que nous pouvons réécrire ’équation (2.1) telle que :

ou ou

a5 + a(u)% =0, (3.12)

ou a(u) = E'(u).

Avec un a plus général, le "sens" du flux n’est pas forcément le méme sur tout le domaine et a
tous les temps t,,. Dans ce cas-la, Pan et al. [8] ne proposent pas d’équivalence entre la méthode
présentée et la méthode SD. Cependant, comme vu pour le cas linéaire, 'idée de collocaliser les
points solution avec les points flux permet de faire moins d’opérations qu’une extrapolation classique
(cf. partie 6 pour une analyse des complexités algorithmiques de chaque méthode numérique). Il a
donc été décidé de garder cette idée de collocalisation en non linéaire. Deux maniéres de faire ont
ainsi été identifiées :

1. La position des points solution change en fonction du sens du flux d’un élément & I'autre et

d’une itération a I’autre. En effet, notons Fgogunov 1@ valeur unique sur 'interface déterminée
par le solveur de Riemann, u, (respectivement ug) la valeur de la solution sur la cellule a
gauche de l'interface (resp. a droite). Alors le solveur de Godunov pour une fonction E

monotone sera :
E(ur) si E'(ur) <0,
EGodunov = . (313)
E(ug) si E'(ug) > 0.
Ainsi si le flux est monotone sur les deux cellules partageant une interface, nous pouvons
collocaliser les points solution avec les points flux suivant le sens du flux de la méme maniére
qu’en linéaire ce qui nous permet ainsi d’éviter d’utiliser un solveur de Riemann. Et pour les
cellules ou le sens est amené a changer, il suffit de faire la méthode SD classique et d’utiliser

un solveur de Riemann.

De facon plus formelle, soit e un élément du maillage de I’espace 2. Notons u§ la valeur
de u sur l'interface gauche de la cellule e, et u% sa valeur sur I'interface droite & un temps

t, donné. Les points solution seront définis de la maniére suivante :

— Sia(uf) > 0 et a(u}) > 0 : nous supposons alors qu’il n’y a pas de changement de sens
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du flux au sein de la cellule, donc nous choisirons les points solution comme les p + 1
points flux les plus & droite : £5p = [{rp()]acic oy 3

— Sia(uf) <0 et a(uf) <0 : nous supposons ici encore qu’il n’y a pas de changement de
sens du flux au sein de la cellule, donc nous choisirons les points solution comme les p+ 1
points flux les plus & gauche : £gp = [§rp(9)]1<jcn,p 1

— Sinon on prend les points de Gauss-Tchebychev comme pour la méthode SD standard :

1 2i—1
B G,
Esp [2< oS \ansp ™ 1<i<Ngp

Cette maniére de faire nous donne l'algorithme 2 de résolution numérique.

2. La position des points solution est déterminée & I’'initialisation et ne change pas d’une itéra-
tion & 'autre. Pour choisir quelle position de points flux & prendre, la moyenne de la condition
initiale 1y = ﬁ fQ uo(x)dx est calculée. Ainsi :

— Siug > 0, nous choisirons les points solution comme les p+ 1 points flux les plus a droite :
€sp = [fFP(i)]zgigNFP )

— Si ug < 0, nous choisirons les points solution comme les p + 1 points flux les plus &
gauche : £sp = [(pr (1)) << nppo1-

Cette deuxiéme maniére de faire nous ameéne a ’algorithme 3 de résolution numeérique. C’est

cet algorithme qui a été implémenté dans HOPPS.
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Algorithm 2 Algorithme de résolution d’une équation de transport non linéaire 1D

10:
11:

12:

13:
14:
15:

16:
17:
18:
19:
20:

21:

22:
23:

24:

25:

26:

27:
28:

Lire le maillage, en déduire le déterminant de la jacobienne |J| et la métrique &,.
Calculer le vecteur de points flux € p et les différents vecteurs de points solution £4p.
Evaluer aux interfaces a(U), en déduire la disposition de points solution &€ g p pour chaque cellule.
Initialiser Ugp = |/|[Ugp aux points solution.
for iter de 1 & Njzer do
for ede 1 & N, do
Remplir le vecteur solution aux points flux :
if a(Ug) >0 et a(Ug) > 0 then
e y — €
AUFP(Z) 2<i<Npp = VYsp-
Usp(1) = Upp' (Nrp).
else if a(Uf) < 0 et a(UIe;,) < 0 then
. /-
[UFP(Z L<Z<Npp 1 sp-
Ukp(Npp) = Ui (1)
else
Extrapoler U aux points flux : US%, = [Ue(é-Fp(i))} , avec U (£) =
1<i<Npp
SIS Usp(i)Lisp(6).
end if
end for
Appliquer les conditions aux limites a Urp.
Evaluer a chaque interface a(U).
for ede 1 & N, do
Calculer le flux aux points flux intérieurs [E'e (z)] =
2<i<Npp—1
. /-
B (05 0)] e,
end for
Utiliser un solveur de Riemann aux interfaces du maillage qui voisinent une cellule avec une

disposition de points solution de Gauss-Tchebychev pour obtenir une valeur unique du flux sur
tout le domaine physique.
for ede 1 & N, do

A~ ~ €
Dériver E° aux nouveaux points solution : ( ok ) =
9% ) sp
Nrp BLk FP
Ee .
[N B P esp )]
-~ e
Mettre a jour U S$pen resolvant & = — (%?)S avec un schéma d’intégration tem-
P
porel.
end for
end for
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Algorithm 3 Algorithme de résolution d’'une équation de transport non linéaire 1D a points fixes

10:
11:
12:

13:
14:
15:
16:
17:

18:

20:

Lire le maillage, en déduire le déterminant de la jacobienne |J| et la métrique &,.
Calculer le vecteur de points flux £ p.

Evaluer g, en déduire la disposition de points solution £qp sur tout le domaine.
Initialiser Ugp = |J|Ugp aux points solution.

for iter de 1 & Njze, do

forede 1 a N, do
Remplir le vecteur solution aux points flux :
if 1y > 0 : then

Oip®)],_ =0t
Ugp(l) = ZNSP Ugp(i)Lisp(érp(1)).
else R A
[Uf?“P(i)L<i<NFP L= U¢p
Ugp(Npp) = S50 Usp (i) Lisp(Erp(NFp)).-
end if
end for

Appliquer les conditions aux limites a Upp.
for ede 1 & N, do

Calculer le flux aux points flux intérieurs []:]e(z)}
2<i<Npp—1

[E ( : %P(l))} 2<i<Npp—1

end for
Utiliser un solveur de Riemann aux interfaces du maillage pour obtenir une valeur unique

du flux sur tout le domaine physique.

21: for ede 1 & N, do

22: Dériver E¢ aux points solution : ( ) [ENFP E"( )BL’C £ (¢sp(i)) .
1<i<Nsp

23: Mettre a jour U $p en résolvant dUSP = — (%?)S avec un schéma d’intégration tem-

P
porel.
24: end for
25: end for
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3.2.3 Cas linéaire 2D

Soit ’équation de transport linéaire suivante :

O+ V.f(u) = 0 sur Q x [0,T], (3.14)

que 'on peut réécrire telle que :

O+ 0, E(u) + 0y F(u) =0, (3.15)
E
ot 2 CR?, f(u) = (u) — [ , Cz, Cy € R des constantes.
F(u) Cy )

Nous souhaitons généraliser la méthode FUSE proposée pour un modeéle 1D a ce modéle 2D avec
maillage hexahédrique. Nous voulons donc a nouveau collocaliser les points solution par rapport
aux points flux afin d’éviter I’étape d’extrapolation. Comme pour la méthode SD standard, nous
avons encore (p + 1)? points solution et (p + 2)(p + 1) points flux dans chaque direction, soit un

total de 2(p+2)(p+1) points flux. Notons les points flux dans le domaine isoparamétrique tels que :

— Dans la &-direction : [(fpp,77171::)]E = [(fpp(l),nsp(]))]%élépi?
SJ)Sp

— Dans la n-direction : [{rp,nrp)l, = [(§sp (i), 1P (7)) 1<i<p1
1<5<p+2

Soit les points solution (£sp(2), nsp(f))i<i,j<p+1, avec :

[(fFP(i))E]zgingrg sice > 0, _ [(nFP(i))E}2§i§p+2 sicy >0,
et Ngp =

§sp =
Erp(i))eli<icpy, sinom, nep(i))eli<ijcpyy sinon.

La figure 3.2 illustre la différence de position des points solution et flux entre la méthode SD et
la méthode FUSE. Nous obtenons ainsi ’algorithme de résolution numérique 4.
3.2.4 Cas d’un systéme non linéaire 2D
Nous nous intéressons maintenant au cas non linéaire en 2D, plus particuliérement & un systéme
2D, dont nous rappelons la forme ci-dessous :
0,U + 0, E(U) + 9,F(U) = 0 sur Q x [0, 7. (3.16)

Comme pour le cas non linéaire en 1D, Pan et al. [8] ne proposent pas d’équivalence entre leur
méthode et les différences spectrales. Dans le cas d’un systéme, les solutions peuvent ne pas aller

toutes dans le méme "sens". Une premiére idée pour adapter 'algorithme FUSE 2 proposé en sca-
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Algorithm 4 Algorithme de résolution d’une équation de transport linéaire 2D

1: Lire le maillage, en déduire le déterminant de la jacobienne |J| et la métrique &, n,.
2: Calculer les vecteurs de points flux [({pp,nrp)le et [(pp,mrp)l,, en déduire le vecteur de

points solution [(§gp,Ngp)]-

3: Initialiser Ugp = |J|Ugp aux points solution.
4: for iter de 1 & Nyie, do
5: for ede 1l a N, do
6: Remplir les vecteurs solution aux points flux dans chaque direction :
7 if ¢, > 0 then
8: UFPg(Z J)} 2<i<p+2 USp.
1<5<p+1
9: Ue,.(1,j ] — 05 p + 2, }
[ Fre(hJ) 1<j<pt1 sp (P +2.0) 1<j<pt1
10: else
11: U;P,g(i,j)} 1<i<pr1 = Usp-
) 155<p+1
12: Ue +2,'} :[AGH 1,'} .
brelp 4 20|,y = [Usp (W]
13: end if
14: if ¢, > 0 then
15: UFPn ¥ :|1<'L<p+1 = Ugp.
2<5<p+2
16: [re } { (i p+2 } .
FPn 1<i<p+1 ( p ) 1<i<p+1
17: else
18: UFPnZ]}1<Z<p+1: Up.
1<5<p+1
19: [Oe, (ip+2 } [UeJrl } .
] FP,n( p+2) I (4,1) I
20: end if
21: end for
22: Appliquer les conditions aux limites & Upp¢ et Upp,,.
23: for ede 1 a N, do
24: Calculer les flux dans chaque direction aux points flux : E¢ = E(Ugp,) et F¢ =
F(UFPn)
Dériver les flux aux points solution :
2 1 6L
( ) [ SRS Ee (k1) e (Esp(i) Lisp(nsp(j }
1<1,]<p+1
P+1 P+2Fe k1)L oL kFP :|
( o =[S LI D Luseleor ) 252 05r )]
28: Mettre a jour U%p en résolvant difp = (% ) BF) avec un schéma d’inté-
gration temporel.
29: end for
30: end for
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(a) Méthode SD standard. (b) Méthode FUSE avec ¢; > 0 et ¢y, > 0.

FI1GURE 3.2 — Positions des différents points en 2D pour la méthode SD et la méthode FUSE avec
p =2 : @ pour les points solution ; M pour les points flux dans la direction z ; % pour les points flux
dans la direction y.

laire 1D serait de prendre une disposition de points différente pour chaque composante du vecteur
solution. Cependant cela serait coliteux en terme de temps de calcul et nous ferait perdre le temps
de calcul gagné en évitant des solveurs de Riemann. C’est pourquoi il a été décidé de ne garder que

I'idée de fixer les points solution & l'initialisation pour un systéme 2D.

Afin de choisir I’emplacement des points solution, nous pouvons par exemple nous appuyer
comme en 1D sur la condition initiale d’'une des composantes du vecteur solution. Pour les équations

d’Euler par exemple, en s’appuyant sur le cas test du COVO (cf. partie 5.5), nous choisissons

U
I’emplacement des points solution en fonction de la condition initiale de la vitesse Vo = ( 0) , soit
Vo

Uy = fQ uo(x)dz dans la direction z, et de vy = fQ vo(y)dy dans la direction y. Nous obtenons donc

I’algorithme de résolution numérique 5.
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Algorithm 5 Algorithme de résolution d’un systéme 2D

1: Lire le maillage, en déduire le déterminant de la jacobienne |J| et la métrique &;,7,.
2: Calculer les vecteurs de points flux [({rp, 77Fp)]5 et [(ﬁpp,npp)]n.
3: Calculer 1 et vp, en déduire le vecteur de points solution [(&sp,msp)]-
4: Initialiser Ugp = |J|Ugp aux points solution.
5: for iter de 1 & Njzer do
6: forede 1l a N, do
7: Remplir les vecteurs solution aux points flux dans chaque direction :
8: if g > 0 then
9: [Uﬁp,g(iaj)} a<i<pra = Usp:
1<j<p+1
10: forkdelap+1do
e N N
11: Uppe(L k) =220 5557 Ut ‘spLisp(§rp(1))Ljsp(nsp(k)).
12: end for
13: else R
14 Uppeli:d)] 1<ipir = Ut
1<j<p+1
15: for kdelap+1do
2 N N
16: Uppep+2,k) =325 22050 UZ spLisp(Erp(p+2))Ljsp(nsp(k)).
17: end for
18: end if
19: if v > 0 then
20: [U;Pm(z',j)] l<i<pt =U¢p.
2<j<p+2
21: forlcdelép—i—ldlg N
22: Uppe(k, 1) = .50 3050 Ut spLisp(Esp(k) Lysp(nep(1)).
23: end for
24: else A
25: U;P,n(i’j)} 1<i<pr1 = Usp:
1<j<p+1
26: for kdelap+1do
e N N
27: Uppe(k,p+2) = i Y050 UsspLisp(€sp (k) Ly sp(nep(p +2)).
28: end for
29: end if
30: end for . A
31: Appliquer les conditions aux limites & Upp¢ et Upp,,.
32: Utiliser un solveur de Riemann aux interfaces du maillage pour obtenir une valeur unique

du flux sur tout le domaine physique.
33: for ede 1 a N, do

34: Calculer les flux dans chaque direction aux points flux : B¢ = E(G%Pé) et Fe =
F(U%P,n)’
35: Dériver les flux aux points solution :
361 P2 Sl ek, 1) b L }
(%8),, = (SR o B (k) 255 (esp (D Luspnsp ()] e
st (88) = [0 SO0 (b D Lusp (€sp () 2522 (s (7))
1<4,j<p+1
38: Mettre a jour Ugp en résolvant dUSP = ( )s 877)5 avec un schéma d’inté-
P P

gration temporel.
39: end for

40: end for 26
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4 Stabilité en 2D de la méthode SD et de la méthode FUSE

Nous souhaitons dans cette partie démontrer la stabilité théorique de la méthode SD et de
la méthode FUSE. L’article [4] démontre la stabilité de la méthode SD en 1D, en n’utilisant pas
d’expression particuliére des points solution. C’est pourquoi la méthode FUSE est aussi stable
en 1D. Nous voulons maintenant prouver que les deux méthodes sont stables pour un maillage
hexahédrique 2D.

Proposition 1 Soit la loi de conservation suivante :

Opu + V.£(u) =0 dans Q x [0, 7],

(4.1)
u=g sur 90 x [0,T],

avec 2 C R? le domaine physique, O le bord de ), T € Ri, g€ L2(09) la condition auz limites

et f(u) = cu = (Cl> u= (f;) le fluz, ot c est la vitesse d’advection.

Cy y

Soit le maillage conforme de Q noté Ty, composé de quadrangles K tel que Q2 = U K. Soit la

KeTy
distribution de points flux dans la direction x :

{(gFP(Z)vnFP(j))v(Zvj) € [[17p+2ﬂ X [[17p+ 1]]}5 = {(gFP(Z)?é'SP(j))’(Zh?) € H17p+2]] X [1’p+ 1]]}7

et dans la direction y :

{€rp(@),nrp (7)), (07) € [Lp + 1] x [1,p + 21}, = {(€sp (i), Erp (7)), (47) € [L,p + 1] x [1,p + 2]},

ot p est Uordre du schéma SD utilisé, £gp = [Esp(i)]i<i<p+1 sont les points solution 1D, et
Erp = [Erp(i)|1<i<pt2 sont les points flux définis tels que les p points intérieurs sont les p points
de Gauss-Legendre, et Epp(1) =0 et Epp(p+2) = 1.

Alors le schéma SD est stable avec cette disposition de points flux sous la norme :

Hu||=/K u? + Z ae (0%u)? | dz, (4.2)

a:(am 10‘11)
Qg t+oy=2p

ou les a, sont des constantes positives a déterminer, et opérateur 0% est défini tel que :

o 9 g
0% = 5= Dy U
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De plus, le schéma FUSE est aussi stable sous la norme (4.2) avec cette disposition de points

Sfluz.

Preuve Nous souhaitons montrer la stabilité de la méthode numérique SD pour une équation de

transport linéaire en 2D avec un maillage hexahédrique, c’est-a-dire que nous souhaitons montrer

que :
dillull? < o. (4.3)
Soit I'espace isoparamérique K = [—1,1]2. Nous pouvons définir une transformation Fx de K
dans chaque cellule K telle que :
fK : K — K
X = X.

Notons x; = <I7> ,i=1,...,4, les sommets qui définissent le quadrangle K. Afin que Fx (¢(0,0)) =
Yi
x1, Fr(*(1,0)) = x2, Fr(*(1,1)) = x3 et F(*(0,1)) = x4, nous avons :

Fr(®) = (z‘”’ ta T2 “) &+ (IQ B xl) £+ (z‘* - xl) n+ <z1> , (4.4)
Ys+ Y1 — Y2 —Ya Y2 — Ys— N U1
. (€
ou X = .
n

Notons Jx la jacobienne de Fg. Alors Péquation (4.1) devient sur K :

Oyt + V.£(0) = 0, (4.5)

avec U = |Ji|u et f =
‘JK|(77wf:1:+77yfy>

), ou &, = % (&y, Mz et n, sont définis de maniére

analogue).

Soit les espaces de fonctions suivants :

Vi = {v € L2(Q)| VK € Ty, [Tk vy € Qp(f()}, (4.6)

F, = {g € (L2(Q))2| VK € Ty, Jxgx € Q,,H(f()} : (4.7)

ol QP(K' ) désigne les polyndmes de degré p et x et en y (soit de degré global 2p) et Qp+1 est
défini tel que :
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A iy ) [ La(@)La(y) B B
Qp1(K) = {(Lg(x)L4(y)> s Ly, Ly € Ppya([=1,1]), Lo, L € Py (| 1,1])}7 (4.8)

avec P,([—1,1]) désignant I’ensemble des polynémes de degré p sur [—1, 1].

Notons uy, Iapproximation de u dans l'espace V}, et f, = cuy 'approximation de f dans F},.
Alors uy, et fp vérifient :
Opup, + V£, =0 sur Q x [0,T]. (4.9)

Pour toute cellule K de Tj, fj,|x est construit a partir de uy . Or up, n’est pas forcément continu
sur {). Mais pour obtenir la conservation du flux, fj,|x doit, quant a lui, étre continu. Un solveur de
Riemann est donc utilisé & chaque interface entre deux cellules pour rétablir la continuité du flux,

que nous pouvons alors décomposer ainsi :

fn = cup + £€, (410)

ou f€ est la correction apportée sur le bord de K par le solveur de Riemann. Alors, en remplacant

f}, par son expression dans I’équation (4.9), nous obtenons :

Opup, = —V.(cuh) — V.f°. (4.11)

L’équation (4.11) est multipliée par u; puis intégrée sur un élément du maillage K. Une inté-

gration par parties nous donne ainsi :

1
f/ [“)tu,%dx:—/ uhV.(cuh)dm—i—/ fc.Vuhdx—/ upf®.ndo. (4.12)
2 JKk K K oK
Or:
/uhV.(cuh)dx:/ u,%c.nda—/ upV.(cup)dx
K oK K
1
:>/ upV.(cup)de = - ujc.ndo.
K 2 Jox
Donc :
1 2 1 2 C C
SOllunllz2 ey = —5 upendo + [ £C.Vupdr — upf®.ndo. (4.13)
2 2 Jox K oK

Notons vy, = U 0K le squelette de Tj,. Les deux termes de bord peuvent étre signés. En effet,

KeTy,
en sommant ces termes pour tout K € T}, nous pouvons les réécrire comme une somme sur les
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arétes du squelette du maillage :

1 1 1
— Z / (iu,%c.n + upfn)do = — Z / (2u%c.n1 +uifyng + iugc.nz + ugfzc.nz) dx
KeT, /0K e€vr\0Q " ¢

1
- Z /(5u20-n+u;1f°.n)da:, (4.14)

ecoN €

ou Kj et K3 sont les quadrangles tels que K1 N Ky = e, up = upk, et uz = up|k,, et ng la
normale unitaire sortante de K; par e, ng la normale unitaire sortante de Ko par e. Soit le flux de

Godunov entre les cellules Ky, et K défini tel que :

£G _ ¢ 1+ signe(c.nL)UL n 1- signe(c.nR)UR . (4.15)
2 2
Alors f¢ = f& — cuy,. Ainsi :
1 2 c 1 2 G 1 2 G
- Z , (iuhc.n—&—uhf n)do = — Z —guicny +uify ng — U2C-N2 + uofy g | dz
KeT, 79K ecyp\00 €
1
- Z /(—iu%c.n—i—uhfc‘.n)dx. (4.16)
econ Ve
Notons ne = n; = —n» la normale unitaire de ’aréte e. Ici nous ferons le choix de c.ne > 0.
Alors :
L, R G . _ RN
5 U1c-n1 + 7 .ny 5 U2C-N2 + uafy™ . ny = c.ne 51 +ui + 52 ~ U1tz
=c.ne(u; — u2)2 > 0.
Ainsi :
1 1
- Z / (—2u%c.n1 +urfP g — iugc.nz + quzG.n2> dx < 0. (4.17)
€

e€vp\02

Il reste la somme des arétes sur le bord de 2. Il existe plusieurs cas de figure selon les conditions
aux limites utilisées. Le cas ou il n’y a pas de flux est trivial. Pour le cas ou la frontiére est séparée

en une partie entrante et une partie sortante, nous avons :
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— Sur la frontiére sortante, c.ne > 0. Le flux prendra la valeur cuy, sur la frontiére. Ainsi :

1 1

fguic.n +uicn = iu,%c.n > 0. (4.18)

D’ou : )
— /(—iuic.n + upf€ . m)dz < 0. (4.19)
— Sur la frontiére entrante, c.ne < 0. Le flux prendra donc la valeur d’entrée qui sera notée

Ccue. Alors :
Lo Ly, 1 2 Lo

— | —gunc-ne + upucCng | = —c.ne(iue - i(ue —up)7) < —CNe 5. (4.20)

Cette quantité est positive, mais il s’agit d’une contribution & ’énergie uniquement liée a

ce qui est injecté dans le systéme physique. Ainsi en prenant u, = 0, le terme est bien négatif.

Le terme sur la frontiére de €2 et le terme sur 7, \02 sont bien tous deux négatifs. Donc :

1
- Z/ (iu%c.n+uhf°.n)da<0. (4.21)
KeT, 79K

Or le terme fK fe¢.Vuydx dans ’équation (4.13) n’est pas signé. C’est pourquoi nous allons uti-

liser la norme (4.2).
Ainsi appliquer opérateur 9% a (4.11) nous donne :

8,0%uy, = —0(V.cuyp)) — 0°(V.£°). (4.22)

En multipliant 'équation (4.22) par 0%uy, et en intégrant, nous obtenons :

/ 1(‘39,5(('90‘uh)2cl:s:7/ 80‘(V.(cuh))3auhdxf/ O*(V.£9)0%updz. (4.23)
K2 K K

Donc en sommant sur les coefficients o nous avons finalement :

1 (e . e Q Q C Q
/K§@ (Xa:aa(a uh)?) dx_f/Kﬁ (V.(cup))d uhdx/K;aaa (V.£9)0%updz.  (4.24)

D’ot, en sommant I’équation (4.13) et ’équation (4.24), nous obtenons au final pour toute cellule
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1 1
§8t||uh||2 = —/ 0%(V.(cup))0%updz — 5/ uic.nda—/ upf®.ndo
K d

K oK
+/ fc.Vuhd;v—/ Zaaaa(v.f‘:)aauhdw. (4.25)
K K
Nous souhaitons alors montrer que :

—/ ao‘(V.(cuh))ao‘uhdx—i—/ fc.Vuhdx—/ Zaaaa(v.fC)a“uhdxzo. (4.26)
K K K7

Or uy, est de degré p en z et en y, donc [, 9*(V.(cup))0*updz = 0. Cela nous donne finalement

le critére suivant a respecter :

/ fC.Vuhdxf/ > a0 0%(V.£9)0upda = 0. (4.27)
K K

11 nous suffit donc de trouver les coefficients a,, tels que le critére (4.27) est rempli pour tout uy,
et £¢ sur toute cellule K. On se place alors dans K. Le critére (4.27) devant étre vrai pour tout wup,
il doit rester vrai pour un élément I;();(y) de la base de K. Nous prendrons /; (respectivement [;)
le polynome de Lagrange interpolé aux p + 1 points solution dans la direction = (resp. y) et associé

au point x; (resp. ;).

De méme, le critére (4.27) doit rester vrai en particulier pour un flux nul dans la direction y
(le cas ou le flux dans la direction z est nul est symétrique). Il s’agit d’une équation de transport

linéaire et nous supposerons que ¢, > 0. C’est pourquoi la correction de Godunov sera nulle sur le

(@)L (y)
0

coté droit de la cellule. Donc le critére (4.27) reste vrai pour une correction , ol [1 est

le polynome de Lagrange interpolé aux p + 2 points flux et associé au point flux &;. Alors :

VL)l () = (l?(x”f ‘”) V. (MOZJ‘@) — I (@)l;(y),

En remplacant dans 1’équation (4.27), nous obtenons :

Nl () ()1 (y)de — aal!® (@)1 ()1 (1)1 (y)dz = 0.
/R U@l () (@) (4)d /K S aall® @ @ e =0

Or quand o # (p,p), soit o > p+ 1 soit oy > p + 1. Et comme [; et [; sont de degré p,
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soit ll(a“)(x) = 0 soit l;ay)(y) = 0. Donc la somme se réduit & a = (p,p). Ainsi il nous suffit de

déterminer le coefficient a = a(, ) tel que :

| t@twh@ s —a [ 0@ @@ e =0 @2
:s/ z2dy/ [ ldxfa/ (12 dy/ 1P g — 0. (4.29)

Nous noterons dans la suite I; = | I l?dy et a; le coeflicient dominant de [;. Alors l](-p ) = pla;.
Nous prendrons & partir de maintenant les p points flux intérieurs dans la direction x égaux aux

points de Gauss-Legendre. Le polynéme h peut donc étre exprimé tel que :

l(z) = (—1)1’%(1 — )Ly (x), (4.30)

avec L, le polynome de Legendre de degré p. Son coefficient dominant sera noté c,. Il peut étre

déterminé grace a la formule de Rodrigues :

11 0P

Ly(z) = 27,];@( -1
L1
2pp|8xp( + - )
2r p! pl

1x3x5x.. 2p —1
_ 1x3x xp'x(p )xp+...

L, étant orthogonal & tout polynéme de degré inférieur & p, nous avons :

/ Lilde = (—1)p+1 L [ 11pr(x)z;(x)dx

1
= (71)”*1% [1 Ly(z)(a;pz? + ...)dz

lap [
= (fl)erlf%/le(x)cpxpdx

2 ¢
1 ; 1 1
= (—ppti %P / Lp(:v)de—/ Lp()(cp_12P~ + .)dw
2¢p \Ja -1
1 2pa;
— (_q)ptii__ZP%
(=1) 2(2p+1)c,
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car f_ll Ly(z)%dx = ﬁ.

Nous avons aussi que lAng) = (—1)P*11(p + 1)!c,. Nous obtenons donc :

1 2pa;
I.(—1)PT1Z ¢

1
2 2 +1 -
e, a x 4(ph)“aj(=1)" E(p + 1)leypla; = 0. (4.31)

En simplifiant, nous avons finalement ’expression suivante de a :

P 1
= = >0, 4.32
T )P+ )2 al (432)

car I; = f_ll I3dy > 0.

Cette preuve ne dépendant pas de la position des points solution, nous pouvons donc ’appliquer
a la méthode SD et a la méthode FUSE.
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5 Tests numériques

5.1 Présentation de HOPPS

HOPPS (High Order Performance Portable Solvers) est un code de calcul développé par le
CERFACS. 1l a été créé dans un premier temps pour déterminer si la librairie Kokkos pouvait étre
pertinente dans un contexte de codes CFD. Les résultats obtenus étant prometteurs, il a été décidé
de continuer de le développer afin de simuler numériquement des cas et configurations physiques de

la mécanique des fluides.

HOPPS se présente sous la forme d’un module Python, c’est-a-dire que les solveurs, les modéles,
etc. peuvent étre manipulés grace a un script Python, indépendamment de I'architecture utilisée.
Le coeur du module est quant & lui développé en C++. Il est construit autour de quatre grandes
abstractions de base, représentées par des classes :

— Le maillage (Mesh) qui contient la définition du domaine de calcul (noeuds, éléments,

bords...).

— Le domaine (Field) qui contient les valeurs des solutions. Cette structure dépend de la

méthode numérique utilisée.

— Le solveur (Solver) exécute la méthode numérique utilisée.

— Le modéle (Model) définit le systéme physique & résoudre.

Pour l'instant, HOPPS comporte seulement quelques modéles (advection linéaire, advection-
diffusion, Euler, Navier-Stokes) résolus numériquement avec les méthodes SD, FUSE et LBM (mé-
thode Lattice-Boltzmann). Il n’utilise actuellement que des maillages hexahédriques et les seules

conditions aux limites possibles sont des conditions périodiques.

Durant ce stage, le modéle d’advection linéaire a été ajouté &8 HOPPS en 1D et en 2D. De plus,

la méthode FUSE en linéaire et non linéaire avec points fixes a été codée en 1D et en 2D.

5.2 Cas linéaire en 1D

Rappelons ’équation de transport linéaire 1D a résoudre dans cette section :

Oy + Oy (cu) = 0 sur Q x [0, 77, (5.1)

oll ¢ € R est la vitesse d’advection. La condition initiale sera notée :

uo(x) = u(z,0), x € Q. (5.2)
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Alors la solution exacte de ce probléme est :
u(x,t) = up(x — ct). (5.3)

5.2.1 Condition initiale continue
La méthode FUSE ainsi que la méthode SD standard ont été implémentées en Python afin de
réaliser les tests numériques de cette section. Le schéma en temps utilisé est SSPRK3 [1].

Nous commencons par utiliser la condition initiale réguliére suivante :

up(z) = sin(x). (5.4)

Nous prendrons N, = 200 cellules, un ordre de p = 2, le nombre CFL égal a cfl = 0.1 et
comme temps de fin T';, = 0.2 s. Le domaine sur lequel nous souhaitons résoudre numériquement

Péquation (5.2) sera Q = [0,27] et les conditions aux bords seront périodiques. Enfin la vitesse

d’advection sera ¢ = 1 m.s~ 1.

Les solutions obtenues pour la méthode SD standard et avec notre nouvelle méthode sont pré-

sentées sur le graphique 5.1.

(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.1 — Solutions obtenues pour les deux méthodes au temps T'y;, = 0.2 s.

Nous pouvons observer dans les deux cas que le tracé de la solution exacte est superposé a celui

de la solution approchée. Cela se confirme en regardant les erreurs commises dans le tableau 5.1.
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Erreur calculée | SD | FUSE
|ttes — uappHLZ(Q) 0.00012375407340802663 | 0.00012375594675248264
lttew — tappllz(a) | 6.98227616634517¢-05 | 6.982137484967676¢-05

TABLE 5.1 — Erreurs commises pour les deux méthodes.

Les erreurs observées sont dans les deux cas sensiblement les mémes. En changeant le temps
de fin de la simulation, nous observons la méme chose avec T';, = 1.0 s sur le graphique 5.2 et le
tableau 5.2.

(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.2 — Solutions obtenues pour les deux méthodes au temps T't;,, = 1.0 s.

Erreur ‘ SD ‘ FUSE
|tea — Uapp”LQ(Q) 0.0006188560324894134 | 0.0006188579063737881
|tter — UappllLoe () | 0.0003491540095723611 | 0.00034915099054544374

TABLE 5.2 — Erreurs commises pour les deux méthodes.

En calculant I'erreur L? entre la solution exacte et la solution calculée pour les deux méthodes

et différents ordres p, nous obtenons les courbes de convergence présentées dans le graphique 5.3.
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FIGURE 5.3 — Courbes de convergence pour I’équation de transport 1D avec une condition initiale

réguliére.

Les pentes des différentes courbes sont notées dans le tableau 5.3. A chaque ordre, nous pouvons

observer que les pentes calculées pour chaque méthode correspondent a la pente théorique de p+ 1.

Nous pouvons aussi noter que les courbes de convergence de la méthode FUSE sont légérement au

dessus de celles de la méthode SD standard, mais elles restent cependant du méme ordre de grandeur.

Ordre polynomial p

Pente SD standard

Pente FUSE

Pente théorique

1

Tt W N

2.012232346766273
3.0183691219219737
4.024506496456029
5.030644405764189
5.712218777154561

2.0122189701835658

3.0183601377659666
4.024500759719532
5.030643163855714
5.989586210747027

2

O O i W

TABLE 5.3 — Pentes des courbes d’erreur pour la méthode standard et la nouvelle méthode.

Avec cette condition initiale réguliére, nous décidons de faire des tests de nombre CFL pour

différents p et différents N.. Le critére de stabilité retenu sera que U'erreur ||Uey — Uapp|| Lo () s0it

inférieure & 10~% au bout de 1000 itérations. Les courbes 5.4 & 5.6 sont ainsi obtenues.

Nous observons que les nombres CFL calculés numériquement pour la méthode FUSE sont, de

facon générale, légérement plus petits que ceux calculés pour la méthode SD standard, ce qui est
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FIGURE 5.4 — Nombres CFL calculés pour les méthodes SD et FUSE avec p = 3.

F1GURE 5.5 — Nombres CFL calculés pour les méthodes SD et FUSE avec p = 4.

FIGURE 5.6 — Nombres CFL calculés pour les méthodes SD et FUSE avec p = 5.

cohérent avec le fait que les erreurs commises par la méthode FUSE sont plus grandes que celles

commises par la méthode SD.
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5.2.2 Condition initiale discontinue

Nous souhaitons maintenant faire des tests en utilisant une condition initiale discontinue :

lsiz < ‘%l,
ug(z) = (5.5)
2 sinon.
Nous gardons les mémes paramétres que pour les figures 5.1, mais nous prenons cette fois des

conditions de Dirichlet aux bords. Les graphiques 5.7 sont alors obtenus.

(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.7 — Solutions obtenues pour les deux méthodes au temps T'y;, = 0.2 s.

Remarque 1 Les oscillations observées au niveau des discontinuités correspondent au phénomeéne
de Runge. En effet, nous utilisons une interpolation de Lagrange pour calculer la solution numé-
rique. Pour atténuer les oscillations, nous pouvons utiliser des filtres pour capturer au mieux les

discontinuités, comme celui présenté dans article [7] par exemple.

Nous obtenons pour ce test les erreurs présentées dans le tableau 5.4.

Erreur calculée ‘ SD ‘ FUSE
|tbes — uappHLz(Q) 0.056510447983416146 | 0.06144398575267277
|tes — uapp||Loo(Q) 0.29650406161978915 0.3774852677684635

TABLE 5.4 — Erreurs commises pour les deux méthodes avec une condition initiale discontinue et
un temps de fin T, = 0.2 s.

Nous pouvons observer dans les deux cas des oscillations de la solution approchée autour de la
discontinuité, et le méme ordre de grandeur au niveau des erreurs, bien qu’elles soient en peu plus

grandes pour la méthode FUSE.
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5.3 Cas scalaire non linéaire en 1D

5.3.1 Condition initiale continue

Afin de tester un cas scalaire non linéaire en 1D, nous allons résoudre numériquement ’équation

de Burgers, qui est de la forme :

ou 0

2 . , . .
avec f(u) = % . Nous pouvons réécrire I’équation (5.6) sous forme non conservative :

ou Ou
5 + a(u)% =0, (5.7)

ou a(u) = f'(u) = u.

Nous utiliserons tout d’abord la condition initiale continue suivante :

uo(z) = sin(x). (5.8)
-1
Dans ce cas-1a, la solution de I’équation (5.6) jusqu’a la date T* = d =1 sera:
gglé% T%a(uo(wo))
u(z,t) = sin(zo), (5.9)
avec xg qui vérifie :
xo + sin(zo)t = . (5.10)

La méthode SD et la méthode FUSE avec adaptation des points solution ont été implémentées
en Python pour les tests présentés dans cette partie. Le schéma d’intégration temporel utilisé est
SSPRK3. Le domaine physique est 2 = [0, 27], nous prendrons comme ordre p = 3, N, = 200 élé-
ments et un nombre CFL ¢fl = 0.1. Au temps T’;, = 0.5 s, nous obtenons les solutions numériques

présentées dans les graphiques 5.8, ainsi que les erreurs notées dans le tableau 5.5.

Erreur calculée | SD | FUSE
[tes _uappHLZ(Q) ‘ 0.000216576844387351 ‘ 0.0008262291953209899

TABLE 5.5 — Erreurs commises pour les deux méthodes pour la résolution de ’équation de Burgers
avec une condition initiale continue.

Nous constatons & nouveau que les erreurs L? pour les deux méthodes sont du méme ordre de
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(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.8 — Solutions obtenues pour les deux méthodes au temps T'y;, = 0.5 s.

grandeur, avec une erreur un peu plus grande pour la méthode FUSE par rapport a4 la méthode
SD.

Pour ce test nous aurions aussi pu comparer les deux algorithmes FUSE présentés dans la partie

3.2.2 entre eux.

5.3.2 Probléme de Riemann

A présent, nous souhaitons faire des tests pour la résolution d’un probléme de Riemann, c’est-

a-dire résoudre numériquement 1’équation (5.6) avec une condition initiale qui sera de la forme :

ur, six < ‘%l,
ug(x) = (5.11)
up sinon.

Rappelons que dans le cas de I’équation de Burgers (ou le flux f(u) = “72 est convexe) :

— Si uyp, > up, une onde de choc se forme. La solution exacte du probléme sera donc :

uy, sl x < ot,
wa,t)y =4 - (5.12)
uR si x > ot.

avec o donné par la relation de Rankine-Hugoniot : —o(f(ug) — f(ur)) + (ugr —ur) = 0.

— Si uy, < ug, nous obtenons une onde de raréfaction. La solution du probléme de Riemann
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sera alors :

u(z,t) =< a ! <x_t2) si f'(up)t + % <z < f'(ur)t+ %, (5.13)

Commengons par le cas up < up :

(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.9 — Solutions pour les deux méthodes au temps T, = 0.5 s, avec ur, =1 et ugp = 2.

Erreur calculée ‘ SD ‘ FUSE
ltter — Uappllz2(0) | 0.09703445344280012 | 0.1759846919409523
0.04143962289541436 | 0.0839102766051455

[uex — Uapp”L‘x’(Q)

TABLE 5.6 — Erreurs commises pour les deux méthodes, avec up, = 1 et ug = 2.

Erreur calculée ‘ SD ‘ FUSE
|ttes — ua,ppHLz(Q) 0.3907881028483392 0.3754874514921302
0.25111260836707316 | 0.21331038157672033

|ter — “app||L°°(Q)

TABLE 5.7 — Erreurs commises pour les deux méthodes, avec uy, = —2 et ug = —1.
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(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.10 — Solutions pour les deux méthodes au temps Ty;, = 0.5 s, avec ur, = —2 et up = —1.
(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.11 — Solutions pour les deux méthodes au temps T';, = 0.5 s, avec uy, = —2 et ug = 1.
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Erreur calculée | SD | FUSE
[tes — Uapp||L2(Q) 0.3412755073302644 0.3420729408260379
lttew — tappl o0y | 0.20506785652385684 | 0.18020683210521948

TABLE 5.8 — Erreurs commises pour les deux méthodes, avec up, = —2 et ug = 1.

Les trois tests présentés (graphiques 5.9 & 5.11 et tableaux 5.6 & 5.8) montrent des erreurs si-
milaires pour les deux méthodes, qui sont confirmées par les graphiques : en effet, comme pour le
transport linéaire d’une discontinuité, des oscillations apparaissent au début et & la fin de 'onde de
détente, et ce pour les SD standard ou la méthode FUSE.

Passons maintenant au cas uy, > ug :

(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.12 — Solutions pour les deux méthodes au temps Ty, = 0.5 s, avec U, =2 et U = 1.

Erreur calculée ‘ SD ‘ FUSE
|tter — uapp||Lz(Q) 0.29793274475712844 | 0.339785204026162
0.22869260545869796 | 0.2186648980745085

[[tez — uapp||L°°(Q)

TABLE 5.9 — Erreurs commises pour les deux méthodes, avec uy, =2 et ugp = 1.

Erreur calculée ‘ SD ‘ FUSE
||ueI—uapp||Lz(Q) 0.2973578514977129 0.339785204026162

[tex — Uappll Lo (o) | 0.22759868389194038 | 0.2186648980745085

TABLE 5.10 — Erreurs commises pour les deux méthodes, avec ur, = —1 et ugp = —2.

Comme pour les cas d’ondes de détente, nous observons, grice aux tableaux 5.9 - 5.10 et aux

graphiques 5.12 - 5.13, aussi des erreurs similaires pour les deux méthodes et des oscillations au
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(a) Méthode SD standard. (b) Méthode FUSE.

FIGURE 5.13 — Solutions pour les deux méthodes au temps Ty;, = 0.5 s, avec ur, = —1 et up = —2.

niveau des chocs & peu prés semblables tant pour le SD que pour la méthode FUSE.

5.4 Cas linéaire en 2D

Commencgons les tests en 2D par I’équation de transport linéaire, définie telle que :

Opu+ V.£(u) =0 sur Q x [0, 7], (5.14)

¢
avec ) C R? le domaine physique et f(u) = cu le flux, ot ¢ = ( w) est la vitesse d’advection.

Cy

Notons la condition initiale du probléme ug telle que :

uo(x) = u(x,0), x € Q. (5.15)

Alors la solution exacte de (5.14) sera :

u(x,t) = up(x — ct). (5.16)

Afin d’effectuer les tests ci-dessous, la méthode FUSE a été implémentée dans HOPPS (cf. partie
5.1), ainsi que le modeéle d’advection linéaire (5.14). Nous utiliserons pour les tests présentés dans
cette section le schéma d’intégration temporelle SSPRK3. De plus, le solveur de Riemann utilisé

pour les SD standards sera le schéma décentré, aussi appelé schéma "upwind".

Dans un premier temps, nous ferons un test ot les vitesses d’advection dans les directions x et

y seront ¢; = ¢, = 1 m.s™!, le domaine de calcul sera Q = [0, L]* avec L = 1 m. Le nombre de
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cellules sera N, = N2 avec N = 10 et le nombre CFL sera cfl = 0.2. Nous utiliserons la condition

r— L)? _ L)?
uo ("(2,y)) = exp <—( 2) t(‘y :) > (5.17)

g

initiale suivante :

avec 0 = 0,1. A linstant ¢ = 0,3 s, les solutions approchées avec les méthodes SD et FUSE sont

présentées sur la figure 5.14. Les erreurs L? pour chaque méthode sont notées dans le tableau 5.11.

(a) Méthode SD. (b) Méthode FUSE.

FIGURE 5.14 — Solution au temps ¢t = 0.000172461 s obtenue avec les différentes méthodes.

Nous pouvons observer que l’erreur commise par la méthode FUSE est un peu plus grande que

celle commise par la méthode SD standard, ce que nous avions déja observé en 1D.

Erreur ‘ SD ‘ FUSE
l|tea *uappHLz(Q) ‘ 0.0010072067199307648 ‘ 0.001098513187613855

TABLE 5.11 — Erreurs L? obtenues & t = 0.3 s pour les différentes méthodes numériques.
Nous souhaitons maintenant voir si, de fagon similaire a ce qui a été fait en 1D, nous obtenons
a nouveau des courbes de convergence de pente p + 1 pour différents p. Ainsi, en faisant varier N

nous obtenons les courbes présentées sur la figure 5.15.

Nous observons a nouveau que les erreurs commises par la méthode FUSE sont plus grandes
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FIGURE 5.15 — Courbes de convergence de l'erreur L? des méthodes SD et FUSE pour la résolution
de I'équation de transport linéaire 2D.

Ordre polynomial p ‘ Pente SD ‘ Pente FUSE ‘ Pente théorique
2 2.996000824302383 | 2.9987169114878056 3
3 3.998522303898951 | 3.9985872560963345 4
4 4.993531009661508 | 4.998535235697732 5
5 5.997849683027483 | 5.998509940282256 6

TABLE 5.12 — Pentes des courbes d’erreur L? pour la méthode SD et la méthode FUSE.

que celles commises par la méthode SD. Cependant elles restent du méme ordre de grandeur, et

lordre de convergence reste en p 4+ 1, comme nous le montre le tableau 5.12.

5.5 Cas d’un systéme en 2D : les équations d’Euler
Dans cette section nous nous penchons sur le cas d’un systéme hyperbolique en 2D : les équations

d’Euler, définies telles que :

i (pV) +V.(pV @ V) + Vp =0, (5.18)
O(pE) + V.(pEV +pV) =0,
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avec p la densité du fluide (en kg.m=3), V = (u) sa vitesse (en m.s™!), p la pression (en Pa), E
v

2
I’énergie totale par unité de masse (en J.kg=!) telle que E = p(f_l) + w, ou 7 est le rapport des

chaleurs spécifiques & pression et volume constant. En réécrivant le systéme (5.18) sous la forme

(2.17), nous avons :

P pu pv

pu pu2 +p puv
U= , E(U) = , et F(U) = )

pU puv pU°+0p

pE p(E + p)u p(E +p)v

Afin de vérifier si notre méthode fonctionne pour ce systéme, nous allons considérer le test
d’'une COnvection de VOrtex (COVO) sur le domaine 2 = [0, L]?, avec L = 0.1 m. Soit la fonction
suivante :

Y(z,y) =Texp (—7:) ; (5.19)

avec :

r= \/(x—xc);—l— (y_yc)27 (520)

ou I est la force du vortex, R, son rayon et (z.,y.) son centre. Alors la condition initiale pour

. Uo
la vitesse Vo = ( ) sera, :
Vo

U = Uso + Oyt et vg = =00, (5.21)

aveC Use = Moo/ VRga-Too 1a vitesse du fluide sans perturbation, Ry, la constante du gaz et
Mo le nombre de Mach. De maniére analogue T, poo €t poo seront respectivement la température,

densité et pression du fluide sans perturbation. Les conditions initiales pour ces quantités seront :

2
I'? exp (—%)

To =T — , 5.22
0 2C, B2 (5-22)
T\ 71
0\
= Poo T ) 2
= (1) (5.23)
bo = pORgaz/T(% (524)

Les valeurs des constantes utilisées dans les conditions initiales (5.21)-(5.24) sont présentées
dans le tableau 5.13.
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Constantes Valeur
Y (_) 174
Rya- (J.kg 1K) 287
C, (Jkg 1K) ijf
Mo (-) 0,5
Poo (Pa) 101300
Too (K) 300
Poo (kg.m™3) 1,17170407
R, (m) Lz
z. (m) :
Ye (m 5
I (m%s71) 0,04U Rcv/e

TABLE 5.13 — Tableau des valeurs des différentes constantes utilisées a 'initialisation du COVO.

Notons donc la condition initiale :

Po
U, = | P°° (5.25)
Povo
poEo
Alors la solution exacte de ce probléme sera :
U(x,t) = Ug(x — Coot), (5.26)

Uso
avec Coo = .
0

Dans un premier temps, nous prendrons comme ordre p = 4, comme nombre de cellules N, = N?
avec N = 16, comme nombre CFL c¢fl = 0.2 et le schéma d’intégration temporelle RK54. Nous

obtenons donc au temps ¢ = 0.000172461 s les solutions présentées sur la figure 5.16 pour la densité p.

Erreur SD ‘ FUSE
| pez —papp”LZ(Q) ‘ 2.0638254376962932¢-07 ‘ 2.076265289437885¢e-07

TABLE 5.14 — Erreurs L? obtenues pour la variable p & t = 0.000172461 s pour les différentes
méthodes numériques.

Nous observons 4 nouveau grace aux erreurs L? données dans le tableau 5.14 que les solutions
numériques calculées avec les deux méthodes sont similaires, avec une erreur un petit peu plus

grande pour la méthode FUSE, ce que nous avions déja remarqué pour les cas d’advection linéaire.
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(a) Méthode SD. (b) Méthode FUSE.

FIGURE 5.16 — Densité p au temps ¢ = 0.000172461 s obtenue avec les différentes méthodes.

Nous souhaitons donc faire & nouveau les courbes de convergence pour plusieurs ordres p. Nous

obtenons ainsi le graphique 5.17 et les pentes des courbes sont notées dans le tableau 5.15.

Ordre polynomial p Pente SD Pente FUSE ‘ Pente théorique
2 2.995668678345321 | 2.9940116980981473 3
3 3.994490399203938 | 3.993475252437675 4
4 4.993933309211478 | 4.993231994444279 5
5 5.866559387453854 | 5.964326894123795 6

TABLE 5.15 — Pentes des courbes d’erreur L? pour la méthode SD et la méthode FUSE.

Comme pour le modéle d’advection linéaire en 1D et 2D, nous obtenons bien un ordre de
convergence de p+ 1 pour les deux méthodes. Nous pouvons aussi observer que, a l'instar de ce qui
a été obtenu pour le transport linéaire, ’erreur commise par la méthode FUSE est plus grande que

celle commise par la méthode SD standard.
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FIGURE 5.17 — Courbes de convergence de l'erreur L? pour la densité p des méthodes SD et FUSE
pour la résolution des équations d’Euler 2D.
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6 Analyse de performance

6.1 Complexité algorithmique

Nous souhaitons quantifier le gain en termes d’opérations de la méthode FUSE par rapport a

la méthode SD pour le cas d'une équation de transport linéaire en 1D.

Soit N, le nombre de cellules du maillage, Ngp = p+ 1 le nombre de points solution par cellule
et Npp = p+ 2 le nombre de points flux. A un temps ¢, donné, I’étape d’extrapolation cotlte
N.NppNgp opérations pour la méthode SD standard, tandis qu’il y a seulement N.Ngp opéra-
tions pour la méthode FUSE. Appliquer les conditions aux limites cotite 2 opérations pour chaque
méthode. L’étape de calcul du flux aux points intérieurs vaut N.(Npp — 2) pour les SD standard,
mais elle cotite N, Ngp pour la méthode FUSE car nous n’utilisons pas de solveur de Riemann donc
nous pouvons aussi calculer le flux aux points au bord de chaque cellule. Soit ¢gjemann la complexité
du solveur de Riemann utilisé, alors cette étape vaut NeCgriemann pour la méthode SD. Cependant,
comme expliqué précédemment, il n’y a pas besoin de cette étape pour la méthode FUSE. L’éva-
luation de la dérivée aux points solution coiite N.Ngp Npp opérations dans les deux cas. Enfin,
en notant crx la complexité du schéma d’intégration temporelle choisi, alors I’étape d’intégration
temporelle colite N, Ngpcryi opérations. Au total, en notant Ny, le nombre d’itérations en temps :

— Pour la méthode SD :

Niter (NeNppNsp 4+ 2+ Ne(Npp — 2) + Necriemann + NeNspNpp + NeNsperg) O(1)

2 NFP -2 + CRiemann CRK
=11 O(N;ter NoeNEpNgp).
( * NeNppNgsp NrppNsp * Nrp (it rpNsp)

— Pour la méthode FUSE :

Niter (NeNgp + 2+ N.Npp + N-NspNpp + N.Nspcri) O(1)

o ( 1 n 2 + 1 + 1+ CRK
Nrp N.NppNsp Ngp Nrp

) O(NiterNeNFPNSP)'

Nous pouvons donc noter que les deux algorithmes ont une complexité en O(N;er NeNppNgp).
Cependant la constante pour la méthode FUSE est plus petite que celle pour la méthode SD.

Nous souhaitons & présent comparer le nombre d’opérations pour les différents algorithmes
présentés pour une équation non linéaire 1D. La méthode SD reste la méme qu’en linéaire. pour
l'algorithme FUSE ot la position des points flux évolue, nous noterons Nz ;¢ le nombre de cellules

ol, & un temps ¢, donné, les points solution sont collocalisés avec certains points flux, et Ngp le
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nombre de cellules ou les points solution sont les points de Gauss-Tchebychev. Ainsi, pour tout ¢,
Ngp + Npysg = Ne-

A un temps t, donné, I’étape d’extrapolation coite N.Ngp + No.Nsp = 2N.Ngp pour lal-
gorithme avec points fixés, tandis qu’elle en colite Np;;¢pNsp + NipNspNpp pour 'algorithme
avec points adaptatifs. L’application des conditions aux limites coiite 2 opérations pour les deux
algorithmes. Le calcul du flux aux points intérieurs vaut N,(Ngp — 2) opérations pour I’algorithme
avec points fixés, mais elle en vaut Ni, ¢ Nrp + NZp(Npp — 2) pour le deuxiéme algorithme.
Pour I’étape du solveur de Riemann, nous avons, comme pour la méthode SD usuelle, NeCriemann
opérations pour l'algorithme avec points fixés, mais nous en avons seulement (NZp + 1)CRriemann
pour l'algorithme avec points adaptatifs. Ce dernier contient une étape supplémentaire ot a(u) est
calculé & chaque interface afin d’adapter la position des points solution pour l'itération suivante.
Cette étape vaut donc N, + 1 opérations. Enfin, les étapes de dérivation du flux aux points solution
et I'intégration temporelle valent N.NppNgp + N.Nspcryi opérations pour les deux algorithmes.
Tout cela nous donne finalement :

— Pour l'algorithme avec points fixés :

Niter (2N6NSP +2+ Ne(NFP - 2) + NeCriemann + NeNspNpp + NeNSPCRK) O(l)
. ( 2 2 NFP -2 + CRiemann CRK

+1+4

+ ONierNeN N .
Npp  NeNppNgp NgpNgp NFP) (it rpNsp)

— Pour l’algorithme avec points adaptatifs :

Niter (NpyspNsp + NgpNspNpp 42+ NpyspNep + Ngp(Nep — 2)
+(N§D + 1)CR7;emann + Ne + 1+ NeNSPNFP + NeNSPCRK) 0(1)7
_ (1 n 1 crrg +1 1 3 + CRiemann

+ +
Ngp Nrp NspNrp  NeNppNsp

ng 1 CRiemann — 2
1— O(Nijor NoNgpNgp).
N, ( Nep T NepNpp (Nit rpNsp)

_|_

Ainsi, en admettant que NG, reste constant pour chaque itération, ’algorithme avec points

adaptatifs vaut plus d’opérations que ’algorithme avec points fixés lorsque :

NeNgsp + NeCriemann — 2Ne — CRiemann — Ne — 1 _ armaz

NZp = Ngp > = . 6.1
5P NS’PNFP - NSP -2+ CRiemann 5D ( )

A titre d’illustation, fixons N, = 1000, crx = 3, CRriemann = 10 et N, = 100000. En faisant

varier Ngp, nous obtenons les graphiques 6.1 pour p =2 et p = 3.
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(a) p=2. (b) p=3.

FIGURE 6.1 — Nombre d’opérations des deux algorithmes en fonction de Ngp.

Pour 'exemple avec p = 2, Ngi5* = 58822, et pour p = 3, Ng5*¥ = 45832. Nous pouvons donc

observer qu’en augmentant p nous faisons baisser Ngj5

T, En conséquence, 'algorithme avec points
adaptatifs est plus intéressant en terme de coiit de calcul pour des cas avec peu de variations dans
le sens du flux. Par exemple, pour le cas de 'équation de Burgers avec la condition initiale (5.8)
sur le domaine [0, 27], il est plus intéressant d’utiliser I’algorithme 2 car il n’y a un changement de

signe de a(u) = u qu'a . = 7.

6.2 Tests de performance

6.2.1 Tests en 1D avec HOPPS

Nous souhaitons maintenant comparer la performance des deux méthodes, mais aussi comparer
les performances obtenues sur différentes architectures matérielles. Pour ce faire, nous allons utiliser
un des supercalculateurs du CERFACS, nommé Kraken, qui dipose de noeuds composés de coeurs
CPU, mais aussi de cartes GPU Nvidia A30. Nous ferons des tests avec ce qui a été implémenté
dans HOPPS.

Commengcons par des tests pour le modeéle d’advection linéaire en 1D sur le domaine Q = [0, 67|
et pour un ordre p = 5. Les temps CPU pour 10 coeurs CPU et pour 1 carte GPU sont présentés dans
le graphique 6.2 pour différents nombres de degrés de liberté, ¢’est-a-dire Npo,p = N X (p+1) en 1D.

Nous pouvons noter dans un premier temps que, en GPU comme en CPU, la méthode FUSE est

plus rapide que la méthode SD, ce qui est cohérent avec les complexités algorithmiques calculées
dans le paragraphe 6.1. En notant Tsp le temps de calcul pour la méthode SD et Trysg le temps
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(a) Temps CPU pour 10 coeurs CPU. (b) Temps GPU pour 1 carte GPU.

FIGURE 6.2 — Temps CPU/GPU pour la résolution numérique avec la méthode FUSE et la méthode
SD du modéle de transport linéaire 1D avec p = 5 pour différents nombres de degrés de liberté.

Npor ‘ TSD;TgUSE GPU TSD;TDFUSE CPU

120000 0.03157929 0.1280321

240000 0.0644844 0.16905409
360000 0.06384301 0.14354575
480000 0.0606742 0.16304394

TABLE 6.1 — Différence relative de temps GPU et CPU entre la méthode FUSE et la méthode SD
pour le modéle d’advection linéaire 1D pour différents nombres de degrés de liberté Np,p.

de calcul pour la méthode FUSE, le tableau 6.1 réunit les différences relatives entre le temps CPU
(ou GPU) de la méthode FUSE et de la méthode SD par rapport au temps de la méthode SD.
Nous pouvons ainsi observer un gain d’environ 6% du temps pour la méthode FUSE par rapport
a la méthode SD sur carte GPU. Pour le calcul sur CPU, nous gagnons méme de 12% a 16% de
temps CPU. Une étude de scalabilité aurait potentiellement pu expliquer cette différence de gain
de temps de calcul entre CPU et GPU.

Nous pouvons aussi observer que les temps de calcul pour 1 carte GPU sont nettement plus

petits que ceux obtenus avec 10 coeurs CPU.

6.2.2 Tests en 2D avec HOPPS

Nous souhaitons effectuer le méme type de tests que ceux présentés dans la partie 6.2.1 pour des
cas 2D. Nous commengons par le modéle d’advection linéaire 2D sur le domaine 2 = [0, 1]? avec un

ordre p = 5. Nous présentons dans le graphique 6.3 le temps CPU et GPU pour différents nombres
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de degrés de liberté Npor = N.(p+ 1)

(a) Temps CPU pour 25 coeurs CPU. (b) Temps GPU pour 1 carte GPU.

FIGURE 6.3 — Temps CPU/GPU pour la résolution numérique avec la méthode FUSE et la méthode
SD du modéle de transport linéaire 2D avec p = 5 pour différents nombres de degrés de liberté.

Nous observons & nouveau que, sur GPU comme sur CPU, le temps de calcul pour la méthode

FUSE est plus petit que celui de la méthode SD standard. Grace au tableau 6.2 qu’a partir de 10°
degrés de liberté, nous gagnons 3 a 7% de temps de calcul sur GPU et environ 4% sur CPU.

Npor ‘ TSD;TFUSE GPU ‘ TSD;TS‘USE CPU

90000 20.08754912 0.00465952
360000 0.03756522 0.04175313
1440000 | 0.05422712 0.04469892
5760000 | 0.07954531 0.03966221

TABLE 6.2 — Différence relative de temps GPU et CPU entre la méthode FUSE et la méthode SD
pour le modéle d’advection linéaire 2D pour différents nombres de degrés de liberté Np,p.

Regardons enfin les temps CPU et GPU pour la résolution des équation d’Euler en 2D avec la
méthode SD et la méthode FUSE (avec points fixes). Nous obtenons le graphique 6.4 (a) pour les

calculs lancés sur 25 coeurs CPU et le graphique 6.4 (b) pour ceux lancés sur 1 carte GPU.
Nous pouvons faire les mémes observations que pour les cas linéaires : la méthode FUSE est

plus rapide que la méthode SD, méme si nous pouvons voir grace au tableau 6.3 que le gain de

temps est moins conséquent sur CPU que sur GPU.
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(a) Temps CPU pour 25 coeurs CPU. (b) Temps GPU pour 1 carte GPU.

FIGURE 6.4 — Temps CPU/GPU pour la résolution numérique avec la méthode FUSE et la méthode
SD des équations d’Euler 2D avec p = 5 pour différents nombres de degrés de liberté.

Npor TSD;TFUSE GPU ‘ TSD;T;;‘USE CPU

360000 0.00524574 0.07538979
1440000 | 0.00980509 0.02490826
2250000 0.0842039 0.02904119
3240000 | 0.11064584 0.01663689

TABLE 6.3 — Différence relative de temps GPU et CPU entre la méthode FUSE et la méthode SD
pour les équations d’Euler 2D pour différents nombres de degrés de liberté Np,p.
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7 Conclusions et perspectives

Pendant ce stage, nous avons adapté la méthode FUSE au formalisme des Différences Spectrales,
en collocalisant les points solution avec certains points flux. Nous avons montré qu’elle était stable
en 1D et en 2D avec maillages hexahédriques. Elle a été implémentée pour des cas linéaires et non
linéaires 1D et 2D dans HOPPS. Les tests numériques effectués ont montré que, bien que les erreurs
commises par la méthode FUSE soient un peu plus grandes que celles de la méthode SD standard,
elles restent du méme ordre de grandeur et 'ordre de convergence en p 4 1 est conservé. Une étude
de la complexité algorithmique des deux méthodes a montré que la méthode FUSE a un cofit plus
bas en termes d’opérations que la méthode SD. Ceci a été confirmé par les temps de calcul CPU et
GPU en 1D et en 2D, qui se sont avérés plus rapides pour la méthode FUSE que pour la méthode SD.

Les deux algorithmes proposés en scalaire n’ont pas pu étre comparés numériquement pendant
ce stage, 'algorithme avec points adaptatifs pourrait donc étre, a 'avenir, codé dans HOPPS. De
plus, nous pourrions faire des tests en 3D pour des maillages hexahédriques. De méme, la méthode
pourrait étre adaptée pour les cas d’équations avec un flux visqueux (notamment les équations de
Navier-Stokes) afin de réaliser des cas tests sur des configurations physiques plus réalistes. Enfin,
la structure tensorisée des maillages hexahédriques nous a permis de généraliser la méthode 1D au
cas 2D assez facilement. Une adaptation aux maillages triangulaires pourrait donc étre une autre

piste de travail & explorer.
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