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CONTEXTE ET UTILITÉ

Première partie

CONTEXTE ET UTILITÉ
L’adaptation de maillage anisotrope (dont la taille des mailles est non uniforme en espace et en direction) est

un procédé clé dans la modélisation des processus de mise en forme de composites par des approches à frontières
implicites. En effet, ce procédé a pour but d’optimiser le maillage numérique qui est alors utilisé lors de simulations,
afin de mieux représenter la géométrie et les caractéristiques du matériau utilisé. Par exemple, cette méthode est
d’autant plus pratique lorsque les composants étudiés ont des formes étirées, ou avec des zones possédant beaucoup
de complexités. Nous pouvons notamment observer l’utilité d’avoir un maillage adapté et anisotrope sur l’image de
Pascal Frey ci dessous.

Figure 1 – À gauche, maillage isotrope, à droite, maillage anisotrope de la surface crânienne

Dans le contexte de modélisation des processus de mise en forme de composites par des approches à frontières
implicites, les méthodes d’adaptation de maillage anisotrope peuvent s’avérer utiles sur de nombreux aspects.

Le premier aspect non négligeable dans lequel est utile ce procédé est la réduction du coût de calcul. Les si-
mulations de mise en forme de composites par des approches à frontières implicites peuvent être très coûteuses en
termes de ressources informatiques. L’adaptation de maillage anisotrope permet de concentrer davantage de mailles
là où c’est nécessaire, ce qui réduit le nombre d’éléments inutiles. Cela réduit ainsi le temps de calcul nécessaire
pour effectuer les simulations.

Ensuite, on note également une plus grande précision lorsqu’on possède un maillage anisotrope. Les matériaux
composites ont souvent une structure complexe, avec des variations importantes dans les propriétés mécaniques.
L’adaptation de maillage anisotrope permet de concentrer davantage de mailles dans les zones nécessaires, et d’en
mettre moins dans les zones où il y a peu de variations. Cela permet une meilleure résolution et donc une meilleure
précision.

En outre, l’adaptation de maillage anisotrope permet une meilleure gestion des interfaces. Les processus de mise en
forme de composites impliquent souvent des interfaces entre différents matériaux. L’adaptation de maillage aniso-
trope permet de mieux capturer ces interfaces en concentrant le maillage autour d’elles. On a donc une meilleure
modélisation des interactions réalisées à travers ces interfaces.

De surcroît, l’adaptation de maillage anisotrope permet de mieux suivre les déformations du matériau au cours
du temps, en modifiant à chaque itération la concentration de mailles dans les différents endroits du maillage.

Enfin, avec un maillage adapté correctement, on a à fortiori une erreur diminuée considérablement. Les résultats
des simulations sont donc plus fiables.
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CONTEXTE ET UTILITÉ

Les techniques d’adaptation de maillages anisotropes élaborées au sein du GEM sont des méthodes d’adaptation
P1. Les éléments finis P2 permettent de représenter les variations des champs physiques de manière plus précise
que les éléments finis P1. En utilisant des fonctions d’interpolation de degré plus élevé, les éléments finis P2 sont
capables de fournir une meilleure approximation des solutions. Cela permet également d’obtenir des résultats nu-
mériques plus précis et une meilleure convergence vers la solution exacte.

L’objectif du stage fut donc d’apporter une contribution sur l’élaboration d’une méthode d’adaptation de maillages
anisotropes P2, en particulier en construisant un estimateur d’erreur P2, permettant de remailler à partir d’un
champ solution P2. L’objectif est également de parvenir à faire cela en 3 dimensions.
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NOTATIONS ET PLAN

Deuxième partie

NOTATIONS ET PLAN
Nous nous placerons dans notre étude, sauf mention du contraire, dans le cadre de la 3 dimensions. Ainsi, par

défaut, l’espace dans lequel nous travaillerons sera R3.

Nous utiliserons dans tout le document les notations répertoriées dans le tableau suivant. Nous laisserons au
lecteur la possibilité de s’y référer au besoin, mais ne rappellerons pas la signification de ces notations par la suite.

Notations Définitions
K Ensemble des éléments du maillage
N Ensemble des noeuds du maillage
N Nombre de noeuds dans le maillage
Ki L’élément numéro i du maillage
Si Vecteur des coordonnées du noeud numéro i
Sij Vecteur correspondant à l’arête reliant les noeuds i et j
hij Longueur de l’arête Sij

Γ(i) = {j ∈ [1, N ] | ∃K ∈ K, Sij ∈ K} Ensemble des numéros des noeuds connectés au noeud numéro i
EK Ensemble des arêtes de l’élément K

Figure 2 – Tableau des notations utilisées

Dans un premier temps, nous effectuerons quelques rappels afin d’avoir en tête ce qu’est la notion de métrique.

Ensuite, nous rappelerons également comment sont générés et adaptés les maillages habituellement, et quelles
sont les différentes méthodes d’adaptation de maillages utilisées.

Par la suite, nous nous intéresserons aux tétraèdres de type 2 dans R3 : nous déterminerons les fonctions de forme
associées en détaillant les calculs en annexes, et nous donnerons l’application permettant de passer d’un tétraèdre
quelconque du maillage au tétraèdre de référence. Nous exhiberons également dans cette partie l’expression du
gradient et de la Hessienne de la solution selon son écriture avec les fonctions de forme.

Ensuite, nous évoquerons dans une autre partie la construction d’un estimateur d’erreur P2. Nous nous pencherons
en réalité trois méthodes. La première sera basée sur la Hessienne de la solution ; la seconde sera quant à elle
plutôt construite à partir du gradient de la solution calculée. Afin d’élargir le champ des possibles, nous aborderons
également une troisième méthode, quant à elle toujours élaborée à partir du gradient de la solution calculée.

Enfin, nous exhiberons les résultats numériques que nous avons pu obtenir via les différentes méthodes mises
au point. Nous constaterons ainsi si les méthodes évoquées fonctionnent ou non, et nous essayerons de donner des
résultats quantitatifs également.
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NOTION DE MÉTRIQUE

Troisième partie

NOTION DE MÉTRIQUE
Au sein de toute notre étude, la notion de métrique jouera un rôle essentiel. Il est donc important de redéfinir

proprement ce qu’est une métrique, et de donner quelques définitions utiles pour la suite. Nous commencerons par
donner une définition de ce qu’est une métrique en tant qu’objet, afin de comprendre à quoi cela sert d’introduire
une telle notion. Puis, nous poserons les opérations classiques possibles pour de tels outils. Afin d’écrire cette partie,
nous nous sommes appuyés principalement sur deux documents : la thèse de Jiaxin Zhao, intitulée Direct multiphase
mesh generation from 3D images using anisotropic mesh adaptation and a redistancing equation, et la thèse de Cé-
cile Dobrzynsky, intitulée Adaptation de maillage anisotrope 3D et application à l’aéro-thermique des bâtiments.

DÉFINITION 1. MÉTRIQUE
Un tenseur de métrique donné à un point P ∈ R3 est une matrice carrée symétrique définie positive M(P ) de taille
3 telle que l’on puisse l’écrire sous la forme suivante, avec a > 0, d > 0, f > 0 et det(M(P )) > 0 :

M(P ) =

a b c
b d e
c e f



Si le champ de tenseurs métriques est continu, il induit une structure dite Riemannienne sur R3.

REMARQUE 2. Il est important de pouvoir entrevoir l’utilité de l’introduction d’un tel outil. En effet, une
métrique permet de passer d’une figure dans l’espace Euclidien à la figure unité associée dans l’espace métrique
Riemannien. Nous pouvons le constater par exemple sur les deux figures ci-dessous, respectivement en 2D et en 3D.
Les hi désignent les tailles locales dans chaque direction du tenseur métrique M, et les λi sont les valeurs propres
de M.

Figure 3 – Représentation de la transformation d’une ellipse (2D) dans l’espace Euclidien en le cercle unité dans
l’espace métrique
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NOTION DE MÉTRIQUE

Figure 4 – Représentation de la transformation d’une ellipsoïde (3D) dans l’espace Euclidien en la boule unité
dans l’espace métrique

EXEMPLE 3. Sur un triangle de base hx et de hauteur hy, rectangle en P , nous pouvons déterminer la métrique
suivante au point P :

Figure 5 – Exemple de métrique sur une figure simple

REMARQUE 4. Dans le cas où la métrique est indépendante du point P , on se retrouve dans le cadre euclidien
classique.

DÉFINITION 5. PRODUIT SCALAIRE
Soient u⃗ et v⃗ deux vecteurs de R3, le produit scalaire dans l’espace euclidien classique pour une métrique M est
défini ainsi :

< u⃗, v⃗ >M = u⃗TMv⃗ = < u⃗,Mv⃗ >

DÉFINITION 6. NORME
Soit u⃗ un vecteur de R3, on définit la norme euclidienne de u⃗ pour une métrique M de la manière suivante :

|| u⃗ ||M =
√
< u⃗, u⃗ >M =

√
u⃗TMu⃗

DÉFINITION 7. DISTANCE
Soient A et B deux points de R3, on définit la distance entre le point A et le point B dans l’espace euclidien classique
pour la métrique M par la relation :

dM (A,B) = ||
−−→
AB ||M =

√
−−→
ABTM

−−→
AB
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NOTION DE MÉTRIQUE

Nous disposons donc des notions importantes et qui seront utilisées à propos des métriques par la suite. Ces
notions vont nous permettre de définir plus précisément via des formules les outils dont nous avons besoin.
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GÉNÉRATION ET ADAPTATION DE MAILLAGE

Quatrième partie

GÉNÉRATION ET ADAPTATION DE
MAILLAGE

Cette partie est réalisée grâce à plusieurs écrits. Le premier qui a été utile à la compréhension de la notion de
génération et d’adaptation de maillage est sans aucun doute la thèse de Cécile Dobrzynsky, intitulée Adaptation
de maillage anisotrope 3D et application à l’aéro-thermique. Le second document qui m’a été utile est le document
d’Adrien Loseille, Mesh Generation and Adaptation dor scientific computing, bien qu’un peu moins abordable de
prime abord.

1 OBJECTIF
Il est nécessaire dans un premier temps de poser quelques définitions.

DÉFINITION 8. MAILLAGE ANISOTROPE
Un maillage anisotrope est un maillage dont la taille des mailles est non uniforme en espace et en direction. La
taille des mailles peut alors être étirée dans des directions précises.

Figure 6 – Maillage isotrope à gauche et anisotrope à droite

DÉFINITION 9. MAILLAGE UNITÉ
Un maillage unité est un maillage dont toutes les arêtes dans la métrique choisie sont de mesure 1 dans la métrique
considérée. En pratique, on considère qu’un maillage est dit maillage unité si ses arêtes ont une mesure comprise

entre
1√
2

et
√
2.

L’objectif de la génération et de l’adaptation de maillage est de se rapprocher au plus possible du maillage unité.
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GÉNÉRATION ET ADAPTATION DE MAILLAGE

2 GÉNÉRATION DE MAILLAGE
Il nous faut dans un premier temps donner la structure générale des méthodes d’adaptation de maillage. En effet,

on trouve deux étapes principales. La première est l’étape de génération du maillage de surface. La seconde est la
génération du maillage volumique. Souvent, dans la littérature, ces deux étapes sont effectuées en même temps.

On retrouve dans cette seconde étape deux grandes techniques : la méthode frontale et la méthode de Delau-
nay. En ce qui concerne la méthode frontale, on part donc du maillage de surface qui définit alors un ensemble de
faces et on crée alors un ensemble de points optimaux à ajouter dans le maillage, filtrés au préalable, qui permettent
dès lors de définir des tétraèdres. Dans la méthode de Delaunay, on part au contraire d’un maillage d’une boite
englobant le maillage de surface, composé de six tétraèdres initiaux, et on complète alors ce maillage pour le rendre
plus fin.

3 MÉTHODES D’ADAPTATION DE MAILLAGES
On distingue trois grands types de méthodes d’adaptation de maillages :

• Les R-méthodes

• Les P-méthodes

• Les H-méthodes

Les R-méthodes sont des méthodes qui consistent à déplacer des sommets du maillage existant pour modifier la
densité de sommets à certains endroits du maillage.

En ce qui concerne les P-méthodes, le "p" fait référence à l’ordre du maillage, c’est-à-dire au degré des poly-
nômes utilisés pour représenter les solutions numériques sur le maillage. Les p-méthodes permettent de faire varier
localement l’ordre du maillage en fonction des besoins. Plus concrètement, cela signifie que dans les zones où une
résolution fine est nécessaire, un degré de maillage élevé est utilisé pour une meilleure précision, tandis que dans les
zones où une résolution moins fine est suffisante, un degré de maillage plus faible.

Les H-méthodes se divisent en deux grands groupes de méthodes. Tout d’abord, on trouve les méthodes par
raffinement. Ces méthodes consistent à subdiviser ou fusionner des éléments déjà existant pour en former de
nouveaux. Le second type de méthodes est l’ensemble des méthodes par remaillage. Elles consistent à modifier le
maillage afin de s’adapter à des tailles et des directions prescrites. Parmi ces méthodes par remaillage, on trouve
de nouveau deux sous catégories : les méthodes par remaillage global et les méthodes par remaillage local.
En ce qui concerne les méthodes par remaillage global, on reconstruit un nouveau maillage complètement. Pour
le remaillage local, on applique une procédure itérative, ce qui garantit donc la certitude de toujours obtenir un
maillage valide, et on utilise dès lors différents opérateurs afin d’ajuster les tailles d’arêtes. En effet, les arêtes trop
longues sont subdivisées en plusieurs arêtes de longueur unité, et les arêtes trop courtes seront détruites. Parmi les
méthodes par remaillage local, on distingue deux types de modifications possibles : les modifications topologiques
comme les insertions, suppressions ou bougés de points, et les modifications géométriques telles que des bascules
de faces ou d’arêtes.

4 ÉVALUATION DE LA QUALITÉ D’UN MAILLAGE
On peut, dès lors que l’on obtient un maillage, évaluer sa qualité. Pour cela, on dispose de deux dispositifs. Le

premier critère évaluant la qualité d’un maillage qui est mis à notre disposition est le critère de volume. Il assure
la conformité du maillage, et permet d’avoir des éléments d’un volume unité. Le second critère est un critère de
qualité géométrique.
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GÉNÉRATION ET ADAPTATION DE MAILLAGE

5 LES ÉTAPES ALGORITHMIQUES D’ADAPTATION DE MAILLAGE
Pour adapter un maillage, on suit différentes étapes :

• Tout d’abord on considère un premier maillage grossier du domaine, donné

• Ensuite, on détermine la métrique associée à un tel maillage

• On calcule l’erreur grâce à un estimateur d’erreur commise sur le maillage donné en comparaison avec un
maillage unité

• On ajuste alors le maillage via les méthodes décrites précédemment

• On détermine la métrique associée au nouveau maillage

• On recommence jusqu’à obtenir un maillage unité

L’étape cruciale qui va nous intéresser lors de ce travail est l’étape portant sur l’estimateur d’erreur. En effet,
nous désirons mettre en oeuvre un estimateur d’erreur P2.
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TÉTRAÈDRES DE TYPE 2 DANS R3

Cinquième partie

TÉTRAÈDRES DE TYPE 2 DANS R3

Dans cette partie, nous nous intéressons aux transformations permettant de passer d’un tétraèdre quelconque
du maillage au tétraèdre de référence. Toute la réflexion mise en place a pour origine le cours d’Anaïs Crestetto sur
les éléments finis, qui était fait en 2D, et qui a donc été ici adapté en 3D. L’objectif de cette partie et de rappeler
l’expression des fonctions de forme, également appelées fonctions de base, de déterminer l’application permettant
de passer d’un tétraèdre quelconque du maillage au tétraèdre de référence et inversement. Ensuite, pour un besoin
ultérieur, nous exprimerons le gradient des fonctions de forme ainsi que la matrice Hessienne.

On considère le tétraèdre de référence dans R3, noté K̂, de sommets â1 = (0; 0; 0), â2 = (1; 0; 0), â3 = (0; 1; 0) et
â4 = (0; 0; 1). On place également les points milieux des arêtes d’extrémités âi et âj , notés m̂ij , 1 ≤ i < j ≤ 4.

Figure 7 – Tétraèdre de référence dans R3

Soit

PK̂ =

{
p : R3 → R, a, b, c, d, e, f, g, h, i, j ∈ R

(x, y, z)→ a+ bx+ cy + dz + exy + fxz + gyz + hx2 + iy2 + jz2

}
Soit

ΣK̂ =


σi, 1 i 10, σi : PK̂ → R

p→ p(âi) si 1 ≤ i ≤ 4

p→ p(m̂kj) si i = 10− (k + j) et 1 ≤ k < j ≤ 4



On souhaite désormais exhiber une base canonique de (K̂,PK̂ ,ΣK̂). Au passage, en trouvant une telle base
canonique, cela démontrera que (K̂,PK̂ ,ΣK̂) est bien un élément fini (puisque dim PK̂ = 10 = card ΣK̂).
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TÉTRAÈDRES DE TYPE 2 DANS R3

PROPOSITION 10. FONCTIONS DE BASE
Les expressions détaillées des fonctions de base de manière développée sont les suivantes :

Φ̂1(x̂, ŷ, ẑ) = λ1(x̂, ŷ, ẑ)(2λ1(x̂, ŷ, ẑ)− 1) = (1− x̂− ŷ − ẑ)(1− 2x̂− 2ŷ − 2ẑ)

Φ̂2(x̂, ŷ, ẑ) = λ2(x̂, ŷ, ẑ)(2λ2(x̂, ŷ, ẑ)− 1) = x̂(2x̂− 1)

Φ̂3(x̂, ŷ, ẑ) = λ3(x̂, ŷ, ẑ)(2λ3(x̂, ŷ, ẑ)− 1) = ŷ(2ŷ − 1)

Φ̂4(x̂, ŷ, ẑ) = λ4(x̂, ŷ, ẑ)(2λ4(x̂, ŷ, ẑ)− 1) = ẑ(2ẑ − 1)

Φ̂5(x̂, ŷ, ẑ) = 4λ1(x̂, ŷ, ẑ)λ2(x̂, ŷ, ẑ) = 4x̂(1− x̂− ŷ − ẑ)

Φ̂6(x̂, ŷ, ẑ) = 4λ1(x̂, ŷ, ẑ)λ3(x̂, ŷ, ẑ) = 4ŷ(1− x̂− ŷ − ẑ)

Φ̂7(x̂, ŷ, ẑ) = 4λ1(x̂, ŷ, ẑ)λ4(x̂, ŷ, ẑ) = 4ẑ(1− x̂− ŷ − ẑ)

Φ̂8(x̂, ŷ, ẑ) = 4λ2(x̂, ŷ, ẑ)λ3(x̂, ŷ, ẑ) = 4x̂ŷ

Φ̂9(x̂, ŷ, ẑ) = 4λ2(x̂, ŷ, ẑ)λ4(x̂, ŷ, ẑ) = 4x̂ẑ

Φ̂10(x̂, ŷ, ẑ) = 4λ3(x̂, ŷ, ẑ)λ4(x̂, ŷ, ẑ) = 4ŷẑ

DÉMONSTRATION
La preuve est réalisée en annexe car très calculatoire.

□

Désormais on considère un tétraèdre quelconque du domaine, on le note K. On désire trouver une application FK

qui envoie K̂ sur K.

Figure 8 – Passage d’un tétraèdre quelconque au tétraèdre de référence

On a de plus FK(x̂, ŷ, ẑ) =
4∑

i=1

Φ̂i(x̂, ŷ, ẑ)S
i, où les Si sont les sommets de K. Si on note Si = (xi, yi, zi), alors

on obtient :

FK(x̂, ŷ, ẑ) = (1− x̂− ŷ − ẑ)

x1

y1
z1

+ x̂

x2

y2
z2

+ ŷ

x3

y3
z3

+ ẑ

x4

y4
z4


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TÉTRAÈDRES DE TYPE 2 DANS R3

Nous avons également besoin de déterminer F−1
K . Ce travail est un peu plus fastidieux, et nécessite davantage

de calculs. En effet, si on pose FK(x̂, ŷ, ẑ) = (x, y, z), il nous faut déterminer x̂, ŷ et ẑ en fonction de x, y et z.
Résolvons donc le système suivant :


x1 + x̂(x2 − x1) + ŷ(x3 − x1) + ẑ(x4 − x1) = x

y1 + x̂(y2 − y1) + ŷ(y3 − y1) + ẑ(y4 − y1) = y

z1 + x̂(z2 − z1) + ŷ(z3 − z1) + ẑ(z4 − z1) = z

PROPOSITION 11. SOLUTION DU SYSTÈME
La solution du système précédent est :

ẑ =

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

ŷ =
(y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

−

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

x̂ =
x− x1

x2 − x1
−
(

(y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

−

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

)
x3 − x1

x2 − x1

−

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

x4 − x1

x2 − x1

DÉMONSTRATION
La preuve est réalisée en annexe car très calculatoire.

□
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On a donc pleinement déterminé F−1
K . On notera, par souci de simplicité d’écriture, F−1

K

(i)
la i− ème composante

de la fonction. Ainsi :

F−1
K (x, y, z) =


F−1
K

(1)
(x, y, z)

F−1
K

(2)
(x, y, z)

F−1
K

(3)
(x, y, z)



Désignons par u la solution au problème étudié sur notre maillage. Sur le tétraèdre K, on a donc u(x, y, z) =
10∑
i=1

Φi(x, y, z)ui, où Φi(x, y, z) = Φ̂i ◦ F−1
K (x, y, z). On peut de même déterminer le gradient de u de sorte que :

∇u(x, y, z) =
10∑
i=1

∇Φi(x, y, z)ui

⇐⇒ ∇u(x, y, z) =
10∑
i=1

∇(Φ̂i ◦ F−1
K )(x, y, z)ui

⇐⇒ ∇u(x, y, z) =
10∑
i=1

Jac F−1
K (x, y, z)×∇Φ̂i ◦ F−1

K (x, y, z)ui

où Jac F−1
K désigne la matrice Jacobienne de l’application F−1

K . Il nous faut donc déterminer ∇Φ̂i pour tout
1 ≤ i ≤ 10, ainsi que la matrice Jac F−1

K .

Les calculs des expressions mises en jeu sont réalisés en annexe car ils sont assez longs. On suppose donc ces
expressions connues pour la suite.

De plus, nous aurons également besoin par la suite de calculer la matrice Hessienne de u. Puisque cette dernière
fait apparaître des dérivées d’ordre 2, et qu’on applique une méthode des éléments finis P2, la matrice Hessienne
sera donc à priori composée uniquement de constantes, qu’il nous reste à déterminer.

Soient xi, xj deux variables parmi x, y et z. Alors on a :

∂2u

∂xi∂xj
(x, y, z) =

10∑
k=1

∂2Φk

∂xi∂xj
(x, y, z)uk

=

10∑
k=1

∂2

∂xi∂xj

(
Φ̂k ◦ F−1

K

)
(x, y, z)uk

=

10∑
k=1

∂

∂xi

(
∂F−1

K

∂xj
(x, y, z)× ∂Φ̂k

∂xj
◦ F−1

K (x, y, z)

)
uk

=

10∑
k=1

(
∂2F−1

K

∂xi∂xj
(x, y, z)× ∂Φ̂k

∂xj
◦ F−1

K (x, y, z) +
∂F−1

K

∂xj
(x, y, z)×

∂F−1
K

∂xi
(x, y, z)× ∂2Φ̂k

∂xi∂xj
◦ F−1

k (x, y, z)

)
uk

Cependant, on sait que FK , tout comme F−1
K sont des transformation affines donc d’ordre 1. Par conséquent,

les dérivées secondes de celles-ci seront obligatoirement nulles. On a donc la simplification suivante :

∂2u

∂xi∂xj
(x, y, z) =

10∑
k=1

(
∂F−1

K

∂xj
(x, y, z)×

∂F−1
K

∂xi
(x, y, z)× ∂2Φ̂k

∂xi∂xj
◦ F−1

k (x, y, z)

)
uk

Il nous faut donc expliciter les dérivées secondes des Φ̂k. Les constantes obtenues sont explicitées en annexe. Nous
avons donc pleinement déterminé la matrice Hessienne Hu.
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Sixième partie

ESTIMATEUR D’ERREUR P2
Dans cette partie, nous abordons la notion d’estimateur d’erreur. Pour démarrer notre réflexion, nous nous

sommes appuyés principalement sur trois ouvrages. Le premier et le document co-écrit par Pascal Frey et Frédéric
Alauzet, Anisotropic mesh adaptation for CFD computation. Le second reste la thèse de Cécile Dobrzynsky, Adap-
tation de maillage anisotrope 3D et application à l’aéro-thermique des bâtiments. Le dernier document qui a permis
de mieux apprivoiser la notion d’estimateur d’erreur est le document de Pascal Frey, intitulé Estimateurs d’erreur
géométriques et adaptation de maillages.

6 NOTION D’ERREUR D’INTERPOLATION
La notion d’erreur d’interpolation est une notion clé pour la suite du travail. En effet, comme nous le dé-

taillerons un peu plus tard, nous construirons notre estimateur d’erreur à partir de l’erreur d’interpolation.

DÉFINITION 12. ERREUR D’INTERPOLATION SUR UN TÉTRAÈDRE K
Soit K = [a, b, c, d] un tétraèdre quelconque. Soit u la solution au problème considéré. On note πhu l’interpolée
de u sur K et on définit πhu comme étant un polynôme tel que u(a) = πhu(a), u(b) = πhu(b), u(c) = πhu(c) et
u(d) = πhu(d). On définit l’erreur d’interpolation e par :

einterpol = || u− πhu ||L∞(K)

THÉORÈME 13. Soit K l’ensemble des tétraèdres du maillage sur le domaine Ω ⊂ R3, et soit u : R3 → R
suffisamment régulière. Soit K ∈ K un élément du maillage quelconque. On note πhu l’interpolée de u sur K. Alors,
en notant Hu la matrice Hessienne de u, on a la majoration suivante :

einterpol ≤
1

2

(
3

4

)2

max
x∈K

max
e∈EK

|< Hu(x)e, e >|

DÉMONSTRATION
Soit K un simplexe de dimension 3, ie un tétraèdre de notre maillage. Soit u : R3 → R suffisamment régulière, la
solution du problème étudiée. Soit πhu l’interpolée de cette solution.

Alors on a u(a) = πhu(a), u(b) = πhu(b), u(c) = πhu(c) et u(d) = πhu(d). De plus, on peut écrire également
les lignes suivantes :

(u− πhu)(a) = (u− πhu)(x)+ < x⃗a, ∇u(u− πhu)(x) > +
1

2
< a⃗x, Hu(x+ t1x⃗a) a⃗x >, t1 ∈ [0, 1]

(u− πhu)(b) = (u− πhu)(x)+ < x⃗b, ∇u(u− πhu)(x) > +
1

2
< b⃗x, Hu(x+ t2x⃗b) b⃗x >, t2 ∈ [0, 1]

(u− πhu)(c) = (u− πhu)(x)+ < x⃗c, ∇u(u− πhu)(x) > +
1

2
< c⃗x, Hu(x+ t3x⃗c) c⃗x >, t3 ∈ [0, 1]

(u− πhu)(d) = (u− πhu)(x)+ < x⃗d, ∇u(u− πhu)(x) > +
1

2
< d⃗x, Hu(x+ t4x⃗d) d⃗x >, t4 ∈ [0, 1]

On cherche à majorer einterpol donc on cherche un extremum ou encore un x ∈ K en lequel cet extremum est
atteint. Deux cas sont alors possibles :
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• Soit x est dans l’intérieur de K, ie K̊. Alors ∇u(u−πhu)(x) = 0, ou encore < v⃗,∇u(u−πhu)(x) > = 0∀v⃗ ∈ R3.
Ainsi, on a en particulier :

0 = (u− πhu)(x) +
1

2
< a⃗x,Hu(x+ t1x⃗a) a⃗x >

0 = (u− πhu)(x) +
1

2
< b⃗x,Hu(x+ t2x⃗b) b⃗x >

0 = (u− πhu)(x) +
1

2
< c⃗x,Hu(x+ t3x⃗c) c⃗x >

0 = (u− πhu)(x) +
1

2
< d⃗x,Hu(x+ t4x⃗d) d⃗x >

En sommant les quatre égalités, on trouve alors :

0 = 4(u− πhu)(x) +
1

2

(
a⃗x,Hu(x+ t1x⃗a) a⃗x > + < b⃗x,Hu(x+ t2x⃗b) b⃗x > + < c⃗x,Hu(x+ t3x⃗c) c⃗x >

+ < d⃗x,Hu(x+ t4x⃗d) d⃗x >

)

Posons M tel que :
M = max

x∈K
max
||v||=1

|< v⃗, Hu(x)v⃗ >|

Alors on a la majoration suivante :

| (u− πhu)(x) | ≤
1

8

(
|| a⃗x ||2 + || b⃗x ||2 + || c⃗x ||2 + || d⃗x ||2

)
M

Par définition, x s’écrit sous la forme : x = λaa + λbb + λcc + λdd avec λa + λb + λc + λd = 1. Alors on
peut écrire les différents vecteurs sous la forme décomposée suivante :

a⃗x = λba⃗b+ λca⃗c+ λda⃗d

b⃗x = λab⃗a+ λcb⃗c+ λdb⃗d

c⃗x = λac⃗a+ λbc⃗b+ λdc⃗d

d⃗x = λad⃗a+ λbb⃗d+ λcd⃗c

On en déduit alors l’inégalité suivante :

|| a⃗x ||2 + || b⃗x ||2 + || c⃗x ||2 + || d⃗x ||2 ≤ (λ2
b + λ2

a) || a⃗b ||2 + (λ2
c + λ2

a) || a⃗c ||2 + (λ2
d + λ2

a) || a⃗d ||2

+ (λ2
c + λ2

b) || b⃗c ||2 + (λ2
d + λ2

b) || b⃗d ||2 + (λ2
d + λ2

c) || c⃗d ||2 +

2

(
λbλc < a⃗b, a⃗c > +λbλd < a⃗b, a⃗d > +λcλd < a⃗c, a⃗d >

+ λaλc < b⃗a, b⃗c > +λaλd < b⃗a, b⃗d > +λcλd < b⃗c, b⃗d >

+ λaλb < c⃗a, c⃗b > +λaλd < c⃗a, c⃗d > +λbλd < c⃗b, c⃗d >

+ λaλb < d⃗a, d⃗b > +λaλc < d⃗a, d⃗c > +λbλc < d⃗b, d⃗c >

)
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Soit L la longueur de la plus grande arête de K. Alors, on peut majorer davantage l’inégalité précédente
pour obtenir finalement :

|| a⃗x ||2 + || b⃗x ||2 + || c⃗x ||2 + || d⃗x ||2 ≤
(
3[λ2

b + λ2
a + λ2

c + λ2
d] + 4[λbλc + λbλd + λcλd + λaλc + λaλd + λbλb]

)
L2

On identifie facilement que l’extremum est atteint au barycentre de K, ie lorsque λa = λb = λc = λd = 1
4 .

Par conséquent, on obtient :

| (u− πhu)(x) |≤
9

32
L2M

• Si l’extremum est atteint sur une face de K, arêtes non comprises, alors on peut raisonner de manière simi-
laire à ce qui a été fait précédemment mais dans un triangle, puisque les faces du tétraèdre sont par définition
triangulaires. Supposons par simplicité d’écriture que x soit sur la face composée des points a, b et c. Alors
on peut reprendre la même preuve que dans le point précédent en considérant λd = 0. On obtient dès lors le
même résultat.

• Si l’extremum n’est pas atteint dans l’intérieur de K, alors il correspond à une arête de K. Supposons que
ce soit l’arête [ab] par simplicité d’écriture, mais pour les autres arêtes le procédé serait le même. Le gradient
s’annule donc selon a⃗b :

0 = 2(u− πhu)(x) +
1

2
< a⃗x, Hu(x+ t1x⃗a)a⃗x > +

1

2
< b⃗x, Hu(x+ t2x⃗b)b⃗x >

On définit alors M tel que :
M = max

x∈[ab]
max
||v||=1

|< v⃗, Hu(x)v⃗ >|

Alors on aboutit à la majoration suivante, en posant la même définition de L que dans le point précédent :

| (u− πhu)(x) | ≤
1

8
|| a⃗b ||2 M

≤ 1

8
L2M

≤ 9

32
L2M

Ainsi, dans tous les cas, on obtient la majoration suivante : | (u − πhu)(x) | ≤
9

32
L2M . De plus, puisque chaque

vecteur v⃗ de K peut s’écrire comme une combinaison linéaire des arêtes de K, il vient :

|| v⃗ |||Hu| ≤ max
e∈EK

|| e |||Hu|

Cela nous conduit donc au résultat désiré, c’est à dire :

einterpol ≤
1

2

(
3

4

)2

max
x∈K

max
e∈EK

|< Hu(x)e, e >|

□
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7 LIEN ENTRE L’ERREUR ET L’ERREUR D’INTERPOLATION
Nous n’étudions pas, à priori, directement l’erreur d’interpolation. En effet, l’erreur qui nous intéresse est celle

définie de la manière suivante :

DÉFINITION 14. ERREUR
Soit u la solution exacte au problème étudié, et soit uh la solution calculée par une méthode d’éléments finis. Soit
K un tétraèdre du maillage quelconque. On note e l’erreur sur K, définie ainsi :

e = || u− uh ||L∞(K)

Nous désirons donc relier l’erreur qui nous intéresse avec l’erreur d’interpolation. Pour cela, nous avons besoin
de rappeler un théorème et un lemme tous deux essentiels.

THÉORÈME 15. LAX-MILGRAM
Soit V un espace de Hilbert. Soit a(., .) une forme bilinéaire continue et V - coercive. Soit l(.) une forme linéaire
continue sur V . Alors le problème variationnel "trouver u ∈ V tel que a(u, v) = l(v) ∀v ∈ V admet une unique
solution.

LEMME 16. CÉA
Soient V un espace de Hilbert, a(., .) une forme bilinéaire, et l une forme linéaire satisfaisant les hypothèses du
théorème de Lax-Milgram. Soit Vh un sous espace fermé de V . Alors il existe un unique uh ∈ Vh tel que ∀vh ∈
Vh, a(uh, vh) = l(vh). De plus, nous avons :

|| u− uh ||V ≤
M

α
inf

vh∈Vh

|| u− vh ||V =
M

α
d(u, Vh)

où M est la constante de continuité et α la constante de coercivité.

Ainsi, le lemme de Céa nous indique que pour des problèmes elliptiques, l’erreur est majorée par l’erreur d’in-
terpolation. En pratique, on se rend compte que cette inégalité reste de vraie pour des problèmes non elliptiques,
mais nous ne possédons pas de preuve de ce résultat.
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8 CONSTRUCTION D’UN PREMIER ESTIMATEUR D’ERREUR À
PARTIR DE LA HESSIENNE

Comme mentionné dans les parties précédentes, nous avons pu effectuer la majoration suivante pour l’erreur
d’interpolation :

einterpol ≤
1

2

(
3

4

)2

max
x∈K

max
e∈EK

|< Hu(x)e, e >|

De plus, la section précédente nous a permis de justifier que l’erreur était majorée par l’erreur d’interpolation.
Par conséquent, on en déduit la majoration suivante :

e ≤ 1

2

(
3

4

)2

max
x∈K

max
e∈EK

|< Hu(x)e, e >|

Nous allons nous servir de cette majoration pour construire un estimateur d’erreur adéquat, afin de déduire les
nouvelles métriques appropriées. En effet, on ne peut pas directement poser l’estimateur d’erreur comme étant égal
au membre de droite de l’inégalité, puisque trop complexe à calculer. Il nous faut donc partir de cette formulation
afin d’en déduire une plus simple.

PROPOSITION 17. MAJORATION DE L’ERREUR
On peut majorer l’erreur par la quantité suivante :

e ≤ 1

2

(
3

4

)2

max
x∈K

max
e∈EK

<| Hu(x) | e, e >

DÉMONSTRATION
La matrice Hessienne, Hu est une matrice 3× 3 symétrique. Par conséquent, on peut la décomposer de la manière
suivante :

| Hu | = R | Λ | R−1 avec | Λ | =

| λ1 | 0 0
0 | λ2 | 0
0 0 | λ3 |


où λ1, λ2, λ3 désignent les valeurs propres de Hu et R désigne la matrice de passage, composée des vecteurs propres
associés aux λi, 1 ≤ i ≤ 3. Par conséquent, on a la majoration suivante :

e ≤ 1

2

(
3

4

)2

max
x∈K

max
e∈EK

<| Hu(x) | e, e >

□

La complexité réside en le calcul des deux maxima informatiquement dans la majoration. L’objectif de l’estima-
teur d’erreur est de définir par la suite une nouvelle métrique en chaque noeud pour adapter la taille des éléments.

Supposons qu’il existe un tenseur métrique M̄(K) tel que la région définie par {< v⃗,M̄(K)v⃗ >, ∀v⃗ ⊂ K} soit
de volume minimal et tel que :

max
e∈EK

<| Hu(x) | e, e > ≤ < M̄(K)e, e >

L’erreur peut être donc définie de la sorte :

e =
9

32
max
e∈EK

< M̄(K)e, e >
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Soit ϵ l’erreur maximale tolérée sur chacun des éléments du maillage, tel que :

ϵ =
9

32
max
e∈EK

< M̄(K)e, e >

Posons M(K) tel que M(K) =
9

32ϵ
M̄(K) le tenseur métrique désiré. Alors, la relation précédente devient :

<M(K)e, e > = 1 ∀e ∈ EK ⇐⇒ lM(K)(e)
2 = 1 ∀e ∈ EK

On peut définir la métrique cherchée de manière plus explicite :

DÉFINITION 18. MÉTRIQUE RECHERCHÉE
Soit ϵ l’erreur tolérée sur les éléments. Soient hmin et hmax les tailles minimales et maximales des arêtes pour les
éléments. Soient λi, 1 ≤ i ≤ 3 les valeurs propres de la Hessienne Hu, telle que Hu = RΛR−1 avec Λ la matrice
composée des valeurs propres de Hu et R la matrice de passage composée des vecteurs propres associés. Alors :

M = RΛ̃R−1 avec Λ̃ =

λ̃1 0 0

0 λ̃2 0

0 0 λ̃3


On a la définition des λ̃i, 1 ≤ i ≤ 3 suivante :

λ̃i = min

(
max

[
9

32
× | λi |

ϵ
,

1

h2
max

]
,

1

h2
min

)

L’objectif du travail étant de considérer un champ P2 continu pour le champ solution, cela implique que le champ
des gradients sera P1 discontinu et que le champ de matrices Hessiennes sera à fortiori P0 discontinu. En résumé,
nous obtenons une matrice Hessienne par élément de maillage et puisque la métrique est directement calculée à
partir de cette dernière, nous obtenons par conséquent une métrique par élément de maillage. Cependant, afin
d’adapter la taille des éléments, il nous faut prescrire au mailleur une métrique par noeud. La solution que nous
avons adoptée est de considérer les noeuds un par un. Pour chacun des noeuds, on fait la moyenne des métriques
calculées sur chacun des éléments auxquels le dit noeud appartient. Cette moyenne formera la nouvelle métrique au
noeud à fournir au mailleur. On peut par exemple représenter ceci en 2D, par souci de lisibilté :

Figure 9 – Passage d’un champ métrique P0 discontinu à un champ métrique P1 continu
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9 UTILISATION DU GRADIENT POUR LA CONSTRUCTION DE
L’ESTIMATEUR D’ERREUR

La seconde méthode consiste à utiliser plutôt le gradient, à la place de la Hessienne. Cette méthode-ci est déjà
codée en réalité pour le cas P1, mais on désire l’adapter au cas P2. Ce qui suit est valable en P1 comme en P2, sauf
mention du contraire. On donnera dans cette partie les expressions des quantités mises en jeu lors du calcul de la
nouvelle métrique. Le procédé est en réalité un peu différent de ce qui a été fait précedemment.

Rappelons tout d’abord quelques résultats. Désignons par u la solution exacte au problème cherchée, et par uh

son interpolation aux noeuds. Par conséquent, cela implique qu’aux noeuds du maillages on a pour chaque noeud
xi l’égalité uh(xi) = u(xi), par définition de l’interpolée.

On notera dans toute la suite Xij = Xi −Xj pour n’importe quelle quantité X. Pour une arête, on note donc Sij

l’arête reliant les sommets Si et Sj . En particulier, si on pose U i = u(xi) = uh(xi), alors U ij = U i − U j .

La méthode du gradient repose sur l’erreur selon l’arête. L’idée est d’estimer l’erreur selon chaque arête, puis
de comparer cette erreur avec une erreur tolérée, choisie préalablement. Par la suite, il faut adapter la longueur des
arêtes afin de respecter l’erreur tolérée suivant chaque arête.

DÉFINITION 19. ERREUR SELON L’ARÊTE
Si l’on note eij l’erreur le long de l’arrête reliant les sommets Si et Sj , alors son expression est donnée par :

eij =| Gij .Sij |

avec Gij la différence entre la valeur du gradient en Si et celle en Sj .

Toute la difficulté réside en le calcul de ce gradient. En effet, en P1, le gradient est continu. On peut donc
facilement calculer le gradient aux différents noeuds, pour ensuite estimer l’erreur selon l’arête, et ensuite adapter
la taille des arêtes et remailler facilement. La méthode, comme mentionné précédemment, a déjà été implémentée
en P1. Notre objectif est donc de trouver une stratégie pour adapter cette méthode au cas P2. L’idée de la méthode
en P1, c’est de calculer le gradient selon chaque arrête, puis de déterminer l’erreur selon l’arête et enfin d’adapter
le maillage, comme nous le décrivons un peu plus bas, grâce au coefficient d’étirement selon l’arête. Ce qui
diffère dans le cas P2 par rapport au cas P1, c’est qu’on obtient des valeurs différentes de gradients pour le même
noeud Si selon l’élément Kj dans lequel on se place.

La première idée que nous avons eue a été d’adapter le code déjà mis en place pour calculer une "dérivée" plus
appropriée à la situation. En d’autres termes, à la place de calculer le gradient, qui fournirait donc dans le cas P2
des résultats à priori non exploitables, on calcule une "dérivée" d’un ordre suffisant. Pour le cas P2, on calcule une
"dérivée" d’ordre 2, pour un cas P3 une dérivée d’ordre "3", etc... Et on met cette "dérivée" à la place de Gij dans
notre formule et on procède dès lors comme en P1. Ceci représente la méthode 2.

L’autre approche consiste à trouver une manière de prendre en compte ces différentes valeurs de gradients afin
de se ramener à un champ continu et de pouvoir donner une unique valeur du gradient à un noeud Si donné. L’idée
est d’effectuer une moyenne de toutes les valeurs calculées pour le noeud i dans chacun des éléments Kj contenant
Si, et d’attribuer ce vecteur moyenne comme nouvelle valeur du gradient au noeud Si.

Afin de faciliter la compréhension de cette troisième méthode, on décide de d’abord se placer dans un cas
2D pour illustrer le principe de la méthode proposée. On désire dans cet exemple approximer la valeur du gradient
au sommet Si, contenu au sein de cinq éléments différents, notés respectivement K1,K2,K3,K4 et K5. La valeur
du gradient au sommet indicé i dans l’élément indicé j sera donc notée Gi

j . Pour obtenir la valeur finale de Gi, il
nous suffit alors de faire une moyenne des Gi

j . On obtient alors un champ de gradients P1 continu.
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Figure 10 – Approximation du gradient au noeud en 2D

La valeur ainsi obtenue, quelque soit la méthode, pour l’erreur selon l’arête eij permet donc de calculer un nouvel
élément : le coefficient d’étirement. Un tel coefficient va permettre d’ajuster la métrique en chaque point.

DÉFINITION 20. COEFFICIENT D’ÉTIREMENT SELON L’ARÊTE
On note kij le coefficient d’étirement selon l’arête reliant les sommets Si et Sj , et sa formule est donnée par :

kij =
eij
e

où e est l’erreur souhaitée pour que celle-ci soit équirépartie sur notre maillage.

À partir de ce coefficient d’étirement, on peut reconstruire une nouvelle métrique en chaque noeud du maillage,
qu’il faudra dès lors fournir au mailleur afin que ce dernier puisse adapter le maillage précédent afin de se rapprocher
au mieux du maillage unité.

DÉFINITION 21. NOUVELLE MÉTRIQUE AU NOEUD i
La nouvelle métrique au sommet Si est donnée par l’expression :

Mi =
1

3

(
1

| Γ(i) |
∑
j

k2ijS
ij ⊗ Sij

)

Les procédés mis en place par le mailleur pour adapter le maillage, en accord avec les nouvelles métriques
préscrites aux différents noeuds sont ceux décrit dans la partie sur la génération et l’adaptation de maillages.
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Septième partie

TESTS SUIVANT LES DIFFÉRENTES
MÉTHODES

Cette partie comporte l’ensemble des résultats numériques obtenus lors de ce stage, ainsi que leurs interprétations.

10 PREMIER TEST AVEC LA MÉTHODE DU GRADIENT P1 EN
2D POUR LA VALIDATION DE LA STRUCTURE DU CODE

Afin de valider nos codes et notre structure d’appel aux différentes fonctions, nous avons dans un premier temps
voulu faire quelques cas tests sur des éléments finis P1, et en 2D. Nous avons donc testé une méthode déjà codée et
dont nous savions qu’elle devait fonctionner.

Nous partons donc d’un carré [0; 1] × [0; 1] dont nous réalisons un premier maillage grossier initial, ci-après. Nous
imposons un nombre de remaillages maximal, ainsi que des tailles minimales et maximales, en guise de sécurité,
paramètres que nous fixerons ci-après.

Figure 11 – Maillage initial

Nous imposons donc un champ solution u et effectuons le remaillage en fonction de celui-ci. Le champ u choisi
est tiré du document intitulé Aspects Théoriques et Numériques pour les Fluides Incompressibles, rédigé par Pas-
cal Frey et Yannick Privat. Nous pourrons donc par la suite comparer nos résultats aux leurs, afin de valider ou
d’invalider nos tests. Nous imposons donc le champ solution suivant :

u(x, y) = tanh(−100[y − 0.5− 0.25sin(2πx)]) + tanh(100[y − x])

L’estimateur d’erreur utilisé est basé sur l’erreur selon l’arête, calculée grâce au gradient, comme expliqué ci-
dessus. Puisque nous sommes avec des éléments finis P1, le champ est continu et il est inutile pour le moment
de faire une moyenne sur chaque noeud des différentes valeurs du gradient selon l’élément dans lequel le noeud se
trouve.

25



TESTS SUIVANT LES DIFFÉRENTES MÉTHODES

Les résultats obtenus par Pascal Frey et Yannick Privat sont les suivants. À gauche se trouve leur maillage initial
et à droite, leur maillage final.

Figure 12 – Maillage initial et maillage final pour les tests de Frey et Privat

En ce qui concerne nos choix de paramètres, nous n’avions pas à notre disposition ceux choisis par Pascal Frey
et Yannick Privat. Nous avons donc fait plusieurs tests pour nous rendre compte de ce qui fournissait le meilleur
résultat. Nous avons fixé une taille d’arête devant être comprise hmin = 0.001 et hmax = 0.4. Nous bloquons le
processus tout d’abord à 5 remaillages. L’erreur répartie devrait être inférieure à 2 × 10−4. Pour le côté parallèle,
nous avons fixé un nombre de noeuds minimal à 8000 et maximal à 20000. Nous nous plaçons de plus sur un carré
[0; 1]× [0; 1]. Voici donc les résultats successifs des différents remaillages effectués :

Figure 13 – Maillage initial et premier remaillage

Figure 14 – Second et troisième remaillages
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Figure 15 – Quatrième et dernier remaillages

On peut tout d’abord effectuer une constatation évidente : on obtient un remaillage très similaire à celui obtenu
par Pascal Frey et Yannick Privat. De plus, on peut constater que l’on a bien un maillage anisotrope. En effet, près
des zones ou le remaillage est très fin, on observe que les triangles sont très aplatis. Ainsi, le remaillage prend bien en
compte la direction. On peut effectuer un nombre un peu plus important de remaillages. En réalité, on constate que
cela ne change pas grand chose dans notre cas test (les résultats obtenus très rapidement sont vraiment convenables).
Voici ce que nous obtenons par exemple au bout de 10 remaillages :

Figure 16 – Dixième remaillage

27



TESTS SUIVANT LES DIFFÉRENTES MÉTHODES

11 RÉSULTATS AVEC LA MÉTHODE DE LA HESSIENNE SUR UN
CHAMP P2 EN 2D

On se place cette fois-ci dans le cas d’un champ P2 en 2D, afin de se placer dans le cadre qui nous intéresse.
Nous avonc décidé de reprendre le même cas test pour comparer les deux méthodes : celle du gradient, et celle de
la Hessienne. On décide donc de partir du maillage initial suivant :

Figure 17 – Maillage initial pour la méthode de remaillage par la matrice Hessienne

Dans un premier temps, avant même de remailler, nous avons décidé d’afficher le champs de matrices Hessiennes
et le champ des métriques à fournir au mailleur, afin de vérifier que tout était bien cohérent. Nous avons dès lors
obtenu ces deux représentations :

Figure 18 – Champ de matrices Hessiennes
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Figure 19 – Champ de métriques à fournir au mailleur

On observe donc une corrélation avec les résultats attendus. En effet, on peut remarquer que les zones à remailler
seront les mêmes que celles qui ont été remaillées avec la méthode du gradient dans le cas P1.

Nous pouvons donc passer aux étapes de remaillage, puisque nous nous sommes assurés que les zones à remailler
étaient bien cohérentes vis à vis des résultats attendus. Nous effectuons comme précédemment cinq remaillages afin
d’observer l’évolution de ceux-ci. Voici donc les résultats que nous obtenons :

Figure 20 – Premier remaillage - Champ des matrices Hessiennes - Champ des métriques

Figure 21 – Second remaillage - Champ des matrices Hessiennes - Champ des métriques
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Figure 22 – Troisième remaillage - Champ des matrices Hessiennes - Champ des métriques

Figure 23 – Quatrième remaillage - Champ des matrices Hessiennes - Champ des métriques

Figure 24 – Quatrième remaillage - Champ des matrices Hessiennes - Champ des métriques

Nous pouvons faire quelques commentaires et émettre quelques critiques vis à vis de la méthode. La première
remarque que nous pouvons faire c’est que les résultats obtenus sont satisfaisants, dans le sens où l’on retoruve bien
le bon motif. Les endroits nécéssitant un maillage plus fin ont bien été adaptés de la sorte. Néanmoins, on remarque
que le maillage demeure très fin dans les zones où il n’a plus à l’être. De plus, on note un maillage isotrope et
non anisotrope. Enfin, nous ne possédons pas de critère d’arrêt. Nous nous contentons de prescrire un nombre de
remaillage à effectuer, mais sans condition d’arrêt.
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On peut relever le nombre de noeuds pour chacun des remaillages effectués. On obtient dès lors les résultats
numériques suivants :

Figure 25 – Nombre de noeuds pour chaque remaillage

On peut également s’intéresser à l’erreur, et tout d’abord aux endroits où l’erreur est le plus présente. Pour cela,
on prend un maillage bien plus fin, que l’on considère comme maillage de référence, sur lequel on évalue la solution,
que l’on prétend exacte, puis on compare l’écart entre les valeurs sur le maillage adapté et le maillage très fin. On
constate donc sur les graphiques ci-dessous que l’erreur suit bien le motif de la fonction :

Figure 26 – Localisation de l’erreur sur le maillage initial et sur les 4 premiers remaillages
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Afin de ne pas posséder uniquement des résultats qualitatifs, bien que très visuels, nous désirons calculer l’erreur
L2 commise entre la solution calculée sur les remaillages effectués, et la solution espérée. Nous obtenons les résultats
suivants :

Figure 27 – Erreur en norme L2 commise sur le maillage initial et les remaillages effectués

On peut également représenter ces résultats sous la forme graphique, afin d’illustrer la convergence vers la solution
exacte :

Figure 28 – Erreur en norme L2 commise sur le maillage initial et les remaillages effectués
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12 AMÉLIORATION DE LA MÉTHODE DE LA HESSIENNE SUR
UN CHAMP P2 EN 2D

Le premier souci que nous avons pu remarquer avec la méthode de la Hessienne élaborée dans un premier temps,
c’est que les zones qui ne sont pas spécialement à remailler le sont tout de même un peu. Nous allons donc adapter
les valeurs de hmin et de hmax. De plus, nous allons introduire un coefficient de régularisation de l’erreur w dans la
formule suivante :

λ̃i = min

(
max

[
w × 9

32
× | λi |

ϵ
,

1

h2
max

]
,

1

h2
min

)

Ce coefficient permet d’imposer à des métriques trop marginales (trop petites ou trop grandes) de se fixer aux

valeurs de
1

h2
max

ou 1
h2
min

. Pour notre exemple, nous considérons w = 0.004. Nous considérons toujours la même

fonction comme champ solution.

Nous partons également d’un maillage un peu plus grossier (mais cela ne change rien au résultat obtenu à l’is-
sue des remaillages) :

Figure 29 – Maillage initial avec champ solution u
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Nous obtenons donc les premiers remaillages suivants :

Figure 30 – Six premiers remaillages avec le champ solution u

La première remarque que nous pouvons effectuer, c’est qu’on a cette fois-ci bien un maillage anisotrope. De
plus, on observe toujours le bon motif de remaillage, tout en conservant un maillage grossier dans les zones où l’on
n’a pas besoin de remailler.
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En ce qui concerne le nombre de noeuds à chaque remaillage, nous avons les données suivantes :

Figure 31 – Nombre de noeuds pour chaque remaillage

On peut également s’intéresser à l’erreur commise. Si on considère l’écart entre le graphe attendu et le graphe
obtenu sur le maillage actuel, on obtient les représentations d’erreur suivantes :

Figure 32 – Localisation de l’erreur uref − ucalc pour le maillage initial et les six premiers remaillages
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On observe bien que l’erreur est localisée sur la zone du dessin de la fonction, et le motif s’estompe au fur et à
mesure des remaillages, preuve que le maillage se perfectionne bien.

Afin d’avoir des résultats quantitatifs, et non seulement qualitatifs, nous pouvons déterminer l’erreur en norme
L2. Nous obtenons les résultats numériques suivants, preuve de convergence vers la solution :

Figure 33 – Erreur en norme L2

On peut ainsi représenter ces valeurs sur un graphe, ce qui nous permet d’obtenir des résultats un peu plus visuels :
la convergence saute alors aux yeux.

Figure 34 – Erreur en norme L2
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13 ADAPTATION DE LA MÉTHODE DE LA HESSIENNE SUR UN
CHAMP P2 EN 3D

Nous sommes partis, pour adapter la méthode en 3D, de la version améliorée de la méthode de la Hessienne
2D. Il a suffi d’adapter les tailles des matrices mises en jeu. Cependant, l’adaptation de maillages en 3D est bien
plus coûteuse que celle en 2D. Il est donc impératif de modifier les valeurs de hmin et de hmax, qui représentent
respectivement les tailles minimales et maximales à respecter lors du remaillage. Nous avons donc fixé les paramètres
suivants :

hmin = 0.01 hmax = 0.2

Nous conservons la valeur pour le coefficient de régularisation : w = 0.004. Nous conservons la même fonction 2D
testée dans les cas tests précédents. Nous partons donc du maillage initial suivant :

Figure 35 – Maillage initial 3D

Nous pouvons dès lors représenter le champ solution u, le champ de matrices Hessiennes, et le champ de métriques :

Figure 36 – Avant remaillage : champ u - champ de matrices Hessiennes - champ de métriques
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Ensuite, nous obtenons les différents remaillages successifs, que l’on voit bien anisotropes :

Figure 37 – De bas en haut : huit premiers remaillages successifs avec le champ solution u en couleurs

Sans surprise, le motif obtenu est bien toujours conforme à nos attentes, présent uniquement sur la face avant
et arrière du cube, puisque nous représentons une fonction 2D. De plus, on remarque que sur la face latérale, le
long de la jonction entre la zone rouge et la zone verte, le maillage s’étire de plus en plus, illustrant bien le côté
anisotrope. Si l’on observe le bord des faces latérales du cube, on a bien un nombre de triangle minimal, conforme
aux paramètres fixés. En conclusion, la méthode avec la matrice Hessienne fournit des résultats satisfaisants. Nous
ne pouvons cependant pas dire si c’est la méthode optimale.
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Pour ce qui est du nombre de noeuds obtenus à chaque remaillage, nous obtenons les résultats suivants :

Figure 38 – Nombre de noeuds pour chaque remaillage

Nous ne réaliserons pas de calcul d’erreur sur les cas 3D, car prendre un maillage fin et évaluer la solution dessus
est déjà très coûteux en 2D, mais l’est d’autant plus en 3D. Cela serait donc bien trop coûteux à calculer.
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14 ÉLABORATION D’UN NOUVEAU CAS TEST 3D POUR LA MÉ-
THODE DE LA HESSIENNE AVEC UNE FONCTION À TROIS
VARIABLES

On décide dans ce cas test de rendre le motif représenté un peu plus complexe, en faisant intervenir les trois
variables d’espace, x, y et z. Le choix de la fonction représentée se base tout de même sur le motif 2D travaillé
auparavant. Nous avons donc choisi de travailler avec la fonction :

u(x, y, z) = tanh(−100[y−0.5−0.25sin(2πx)])+tanh(100[y−x])+tanh(−100[z−0.5−0.25sin(2πy)])+tanh(100[z−y])

Nous obtenons donc les remaillages successifs suivants :

Figure 39 – De gauche à droite, les 8 premiers remaillages avec la fonction u
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En termes de résultats quantitatifs, nous obtenons les nombre de noeuds suivants pour chacun des remaillages :

Figure 40 – Nombre de noeuds pour chaque remaillage

De même que pour le cas test précédent, nous ne donnerons pas de courbe d’erreur, pour les mêmes raisons.
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15 RÉSULTATS AVEC LA MÉTHODE 2 DU GRADIENT SUR UN
CHAMP P2 EN 2D

Nous adaptons cette fois-ci la méthode 2 du gradient pour l’appliquer sur un champ P2, comme expliqué précé-
demment, en calculant la dérivée associée à l’ordre choisi. L’objectif est de comparer l’efficacité des deux méthodes
testées sur des champs P2, afin de pouvoir identifier laquelle il est souhaitable d’utiliser. Nous nous proposons
donc de réaliser nos tests sur le même cas test, dans les mêmes conditions et avec des paramètres identiques à
ceux utilisés dans la méthode de la Hessienne. Nous partons de surcroît toujours du même maillage initial afin de
ne pas fausser les résultats et de se placer dans des conditions identiques en tout point à celles testées précédemment.

Pour réaliser les premiers tests sur la méthode, il nous faut élaborer des tests progressifs. Tout d’abord nous
mettrons en place un test 2D sur une fonction dépendant uniquement de x. On augmentera progressivement l’ordre
de la solution et celui du champ de calcul. Dans un second temps, nous ferons la même chose mais avec une fonction
dépendant uniquement de y. L’objectif par la suite est de combiner les deux afin d’obtenir un test 2D sur une
fonction de x et de y.

15.1 TESTS AVEC UNE FONCTION DÉPENDANT D’UNE SEULE VARIABLE
Nous partons d’un maillage vraiment simple cette fois-ci :

Figure 41 – Maillage initial pour les tests 2D

Nous considérons la fonction u(x) = 10xn, où nous ferons varier le paramètre n, appelé ordre de la solution.
L’objectif en faisant varier ce paramètre est de voir si l’estimateur d’erreur permet de remailler uniquement lorsque
c’est nécessaire ou pas.

Voici donc les résultats obtenus et les différents tests réalisés :
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Figure 42 – n = 1 - champ P1 Figure 43 – n = 2 - champ P1

Figure 44 – n = 3 - champ P1 Figure 45 – n = 1 - champ P2

Figure 46 – n = 2 - champ P2 Figure 47 – n = 3 - champ P2
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Figure 48 – n = 1 - champ P3 Figure 49 – n = 2 - champ P3

Figure 50 – n = 3 - champ P3

Nous pouvons émettre quelques remarques. La première, c’est que lorsque que l’on a un champ Pm avec un
ordre n de la solution, et que m > n, alors le mailleur va bien ne pas remailler plus finement et au contraire mettre
le maillage le plus grossier : en effet, il n’y a pas d’erreur, donc inutile de remailler. En revanche, si on a m ≤ n
alors on remaille bien. De plus, dans le cas n = m + 2, on voit bien que plus on va vers la droite, plus le maillage
est raffiné, ce qui concorde avec le choix de la fonction.

Pour poursuivre les tests, nous avons choisi de tester une fonction qui ne dépendait cette fois-ci que de la variable
y. Nous partons toujours du même maillage simplifié, représenté en figure (41). Nous considérons dès lors la fonction
u(y) = 10yn, où nous faisons toujours varier le paramètre n. Nous avons obtenu des résultats similaires, mais cette
fois-ci orientés suivant l’axe des y.

15.2 GÉNÉRALISATION À UNE FONCTION DÉPENDANT DE DEUX VARIABLES
Nous avions donc comme objectif de combiner la méthode élaborée pour une fonction dépendant de x et celle

élaborée pour une fonction dépendant de y, afin d’obtenir une méthode dépendant à la fois de x et de y. Malheu-
reusement nous n’y sommes pas parvenus. Les modifications effectuées étaient faites à tâtons, et nous manquions
de théorie derrière. Nous nous sommes rendus compte que les résultats obtenus semblaient être dépendants d’un
paramètre qu’il fallait fixer au cas par cas. Il nous est donc impossible d’obtenir une méthode générale de cette
manière. Nous laissons donc cette idée de côté.
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CONCLUSION

Huitième partie

CONCLUSION
Nous avons, au cours de ce stage, pu élaborer une méthode P2 d’adaptation de maillages, basée sur la Hessienne

de la solution. Ce point là semble être une vraie réussite quand aux objectifs du stage. Cependant, nous ne sommes
pas parvenus à adapter la méthode du gradient P1 en P2. Il reste cependant à tester la troisième méthode, basée
elle aussi sur le gradient de la solution, qui, peut sembler prometteuse.

Ce stage aura été instructif pour moi, tant sur l’appréhension des notions nouvelles, telles que la notion de mé-
trique, ou plus généaralement celle d’adaptation de maillages, et de maillages anisotropes qui jusque là m’étaient
inconnus. Ce stage m’aura également permis d’apprendre à coder en C++, non sans difficultés, de par un appren-
tissage entièrement autodidacte, mais cela représente désormais un apport non négligeable à mon portefeuille de
compétences.
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ANNEXES

Neuvième partie

ANNEXES
16 FONCTIONS DE FORME POUR LE TÉTRAÈDRE DE RÉFÉ-

RENCE
Il nous faut dans un premier temps déterminer les coordonnées barycentriques associées à notre tétraèdre de

référence. Résolvons donc le système :
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 1



λ1(x̂, ŷ, ẑ)
λ2(x̂, ŷ, ẑ)
λ3(x̂, ŷ, ẑ)
λ4(x̂, ŷ, ẑ)

 =


x̂
ŷ
ẑ
1



⇐⇒


λ2(x̂, ŷ, ẑ) = x̂

λ3(x̂, ŷ, ẑ) = ŷ

λ4(x̂, ŷ, ẑ) = ẑ

λ1(x̂, ŷ, ẑ) = 1− x̂− ŷ − ẑ

Notons dès lors (Φ̂i)1≤i≤10 la base canonique recherchée. Elle vérifie alors σj(Φ̂i) = δji pour tous 1 ≤ i, j ≤ 10.

• Exprimons Φ̂1 : on remarque que λ1 vaut 1 en â1 et s’annule en â2, â3, â4, m̂23, m̂24 et m̂34. De plus, 2λ1 − 1
s’annule en m̂12, m̂13 et m̂14. Donc λ1(2λ1 − 1) s’annule en tout point sauf en â1 où il vaut 1. On a donc
l’expression : Φ̂1 = λ1(2λ1 − 1).

• Exprimons Φ̂2 : on remarque que λ2 vaut 1 en â2 et s’annule en â1, â3, â4, m̂13, m̂34 et m̂14. De plus, 2λ2 − 1
s’annule en m̂12, m̂23 et m̂24. Donc λ2(2λ2 − 1) s’annule en tout point sauf en â2 où il vaut 1. On a donc
l’expression : Φ̂2 = λ2(2λ2 − 1).

• Exprimons Φ̂3 : on remarque que λ3 vaut 1 en â3 et s’annule en â1, â2, â4, m̂12, m̂14 et m̂24. De plus, 2λ3 − 1
s’annule en m̂13, m̂23 et m̂34. Donc λ3(2λ3 − 1) s’annule en tout point sauf en â3 où il vaut 1. On a donc
l’expression : Φ̂3 = λ3(2λ3 − 1).

• Exprimons Φ̂4 : on remarque que λ4 vaut 1 en â4 et s’annule en â1, â2, â3, m̂12, m̂13 et m̂23. De plus, 2λ4 − 1
s’annule en m̂14, m̂24 et m̂34. Donc λ4(2λ4 − 1) s’annule en tout point sauf en â4 où il vaut 1. On a donc
l’expression : Φ̂4 = λ4(2λ4 − 1).

• Exprimons Φ̂5 associé à m̂12 : on remarque que λ1λ2 s’annule en tout point sauf en m̂12 où il vaut
1

4
. On a

donc l’expression : Φ̂5 = 4λ1λ2.

• Exprimons Φ̂6 associé à m̂13 : on remarque que λ1λ3 s’annule en tout point sauf en m̂13 où il vaut
1

4
. On a

donc l’expression : Φ̂6 = 4λ1λ3.

• Exprimons Φ̂7 associé à m̂14 : on remarque que λ1λ4 s’annule en tout point sauf en m̂14 où il vaut
1

4
. On a

donc l’expression : Φ̂7 = 4λ1λ4.

• Exprimons Φ̂8 associé à m̂23 : on remarque que λ2λ3 s’annule en tout point sauf en m̂23 où il vaut
1

4
. On a

donc l’expression : Φ̂8 = 4λ2λ3.

• Exprimons Φ̂9 associé à m̂24 : on remarque que λ2λ4 s’annule en tout point sauf en m̂24 où il vaut
1

4
. On a

donc l’expression : Φ̂9 = 4λ2λ4.

• Exprimons Φ̂10 associé à m̂34 : on remarque que λ4λ3 s’annule en tout point sauf en m̂34 où il vaut
1

4
. On a

donc l’expression : Φ̂10 = 4λ4λ3.
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17 DÉTAIL DU CALCUL DE F−1K

Sur la première ligne, nous pouvons réaliser l’opération suivante :

L1 ← (L1 − x1)×
1

x2 − x1
− (L2 − x2)×

1

y2 − y1

Ainsi, on obtient sur la ligne 1 :

Âx+ ŷ
x3 − x1

x2 − x1
+ ẑ

x4 − x1

x2 − x1
− Ax− ŷ

y3 − y1
y2 − y1

− ẑ
y4 − y1
y2 − y1

=
x− x1

x2 − x1
− y − y1

y2 − y1

⇐⇒ ŷ

(
x3 − x1

x2 − x1
− y3 − y1

y2 − y1

)
+ ẑ

(
x4 − x1

x2 − x1
− y4 − y1

y2 − y1

)
=

x− x1

x2 − x1
− y − y1

y2 − y1

On procède de manière similaire sur la ligne 2 :

L2 ← (L2 − x2)×
1

y2 − y1
− (L3 − x3)×

1

z2 − z1

On obtient ainsi sur la ligne 2 :

Âx+ ŷ
y3 − y1
y2 − y1

+ ẑ
y4 − y1
y2 − y1

− Ax− ŷ
z3 − z1
z2 − z1

− ẑ
z4 − z1
z2 − z1

=
y − y1
y2 − y1

− z − z1
z2 − z1

⇐⇒ ŷ

(
y3 − y1
y2 − y1

− z3 − z1
z2 − z1

)
+ ẑ

(
y4 − y1
y2 − y1

− z4 − z1
z2 − z1

)
=

y − y1
y2 − y1

− z − z1
z2 − z1

Les lignes 1 et 2 ne comportent plus que les inconnues ŷ et ẑ. Il nous est donc possible de trouver l’expression
de chacune de ces deux inconnues. Tout d’abord, on fait subir à la ligne 1 l’opération suivante :

L1 ← L1 ×
(x2 − x1)(y2 − y1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− L2 ×

(y2 − y1)(z2 − z1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

On obtient donc sur la ligne 1 :

AÂy + ẑ
(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

XXXXX(x2 − x1)
XXXXX(y2 − y1)

×
XXXXX(x2 − x1)

XXXXX(y2 − y1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

−AÂy − ẑ
(y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

XXXXX(y2 − y1)
XXXXX(z2 − z1)

×
XXXXX(y2 − y1)

XXXXX(z2 − z1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

=

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)
XXXXX(x2 − x1)

XXXXX(y2 − y1)
×

XXXXX(x2 − x1)
XXXXX(y2 − y1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)
XXXXX(y2 − y1)

XXXXX(z2 − z1)
×

XXXXX(y2 − y1)
XXXXX(z2 − z1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)
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On obtient ainsi l’expression suivante pour ẑ :

ẑ =

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

On peut donc remplacer la valeur de ẑ dans la ligne 2 afin d’en déduire une expression de ŷ. On obtient :

ŷ =
(y − y1)(z2 − z1)− (z − z1)(y2 − y1)

XXXXX(y2 − y1)
XXXXX(z2 − z1)

×
XXXXX(y2 − y1)

XXXXX(z2 − z1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

− ẑ
(y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

XXXXX(y2 − y1)
XXXXX(z2 − z1)

×
XXXXX(y2 − y1)

XXXXX(z2 − z1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

D’où l’expression pour ŷ :

ŷ =
(y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

−

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

On peut donc en déduire l’expression de x̂ à partir de la dernière ligne du système, la ligne 3. On obtient alors :

x̂ =
x− x1

x2 − x1
− ŷ

x3 − x1

x2 − x1
− ẑ

x4 − x1

x2 − x1

D’où l’expression pour x̂ :

x̂ =
x− x1

x2 − x1
−
(

(y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

−

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

)
x3 − x1

x2 − x1

−

(x− x1)(y2 − y1)− (y − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y − y1)(z2 − z1)− (z − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

x4 − x1

x2 − x1
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18 Calcul de la matrice JacF−1K

• Exprimons ∇Φ̂1 associé à â1 :

∇Φ̂1(x̂, ŷ, ẑ) =


∂x̂Φ̂1(x̂, ŷ, ẑ)

∂ŷΦ̂1(x̂, ŷ, ẑ)

∂ẑΦ̂1(x̂, ŷ, ẑ)

 =


−3 + 4x̂+ 4ŷ + 4ẑ

−3 + 4x̂+ 4ŷ + 4ẑ

−3 + 4x̂+ 4ŷ + 4ẑ


• Exprimons ∇Φ̂2 associé à â2 :

∇Φ̂2(x̂, ŷ, ẑ) =


∂x̂Φ̂2(x̂, ŷ, ẑ)

∂ŷΦ̂2(x̂, ŷ, ẑ)

∂ẑΦ̂2(x̂, ŷ, ẑ)

 =


4x̂− 1

0

0


• Exprimons ∇Φ̂3 associé à â3 :

∇Φ̂3(x̂, ŷ, ẑ) =


∂x̂Φ̂3(x̂, ŷ, ẑ)

∂ŷΦ̂3(x̂, ŷ, ẑ)

∂ẑΦ̂3(x̂, ŷ, ẑ)

 =


0

4ŷ − 1

0


• Exprimons ∇Φ̂4 associé à â4 :

∇Φ̂4(x̂, ŷ, ẑ) =


∂x̂Φ̂4(x̂, ŷ, ẑ)

∂ŷΦ̂4(x̂, ŷ, ẑ)

∂ẑΦ̂4(x̂, ŷ, ẑ)

 =


0

0

4ẑ − 1


• Exprimons ∇Φ̂5 associé à m̂12 :

∇Φ̂5(x̂, ŷ, ẑ) =


∂x̂Φ̂5(x̂, ŷ, ẑ)

∂ŷΦ̂5(x̂, ŷ, ẑ)

∂ẑΦ̂5(x̂, ŷ, ẑ)

 =


4− 8x̂

−4x̂

−4x̂


• Exprimons ∇Φ̂6 associé à m̂13 :

∇Φ̂6(x̂, ŷ, ẑ) =


∂x̂Φ̂6(x̂, ŷ, ẑ)

∂ŷΦ̂6(x̂, ŷ, ẑ)

∂ẑΦ̂6(x̂, ŷ, ẑ)

 =


−4ŷ

4− 8ŷ

−4ŷ


• Exprimons ∇Φ̂7 associé à m̂14 :

∇Φ̂7(x̂, ŷ, ẑ) =


∂x̂Φ̂7(x̂, ŷ, ẑ)

∂ŷΦ̂7(x̂, ŷ, ẑ)

∂ẑΦ̂7(x̂, ŷ, ẑ)

 =


−4ẑ

−4ẑ

4− 8ẑ


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• Exprimons ∇Φ̂8 associé à m̂23 :

∇Φ̂8(x̂, ŷ, ẑ) =


∂x̂Φ̂8(x̂, ŷ, ẑ)

∂ŷΦ̂8(x̂, ŷ, ẑ)

∂ẑΦ̂8(x̂, ŷ, ẑ)

 =


4ŷ

4x̂

0


• Exprimons ∇Φ̂9 associé à m̂24 :

∇Φ̂9(x̂, ŷ, ẑ) =


∂x̂Φ̂9(x̂, ŷ, ẑ)

∂ŷΦ̂9(x̂, ŷ, ẑ)

∂ẑΦ̂9(x̂, ŷ, ẑ)

 =


4ẑ

0

4x̂


• Exprimons ∇Φ̂10 associé à m̂24 :

∇Φ̂9(x̂, ŷ, ẑ) =


∂x̂Φ̂10(x̂, ŷ, ẑ)

∂ŷΦ̂10(x̂, ŷ, ẑ)

∂ẑΦ̂10(x̂, ŷ, ẑ)

 =


0

4ẑ

4ŷ


Il nous faut donc enfin déterminer la matrice Jacobienne de F−1

K . On note F−1
K

(i)
la i− ème coordonnée du

vecteur F−1
K . La matrice Jacobienne s’écrit alors :

∂xF
−1
K

(1)
∂yF

−1
K

(1)
∂zF

−1
K

(1)

∂xF
−1
K

(2)
∂yF

−1
K

(2)
∂zF

−1
K

(2)

∂xF
−1
K

(3)
∂yF

−1
K

(3)
∂zF

−1
K

(3)



Il faut donc exprimer toutes les dérivées partielles.

• Exprimons ∂xF
−1
K

(1)
:

∂xF
−1
K

(1)
=

1

x2 − x1

−

y2 − y1
(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

x3 − x1

x2 − x1

−

y2 − y1
(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

x4 − x1

x2 − x1
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• Exprimons ∂yF
−1
K

(1)
:

∂yF
−1
K

(1)
=

(
− z2 − z1

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

−
− x2 − x1

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− z2 − z1

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

)
x3 − x1

x2 − x1

−
− x2 − x1

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− z2 − z1

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

x4 − x1

x2 − x1

• Exprimons ∂zF
−1
K

(1)
:

∂zF
−1
K

(1)
=

(
y2 − y1

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

−

y2 − y1
(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

)
x3 − x1

x2 − x1

−

y2 − y1
(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

x4 − x1

x2 − x1

• Exprimons ∂xF
−1
K

(2)
:

∂xF
−1
K

(2)
= −

y2 − y1
(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

• Exprimons ∂yF
−1
K

(2)
:

∂yF
−1
K

(2)
=

z2 − z1
(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

+

x2 − x1

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
+

z2 − z1
(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)
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• Exprimons ∂zF
−1
K

(2)
:

∂zF
−1
K

(2)
= − y2 − y1

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

+

− y2 − y1
(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

× (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

• Exprimons ∂xF
−1
K

(3)
:

∂xF
−1
K

(3)
=

y2 − y1
(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

• Exprimons ∂yF
−1
K

(3)
:

∂yF
−1
K

(3)
=

− x2 − x1

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− z2 − z1

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

• Exprimons ∂zF
−1
K

(3)
:

∂zF
−1
K

(3)
=

y2 − y1
(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

(x4 − x1)(y2 − y1)− (y4 − y1)(x2 − x1)

(x3 − x1)(y2 − y1)− (y3 − y1)(x2 − x1)
− (y4 − y1)(z2 − z1)− (z4 − z1)(y2 − y1)

(y3 − y1)(z2 − z1)− (z3 − z1)(y2 − y1)

Nous avons donc pleinement déterminé la matrice Jacobienne.
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19 Calcul des dérivées secondes des Φ̂k

On obtient donc les dérivées constantes suivantes :

• Pour Φ̂1 :
∂2Φ̂1

∂x2
=

∂2Φ̂1

∂y2
=

∂2Φ̂1

∂z2
=

∂2Φ̂1

∂x∂y
=

∂2Φ̂1

∂y∂x
=

∂2Φ̂1

∂z∂x
=

∂2Φ̂1

∂x∂z
=

∂2Φ̂1

∂z∂y
=

∂2Φ̂1

∂y∂z
= 4

• Pour Φ̂2 :

∂2Φ̂2

∂x2
= 4 et

∂2Φ̂2

∂y2
=

∂2Φ̂2

∂z2
=

∂2Φ̂2

∂x∂y
=

∂2Φ̂2

∂y∂x
=

∂2Φ̂2

∂z∂x
=

∂2Φ̂2

∂x∂z
=

∂2Φ̂2

∂z∂y
=

∂2Φ̂2

∂y∂z
= 0

• Pour Φ̂3 :

∂2Φ̂3

∂y2
= 4 et

∂2Φ̂3

∂x2
=

∂2Φ̂3

∂z2
=

∂2Φ̂3

∂x∂y
=

∂2Φ̂3

∂y∂x
=

∂2Φ̂3

∂z∂x
=

∂2Φ̂3

∂x∂z
=

∂2Φ̂3

∂z∂y
=

∂2Φ̂3

∂y∂z
= 0

• Pour Φ̂4 :

∂2Φ̂4

∂z2
= 4 et

∂2Φ̂4

∂x2
=

∂2Φ̂4

∂y2
=

∂2Φ̂4

∂x∂y
=

∂2Φ̂4

∂y∂x
=

∂2Φ̂4

∂z∂x
=

∂2Φ̂4

∂x∂z
=

∂2Φ̂4

∂z∂y
=

∂2Φ̂4

∂y∂z
= 0

• Pour Φ̂5 :

∂2Φ̂5

∂x2
= −8, ∂2Φ̂5

∂x∂y
=

∂2Φ̂5

∂x∂z
= −4 et

∂2Φ̂5

∂y2
=

∂2Φ̂5

∂z2
=

∂2Φ̂5

∂y∂x
=

∂2Φ̂5

∂z∂x
=

∂2Φ̂5

∂z∂y
=

∂2Φ̂5

∂y∂z
= 0

• Pour Φ̂6 :

∂2Φ̂6

∂y2
= −8, ∂2Φ̂6

∂y∂x
=

∂2Φ̂6

∂y∂z
= −4 et

∂2Φ̂6

∂x2
=

∂2Φ̂6

∂z2
=

∂2Φ̂6

∂x∂y
=

∂2Φ̂6

∂z∂x
=

∂2Φ̂6

∂x∂z
=

∂2Φ̂6

∂z∂y
= 0

• Pour Φ̂7 :

∂2Φ̂7

∂z2
= −8, ∂2Φ̂7

∂z∂x
=

∂2Φ̂7

∂z∂y
= −4 et

∂2Φ̂7

∂x2
=

∂2Φ̂7

∂y2
=

∂2Φ̂7

∂x∂y
=

∂2Φ̂7

∂x∂z
=

∂2Φ̂7

∂x∂z
=

∂2Φ̂7

∂y∂z
= 0

• Pour Φ̂8 :

∂2Φ̂8

∂y∂x
=

∂2Φ̂8

∂x∂y
= 4 et

∂2Φ̂8

∂z2
=

∂2Φ̂8

∂x2
=

∂2Φ̂8

∂y2
=

∂2Φ̂8

∂z∂y
=

∂2Φ̂8

∂x∂z
=

∂2Φ̂8

∂z∂x
=

∂2Φ̂8

∂y∂z
= 0

• Pour Φ̂9 :

∂2Φ̂9

∂z∂x
=

∂2Φ̂9

∂x∂z
= 4 et

∂2Φ̂9

∂z2
=

∂2Φ̂9

∂x2
=

∂2Φ̂9

∂y2
=

∂2Φ̂9

∂z∂y
=

∂2Φ̂9

∂x∂y
=

∂2Φ̂9

∂y∂x
=

∂2Φ̂9

∂y∂z
= 0

• Pour Φ̂10 :

∂2Φ̂10

∂z∂y
=

∂2Φ̂10

∂y∂z
= 4 et

∂2Φ̂10

∂z2
=

∂2Φ̂10

∂x2
=

∂2Φ̂10

∂y2
=

∂2Φ̂10

∂z∂x
=

∂2Φ̂10

∂x∂y
=

∂2Φ̂10

∂y∂x
=

∂2Φ̂10

∂x∂z
= 0
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