I\l Nantes
W7 Université

NANTES UNIVERSITE

RAPPORT DE STAGE - M2 MACS

MODELISATION DE PROCEDES DE MISE EN
FORME DE COMPOSITES PAR DES
APPROCHES A FRONTIERES IMPLICITES

Alice RAMBAUD
M2 MACS

ECOLE CENTRALE DE NANTES

2022 - 2023



Table des matiéres

I CONTEXTE ET UTILITE 4
IT NOTATIONS ET PLAN 6
ITT NOTION DE METRIQUE 7
IV GENERATION ET ADAPTATION DE MAILLAGE 10
1 OBJECTIF 10
2 GENERATION DE MAILLAGE 11
3 METHODES D’ADAPTATION DE MAILLAGES 11
4 EVALUATION DE LA QUALITE D’UN MAILLAGE 11
5 LES ETAPES ALGORITHMIQUES D’ADAPTATION DE MAILLAGE 12
V TETRAEDRES DE TYPE 2 DANS R3 13
VI ESTIMATEUR D’ERREUR P2 17
6 NOTION D’ERREUR D’INTERPOLATION 17
7 LIEN ENTRE L’ERREUR ET L’ERREUR D’INTERPOLATION 20
8 CONSTRUCTION D’UN PREMIER ESTIMATEUR D’ERREUR A PARTIR DE LA HES-
SIENNE 21
9 UTILISATION DU GRADIENT POUR LA CONSTRUCTION DE L’ESTIMATEUR D’ER-
REUR 23
VII TESTS SUIVANT LES DIFFERENTES METHODES 25

10 PREMIER TEST AVEC LA METHODE DU GRADIENT P1 EN 2D POUR LA VALIDA-
TION DE LA STRUCTURE DU CODE 25

11 RESULTATS AVEC LA METHODE DE LA HESSIENNE SUR UN CHAMP P2 EN 2D 28

12 AMELIORATION DE LA METHODE DE LA HESSIENNE SUR UN CHAMP P2 EN 2D 33

13 ADAPTATION DE LA METHODE DE LA HESSIENNE SUR UN CHAMP P2 EN 3D 37

14 ELABORATION D’UN NOUVEAU CAS TEST 3D POUR LA METHODE DE LA HES-
SIENNE AVEC UNE FONCTION A TROIS VARIABLES 40

15 RESULTATS AVEC LA METHODE 2 DU GRADIENT SUR UN CHAMP P2 EN 2D 42
15.1 TESTS AVEC UNE FONCTION DEPENDANT D’UNE SEULE VARIABLE . . . . ... ... ... 42

15.2 GENERALISATION A UNE FONCTION DEPENDANT DE DEUX VARIABLES . ... ..... 44



VIII CONCLUSION

IX ANNEXES

16 FONCTIONS DE FORME POUR LE TETRAEDRE DE REFERENCE
17 DETAIL DU CALCUL DE Fy!

18 Calcul de la matrice JacFI;1

19 Calcul des dérivées secondes des &)k

X BIBLIOGRAPHIE

45

46
46
47

49

53

54



REMERCIEMENTS

Je tiens en premier lieu & remercier mon université, Nantes Université, pour la formation et les cours qu’elle a
su me proposer. Je tiens également a remercier mon équipe pédagogique pour sa présence et sa disponibilité lorsque
j’en ai eu besoin lors de mon parcours, en particulier Mme Crestetto et Monsieur Berthon. Je souhaite également
remercier Mme Bessemoulin, pour m’avoir donné I’envie de faire des mathématiques appliquées, et plus particulié-
rement du calcul scientifique et de I’analyse numérique.

Je tiens également a remercier mon équipe pédagogique de I’Université de La Rochelle, et en particulier Rafik
Imekraz, sans qui je ne serai pas la ol je suis aujourd’hui. Je suis vraiment reconnaissante envers tout ce qu’il a pu
faire pour moi.

Je souhaite également remercier ma famille, mon pére, et mon compagnon, pour avoir été la lorsque j’en ai eu
besoin et m’avoir aidée dans les moments de doutes.

Je souhaite particuliérement remercier Nour Hachem, qui m’a accompagnée tout au long de ce stage et de ma
découverte de I’école Centrale de Nantes, Gianni Barakat, pour son aide et ses réponses & mes questions sur IciTech,

et Valentin Joubert, pour son soutien.

Enfin, je remercie Luisa Silva.



CONTEXTE ET UTILITE

Premiére partie
CONTEXTE ET UTILITE

L’adaptation de maillage anisotrope (dont la taille des mailles est non uniforme en espace et en direction) est
un procédé clé dans la modélisation des processus de mise en forme de composites par des approches a frontiéres
implicites. En effet, ce procédé a pour but d’optimiser le maillage numérique qui est alors utilisé lors de simulations,
afin de mieux représenter la géométrie et les caractéristiques du matériau utilisé. Par exemple, cette méthode est
d’autant plus pratique lorsque les composants étudiés ont des formes étirées, ou avec des zones possédant beaucoup
de complexités. Nous pouvons notamment observer 'utilité d’avoir un maillage adapté et anisotrope sur I'image de
Pascal Frey ci dessous.

FIGURE 1 — A gauche, maillage isotrope, a droite, maillage anisotrope de la surface cranienne

Dans le contexte de modélisation des processus de mise en forme de composites par des approches a frontiéres
implicites, les méthodes d’adaptation de maillage anisotrope peuvent s’avérer utiles sur de nombreux aspects.

Le premier aspect non négligeable dans lequel est utile ce procédé est la réduction du coiit de calcul. Les si-
mulations de mise en forme de composites par des approches & frontiéres implicites peuvent étre trés cotiteuses en
termes de ressources informatiques. L’adaptation de maillage anisotrope permet de concentrer davantage de mailles
la ol c’est nécessaire, ce qui réduit le nombre d’éléments inutiles. Cela réduit ainsi le temps de calcul nécessaire
pour effectuer les simulations.

Ensuite, on note également une plus grande précision lorsqu’on posséde un maillage anisotrope. Les matériaux
composites ont souvent une structure complexe, avec des variations importantes dans les propriétés mécaniques.
L’adaptation de maillage anisotrope permet de concentrer davantage de mailles dans les zones nécessaires, et d’en
mettre moins dans les zones ot il y a peu de variations. Cela permet une meilleure résolution et donc une meilleure
précision.

En outre, 'adaptation de maillage anisotrope permet une meilleure gestion des interfaces. Les processus de mise en
forme de composites impliquent souvent des interfaces entre différents matériaux. L’adaptation de maillage aniso-
trope permet de mieux capturer ces interfaces en concentrant le maillage autour d’elles. On a donc une meilleure
modélisation des interactions réalisées a travers ces interfaces.

De surcroit, 'adaptation de maillage anisotrope permet de mieux suivre les déformations du matériau au cours
du temps, en modifiant & chaque itération la concentration de mailles dans les différents endroits du maillage.

Enfin, avec un maillage adapté correctement, on a & fortiori une erreur diminuée considérablement. Les résultats
des simulations sont donc plus fiables.



CONTEXTE ET UTILITE

Les techniques d’adaptation de maillages anisotropes élaborées au sein du GEM sont des méthodes d’adaptation
P1. Les éléments finis P2 permettent de représenter les variations des champs physiques de maniére plus précise
que les éléments finis P1. En utilisant des fonctions d’interpolation de degré plus élevé, les éléments finis P2 sont
capables de fournir une meilleure approximation des solutions. Cela permet également d’obtenir des résultats nu-
mériques plus précis et une meilleure convergence vers la solution exacte.

L’objectif du stage fut donc d’apporter une contribution sur 1’élaboration d’une méthode d’adaptation de maillages
anisotropes P2, en particulier en construisant un estimateur d’erreur P2, permettant de remailler a partir d’'un
champ solution P2. L’objectif est également de parvenir a faire cela en 3 dimensions.



NOTATIONS ET PLAN

Deuxiéme partie
NOTATIONS ET PLAN

Nous nous placerons dans notre étude, sauf mention du contraire, dans le cadre de la 3 dimensions. Ainsi, par
défaut, l’espace dans lequel nous travaillerons sera R®.

Nous utiliserons dans tout le document les notations répertoriées dans le tableau suivant. Nous laisserons au
lecteur la possibilité de s’y référer au besoin, mais ne rappellerons pas la signification de ces notations par la suite.

Notations Définitions

K Ensemble des éléments du maillage

N Ensemble des noeuds du maillage

N Nombre de noeuds dans le maillage

K; L’élément numéro 7 du maillage

S* Vecteur des coordonnées du noeud numeéro ¢

St Vecteur correspondant a l’aréte reliant les noeuds 7 et j

hij Longueur de l'aréte S*
I'(i)={j€[1l,N]|3IK € K,SY € K} | Ensemble des numéros des noeuds connectés au noeud numéro i

% Ensemble des arétes de I'élément K

FIGURE 2 — Tableau des notations utilisées

Dans un premier temps, nous effectuerons quelques rappels afin d’avoir en téte ce qu’est la notion de métrique.

Ensuite, nous rappelerons également comment sont générés et adaptés les maillages habituellement, et quelles
sont les différentes méthodes d’adaptation de maillages utilisées.

Par la suite, nous nous intéresserons aux tétraédres de type 2 dans R? : nous déterminerons les fonctions de forme
associées en détaillant les calculs en annexes, et nous donnerons ’application permettant de passer d’un tétraédre
quelconque du maillage au tétraédre de référence. Nous exhiberons également dans cette partie ’expression du
gradient et de la Hessienne de la solution selon son écriture avec les fonctions de forme.

Ensuite, nous évoquerons dans une autre partie la construction d’un estimateur d’erreur P2. Nous nous pencherons
en réalité trois méthodes. La premiére sera basée sur la Hessienne de la solution; la seconde sera quant a elle
plutét construite a partir du gradient de la solution calculée. Afin d’élargir le champ des possibles, nous aborderons
également une troisitme méthode, quant & elle toujours élaborée & partir du gradient de la solution calculée.

Enfin, nous exhiberons les résultats numériques que nous avons pu obtenir via les différentes méthodes mises
au point. Nous constaterons ainsi si les méthodes évoquées fonctionnent ou non, et nous essayerons de donner des
résultats quantitatifs également.



NOTION DE METRIQUE

Troisiéme partie
NOTION DE METRIQUE

Au sein de toute notre étude, la notion de métrique jouera un role essentiel. Il est donc important de redéfinir
proprement ce qu’est une métrique, et de donner quelques définitions utiles pour la suite. Nous commencerons par
donner une définition de ce qu’est une métrique en tant qu’objet, afin de comprendre & quoi cela sert d’introduire
une telle notion. Puis, nous poserons les opérations classiques possibles pour de tels outils. Afin d’écrire cette partie,
nous nous sommes appuyés principalement sur deux documents : la thése de Jiaxin Zhao, intitulée Direct multiphase
mesh generation from 3D images using anisotropic mesh adaptation and a redistancing equation, et la thése de Cé-
cile Dobrzynsky, intitulée Adaptation de maillage anisotrope 3D et application & ’aéro-thermique des batiments.

DEFINITION 1. METRIQUE
Un tenseur de métrique donné & un point P € R3 est une matrice carrée symétrique définie positive M (P) de taille
3 telle que I’on puisse I’écrire sous la forme suivante, avec a > 0,d > 0, f > 0 et det(M(P)) >0 :

a b ¢
MP)=|b d e
c e f

Si le champ de tenseurs métriques est continu, il induit une structure dite Riemannienne sur R3.

REMARQUE 2. Il est important de pouvoir entrevoir 'utilité de 'introduction d’un tel outil. En effet, une
métrique permet de passer d’une figure dans ’espace Fuclidien a la figure unité associée dans ’espace métrique
Riemannien. Nous pouvons le constater par exemple sur les deux figures ci-dessous, respectivement en 2D et en 3D.
Les h; désignent les tailles locales dans chaque direction du tenseur métrique M, et les \; sont les valeurs propres

de M.

____________’.

Ellipse dans Uespace Euclidien Cercle unité dans U'espace Métrique

FIGURE 3 — Représentation de la transformation d’une ellipse (2D) dans l’espace Euclidien en le cercle unité dans
I’espace métrique



NOTION DE METRIQUE

A

Boule unité dans 'espace Métrique

Ellipsoide dans l'espace Euclidien

FIGURE 4 — Représentation de la transformation d’une ellipsoide (3D) dans l'espace Euclidien en la boule unité

dans ’espace métrique

EXEMPLE 3. Sur un triangle de base h, et de hauteur h,, rectangle en P, nous pouvons déterminer la métrique

suivante au point P :

FIGURE 5 — Exemple de métrique sur une figure simple

REMARQUE 4. Dans le cas ou la métrique est indépendante du point P, on se retrouve dans le cadre euclidien

classique.

DEFINITION 5. PRODUIT SCALAIRE
Soient @ et ¥ deux vecteurs de R3, le produit scalaire dans I’espace euclidien classique pour une métrique M est

défini ainsi :
<UT>y= UMV =<id,Mi>

DEFINITION 6. NORME
Soit @ un vecteur de R3, on définit la norme euclidienne de @ pour une métrique M de la maniére suivante :

@l = V<@, id>y = VarMa

DEFINITION 7. DISTANCE
Soient A et B deux points de R3, on définit la distance entre le point A et le point B dans 'espace euclidien classique

pour la métrique M par la relation :

du(A,B) = || AB ||y = \/ABTMAB



NOTION DE METRIQUE

Nous disposons donc des notions importantes et qui seront utilisées a propos des métriques par la suite. Ces
notions vont nous permettre de définir plus précisément via des formules les outils dont nous avons besoin.



GENERATION ET ADAPTATION DE MAILLAGE

Quatriéme partie

GENERATION ET ADAPTATION DE
MAILLAGE

Cette partie est réalisée grace a plusieurs écrits. Le premier qui a été utile a la compréhension de la notion de
génération et d’adaptation de maillage est sans aucun doute la thése de Cécile Dobrzynsky, intitulée Adaptation
de maillage anisotrope 3D et application a l’aéro-thermique. Le second document qui m’a été utile est le document
d’Adrien Loseille, Mesh Generation and Adaptation dor scientific computing, bien qu’'un peu moins abordable de
prime abord.

1 OBJECTIF

Il est nécessaire dans un premier temps de poser quelques définitions.

DEFINITION 8. MAILLAGE ANISOTROPE
Un maillage anisotrope est un maillage dont la taille des mailles est non uniforme en espace et en direction. La
taille des mailles peut alors étre étirée dans des directions précises.

FIGURE 6 — Maillage isotrope & gauche et anisotrope & droite

DEFINITION 9. MAILLAGE UNITE
Un maillage unité est un maillage dont toutes les arétes dans la métrique choisie sont de mesure 1 dans la métrique
considérée. En pratique, on considére qu’un maillage est dit maillage unité si ses arétes ont une mesure comprise

1
entre — et \/§

V2

L’objectif de la génération et de 'adaptation de maillage est de se rapprocher au plus possible du maillage unité.

10



GENERATION ET ADAPTATION DE MAILLAGE

2 GENERATION DE MAILLAGE

Il nous faut dans un premier temps donner la structure générale des méthodes d’adaptation de maillage. En effet,
on trouve deux étapes principales. La premiére est I’étape de génération du maillage de surface. La seconde est la
génération du maillage volumique. Souvent, dans la littérature, ces deux étapes sont effectuées en méme temps.

On retrouve dans cette seconde étape deux grandes techniques : la méthode frontale et la méthode de Delau-
nay. En ce qui concerne la méthode frontale, on part donc du maillage de surface qui définit alors un ensemble de
faces et on crée alors un ensemble de points optimaux & ajouter dans le maillage, filtrés au préalable, qui permettent
dés lors de définir des tétraédres. Dans la méthode de Delaunay, on part au contraire d’'un maillage d’une boite
englobant le maillage de surface, composé de six tétraédres initiaux, et on compléte alors ce maillage pour le rendre
plus fin.

3 METHODES D’ADAPTATION DE MAILLAGES

On distingue trois grands types de méthodes d’adaptation de maillages :
e Les R-méthodes
e Les P-méthodes
e Les H-méthodes

Les R-méthodes sont des méthodes qui consistent & déplacer des sommets du maillage existant pour modifier la
densité de sommets a certains endroits du maillage.

En ce qui concerne les P-méthodes, le "p" fait référence & I'ordre du maillage, c’est-a-dire au degré des poly-
noémes utilisés pour représenter les solutions numériques sur le maillage. Les p-méthodes permettent de faire varier
localement I'ordre du maillage en fonction des besoins. Plus concrétement, cela signifie que dans les zones ot une
résolution fine est nécessaire, un degré de maillage élevé est utilisé pour une meilleure précision, tandis que dans les
zones ol une résolution moins fine est suffisante, un degré de maillage plus faible.

Les H-méthodes se divisent en deux grands groupes de méthodes. Tout d’abord, on trouve les méthodes par
raffinement. Ces méthodes consistent a subdiviser ou fusionner des éléments déja existant pour en former de
nouveaux. Le second type de méthodes est I’ensemble des méthodes par remaillage. Elles consistent & modifier le
maillage afin de s’adapter & des tailles et des directions prescrites. Parmi ces méthodes par remaillage, on trouve
de nouveau deux sous catégories : les méthodes par remaillage global et les méthodes par remaillage local.
En ce qui concerne les méthodes par remaillage global, on reconstruit un nouveau maillage complétement. Pour
le remaillage local, on applique une procédure itérative, ce qui garantit donc la certitude de toujours obtenir un
maillage valide, et on utilise dés lors différents opérateurs afin d’ajuster les tailles d’arétes. En effet, les arétes trop
longues sont subdivisées en plusieurs arétes de longueur unité, et les arétes trop courtes seront détruites. Parmi les
méthodes par remaillage local, on distingue deux types de modifications possibles : les modifications topologiques
comme les insertions, suppressions ou bougés de points, et les modifications géométriques telles que des bascules
de faces ou d’arétes.

4 EVALUATION DE LA QUALITE D’UN MAILLAGE

On peut, dés lors que l'on obtient un maillage, évaluer sa qualité. Pour cela, on dispose de deux dispositifs. Le
premier critére évaluant la qualité d’un maillage qui est mis a notre disposition est le critére de volume. Il assure
la conformité du maillage, et permet d’avoir des éléments d’un volume unité. Le second critére est un critére de
qualité géométrique.

11



GENERATION ET ADAPTATION DE MAILLAGE

5 LES ETAPES ALGORITHMIQUES D’ADAPTATION DE MAILLAGE

Pour adapter un maillage, on suit différentes étapes :
e Tout d’abord on considére un premier maillage grossier du domaine, donné
e Ensuite, on détermine la métrique associée a un tel maillage

e On calcule l'erreur grace a un estimateur d’erreur commise sur le maillage donné en comparaison avec un
maillage unité

e On ajuste alors le maillage via les méthodes décrites précédemment
e On détermine la métrique associée au nouveau maillage
e On recommence jusqu’a obtenir un maillage unité

L’étape cruciale qui va nous intéresser lors de ce travail est I’étape portant sur 'estimateur d’erreur. En effet,
nous désirons mettre en oeuvre un estimateur d’erreur P2.

12



TETRAEDRES DE TYPE 2 DANS R3

Cinquiéme partie
TETRAEDRES DE TYPE 2 DANS R

Dans cette partie, nous nous intéressons aux transformations permettant de passer d’un tétraédre quelconque
du maillage au tétraédre de référence. Toute la réflexion mise en place a pour origine le cours d’Anais Crestetto sur
les éléments finis, qui était fait en 2D, et qui a donc été ici adapté en 3D. L’objectif de cette partie et de rappeler
I’expression des fonctions de forme, également appelées fonctions de base, de déterminer 'application permettant
de passer d’un tétraédre quelconque du maillage au tétraédre de référence et inversement. Ensuite, pour un besoin
ultérieur, nous exprimerons le gradient des fonctions de forme ainsi que la matrice Hessienne.

On considére le tétraédre de référence dans R®, noté K, de sommets a! = (0;0;0), @ = (1;0;0), a3 = (0;1;0) et

a* = (0;0;1). On place également les points milieux des arétes d’extrémités a* et @/, notés m,1 <i < j < 4.

FIGURE 7 — Tétraédre de référence dans R?

Soit
[P p:[R3_>[R7 a’b7c7d7e7f7g7h7i7j€[R
B V(z,y,2) > a+br+e +dz+exy + frz+ gyz + ha? + iy + j2°
(z,y,2) Y y 9y Yo+
Soit
0;,1410,0; : Pp — R
T = p—p@)sil<i<4

p—pmI)ysii=10—(k+j)et 1<k<j<4

On souhaite désormais exhiber une base canonique de (IA( ,P%,X ). Au passage, en trouvant une telle base
canonique, cela démontrera que (K,Pz,Y ) est bien un élément fini (puisque dim Pp = 10 = card X ).

13



TETRAEDRES DE TYPE 2 DANS R3

PROPOSITION 10. FONCTIONS DE BASE
Les expressions détaillées des fonctions de base de maniére développée sont les suivantes :

G—2)(1 - 2% —2j— 22)

=
K
=)
)
K
Il
>
>
=)
<)
o
o
>
2
=)
)
)
|
Nt
Il
=
|
2)
|
<

&\)5(/1’\, Aa 3) = 4)\1 f? Aa E)AQ(i\, /y\a /Z\) = 4‘%(1 - /‘T\f Z/J\* IZ\)
66(5?7 Aa E) = 4)\1 EE? Aa 2))‘3(27 @\7 IZ\) = 4@\(1 - EL'\ - :/y\f lz\)
(57(&\) i/\v 2) = 4>\1 {fa @\a 2)A4(ZL'\7 Av 2) = 43(1 - ‘%\ - @\_ 2)

DEMONSTRATION
La preuve est réalisée en annexe car trés calculatoire.

O

Désormais on considére un tétraédre quelconque du domaine, on le note K. On désire trouver une application Fi

qui envoie K sur K.

f'; 1

FIGURE 8 — Passage d’un tétraédre quelconque au tétraédre de référence

On a de plus Fk(Z,9,2) = > ®:(Z,7y,2)S", ou les S* sont les sommets de K. Si on note S* = (z;,y;, 2;), alors
i=1
on obtient :
Tq T2 X3 T4
Fr(@,9,2)=(1-2-y=2) |1 | +Z|y2 | +¥|ys | +Z | va
Z1 z9 zZ3 Z4



TETRAEDRES DE TYPE 2 DANS R3

fonction de z,y et z.

Z en

t

T,y e

!, Ce travail est un peu plus fastidieux, et nécessite davantage

K
(z,y, z), il nous faut déterminer

F

)

$7y7z

Nous avons également besoin de déterminer

de calculs. En effet, si on pose Fi(

Résolvons donc le systéme suivant :

Y
z

1+ Z(re — 1) +Y(xs —x1) + 2(xg — 1) =
i+ 2(y2 — 1) +Y(ys — 1) +2(ya —y1) =
214+ Z(20 —21) + Yz —21) + 2(24 — 21) =

|

PROPOSITION 11. SOLUTION DU SYSTEME

La solution du systéeme précédent est :

(y—y1)(z2 —21) — (2 — 21)(y2 — 1)
(Y3 —y)(z2 — 21) — (23 — 21)(y2 — 1)

(y4 — yl)(zz —21) — (24— 21)(y2 - yl)

(. —21)(y2 —y1) — (y — y1) (22 — 961)

(3 —21)(y2 — 1) — (y3 — y1)(z2 — 71)

(2 —21)(y2 — 1) — (Y4 — y1)(z2 — 71)
(3 —21)(y2 —y1) — (Y3 — y1) (w2 — 21)

(Y3 —y1)(22 — 21) — (23 — 21)(y2 — 1)

(y —y1)(z2 —21) — (2 — 21)(y2 — 1)
(y3 —y1)(z2 — 21) — (23 — 21) (42 — 1)

(x —21)(y2 —y1) — (¥ — y1) (@2 — 21)

(>

(y —y1)(z2 —21) — (2 — 21)(y2 — y1)
(y3 — yl)(Z2 - 21) - (23 — 21)(92 — Y1)

(ya —y1)(22 — 21) — (24 — 21)(y2 — Y1)

(x3 —21)(y2 —y1) — (y3 —y1) (w2 — 71)
(w4 — 1) (Y2 —y1) — (Ya — y1) (w2 — 1)

(r3 —21)(y2 —y1) — (y3 — y1) (22 — 21)

(ys — y1)(22 — 21) — (23 — 21)(y2 — y1)

(ya —y1) (22 — 21) — (24 — 21)(y2 — y1)
(y3 —y1)(z2 — 21) — (23 — 21) (32 — 1)

(ys —y1)(22 — 21) — (23 — 21)(y2 — y1)

(x —21)(y2 —y1) — (y — y1) (22 — 21)

(3 —21)(y2 —y1) — (Y3 — y1)(z2 — 71)

T2 —T1

(y—y1)(z2 —21) — (2 —21)(¥2 — 1)
(2U3 - yl)(22 —21) — (23— 21)(11}2 - yl)

(ya —y1)(22 — 21) — (24 — 21)(y2 — y1)
(1/3 - y1)(2'2 - 21) - (23 - 21)(312 - yl)

(4 —21)(y2 — y1) — (Ya — y1) (T2 — 71)

(r3 —21)(y2 —y1) — (Y3 — y1) (@2 — 1)

Tr3 — T1
T2 — X1

)

(Y —y1)(z2 —21) = (2 = 21)(y2 — y1)

(Y3 —y1)(z2 — 21) — (23 — 21)(y2 — 1)

(x — $1)(y2 - yl) - (y - yl)(ﬂ?2 — 1)
(r3 —21)(y2 —y1) — (y3 — y1) (w2 — 1)

(2 —21)(y2 — 1) — (Y4 — y1) (22 — 71)

(ya —y1)(22 — 21) — (24 — 21)(y2 — y1)
(x3 —x1)(y2 —y1) — (y3 —y1) (22 — 21)

X

(ys —y1)(22 —21) — (23 — 21) (Y2 —y1) T4 — @1

(ya —y1)(22 —21) — (24 — 21) (Y2 — Y1) 22 — 11
(ys —y1)(z2 — 21) — (23 — 21) (Y2 — ¥1)

DEMONSTRATION

La preuve est réalisée en annexe car trés calculatoire.
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TETRAEDRES DE TYPE 2 DANS R3

On a donc pleinement déterminé F’ El. On notera, par souci de simplicité d’écriture, Fj 10 la i— éme composante

de la fonction. Ainsi :
1(1)
(z,y,2)

Fie
Fi(w,9,2) = | Fi @ (@, 2)

-1
FKl (gc,y,z)

Désignons par u la solution au probléme étudié sur notre maillage. Sur le tétraédre K, on a donc u(z,y,z) =

10 ~
> ®i(z,y, 2)ug, ot Oi(z,y,2) = P, 0 Fgl(a:, y,2). On peut de méme déterminer le gradient de u de sorte que :
i=1

u(x,y,z ZVCD z,Y, %

— Vu(z,y,z ZV (m,y,z)ul

— Vu(z,y,z ZJac Fi'(x,y,2) x v, oF&%J;,y@)uZ

ou Jac F gl désigne la matrice Jacobienne de l'application F I}l. Il nous faut donc déterminer V@i pour tout
1 <4 <10, ainsi que la matrice Jac Fgl .

Les calculs des expressions mises en jeu sont réalisés en annexe car ils sont assez longs. On suppose donc ces

expressions connues pour la suite.

De plus, nous aurons également besoin par la suite de calculer la matrice Hessienne de u. Puisque cette derniére
fait apparaitre des dérivées d’ordre 2, et qu'on applique une méthode des éléments finis P2, la matrice Hessienne
sera donc & priori composée uniquement de constantes, qu’il nous reste a déterminer.

Soient x;,z; deux variables parmi x,y et z. Alors on a :

82U 10 aQ‘I)k
m(%y,z) = Z@xiaxj (x,y, z)ug

k=1
10 82 N .
- kz_: 8.131'6.13]' (q)k OFK )(.’E,y,Z)Uk
OF ! oD},
—;a( (@.9:2) % G50 Fi ) )

0*Fy 0% OF! OF! 9°Py
F71 K K F*l
Qw%wm e o i o, 2) 4 G (a2) % T n2) k0 B )

Cependant, on sait que Fg, tout comme F' 1;1 sont des transformation affines donc d’ordre 1. Par conséquent,
les dérivées secondes de celles-ci seront obligatoirement nulles. On a donc la simplification suivante :

9%u 8F 1 aFgl 8221\)]@ )
- - _ P
8.’131'8.1'.]‘ (CE,y,Z) I; < 81‘] (Z Y,z ) O, (CE,y,Z) X 8,’1;1-(933_7 oL, (x,y,z)>u

Il nous faut donc expliciter les dérivées secondes des @;. Les constantes obtenues sont explicitées en annexe. Nous
avons donc pleinement déterminé la matrice Hessienne H,,.
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ESTIMATEUR D’ERREUR P2

Sixiéme partie
ESTIMATEUR D’ERREUR P2

Dans cette partie, nous abordons la notion d’estimateur d’erreur. Pour démarrer notre réflexion, nous nous
sommes appuyés principalement sur trois ouvrages. Le premier et le document co-écrit par Pascal Frey et Frédéric
Alauzet, Anisotropic mesh adaptation for CFD computation. Le second reste la thése de Cécile Dobrzynsky, Adap-
tation de maillage anisotrope 3D et application & l’aéro-thermique des batiments. Le dernier document qui a permis
de mieux apprivoiser la notion d’estimateur d’erreur est le document de Pascal Frey, intitulé Estimateurs d’erreur
géométriques et adaptation de maillages.

6 NOTION D’ERREUR D’INTERPOLATION

La notion d’erreur d’interpolation est une notion clé pour la suite du travail. En effet, comme nous le dé-
taillerons un peu plus tard, nous construirons notre estimateur d’erreur a partir de ’erreur d’interpolation.

DEFINITION 12. ERREUR D’INTERPOLATION SUR UN TETRAEDRE K

Soit K = [a,b, ¢, d] un tétraédre quelconque. Soit u la solution au probléme considéré. On note 7pu linterpolée
de u sur K et on définit mpu comme étant un polynome tel que u(a) = mpu(a), u(d) = mru(b),u(c) = mpulc) et
u(d) = mpu(d). On définit 'erreur d’interpolation e par :

€interpol = || U — TRU ||L°°(K)

THEOREME 13. Soit K lensemble des tétracdres du maillage sur le domaine Q C R3, et soit u : R> — R
suffisamment réguliere. Soit K € IC un élément du maillage quelconque. On note wpu interpolée de u sur K. Alors,
en notant H, la matrice Hessienne de u, on a la majoration suivante :

2
1/3
€interpol < 2(4> I::leal}((gg%); |< Hu(x)e, e >|

DEMONSTRATION
Soit K un simplexe de dimension 3, ie un tétraédre de notre maillage. Soit u : R? — R suffisamment réguliére, la
solution du probléme étudiée. Soit m,u 'interpolée de cette solution.

Alors on a u(a) = mpu(a), u(d) = mpu(b),u(c) = mpule) et u(d) = mpu(d). De plus, on peut écrire également
les lignes suivantes :

1
(v —mpu)(a) = (v —mpu)(z)+ < 24, Vy(u—mu)(z) > —&—5 < az, Hy(x + t12a) at >, t; €[0,1]

—

1 - L.
(u — mpu)(b) = (u — mpu)(z)+ < zb, Vy(u — mpu)(z) > +§ < bx, Hy(x + taxb) bx >, t9 €[0,1]
1
(u—mpu)(c) = (u — mpu)(x)+ < zt, Vy(u—mpu)(x) > t5 < ¢k, H,(x +ts3ac) ¢k >, tz€]0,1]

. 1 - L
(u—mpu)(d) = (u — mpu)(z)+ < zd, V,(u— mhu)(z) > —|—§ < dz, Hy(x + tyxd) dx >, t4 €[0,1]

On cherche & majorer eipterpol donc on cherche un extremum ou encore un = € K en lequel cet extremum est
atteint. Deux cas sont alors possibles :
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ESTIMATEUR D’ERREUR P2

e Soit x est dans I'intérieur de K, ie K. Alors V,,(u—mpu)(z) = 0, ou encore < 7,V (u—mhu)(z) > = 0V7 € R3.
Ainsi, on a en particulier :

1

0= (u—mu)(x)+ 3 < az, H,(x + t124) at >
1 - L

0= (u—mpu)(zr) + 5 < bx, Hy,(z + taxb) bx >
1

0= (u—mpu)(zr)+ 5 < ct, Hy (x + tszt) ¢t >

1 - .
0= (u—mpu)(z)+ 5 < dx, H,(z + tyzd) dz >

En sommant les quatre égalités, on trouve alors :

1 - - -
0 =4(u—mpu)(x) + 3 (a‘g’c, Hy(z +ti2a) ax > + < bx,H,(x + tazd) b > + < ¢k, Hy (v + tsze) ¢ >

+ <dz,Hy(z + tyxd) dz > )

Posons M tel que :

M = max max |< U, Hy,(x)7 >
ek ||v]|=1

Alors on a la majoration suivante :

ool —

| (= mp)(a) | < (|a3c||2+||bx|2+|ca:||2+|dx||2)M

Par définition, z s’écrit sous la forme : x = Aqa + A\pb + Aec + Agd avec Ay + Ay + Ac + Ag = 1. Alors on
peut écrire les différents vecteurs sous la forme décomposée suivante :

ar = Aba_i) + A.ac + )\da_éi

br = Aoba + Acbe + Agbd
T = A Ca+ )\bc_l; + )\dc_él
dr = Aeda + Abd + Aede

On en déduit alors I'inégalité suivante :

laz|?+ bz |+ &+ |ldz|> < AF+A2) || ab > + A2+ 22) || a|]? + (A3 +A2) || ad ||
+ A2 M) e [P+ A3+ 2D (1 6d ]2+ (A3 +X2) || ed |* +

2 <>\b>\c < ab, at > +MpAg < ab, ad > +A Mg < de, ad >

+ Aade < ba, be > +AgAg < ba, bd > +AAg < be, bd >
+ Ay < ca, cb > +AaAg < ca, cd > +XpAg < c_l;, cd >

+ XNy < da, db > +AAe < da, de> +XpAe < db, de > )
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Soit L la longueur de la plus grande aréte de K. Alors, on peut majorer davantage l'inégalité précédente
pour obtenir finalement :

@z ||+ || bz ||>+ || & || + || do ||> < (3[A§ + 22422402 +4[)\b>\c+)\b>\d+>\C>\d+>\a>\c+)\a>\d+>\bAb]>L2

On identifie facilement que 'extremum est atteint au barycentre de K, ie lorsque A\, = A\, = A = A\g = %.
Par conséquent, on obtient :

9
| (u—mpu)(x) |< 3—2L2M

e Si 'extremum est atteint sur une face de K, arétes non comprises, alors on peut raisonner de maniére simi-
laire & ce qui a été fait précédemment mais dans un triangle, puisque les faces du tétraédre sont par définition
triangulaires. Supposons par simplicité d’écriture que x soit sur la face composée des points a, b et c. Alors
on peut reprendre la méme preuve que dans le point précédent en considérant Ay = 0. On obtient dés lors le
méme résultat.

e Si Pextremum n’est pas atteint dans l'intérieur de K, alors il correspond a une aréte de K. Supposons que
ce soit 'aréte [ab] par simplicité d’écriture, mais pour les autres arétes le procédé serait le méme. Le gradient
s’annule donc selon ab :

1 1 - -
0 = 2(u—mpu)(z) + 3 < ax, H,(x + t126)at > —|—§ < bx, Hy(x + taxb)br >

On définit alors M tel que :

M = max max |< ¥, Hy(z)¥ >|
z€lad] [[v]|=1

Alors on aboutit & la majoration suivante, en posant la méme définition de L que dans le point précédent :
1 -
| (w—mu)(z) | < ¢l ab 1 M
1
~L*’M
- 8
9

< —L°M
32

9
Ainsi, dans tous les cas, on obtient la majoration suivante : | (u — mpu)(z) | < 3—2L2M. De plus, puisque chaque

vecteur ¥ de K peut s’écrire comme une combinaison linéaire des arétes de K, il vient :

v <
1l < max e i,

Cela nous conduit donc au résultat désiré, c’est & dire :

2
173
€interpol < 2(4> max max |< Hy(x)e, e >
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7 LIEN ENTRE L’ERREUR ET L’ERREUR D’INTERPOLATION

Nous n’étudions pas, a priori, directement ’erreur d’interpolation. En effet, ’erreur qui nous intéresse est celle
définie de la maniére suivante :

DEFINITION 14. ERREUR
Soit u la solution exacte au probléme étudié, et soit u; la solution calculée par une méthode d’éléments finis. Soit
K un tétraédre du maillage quelconque. On note e 'erreur sur K, définie ainsi :

e = || u—unp||Le(r)

Nous désirons donc relier 'erreur qui nous intéresse avec I’erreur d’interpolation. Pour cela, nous avons besoin
de rappeler un théoréme et un lemme tous deux essentiels.

THEOREME 15. LAX-MILGRAM

Soit V' un espace de Hilbert. Soit a(.,.) une forme bilinéaire continue et V- coercive. Soit I(.) une forme linéaire
continue sur V. Alors le probléme variationnel "trouwver u € V tel que a(u,v) = l(v) Yv € V admet une unique
solution.

LEMME 16. CEA

Soient V' un espace de Hilbert, a(.,.) une forme bilinéaire, et | une forme linéaire satisfaisant les hypothéses du
théoréme de Lax-Milgram. Soit V;, un sous espace fermé de V. Alors il existe un unique u, € V}, tel que Vv, €
Vi, a(up,vp) = 1(vy). De plus, nous avons :

M M
lu—unllv < — inf [Ju—ovnlly = —d(u,Va)
hEVh «

QO vp€E
ou M est la constante de continuité et « la constante de coercivité.

Ainsi, le lemme de Céa nous indique que pour des problémes elliptiques, 1'erreur est majorée par ’erreur d’in-
terpolation. En pratique, on se rend compte que cette inégalité reste de vraie pour des problémes non elliptiques,
mais nous ne possédons pas de preuve de ce résultat.
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8 CONSTRUCTION D’UN PREMIER ESTIMATEUR D’ERREUR A
PARTIR DE LA HESSIENNE

Comme mentionné dans les parties précédentes, nous avons pu effectuer la majoration suivante pour l'erreur
d’interpolation :

2
1/3
€interpol < 2<4) Ia}/leaf((enel%‘i{( |< Hu<l')€, €>‘

De plus, la section précédente nous a permis de justifier que l'erreur était majorée par 'erreur d’interpolation.
Par conséquent, on en déduit la majoration suivante :

2
1/3
o= 5(3) 1< Ao o>

Nous allons nous servir de cette majoration pour construire un estimateur d’erreur adéquat, afin de déduire les
nouvelles métriques appropriées. En effet, on ne peut pas directement poser I'estimateur d’erreur comme étant égal
au membre de droite de I'inégalité, puisque trop complexe & calculer. Il nous faut donc partir de cette formulation
afin d’en déduire une plus simple.

PROPOSITION 17. MAJORATION DE L’ERREUR
On peut magjorer lerreur par la quantité suivante :

2
173
o< 5(3) mamp <o e o>

DEMONSTRATION
La matrice Hessienne, H, est une matrice 3 x 3 symétrique. Par conséquent, on peut la décomposer de la maniére
suivante :

| A1 | 0 0
|H,|= R |A| R7! avec |A| = 0 | A2 | 0
0 0 [Xs]

ol A1, A2, A3 désignent les valeurs propres de H, et R désigne la matrice de passage, composée des vecteurs propres
associés aux \;, 1 <14 < 3. Par conséquent, on a la majoration suivante :

2
173
o< 5(5) mamy <A@ e e

O

La complexité réside en le calcul des deux maxima informatiquement dans la majoration. L’objectif de I’estima-
teur d’erreur est de définir par la suite une nouvelle métrique en chaque noeud pour adapter la taille des éléments.

Supposons qu'il existe un tenseur métrique M(K) tel que la région définie par {< @, M(K)¥ >,¥& C K} soit
de volume minimal et tel que :

max <| H,(z) | e, e> < < M(K)e, e >
ecEk

L’erreur peut étre donc définie de la sorte :

9 _
= — K
e 35 max < M(K)e, e >
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Soit € 'erreur maximale tolérée sur chacun des éléments du maillage, tel que :

9 _
- = K
€ 35 Dax < M(K)e, e >

9 _
Posons M(K) tel que M(K) = 37/\/1(1( ) le tenseur métrique désiré. Alors, la relation précédente devient :
€

<M(K)e, e>= 1 Vec Ex = Lvry(e)> = 1 Ve€ Eg
On peut définir la métrique cherchée de maniére plus explicite :

DEFINITION 18. METRIQUE RECHERCHEE

Soit € lerreur tolérée sur les éléments. Soient hyin et Amax les tailles minimales et maximales des arétes pour les
éléments. Soient A;,1 < i < 3 les valeurs propres de la Hessienne H,,, telle que H, = RAR™' avec A la matrice
composée des valeurs propres de H,, et R la matrice de passage composée des vecteurs propres associés. Alors :

A 0 0
M = RAR™! avec A = 0 X O
0 0 A3

On a la définition des S\i, 1 <17 < 3 suivante :

A min | ma: ) X [ A 1 1
¢ = MMl X155 ) )
32 e ' h? h?

max min

L’objectif du travail étant de considérer un champ P2 continu pour le champ solution, cela implique que le champ
des gradients sera P1 discontinu et que le champ de matrices Hessiennes sera & fortiori PO discontinu. En résumé,
nous obtenons une matrice Hessienne par élément de maillage et puisque la métrique est directement calculée a
partir de cette derniére, nous obtenons par conséquent une métrique par élément de maillage. Cependant, afin
d’adapter la taille des éléments, il nous faut prescrire au mailleur une métrique par noeud. La solution que nous
avons adoptée est de considérer les noeuds un par un. Pour chacun des noeuds, on fait la moyenne des métriques
calculées sur chacun des éléments auxquels le dit noeud appartient. Cette moyenne formera la nouvelle métrique au
noeud a fournir au mailleur. On peut par exemple représenter ceci en 2D, par souci de lisibilté :

. M.+ M,
Ml 3

M, + M+ M+ M,
M= -

FIGURE 9 — Passage d’un champ métrique PO discontinu & un champ métrique P1 continu
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9 UTILISATION DU GRADIENT POUR LA CONSTRUCTION DE
L’ESTIMATEUR D’ERREUR

La seconde méthode consiste a utiliser plutot le gradient, a la place de la Hessienne. Cette méthode-ci est déja
codée en réalité pour le cas P1, mais on désire 'adapter au cas P2. Ce qui suit est valable en P1 comme en P2, sauf
mention du contraire. On donnera dans cette partie les expressions des quantités mises en jeu lors du calcul de la
nouvelle métrique. Le procédé est en réalité un peu différent de ce qui a été fait précedemment.

Rappelons tout d’abord quelques résultats. Désignons par « la solution exacte au probléme cherchée, et par uy
son interpolation aux noeuds. Par conséquent, cela implique qu’aux noeuds du maillages on a pour chaque noeud
x; Végalité up(z;) = u(x;), par définition de l'interpolée.

On notera dans toute la suite X% = X? — X7 pour n’importe quelle quantité X. Pour une aréte, on note donc S*
laréte reliant les sommets S et S7. En particulier, si on pose U’ = u(x;) = up(x;), alors UY = U* — UY.

La méthode du gradient repose sur erreur selon l'aréte. L’idée est d’estimer l'erreur selon chaque aréte, puis
de comparer cette erreur avec une erreur tolérée, choisie préalablement. Par la suite, il faut adapter la longueur des
arétes afin de respecter 'erreur tolérée suivant chaque aréte.

DEFINITION 19. ERREUR SELON L’ARETE
Si 'on note e;; 'erreur le long de l'arréte reliant les sommets S* et S7, alors son expression est donnée par :

€ij :l G”SU |

avec G¥ la différence entre la valeur du gradient en S* et celle en S7.

Toute la difficulté réside en le calcul de ce gradient. En effet, en P1, le gradient est continu. On peut donc
facilement calculer le gradient aux différents noeuds, pour ensuite estimer I’erreur selon 'aréte, et ensuite adapter
la taille des arétes et remailler facilement. La méthode, comme mentionné précédemment, a déja été implémentée
en P1. Notre objectif est donc de trouver une stratégie pour adapter cette méthode au cas P2. L’idée de la méthode
en P1, c’est de calculer le gradient selon chaque arréte, puis de déterminer ’erreur selon l'aréte et enfin d’adapter
le maillage, comme nous le décrivons un peu plus bas, grace au coefficient d’étirement selon ’aréte. Ce qui
différe dans le cas P2 par rapport au cas P1, c’est qu’on obtient des valeurs différentes de gradients pour le méme
noeud S? selon I'élément K ; dans lequel on se place.

La premiére idée que nous avons eue a été d’adapter le code déja mis en place pour calculer une "dérivée" plus
appropriée a la situation. En d’autres termes, a la place de calculer le gradient, qui fournirait donc dans le cas P2
des résultats a priori non exploitables, on calcule une "dérivée" d’un ordre suffisant. Pour le cas P2, on calcule une
"dérivée" d’ordre 2, pour un cas P3 une dérivée d’ordre "3", etc... Et on met cette "dérivée" a la place de G* dans
notre formule et on procéde dés lors comme en P1. Ceci représente la méthode 2.

L’autre approche consiste & trouver une maniére de prendre en compte ces différentes valeurs de gradients afin
de se ramener & un champ continu et de pouvoir donner une unique valeur du gradient & un noeud S’ donné. L’idée
est d’effectuer une moyenne de toutes les valeurs calculées pour le noeud ¢ dans chacun des éléments K; contenant
S, et d’attribuer ce vecteur moyenne comme nouvelle valeur du gradient au noeud S°.

Afin de faciliter la compréhension de cette troisiéme méthode, on décide de d’abord se placer dans un cas
2D pour illustrer le principe de la méthode proposée. On désire dans cet exemple approximer la valeur du gradient
au sommet S?, contenu au sein de cing éléments différents, notés respectivement K1, Ko, K3, K, et K5. La valeur
du gradient au sommet indicé ¢ dans I’élément indicé j sera donc notée G; Pour obtenir la valeur finale de G?, il
nous suffit alors de faire une moyenne des Gz On obtient alors un champ de gradients P1 continu.
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G+ G5+ G+ G} + Gl
= 5

G!

FIGURE 10 — Approximation du gradient au noeud en 2D

La valeur ainsi obtenue, quelque soit la méthode, pour I’erreur selon ’aréte e;; permet donc de calculer un nouvel
élément : le coefficient d’étirement. Un tel coefficient va permettre d’ajuster la métrique en chaque point.

DEFINITION 20. COEFFICIENT D’ETIREMENT SELON L’ARETE
On note k;; le coefficient d’étirement selon 1’aréte reliant les sommets S* et S7, et sa formule est donnée par :

ky = 24
i =
€

ot e est erreur souhaitée pour que celle-ci soit équirépartie sur notre maillage.

A partir de ce coefficient d’étirement, on peut reconstruire une nouvelle métrique en chaque noeud du maillage,
qu’il faudra dés lors fournir au mailleur afin que ce dernier puisse adapter le maillage précédent afin de se rapprocher
au mieux du maillage unité.

DEFINITION 21. NOUVELLE METRIQUE AU NOEUD i
La nouvelle métrique au sommet S? est donnée par I’expression :

1 1 . |
M=o e > k25T ®S”>
3<|r<z>|; :

Les procédés mis en place par le mailleur pour adapter le maillage, en accord avec les nouvelles métriques
préscrites aux différents noeuds sont ceux décrit dans la partie sur la génération et I’adaptation de maillages.
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Septiéme partie

TESTS SUIVANT LES DIFFERENTES
METHODES

Cette partie comporte ’ensemble des résultats numériques obtenus lors de ce stage, ainsi que leurs interprétations.

10 PREMIER TEST AVEC LA METHODE DU GRADIENT P1 EN
2D POUR LA VALIDATION DE LA STRUCTURE DU CODE

Afin de valider nos codes et notre structure d’appel aux différentes fonctions, nous avons dans un premier temps
voulu faire quelques cas tests sur des éléments finis P1, et en 2D. Nous avons donc testé une méthode déja codée et
dont nous savions qu’elle devait fonctionner.

Nous partons donc d’un carré [0;1] x [0; 1] dont nous réalisons un premier maillage grossier initial, ci-aprés. Nous
imposons un nombre de remaillages maximal, ainsi que des tailles minimales et maximales, en guise de sécurité,
paramétres que nous fixerons ci-apreés.

e VAT )
PYAVA Ay Vel SEORD
‘g\ﬁmaﬁ <] _ K

s

Fabe s AN v v S RS

NS, i CoPNEAN

e
e

DRGRD

&L

25

&
SJ5

i

FIGURE 11 — Maillage initial

Nous imposons donc un champ solution u et effectuons le remaillage en fonction de celui-ci. Le champ u choisi
est tiré du document intitulé Aspects Théoriques et Numériques pour les Fluides Incompressibles, rédigé par Pas-
cal Frey et Yannick Privat. Nous pourrons donc par la suite comparer nos résultats aux leurs, afin de valider ou
d’invalider nos tests. Nous imposons donc le champ solution suivant :

u(z,y) = tanh(—100[y — 0.5 — 0.25sin(27x)]) 4+ tanh(100[y — z])

L’estimateur d’erreur utilisé est basé sur 'erreur selon 'aréte, calculée grace au gradient, comme expliqué ci-
dessus. Puisque nous sommes avec des éléments finis P1, le champ est continu et il est inutile pour le moment
de faire une moyenne sur chaque noeud des différentes valeurs du gradient selon 1’élément dans lequel le noeud se
trouve.
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TESTS SUIVANT LES DIFFERENTES METHODES

Les résultats obtenus par Pascal Frey et Yannick Privat sont les suivants. A gauche se trouve leur maillage initial
et & droite, leur maillage final.

FIGURE 12 — Maillage initial et maillage final pour les tests de Frey et Privat

En ce qui concerne nos choix de paramétres, nous n’avions pas & notre disposition ceux choisis par Pascal Frey
et Yannick Privat. Nous avons donc fait plusieurs tests pour nous rendre compte de ce qui fournissait le meilleur
résultat. Nous avons fixé une taille d’aréte devant étre comprise hyin = 0.001 et Apax = 0.4. Nous bloquons le
processus tout d’abord & 5 remaillages. L’erreur répartie devrait étre inférieure a 2 x 10~%. Pour le coté paralléle,
nous avons fixé un nombre de noeuds minimal & 8000 et maximal & 20000. Nous nous placons de plus sur un carré
[0;1] x [0; 1]. Voici donc les résultats successifs des différents remaillages effectués :

FIGURE 13 — Maillage initial et premier remaillage

FIGURE 14 — Second et troisiéme remaillages
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TESTS SUIVANT LES DIFFERENTES METHODES

FIGURE 15 — Quatriéme et dernier remaillages

On peut tout d’abord effectuer une constatation évidente : on obtient un remaillage trés similaire & celui obtenu
par Pascal Frey et Yannick Privat. De plus, on peut constater que 'on a bien un maillage anisotrope. En effet, prés
des zones ou le remaillage est trés fin, on observe que les triangles sont trés aplatis. Ainsi, le remaillage prend bien en
compte la direction. On peut effectuer un nombre un peu plus important de remaillages. En réalité, on constate que
cela ne change pas grand chose dans notre cas test (les résultats obtenus trés rapidement sont vraiment convenables).
Voici ce que nous obtenons par exemple au bout de 10 remaillages :

ONNAT
NN
NN

FIGURE 16 — Dixiéme remaillage
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TESTS SUIVANT LES DIFFERENTES METHODES

11 RESULTATS AVEC LA METHODE DE LA HESSIENNE SUR UN
CHAMP P2 EN 2D

On se place cette fois-ci dans le cas d’un champ P2 en 2D, afin de se placer dans le cadre qui nous intéresse.
Nous avonc décidé de reprendre le méme cas test pour comparer les deux méthodes : celle du gradient, et celle de
la Hessienne. On décide donc de partir du maillage initial suivant :

0.8 -

0.6

¥-Axis

P LS 1)

0.2:'_ : T l..'

FIGURE 17 — Maillage initial pour la méthode de remaillage par la matrice Hessienne

Dans un premier temps, avant méme de remailler, nous avons décidé d’afficher le champs de matrices Hessiennes
et le champ des métriques & fournir au mailleur, afin de vérifier que tout était bien cohérent. Nous avons dés lors
obtenu ces deux représentations :

War: Hessanne =1
1.123e04 Tk
— [ R

424

| R

i OO0

FIGURE 18 — Champ de matrices Hessiennes

28



TESTS SUIVANT LES DIFFERENTES METHODES

M
er sk

S i
Ver. Metsc_raw .
1 000e+0d T
e
TEDbmis |0l

. 50134405

2519100

- 0.6,
00

F1GURE 19 — Champ de métriques a fournir au mailleur

On observe donc une corrélation avec les résultats attendus. En effet, on peut remarquer que les zones a remailler
seront les mémes que celles qui ont été remaillées avec la méthode du gradient dans le cas P1.

Nous pouvons donc passer aux étapes de remaillage, puisque nous nous sommes assurés que les zones & remailler
étaient bien cohérentes vis & vis des résultats attendus. Nous effectuons comme précédemment cing remaillages afin
d’observer I’évolution de ceux-ci. Voici donc les résultats que nous obtenons :

Cycle: 11 HimeTi i

.

Cyele: 17 Time:

a4 s
E-Azia I-Aris

FIGURE 21 — Second remaillage - Champ des matrices Hessiennes - Champ des métriques
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TESTS SUIVANT LES DIFFERENTES METHODES

Cycle: 3 7 TIMmMe s =00

FIGURE 22 — Troisiéme remaillage - Champ des matrices Hessiennes - Champ des métriques

Cycle: 4 ™| Timesd -7 e Cycle: 4~ EHimed R e m i e e Cycle: 4~ | Timed {00

F-Azin

roaris

FIGURE 24 — Quatriéme remaillage - Champ des matrices Hessiennes - Champ des métriques

Nous pouvons faire quelques commentaires et émettre quelques critiques vis a vis de la méthode. La premiére
remarque que nous pouvons faire c’est que les résultats obtenus sont satisfaisants, dans le sens ot 1’on retoruve bien
le bon motif. Les endroits nécéssitant un maillage plus fin ont bien été adaptés de la sorte. Néanmoins, on remarque
que le maillage demeure trés fin dans les zones ou il n’a plus & I’étre. De plus, on note un maillage isotrope et
non anisotrope. Enfin, nous ne possédons pas de critére d’arrét. Nous nous contentons de prescrire un nombre de
remaillage a effectuer, mais sans condition d’arrét.
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On peut relever le nombre de noeuds pour chacun des remaillages effectués. On obtient dés lors les résultats

numériques suivants :

Remaillage 1 | Remaillage 2 Remaillage 3 Remaillage 4

Nombre de noeuds 2267 | 2062 2129 2087

FIGURE 25 — Nombre de noeuds pour chaque remaillage

On peut également s’intéresser a 'erreur, et tout d’abord aux endroits ou l'erreur est le plus présente. Pour cela,
on prend un maillage bien plus fin, que ’on considére comme maillage de référence, sur lequel on évalue la solution,
que l'on prétend exacte, puis on compare I’écart entre les valeurs sur le maillage adapté et le maillage trés fin. On
constate donc sur les graphiques ci-dessous que 'erreur suit bien le motif de la fonction :

D#: mrafine_0.pviu D8: mrefinc_1 pviy
Cycle: 1 T

Cycle: O Time:d mie: |
o
e
3 E
o a
e LE
. s ™ o ez PR 3
DB: meefipe_2.pviu ipc_3.pviu
Tirne:3

Cycle: 27 Time:2

s

P-Aris
T-aeis

FIGURE 26 — Localisation de ’erreur sur le maillage initial et sur les 4 premiers remaillages
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TESTS SUIVANT LES DIFFERENTES METHODES

Afin de ne pas posséder uniquement des résultats qualitatifs, bien que trés visuels, nous désirons calculer I'erreur
L2 commise entre la solution calculée sur les remaillages effectués, et la solution espérée. Nous obtenons les résultats
suivants :

Maillage initial Remaillage 1 Remaillage 2 Remaillage 3 Remaillage 4

Erreur en norme L2 0.0156986 0.00282622 0.00263724 0.00254935 0.00253582

FIGURE 27 — Erreur en norme L2 commise sur le maillage initial et les remaillages effectués

On peut également représenter ces résultats sous la forme graphique, afin d’illustrer la convergence vers la solution
exacte :

0 0.5 1 1.5 2 2.5 3 a5 4 4.5 5

FIGURE 28 — Erreur en norme L2 commise sur le maillage initial et les remaillages effectués
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TESTS SUIVANT LES DIFFERENTES METHODES

12 AMELIORATION DE LA METHODE DE LA HESSIENNE SUR
UN CHAMP P2 EN 2D

Le premier souci que nous avons pu remarquer avec la méthode de la Hessienne élaborée dans un premier temps,
c’est que les zones qui ne sont pas spécialement & remailler le sont tout de méme un peu. Nous allons donc adapter
les valeurs de hyin et de hpax. De plus, nous allons introduire un coefficient de régularisation de I'erreur w dans la

formule suivante :
\; = min [ max w><g><|/\i| 1 1
e 32 e "h2. | h?

max min

Ce coefficient permet d’imposer & des métriques trop marginales (trop petites ou trop grandes) de se fixer aux

1 . . .
valeurs de 7z ou glr Pour notre exemple, nous considérons w = 0.004. Nous considérons toujours la méme
ax min

m.
fonction comme champ solution.

Nous partons également d’un maillage un peu plus grossier (mais cela ne change rien au résultat obtenu a l'is-
sue des remaillages) :

0.2 0.4 0.6 0.8
X-Axis

FIGURE 29 — Maillage initial avec champ solution
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TESTS SUIVANT LES DIFFERENTES METHODES

Nous obtenons donc les premiers remaillages suivants :

Cycle: 3~

Mosh
e mae

0.d

Cycle: 2~

daan
i st

0.4

0.2

FoAuds

0.8
X=Aris

FI1GURE 30 — Six premiers remaillages avec le champ solution

La premiére remarque que nous pouvons effectuer, c’est qu'on a cette fois-ci bien un maillage anisotrope. De
)
plus, on observe toujours le bon motif de remaillage, tout en conservant un maillage grossier dans les zones ou ’on

n’a pas besoin de remailler.



TESTS SUIVANT LES DIFFERENTES METHODES

En ce qui concerne le nombre de noeuds a chaque remaillage, nous avons les données suivantes :

Remaillage 1 Remaillage = Remaillage 3 Remaillage 4 Remaillage 5 Remaillage 6

Nombre de 1003 1053 961 B24 836 830
noeuds

FI1GURE 31 — Nombre de noeuds pour chaque remaillage

On peut également s’intéresser a ’erreur commise. Si on considére I’écart entre le graphe attendu et le graphe
obtenu sur le maillage actuel, on obtient les représentations d’erreur suivantes :

DF: miafoe 0 pviy DB: mrafipe_ gy
A L e oo T litart

=y 7 oy
_

BReE AR
N
i ]

DB mmafpc_4.pey DE: mrefige S vty
Cyce J{p '||rF|‘|;'a Lyole: 4“ ln%g:a

Bmeoe iRty
-
.

FIGURE 32 — Localisation de 'erreur uyef — Ucale pour le maillage initial et les six premiers remaillages
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TESTS SUIVANT LES DIFFERENTES METHODES

On observe bien que lerreur est localisée sur la zone du dessin de la fonction, et le motif s’estompe au fur et a

mesure des remaillages, preuve que le maillage se perfectionne bien.

Afin d’avoir des résultats quantitatifs, et non seulement qualitatifs, nous pouvons déterminer ’erreur en norme

L2. Nous obtenons les résultats numériques suivants, preuve de convergence vers la solution :

Maillage initial

Remaillage 1

Remaillage 2

Remaillage 3

Remaillage 4

Remaillage 5

Remaillage 6

Erreur en
norme Lz

0.312212

0.0265856

0.00396193

0.003082085

0.0030068

0.00278474

0.00275371

On peut ainsi représenter ces valeurs sur un graphe, ce qui nous permet d’obtenir des résultats un peu plus visuels :

FI1GURE 33 — Erreur en norme L2

la convergence saute alors aux yeux.

032

0.3

0.28

0.26

0:24

0.22

o2

018
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01

0.08

0.06

0.04

.02

Ci

C5

C6

C7

=@

FIGURE 34 — Erreur en norme L2
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TESTS SUIVANT LES DIFFERENTES METHODES

13 ADAPTATION DE LA METHODE DE LA HESSIENNE SUR UN
CHAMP P2 EN 3D

Nous sommes partis, pour adapter la méthode en 3D, de la version améliorée de la méthode de la Hessienne
2D. Il a suffi d’adapter les tailles des matrices mises en jeu. Cependant, ’adaptation de maillages en 3D est bien
plus coiiteuse que celle en 2D. Il est donc impératif de modifier les valeurs de hpyi, et de hmax, qui représentent
respectivement les tailles minimales et maximales & respecter lors du remaillage. Nous avons donc fixé les paramétres
suivants :

hmin = 0.01 Amax = 0.2

Nous conservons la valeur pour le coefficient de régularisation : w = 0.004. Nous conservons la méme fonction 2D
testée dans les cas tests précédents. Nous partons donc du maillage initial suivant :

M
Var ey s

08

0.2

-2. Lol a1 VURR 5
e 1 T SO

FIGURE 35 — Maillage initial 3D

Nous pouvons dés lors représenter le champ solution u, le champ de matrices Hessiennes, et le champ de métriques :

e . - w » . R ¢
- et .. LS
| I - Tishais g e . A
s SN 5 ¢ =
1 by 8 o4
PNt i YN
s hh i Jag i .
A o i f 4
e NgE - {
- i ' ‘ Wi e
2 uE (¥ o uH T
4 e . XAy o n'azﬂi...«. - XAk

FIGURE 36 — Avant remaillage : champ u - champ de matrices Hessiennes - champ de métriques
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Ensuite, nous obtenons les différents remaillages successifs, que ’on voit bien anisotropes :

55. ] l:; ]
i Pi

5 0 i
b P

L3 i i
-,'3_.-' lf |

FIGURE 37 — De bas en haut : huit premiers remaillages successifs avec le champ solution u en couleurs

Sans surprise, le motif obtenu est bien toujours conforme & nos attentes, présent uniquement sur la face avant
et arriére du cube, puisque nous représentons une fonction 2D. De plus, on remarque que sur la face latérale, le
long de la jonction entre la zone rouge et la zone verte, le maillage s’étire de plus en plus, illustrant bien le coté
anisotrope. Si l'on observe le bord des faces latérales du cube, on a bien un nombre de triangle minimal, conforme
aux parameétres fixés. En conclusion, la méthode avec la matrice Hessienne fournit des résultats satisfaisants. Nous
ne pouvons cependant pas dire si c¢’est la méthode optimale.
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Pour ce qui est du nombre de noeuds obtenus & chaque remaillage, nous obtenons les résultats suivants :

Remaillage 1

Remaillage 2

Remaillage 3

Remaillage 4

Remaillage 5

Remaillage 6

Remaillage 7

Remaillage 8

Nombre de
noeuds

28893

33028

15278

10455

8565

7578

7016

6870

Nous ne réaliserons pas de calcul d’erreur sur les cas 3D, car prendre un maillage fin et évaluer la solution dessus

FIGURE 38 — Nombre de noeuds pour chaque remaillage

est déja trés colteux en 2D, mais I'est d’autant plus en 3D. Cela serait donc bien trop cotiteux & calculer.
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14 ELABORATION D’UN NOUVEAU CAS TEST 3D POUR LA ME-
THODE DE LA HESSIENNE AVEC UNE FONCTION A TROIS
VARIABLES

On décide dans ce cas test de rendre le motif représenté un peu plus complexe, en faisant intervenir les trois
variables d’espace, x, y et z. Le choix de la fonction représentée se base tout de méme sur le motif 2D travaillé
auparavant. Nous avons donc choisi de travailler avec la fonction :

w(z,y,2) = tanh(—100[y—0.5—0.25sin(27z)])+tanh(100[y—=x])+tanh(—100[z—0.5—0.25sin(27y)])+tanh(100[z—y])

Nous obtenons donc les remaillages successifs suivants :

a8 o6 0, 0z o8 Y] ) 0, 2 e
2xis 255

0B 06 0403 09

FI1GURE 39 — De gauche a droite, les 8 premiers remaillages avec la fonction «

40



TESTS SUIVANT LES DIFFERENTES METHODES

En termes de résultats quantitatifs, nous obtenons les nombre de noeuds suivants pour chacun des remaillages :

Remaillage 1

Remaillage 2

Remaillage 3

Remaillage 4

Remaillage 5

Remaillage 6

Remaillage 7

Remaillage 8

Nombre de
noeuds

71302

8g801

48520

38615

34840

33597

32575

32389

F1GURE 40 — Nombre de noeuds pour chaque remaillage

De méme que pour le cas test précédent, nous ne donnerons pas de courbe d’erreur, pour les mémes raisons.
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15 RESULTATS AVEC LA METHODE 2 DU GRADIENT SUR UN
CHAMP P2 EN 2D

Nous adaptons cette fois-ci la méthode 2 du gradient pour I’appliquer sur un champ P2, comme expliqué précé-
demment, en calculant la dérivée associée & ’ordre choisi. L’objectif est de comparer 'efficacité des deux méthodes
testées sur des champs P2, afin de pouvoir identifier laquelle il est souhaitable d’utiliser. Nous nous proposons
donc de réaliser nos tests sur le méme cas test, dans les mémes conditions et avec des paramétres identiques a
ceux utilisés dans la méthode de la Hessienne. Nous partons de surcroit toujours du méme maillage initial afin de
ne pas fausser les résultats et de se placer dans des conditions identiques en tout point & celles testées précédemment.

Pour réaliser les premiers tests sur la méthode, il nous faut élaborer des tests progressifs. Tout d’abord nous
mettrons en place un test 2D sur une fonction dépendant uniquement de x. On augmentera progressivement 1’ordre
de la solution et celui du champ de calcul. Dans un second temps, nous ferons la méme chose mais avec une fonction
dépendant uniquement de y. L’objectif par la suite est de combiner les deux afin d’obtenir un test 2D sur une
fonction de z et de y.

15.1 TESTS AVEC UNE FONCTION DEPENDANT D’UNE SEULE VARIABLE

Nous partons d’'un maillage vraiment simple cette fois-ci :

Time:0

Y-Axis

FIGURE 41 — Maillage initial pour les tests 2D

Nous considérons la fonction u(x) = 10z™, ou nous ferons varier le paramétre n, appelé ordre de la solution.
L’objectif en faisant varier ce paramétre est de voir si 'estimateur d’erreur permet de remailler uniquement lorsque
c’est nécessaire ou pas.

Voici donc les résultats obtenus et les différents tests réalisés :
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TESTS SUIVANT LES DIFFERENTES METHODES

Time:20 Time:20

0.8 0.8
0.6 0.6
o4 0.4

.2 0.2

oE 8la EN o8 az 0.4 aE 6.8
x-axis Edida

FIGURE 48 —n = 1 - champ P3 FIGURE 49 — n = 2 - champ P3

Time(20

6.6
X-Axis

FIGURE 50 — n = 3 - champ P3

Nous pouvons émettre quelques remarques. La premiére, c’est que lorsque que 'on a un champ Pm avec un
ordre n de la solution, et que m > n, alors le mailleur va bien ne pas remailler plus finement et au contraire mettre
le maillage le plus grossier : en effet, il n’y a pas d’erreur, donc inutile de remailler. En revanche, si on a m < n
alors on remaille bien. De plus, dans le cas n = m + 2, on voit bien que plus on va vers la droite, plus le maillage
est raffiné, ce qui concorde avec le choix de la fonction.

Pour poursuivre les tests, nous avons choisi de tester une fonction qui ne dépendait cette fois-ci que de la variable
y. Nous partons toujours du méme maillage simplifié, représenté en figure (41). Nous considérons dés lors la fonction
u(y) = 10y™, ot nous faisons toujours varier le parameétre n. Nous avons obtenu des résultats similaires, mais cette
fois-ci orientés suivant ’axe des y.

15.2 GENERALISATION A UNE FONCTION DEPENDANT DE DEUX VARIABLES

Nous avions donc comme objectif de combiner la méthode élaborée pour une fonction dépendant de z et celle
élaborée pour une fonction dépendant de y, afin d’obtenir une méthode dépendant a la fois de = et de y. Malheu-
reusement nous n’y sommes pas parvenus. Les modifications effectuées étaient faites a tatons, et nous manquions
de théorie derriére. Nous nous sommes rendus compte que les résultats obtenus semblaient étre dépendants d’un
paramétre qu’il fallait fixer au cas par cas. Il nous est donc impossible d’obtenir une méthode générale de cette
maniére. Nous laissons donc cette idée de coté.
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CONCLUSION

Huitiéme partie
CONCLUSION

Nous avons, au cours de ce stage, pu élaborer une méthode P2 d’adaptation de maillages, basée sur la Hessienne
de la solution. Ce point la semble étre une vraie réussite quand aux objectifs du stage. Cependant, nous ne sommes
pas parvenus & adapter la méthode du gradient P1 en P2. Il reste cependant a tester la troisiéme méthode, basée
elle aussi sur le gradient de la solution, qui, peut sembler prometteuse.

Ce stage aura été instructif pour moi, tant sur 'appréhension des notions nouvelles, telles que la notion de mé-
trique, ou plus généaralement celle d’adaptation de maillages, et de maillages anisotropes qui jusque 14 m’étaient
inconnus. Ce stage m’aura également permis d’apprendre a coder en C+-+, non sans difficultés, de par un appren-
tissage entiérement autodidacte, mais cela représente désormais un apport non négligeable & mon portefeuille de
compétences.
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ANNEXES

Neuviéme partie

ANNEXES

16 FONCTIONS DE FORME POUR LE TETRAEDRE DE REFE-

RENCE

Il nous faut dans un premier temps déterminer les coordonnées barycentriques associées & notre tétraédre de
référence. Résolvons donc le systéme :

01 0 0\ /ME3,2) 7
00 10 A2 (2,7, 2) _ U
000 1||m@Een| T |z
111 1) \\@5.2) 1
>\2(§j\7§7/z\):/m\
A (2,9,2) =7
= (M@=
/\4(3779’2):2
)\1(%7@:2\):1727@\73

Notons deés lors ((/I;i)lgiglo la base canonique recherchée. Elle vérifie alors aj(f/fi) =

2 ~3 4 23 24

1

Exprimons ®; : on remarque que A; vaut 1 en @' et s’annule en a2,a%,a*, m?3, m
s’annule en Mm'2, M3 et M. Donc A{(2)\; — 1) s’annule en tout point sauf en @
Pexpression : &1 = A1(2A\; — 1).

Exprimons ®, : on remarque que Ao vaut 1 en @2 et s’annule en a',a%,a*, m'3, m3*
2

s’annule en Mm'2, M et Mm?*. Donc Ay(2)\2 — 1) s’annule en tout point sauf en @
Pexpression : ®5 = A2(2X3 — 1).

2 ~4 12 14

3

Exprimons ®5 : on remarque que Az vaut 1 en @° et s’annule en @', a2, a*, m'2, m
s’annule en M3, m? et Mm34. Donc A3(2\3 — 1) s’annule en tout point sauf en @
Pexpression : ®3 = A3(2A3 — 1).

1 -2 =3 12 13

4

Exprimons ®4 : on remarque que A4 vaut 1 en a* et s’annule en @', a?, a3, m?2, m
s’annule en M m?* et m34. Donc \y(2\4 — 1) s’annule en tout point sauf en @
Pexpression : @4 = Ag(204 — 1).

Exprimons ®5 associé a m!'?

donc ’expression : </IS5 =4 Xs.

Exprimons ®g associé a m!'3

donc ’expression : </I\>6 =4\ A3.

Exprimons ® associé a m!'4

donc P’expression : @7 =4\ )\

Exprimons ®g associé a m23

donc ’expression : &Dg =4\ )\3.

Exprimons ®gy associé a m?* :

donc 'expression : &g = 4o )\4.
Exprimons ®;( associé a m>*

donc ’expression : @10 = 4M 3.

46

: on remarque que A;Az s’annule en tout point sauf en m'® ou il vaut

: on remarque que AsA4 s’annule en tout point sauf en m?

: on remarque que AgA3 s’annule en tout point sauf en m

pour tous 1 <4,5 < 10.

et m3*. De plus, 2\, — 1
ou il vaut 1. On a donc

et M. De plus, 219 — 1
ou il vaut 1. On a donc

et m?*. De plus, 2X3 — 1
ou il vaut 1. On a donc

et m23. De plus, 224 — 1
ou il vaut 1. On a donc

12

. . 1
: on remarque que AjAg s’annule en tout point sauf en m* < ou il vaut 1 On a

13 .On a

~14

) . . 1
: on remarque que A;A4 s’annule en tout point sauf en m'* ou il vaut 1 On a

23

N . 1
: on remarque que AsAz s’annule en tout point sauf en m*® ou il vaut 1 On a

4 .On a

ou il vaut

1
34 ou il vaut T On a



ANNEXES

17 DETAIL DU CALCUL DE F,!

Sur la premiére ligne, nous pouvons réaliser I'opération suivante :

1 1
— (LQ —IQ) X
T2 — X1 Y2 — U1

L1 — (L1 —$1) X

Ainsi, on obtient sur la ligne 1 :

X3 L1 | Ty T Y3 — ~ Y4 — T—T -
£+7 3 1,554 17§§7 Y$s— S HaT U 1 ¥ n

T2 — 1 T2 — 1 Y2 — 1 Y2 — U1 T2 —T1 Y2 — U1

g<x3—x1_y3—y1)+2(x4—m1_y4—y1>: r—r1 Y-
T2 — X1 Y2 — U1 T2 — 1 Y2 — U1 T2 — X1 Y2 — 1

On procéde de maniére similaire sur la ligne 2 :

1 1
— (L3 —x3) x
Y2 — Y1 22— z1

L2 < (L2 —Z‘g) X

On obtient ainsi sur la ligne 2 :

~ - ~ - ~ R3 — R ~ R4 — 2 - z—Z
§+yy3 y1+zy4 yl_x_ 3 1 _>% 1 Y¥—n 1

Y2 — Y1 Y2 — Y1 22— 21 22—z Y2 — Y1 22— 21

N — 23— 2 N — 24— 2 — zZ—z
7 (y:s Y1 Z3 1>+z (y4 Y1 Za 1)2 y—Yy 1
Y2 — 1 22— 21 Y2 — U1 22— 21 Y2 — U1 Z2 — 21

Les lignes 1 et 2 ne comportent plus que les inconnues ¥ et Z. Il nous est donc possible de trouver I’expression
de chacune de ces deux inconnues. Tout d’abord, on fait subir a la ligne 1 'opération suivante :

(w2 — 1) (y2 — y1) Ly (y2 —y1)(22 — 21)

e bax (x5 —z1)(y2 —y1) — (Y3 — y1) (22 — 21) (y3 —y1)(22 — 21) — (28 — 21)(y2 — 1)

On obtient donc sur la ligne 1 :

%+ 2($4—$1)(y2—y1)—(y4—y1)(332—x1) y (T —az1) (Po—y1)
(T —a) (Po—y1) (g —21)(y2 — 1) — (y3 — y1) (w2 — x1)

-z (ya—wy1)(z2 —21) — (24— 21)(y2 — 1) W) r—21)

z X

W~ )(Zr—2) (Y3 —y1)(22 — 21) — (23 — 21)(y2 — y1)

(@ —z)(y2—y) — (y—y)(@2 —21) (To—a) [Tr—).
(Tr—a) (Jr—). (3 —x1)(y2 —v1) — (y3 — y1)(z2 — 71)
(Y—y1)(z2 —21) — (2 — 21)(¥2 — 1) oy )(Zr—2)

— X

W~y )(Zr—=2) (ys —y1)(22 — 21) — (23 — 21)(y2 — y1)
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On obtient ainsi ’expression suivante pour Z :

(y—y)(z2 —21) — (2 — 21)(y2 — 1)
(y3 — yl)(zz —2z1) — (23 — 21)(y2 - yl)

(ya —y1)(z2 — 21) — (24 — 21)(y2 — 1)
(Y3 —y1)(22 — 21) — (23 — 21)(y2 — y1)

(IE - xl)(yz - yl) - (y - yl)(ﬂﬂz - 961)
(3 —21)(y2 — 1) — (y3 — y1)(z2 — 11)
(4 —21)(y2 — 1) — (ya — y1)(x2 — 11)
(3 —21)(y2 — 1) — (Y3 — y1)(z2 — 71)

z =

On peut donc remplacer la valeur de z dans la ligne 2 afin d’en déduire une expression de y. On obtient :

W~y )(Zr—2)

(y3 —y1)(22 — 21) — (23 — 21)(y2 — ¥1)

W~y )(Zr—2)

(ya —y1)(z2 — 21) — (22 — 21) (2 — 1)

(y —y1)(z2 —21) — (2 — 21)(y2 — v1)

W~y (Zr—=1)

(y3 - yl)(Zz - 21) - (23 - 21)(1/2 - y1)

W~y ) (o —1)

D’ou I'expression pour ¥ :

(y—y1)(z2 —21) — (2 — 21) (Y2 — 1)

(Y3 —y1)(22 — 21) — (23 — 21)(y2 — y1)

(x —21)(y2 —y1) — (y — y1) (w2 — 21)

(r3 —21)(y2 —y1) — (y3 — Y1) (w2 — 1)

I
(>

(y —y1)(z2 —21) — (2 — 21)(y2 — ¥1)

(yz —y1)(22 — 21) — (23 — 21) (Y2 — 1)
(ya — y1)(22 — 21) — (24 — 21)(y2 — Y1)

(Y3 —y1)(z2 — 21) — (23 — 21) (2 — 1)

(5174 - 1’1)@2 - yl) - (y4 — y1)(352 - 561)
(x3 —21)(y2 —y1) — (Y3 — y1)(22 — 21)

(ya —y1)(z2 — 21) — (24 — 21)(y2 — 1)

(Y3 —y1)(22 — 21) — (23 — 21)(y2 — y1)

On peut donc en déduire 'expression de Z & partir de la derniére ligne du systéme, la ligne 3. On obtient alors :

T4 — 1

~ I3 — 1

r — I

I
(8

T2 — X1 T2 — T

T2 — T

D’ou ’expression pour 7 :

z— 21)(312 - Z/l)
)

—

~—

— —
8|8
[
N <|
55 = sy
RN |~
~— — — —
a| a| ™ = D > >
BIGIK y_ , |
== I
=13 | o @
SRS SSSS
~— — — —
o | o I EO B IO
N N N |
il =2l o | o
S8 ||
— ]~ ~— | — | —|—
== 0
Q| R Py
P~~~
[ I O O I RIRSS
glals — _
=== I B I
S35 SRR R
AREEEE
o 2| @
yyy(y\(y\_ | f |
— = ==
bl —
| IS 283K
g R — ==
§1518 gl ! !
(Z\/Z\ |~~~
o o @ Twlx 8|8
BRI &8 ~|~ R
e
g kg N[N ~ N[ | ™
=SS §IEEE
i ale =EEE
o = 3/|\(muyyy
S— [ [ ~— — — _
RN S| > o | »
7 | D D D D
— ]~ — | — | —|—
i — i
SIS IF ]
— = — —
IR X D D D D
SIS Py
S [ [ ~—
i — Al
S| &8 2222
=== I=
L] | = ==
o <| o R 8|8|8
BIEB|EB FL] ]
S [ | ~—
S| o | »
| —| 8|88
IS
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18 Calcul de la matrice JacF ]}1

e Exprimons V®; associé a a' :

e Exprimons V®, associé & a

v(/ﬁQ (i‘\a :/l/\v /Z\) =

e Exprimons V®;3 associé a a3 :

Va\)3("fa g7 2) =

e Exprimons V@, associé a a* :

V(/ISZL (/{IJ\7 @\7 /Z\) =

e Exprimons V&5 associé & m'? :

V(/I\)Eﬁ (i\) @\7 /Z\) =

e Exprimons V®¢ associé a m!3 :

V(I)G (‘r/E\a @\7 /Z\)

e Exprimons V®; associé a m!'# :

VEI\)’7 (3;\7 :'/J\v /Z\)
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e Exprimons V(/Isg associé a m?3 :
9:05(7, ¥, %) 4y
Vds(2,5,2) = | %@ 5.2) | = |42
0:05(%,7,2) 0
e Exprimons Vdg associé a m24 :
8§(/I\)9 (/1'\, Au /Z\) 4z
Voy(7,5,2) = | 0@ u,2) [ = [0
82(1)9 (EC\, :I/\a 2) 4z
e Exprimons V&, associé & m24 :
03910(%, 9, 2) 0
Vdy(2,5,2) = | %®10(2.0.2) | = |42
0:910(2,7.2) &

)

P . . . — —1(2 AN ,
Il nous faut donc enfin déterminer la matrice Jacobienne de F Kl. On note F Kl( la i— éme coordonnée du

vecteur F 1}1. La matrice Jacobienne s’écrit alors :

8xFI;1(1) ayFlzl(l) azFlzl(l)

—1(2) -1(2) -1(2)
0. Fy 0y Fy 0.Fy
-1(3) -1(3) —13)
0. F " O, F 0. Fgt
Il faut donc exprimer toutes les dérivées partielles.
e Exprimons 8wFI;1(1) :
1
6 F—l(l) _
K To — X1
Y2—Un

(3 —21)(y2 — 1) — (y3 — y1) (T2 — 71)
(e —2)(y2 —y1) — (Wa —yn)(@2 — 1) (ya — 1) (22 — 21) — (24 — 21)(y2 — y1)
(953*%1)(312*yl)*(y?,*yl)(ﬂ?Q*Il) (y3*yl)(ZQ*21)*(23*21)@2*%)
" (Y —y1)(z2 — 21) — (20 — 21)(y2 — 1) 23— 71
(ys —y1)(z2 — 21) — (23 — 21) (Y2 — ¥1) T2 — 71
Y2 — Y1
(3 —21)(y2 — 1) — (Y3 —y1)(z2 — 71) Ta— I
(g —x1)(y2 —y1) — (Wa —y1) (w2 — 1) (ya —y1)(z2 — 21) — (24 — 21) (Y2 — y1) 22 — 21

(3 —21)(y2 —y1) — (y3 —y1)(z2 —21)  (y3 —vy1)(z2 — 21) — (23 — 21)(y2 — ¥1)
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e Exprimons 3ng1(1) :

22 — 21

(‘ (ys — y1)(22 — 21) — (23 — 21)(y2 — 1)
To — X1 Z9 — 21

8yFE1(1) _

(3 —21) (W2 —w1) — (ys —y1) (@2 — 1) (ys —y1)(22 — 21) — (23 — 21)(y2 — y1)
(e —2)(y2 —y1) — (Wa —y)(@2 — 1) (ya —w1)(z2 — 21) — (24 — 21)(y2 — y1)
(r3 —21)(y2 —y1) — (Y3 — y1) (22 — 21) (y3 —y1)(22 — 21) — (23 — 21)(y2 — ¥1)

(y4y1)(2221)(2421)(3/23/1)) T3 — T
(ys —y1)(22 — 21) — (23 — 21)(y2 — ¥1)

X

T2 — T1
T2 — I 22 — 21

__(553—901)(92—211)—(Z/B—:lh)(xz—xl) (ys —wy1)(za —21) — (23 — 21)(y2 — 1) Ta — 1
(@ —z)(e—y1) —(a—y)(@2a —21)  (wa—wy)(z2—21) — (a—2) (2 — 1) 22— 11

(3 —21)(y2 —v1) — (ys —y1) (@2 — 1) (y3 —y1)(22 — 21) — (23 — 21)(y2 — ¥1)

e Exprimons angl(” :

—1(D) Y2 —
aZFK ((y3 —y1)(z2 —21) — (23 — 21)(y2 — ¥1)
Y2 — Y1
(ys —y1)(22 — 21) — (23 — 21)(y2 — y1)
($4 - $1)(y2 - yl) - (y4 - Z/1)($2 — 1) (Ya — yl) z2 — 21) - (24 - 21)(?/2 — 1)
)

(

Ys — (22 - 21) - (23 - 21)(y2 - y1)
)
)

(r3 —21)(y2 —v1) — (Y3 — y1) (w2 — 1)

(
(ya —y1)(z2 —21) — (24 — 21) (Y2 — 01 ) r3 — X1
(y3 —y1)(z2 —21) — (23— 21)(y2 — 1) ) w2 — 11
Y2 — Y1
. (Y3 —y1)(22 — 21) — (23 — 21)(y2 — v1) T4 — T

(a—z1)(y2 — 1) —(Wa—y1) (@2 —x1)  (ya—y1)(22 —21) — (24 — 21) (Y2 —y1) T2 — 13

(s —z1)(y2 —v1) — (s —y1) (@2 —21)  (y3 —y1)(22 — 21) — (23 — 21) (Y2 — ¥1)

e Exprimons 8xFI;1(2) :

Y2 — W1
o Fp1® _ (w3 —21)(y2 —91) — (Y3 — y1) (w2 — 71)
oK (e —z)(y2 —y1) — (Wa —y)(@2 — 1) (ya — 1) (22 — 21) — (24 — 21)(y2 — y1)
(3 —21)(y2 —y1) — (Y3 —y1)(z2 —21) (Y3 —y1)(22 — 21) — (23 — 21)(y2 — ¥1)
(ya —y1)(z2 — 21) — (24 — 21) (Y2 — 1)

(y3 —y1) (22 — 21) — (23 — 21) (Y2 — w1)

X

e Exprimons (“)yFI;I(Q) :

_1(2) 22 — 21
O T =G — ) — (s — 2 — 1)
T2 — T1 + 22 — 21
+ (r3 —21)(y2 —y1) — (y3 — y1)(x2 — 1) (yz —y1)(2z2 — 21) — (23 — 21)(y2 — y1)
(x4 —21) (Y2 — 1) — (ya —y1) (@2 — 71) _ (ya —y1)(22 — 21) — (24 — 21)(y2 — y1)
(w3 —21)(y2 —wy1) — (y3 —y1)(@w2 — 1) (y3 —w1)(22 — 21) — (23 — 21) (¥2 — ¥1)
(ya —y1)(2z2 — 21) — (24 — 21) (Y2 — ¥1)
(Y3 —y1)(22 — 21) — (23 — 21)(y2 — y1)

X
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e Exprimons 3ZFE1(2) :

-1(2) Y2 — Y1
0-F s — o)z — ) — (2 — =) (w2 — o1)
Y2 — 1
(yz3 —y1)(22 — 21) — (23 — 21)(y2 — y1)
(4 —21)(y2 — 1) — (Ya —y1)(z2 — 71) _ (ya —y1)(22 — 21) — (24 — 21)(y2 — Y1)
(s —z1)(y2 —y1) — (ys —ya) (@2 — 1) (Y3 —y1)(22 — 21) — (23 — 21)(y2 — 1)
y (ya —y1)(z2 — 21) — (22 — 21) (Y2 — y1)
(ys —y1)(22 — 21) — (23 — 21)(y2 — y1)

e Exprimons 8zF§1(3) :

Y2 — 1
P F_1(3) _ (3 —21)(y2 — 1) — (Y3 — y1)(x2 — 71)
R (s —2)(W2 —y1) = (a —y1) (@2 — 1) (ya—y1)(22 — 21) — (za — 21)(y2 — 1)

(3 —z1)(y2 —v1) — (Y3 —y1)(x2 —21)  (y3 —y1)(22 — 21) — (23 — 21)(y2 — v1)

e Exprimons 8yFI§1(3) :

T2 — T1

0. F-1® _ (z3 — ) (y2 — 1) — (Y3 —y1) (w2 — 1) (Y3 —y1) (22 — 21) — (23 — 21)(y2 — 1)
K (e —z1)(y2 — 1) — (Wa —y1) (@2 —21)  (ya —y1)(22 — 21) — (24 — 21)(y2 — ¥1)

(3 —z1)(y2 — 1) — (w3 —v1) (@2 —x1)  (y3 —y1)(22 — 21) — (23 — 21) (Y2 — ¥1)

e Exprimons ('“)ZFgl(g) :

Y2 — Y1
P F_1(3) _ (ys —y1)(2z2 — 21) — (23 — 21)(y2 — 1)
oK (g —21)(y2 — 1) — (Wa—y1)(@2 —21)  (ya —y1)(22 — 21) — (24 — 21)(y2 — y1)

(3 —z1)(y2 — 1) — (Y3 —y1)(x2 —21)  (y3 —y1)(22 — 21) — (23 — 21)(y2 — ¥1)

Nous avons donc pleinement déterminé la matrice Jacobienne.
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19 Calcul des dérivées secondes des (/Isk

On obtient donc les dérivées constantes suivantes :

e Pour </I;1 : R R R R R R R R R
0%, 0%, 0%, 0°B, 0%y 0%%,  0°%,  0°%,  0°%,
ox2  Oy? 022 Oxdy Oydxr 020x  Oxdz 020y  Oydz
e Pour &\)2 :
52D, . 2Dy 92Dy 92Dy 02Dy, 02Dy 92Dy 92D, 92D,
—_— e = = = = = = = =
ox? Oy? 022 Oxdy Oydr 0z0x Oxdz 0z0y  Oydz
e Pour 53 :
52D . Ry P03 92Dy 92Dy 02Dy 003 92Dy 07Dy 0
= e = = = = = = = =
0y2 Ox? 072 0xdy Oydxr  020r Ox0z 0z0y  Oyoz
e Pour 54 :
20, o 20, 9*Py 2B, Py 0By PPy 2D, 9Dy
022 0x2  Oy?  Oxdy Oydr 0z0x Oxdz 020y Oydz
e Pour :I;g, :
0°5 @5 0%®s o PO P05 PRy D5 9Py 0P _
oz2 oxdy  0xdz oy 022 Oydxr 0z0x 020y Oydz
e Pour </I;6 :
02®y < s 02D . 2y OP0; 2Dy 02D 0*Dg 92Dy
= — = = — e = = = = = =
oy? ’ Ooydx  Oyoz 0x? 022 Ordy 0z0x Oxdz  0z0y
e Pour @7 :
52D, R0, 92D, . R, PO, 920, 92, 02D, 92D,
_— = = = — e = = = = = =
022 ’ 020x 020y Ox? Oy? Oxdy  0xdz 0Oxdz  Oyoz
e Pour </I;8 :
P2dy 9Dy o LB PPy 0P P05 005 0Py 0PDs
Oydox  O0xdy 022 022  Oy? 020y Oxdz 020x Oydr
e Pour 69 :
2Dy 9Dy o PPy Py By Dy 9By _ Py _
020 0xdz 072 ox? oy 020y 0xdy Oydx Oydz
e Pour EI\>10 :
9010 _ 9*0yo _ o PO _ PPy PP POy _ PPy PP _ PO _
0z0y Oyoz 022 Ox? Oy? 020z Ox0y Oyox 0z0z
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