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Introduction

L’étude réalisée durant ce stage s’inscrit dans le cadre du projet eGait porté par Lise
Bellanger et Aymeric Stamm au sein du Laboratoire de Mathématiques Jean Leray (LMJL).
Ce projet s’incrit dans le domaine de la Recherche et du Développement en biostatistique
et a pour but 'analyse de la marche a 'aide d’un systeme de capteurs de mouvement.
Un dispositif eGait a été développé au cours du projet par entreprise UmanlT et le
LMJL et est composé d’une application mobile permettant de piloter une centrale inertielle,
c’est-a-dire ’assemblage de capteurs de mouvement. Cette centrale inertielle permet la
mesure des informations quantitatives relatives a la démarche d’un individu et le traitement
des données récoltées permet de générer un biomarqueur appelé signature de marche (SDM).
Ce biomarqueur caractérise la rotation de la hanche d’un individu au cours d’un cycle de
marche moyen (voir section 1.4.1) et permet ainsi de suivre I’évolution des troubles de la
marche d’un individu.

Les troubles de la marche peuvent engendrer des modifications significatives dans la vitesse
de la marche ou encore dans I'amplitude des mouvements. Ils peuvent étre provoqués
par divers facteurs, comme le vieillissement et la maladie. Le projet est ainsi tourné
vers 1’étude de la marche chez les patients atteints de Sclérose en Plaques (SEP). Cette
maladie auto-immune affecte le systéme nerveux central, entrainant ainsi des problémes de
coordination et de mobilité chez les malades.

Le déficit ambulatoire est habituellement évalué lors d’'un examen clinique en mesurant le
temps nécessaire pour parcourir huit metres, a ’aide de scores de sévérité de la maladie
tel que 'EDSS et avec une IRM en mesurant le volume lésionnel cérébral. Seulement,
ces indicateurs ne semblent pas étre suffisants pour 'analyse de la marche puisqu’ils ne
permettent pas de dissocier les différents troubles de la marche, comme les troubles moteur,
de spasticité et d’équilibre. C’est dans ce cadre que l'utilisation du biomarqueur SDM
constitue une opportunité unique de collecter des informations quantitatives sur la santé du
patient, précises, sans contraintes et peu cotiteuses.

Nous nous concentrons sur ’évaluation de I'atteinte de la marche chez les patients atteints
de SEP, le projet ayant pour but 1’étude de 'association entre la SDM individuelle du
patient obtenue lors de son examen clinique et la charge lésionnelle mesurée par IRM.
L’objectif de ce stage est ainsi de : (i) évaluer I’association entre la SDM, 'EDSS et charge
lésionnelle mesurée par IRM, (ii) établir des profils type de SDM en fonction de la charge
lésionnelle observée par circuit et de la sévérité de la maladie mesurée via les scores EDSS,
(iii) expliquer et prévoir le volume lésionnel par circuit, ou I'appartenance aux groupes
établis en (ii), a partir des profils type de SDM.

L’établissement de profils type pourrait faciliter le diagnostic du handicap ambulatoire d’un
patient en identifiant le profil type dont il se rapproche le plus. Cela pourrait permettre
une évaluation spécifique des troubles de la marche dés I’examen clinique et ainsi permettre
aux neurologues de proposer un suivi adapté au patient le plus tot possible, limitant les
risques d’aggravation.
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1 Prérequis

1.1 La sclérose en plaques

La sclérose en plaques (SEP) est une maladie auto-immune affectant le systéme nerveux
central; le cerveau et la moelle épiniere. Le systeme immunitaire est touché et attaque la
myéline, gaine protectrice des fibres nerveuses qui permet la propagation de 'influx nerveux
du cerveau aux différentes parties du corps, entrainant ainsi différentes lésions.

De nombreux signes de la maladie sont observables : on retrouve des troubles moteurs,
des fourmillements, des troubles de 1’équilibre ou encore des troubles visuels ou urinaires.
Les symptomes sont variés et évoluent chez un méme patient, I’évolution et I’expression de
la maladie sont donc imprévisibles.

Il existe deux modes évolutifs de la maladie : la forme rémittente et la forme progressive.
La SEP rémittente, plus fréquente, évolue sous forme de poussées tandis que la SEP
progressive correspond a une aggravation continue des symptomes, sans poussées. Une
poussée correspond & ’apparition de nouveaux symptomes ou ’aggravation de symptomes
déja existants pendant plus de 24 heures et en dehors d’une période de fievre.

La SEP touche 120 000 personnes en France et aucun traitement ne la guérit, mais il en
existe permettant d’améliorer le quotidien des malades face aux nombreux symptomes.
Le suivi de la maladie se fait a I’aide d’un examen clinique durant lequel plusieurs tests sont
réalisés. Parmi eux, le score EDSS est déterminé par le neurologue, et la vitesse de marche
des malades est mesurée lors du Timed 25-Foot Walk (T25FW). Le T25FW est un test
durant lequel le patient marche environ 7.60 metres en ligne droite, avec ou sans aide, et
encadré par les praticiens. Les troubles de la marche font en effet partis des symptomes les
plus fréquents et entrainent une diminution de la qualité de vie chez les personnes atteintes
de SEP, son étude est donc devenu un moyen important pour la compréhension et le suivi
de la maladie.

Des IRM sont également réalisées afin de suivre I’évolution des lésions du cerveau et de la
moelle épiniere.

1.1.1 Echelle EDSS

L’échelle EDSS (Expanded Disability Status Scale) est une échelle discréte et non linéaire
utlisée pour évaluer le handicap d’un patient. Ses valeurs varient de 0 a 10. Tres souvent
utilisée, elle permet le suivi des patients et I’évaluation de I’évolution du handicap, et est
déterminée par le neurologue lors de ’examen clinique.

L’EDSS est un score global de sévérité de la maladie. Lors de ’examen clinique, le neurologue
évalue les différents symptomes liés a la SEP, il évalue alors les fonctions neurologiques
suivantes :
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- la fonction visuelle : liée a la vue

- la fonction du tronc cérébral : gere le rythme cardiaque, la respiration, la motricité du
visage et des yeux, ’élocution, la déglutition

- la fonction pyramidale : liée a la contraction volontaire des muscles

- la fonction cérébelleuse : gere la coordination des mouvements, 1’équilibre

- la fonction sensitive : liée a la proprioception, la douleur, la thermoception
- la fonction sphinctérienne : liée aux troubles urinaires et intestinaux

- la fonction cérébrale (ou cognitive) : la mémoire, la concentration, 'humeur
- les autres fonctions neurologiques touchées

Le neurologue attribue un score a chacune de ces fonctions, c’est ce qu’on appelle les
sous-scores, et il obtient le score final en combinant ces sous-scores.

1.1.2 Volume lésionnel cérébral mesuré par IRM

La sévérité de la maladie peut également étre évaluée a 'aide de mesures IRM (Imagerie
par Résonance Magnétique). Les données IRM permettent d’évaluer les lésions faites au
cerveau et a la moelle épiniere, et ainsi déterminer 1’évolution de la maladie et son impact
sur la démarche du patient.

On s’intéresse pour cela plusieurs régions relatives a I’atteinte de la marche : le cerveau, la
moelle cervicale et la moelle thoracique. Grace a I'IRM, il est possible de récupérer pour
chaque région d’intérét le volume des lésions et le volume total de la région en question,
comprenant ainsi la substance blanche et les tractus corticospinaux gauche et droit. Le
tractus corticospinal permet le contréle des mouvements des membres et du tronc en
facilitant la transmission des signaux moteurs du cortex cérébral aux muscles des membres
et du tronc. Il constitue la voie motrice de la matiere blanche, et commence au niveau du
cortex cérébral, jusque dans la moelle épiniere.

Ici, les Iésions sont localisées sur les images IRM a 'aide d’une segmentation faite par un
algorithme d’apprentissage profond, puis vérifiées par un médecin. La charge lésionnelle par
circuit est alors comptabilisée pour le cerveau, la moelle cervicale et la moelle thoracique.

1.2 Dispositif eGait

Le suivi de la maladie et les méthodes d’évaluation des troubles de la marche d’un individu
que nous avons évoqués rencontrent cependant certaines limites. En effet, les scores EDSS
sont des données qualitatives évaluées par les neurologues. Cette évaluation ne donne pas
la méme importance a tous les symptomes. De plus, elle peut varier d’un neurologue a
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I’autre, entrainant des scores différents pour un méme patient, elle peut donc étre biaisée.
L’évaluation par mesures IRM est quant a elle assez contraignante car la réalisation d’une
IRM est cotiteuse et réalisée seulement une fois par an.

L’idée d’un capteur a porter au niveau de la hanche lors de la marche est apparue comme
un nouveau moyen pour évaluer 'atteinte de la marche, donnant des valeurs quantitatives
non biaisées et peu contraignantes. Le disposotif eGait est notamment constitué d’un
systeme de capteurs, composé d’un accélérometre, un gyroscope et un magnétometre, d’un
smartphone et d’une application mobile permettant ’acquisition et le stockage des données.

Le capteur se porte au niveau de la hanche et récupere des données a une fréquence de 100
Hz, c’est-a-dire toutes les 10 ms. Les données sont récupérées sous la forme de séquences de
quaternions unitaires, définissant ’angle de rotation de la hanche au cours du temps. La
rotation est ainsi décrite par 2 parametres : son axe de rotation et son angle de rotation.

Figure 1: Capteur positionné i la hanche Figure 2: Données récupérées par le capteur
Ce dispositif est le premier se placant au niveau de la hanche, les capteurs pré-existants se
placant habituellement au niveau des pieds des patients. L’objectif de ce capteur est ainsi
d’étre porté quotidiennement par les patients afin de récupérer leurs données de marche et
repérer d’éventuelles troubles de la marche, tout en assurance une utilisation simple et peu
contraignante.

1.3 Les quaternions

Un quaternion est un vecteur & 4 dimensions, que ’'on note q = (w, z,y, )}, q € R*. 1
peut aussi étre considéré comme un nombre hypercomplexe de rang 4, on a alors la notation
suivante :

q=w+ix+ jy+ kz avec i = j? = k> = ijk = —1

avec w, x,y et z des nombres réels et i, j et k généralisant le nombre imaginaire ¢ selon la
regle :
i?=2 =k =ijk=—1
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Un quaternion unitaire est un quaternion normé; il vérifie ||q|| = /w? + 22 + y2 + 22 =
1. Les quaternions unitaires permettent de décrire une rotation en 3 dimensions. Ils s’écrivent
sous la forme :

6

0
q:cos§+usin§:Cos§+u$sin§i+uysin§j+uzsin§k

Le quaternion q représente la rotation d’angle 6 € R autour de I'axe u = (uy, uy, u,) € s?,
ot S? est la sphere en trois dimensions. Cette rotation est illustrée sur la figure 3.

Les données d’intérét sont les rotations de la hanche au cours du temps. On peut
considérer N quaternions unitaires. Ces rotations se retrouvent sous la forme d’une série
w = (wy,...,wy)*

r = (1’1, ...,a?N)t
y= (Y1, yn)"
2= (z1,...,2n)"
ou la séquence des quaternions est associée aux temps T = (t1, ..., tn).

temporelle de quaternions (QTS) : Q = (qi, ...,qn)! =

Les rotations sont calculées par le dispositif, positionné a la hanche. Le systeme de
capteurs est doté de son propre référentiel, noté Ry = (s1, 2, S3), et on considere le référentiel
terrestre Ry = (f1, fa2, f2). L'orientation du dispositif & un temps donné est alors déterminée
comme la rotation entre un référentiel fixe, le référentiel terrestre, vers le référentiel du
systeme de capteurs. On retrouve cela sur le schéma 4, ou la rotation est décrite par son
axe de rotation u et son angle de rotation 6.

Ty

Figure 4: Capteur avec son référentiel Ry (en

. . . , .
Figure 3: Rotation de po d’axe de rotation bleu) et Ry le référentiel terrestre (en gris)

u; et d’angle de rotation 6,

Le groupe des quaternions unitaires, noté H,, a plusieurs particularités. Il est notamment
doté d’une métrique particuliere : la distance géodésique. Celle-ci permet de calculer la
distance minimale entre deux quaternions unitaires q; et qo :

d(q1,q2) = 2arccos Re(ql_lqg)
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Le quaternion qflqg représente la rotation nécessaire pour obtenir qs a partir de q;.

1.4 Etude des données de marche

1.4.1 Cycle de marche

La démarche d’un individu est caractérisée par la répétition de cycles de marche au cours
du temps. Un cycle de marche correspond a I’ensemble des mouvements réalisés entre deux
contacts successifs d'un pied donné avec le sol. Il est constitué d’une phase d’appui et d’une
phase de balancement, comme représenté sur le schéma ci-dessous.

¥ 0 ]

Phase d’appui Phase de balancement

Figure 5: Description d’un cycle de marche

e La phase d’appui correspond a la période ou le pied est en contact avec le sol. Elle
débute par le contact initial du pied avec le sol, et se termine au décollement des
orteils, marquant la perte de contact avec le sol.

e La phase de balancement correspond a la période ou le pied n’est plus en contact
avec le sol. C’est le décollement des orteils, jusqu’au contact initial suivant du méme
pied.

1.4.2 Algorithme STRIPAGE et Signature de Marche

Les données brutes récupérées par le systeme de capteurs sont ensuite traitées afin de
générer une signature de marche (SDM) propre a chaque individu. La SDM est un
biomarqueur représentant la démarche d’un individu et caractérisant les mouvements qu’un
individu fait au cours d’un pas. Elle correspond a la rotation de la hanche d’un individu
durant un cycle de marche moyen.

Le capteur permet d’obtenir une séquence de quaternions unitaires pouvant contenir
plusieurs cycles de marche; on a alors une série temporelle de quaternions unitaires. Ces
différents cycles de marche sont identifiés a I’aide de l’algorithme STRIPAGE (STRIde
PAttern GEneration). Cet alorithme a été développé par Pierre Drouin dans sa these [5].
Les données étant stockées dans des fichers CSV (voir Figure 2), on retrouve plusieurs
étapes pour chaque fichier :

- on lit la QTS et on la centre [13]

- on déduit des QTS la vitesse de marche
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- on segmente chaque QTS

L’étape de segmentation a initialement été développée par Pierre Drouin dans sa these. Elle
a par la suite été améliorée par Aymeric Stamm et Manon Simonot et utilise désormais un
arbre de décision. Pour cette nouvelle facon de segmenter les QTS en cycles de marche, le
modele d’arbre de décision est entrainé sur un feature space comportant :

la vitesse angulaire

I’accélération angulaire

les angles d’Euler RPY (Roll-Pitch-Yaw) [21]
- la vitesse de marche

qui sont calculés aux temps t et aux temps t — 1,....,t — k avec k le parametre de lag.

Ensuite, pour chaque patient, I’algorithme réalise les étapes suivantes :

1. Regroupement des cycles obtenus dans les différents fichiers lui correspondant (en
général 4 fichiers car le patient fait normalement deux T25FW, chacun comprenant
un aller-retour)

2. Calcul de la durée des cycles pour la mettre de coté

3. Ré-échantillonnage de chaque cycle pour garder 101 points

4. Définition de la grille 0:100 comme grille commune a tous les cycles
5. Détection et suppression des outliers de forme [10] [1]

6. Alignement des cycles [12]

7. Définition de la SDM comme la médiane des cycles alignés

Cet algorithme permet alors de représenter la démarche d’un individu sous la forme d’une
unique séquence de quaternions unitaires, correspondant a la signature de marche.
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Figure 6: SDM d’'un individu et ses cycles de marche

Sur la figure 6, la SDM est représentée en bleu et les cycles de marche sont en gris. Ils sont
données en pourcentage de durée de cycle sur chaque composante des quaternions.

1.4.3 Parametres spatio-temporels

Les cycles de marche et la SDM permettent le calcul de parameétres spatio-temporels
(PST) donnant des informations sur la démarche des individus. On a :

e Parametres temporels :

— durée des pas
— durée des cycles
— durée de la phase d’appui et de la phase de balancement

— cadence du pas
e Parametres spatiaux :

— longueur et largeur du pas

— longueur et largeur du cycle

— hauteurs maximale et minimale du pied durant la phase de balancement

— amplitude de rotation maximale de ’articulation de la hanche, de la cuisse, du

tibia ou de la cheville au cours du cycle

e Parametre spatio-temporel :
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— vitesse de marche

On peut alors caractériser la démarche d’un individu a l’aide des parametres spatio-
temporels suivants :

e La durée moyenne d’un cycle

L’amplitude moyenne d’un cycle

La durée moyenne de la phase d’appui

La variabilité des cycles

La vitesse angulaire moyenne d’un cycle

10
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2 Meéthodes statistiques d’intégration de données multi-sources

2.1 Notation

Dans le cadre de l'intégration de données et pour la suite de ce papier nous posons les
notations suivantes. On considere K sources de données, représentées par K matrices
contenant les mémes n observations. La matrice X} contient dj variables, pour k =1, ..., K.
Pour chaque matrice X}, nous notons 7 son rang et nous considérons Fy, = (fx1, ..., fir,,) la
matrice des scores et Wj, la matrice des poids. Nous retrouvons la relation : F = X Wy.

dy

Tk Tk

n n

Figure 7: Notation pour la matrice X

Pour la suite, nous considérons également les décompositions en valeurs singulieres
(DVS) des matrices. Nous posons ainsi les notations suivantes. On considere la matrice Xj.
Sa DVS se note : )
31/t
Xk - UkA]? Vk‘
Ou Uy, représente la matrice des vecteurs singuliers a gauche, V,,, est la matrice des vecteurs

1
singuliers & droite et la matrice A; contient les valeurs singulieres sur sa diagonale, c’est-a-
dire les racines carrées des valeurs propres Aq, Ao, ...

On définit également les notions de variabilité jointe et individuelle. On considere k =1, ..., K
jeux de données avec les mémes n observations et différentes variables et on s’intéresse a
I'espace des scores engendré par les composantes (fx1,..., frr, ). Chaque jeu de données
apporte de I'information qui peut étre décomposée en trois types de variabilité, on observe
ainsi :

11
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e la variabilité jointe : c’est la variabilité commune aux blocs de données, représentée
en bleu sur le schéma 8. Les composantes communes engendrent un sous-espace de R"
composé de la variabilité commune.

e la variabilité individuelle : c’est de la variabilité propre a chaque bloc. Les
composantes individuelles forment des sous-espaces, un pour chaque bloc, ou 'on
retrouve la variabilité individuelle.

e le bruit : c’est 'information résiduelle.

% d X2 d
[ Variabilité jointe I . [ variabitité jointe
[ variabitit individuelte | — ] Variabilits individuetle
D Variabilité résiduelle ‘:I Variabilité résiduelle
n n

Figure 8: Décomposition de la variabilité de 2 blocs de données en 3 types de variabilité

Cette décomposition se fait donc en terme de sous-espaces et non en terme de variables,
puisqu’une méme variable peut fournir a la fois de la variabilité commune et de la variabilité
individuelle.

2.2 CCA et extensions

La CCA (Analyse Canonique des Corrélations) est une méthode qui permet d’examiner
le lien entre deux ensembles de variables mesurées sur les mémes observations, et ainsi de
savoir s’ils mesurent ou non les mémes propriétés.

Cette méthode, plus classique ne prend en entrée que deux jeux de données, les matrices Xy
et X5 définies précédemment et renvoie les m € N composantes maximisant la corrélation
entre les blocs.

On cherche ainsi les composantes orthogonales fi;, = Xiwip et fo, = Xowop, appartenant
a Fy et Fy respectivement, maximisant : corr (Xqwip, Xowap), h =1, ...,m.

La CCA peut également étre vue sous la forme d’un autre probleme de maximisation,
détaillé dans 'ouvrage de A. Smilde, T. Naes et K. Liland de 2022 ”Multiblock data fusion
in statistics and machine learning” [18]. Pour simplifier I’explication, nous considérons une
composante de chaque bloc : f1; = Xjwi1 et fo; = Xowog.

Le principe de la CCA correspond alors au probleme de maximisation suivant :

max wi; X Xoway sc || fu1]l = [|fa] =1 (1)
wi11,wW21

12
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En réécrivant cela en utilisant les DVS de X7 et X5, on obtient le nouveau probleme de
maximisation :

5?%§Q1U1tU2Q2 sc g1l = llgnl| = 1 (2)

1 1
N Syt Syt
ot g1 = A Viwir et ga1 = A3 Vywo.
On a bien

1t 1 1t 1
¢ - ¢ 3 orrtrr A3t ¢ 3 ABt ¢
1= flifu = wi XiXiwn = w ViAf UUiAf Viwn = wi ViAT AfViwn = qiqn

1
Or, la matrice A? mesure les forces des corrélations dans le bloc Xj. En effet, elle contient
les carrés des valeurs singulieres, qui donnent la variation expliquée dans le bloc Xk.
Ces matrices représentent en fait la variabilité intra-bloc.
Ainsi, cette réécriture, et 'absence des matrices A1 et As nous permet de montrer que la
CCA n’explique pas I'information propre a chaque bloc, mais se concentre entierement sur
la variabilité commune aux blocs.

Choix du nombre de composantes
On pose :

o Ry = %X{Xl et Ryy = %X§X2 les matrices des corrélations intra-groupes
o Rig = %X {Xg la matrice des corrélations inter-groupes

e s =rg(Ry2) le rang de la matrice des corrélations inter-groupes

o 1, = corr(Xjwyp, Xowsp) la corrélation canonique

La statistique de Wilks est utilisé pour déterminer les composantes a retenir. Elle est
définie par W; = [[;_, (1 — r?).
Le niveau de signification est donné par les approximations usuelles de Barlett ou Rao.

- La statistique de Barlett est donnée par :
2 1
X = - n—i(d1+d2—|—3) lIl\Ifj

- La statistique de Rao est donnée par :

1
_1—\1/; dly
= T dTl

v

ou
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—dly = (dy — j)(d2 — j)
— dly = vt{(dy — j)(dz — 5)} + 1
_ v:n—%(d1+d2+3)

R (d1—3)2(d2—j)%—4
(d1=35)2+(d2—j)*=5

On peut également calculer la part de variance d’un groupe expliquée par les composantes
appelée redondance) :
- Redondance de X7 par rapport a sa composante fip, :

di

1
Rd(X1, fin) = 4 > " cor(wy, fin)”
j=1

- Redondance de X; par rapport a la composante de 'autre groupe fo, :

dq
1
Rd(Xy, fon) = 4 > cor(xyy, fan)2
=1

Extensions de la CCA

La GCA (Generalized Canonical Analysis) est une méthode généralisant la CCA a plus de
deux jeux de données. Elle permet d’étudier les relations entre plusieurs blocs de données
X1,..., Xk et se base ainsi sur la maximisation du critére suivant :

K

D cou(XgWy, X, W)

k=1 I£k

La RGCCA (Regularized Generalized Canonical Correlation Analysis) est une extension
de la GCA incluant une régularisation. Elle permet ainsi de stabiliser ’estimation des
vecteurs de poids et est plus adaptée aux cas de la grande dimension et de problemes de
colinéarité. Elle correspond au probléme suivant :

K

K
maXZ Z cricov(XWy, XiW;) — Z A
=1 1k =1

avec

e ¢ : coefficient de liaison controlant 'importance relative de la covariance entre les
blocs k et [

e [;. : parametre de régularisation pour le bloc k

o Wil = Tr(WiWi)

14
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2.3 PLS2 et extensions

La PLS (Moindres Carrés Partiels) est une méthode statistique de maximisation de la
variance. Elle permet notamment de prévoir une variable réponse a 1’aide d’un groupe de
variables explicatives. La PLS2 correspond au cas ol il y a plusieurs variables dépendantes.
On souhaite alors prévoir un ensemble de variables réponses Xy a partir des variables
explicatives X;. Cette méthode est expliquée dans le livre de M. Tenenhaus ” La régression
PLS” [19].

Comme la CCA, la PLS2 prend deux jeux de données en entrée, et on cherche cette fois
a maximiser la covariance. On cherche m composantes orthogonales fi;, et for, maximisant
cette fois : cov(Xjwyp, Xowap) sc ||win|| = |Jwan| = 1.
En considérant une composante de chaque bloc, on retrouve un probléeme de maximisation
similaire & la CCA :

max wilenggl sc |Jwii]] = |lwai]] =1 (3)
w11,wW21

On peut de nouveau réécrire le probleme de maximisation a l’aide des DVS :

1 1

t

max w11V1A12 UIUQAQ*‘/Q’LUQ]_ SC Hw11|| = Hw21|| =1 (4)
w11,Ww21 2

On pose z11 = Vfwn et 291 = V2tw21. On a alors zflzn = w'ilVlVfwn = w'ilwn =1

Et on obtient le nouveau probleme de maximisation :

1 1
max 25 AFUTUsAS 291 sc ||211]] = ||za1] = 1 (5)
211,221
On observe cette fois que la solution PLS prend en compte les matrices A1 et Ao, et considere
ainsi les structures de corrélation des blocs. La solution PLS permet donc d’expliquer une
certaine quantité de variabilité individuelle propre & chaque bloc, en plus de la variabilité
jointe.

On peut retrouver ce résultat et cette différence entre les solutions PLS et CCA a ’aide de
la formule de la covariance :

cov(Xqwiy, Xo, wa = \/var(Xlwn)\/var(nggl)corr(Xlwn,X2w21)
En maximisant la covariance, on maximise en méme temps les variances.
Choix du nombre de composantes

Pour déterminer le nombre de composantes & conserver en régression PLS on utilise la
validation croisée.
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On définit :

- RSSp_1 (Residual Sum of Squares) la somme des carrés résiduelle calculée avec le
modele a h — 1 composantes

- PRESS (Prediction Error Sum of Squares) la somme des carrés des erreurs de prévisions
calculées sur les jeux-test

On définit alors le Q? de Stone-Geisser (ou indice de redondance) comme :

e Pour chaque variable x9 :
PRES Sy,

Qup=1-—ge—"
h RSSmn-1)

e Sur ’ensemble des variables X5 :

, . X! PRESSu,

Q? =
" >t_1 RSSkn—1
ouona:
RSSkn = Z (Toki — Zokni)’ et PRESSg, = Z (zori — §32kh(—i))2
=1 =1

Cet indice de redondance permet de mesurer 'apport marginal de chaque composante
PLS fi5 au pouvoir prédictif du modele.
Il existe deux regles pour décider de si 'apport de la composante fy; est significatif et ainsi
choisir les composantes a conserver :

e Regle 1: L’apport de fyy, est significatif si Q7 > (1 — 0.95%) = 0.0975

e Regle 2 : L’apport de fq), est significatif si au moins un Qih est tel que th > 0.0975

Extensions de la régression PLS

La PLS et le PLS2 ont donné suite & d’autres méthodes. Les composantes PLS obtenues sont
des combinaisons linéaires de I’ensemble des variables. Un grand nombre de variables peut
donc constituer une limite a la PLS et a la bonne interprétation des résultats. La Sparse
PLS est une extension de la PLS adaptée a cette situation. Elle va en effet limiter le nombre
de variables prises pour les combinaisons linéaires donnant les composantes et permettre
ainsi de réduire la complexité de 'interprétation dans le cas de la grand dimension.

Un autre point important concernant la PLS2 est qu’elle ne permet de ne prendre en
compte que deux jeux de données. Une extension de cette méthode est la méthode MB-PLS
(Multiblock PLS). C’est une méthode d’analyse de données multiblocs surpervisée, elle
est donc adaptée & 'utilisation de K blocs de données X1, ..., X . Cette méthode permet
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d’étudier les relations entre ces K blocs de données. Elle est basée sur le probleme de
maximisation suivant :

K K
maxz Z cov( X Wy, X\W)) = maxz Z cov(Fy, F)

k=1 1=1 k=1 1=1

24 AJIVE

Une autre méthode d’intégration de données appelée AJIVE (Angle-based Joint and
Individual Variation Explained) a été introduite en 2018 et permet une approche
différente des précédentes [8].

L’algorithme AJIVE permet d’extraire simultanément 'information commune a plusieurs
jeux de données et I'information spécifique & chaque jeu de données. On considére ainsi
désormais K matrices X1, ..., Xk

Plus précisément, AJIVE permet d’extraire un sous-espace avec la variabilité commune
aux blocs de données, appelée variabilité jointe, engendré par les composantes communes,
et des sous-espaces avec une variabilité propre a chaque bloc, appelée variabilité individu-
elle, engendrés par les composantes distinctes. Contrairement a précédemment, la méme
importance est donc donnée a chacun des jeux de données.

On s’intéresse, pour chaque jeu de données X, a I’espace des scores, que 'on a défini
précédemment. La décomposition du block X} se fait alors sous la forme :

Xy =Ap +Ep = Jp + I, + Ej, (6)

Ay, est de rang 4, , et correspond au signal, c’est-a-dire aux données sans le bruit Fy, et
avec Ji correspondant au sous-espace joint des scores, et [ correspondant au sous-espace
individuel.

On note ainsi :
- col(Ay) l'espace des scores de Ay, de dimension 74,
- col(Jk) lespace des scores de Ji, de dimension 7,

- col(Iy) lespace des scores de I, de dimension 7y,
Plusieurs propriétés permettent de définir ces espaces :

1. L’équation (6) nous donne la propriété suivante sur les rangs : r4, =ry + 171,

2. On note col(J) = col(J1) = ... = col(Jk) V'espace des scores communs, représentant
toute I'information commune. Ainsi ry =7y = ... =1r,.

3. Pour k =1,...,K, on a col(Jy) = col(J) C col(Ay).
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4. L’information individuelle est propre a chaque jeu de données, il n’y a pas d’information
K
commune. Cela se définit par la propriété : ﬂ col(Iy) = {6}
k=1

5. Les espaces joints et individuels sont distincts : col(J) L col(ly), k=1,..., K.

6. Pour k=1, ..., K, col(I}) C col(Ag).

La décomposition de AJIVE donnée en (6) se fait en 3 étapes distinctes.

Etape 1: Extraction de I’espace du signal
La premiére étape a pour but I'extraction du signal A pour chaque bloc de données Xj.
On enleve ainsi 'information résiduelle.

Pour ce faire, on réalise une approximation de bas rang de chaque bloc X} afin d’obtenir
une nouvelle matrice simplifiée, et préservant les informations essentielles. On réalise pour

1
chaque bloc une DVS tronquée a un seuil A} a définir afin d’extraire le signal. On obtient
ainsi pour chaque bloc k :

- L1
Ap = UMV
- 1
A}, est une approximation de Ay, de rang 74,. On conserve ainsi dans la matrice A les

1
74, plus grandes valeurs propres. Les valeurs singulieres sous le seuil A\ sont mises a zéro.

L’algorithme comprend également une estimation de la précision de cette approximation.
Pour cela, on veut estimer la distance entre les sous-espaces col(Ay) et col(Ay). On introduit
la pseudo-métrique suivante :

(7)

k

p{col(Ak),col(flk)} = HPA’“ - P;

2

ou Py, et Py sont les matrices de projection sur col (Ap) et col(Ay) respectivement.

p correspond au sinus de ’angle principal maximal entre les deux sous-espaces. En effet,
le plus grand angle principal entre deux sous-espaces mesure leur proximité, et donc leur
distance.

On définit alors une borne pour la distance entre les sous-espaces singuliers de Ay et X,
c’est la borne Wedin. Elle permet de quantifier comment les sous-espaces singuliers
théoriques sont affectés par le bruit.

Cette borne est définie comme suit :

max (|| B Vi ., | ELOK))
Umin(/ik)

p {col(Ak), col(flk)} <
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Cependant la borne Wedin utilise les matrices d’erreur Ej, qui ne sont pas observables.
On utilise donc une estimation de cette borne a partir d’un ré-échantillonnage des signaux
et de la relation E, = X, — Ay.

Etape 2: Segmentation de I’espace des scores

La deuxieme étape de l'algorithme consiste a segmenter ’espace des scores en composantes
jointes et individuelles. On extrait les composantes jointes Ji du signal Ay.

Cette segmentation repose sur 'analyse d’angles principaux. En effet, en considérant les
signaux A; et As, on utilise I'idée selon laquelle on doit observer un angle assez petit
entre les composantes de col(A;) et col(As) correspondant & 'espace joint. A P'inverse, on
s’attend & un angle assez large entre les composantes de col(A;) et col(As) correspondant
aux espaces individuels.

Les angles peuvent étre obtenus a ’aide d’'une DVS sur la concaténation des matrices de
vecteurs singuliers V; et V5 :

s Vi Lo
M2 UL = USE Ve (9)

1
Ici X3, contient sur sa diagonale les valeurs singulieres, notées o7 ;,% € R, qu’on ordonne
dans 'ordre décroissant et qui permettent d’obtenir les angles principaux. La plus grande
valeur singuliere donne ainsi le plus petit angle principal :

¢; = arccos {(U]\M)2 — 1} (10)

On cherche alors a déterminer les composantes jointes, les 7; plus petits angles pouvant
étre considérés comme composantes jointes.

On utilise des bornes sur le plus petit et le plus grand angle correspondant aux composantes
jointes, afin de ne pas retenir d’angles liés au bruit ni aux composantes individuelles.

Etape 3: Segmentation finale de I’espace La derniére étape de I’algorithme va permettre
d’obtenir les sorties finales en vérifiant le respect des conditions initiales : la contrainte du
seuil déterminé en étape 1.

Soit Vj = [UM,l e UM J] la matrice obtenue dans la 2eme étape, ol U, est la jeme
colonne de V.

Le respect des conditions initiales est ensuite vérifié pour chaque bloc de données k =
1,...,K. Les vlecteurs ne vérifiant pas la contrainte d’identifiabilité suivante sont enlevés :
“XkﬁM,z“ > )‘li

On obtient alors Vj; la matrice finale et 7, le rang joint final.

Enfin, on utilise I’orthogonalité des espaces jointes et individuelles pour obtenir les com-
posantes individuelles, et on vérifie de nouveau le respect du seuil.
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2.5 Syntheése des méthodes

Les méthodes CCA, PLS et AJIVE permettent d’étudier les relations entre des blocs
de données, avec notamment 'information commune apportée par ces blocs. Elles ont
cependant de nombreuses différences. En effet, PLS et CCA sont basées sur des critéres
de maximisation de corrélation et de covariance mais ne s’appliquent qu’a deux blocs de
données. Au contraire, AJIVE est une méthode cherchant a& maximiser la distance entre les
espaces individuels et minimiser celle entre les espaces joints de chaque bloc, ainsi adaptée a
plus de deux blocs. De plus, AJIVE est la seule des ces trois méthodes permettant d’obtenir
simultanément les variabilités jointe et individuelles. Pour cela, la méme importance est
donnée a chaque bloc.

La CCA permet d’obtenir la variabilité jointe a deux blocs, tout en leur donnant la méme
importance. Enfin, PLS2 fait une distinction entre les deux blocs puisqu’elle permet
d’expliquer un groupe de variables a I'aide d’un autre groupe de variables. Cette méthode
apporte de l'information individuelle et commune aux deux blocs. Les résultats sont
cependant plus difficiles a interpréter.

Chaque méthode a ainsi plusieurs avantages et inconvénients que ’on peut résumer dans
le tableau suivant, dans le cas ot 'on considere deux blocs de données a analyser.
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viduelle
Sensible a la colinéarité

Pas adapté a la grande
dimension

Choix du nombre de
composantes

2 jeux de données

d’interprétation
Sensibilité au bruit
Moins sensible & la vari-
abilité jointe

Choix du nombre de

composantes

2 jeux de données

CCA PLS2 AJIVE
Avantages e Variabilité commune |e Variabilité commune + e Variabilité individuelle
e Permet de bien com-| ndividuelle e Variabilité commune
prendre les relations en- (@ Robuste a la colinéarité |g qipycture détaillée des
tre les blocs e Utile pour la con-| données et des rela-
e Interprétation des com- | struction de modeles | tions entre les ensem-
posantes + simple que | prédictifs bles
PLS e Capacité a gérer la | Méthode descrip-
e Méthode descriptive /| grande dimension tive/exploratoire
exploratoire e Méthode explicative | Plusieurs jeux de
données
Inconvénients e Pas de variabilité indi- |e Difficulté e Peut étre couteux, en

particulier pour de tres
grands ensembles de
données

Choix du nombre de
composantes

Table 1: Tableau récapitulatif des 3 méthodes multiblocs
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3 Matériel

Dans le cadre de ce projet, les bases de données de deux études sont utilisées et étudiées,
toutes deux regroupant des patients atteints de sclérose en plaques.

3.1 Données AMIES

3.1.1 Description des données

Dans un premier temps, nous avons utilisé des donnés provenant de 1’étude AMIES. Celles-ci
sont issues d’une étude mono-centrique de I’hopital universitaire Laennec de Nantes. Les
patients considérés ici ont donné leur accord pour rejoindre la cohorte OFSEP-HD de
I’Observatoire Francais de la Sclérose en Plaques (OFSEP). L’inclusion des patients a été
réalisée sur les années 2021 et 2022 sur 39 patients de ’hopital de Nantes atteints de sclérose
en plaque. Pour étre inclus dans cette cohorte, les patients ne doivent pas nécessiter d’un
usage permanent d’un fauteuil roulant, ils doivent donc avoir un score EDSS inférieur a 7
et ils doivent étre agés d’au moins 15 ans.

Les données AMIES regroupent de nombreuses informations sur les patients tels que
I’age, le sexe, le score EDSS ou encore le temps réalisé lors du T25FW. Toutes les variables
disponibles dans les données AMIES sont détaillées en annexe. Parmi ces variables, deux
des indicateurs de sévérité de la maladie sont disponibles : les scores EDSS et la SDM. Ce
sont sur ces variables que nous travaillons.

Pour la suite, nous considérons alors 2 jeux de données, tirées des données initiales :

- les données cliniques : jeu de données contenant les sous-scores EDSS en colonne et
les 39 patients en ligne

- les données de marche : jeu de données contenant les SDM sous forme de séries
temporelles de quaternions

3.1.2 Pré-traitement des données

Les données AMIES sont constituées de 39 patients, avec d’une part les 8 sous-scores EDSS
donnés en colonne pour chaque patient, et de 39 tableaux tibbles contenant la SDM et les
coordonnées a chaque temps, pour chaque patient.

On g’intéresse d’abord aux données cliniques. Une premiere étape est la vérification de
données manquantes. Certains patients ont des scores notés ”X”, indiquant une difficulté de
la part du neurologue d’indiquer un score. Ces données ne correspondent pas a des valeurs
numériques que nous pouvons utiliser pour la suite, et nous les considérons comme des
données manquantes. Nous avons ainsi des données manquantes pour 3 différents patients
sur les fonctions visuelles et cérébrales. Nous faisons le choix de supprimer les 2 variables
correspondant a ces 2 sous-scores, bien qu'une alternative était de supprimer les patients
concernés.

22



3 Matériel Margot Bornet

Concernant les données de marche, elles sont sous la forme de séries temporelles de
quaternions et n’ont donc pas la méme forme que des données habituellement traitées, de
la forme lignes x colonnes. Un travail de pré-traitement et de transformation des données
est ainsi nécessaire avant de poursuivre notre étude et d’appliquer les méthodes détaillées
plus tot.

Les figures 11 et 12 montrent les données originales avant le travail de transformation des
données.

Figure 9: Premieres observations du jeu de
données des données cliniques
Figure 10: SDM contenues dans le jeu des
données de marche

L’approche utilisée pour continuer notre analyse est 1'utilisation de I’Analyse en Coor-
données Principales (PCoA), méthode détaillée en annexe. Nous décidons d’appliquer
cette méthode aux deux jeux de données afin d’avoir des données homogenes. Différentes
étapes sont appliquées aux jeux de données initiaux avant d’obtenir les données finales :

1. Calcul de la matrice des distances

2. Application de la PCoA avec correction Cailliez, qui prend en entrée la matrice de
distance

La matrice de distance pour les données cliniques est calculée a I’aide de la distance de
Gower [9] tandis que la distance entre QTS est donnée par la distance elastic shape [12].

PCoA :

Une fois les matrices de distance obtenues, nous réalisons une PCoA pour chaque matrice.
Pour le choix des composantes, nous décidons de conserver 80% de l'inertie dans chacun
des cas. Cela correspond a 13 composantes conservées pour les données cliniques, et 21
composantes conservées pour les données de marche, comme nous pouvons le voir sur les
graphiques ci dessous (Figures 13 et 14).
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39

N
Figure 11: Matrice de distance des données Figure 12: Matrice de distance des données
cliniques de marche

Figure 13: Pourcentage de variance ex-

Figure 14: Pourcentage de variance ex-
pliquée : données cliniques

pliquée : données de marche

Les composantes ainsi conservées constituent nos matrices finales que nous utiliserons pour
la suite. Une rapide interprétation des composantes de la PCoA est possible dans chaque

cas en regardant les corrélations avec les variables initiales. Les matrices des corrélations
sont données en Figures 15 et 16.

priri_twwtesl i .{-I-
-l R 5 —nnenp-aal CFIESgaRSRC
§ H mwir_prgaing_veccly @ &
wq. [ e mwirﬁi.f H
L et ' :: -H.AF_:F.-‘: - j
tewi-we @ " " e ryea :
win I » e 1
Figure 16
Figure 15

Dans le cas des données cliniques on observe que la premiere composante représente les
fonctions sphinctérienne, sensitive, pyramidale, du tronc cérébral et cérébrale tandis que la
deuxiéme composante représente la fonction cérébrale et les autres fonctions neurologiques.
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Pour les données de marche, on s’intéresse aux parametres spatio-temporels. On observe
notamment que la premiere composante est corrélée a la vitesse angulaire moyenne d’un
cycle de marche et a ’amplitude moyenne. La deuxieme composante est corrélée a la durée
moyenne de la phase d’appui.

Les étapes de transformation des données sont résumées dans le schéma ci-dessous :

Données originales | ———=> | Matrice de distance | ——=> PCod —= Matrice Finale

Figure 17: Etapes de transformation des données
Et les données finales que nous utilisons pour la suite sont des matrices de la forme :

1 13 1 21

39 39

Figure 18: Matrices finales représentant les données cliniques et les données de marche

3.2 Données MS-CSI

3.2.1 Description des données

Une nouvelle étude a été menée par la suite. Intitulée MS-CSI, cette étude multicentrique
inclut cette fois des patients nantais et rennais dans la cohorte OFSEP-HD. Les critéres
d’inclusion sont les mémes que précédemment et un total de 100 patients répartis sur les
deux sites est attendu pour I'inclusion.

Les données récupérées regroupent 49 patients pour lesquels des données cliniques, des
données de marche et des données d’imagerie cérébrale et médulaire ont été récoltées.
L’évaluation clinique réalisée par les neurologues permet ’évaluation des scores EDSS et
donne plusieurs autres informations : I’age, le sexe, la taille, le poids et les temps réalisés
par le patient lors du T25FW. Les signatures de marche ont également pu étre récupérées
lors de I'exécution du T25FW.

Enfin des acquisitions IRM ont été effectuées sur ces patients et nous permettent de
rajouter une source de données a notre étude. Les lésions au niveau du cerveau et de la
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moelle épiniere sont localisées et retranscrites dans un tableau de données. On distingue les
lésions cervicales et thoraciques de la moelle épiniere.
Cette étude nous permet donc de considérer trois jeux de données distincts :

- Les données cliniques
- Les données de marche

- Les données IRM

Les données cliniques et les données de marche sont similaires a celles de ’étude AMIES.
Les données IRM contiennent 26 variables, détaillées en annexe. On a I’ensemble des lésions
au niveau du cerveau, de la moelle cervicale et de la moelle thoracique, ainsi que les lésions
pour les tract cortico-spinaux gauche et droit de chaque région d’intérét. Le volume total
de la substance blanche est aussi donné a chaque fois.

3.2.2 Pré-traitement des données

Comme pour les données AMIES, un travail de pré-traitement des données est nécessaire.
D’abord, la segmentation pour la moelle thoracique n’a pas bien fonctionné et les lésions
n’ont quasiment pas été détectées, nous retirons donc des données toute la partie thoracique
de la moelle. De plus, certains patients n’ont pas réalisé I’examen clinique, I’'TRM ou bien
n’ont pas de SDM, nous les retirons donc de ’analyse. Nous enlevons également les patients
avec des données IRM de mauvaise qualité ou ayant des données manquantes, ce qui nous
donne un total de 40 patients.

Comme pour les données AMIES, certains patients ont des sous-scores EDSS de 7 X”.
Deux fonctions neurologiques sont concernées : la fonction cérébelleuse et les autres fonctions
neurologiques. Afin de ne pas retirer davantage de patients, nous supprimons ces fonctions
de nos données cliniques.

On peut alors visualiser les trois types de données utilisées :

PR Pr——re e —— o g g [T N prerpeys ey LR R P LY

Figure 19: Premieres observations du jeu Figure 20: Premieres observations du jeu
des données cliniques des données IRM
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Figure 21: SDM contenues dans le jeu des données de marche

Nous réalisons de nouveau une PCoA sur les données de marche mais nous décidons de
ne pas I'appliquer aux données cliniques et IRM afin de permettre une interprétation plus
simple pour la suite. Comme précédemment, la distance elastic shape est utilisée comme
distance entre les QTS. Nous retenons 80% de l'inertie expliquée, ce qui correspondant aux
20 premieres composantes de la PCoA (voir Figure 23).

Les données de marche sont donc donnés par la matrice de dimension 40 x 20, contenant
les 20 composantes de la PCoA.

s e

B4 BE EE B

_—
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a

Figure 22: Matrice de distance entre QTS Figure 23: Pourcentage de variation ex-
pliquée par les composantes de la PCoA

Les données finales que nous utiliserons par la suite ont la forme suivante :

1 é 1 20 1 16
40 . 40 . 40 .

Figure 24: Matrices finales représentant les données cliniques, de marche et IRM
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4 Résultats et discussion

4.1 CCA

Nous utilisons la fonction cca du package multiblock [3] sur les données de cliniques et les
données de marche.

Tout d’abord la statistique de Wilks testant I’hypothese de nullité des corrélations nous
permet de déterminer le nombre de composantes a conserver. On obtient les résultats
suivants :

Composantes conservées | p-value
1 0.28
2 0.71
3 0.91
4 0.99

Table 2: Résultats de la statistique de Wilks

On observe des résultats peu concluants puisqu’on ne rejette 'hypothése nulle dans aucun
cas. On conserve alors une composante de chaque bloc pour la suite, que ’on note fi; pour
le bloc X des EDSS, et fs1 pour le bloc Xo des SDM.

Le calcul des redondances nous indique que la composante f1; n’explique que 7.69% de
son propre groupe et 4.64% de l'autre groupe, tandis que la composante fo; n’explique que
4.76% de son propre groupe et 7.49% de l'autre groupe. Nous cherchons alors I'information
apportée par ces composantes.

La Figure 25 montre une corrélation entre la composante fi1 et la fonction sensitive. De

plus, en s’intéressant aux autres variables, on observe une corrélation avec le temps réalisé
lors du T25FW (voir Annexe).
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Figure 25: Carte des corrélations des com- Figure 26: Distribution des scores pour la
posantes avec les scores EDSS fonction sensitive
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Figure 27: Distribution des scores pour le temps réalisé lors du T25FW

La CCA renvoie la variabilité commune aux deux blocs, on peut donc en déduire que
les EDSS et les SDM donnent de l'information relative a la vitesse de marche lors de la
réalisation du T25FW et a la fonction sensitive. Rappelons que la fonction sensitive est liée
a la proprioception et la douleur, un score élevé pour cette fonction peut ainsi impacter la
démarche d’'un individu atteint de SEP, et peut étre mis en lien avec sa vitesse de marche.
Notons cependant que les composantes sélectionnées ne sont pas significatives, les résultats
doivent donc étre interprétés avec prudence.

4.2 PLS2

Nous utilisons la fonction plsreg2 du package plsdepot [4] afin d’expliquer les données de
marche, c’est-a-dire les SDM, a ’aide des scores EDSS.

Le Q2 de Stone-Geisser est un indicateur du choix des composantes a conserver. Nous
n’obtenons cependant pas de composante significative, nous décidons de conserver une
composante de chaque groupe : f11 et fo;. Comme précédement, on obtient la part de
variance expliquée par chaque composante; f11 explique 7.69% de son groupe et 4.63%
de lautre groupe des SDM. f51 explique 4.44% de son groupe et 7.69% de 'autre groupe.
Comme pour la CCA, on retrouve peu de variabilité expliquée par ces composantes.

La PLS2 permet d’obtenir des composantes liées au temps du T25FW. On peut en effet
observer sur la Figure 28 une séparation entre les patients ayant mis plus de temps a réaliser
le T25FW et ceux qui sont plus rapides.

Comme en CCA, les composantes conservées ne sont pas significatives, leur interprétation
est donc a réaliser avec précaution.
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Figure 28: Distribution des scores pour le temps lors du T25FW

4.3 AJIVE

Nous appliquons mainstenant ’algorithme AJIVE & nos données. La premiere étape est
celle de 'extraction du signal et donc du choix des rangs initiaux. On obtient les screeplots
suivants, sur lesquels sont représentées les valeurs singulieres :

[
erom . cma
L

Figure 29: Screeplot des données cliniques et de marche

On observe plusieurs sauts sur ces graphiques, plusieurs rangs initiaux sont alors possibles.
e Données cliniques : on peut conserver 3, 6, 8 ou 10 valeurs singulieres.
e Données de marche : on peut conserver 3, 9, 11 ou 13 valeurs singulieres.

On a alors 16 combinaisons possibles de rangs initiaux. Pour chacune de ces combinaisons
possibles, on obtient un espace joint a une dimension. Les composantes jointes obtenues

par chaque combinaison sont représentées sur la figure 30. On observe une certaine stabilité
du sous-espace joint obtenu.
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Figure 30: Composantes jointes estimées pour chacune des 16 combinaisons

Le choix final du rang du signal reste complexe car il n’existe pas de méthode claire et
définie pour le déterminer. Nous faisons le choix de conserver un rang initial de 3 pour
les données cliniques et un rang initial de 11 pour les données de marche, afin de nous
concentrer sur 'information apportée par les premieres composantes qui sont aussi celles
avec le plus de variabilité car elles sont obtenues par PCoA.

Variabilité jointe

On cherche maintenant a savoir I'information apportée par la composante jointe obtenue.
Pour cela nous cherchons quelles variables parmi les variables initiales sont liées a cette
composante. Des tests de corrélation et d’analyse de la variance (ANOVA) sont donnés en
annexe.

Nous observons que la composante jointe est corrélée avec le temps réalisé lors du T25FW.
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Figure 31: Représentation du T25FW dans ’espace joint

Cette composante oppose ainsi les patients marchant lentement, et qui mettent donc plus
de temps a faire le test, lors du T25FW & ceux marchant plus vite. On distingue ainsi les
patients plus atteints par la maladie d’un coté et ceux avec moins de probléme de marche
de lautre.

De méme, la composante jointe est liée & plusieurs sous-scores EDSS : elle implique la
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fonction sensitive, la fonction sphinctérienne et la fonction pyramidale. Enfin, elle est aussi
liée a I'un des parametres spatio-temporels : 'amplitude moyenne d’un cycle.
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Figure 32: Distribution des scores pour la Figure 33: Distribution des scores pour la
fonction sensitive fonction sphinctérienne
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Figure 34: Distribution des scores pour la
fonction pyramidale Figure 35: Distribution des scores pour la

I’amplitude moyenne d’un cycle

La composante jointe oppose ainsi les patients avec des sous-scores élevés, donc plus malades,
a ceux avec des sous-scores faibles pour les fonctions sensitive, sphinctérienne et pyramidale.
Ces fonctions sont liées a la marche, elles concernent la motricité, la proprioception, ou
encore la contraction des muscles.

Finalement, I'information commune aux scores EDSS et & la SDM concerne principale-
ment directement la démarche et les difficultés que peuvent avoir les malades a marcher.
D’un c6té nous retrouvons les patients avec des scores plus élevés (scores de 2, 3, voire
4) pour les fonctions concernées qui ont ainsi plus de difficultés & marcher : leur vitesse
de marche est plus lente et ’amplitude lors de la marche est plus faible. De 'autre, les
patients semblent avoir moins de difficultés lors de la marche, avec une amplitude et une
vitesse de marche plus élevées.

Variabilité individuelle des données cliniques
Nous nous intéressons maintenant a I'information spécifique aux scores EDSS. Le sous-espace
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individuelle relatif aux données cliniques est un espace a 3 dimensions, nous cherchons donc
I'information apportée par chacune des composantes individuelles.

La premiere composante de ’espace individuelle est principalement liée a la fonction du
tronc cérébral (voir 36) tandis que la 2éme composante est liée aux fonctions pyramidale et
sphinctérienne. Enfin, la 3éme composante représente ’aide lors de la marche ainsi que la
fonction du tronc cérébral.

0757

" -

D&t

Esiymaied soDies

= = =
1

Eciones for B bemen fnchion

Figure 36: Distribution des scores pour la fonction cérébrale
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Figure 37: Distribution des scores pour la Figure 38: Distribution des scores pour la
fonction pyramidale fonction sphinctérienne
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Figure 39: Distribution des scores selon Figure 40: Distribution des scores pour la
I’aide lors de la marche fonction du tronc cérébral

L’information spécifique aux scores EDSS concerne toujours la marche des patients,
avec les fonctions pyramidale et sphinctérienne, mais illustre certaines difficultés lors de
la marche qui n’apparaissent pas avec la SDM, avec I’aide lors de la marche notamment.
L’information apportée concerne également d’autres fonctions neurologiques moins liées a
la marche et gérant le rythme cardiaque, la respiration ou encore la mémoire et 'humeur.

Variabilité individuelle des données de marche

Le sous-espace individuelle propre aux données de marche, c’est-a-dire a la SDM, est un
espace a 11 dimensions. Plusieurs des composantes engendrant cet espace sont liées aux
parametres spatio-temporels, comme le montre la matrice des corrélations ci-dessous.
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Figure 41: Matrice des corrélations entre les PST et les composantes
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Les SDM calculées pour chaque patient semble ainsi donner majoritairement des in-
formations sur les parametres spatio-temporels, avec 'amplitude et la vitesse angulaire.
On retrouve alors d’'une part des patients avec une amplitude et une vitesse angulaire
importante, avec une durée de la phase d’appui plus faible, indiquant des patients avec des
difficultés a marcher. De I’autre, ce sont des patients moins impactés par la maladie au
niveau de la marche.
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Figure 42: Distribution des scores selon Figure 43: Distribution des scores selon la
I’amplitude moyenne d’un cycle vitesse angulaire moyenne

Finalement, les scores EDSS et la SDM apportent de I'information commune et perme-
ttent tous deux d’étudier la démarche des patients et 'impact de la maladie sur celle-ci.
Ils donnent également une certaine information non apportée par les autres données, nous
indiquant donc I'importance de considérer les deux approches pour suivre 1’évolution de la
SEP chez les patients.
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Conclusion et perspectives

L’analyse des données AMIES a permis d’étudier différentes méthodes d’intégration de
données et de les prendre en main, mais aussi d’adapter chaque méthode aux données
disponibles. Il ressort de ces trois applications la présence d’information commune entre les
trois sources de données permettant le suivi de ’atteinte de la marche des patients.

Bien que les méthodes PLS2 et CCA nous permettent de conclure sur cette information jointe,
ces méthodes semblent moins adaptées au format de nos données, et plus particulierement
des données de marche obtenues avec la SDM.

La méthode AJIVE permet quand a elle de vérifier a la fois la présence d’information jointe
entre les données cliniques et les données de marche, confirmant 'intérét de ’'utilisation
de la SDM comme moyen de suivi des troubles ambulatoires, et d’information propre a
chaque jeu de données. L’information individuelle confirme également que la SDM permet
d’analyser ’atteinte de la marche et complete ainsi I'utilisation des scores EDSS.

Les résultats ainsi obtenus sont satisfaisants mais ils sont a approfondir en améliorant
notamment la sélection des rangs initiaux des signaux dans l'algorithme AJIVE, et en
appliquant d’autres méthodes multiblocs a nos données.

L’application des méthodes aux données MS-CSI n’a pas été traitée dans ce rapport, I’étude
de ces données comprenant les IRM s’arrétant a I’étape de pré-traitement, elle sera réalisée a
Paide de la méthode AJIVE. L’utilisation d’autres méthodes telles que ComDim ou MB-PLS,
a été envisagée mais sera peut-étre, selon les résultats, limitée aux données AMIES.

Une fois ’évaluation de 'association entre la SDM, 'EDSS et les données IRM réalisée,
nous construirons des groupes homogenes basés sur la sévérité d’atteinte de la marche,
correspondant aux profils type de SDM.
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Annexes

Jeu de données AMIES

Description

Le fichier AMIES.rds correspond au jeu de données AMIES et contient 39 observations
correspondant a des patients atteints de SEP, ainsi que plusieurs variables numériques
catégorielles, ordinales et fonctionnelles.

L Nom L Description

id

ID du patient

num_patient

numéro d’inclusion du patient

age

age du patient

sexe

sexe du patient

taille_cm

taille du patient (en cm)

poigs_kg

poids du patient (en kg)

lat_ms

latéralisation du membre supérieur (1=Droite,
0=Gauche, 2=Ambilatéralité)

lat_mi_pied_appui

latéralisation du membre inférieur (1=Droite,
0=Gauche, 2=Ambilatéralité)

duree_ms_ans

durée de la pathologie (en années)

annee_derniere_pousse

année de la derniere année de poussée de la mal-
adie

nb_poussees_n_1

nombre de poussées de symptomes au cours de
I’année précédente

visuelle

fonction visuelle (de 0 & 6)

tronc_cerebral

fonction du tronc cérébral (de 0 a 5)

pyramidale fonction pyramidale (de 0 & 4)

cerebelleuse fonction cérébelleuse (de 1 a 5)

sensitive fonction sensitive (de 0 & 6)

spincter fonction sphinctérienne (de 0 & 6)

cerebrale fonction cérébrale (de 0 & 5)

autre autres fonctions neurologiques touchées (1=0ui,
0=Non)

edss score EDSS (de 0 a 10)

aide_1 aide lors de la marche pour le premier aller-

retour lors du T25FW (0=Aucune, 1=Uni-
latérale, 2=Bilatérale)
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aide_2

aide lors de la marche pour le deuxieme aller-
retour lors du T25FW (0=Aucune, 1=Uni-
latérale, 2=Bilatérale)

dmt_traitement_de_fond

nom du traitement de fond (0 si aucun)

fampyra

utilisation d’un médicament utilisé dans les trou-
bles de la marche (1=Oui, 0=Non)

forme_sep

forme de la maladie (0=RR, 1=SP, 2=PP)

annee_progress ion

année de la progression de la forme RR en forme

SP

T1 temps réalisé lors de ’aller pour le premier aller-
retour (en seconde)
T2 temps réalisé lors du retour pour le premier aller-
retour (en seconde)
T3 temps réalisé lors de l'aller pour le deuxieme
aller-retour (en seconde)
T4 temps réalisé lors du retour pour le deuxieme
aller-retour (en seconde)
T25FW_mean moyenne du temps réalisé lors des 4 aller-retour
(en seconde)
gts SDM sous forme de tibble contenant les 4 com-
posantes w, ¥, Yy, z
Table 3: Variables des données AMIES
Résultats
AJIVE :
Variabilité jointe :
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Figure 45: Corrélation entre les autres
données cliniques et la composante jointe

Figure 44: Corrélation entre les sous-scores
et la composante jointe

40



Références Margot Bornet

Ces matrices permettent de visualiser les corrélations positives et négatives de la composante
jointe avec les autres variables.

Variabilité individuelle des données cliniques :
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Figure 47: Corrélation entre les autres
données cliniques et les composantes individu-
elles

Figure 46: Corrélation entre les sous-scores
et les composantes individuelles

On peut visualiser les corrélations entre chacune des composantes et les différentes variables
quantitatives.
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Jeu de données MS-CSI

Les données cliniques de I’étude MS-CSI contiennent les variables suivantes :

L Nom L Description

id ID du patient

num_patient numéro d’inclusion du patient

age age du patient

sexe sexe du patient

taille_cm taille du patient (en cm)

poigs_kg poids du patient (en kg)

visuelle fonction visuelle (de 0 & 6)

tronc_cerebral | fonction du tronc cérébral (de 0 a 5)

pyramidale fonction pyramidale (de 0 a 4)

cerebelleuse fonction cérébelleuse (de 1 a 5)

sensitive fonction sensitive (de 0 & 6)

spincter fonction sphinctérienne (de 0 a 6)

cerebrale fonction cérébrale (de 0 & 5)

autre autres fonctions neurologiques touchées (1=0ui,
0=Non)

edss score EDSS (de 0 & 10)

T1 temps réalisé lors de 'aller pour le premier aller-
retour (en seconde)

T2 temps réalisé lors du retour pour le premier aller-
retour (en seconde)

T3 temps réalisé lors de l'aller pour le deuxieme
aller-retour (en seconde)

T4 temps réalisé lors du retour pour le deuxieme

aller-retour (en seconde)

T25FW_mean moyenne du temps réalisé lors des 4 aller-retour
(en seconde)

Table 4: Variables des données cliniques de MS-CSI

Les données IRM contiennent pour chacune des zones cerveau, moelle cervicale et moelle
thoracique, les variables suivantes :

- lesion vol whole WM : volume lésionnel de la substance blanche
- vol lesion CST L : volume lésionnel au niveau du tract corticospinal gauche

- vol lesion CST R : volume lésionnel au niveau du tract corticospinal droit
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- vol lesion CST L+R : volume lésionnel au niveau des tracts corticospinaux gauche
et droit

- vol whole WM : volume total de la substance blanche
- vol CST L : volume total du tract corticospinal gauche
- vol CST R : volume total du tract corticospinal droit

- vol CST L+R : volume total des tracts corticospinaux gauche et droit
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Analyse en Coordonnées Principales

La PCoA est une méthode de réduction de dimension permettant d’obtenir une représentation
euclidienne des dissimilarités.

On considere une matrice de dissimilarité D symétrique, a termes réels et de dimension
N x N :
dii1 ... din

dyi ... dyn

ou d;; est la valeur de la dissimilarité entre I’élément 4 et 1’élément j.

On construit alors la matrice A :

ail ... Q1N

anN1 ... QNN

On pose W = [w;;] la matrice des produits scalaires.
Vi,j S 1, ceey N,wij = [CLij — ;. — ay, + CL__]
avec :
® q; = % Z;Vﬂ a;j : moyenne des colonnes de A
®a,;= % leil a;j : moyenne des lignes de A

_ 1 N N . "y
® a.= {7 ) ;1) j—1 @j : moyenne générale de A

L’étape suivante est le calcul des valeurs propres Ap, ..., Ay_1 et des vecteurs propres
[v1,...,on—1] de W. On a alors deux cas possibles :

- Soit toutes les valeurs propres sont positives : dans ce cas D est une matrice de
distance euclidienne et on peut réaliser une PCoA sans correction.

- Soit il existe au moins une valeur propre négative : celles-ci ne peuvent pas étre
représentées dans un espace euclidien de dimension inférieure. On peut alors :

— Conserver uniquement les valeurs propres positives pour obtenir une représentation
dans un espace euclidien. On peut alors perdre des informations importantes sur
les données.

— Ou alors corriger également les valeurs propres négatives
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Les coordonnées principales sont données par :
Tik = \/ AV pour 'individu 7 et la dimension &

et on note Y = (acl To .. ) la matrice des coordonnées principales.

Dans le cas de valeurs propres négatives et de leur correction, la méthode repose sur la
transformation de la matrice de dissimilarité non euclidienne D en une matrice de distance
euclidienne. C’est ce qu’on appelle une PCoA avec correction. Il existe trois types de
correction.

1. La correction Lingoes : )
Les termes non diagonaux de la matrice D prennent les valeurs (d?j + h)2 ou h est la

valeur absolue de la plus petite valeur propre de la matrice Ay = (I — %11’&)14(] — %11’5)
ot A = —3[d}].

2. La correction Cailliez :
Les termes non diagonaux de la matrice D prennent les valeurs d;; + k ol k est la plus

2A1> et Ay = (I — £11)B(I — £11%) et

grande valeur propre de la matrice <_ I 27,

1
3. La correction racine carrée :
Cette méthode consiste a appliquer la fonction racine carrée a la matrice D. Cette

méthode ne garantit cependant pas I’obtention d’une matrice de distance euclidienne,
méme en appliquant la racine carrée plusieurs fois a la matrice D.
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