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Introduction

Cadre : Sécurité et fiabilité des systemes

La sécurité des systemes est d'une importance capitale dans le domaine des applications indus-
trielles. Pour garantir cette sécurité, il est essentiel d’évaluer minutieusement la fiabilité des systemes
en simulation car les expérimentations physiques ne constituent pas un moyen d’évaluation suffisant
en raison de diverses contraintes. Les outils de simulation numérique offrent une alternative pré-
cieuse, permettant de construire des modéles numériques afin d’examiner la réponse des systémes a
différents scénarios de défaillance.

Généralement, le comportement physique est encapsulé dans un code de calcul, noté @,

o:|RY — R
X — (I)(x):y

qui prend en entrée un vecteur de variables X de dimension d (incluant des parametres de conception,
d’environnement, etc.) et produit une sortie Y représentant I’état du systéme. Le systéme est considéré
comme défaillant si la sortie dépasse un seuil limite, c’est-a-dire si {Y > s}. On définit le domaine
de défaillance D¢ correspondant comme les combinaisons des variables d’entrées qui ménent a la
défaillance du systéme :

Df={xeR% y=d(x) > s}

Pour obtenir la sortie Y, il faut souvent résoudre des équations aux dérivées partielles via des
méthodes telles que I'analyse par éléments finis. Toutefois, la complexité du code de calcul ® rend
impossible toute étude analytique. De plus, les appels au code sont généralement extrémement
coliteux et ne peuvent étre effectués qu'en nombre limité. Une approche alternative pour analyser
ces systemes physiques consiste a adopter une méthode de type "boite noire", ol seules les entrées et
les sorties du systéme sont connues, sans nécessiter de compréhension approfondie des mécanismes
internes du systeme. Lentrée X est supposée aléatoire et il en est de méme pour la sortie Y. Pour ces
systémes, une question centrale se pose en pratique :

Quelle est la Probabilité de défaillance Pf = P(Y > s) du systéme?

a0y

BACKROE | i p.

FIGURE 1 - Schématisation du contexte d’étude.
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Méthodes d’estimation de la probabilité de défaillance

Lestimation de P n’est pas une tache évidente, car il s’agit de I'estimation de queues de distribu-
tions. La défaillance est en effet un événement de faible occurrence. Les méthodes classiques comme
les méthodes de Monte-Carlo Naif (MCN) sont robustes et sans biais, mais nécessitent une quan-
tité importante de données pour obtenir une estimation précise de Py. Cette précision est souvent
indispensable dans des applications de fiabilité ou de certification.

Il existe d’autres approches probabilistes dans la littérature, telles que les Subset Simulation (SS)
[1] ou l’Echantillonnage préférentiel (IS) [6]. Ces méthodes améliorent la précision de |'estimation de
Py en générant des échantillons d’entrée dans la région de défaillance Dy, tout en maintenant un
budget de simulation raisonnable par rapport aux MCN.

Dans le cadre de ce stage, nous nous sommes concentrés sur la méthode des SS. Cet algorithme
consiste a décomposer un événement rare (la défaillance) en une série d’événements moins rares.
Plutdt que de simuler directement un événement de faible occurrence, on simule une séquence
d’événements ayant des probabilités plus élevées. L'estimation de ces probabilités repose sur des
méthodes d’échantillonnage telles que les méthodes de Monte Carlo Markov Chain (MCMC). Cepen-
dant, ces méthodes sont confrontées a la malédiction de la dimension, ce qui pose des problemes de
convergence, affecte la qualité des estimations, et entraine une augmentation des cofits de simulation
(c’est-a-dire des appels a ®). Des variantes spécifiques de MCMC pour le SS en grande dimension
(d grand) ont été développées, mais elles sont souvent appliquées dans des contextes restrictifs.
Par exemple, I'algorithme Modified Metropolis Algorithm (MMA), proposé dans [17], nécessite des
composantes d’entrée X indépendantes pour étre applicable en grande dimension. Des approches o
des transformations isoprobabilistes des entrées vers I'espace gaussien standard sont aussi proposées
dans [11].

Objectif du stage

Dans le contexte de ce stage, nous nous concentrons sur le développement d’échantillonneurs non
paramétriques efficaces pour des problemes d’estimation d’événement rares en grande dimension,
ou I’ entrée X suit une distribution complexe et ot I'indépendance des composantes de X n’est
pas toujours garantie. Il s’agit de fiabiliser les estimations des probabilités de défaillance par SS
en réduisant les corrélations au sein des échantillons générés par les algorithmes MCMC et en
augmentant le taux d’acceptation. La résolution de cette tache est particulierement complexe en
raison de la difficulté a surmonter le fléau de la grande dimension, d’autant plus que les distributions
concernées sont potentiellement multimodales.

Ce rapport est structuré en trois grande parties. Dans un premier temps, nous présenterons les
méthodes préexistantes dans la littérature pour I’estimation des évéenements rares et plus précisé-
ment ce qui existe autour des méthodes SS. Dans un second temps, on s’intéressera a un modele
génératif, les Auto-Encodeur Variationnel (VAE) et plus particulierement a la capacité de ces objets a
échantillonner selon les lois apprises. Enfin dans une troisiéme et derniére partie, nous proposerons
un algorithme imbriquant SS et VAE.

Dans la suite, on considére le vecteur aléatoire X de dimension d et de densité fx.
La quantité d’intérét a estimer est :

Pr=Elljpx)>s] =fD fX(X)dx:fl{tb(x)>s}fX(x)dx 1)
I
On rappelle la définition de I'événement de défaillance :

Df={xeR% y=0x) > s} )
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Chapitre 1

Revue autour des Subset Simulations
pour 'estimation d’événement rare

I Méthode de Monte-Carlo Naive (MCN)

La méthode d’estimation de MCN [10] a été I'une des premiéres méthodes de simulation afin
d’estimer des espérances.
Soit Xj, ..., X, une suite de variables aléatoires de loi fx. On définit I'estimateur MCN de Py comme
suit :
sMCN _ L IXV:
p == lopxn (1.1)
(XW)>s
! N5
Par Loi Forte des Grands Nombres (LFGN), 13}” CN est un estimateur sans biais de Py et fortement
consistant

pMCN _P%  p 1.2

On suppose ¢(X) de carré intégrable. Le théoréme centrale limite sur P}/f CN permet d’obtenir
I'intervalle de confiance de niveau (1 — ) suivant :

AMCN|1 _ PMCN
e 1= ]

.

ICl-a)= [P%CNi G-ar

_ pMCN
f

1+ q1-as2 €rel

NEEEy ) (1 —15}“”)

€rel=—— —= < €=

- - (1.3)
VN, [PYEN NPy

€re1 €st U'erreur relative tolérée au sein de l'intervalle de confiance. Cette quantité dépend du
nombre d’échantillons N. Sachant que Py est une probabilité d’évenement rare et par conséquent
(1-Pf) = 1, on peut estimer I'ordre de grandeur de N pour une erreur relative donnée :

1
Noc G pwien (14
rel” f
Pour estimer une probabilité P¢ de I'ordre 107" avec une précision de €,,; = 1071, il faut donc
N =10"*2 réalisations de ¢(X). Ceci rend cette méthode difficilement applicable sur une fonction ¢

complexe et coliteuse en temps de calcul pour I'estimation d’évenement rare.
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Definition 1 On définit le Coefficient de Variation (CV) pour un estimateur quelconque P '+ comme

suit :
VAL 40
V=t 1.5
E(PYCM) (-9

Souvent exprimé en pourcentage, le CV permet de rendre compte de la précision de I'estimateur de
p;.

Dans le cas de la MCN, le CV est égal a CV(ﬁ}”CN) - v
VP VN
L'estimateur de Monte-Carlo Naif est applicable a condition que I'on soit capable de simuler selon
laloi fx. Cependant, cela n’est pas toujours possible. Il existe diverses techniques pour obtenir des
échantillons distribués conformément a la loi souhaitée. Lorsque la densité fy est connue a une
constante multiplicative pres, les algorithmes MCMC définis a la section suivante sont particuliere-
ment bien adaptés a ce contexte.

II Monte Carlo Markov Chain (MCMCQC)

Dans les algorithmes MCMC, I'objectif est de construire une chaine de Markov stationnaire {X;, ¢},
de mesure invariante égale a la loi cible 7 connue a une constante pres.

II.1 Propriétés sur les chaines de Markov

Les chaines de Markov constituent un exemple de suite de variables aléatoires (X;); (ou processus
aléatoire pour le cas continu) a valeurs dans E, appelé espace d’état.

Definition 2 Une chaine de Markov est une suite de variables (X};), dans un ensemble E continu
de R?, si et seulement si pour tout k et pour tout (xo, ..., x) dans E tel que g(xp,..., xx) >0 avec g
densité de la loi conjointe des k variables, la propriété suivante est vérifiée

ka+1|X0:xO,...,Xk:xk (x) = ka+1|Xk:xk (x) Vx € E

On définit la probabilité de transition comme suit g(x | y) = fx,,,1ix,=y (x). Cette densité est ce
qu’on appelle le noyau de transition.

Definition 3 On dit qu'une chaine de Markov {X;, t} avec un noyau de transition 7T satisfait la
condition d’irréversibilité s’il existe une fonction n satisfaisant I'égalité qui suit :

ATyl x)=a(T(xly) x,yeRP.

Theorem 1 On suppose que la chaine de Markov a un noyau de transition T qui vérifie la condition
d’irréversibilité pour une certaine densité . Dans ce cas, 7 est la loi invariante de la chaine.

La condition d’irréversibilité est donc une condition suffisante pour converger vers la loi cible 7.

I1.2 Algorithme Metropolis-Hastings (M-H)

On se donne un noyau de Markov Q, appelé noyau de proposition et on construit une chaine de
Markov (X;); par I'algorithme 1 [13].
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Algorithm 1 Algorithme Metropolis-Hastings

Require: — Noyau de proposition Q
— M longueur de la chaine
— initialisation Xy = xo telle que 7 (xp) >0
while i < M do
A partir de 'état X; = x;, on propose X ~ Q(. | x;)
On accepte X avec une probabilité
- . { (%) Q(x; | X) }
a(X,x;))=mingl, ———
w(x) QX | x;)

Par conséquent,
x ifu<alx,Xx
Xis] = _ (i ~) u~a[0,1]
x; ifu=alx;,Xx)
i=i+1
end while

return {X;,i =0,... M}

On définit le support d’'un noyau de proposition comme suit

suppQ) = | supp(QC| x).

xeE

Theorem 2 Soit{X;, t} la chaine de Markov renvoyée par l'algorithme Metropolis-Hastings (M-H).

Quel que soit le noyau de proposition Q dont le support inclut celui de la densité n, supp(Q) >
supp(r) ona

1. Le noyau de transition de la chaine vérifie la condition d’irréversibilité pour .
2. 7 est la loi stationnaire de la chaine.

1l existe différentes manieres de sélectionner le noyau de proposition pour I'algorithme M-H.
Cependant, dans notre étude, nous nous limitons a deux types d’algorithmes : le Metropolis-Hastings
indépendant et le Metropolis-Hastings avec marche aléatoire, décrits comme suit :

X" ~Q X*est indépendant de X;

iid
X*:Xt"ré't €r ~ (.

Remark 1 Un bon noyau de proposition pour I'algorithme M-H est la densité 7.
QLlx)=n() VxeE. (1.6)

Avec Q, le noyau de proposition. Cependant, cette alternative est difficile a satisfaire puisqu’on ne
connait pas I'’expression explicite de 7 et que I’on ne sait pas échantillonner selon 7. Par contre,

on peut espérer qu'un noyau Q proche de 7 en un certain sens soit également un bon noyau de
proposition.

I.3 Qualité de simulation

Pour attester de la qualité des chaines renvoyées par I'algorithme M-H, on s’intéresse a plusieurs
propriétés. On peut se demander si on explore tout 'espace état E mais surtout comment on l'explore.
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Definition 4 (Taux d’acceptation) Soit {X;,? =0,..., N}, la chaine de Markov obtenue par algo-
rithme M-H. Le taux d’acceptation est donné par

1 N
=5 Zl Lix, 1 £X,-
=

Cet indicateur permet d’évaluer la capacité du noyau de proposition a générer des valeurs dans
les régions pertinentes, c’est-a-dire les zones ol la densité de la distribution cible (selon laquelle on
aimerait échantillonner) présente des masses de probabilité élevées. Toutefois, en cherchant un fort
taux d’acceptation, nous avons

P(” X* _Xt ||> € |X[ :X[) < 1.
Ceci induira une lente exploration de I'espace d’état.

On peut estimer également I’autocorrélation, Celle-ci mesure la dépendance (linéaire) entre les
valeurs de la chaine.

Definition 5 (Autocorrélation) On suppose que la chaine {X;,t=0,..., N} appartient a [2 alors la
fonction d’autocovariance de cette chaine est définie comme suit :

Y(t,8) = Cov(Xy, Xs) = BI(Xy — ) (X5 — s)]

avec uy = E(Xy).
Ceci induit la définition de la fonction d’autocorrélation :

v(t,s)

£,§)=——"—
ps) y(&, 0)y(s,$)

Une faible autocorrélation indique que les échantillons successifs sont presque indépendants,
ce qui peut suggérer que la chaine explore efficacement 'espace E. Cependant, cela peut également
entrainer un taux d’acceptation tres faible, ce qui signifie que les transitions proposées sont peut-étre
trop ambitieuses. Inversement, un taux d’acceptation élevé peut induire une forte corrélation entre
les échantillons, ralentissant ainsi ’exploration de I'espace, comme mentionné précédemment.

Definition 6 (Loi stationnaire) La loi stationnaire (ou distribution stationnaire) d'une chaine de
Markov est une distribution de probabilité  sur I'espace d’états E telle que, si la chaine commence
dans cette distribution, elle reste dans cette distribution a chaque étape de son évolution.
Formellement, cette loi stationnaire satisfait aux equations d’équilibre

n(y)zfn(x)T(ylx)dx VyeE
E

Definition 7 (chaine de Markov ergodique) Une chaine de Markov {X;, t} est dite ergodique si elle
est irréductible et positive récurrente. Soit T, le noyau de transition, les conditions d’ergodicité
peuvent étre formulées comme suit :

1. Irréductibilité : Pour tout x, y € E, il existe une probabilité non nulle de passer de x a y, i.e
qu'il existe un chemin de transition x = xp, x1,..., X = y tel que

T(x11x0)>0,...,T(y|x%-1) >0.

2. Récurrence positive SoitAc E.
Onpose T :=inf{in<0, X, €A}, alors

I]J’(TA<oo|X0:x):l VxeE

9
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Une chaine ergodique garantit que, indépendamment de I'état de départ, la chaine va explorer
tout I'espace d’état. En d’autres termes, si une chaine de Markov est ergodique, on peut étre certain
que la distribution de la chaine finira par se stabiliser vers la distribution stationnaire.

Apres avoir introduit les deux outils nécessaires a la définition de la méthode SS, nous allons
maintenant décrire en détail son processus de fonctionnement et en discuter les implications.

III Subset Simulation

III.1 Principe Général

La méthode des Subset Simulations est une méthode adaptative qui permet d’estimer la proba-
bilité de défaillance Py. Dans I'algorithme SS, on consideére une suite d’évenements décroissants
au sens de l'inclusion de telle sorte qu’on puisse réécrire I’évenement de défaillance comme leur
intersection :

m
Fi>F>---2Fy,=Dset Dr=(\F
i=1

Par un conditionnement successif, on obtient une nouvelle expression de la probabilité de dé-

faillance :
m—1

Pr=P(F) [ P(Fir1 | F) (1.7)
i=1
La motivation est, qu’en choisissant les événements (F;); de fagcon appropriée, les probabilités condi-
tionnelles dans (1.7) seront assez larges pour étre estimé facilement par MCN.
Le découpage en m problémes de défaillance intermédiaires induit 'apparition de lois condition-
nelles.
Jx (0 1F; (%)

P(F) , J€{0,...,m—1}. (1.8)

fxip;(x) =
Ces distributions sont connues a une constante pres.
La quantité P(Fp) est estimée par MCN

1 % (i)
Py=—) 1 (X")
Ni:l 0

Cependant, les ﬁj =P(F; | Fj-1) ne peuvent étre estimés par une méthode MCN a I'aide des

échantillons de départ (X)) | 14 ¢ au risque d’étre moins précis que pour Po. Possédant les
expressions des densités dans I’équation (1.8) a une constante pres, on peut échantillonner par un
algorithme MCMC, tel que décrit par I'algorithme 1 (M-H) puis procéder a 'estimation de P; par
MCN al’aide de ces nouveaux échantillons.

Formellement, soit {X?()i € [| 1, N |]}, chaine renvoyée par I'algorithme M-H pour la loi IxiF; (%),
alorsona:

5 _ 1 ¢ @0,0)
Pj:ﬁ.ZIFO(X |
i=1

Remark 2 L'algorithme est connu sous le nom de Subset Simulation, mais a également été étudié
dans la littérature mathématique sous le nom de Sequential Monte Carlo [3].

III.2 Limites d'implémentation de la méthode

Lors de la mise en ceuvre de I'algorithme SS, on se heurte a plusieurs difficultés.

10
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Choix des seuils intermédiaires

Le choix des événements intermédiaires (F;); joue un role crucial dans 'obtention d’'une bonne
estimation de Py par une méthode SS. En effet, on pourrait considérer une suite de seuils croissants
Sp <+ < S = § et ceci conduit a une représentation des événements comme suit :

Fi={xeR% @) >s;} Viell,...,m}.

La limite d’'un telle procédure est qu'on ignore quelles valeurs de seuils prendre a priori. Prendre
une suite de seuils qui croit lentement entrainerait I'apparition de probabilités conditionnelles (P;) ;
grandes, conduisant a moins d’échantillons nécessaires pour leur estimation. Cependant, cette
approche requiert un nombre d’événements m plus importants. A I'inverse, une séquence qui croit
rapidement entrainera I'apparition de phénomenes plus rares et donc des probabilités (P;) ; plus
faibles. Ce scénario exige plus d’échantillons a chaque itération pour une estimation plus précise.

Une alternative est de fixer une valeur de probabilité conditionnelle, py et de construire les seuils
de maniere adaptative, comme expliquée dans I'algorithme 2. De cette fagon, on se dirige vers les
zones de défaillances de maniere adaptative tout en gardant un ordre de grandeur raisonnable pour
les (P j) j

Lexemple bidimensionnel en Figure 1.1 suivant permet d’illustrer le comportement du SS et de
mieux comprendre son fonctionnement.

D) =x2+x5 xeR?

OX) ~ y2 X~ AN(0, D).

On considére I'évenement de défaillance suivant Dy = {®(X) > 10} et sa probabilité de défaillance
est Py =0.006738

FIGURE 1.1 - Illustration du comportement de 1'algorithme 2. Les échantillons renvoyés, appartenant aux
évenements /|, et I3 sont pour un seuil de probabilité fixe pg = 0.1. Les échantillons de I'événement 73
représentent les échantillons de I'événement de défaillance car ils dépassent le seuil fixe 10.

11
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Algorithm 2 Vanilla Subset Simulation

Require: — Seuil probabilité fixe pg

— N-échantillon de départ {X,..., XV}
— YD YW —oxD), ..., X))
— Seuil limite s

— Noyau de proposition Q
— (k) — (k)
1: Onpose Fiy  processus quantile de I'échantillon E) = {Y((kl)),..., Y((kl;[)}, et f/;\’? =Fn (1-po)le
seuil considéré au k® événement et Ay = {X ((Ig eees X((,]C\]] )}, I’échantillon associé.
2. k=1
. a6
3: while 7’ <sdo
s ~ ] i N . PP ~(k ~
4:  On considere A = {X((,’C)), Y((k’)) > yg\’? Vi}, par définition de )/EV), card(A(k)) =|Npol
5. On tire uniformément avec remise dans Ay N échantillons et on obtient Afk) =
«(1) «(N)
X (I§+1)j""X (e} . o
6:  Application de N algorithmes M-H dont chaque initialisation est un élément de Az‘k). On effectue
des chaines de longueur [ et la loi stationnaire créée par les chaines de Markov est fxr;.
(1) L) *(N) L yx(N)
{X ke Y "y [1]} ””””” {X e Y "y [1]}
@) @)
=3 =3
=N =N
= =
@ @
o o
¢ ¢
) =]
= S
oQ aQ
= =
@ a
Z 2
Y A 4
# (1) v o U *(N) Ly (N)
{X (k+1)[l+ 1Y (k+1)[l+ 1]} {X (k+1)[l+ 1Y (k+1)[l+ 1]}
7. k=k+1
8 Onpose Ay = {XVI+1],.... XM +11}, By = (YOI +11,..., YN [1+ 1]} et () (k) associé
' ) (k) () OB (9 AR () )

9: end while

10: return P$S = pk-1

(i) @)
curd{ Yy >s Y €Ew }

f N

Ergodicité dans le cadre des Subset Simulation

La deuxiéme problématique a laquelle on se heurte est 'ergodicité des chaines de Markov { X, t}

renvoyées par la méthode SS pour I'estimation des probabilités (P j);.”= 1

En pratique, la méthode SS rencontre des défis puisqu’il s’agit d'une taille de chaine finie. Dans ce

cas de figure, il est plus difficile d’atteindre 1'ergodicité, encore plus si les régions de défaillances sont

non connexes dans 'espace d’état. Ces limitations peuvent renvoyer de moins bons estimateurs f

pss

1. Estimation biaisée : Lorsque certaines régions contribuant a la défaillance sont rarement ou

jamais visitées pendant la simulation, I’estimateur 15;5 devient biaisé. Ce biais provient de
I'exploration limitée de 'espace d’état, conduisant a une sous-représentation des régions
critiques de défaillance.

2. Difficultés d’exploration : Les régions de défaillance non continues peuvent poser des défis

importants pour I’exploration de I'espace d’état. Si le noyau de proposition, Q, manque de
capacité d’étalement suffisante par rapport a la taille des zones non défaillantes, il peut avoir

12
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du mal a passer d'une zone de défaillance a une autre. Cela peut conduire a un regroupement
des échantillons dans une seule zone défaillante. La figure 1.2 illustre ce phénomene.

)
e /r\ m”\j

Serm b iy [t SR T T

e

Tara 1 .I._.-_" I,/' ovad

FIGURE 1.2 —llustration d'un exemple en 2D ot la zone de défaillance est une union de plusieurs zones (ici
4) Dy = LJ‘;:1 Zone i. La difficulté ici est le passage d'une zone a une autre zone afin d’explorer I'’ensemble des
zones de défaillances.

Pour remédier a ces limitations et améliorer les performances en pratique, la stratégie suivante
peut étre envisagée; considérer plusieurs chaines avec différents états initiaux obtenus a partir de
I'événement précédent F; (voir le schéma contenu dans I'algorithme 2 a la ligne 6). Ces initialisations,
tirées de différentes régions de défaillance, peuvent guider les chaines vers divers modes de défaillance,
améliorant ainsi la couverture globale de I'espace d’état. Lefficacité de cette méthode reposerait tout
d’abord sur I'estimation de Py. Avec une bonne estimation Py i.e un coefficient de variation faible, on
peut s’attendre a une meilleure répartition des échantillons dans les régions de défaillance associées
a différents événements.

Il est important de noter que les stratégies d’atténuation proposées sont valides sous I'hypothése
que les régions ne contribuant pas a la défaillance a de bas seuils conditionnels, s;, restent inactives a
des seuils conditionnels plus élevés.

I11.3 Algorithmes MCMC (M-H) dans le cas des Subset Simulation

Dans le cadre des SS, I'expression de la probabilité d’acceptation pour x; € F; est la suivante :

e fxX®QW; |x) - }
a(X,x;) = mm{l, —fx(x,-)Q(fc ) 1£.(X) (1.9)
= a(X, x;)1F;(X) (1.10)
ot a(%, x;) = min{ 1, gt

Lalgorithme peut étre alors décomposé en 2 parties :
. L X avec probabilité a(X, x;)
1. Accepter ou rejeter la proposition X : v = o .
Xx; avec probabilité 1 — a(x, x;).

v, UVEF;
Xi, V¢ Fj.
Cette approche est intéressante, car I’évaluation de la fonction ® en X peut-étre faite seulement
apres acceptation avec probabilité a(x, x;). En effet, il se peut que les propositions ¥ ne soient pas
satisfaisantes pour la distribution de départ fx et donc il serait inutile de faire appel au code ® pour
vérifier 'appartenance a F;. Ceci permettra une économie du budget.

2. Accepter ourejeter v: xj41 = {

Remark 3 (Limites en grande dimension) Il est plus difficile d’explorer I'espace état, dans un do-
maine de plus grande dimension, car I'indicatrice 15, engendre trés souvent du rejet. Une illustration
du fort rejet des MCMC en grande dimension dans I’algorithme SS est faite dans [11] avec I'exemple
du noyau gaussien.

13
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Maintenant que nous avons exploré en détail la méthode SS, nous allons mettre en place un test
pour évaluer son comportement dans différentes conditions, telles qu'un domaine de défaillance non
connexe ou une dimension d du vecteur élevée.

IV Exemples Tests

La fonction 4-branches est un probleme de référence largement utilisée dans les analyses de
fiabilité.

d
1
+=X xi=p+1n
B va & B
podi S xi=pt
‘/‘_iizl [ 1
<I>(x)=—min<l6 . Ldzm d ) 5
+ —= X;— Xi|=p+ 1t
vd i=1 ' i=1+1d/2] '
e R I
+—=|- Xi+ Xi|=p—t.
vd i=1 ' i=1+1d/2] !

Cette exemple-test définit une série de systemes linéaires possédant 4 zones de défaillances. I1
prend en entrée un vecteur gaussien X ~ .4 (0, I;) vivant dans R? et a pour particularité d’avoir une
probabilité de défaillance indépendante de la dimension d.

En effet, comme B+ t; ~ A (B,1), i=1,2etcov(t,z) =0 (démontrée en annexe), la distribution de
®X) =-—min{f+¢;, i=1,...,4} estindépendante de d.
On peut alors s'intéresser a I'événement de défaillance suivant :

Pf:P(q)(X) >0) z4(,b§/y(0'1)(—ﬁ) (1.11)
Les parameétres choisis pour cet exemple sont les suivants :

p= 35 Pr= 93x107™*
p= 5 Pp= 115x107%

= 2
i
L I
W -
.
M

(a) Représentation dans le plan. (b) Représentation dans I’espace.

FIGURE 1.3 - Graphique du comportement de la fonction 4-branches ® pour le cas de la dimension d = 2

IV.1 Application de I'algorithme SS

On utilise la méthode de SS pour estimer les probabilités de défaillance de I'exemple précé-
dent. Etant donné que les entrées sont gaussiennes, nous choisissons une marche aléatoire dans
I'algorithme M-H ot la perturbation est

€r~N(0, Iz x0).

Afin de pouvoir comparer les performances entre estimateurs de Py, on introduit la mesure

14



Master 2 IS Rapport Stage
suivante :
_ Nreg _ l—Pf , R .
V=N, avec Nreg= —way(ﬁfss)z et N, nombre total d’appel a la fonction .

Un coefficient v < 1 signifiera qu'une simple méthode MCN suffira pour obtenir une précision égale
et a moindre coftit. Tandis qu'un coefficient v > 1 démontrera qu’il est plus intéressant de procéder
par une méthode SS.

Les proprietés (moyennes, variances ...) des estimateurs issus des algorithmes 2 et MMA sont
obtenues a partir de 100 itérations.

Application de I'algorithme SS pourlecas: §=3.5 Pr=9.3x 107

Dans ce cas, la probabilité Py est approximativement de I'ordre de 1073. Lalgorithme SS est
plus adapté pour des probabilités inférieures 2 10~* comme cela est couramment souligné dans la
littérature; par conséquent, les performances évaluées a travers le parametre v ne montrent pas de
différences significatives par rapport a une méthode MCN. Les résultats sont donnés en Table 1.1.

Dimension ijss cv v o Evénement Ky F F Fs Fy
d=5 933x10 % | 0.056 | 1.35 | 0.4 d=5 0.40 035 033 031 0.28
d=10 931x10% | 0.066 | 1.13 | 0.4 d=10 033 0.29 027 025 0.24
d=50 929x10 %] 013 1027 | 03 d =50 0.20 0.19 0.17 0.16 0.15
d=100 939x 1074 0.19 0.13 | 02 d =100 0.23 0.22 0.21 0.20 0.19
pss (b) Taux d’acceptation p (définit dans (4)) pour chaque

(a) Résumé de la qualité de I'estimateur L
f événement

TABLE 1.1 - Estimation par I'algorithme 2 pour I'événement ou = 3.5 et Py = 9.3 x 107%. La probabilité fixe
po = 0.25. Le noyau de proposition est une marche aléatoire gaussienne. Les longueurs de chaines sont de taille 6.
Pour les taux d’acceptation p, ce sont les taux moyennés sur ’ensemble des chaines pour chaque événement F;

FIGURE 1.4 - Boite a moustache pour les différents estimateurs pss correspondant a chaque dimension d pour

f
lecas f=3.5et Py =9.3x 1074,

On remarque que lorsqu’on augmente la dimension, il devient plus difficile d’explorer I'espace
d’état et le coefficient de variation cov(P fSS) croit, rendant la méthode moins précise. On peut alors
choisir d'utiliser des agitations o moins grandes, mais cela a un cofit : il faut des chaines plus longues
pour atteindre la stationnarité.

La problématique des chaines corrélées n’est pas abordée ici, car, comme expliqué dans I’algo-
rithme 2, de faibles valeurs d’auto-corrélations ont été renvoyées par les chaines.
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Application de I'algorithme SS pourlecas: =5 Py=1.15x 1076

5 8§

Rapport Stage

Dimension Py (0 v o

d=5 1.14x107% | 0.11 | 127.44 | 0.4

d=10 1.16x107° | 0.11 111.4 0.4

d =50 1.16x107% | 0.54 4.66 0.3

d =100 1.39%x107% [ 0.19 0.13 0.2

(a) Résumé de la qualité de I'estimateur P;S
Evénement Fy F F F3 Fy F5 Fs F; Fg

d=5 040 035 033 031 0.29 0.28 0.26 024 0.24
d=10 033 0.29 0.27 025 0.24 0.23 0.22 0.21 0.20
d =50 0.20 0.19 0.17 0.16 0.16 0.15 0.15 0.14 0.14
d =100 0.23 0.22 0.21 0.20 0.19 0.19 0.19 0.18 0.17

(b) Taux d’acceptation p pour chaque événement

TABLE 1.2 — Estimation par 'algorithme 2 pour I'événement ou1 f =5 et Pp=15x 1076, La probabilité fixe
po = 0.25. Le noyau de proposition est une marche aléatoire gaussienne. Les longueurs de chaines sont de taille 6.
Pour les taux d’acceptation p, ce sont les taux moyennés sur ’ensemble des chaines pour chaque événement F;

{0
—, |

pSS

FIGURE 1.5 - Boite a moustache pour les différents estimateurs 7 correspondant a chaque dimension d pour

lecas p=5et Pp=1.15x 1074,

Dans ce cas, l'utilisation de la méthode SS est plus avantageuse en termes de budget d’appel a
la fonction ® (valeur v plus élevée que pour le cas précédent résumé dans la Table 1.1). Cependant,
pour les grandes dimensions, comme 50 et 100, les performances se dégradent considérablement, et
I'estimation devient beaucoup moins précise. Les résultats sont donnés en Table 1.2.

Remark 4 Les taux d'acceptation moyens pour les événements (F;); communs aux deux paramétrages
(B =5 et B =3.5) sont égaux, car on considére la méme probabilité fixe py.

Il est important de noter que les entrées pour cet exemple-test sont gaussiennes et indépendantes,
ce qui rend le noyau choisi adapter. Cependant, le fléau de la grande dimension empéche une explo-
ration efficace de I'espace d’état de maniere vectorielle, car celui-ci devient "vide". Nous faisons face
a une sparsité des données et il devient difficile de trouver suffisamment de données proches les unes
des autres. Comme mentionné précédemment, il existe des variantes des algorithmes MCMC qui per-
mettent de décomposer le probleme de grande dimension en plusieurs problémes unidimensionnels
(voir section suivante).
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Pour illustrer la remarque 3, on peut constater que les taux d’acceptation moyens diminuent non
seulement au fur et a mesure que I'on progresse dans les événements (F;);, mais également lorsqu’on
augmente la dimension d.

Dans la Figure 1.6, on fixe la perturbation o a 0.4 et on observe la trajectoire des taux d’acceptation
moyens pour chaque dimension d.

: = S sl & - 3
IV b - ; 1 .\.-" #
* - - i -
i = N - ¥ -
¥ g ) e ¥ e
_, -
- -
- - - - i = = = - - E 8 - - » a
(@) B=3.5 Pf =9.3x107% (b)f=5 Pf =15x1076

FIGURE 1.6 - Evolution du taux d’acceptation moyen pour chaque dimension d en fonction de 1'événement F;
considéré. La perturbation o est la méme pour chaque dimension.

V Modified Metropolis Algorithm (MMA)

Lalgorithme MMA, introduit dans le papier [1], offre une solution pour surmonter les limitations
du noyau gaussien classique des MCMC en grande dimension. Plutét que de générer des échantillons
a partir d'une distribution multidimensionnelle, cet algorithme procede en générant les échantillons
coordonnées par coordonnées.

Cependant, une condition nécessaire doit étre respectée : le vecteur aléatoire X = (Xj,..., Xy) doit
avoir des composantes indépendantes, i.e que fx doit se composer comme un produit de d densités

d
fx) =[] filxr),  x=(x1,..., x5) €RY. (1.12)
k=1

V.1 Principe du fonctionnement de I'algorithme MMA

Soit x = (x1,...,X4) € R% , un échantillon issu de la distribution Ix F; et (qx(.| xk))‘,jzl les noyaux de
propositions unidimensionnelles. La génération d'une proposition X se fait par la méthode suivante :

Pour tout ke {1,...,d}
1. Tirer un échantillon ny ~ q(. | x¢)

2. Calculer le ratio
M) qr (i I i)

arMp, xg) =
T T T qreme | xk)

3. Construction du vecteur de proposition & € R :

N, avec une probabilité ay(ny, xi)
§= o
X avec une probabilité 1 — a (g, xx)

4. Acceptation ou rejet de ¢

- ¢ sideF;
X =
X SifﬁF]’

17
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On peut démontrer que le noyau de transition renvoyé par I'algorithme MMA vérifie la condition
d’irréversibilité, soit la loi invariante est fy| Fj-

On peut illustrer cette procédure par le schéma suivant

V.2 Application de 'algorithme MMA a I’exemple-test 4-branches
Application des SS avec I'algorithme MMA pourlecas: =3.5 Py=93x 1074

Dimension P fMMA Ccv % o Evénement | F, F 2 F3 J2A
d=5 931x10°%]0.043 | 230 | 0.4 d=5 0.63 0.57 0.53 049 0.46
d=10 937x107% ] 0.043 | 227 | 0.4 d=10 0.64 057 052 047 044
d =50 9.26x107% | 0.047 | 2.93 | 0.4 d =50 0.63 056 050 046 043

d =100 930x107% | 0.047 | 1.94 | 0.4 d =100 0.63 056 050 046 042
ss

(a) Résumé de la qualité de I'estimateur P 7 (b) Taux d’acceptation p pour chaque événement
TABLE 1.3 - Estimation par I'algorithme par avec MMA pour I'événement ou = 3.5 et Py = 9.3 x 1074, La
probabilité fixe pg = 0.25. Les noyaux de proposition sont des marches aléatoires gaussiennes. Les longueurs de
chaines sont de taille 6. Pour les taux d’acceptation p, ce sont les taux moyennés sur I’ensemble des chaines pour
chaque événement F;

DS 4

i
R

FIGURE 1.7 - Boite a moustache pour les différents estimateurs correspondant a chaque dimension d
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Application de I'algorithme MMA pourlecas:f=5 Py=1.15x 1076

Dimension 2 fMMA CV v o}
d=5 1.14x107% | 0.05 | 620.08 | 0.4
d=10 1.15x107% | 0.06 | 468.20 | 0.4
d =50 1.17x107% | 0.05 | 648.51 | 0.4
d =100 1.16x107% | 0.06 | 470.18 | 0.4

(a) Résumé de la qualité de I'estimateur P;S

Evénement Fy F F, Fs Fy F5 Fg F; Fg
d=5 063 058 052 048 046 044 042 040 0.38
d=10 0.63 056 051 048 044 042 040 038 0.38
d =50 063 056 050 046 042 040 037 035 0.32
d =100 0.64 056 050 046 042 039 037 035 0.33

(b) Taux d’acceptation p pour chaque événement

TABLE 1.4 - Estimation par I'algorithme MMA pour I'événement ot f =5 et Py = 1.576. La probabilité fixe
po = 0.25. Les noyaux de proposition sont des marches aléatoires gaussiennes. Les longueurs de chaines sont
de taille 6. Pour les taux d’acceptation p, ce sont les taux moyennés sur I’ensemble des chaines pour chaque
événement (F;);

FIGURE 1.8 - Boites a moustache des différents estimateurs de 'exemple f =5 et Py = 1.5 pour chaque cas de
dimension d

L'algorithme MMA renvoie des estimations de Py plus précises avec de faibles coefficients de
variation (CV). On observe notamment la robustesse de la méthode pour des événements a trés faible
occurrence (=5 et Pr=1.5x 1075). En effet, les coefficients v sont bien plus larges pour ce cas.

Enfin, la dimension n'influence pas sur le taux d’acceptation moyen, contrairement a la méthode
SS classique (voir 1.6b et 1.6a).

Lalgorithme SS est une solution efficace pour estimer des probabilités de faible occurrence,
mais il présente certaines limites. Parmi celles-ci, on observe une diminution du taux d’acceptation
au fur et a mesure que I'on progresse dans les événements F;, ainsi que 'apparition d’un biais
lorsque la dimension d augmente. L'élément central de cet algorithme est I'utilisation d’algorithmes
MCMC. Dans un cadre idéal, un échantillonnage précis pour chaque événement de la séquence (F;);
permettrait d’obtenir des estimations de Py plus fiables. Pour améliorer ce processus, il est crucial de
disposer d'un noyau de proposition Q de qualité.

La remarque 1 nous incite a envisager les densités définies dans (1.8) ou, a défaut, une bonne
approximation de celle-ci, pour obtenir des échantillons pertinents. Plusieurs approches sont dispo-
nibles dans la littérature pour ce faire :
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1. Distributions paramétriques : Ces méthodes offrent une bonne robustesse face a la grande
dimension, mais leur nombre élevé de parameétres, ainsi que leur manque de flexibilité (formes
de distributions définies a priori), en font des candidats moins idéaux.

2. Distributions non paramétriques : Contrairement aux distributions paramétriques, ces mé-
thodes sont plus flexibles, mais elles manquent de robustesse face a la grande dimension

Les récents travaux sur les modeles génératifs nous ont amenés a envisager 1'utilisation de ces
modeles pour 'apprentissage de notre loi cible fx. Ces modéles ont démontré a la fois de la flexibilité
et de la robustesse dans des applications récentes, ce qui en fait une option prometteuse pour
surmonter les limitations identifiées dans ’algorithme SS.
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Chapitre 2

Auto-encodeurs Variationnel (VAE)

Dans cette section, nous nous concentrons sur une classe spécifique de modeles d’apprentissage :
les modeles génératifs. Ces modeles probabilistes sont particulierement adaptés a I’apprentissage de
distributions complexes, telles que les distributions multimodales ou celles définies dans des espaces
de grande dimension. Basés sur des réseaux de neurones artificiels [9], ils sont largement utilisés dans
la génération d’'images, de vidéos et de textes [16].

Les modeles génératifs peuvent étre classés en trois grandes catégories :

1. Modéeles autorégressifs (AR)

2. Modeéeles basés sur les transformations de flux (flow-based models)

3. Modeles a variables latentes.

Dans cette étude, nous nous intéressons plus particulierement aux méthodes impliquant I'utilisa-

tion de variables latentes. L'idée derriere ces méthodes est de supposer I'existence d'un espace de
plus faible dimension Z, appelé espace latent, puis de procéder a la méthode de génération suivante.

z~p, zeZ
x~pllz), xeZ.

En résumé, la distribution des les variables latentes z correspond aux informations cachées
dans les données et les distributions conditionnelles p(.| z) Vze Z peuvent étre vu comme des
générateurs.

Le premier enjeu d’une telle méthode serait alors de définir I'espace latent. Etant donné que le
but de 'espace latent est de résumer nos données, on peut considérer les méthodes de réduction de
dimension.

I Auto-encodeurs : une Méthode de réduction de dimension

Nous résumons les données sous la forme d’une matrice X € R”*4, qui représente une collection
de n vecteurs de dimension d.

I.1 Principes et techniques de la réduction de dimension

La réduction de dimension consiste, dans la plupart des cas, a trouver des matrices de plus petite
taille, c’est-a-dire avec un nombre réduit de lignes n ou de colonnes d, tout en préservant une certaine
similarité avec la matrice initiale X.

Un exemple préliminaire de réduction de dimension est la décomposition UV. Lobjectif est
d’approcher X par un produit de matrices :

X=U'vV,
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x=F]fx® tx™

Supposons que nous souhaitons projeter chaque donnée X' € R pour tout i € {1,...,n} dans
un espace de dimension réduite Z, par exemple R* avec k < d. Nous considérons d’abord une
représentation des données dans Z :

U=t [ tgM g | g grxk
De manieére similaire, nous définissons la matrice
vl ty® |ty | cgdxk

qui constitue la base des vecteurs pour la nouvelle représentation des données.
Le probleme d’optimisation peut alors étre formulé comme suit :

min || X - UV 13- @2.1)

ol | - |prop représente la norme de Frobenius.

Des contraintes peuvent étre imposées sur U et V. Par exemple, en imposant une contrainte
d’orthogonalité, on retrouve la méthode Singular Value Decomposition (SVD). C’est une technique
fondamentale en algebre linéaire qui décompose une matrice en trois autres matrices, révélant des
propriétés essentielles de la matrice d’origine

X=UZ'V.

— U estune matrice orthogonale de dimension n x n

— X est une matrice diagonale de dimension n x d

— V est une matrice orthogonale de dimension d x d

En sélectionnant les premieres valeurs singuliéres et les vecteurs associés (troncature de la SVD),
on peut obtenir une approximation de la matrice X avec une dimension réduite.

On peut quantifier I'erreur qu’on commet dans notre approximation.

On suppose que rg(X) = r (en notant r g le rang d'une matrice). alors pour B € R"*¢ et g = min{r, rg(B)},
g<rona:
;
. 2 2
R X B Gy = 3 0060

ol1 o(X)? sont les valeurs singulieres de la matrice X.

Une application spécifique de SVD aux données centrées est1’Analyse en Composantes Principales
(ACP), une technique de réduction de dimensionnalité qui transforme les données en un nouvel
ensemble de variables non corrélées appelées composantes principales. Ces composantes sont
ordonnées de maniere a ce que la premiere retienne le plus de variance possible, la deuxieme retient
le plus de variance possible sous contrainte d’étre orthogonale a la premiere, et ainsi de suite.

Or la méthode de ’ACP présente des limites :

— Linéarité : UACP repose sur des transformations linéaires et peut échouer a capturer les

relations non linéaires complexes dans les données.

— Scalabilité : Pour des ensembles de données tres larges, I'’ACP peut devenir coliteuse en termes

de calcul, ce qui a conduit au développement de I’ACP randomisée [14].
11 s’agit donc de développer une méthode qui offre une réduction de dimension plus flexible, capable
de capturer des motifs complexes au-dela de la simple linéarité, tout en maintenant un budget de
calcul raisonnable.

I.2 Les Auto-Encodeurs

Les Auto-Encodeur (AE) sont une classe de réseaux de neurones non supervisés utilisée pour
apprendre une représentation compacte des données d’entrée. Le but est d’obtenir une solution au
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probleme d’optimisation (2.1) al’aide d'une architecture neuronale.
Un AE se compose de trois parties principales :

— Un Encodeur noté Ep. C’est un réseau de neurones paramétré par les poids ¢p € =

— Un espace latent Z

— Un Décodeur, noté Dy. C’est un réseau de neurones paramétré par les poids 6 € ©

Dans un premier temps, I’encodeur comprime 1'observation x € R? et lui attribut une représenta-
tion z = Ey(x) € Z. Dans un second temps, le décodeur réalise la procédure inverse en essayant de
reconstruire le point initial x a partir de 'encodage z et on a Dg(z) = % € R, voir la Figure 2.1.

Lobjectif d'un AE est de minimiser la différence entre I'entrée x et sa reconstruction x. Cette diffé-
rence est quantifiée par une fonction de perte, typiquement une fonction de type erreur quadratique
moyenne (Mean Squared Error, MSE) :

Obj(x,%) =|| x— X |I*=|| x — Dg(Ep(x)) |I?, 2.2)

117

ol ||.||* représente la norme L.

OBSERVATION ESPACE LATENT RECONSTRUCTION

ENCODEUR DECODEUR

PRy [

N ————

-~

FIGURE 2.1 - Principe du fonctionnement d'un auto-encodeur

Cependant, les auto-encodeurs (AE) rencontrent des difficultés en matiére de généralisation; leur
capacité a générer de nouvelles données similaires a celles utilisées pour 'entrainement est limitée.

Remark 5 Le principe de fonctionnement de I’AE peut étre reformulé de maniere a correspondre
aux formulations présentées au début de cette section I.1.
Considérons les transformations linéaires suivantes :

W:RY — Rk V:RF - RY

ol ‘W et 'V représentent respectivement les poids des réseaux de neurones Eg (encodeur) et Dy
(décodeur) avec des biais nuls. En utilisant I'identité comme fonction d’activation, chaque ligne de
X, X, est transformée en z; = WX, ce qui définit la matrice U mentionnée précédemment :

U="| 10, "

En sortie de 'auto-encodeur (AE), chaque donnée X @) est reconstruite par la transformation
VWX® = Vgz;. Par transposition, les valeurs reconstruites X sont données par U'V. Pour que
X = UV soit satisfait, il est nécessaire de résoudre le probleme d’optimisation suivant :

77ty 12
ce qui est similaire a I'équation (2.1).
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IT Fonctionnement d’un VAE

II.1 Généralités sur les VAE

Les VAE [7] constituent une classe de modeles génératifs qui étendent le principe des auto-
encodeurs classiques. En effet, un VAE se compose également d'un encodeur Ep et d'un décodeur Dy,
mais a la différence des auto-encodeurs classiques, les deux composants générent des distributions
de probabilité plutdt que des sorties déterministes.

Lobjectif principal d'un VAE est d’approximer une distribution cible, notée ici fx. Pour ce faire,
une variable latente (non observable) Z est introduite, permettant d’établir la relation suivante :

fx() = fy(x) = f po(x|2) p2)dz YxeR? 2.3)

Cette équation représente une intégration sur 'espace des variables latentes Z. On peut interpré-

ter cette représentation comme un probléme d’inférence bayésienne :
1. pestlaloide Z, appelée laloi a priori.

2. pg(.| z) estla vraisemblance.

3. po(.| x) estlaloi a posteriori.

Dans le cadre classique, on suppose que pg(. | z) suit une distribution gaussienne A (pg,Z‘z)
paramétrée par le décodeur Dy, avec p comme distribution continue. Ainsi, le VAE approxime fx par
un mélange infini de gaussiennes.

Lintégrale (2.3) étant souvent difficile a calculer, les VAE adoptent une approche variationnelle
en introduisant une distribution approximative gy (. | x), paramétrée par I'encodeur Ej et appelée
distribution a posteriori variationnelle. Cette distribution est sélectionnée au sein d'une famille
paramétrique &2, permettant une génération et une évaluation de la densité relativement simples.

Dans le cadre de notre étude, cherchant a approximer un vecteur aléatoire a densité continue, nous
- Loi

choisissons gy (. | x) = W(uf, Zf).
La procédure d’encodage et de reconstruction d’un point x € R? par VAE est représente dans la

Figure 2.2 et donné par le schéma qui suit :
1. Lencodeur E, renvoie pour chaque donnée x les parametres de la distribution a posteriori
variationnel gy (. | x) : (uf,Zf) = Ep(x)
2. Génération d’'un point z ~ gy(. | x) dans I'espace latent

3. Le décodeur renvoi pour chaque donnée z les parametres de la distribution a posteriori
po(-12): (1, 22) = Dy (2)
4. Génération de la reconstruction X ~ pg(.| z)

OBSERVATION ESPACE LATENT RECONSTRUCTION

\/

X > ENCODEUR

%

FIGURE 2.2 - Principe du fonctionnement d'un auto-encodeur variationnel utilisant une distribution standard
gausienne fixe

—)uz

1
:
€~AN(01z) — z >, | DECODEUR X~ N (s Z2)
1
1
1

________________
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Une fois le principe de fonctionnement du VAE établit, on procede a I'’entrainement des poids ¢
et 0 de Ey et Dy de maniére a ce que fy soit une bonne approximation de la densité cible fx.

I1.2 Entrainement d’'un VAE

Pour I'entrainement, on s'intéresse a la log-vraisemblance de fj et plus précisément, on cherche a
maximiser par rapport a 8 sous fx :
max Eg [lo 24
na rx[10g(fo)l (2.4)

On obtient alors le développement qui suit

log(fe) = log(f pe(x|2z) p(z)dz) avec équation (2.3)
po(x|z2) p(z) )
=lo ————qy(z|x)dz
g( qp(z] x) (2]
po(x|2) p(z)) et
> | log| ————— z|x)dz ar inégalité de Jensen
f g( do(z1 %) qp(z| p 8
po(x|2) p(Z))
=E log| ———
q¢,(.|x)[ g( L]g{;(Z | %)
p(2) )
=E Z)]-E log| ——
as (o [Po (X1 2] —Eg,(1x) Og(q¢(Z|x)
= [E%ux) [po (x| Z)] = Dgr(qe(. 1 x) || p) par définition de la divergence de Kullback-Leibler
Par linéarité de 'espérance, on a:
Epy [Log(fo (XN = By [Egy (10 [Po (X | 211 —Efy [Drr(ge (- | X)] (2.5)

Maximiser la borne inférieure équivaut a résoudre le probleme d’optimisation décrit par (2.4).
Cette borne est connue sous le nom de Evidence Lower BOund (ELBO).

LO,d) =Ef [Egy(1x [po(X T 2N —Epy [Drrlge (-1 2) 11 p)] (2.6)

On peut définir la valeur de I'ELBO pour une réalisation x € R de X comme suit :

L(x,0,¢) =Eg,10[log(p(Z | x))] - Dkr(qe(. 1 X) || p) 2.7
recons;uction régula;'isation

Elle est composée de deux termes qui ont un comportement opposé lors de 'optimisation de
(2.4). Maximiser ELBO revient a trouver un compromis entre ces deux termes.
Maximiser le terme de régularisation revient a optimiser les poids (6, ¢) de telle sorte que les distribu-
tions gy (. | x) aient des supports disjoints au sein de I'espace latent. Ceci permettra au décodeur de
reconstruire fidelement x a partir de la distribution encodée associée.
Quant au terme de régularisation, il régit la similarité entre le prior p et le posterior variationnel
qy(.| x). Lobjectif est que toutes les distributions g (. | x) soient proches du prior.

Si on s’intéresse de plus pres a ce terme, on a la décomposition suivante :

—Dkr(qp 1 X) 11 p) = —Eg, 010 [108(qe (- | X)] = (—Eg, 10 [Log(p(Z))]) (2.8)
Ent;gpie entropi:er croisée

Sous les hypotheses gaussiennes, on peut aisément calculer la valeur de ’entropie
1 ¢ ¢
Entropie = > Y logl2en(25)ii] (2.9)
i=1

Etant donné qu’on cherche & maximiser (2.9), il faut a(f:(i)2 — +oo. Lentropie cherche a étaler E,

25



Master 2 IS Rapport Stage

autant que possible, cependant, ceci n’est pas réalisable en pratique, car le terme de reconstruction
force 'encodeur a étre centré autour de chaque point.
Pour 'entropie croisée, on a:

entropie croisée = fz qe(z| x)log(p(z))dz = glog(zm + % (Zf)ii + u(f:(i)z) (2.10)

Lorsque nous cherchons a maximiser I'ELBO, cela implique de maximiser I’entropie croisée, c’est-
a-dire d’essayer d’aligner le prior p avec le postérieur variationnel gy (. | x). Maintenant, examinons
le comportement de I'entropie croisée lorsque 'on impose un prior gaussien standard A (0, I;).
Lobjectif est de faire correspondre cette forme fixe au fur et a mesure de I'’entrainement. Cependant,
le probléme est que le décodeur, en se basant sur le terme de reconstruction, aura tendance a générer
des distributions centrées autour des points d’entrainement, ce qui peut entrainer I'apparition de
"zones blanches". Dans ces zones, g (. | x) attribuera une tres faible probabilité, tandis que le prior
les considérera comme des régions a forte masse de probabilité.

Ce décalage deviendra apparent lors du processus de génération, comme expliqué au début de la
Section 2. Lorsque des points issus de ces zones blanches seront générés a partir du prior, le décodeur,
n'ayant que peu ou pas appris sur ces zones, produira des échantillons de qualité inférieure. Dans ce
cas, il peut étre plus judicieux de considérer des priors non fixes et dont les parametres sont mis a jour
au fur a mesure de I'entrainement.

II.3 Choix de prior flexible

Classiquement, la distribution normale standard est le priori utilisé dans plusieurs applications
du VAE mais comme expliquée, il est possible de choisir un autre type de prior :

pr(2) A € A une famille de parametres
Une possibilité d’a priori flexible peut étre un mélange gaussien :

K
pA@) =pY°C (@) =Y wigumsp(@  A=t{w,my s, (2.11)

=1

Ou, ggm,,s,) estla densité d'une gaussienne de moyenne m; et d’écart-type s;.

Ce prior Mélange de gaussiennes (MoG) permet une plus grande flexibilité dans la modélisation
des données en capturant des structures plus complexes, car il représente la distribution latente
comme un mélange de plusieurs gaussiennes. En plus de générer les échantillons latents, le VAE
apprend a estimer les parametres des différentes composantes du mélange, améliorant ainsi la
capacité du modele a capturer des distributions multimodales et a générer des échantillons plus
diversifiés. Lexpression du ELBO change et on a la formulation qui suit :

L0, $, M) =Ep [Egy (1 [po (X | 21 —E g [Drr(gg (-1 2) 1] pa)]
=Epy [Egy 10 [Po (X I DN+ Ep [-Egy 1 [L08 (P (X | ZNT + E gy [Egy 10 [Log(p)]] (2.12)

Avec

K
Efy [Eqp10 [10g(py (1] =/%f2log Y wigmy,s) (@) | qg(z| x)dzdx (2.13)
=1

L'équation (2.13) étant intractable, on approxime celle-ci par une méthode de Monte-Carlo lors de
I'entrainement. On s’appuie sur I'échantillon z = uf + (Z(f:)” 2¢ généré par la procédure de reparamé-
trisation a la sortie de I'encodeur Ey. On a alors :

N

1 . . .
Efy [=Eqpin (108 (p) (D) = Y —loglpyC(zM  ZD ~ gy 1 XD) (2.14)
i=1
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Avec {X L xM }, I’échantillon d’entrainement.

La quantité Eg,(x[log(pa)] est évaluée sur un échantillon de taille 1. Ce choix peut paraitre
surprenant a premiere vue, mais est en réalité suffisant parce que les estimations associées a chaque
observation sont en pratique moyennées par mini-batch. Un schéma récapitulatif du fonctionnement
de ce VAE est présenté dans la Figure 2.3.

MELANGE DE GAUSSIENNES

_____

4
™M) e
(o]
wrppea
\ Sl I’
S ’
\\ ’,
\/ u

—_ le ﬁ
x —| ENCODEUR €~AN(Is,) — z —| DECODEUR X~ N (s 22)
]
/\ ) Zg

FIGURE 2.3 - Principe de fonctionnement d'un VAE utilisant un prior MoG : contrairement a un VAE avec un
prior gaussien classique, ici, le modele récupere non seulement les parameétres des distributions de Ey et Dy,
mais également ceux du mélange.

La deuxieme possibilité considérée dans notre étude est le VAE utilisant le prior VampPrior (VP)
développé dans l'article [15]. L'idée est de se baser sur les travaux dans l’article [8]. En cherchant le
prior optimal dans le cadre des VAE, la réécriture dans (2.12), permet de voir I'apparition de I'entropie
croisée qui fait intervenir le prior p,. On peut donner la définition suivante

Definition 8 (Distribution a posteriori agrégée) La distribution a posterior agrégée associée a un
VAE dont les parametres de I'encodeur E, et le décodeur Dy sont définis par :

qe(2) :fg{ qp(z| x) fx(x)dx =Ex~ £, [qe(z] X)] VzeZ (2.15)

La distribution a posteriori agrégée peut étre vue comme la mixture infinie des distributions
a posteriori variationnelle pondérée par la distribution des observations fx. On réécrit 'ELBO en
réexprimant le dernier terme d’entropie croisée avec le posteriori agrégé py :

ZLO,d) = [Egy10[po (X T DN +Efy [-Eg,im [108(pp (X | 2D +Ep, [L0g(pa(2))]. (2.16)

Comme énoncé pour le MoG, maximiser 'ELBO équivaut a maximiser I'entropie croisée. Ceci
donne lieu a I’assertion suivante (énoncé établi dans [8])

q¢=argmax[E[log(p/1(Z))]. 2.17)
paeL?
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Dans le cadre empirique, nous avons |'expression optimale suivante :

emp

1 X .
— 0]
”4>,om—N,~:ZIP¢(z|X‘) VzeZ (2.18)

Une limitation de ce prior est que lorsque le nombre de composantes N devient grand, le calcul des
valeurs de cette densité devient informatiquement cotiteux. En outre, I'utilisation de ce prior peut
également augmenter le risque de sur-apprentissage, comme 1’ont souligné [5] et [8].

La solution proposée dans [15] consiste a approcher la distribution a posteriori agrégée par un
mélange de postérieurs variationnels établis a partir de pseudo-inputs, ce qui constitue le prior VP. Ce
prior est défini par I’équation suivante :

1 K
pr2) == qelz|up). (2.19)
K=
oul={p,u,...,ux} et{uy,...,ux} € CAL représentent les pseudo-inputs. Ces vecteurs sont mis a

jour au fur et a mesure de I'apprentissage. En pratique, un réseau de neurones VP,, A € A est utilisé
pour définir ces pseudo-inputs. Le réseau VP, prend en entrée K vecteurs (ek)lk(:l, qui forment la

base canonique de R* et renvoie les pseudo-inputs (uk)llf:l, ou chaque x; € .
Un schéma explicatif du VAE avec prior VP est présenté dans la Figure 2.4.

PSEUDO-ENTREES

..................

VAMPPRIOR

- e Em e EmE .- —-—--——--
e
e e e e mr—,——, - ——
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1
1
1
’
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—> Uz
o —l
X —| ENCODEUR e~AN(Iz) —> z —| DECODEUR X~ N (g Z2)
s
5% Ly,

FIGURE 2.4 - Principe de fonctionnement du VAE avec prior VP : Contrairement au modele classique, ici, le prior
Po,uy,...ux €stun mélange de distributions dont les parametres sont déterminés non seulement par 'encodeur
E mais également par un réseau de neurones V P). Ce réseau génere les pseudo-inputs qui sont utilisés pour
modéliser la distribution a priori.

Maintenant que nous avons discuté des différents modéles de VAE qu’on considérera dans le
cadre de ce stage, il est important d’aborder les problématiques que ces modeles rencontrent lors de
I'entrainement.
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1.4 Procédure d’initialisation

Lors de I'entrainement, la maximisation de 'ELBO implique un équilibre délicat entre les deux
termes qui la composent : le terme de régularisation et celui de reconstruction. Cependant, il arrive
fréquemment que 'on observe un effondrement de la distribution a posteriori, un phénomene
bien connu sous le nom de posterior collapse, tel qu’examiné dans la littérature [2]. Ce probleme
survient lorsqu’une sur-régularisation du modele fait que I'effet du terme de régularisation devient
prédominant, au point ol la divergence de Kullback-Leibler devient quasi-nulle

Dir(qe(.1x) 1l pa) =0.

Une solution couramment adoptée pour remédier a ce probléme est I'utilisation du -VAE. Cette
méthode consiste a introduire un facteur multiplicatif § € [0,1] devant le terme de régularisation
Dir(qe(.1x) 1l pa), afin de controler I'influence de ce dernier sur 'ELBO. Toutefois, cette approche a
ses limites, car la nouvelle formulation de 'ELBO ne correspond plus nécessairement a la minimisa-
tion de la log-vraisemblance.

Dans notre étude, nous nous appuyons sur la procédure de pré-entrainement développée dans
[4]. En effet, 'une des hypotheses les plus couramment avancées pour expliquer le posterior col-
lapse est que le modele reste bloqué dans un maximum local de la fonction ELBO. Pour éviter cela,
I'entrainement débute avec des points de départ bien choisis (1?,¢®,0©).

Initialisation de ¢ et 0

Les paramétres ¢ et 6 correspondent au poids de I'encodeur Ey et Dg. Pour I'initialisation, on se
basera sur le principe du AE :

¢©,6) = argmin E, | || X - Dy (B, (X)) I13 (2.20)
$,0€ExO

oi1 (D, Ef;) représentent respectivement le décodeur et 'encodeur, ne prenant en compte que la
moyenne en sortie (la rétropropagation ne s’effectue que pour I'entrainement des moyennes).

Initialisation de 1

Pour les parametres des priors non fixes introduit dans la sous-section précédente, la procédure
d’initialisation dépend du type de prior utilisé.

Pour le VAE MoG, on utilise I'encodage des points renvoyés lors I'initialisation de ¢ et 6 dans
I'espace latent Z obtenu, puis on procede par algorithme EM pour l'initialisation des parametres du
mélange :

K
29 = (m®,w®,s0) = EM[Egyo (XD),..., Eyo (X™) 2.21)
AR AR P 4 ¢

Pour le VAE VP, il s’agit de pré-entrainer le réseau de neurones VP, de telle sorte a ce que les
pseudo-inputs soient représentatifs de la distribution cible afin que le la distribution a priori capte ses
caractéristiques. Pour ce faire, on tire uniformément et sans remise {i; ... ix} entiers dans [1, N] afin

de se créer le sous-échantillon d’observation {X GV “K)} distribués sous fx. Puis, on cherche
1@ solution de :
K
argmin y_ || VPy(ex) — X' |3 (2.22)
AEAN k=1

I1.5 Test des VAE sur un exemple

Afin de s’assurer du fonctionnement du modele de VAE proposé, on décide de tester celui-ci en
apprenant la distribution suivante :

1 1 d
@(x1) 1y 52 y @(x2) 12152 [To0); x= (e xa) c R4 2.23)

W= 50 ke *20-rFey U
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Ou ¢ est la densité d'une gaussienne standard .4 (0, 1) définie sur R.
Il s’agit de la densité d'un vecteur gaussien standard tronqué sur les deux premiéres dimensions.

FIGURE 2.5 - Tracé des marginales de la densité-exemple pour la dimension d = 5. Les troncatures ne sont faites
que sur les deux premieres dimensions. On obtient une distribution avec quatre modes importants, soit quatre
zones de défaillance.

Nous obtenons une distribution avec quatre modes, et dont la région de défaillance
Dy = {xe Rd,|x1| >2et|xy] > 2}

se décomposent en quatre zones non connexes.

Dans la suite, on considérera des échantillons issus de la distribution définie par (2.23) pour la
dimension d = 50. Pour simplifier I'affichage des résultats, on tracera seulement les 20 premiéres
dimensions. Ceci n’enfreindra pas a la transparence des résultats puisque les modes sont présents sur
les deux premieres dimensions.

I1.6 Apprentissage a I'aide du VAE Vamprior

On procede a I'apprentissage de fx par un VAE muni du prior VP. On utilise une distribution
définie sur R°°, Dans un premier temps, on illustre 'importance de la procédure d’initialisation. On
utilisera un prior muni de 35 pseudo-inputs pour ce cas de figure.

g d
oot | 8
-

il gl
)

(a) Histogrammes des données générées par VAE-VP. (b) Densité du VP sur 'espace latent.

FIGURE 2.6 — Caractéristique de I'apprentissage par VAE-VP sans la procédure de pré-entrainement

Le modele VAE échoue a repérer les quatre zones. L'espace latent illustre seulement une seule
zone compacte. Si on s'intéresse a la trajectoire des pertes Dk, et de reconstruction, on remarquera
que la premiere perte n’est pas stable tandis que la deuxieme stagne tres tot dans 'apprentissage. En
somme, la trajectoire de 'ELBO n’est pas stable au cours de I'apprentissage et surtout, elle oscille. Les
résultats sont illustrés dans les Figures 2.7a et 2.7b.
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(a) Trajectoire de la perte de Kullback-Leibler lors de I'ap- (b) Trajectoire de la perte de reconstruction lors de 'ap-
prentissage du VAE-VP. prentissage du VAE-VP

Ala différence, lorsqu’on applique la procédure de pré-entrainement, nous avons les résultats
suivants :
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(a) Histogrammes des données générées par VAE-VP. (b) Densité du VP sur I'espace latent.

FIGURE 2.8 - Caractéristique de 'apprentissage par VAE-VP avec la procédure de pré-entrainement

Lapprentissage est bien meilleur dans ce cas de figure, il y a une apparition de quatre modes bien
distincts pour la distribution du VP. Cependant, certains modes sont mieux capturés que d’autres.
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(a) Trajectoire de la perte de Kullback-Leibler pendant I’apprentis- (b) Trajectoire de la perte de reconstruction pendant I'ap-
sage du VAE-VP apres pré-entrainement. prentissage du VAE-VP aprés pré-entrainement.

La perte Dkp, diminue, car elle cherche a coller au prior puis elle augmente dans un second
temps. On évite le phénomene du posteriori-collapse. Pour la perte de reconstruction, elle décroit a
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différente vitesse. Elle décroit plus lentement a partir du moment ot la divergence de Kullback-Leibler
commence a croitre. Ceci illustre le compromis qu'’il faut faire entre ces deux termes.

I1.7 Apprentissage a 'aide du VAE Mélange de Gaussiennes

Pour ce prior, nous remarquons de moins bons résultats que pour le prior VP. Les performances
concernant la réduction de dimension avec le MoG sont bien inférieures. En effet, il y a une répartition
inégalitaire quant aux masses de probabilités dans les quatre zones d’intérét.
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(a) Histogrammes des données générées par VAE-MoG. (b) Densité du MoG sur I'espace latent

FIGURE 2.10 - Caractéristique de 'apprentissage par VAE-MoG avec la procédure de pré-entrainement
(application EM)

De plus, il est assez souvent difficile d’obtenir une convergence de 1’algorithme EM a partir des
données encodées (et apres initialisation de ’espace latent). On illustre ce cas dans la Figure 2.11.
Ayant constaté la nécessité d’'un bon pré-entrainement, on peut penser que les performances du
VAE-MoG dans le cadre de notre étude, sont peu suffisantes.

FIGURE 2.11 - Densité du prior MoG sur I'espace latent a la fin du pré-entrainement, soit apres application de
I'algorithme EM sur les données encodées dans I'espace latent.

Etant donné que le modeéle VAE-VP a démontré une robustesse et une stabilité au fur a mesure
des apprentissages, nous décidons de conserver uniquement celui-ci comme modeéle génératif. Nous
nous concentrons maintenant a utiliser le VAE-VP comme échantillonneur au sein de I'algorithme SS.
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Chapitre 3

Algorithme VAE et SS

Lentrainement du VAE sur les données permet d’obtenir les parametres (6*,¢*, 1*) qui maxi-
misent 'ELBO. Ces parametres sont déterminés a I’aide d’'une descente de gradients, avec des points
d’initialisation définis par les procédures présentées dans la partie précédente. La question sui-
vante est de savoir comment intégrer un modéle génératif de type VAE, dans I'algorithme SS décrit
précédemment dans le chapitre 2.

I Subset Simulation et échantillonnage par VAE

Comme établi dans la Remarque 1, un bon noyau de transition correspond a la loi cible. En
utilisant le VAE, nous pouvons apprendre et approximer les lois conditionnelles définies dans (1.8).
Cela signifie que pour chaque densité fx|r;, nous I'approchons par un mélange infini de gaussiennes
al’aide du VAE:

f)?l*Fj (x)= [z P?g*‘pj (x| 2)pr«(2)dz x€ R?. 3.1

Nous utilisons ensuite ce mélange infini comme noyau de proposition indépendant de 1'observation
précédente x € RY, une observation provenant de la chaine de Markov générée par I'algorithme M-H :

Ql1x) = fg;;j () VxeR% (3.2)

Cela entrainerait I'apparition de I’expression suivante pour la probabilité d’acceptation :

IxiF; (J?)f}(?rp(xi)
a(%,x;) = min {1, —6’} (3.3)
Fxir; (i) fp, (%)
Fx® i ()
= min {1,#1&(@} (3.4)
fx i) fyp, ()

Malgré un processus d’échantillonnage simple

z~p, zeZ
x~pllz), xeZ,

I'expression de fg\*F‘ (x), x € R? reste difficile a obtenir en raison de la nature infinie du mélange gaus-
)

sien. Une option consiste donc a approximer la valeur de la densité et par conséquent de 'intégrale,
en utilisant une méthode MCN :

N,
~p* 1 r ¥ ;o
Fr, @ = 5= X pp, (1 2 avee (2™, MLy (3.5)
P n=1

Cependant, comme pour tout estimateur, il y a une erreur d’estimation et la valeur f)‘?I*F- (x) n'est donc
J
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pas exacte. D’autant plus que nous avons déja de 'incertitude, car f)(?l . €stune approximation non
]

paramétrique de fx. Cela pose un probleme pour la précision de I’algorithme M-H, ot I'exactitude
de la densité du noyau de proposition dans le ratio (3.3) est cruciale. En conséquence, une autre
approche est nécessaire.

Lidée, dans ce manuscrit, est d’approcher le mélange infini de gaussienne fgl F; Parun mélange

fini dont on peut calculer de maniére exacte la densité en tout point x € R%. Voici la procédure suivie :
1. On génere {ZzW ... ZWNpy un Np-échantillon selon le prior py+
2. On tire uniformément et avec remise N, échantillons {Z\,..., Z™r)} dans {ZW, ..., Z(NP} de

5 > . . .. N,
telle sorte que {Z', ..., ZWr)} suit le processus empirique de py-, soit p,
3. Avec le décodeur Dg+ du VAE, on génere les distributions gaussiennes associées (p(j;| g G
J

7 (”))) , permettant de construire le mélange fini suivant :
n

1 N, .
QNP =— Y pr, (1 Z™) 3.6)
NP n=1 /

Ce mélange fini (3.6) devient alors le noyau de proposition dans I'algorithme M-H, remplagant
[ )%*F. dans I'expression (3.3) par Q(N).
J

Remark 6 Le parametre N, défini la taille du mélange gaussien. Il est choisi arbitrairement. Cepen-
dant, I'utilisateur doit garder a I'esprit qu'un entier N, élevé impliquerait un cotit computationnel
pour I'évaluation de la densité Q(Np) en un point x € R? important.

Enfin, pour une amélioration des performances d’apprentissage du VAE de chaque densité fx;,
nous choisissons de centrer et réduire les données d’apprentissage. Le principe repose sur la formula-
tion suivante :

Soit X ~ fx, L = diag(Var(X))'/?, alors U = L™} (X —[E(X)) = G(X) est la variable centrée, réduite
et sa densité a pour expression :

fuw) = det(GH(U)) | fx(Lu+E(X)) (3.7)
=|det(L)| fx(Lu+E(X)) (3.8)

d
= [T(var(Xi)''? x fx(Lu+E(X)) 3.9)

i=1

Cette expression est obtenue a partir de la formule de changement de variable.

Avec ces outils en place, nous pouvons maintenant formuler 1’algorithme impliquant I’échantillon-
nage par VAE, en tenant compte de I'effet du centrage et de la réduction des données (voir algorithme
3). Cette transformation conduit a une nouvelle expression de la probabilité d’acceptation (3.10). Le
ratio de cette probabilité permet de faire disparaitre le produit d’écart-type Hle (Var(X;)"2.

Nous appliquons I'algorithme qu’on nomme MCMC-VAE al’exemple des gaussiennes tronquées
vu dans la section précédente. En résumé, on utilise la procédure d’échantillonnage expliquée ci-
dessus dans un algorithme M-H classique et dont le noyau de proposition est Q(Ny). Les points de
la Figure 3.1 représentent 'encodage dans l'espace latent des valeurs de la chaine de Markov. On
observe qu'ils appartiennent tous aux quatre zones encodées. Enfin, les histogrammes montrent une

similarité avec la vraie distribution, néanmoins, la qualité de reconstruction n’est pas completement
fidele.
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(.
-
—

- hd
(a) Encodages des valeurs de la chaine de Markov dans (b) Histogrammes des échantillons renvoyés par ’algorithme
I'espace latent (points en bleu). M-H.

FIGURE 3.1 — Application d’'un algorithme M-H avec échantillonnage VAE-VP afin de simuler selon la densité
de la troncature (2.23). On effectue une chaine de longueur / = 1000 et on choisit la taille du mélange gaussien
Np =300.

p

Algorithm 3 Subset Simulation avec échantillonneur VAE indépendant

Require: — Seuil probabilité fixe pg
— N-échantillon de départ {X,..., XV}
— YO, YW = oxW),..., oxN)}
— Seuil limite s
— K pseudo-inputs
— Ny: nomEre de gaussiennes pour le mélange fini
1: On pose FN( : processus quantile de I'’échantillon E) = {Y,

o) XM
(k)" (k)

— (k)
e Yo tet 70 = Fy (1= po) le

seuil considéré au k° événement et Ay = {X }, I'échantillon associé.
c k=1

3: while y(k) <sdo

»

4. On considere A = {X((k)), Y((k’)) (k) Vi}, par définition de ﬂv), card(}i(k)) =|Npol

5: U(k) = {diag(\/ar(X)) X [X((IZC)) tEX), X((]’C)) € A(k)} Données centrées réduites
6: Apprentissage du VAE-VP sur I'échantillon Uy, pour définir le noyau de proposition :

1. Pseudo-inputs: VPy«(ey...,ex) = (uf*,..., uﬁ*)
2. (uz* ) Zﬁ*)lk(:l = By (u{“ yeeer uﬁ*) et on forme le prior VP p,- définie dans (2.19).

3. {zW,..., 2"} N,-échantillon de py+ pour définir le noyau de proposition Q(Np,)(.) définie
par (3.6).

7. On tire uniformément avec remise dans Ay N échantillons : A( p = X * (IIC)H), X" (2\21)}
. * % (1) % (N)
8:  On tire uniformément avec remise dans Uy N échantillons : Ul =W Gy U i)

9:  Application de N algorithmes M-H dont chaque initialisation est un élément de A , et U(*;C)
On effectue des chaines de longueur / dont la loi stationnaire est fx|;.
La probabilité d’acceptation pour & ~ Q(Np)(.) est:

fX‘Fj(diag(\/Ezr(X))zZ+[E(X))Q(Np)(ui)
min{l, - - } (3.10)
fxir; (diag(\/ar(X))u,- + [E(X))Q(Np)(ﬁ)
100 k=k+1
11 Onpose Agy = (X [+ 11,..., X 11+ 11}, Egy =Y 11 +11,..., Y11+ 11} et 71X associé

12: end while

(i) (i)
card{ Yo >s Y eE(k)}

N

. SSVAE _ k-
13: return P h =P
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II Application au cas 4-branches

Dans cette section, nous reprenons l'exemple test introduit dans le chapitre 1 et appliquons
I'algorithme 3. Nous utilisons un échantillon de taille N =10 000. Ce choix est motivé par le fonction-
nement de la méthode SS, qui ne conserve que | Npg] échantillons a chaque étape. Ces échantillons
constituent les données d’apprentissage de notre VAE. Pour assurer la robustesse de notre modeéle,
il est crucial de maintenir un nombre suffisant d’échantillons d’apprentissage, car une réduction
excessive de ce nombre pourrait compromettre la qualité du VAE.

Contrairement au chapitre 1, pour '’étude de I'estimateur PSSVAE 14y effectuons 50 estimations
au lieu de 100. De plus, nous introduisons deux nouvelles quantités : 1a taille des chaines (qui est
variable ici) et le nombre d’estimations réussies. Nous discuterons de leur role et de leur importance
dans la suite.

IL.1 Application de I'algorithme SS pourlecas: =3.5 Pr=9.3x 107*

Dimension P fSSVAE CV v time | tailles chaines | nombre d’estimations
d=5 9.43x10% [ 0.043 | 1.34 | 178s 15 50 /50
d=10 9.59x107% | 0.043 | 0.98 | 1925 20 50/ 50
d =50 956x107% | 0.044 | 0.55 | 277s 35 47 /50
d =100 9.53x107% | 0.042 | 0.42 | 1090s 55 45/50
(a) Résumé de la qualité de I'estimateur P;SVAE
Evénement Fy F F F3 Fy

d=5 036 0.28 0.24 0.21 0.19

d=10 0.35 0.27 0.23 0.20 0.18

d =50 034 0.25 0.21 0.19 0.18

d =100 0.31 0.23 0.20 0.18 0.16

(b) Taux d’acceptation p pour chaque événement

TABLE 3.1 - Estimation par l'algorithme 3 pour I'événement ot § = 3.5 et Py = 9.3 x 1074, La probabilité
fixe pg = 0.25. Le noyau de proposition est le mélange fini de 300 gaussiennes issues du VAE. Pour les taux
d’acceptation p, ce sont les taux moyennés sur ’ensemble des chaines pour chaque événement F;

F-

FIGURE 3.2 - Boite a moustache pour les différents estimateurs P;SVAE correspondant a chaque dimension d

pourlecas f=3.5et Pf=9.3 x 1074,

Lestimateur PYAESS

présente un CV autour des 4% Quelle que soit la dimension, ce qui témoigne
d’une précision similaire a celle obtenue avec la méthode SS classique. Cependant, plusieurs limita-
tions de performance ont été observées pour cet estimateur. Tout d’abord, les estimations produites
sont biaisées. Bien que I'estimateur par méthode SS soit également biaisé, ce biais est généralement

d’ordre O(%), donc relativement négligeable devant NV = 10 000. Ici, le biais semble plus important, et
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une explication possible pourrait résider dans le temps nécessaire pour que les chaines de Markov
convergent vers leur état stationnaire. Pour pallier cela, nous avons tenté d’augmenter la taille des
chaines de Markov. Toutefois, étant donné que les biais deviennent plus importants dans les dimen-
sions élevées (50 et 100), il a fallu ajuster la taille des chaines en fonction de la dimension d. Cela pose
probléme, car une augmentation excessive de la taille des chaines se traduit par un nombre accru
d’appels au code @, et comme illustrer dans la Figure 3.2, les valeurs v restent égales ou inférieures a
1, montrant ainsi que la méthode ne parvient pas a surpasser une approche MCN dans ce cas.

Un autre aspect crucial a considérer est le nombre d’estimations réussies sur I'ensemble des 50

tentatives effectuées. Une des difficultés rencontrées lors de la mise en ceuvre de I'algorithme SSVAE
réside dans I'échec de 'apprentissage du VAE a certaines étapes du processus SS. Travailler avec des
modeles génératifs comporte le risque que I'optimisation échoue parfois, menant a des solutions non
optimales. Nous avons observé des situations oi1 les variances (2%), renvoyées par le décodeur Dy
étaient nulles ou quasi-nulles, ce qui rend impossible la construction de Q(NN,) et oblige a interrompre
I'algorithme.
Ce phénomene a été principalement constaté dans les dimensions 50 et 100, ou1 3 & 5 estimations
ont rencontré des problemes d’apprentissage du VAE. Cette difficulté est en grande partie liée a la
malédiction de la dimensionnalité : dans des espaces de grande dimension, les points sont plus
éloignés les uns des autres, ce qui conduit le VAE, malgré la régularisation, a attribuer aux points
isolés une densité gaussienne avec une variance tres faible.

(a) Résumé graphique du tableau des taux d’acceptation (b) Résumé graphique du tableau des taux d’acceptations
dans 3.1, soit avec I'algorithme SSVAE. dans 1.1, soit avec I'algorithme SS

FIGURE 3.3 - Evolution du taux d’acceptation moyen pour chaque dimension d en fonction de I'événement F;
considéré pourle cas f=3.5et Py =9.3 x 1074,

En examinant le tableau des taux d’acceptation présentés dans la Figure 3.1, on observe une
différence notable par rapport a celui de la Figure 1.1 qui résulte de I'application de I'algorithme SS 2.
On résume ces deux tables dans la Figure 3.3. On constate qu’il y a une plus faible décroissance du
taux p lorsqu’on augmente la dimension d du probléme. Ces graphiques illustrent bien la robustesse
du VAE a la grande dimension.

IL.2 Application de I'algorithme SS pourlecas: =5 Py =1.15x 1076

Pour le cas d’application =5 et Py = 1.15 x 107%, nous avons des constats similaires au cas
d’application précédent, seulement les performances face a la méthode naive MCN sont meilleures.
Ceci n’est pas un résultat inattendu puisque la probabilité est de I'ordre de 1076, Une méthode SS
doit-étre plus performante. Toutefois, la dimension d = 100, semble poser plus de problémes, on
remarque un biais plus important ainsi que I'apparition d’outlier (voir Figure 3.4).
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Dimension P fSSVAE CV v time | tailles chaines | nombre d’estimations
d=5 1.18x107% | 0.060 | 310.34 | 323s 15 50 /50
d=10 1.18x1075 | 0.063 | 242.56 | 347s 20 50 /50
d =50 1.27x107% | 0.057 | 171.16 | 504s 35 49 /50
d =100 1.42x107% | 0.164 14.46 1966s 55 43/50

(a) Résumé de la qualité de I'estimateur P;S
Evénement Fy F F Fs Fy F5 Fs F; Fg
d=5 036 0.28 0.24 021 020 0.19 0.17 0.16 0.15
d=10 0.35 0.27 0.23 0.20 0.18 0.16 0.16 0.15 0.13
d =50 034 025 021 0.19 0.18 0.16 0.15 0.14 0.14
d =100 031 0.23 020 0.18 0.16 0.15 0.14 0.13 0.13

(b) Taux d’acceptation p pour chaque événement

TABLE 3.2 - Estimation par I'algorithme 3 pour I'événement ot =5 et Py = 1.15 x 1076, La probabilité fixe py =
0.25. Le noyau de proposition est le mélange fini de 300 gaussiennes issues du VAE. Pour les taux d’acceptation p,
ce sont les taux moyennés sur ’ensemble des chaines pour chaque événement F;

FIGURE 3.4 — Boite 2a moustache pour les différents estimateurs P}ESVAE correspondant a chaque dimension d

pourlecas f=5et Py =1.15x 1078,

(a) Résumé graphique du tableau des taux d’acceptation (b) Résumé graphique du tableau des taux d’acceptations
dans 3.1. dans 1.1.

FIGURE 3.5 — Evolution du taux d’acceptation moyen pour chaque dimension d en fonction de I'événement F;
considéré pour

Nous explorons le comportement de notre algorithme en examinant de pres la forme des densités,
en particulier celle des priors. Etant définies sur R?, il est plus simple de les visualiser. On ajoute
parfois a cette représentation 'encodage de différents points :

1. Enbleu, 'encodage des échantillons d’apprentissage.

2. Enviolet, I'encodage des échantillons renvoyés par I'algorithme M-H
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Pour commencer, examinons le cas de la dimension 5. A cette dimension, aucun probléme
d’apprentissage notable n’est observé. Au fur et a mesure que les événements progressent, la Figure 3.6
montre clairement 'apparition de quatre zones distinctes, certaines ayant des masses de probabilité
plus élevées que d’autres. Toutefois, lorsqu’on observe la Figure avec les différents points 3.7, un
décalage entre les échantillons d’apprentissage et ceux issus des chaines de Markov devient apparent.

F4 [ =] .
e 0O |

J’ o : .
o] .

© :_ o

FIGURE 3.6 - Densité VP apprise a chaque événement F; du SS lorsque les données d’apprentissage vivent dans
I'espace R®

I est important de se rappeler que seule la densité fx|r, est approximée par le VAE avec un
échantillon distribué selon la bonne loi, i.e fx|r,. Les autres distributions ont des approximations
basées sur des échantillons issus des précédentes chaines de Markov. Par conséquent, on assiste a une
propagation des erreurs sur les différentes estimations f)(?I*F,-’ et par conséquent a une dégradation
progressive du VAE.

Lorsqu’on examine de plus pres le comportement de chaque chaine a chaque étape de I'événe-
ment, on observe qu’au sein de certaines, aucune proposition n’est acceptée. Toutefois, pour passer
des | Npg| échantillons qui satisfont 'appartenance a F; (voir ligne 7 de I'algorithme 3), on fait du
bootstrap, ceci induit 'apparition de doublons. Cet échantillon, avec doublons, deviendra I'entrée
des algorithmes M-H (voir ligne 9 de I'algorithme 3). Par conséquent, s'il y a un taux d’acceptation de
0 pour certaines chaines, ceci signifie que nous avons plus de chance de retrouver des doublons au
sein des données d’apprentissage du VAE suivant.

Nous avons fait également quelques observations sur les comportements des chaines. Par exemple,
pour cette dimension, a I’événement F;, nous avons 118 chaines qui rejettent toutes les propositions.
Parmi, ces 118 échantillons qui n’ont pas bougé, on retrouve huit valeurs de vecteurs qui ont une
occurrence supérieure ou égale a 2. Puis au dernier événement Fg, 1410 échantillons n’ont pas bougé
et parmi ces échantillons 335 valeurs de vecteur ont une occurrence supérieure ou égale a 2.

On retrouve également ces shift des données encodées pour les autres dimensions (voir annexe
I1.1).
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FIGURE 3.7 - Densité VP apprise a chaque événement F; du SS lorsque les données d’apprentissage vivent dans
I'espace R°

Pour revenir a notre réflexion sur I’estimateur en dimension d = 100 au début de la section I1.2,
il est important de souligner que cette dimension pose de sérieux problémes d’apprentissage dans
le cadre de 'algorithme VAE-SS. Comme le montre la figure 10, le VAE peine a identifier les quatre
modes, en particulier pour I'événement F,, qui illustre bien cette difficulté. On retrouve en annexe

les graphiques des marginales des lois conditionnelles (fx|r;) j, pour le cas de la dimension d = 5.
On trace les marginales renvoyées par I'apprentissage VAE et on compare a I'aide d'une méthode
MCN. Il est important de noter que ces graphiques sont seulement tracés a titre indicatif, les densités
(fxiF;) j ne définissent pas des distributions dont les composantes sont indépendantes en raison de la
présence de la présence de I'indicatrice 1r; qui empéche cela.
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Conclusion

Dans ce travail, nous nous sommes intéressés a la méthode des SS et a ses implications, en
particulier dans le contexte de l'utilisation des algorithmes MCMC. Bien que cette méthode soit
puissante, elle présente plusieurs défis en grande dimension, notamment ceux liés a la qualité des
chaines générées. Des questions se posent naturellement quant a savoir si le régime stationnaire a été
atteint et a partir de quel moment les échantillons peuvent étre considérés comme bien distribués
selon la loi cible. De plus, explorer efficacement ’espace des états reste une tiche complexe, surtout
lorsque nous avons une connaissance limitée des formes des distributions fx|F;.

Pour répondre a ces défis, nous avons proposé une méthode d’estimation des probabilités de
défaillance par SS en intégrant un modele génératif, le VAE. L'un des objectifs principaux était d’aug-
menter les taux d’acceptation au sein de l’algorithme. Cependant, cette tache s’est révélée extréme-
ment complexe avec l'introduction du VAE. Malgré cela, nous avons réussi a ralentir la décroissance
des taux d’acceptation avec 'augmentation de la dimension d, ce qui représente une amélioration
notable.

Lintroduction du VAE avait pour but de capturer la complexité des distributions, en particulier
lorsque celles-ci présentent des structures de dépendance complexes. Cependant, dans le cadre des
SS, la dégradation progressive de la qualité des échantillons au fur et a mesure de I'avancement dans
les événements (F;) ; a entravé I'efficacité de 'apprentissage du VAE.

Il serait pertinent d’explorer de nouvelles méthodes pour améliorer le processus de récupération
des données d’apprentissage en amont du modele VAE. Une perspective intéressante pourrait consis-
ter a utiliser des échantillons pondérés, ce qui pourrait potentiellement améliorer la robustesse et
'efficacité de I'apprentissage, en particulier dans des contextes de grande dimension. La méthode Se-
quential Importance Sampling (SIS) peut étre un point de départ de réflexion. Il s’agirait de remplacer
1r; par une fonction "lisse”, par exemple la fonction de répartition d'une gaussienne [12].

Enfin, nous concluons ce rapport en abordant certaines difficultés techniques rencontrées lors de
ce stage. L'une des principales difficultés concernait la mise en ceuvre des modeles VAE sur TensorFlow.
En effet, I'utilisation de la classe Model a entrainé des fuites de mémoire. Grace au package memory-
profiler, nous avons pu surveiller I'état de la mémoire a chaque étape de notre algorithme et avons
constaté que la mémoire occupée par un modele VAE n’était jamais libérée. Cette fuite de mémoire
provoque une consommation progressive des ressources, rendant I'exécution de 'algorithme de plus
en plus lourde.

Cette situation a rendu I'obtention de propriétés fiables sur I’estimateur P?SVAE plus complexe
que prévu. Effectuer plus de 15 estimations sur une machine ordinaire s’est avéré impraticable. En
conséquence, nous avons di recourir a un supercalculateur de développement pour mener a bien
nos simulations et obtenir les résultats souhaités.
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I Preuves théoriques

Cette section contient les preuves de certaines assertions citées dans le rapport

I.1 Probabilité de défaillance pour 'exemple 4-branches

Comme introduit dans ’équation (1.11), on donne le détail du calcul pour I'approximation de la
probabilité de défaillance :

Pf =P@X)=20)=P(-min{f+t;, i=1,2}=0)
=P(max{+t;, i=1,2}=p)
=Pmax{| 1 |,| 2 |} = )
=1-P@max{| t; |,| &2 [} = B) 1n

(cov=0)

1-P( 1 < p)? (12)
=1-(1-2¢_y0n (>

=4¢ 01 (=P —4d.x 01 (—p)?

=4¢.x 0,1 (=p)

Le passage de la ligne (11) a (12) est possible car en calculant la covariance entre #; et 2, on
s’apercoit que celle-ci est nulle

1 d ld/2] d d
cov(tl,tz)zg cov(le-, Z xi)—cov(Zx,-, Z x,-)
i=1

i=1 i=1 i=1+1d/2]

1
=7 ld/2) - [d/ZJ] =

Et de méme pour cov(ty,—f) = cov(—1y, t2) = cov(—t;,— 1) =0

I.2 Calcul deI'entropie dans le cas Gaussien

On suppose que I'espace latent Z est R%. On a pour tout z € R%, 'expression de 'opposé de
I'entropie définie dans 2.9.

Eg,cimllogqy(Z | x)] = flog(qq)(z | x))q¢(z | x)dz

exp _lzdz M ( )
24i=1 (zf)ii [ d 1 & o 1 4 40
x |- logem - - Y log((22) )+ -5 Y P
(2n)dz/2(ﬁ1 (zf)ii)uz ’ S o 2 (z¢)zz
i=

-l )
_%Z?il w

exp

dz

1/2

1 4 f (Zi_ll()/c)(i))z
[

d 1 & >
=—-log2m) - = Y log((z%] )-=
2 og(2m 2i:1 Og(( x)ll) 21 z(fc’)” x (2”)d1/2('ﬁ1(22)ii)
i=

Fubini positif d 1 & ¢ 1 &
= - log(2m) - 3 i;log((zx)”) ~3 i:Zl\/_(if) avec T ~ A (0,1)

=3, Zlog |27 (22) e

i=1
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II Graphiques supplémentaires

II.1 Graphiques des espaces latents lors de 'application de I’algorithme VAE-SS

FIGURE 8 - Densité VP apprise a chaque évenement F; du SS lorsque les données d’apprentissage vivent dans
I'espace R0

- [ [ “ " -

FIGURE 9 - Densité VP apprise a chaque évenement F; du SS lorsque les données d’apprentissage vivent dans
I'espace R0
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FIGURE 10 - Densité VP apprise a chaque évenement F; du SS lorsque les données d’apprentissage vivent dans
I'espace R100
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FIGURE 11 - Densité VP apprise a chaque événement F; du SS lorsque les données d’apprentissage vivent

dans I'espace R!0. Les points bleus correspondent aux données d’apprentissages encodées et ceux en violet aux
échantillons issus des chaines de Markov encodées.
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FIGURE 12 - Densité VP apprise a chaque événement F; du SS lorsque les données d’apprentissage vivent
dans I'espace R®C. Les points bleus correspondent aux données d’apprentissages encodées et ceux en violet aux
échantillons issus des chaines de Markov encodées.
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FIGURE 13 - Densité VP apprise a chaque événement F; du SS lorsque les données d’apprentissage vivent dans
I'espace R1%0, Les points bleus correspondent aux données d’apprentissages encodées et ceux en violet aux
échantillons issus des chaines de Markov encodées.
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I1.2 Graphiques des marginales lors de 'application de 'algorithme VAE-SS
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FIGURE 14 - Histogramme des marginales pour [, , en haut les histogrammes basés sur la distribution apprise
par le VAE a la premiére étape de I'algorithme SS, en bas une approximation des marginales par méthode MCN.
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FIGURE 15 - Histogramme des marginales pour fx|r,, en haut les histogrammes basés sur la distribution apprise
par le VAE a la deuxieéme étape de I'algorithme SS, en bas une approximation des marginales par méthode MCN.
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FIGURE 16 — Histogramme des marginales pour fx|r,, en haut les histogrammes basés sur la distribution apprise
par le VAE a la troisiéme étape de I'algorithme SS, en bas une approximation des marginales par méthode MCN.
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FIGURE 17 — Histogramme des marginales pour fx|f,, en haut les histogrammes basés sur la distribution apprise
par le VAE a la quatrieme étape de I'algorithme SS, en bas une approximation des marginales par méthode MCN.
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