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Introduction

Cadre : Sécurité et fiabilité des systèmes

La sécurité des systèmes est d’une importance capitale dans le domaine des applications indus-
trielles. Pour garantir cette sécurité, il est essentiel d’évaluer minutieusement la fiabilité des systèmes
en simulation car les expérimentations physiques ne constituent pas un moyen d’évaluation suffisant
en raison de diverses contraintes. Les outils de simulation numérique offrent une alternative pré-
cieuse, permettant de construire des modèles numériques afin d’examiner la réponse des systèmes à
différents scénarios de défaillance.

Généralement, le comportement physique est encapsulé dans un code de calcul, notéΦ,

Φ : Rd −→ R

x 7−→ Φ(x) = y

qui prend en entrée un vecteur de variables X de dimension d (incluant des paramètres de conception,
d’environnement, etc.) et produit une sortie Y représentant l’état du système. Le système est considéré
comme défaillant si la sortie dépasse un seuil limite, c’est-à-dire si {Y > s}. On définit le domaine
de défaillance D f correspondant comme les combinaisons des variables d’entrées qui mènent à la
défaillance du système :

D f = {x ∈Rd , y =Φ(x) > s}

Pour obtenir la sortie Y , il faut souvent résoudre des équations aux dérivées partielles via des
méthodes telles que l’analyse par éléments finis. Toutefois, la complexité du code de calculΦ rend
impossible toute étude analytique. De plus, les appels au code sont généralement extrêmement
coûteux et ne peuvent être effectués qu’en nombre limité. Une approche alternative pour analyser
ces systèmes physiques consiste à adopter une méthode de type "boîte noire", où seules les entrées et
les sorties du système sont connues, sans nécessiter de compréhension approfondie des mécanismes
internes du système. L’entrée X est supposée aléatoire et il en est de même pour la sortie Y . Pour ces
systèmes, une question centrale se pose en pratique :

Quelle est la Probabilité de défaillance P f =P(Y > s) du système ?

FIGURE 1 – Schématisation du contexte d’étude.
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Méthodes d’estimation de la probabilité de défaillance

L’estimation de P f n’est pas une tâche évidente, car il s’agit de l’estimation de queues de distribu-
tions. La défaillance est en effet un évènement de faible occurrence. Les méthodes classiques comme
les méthodes de Monte-Carlo Naïf (MCN) sont robustes et sans biais, mais nécessitent une quan-
tité importante de données pour obtenir une estimation précise de P f . Cette précision est souvent
indispensable dans des applications de fiabilité ou de certification.

Il existe d’autres approches probabilistes dans la littérature, telles que les Subset Simulation (SS)
[1] ou l’Échantillonnage préférentiel (IS) [6]. Ces méthodes améliorent la précision de l’estimation de
P f en générant des échantillons d’entrée dans la région de défaillance D f , tout en maintenant un
budget de simulation raisonnable par rapport aux MCN.

Dans le cadre de ce stage, nous nous sommes concentrés sur la méthode des SS. Cet algorithme
consiste à décomposer un événement rare (la défaillance) en une série d’événements moins rares.
Plutôt que de simuler directement un événement de faible occurrence, on simule une séquence
d’événements ayant des probabilités plus élevées. L’estimation de ces probabilités repose sur des
méthodes d’échantillonnage telles que les méthodes de Monte Carlo Markov Chain (MCMC). Cepen-
dant, ces méthodes sont confrontées à la malédiction de la dimension, ce qui pose des problèmes de
convergence, affecte la qualité des estimations, et entraîne une augmentation des coûts de simulation
(c’est-à-dire des appels à Φ). Des variantes spécifiques de MCMC pour le SS en grande dimension
(d grand) ont été développées, mais elles sont souvent appliquées dans des contextes restrictifs.
Par exemple, l’algorithme Modified Metropolis Algorithm (MMA), proposé dans [17], nécessite des
composantes d’entrée X indépendantes pour être applicable en grande dimension. Des approches où
des transformations isoprobabilistes des entrées vers l’espace gaussien standard sont aussi proposées
dans [11].

Objectif du stage

Dans le contexte de ce stage, nous nous concentrons sur le développement d’échantillonneurs non
paramétriques efficaces pour des problèmes d’estimation d’évènement rares en grande dimension,
où l’ entrée X suit une distribution complexe et où l’indépendance des composantes de X n’est
pas toujours garantie. Il s’agit de fiabiliser les estimations des probabilités de défaillance par SS
en réduisant les corrélations au sein des échantillons générés par les algorithmes MCMC et en
augmentant le taux d’acceptation. La résolution de cette tâche est particulièrement complexe en
raison de la difficulté à surmonter le fléau de la grande dimension, d’autant plus que les distributions
concernées sont potentiellement multimodales.

Ce rapport est structuré en trois grande parties. Dans un premier temps, nous présenterons les
méthodes préexistantes dans la littérature pour l’estimation des évènements rares et plus précisé-
ment ce qui existe autour des méthodes SS. Dans un second temps, on s’intéressera à un modèle
génératif, les Auto-Encodeur Variationnel (VAE) et plus particulièrement à la capacité de ces objets à
échantillonner selon les lois apprises. Enfin dans une troisième et dernière partie, nous proposerons
un algorithme imbriquant SS et VAE.

Dans la suite, on considère le vecteur aléatoire X de dimension d et de densité fX .
La quantité d’intérêt à estimer est :

P f = E[1{Φ(X)>s}] =
∫

D f

fX (x)d x =
∫

1{Φ(x)>s} fX (x)d x (1)

On rappelle la définition de l’événement de défaillance :

D f = {x ∈Rd , y =Φ(x) > s} (2)
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Chapitre 1

Revue autour des Subset Simulations
pour l’estimation d’évènement rare

I Méthode de Monte-Carlo Naïve (MCN)

La méthode d’estimation de MCN [10] a été l’une des premières méthodes de simulation afin
d’estimer des espérances.
Soit X1, . . . , Xn une suite de variables aléatoires de loi fX . On définit l’estimateur MCN de P f comme
suit :

P̂ MC N
f = 1

N

N∑
i=0

1Φ(X (i ))>s (1.1)

Par Loi Forte des Grands Nombres (LFGN), P̂ MC N
f est un estimateur sans biais de P f et fortement

consistant
P̂ MC N

f
ps−−−→

N→∞
P f (1.2)

On suppose φ(X ) de carré intégrable. Le théorème centrale limite sur P̂ MC N
f permet d’obtenir

l’intervalle de confiance de niveau (1−α) suivant :

IC (1−α) =
[

P̂ MC N
f ±q1−α/2

√
P̂ MC N

f

(
1− P̂ MC N

f

)
√

N

]
= P̂ MC N

f

[
1±q1−α/2 ϵr el

]
Où

ϵr el =
√

(1− P̂ MC N
f )

p
N

√
P̂ MC N

f

⇔ ϵ2
r el =

(
1− P̂ MC N

f

)
N P̂ f

(1.3)

ϵr el est l’erreur relative tolérée au sein de l’intervalle de confiance. Cette quantité dépend du
nombre d’échantillons N . Sachant que P f est une probabilité d’évènement rare et par conséquent
(1−P f ) ≈ 1, on peut estimer l’ordre de grandeur de N pour une erreur relative donnée :

N ∝ 1

ϵ2
r el P̂ MC N

f

(1.4)

Pour estimer une probabilité P f de l’ordre 10−r avec une précision de ϵr el = 10−1, il faut donc
N = 10r+2 réalisations de φ(X ). Ceci rend cette méthode difficilement applicable sur une fonction φ
complexe et coûteuse en temps de calcul pour l’estimation d’évènement rare.
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Definition 1 On définit le Coefficient de Variation (CV) pour un estimateur quelconque P̂ f comme
suit :

CV =
√
V(P̂ MC N

f )

E(P̂ MC N
f )

(1.5)

Souvent exprimé en pourcentage, le CV permet de rendre compte de la précision de l’estimateur de
P̂ f .

Dans le cas de la MCN, le CV est égal à CV (P̂ MC N
f ) =

p
(1−P f )p
P f

p
N

L’estimateur de Monte-Carlo Naïf est applicable à condition que l’on soit capable de simuler selon
la loi fX . Cependant, cela n’est pas toujours possible. Il existe diverses techniques pour obtenir des
échantillons distribués conformément à la loi souhaitée. Lorsque la densité fX est connue à une
constante multiplicative près, les algorithmes MCMC définis à la section suivante sont particulière-
ment bien adaptés à ce contexte.

II Monte Carlo Markov Chain (MCMC)

Dans les algorithmes MCMC, l’objectif est de construire une chaîne de Markov stationnaire {X t , t },
de mesure invariante égale à la loi cible π connue à une constante près.

II.1 Propriétés sur les chaînes de Markov

Les chaînes de Markov constituent un exemple de suite de variables aléatoires (Xt )t (ou processus
aléatoire pour le cas continu) à valeurs dans E , appelé espace d’état.

Definition 2 Une chaîne de Markov est une suite de variables (Xn)n dans un ensemble E continu
de Rd , si et seulement si pour tout k et pour tout (x0, . . . , xk ) dans E tel que g (x0, . . . , xk ) > 0 avec g
densité de la loi conjointe des k variables, la propriété suivante est vérifiée

fXk+1|X0=x0,...,Xk=xk (x) = fXk+1|Xk=xk (x) ∀x ∈ E .

On définit la probabilité de transition comme suit q(x | y) = fXk+1|{Xk=y}(x). Cette densité est ce
qu’on appelle le noyau de transition.

Definition 3 On dit qu’une chaîne de Markov {X t , t } avec un noyau de transition T satisfait la
condition d’irréversibilité s’il existe une fonction π satisfaisant l’égalité qui suit :

π(x)T (y | x) =π(y)T (x | y) x, y ∈Rp .

Theorem 1 On suppose que la chaîne de Markov a un noyau de transition T qui vérifie la condition
d’irréversibilité pour une certaine densité π. Dans ce cas, π est la loi invariante de la chaîne.

La condition d’irréversibilité est donc une condition suffisante pour converger vers la loi cible π.

II.2 Algorithme Metropolis-Hastings (M-H)

On se donne un noyau de Markov Q, appelé noyau de proposition et on construit une chaîne de
Markov (X t )t par l’algorithme 1 [13].

7
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Algorithm 1 Algorithme Metropolis-Hastings

Require: — Noyau de proposition Q
— M longueur de la chaîne
— initialisation X0 = x0 telle que π(x0) > 0
while i < M do

À partir de l’état Xi = xi , on propose x̃ ∼Q(. | xi )
On accepte x̃ avec une probabilité

α(x̃, xi ) = mi n

{
1,
π(x̃)Q(xi | x̃)

π(xi )Q(x̃ | xi )

}

Par conséquent,

xi+1 =
{

x̃ if u <α(xi , x̃)

xi if u ≥α(xi , x̃)
u ∼U [0,1]

i = i +1
end while
return {Xi , i = 0, . . . M }

On définit le support d’un noyau de proposition comme suit

supp(Q) = ⋃
x∈E

supp(Q(. | x).

Theorem 2 Soit {X t , t } la chaîne de Markov renvoyée par l’algorithme Metropolis-Hastings (M-H).
Quel que soit le noyau de proposition Q dont le support inclut celui de la densité π, supp(Q) ⊃
supp(π) on a

1. Le noyau de transition de la chaîne vérifie la condition d’irréversibilité pour π.

2. π est la loi stationnaire de la chaîne.

Il existe différentes manières de sélectionner le noyau de proposition pour l’algorithme M-H.
Cependant, dans notre étude, nous nous limitons à deux types d’algorithmes : le Metropolis-Hastings
indépendant et le Metropolis-Hastings avec marche aléatoire, décrits comme suit :

X∗ ∼Q X∗est indépendant de Xt

X∗ = Xt +ϵt ϵt
i i d∼ q.

Remark 1 Un bon noyau de proposition pour l’algorithme M-H est la densité π.

Q(. | x) =π(.) ∀x ∈ E . (1.6)

Avec Q, le noyau de proposition. Cependant, cette alternative est difficile à satisfaire puisqu’on ne
connaît pas l’expression explicite de π et que l’on ne sait pas échantillonner selon π. Par contre,
on peut espérer qu’un noyau Q proche de π en un certain sens soit également un bon noyau de
proposition.

II.3 Qualité de simulation

Pour attester de la qualité des chaînes renvoyées par l’algorithme M-H, on s’intéresse à plusieurs
propriétés. On peut se demander si on explore tout l’espace état E mais surtout comment on l’explore.

8
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Definition 4 (Taux d’acceptation) Soit {X t , t = 0, . . . , N }, la chaîne de Markov obtenue par algo-
rithme M-H. Le taux d’acceptation est donné par

ρ = 1

N

N∑
t=1

1{X t−1 ̸=X t }.

Cet indicateur permet d’évaluer la capacité du noyau de proposition à générer des valeurs dans
les régions pertinentes, c’est-à-dire les zones où la densité de la distribution cible (selon laquelle on
aimerait échantillonner) présente des masses de probabilité élevées. Toutefois, en cherchant un fort
taux d’acceptation, nous avons

P(|| X∗−Xt ||> ϵ | Xt = xt ) ≪ 1.

Ceci induira une lente exploration de l’espace d’état.

On peut estimer également l’autocorrélation, Celle-ci mesure la dépendance (linéaire) entre les
valeurs de la chaîne.

Definition 5 (Autocorrélation) On suppose que la chaîne {X t , t = 0, . . . , N } appartient à L2 alors la
fonction d’autocovariance de cette chaîne est définie comme suit :

γ(t , s) =Cov(X t , Xs ) = E[(X t −µt )(Xs −µs )]

avec µt = E(X t ).
Ceci induit la définition de la fonction d’autocorrélation :

ρ(t , s) = γ(t , s)

γ(t , t )γ(s, s)

Une faible autocorrélation indique que les échantillons successifs sont presque indépendants,
ce qui peut suggérer que la chaîne explore efficacement l’espace E . Cependant, cela peut également
entraîner un taux d’acceptation très faible, ce qui signifie que les transitions proposées sont peut-être
trop ambitieuses. Inversement, un taux d’acceptation élevé peut induire une forte corrélation entre
les échantillons, ralentissant ainsi l’exploration de l’espace, comme mentionné précédemment.

Definition 6 (Loi stationnaire) La loi stationnaire (ou distribution stationnaire) d’une chaîne de
Markov est une distribution de probabilité π sur l’espace d’états E telle que, si la chaîne commence
dans cette distribution, elle reste dans cette distribution à chaque étape de son évolution.
Formellement, cette loi stationnaire satisfait aux equations d’équilibre

π(y) =
∫

E
π(x)T (y | x)d x ∀y ∈ E

Definition 7 (chaîne de Markov ergodique) Une chaîne de Markov {X t , t } est dite ergodique si elle
est irréductible et positive récurrente. Soit T , le noyau de transition, les conditions d’ergodicité
peuvent être formulées comme suit :

1. Irréductibilité : Pour tout x, y ∈ E , il existe une probabilité non nulle de passer de x à y , i.e
qu’il existe un chemin de transition x = x0, x1, . . . , xk = y tel que

T (x1 | x0) > 0, . . . ,T (y | xk−1) > 0.

2. Récurrence positive Soit A ⊂ E .
On pose TA := i n f {n ≤ 0, Xn ∈ A}, alors

P
(
TA <∞ | X0 = x

)
= 1 ∀x ∈ E

9
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Une chaîne ergodique garantit que, indépendamment de l’état de départ, la chaîne va explorer
tout l’espace d’état. En d’autres termes, si une chaîne de Markov est ergodique, on peut être certain
que la distribution de la chaîne finira par se stabiliser vers la distribution stationnaire.

Après avoir introduit les deux outils nécessaires à la définition de la méthode SS, nous allons
maintenant décrire en détail son processus de fonctionnement et en discuter les implications.

III Subset Simulation

III.1 Principe Général

La méthode des Subset Simulations est une méthode adaptative qui permet d’estimer la proba-
bilité de défaillance P f . Dans l’algorithme SS, on considère une suite d’évènements décroissants
au sens de l’inclusion de telle sorte qu’on puisse réécrire l’évènement de défaillance comme leur
intersection :

F1 ⊃ F2 ⊃ ·· · ⊃ Fm = D f et D f =
m⋂

i=1
Fi

Par un conditionnement successif, on obtient une nouvelle expression de la probabilité de dé-
faillance :

P f =P(F0)
m−1∏
i=1

P(Fi+1 | Fi ) (1.7)

La motivation est, qu’en choisissant les évènements (Fi )i de façon appropriée, les probabilités condi-
tionnelles dans (1.7) seront assez larges pour être estimé facilement par MCN.

Le découpage en m problèmes de défaillance intermédiaires induit l’apparition de lois condition-
nelles.

fX |F j (x) =
fX (x)1F j (x)

P (F j )
, j ∈ {0, . . . ,m −1}. (1.8)

Ces distributions sont connues à une constante près.
La quantité P(F0) est estimée par MCN

P̂0 = 1

N

N∑
i=1

1F0 (X (i ))

Cependant, les P̂ j = P(F j | F j−1) ne peuvent être estimés par une méthode MCN à l’aide des

échantillons de départ (X (i ))N
i=1

i .i .d∼ fX au risque d’être moins précis que pour P0. Possédant les
expressions des densités dans l’équation (1.8) à une constante près, on peut échantillonner par un
algorithme MCMC, tel que décrit par l’algorithme 1 (M-H) puis procéder à l’estimation de P j par
MCN à l’aide de ces nouveaux échantillons.
Formellement, soit {X (i ),( j ), i ∈ [| 1, N |]}, chaîne renvoyée par l’algorithme M-H pour la loi fX |F j (x),
alors on a :

P̂ j = 1

N

N∑
i=1

1F0 (X (i ),( j ))

Remark 2 L’algorithme est connu sous le nom de Subset Simulation, mais a également été étudié
dans la littérature mathématique sous le nom de Sequential Monte Carlo [3].

III.2 Limites d’implémentation de la méthode

Lors de la mise en œuvre de l’algorithme SS, on se heurte à plusieurs difficultés.

10
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Choix des seuils intermédiaires

Le choix des événements intermédiaires (Fi )i joue un rôle crucial dans l’obtention d’une bonne
estimation de P f par une méthode SS. En effet, on pourrait considérer une suite de seuils croissants
s0 < ·· · < sm = s et ceci conduit à une représentation des évènements comme suit :

Fi = {x ∈Rd , Φ(x) > si } ∀i ∈ {1, . . . ,m}.

La limite d’un telle procédure est qu’on ignore quelles valeurs de seuils prendre a priori. Prendre
une suite de seuils qui croît lentement entraînerait l’apparition de probabilités conditionnelles (P j ) j

grandes, conduisant à moins d’échantillons nécessaires pour leur estimation. Cependant, cette
approche requiert un nombre d’événements m plus importants. À l’inverse, une séquence qui croît
rapidement entraînera l’apparition de phénomènes plus rares et donc des probabilités (P j ) j plus
faibles. Ce scénario exige plus d’échantillons à chaque itération pour une estimation plus précise.

Une alternative est de fixer une valeur de probabilité conditionnelle, p0 et de construire les seuils
de manière adaptative, comme expliquée dans l’algorithme 2. De cette façon, on se dirige vers les
zones de défaillances de manière adaptative tout en gardant un ordre de grandeur raisonnable pour
les (P j ) j .

L’exemple bidimensionnel en Figure 1.1 suivant permet d’illustrer le comportement du SS et de
mieux comprendre son fonctionnement.

Φ(x) = x2
1 +x2

2 x ∈R2

Φ(X) ∼χ2 X ∼N (0, I2).

On considère l’évènement de défaillance suivant D f = {Φ(X) > 10} et sa probabilité de défaillance
est P f = 0.006738

FIGURE 1.1 – Illustration du comportement de l’algorithme 2. Les échantillons renvoyés, appartenant aux
évènements F1, F2 et F3 sont pour un seuil de probabilité fixe p0 = 0.1. Les échantillons de l’évènement F3
représentent les échantillons de l’évènement de défaillance car ils dépassent le seuil fixe 10.
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Algorithm 2 Vanilla Subset Simulation

Require: — Seuil probabilité fixe p0

— N-échantillon de départ {X (1), . . . , X (N )}
— {Y (1), . . . ,Y (N )} =Φ(X (1)), . . . ,Φ(X (N ))
— Seuil limite s
— Noyau de proposition Q

1: On pose
←

FN

(k)
processus quantile de l’échantillon E(k) = {Y (1)

(k) , . . . ,Y (N )
(k) }, et γ̂(k)

N = ←
FN

(k)
(1−p0) le

seuil considéré au ke événement et A(k) = {X (1)
(k), . . . , X (N )

(k) }, l’échantillon associé.
2: k = 1
3: while γ̂(k)

N < s do

4: On considère Ã(k) = {X (i )
(k), Y (i )

(k) > γ̂(k)
N ∀i }, par définition de γ̂(k)

N , car d

(
Ã(k)

)
= ⌊N p0⌋

5: On tire uniformément avec remise dans Ã(k) N échantillons et on obtient A∗
(k) =

{X ∗(1)
(k+1), . . . , X ∗(N )

(k+1)}
6: Application de N algorithmes M-H dont chaque initialisation est un élément de A∗

(k). On effectue
des chaînes de longueur l et la loi stationnaire créée par les chaînes de Markov est fX |F j .{

X ∗(1)
(k+1)[1];Y ∗(1)

(k+1)[1]

} {
X ∗(N )

(k+1)[1];Y ∗(N )
(k+1)[1]

}

{
X ∗(1)

(k+1)[l +1];Y ∗(1)
(k+1)[l +1]

} {
X ∗(N )

(k+1)[l +1];Y ∗(N )
(k+1)[l +1]

}

C
h

aîn
e

d
e

lo
n

gu
eu

r
l

C
h

aîn
e

d
e

lo
n

gu
eu

r
l

7: k = k +1
8: On pose A(k) = {X (1)

(k)[l +1], . . . , X (N )
(k) [l +1]}, E(k) = {Y (1)

(k) [l +1], . . . ,Y (N )
(k) [l +1]} et γ̂(N )(k) associé

9: end while

10: return P̂ SS
f = pk−1

0

car d

{
Y (i )

(k)>s, Y (i )
(k)∈E(k)

}
N

Ergodicité dans le cadre des Subset Simulation

La deuxième problématique à laquelle on se heurte est l’ergodicité des chaînes de Markov {X t , t }
renvoyées par la méthode SS pour l’estimation des probabilités (P j )m

j=1.

En pratique, la méthode SS rencontre des défis puisqu’il s’agit d’une taille de chaîne finie. Dans ce
cas de figure, il est plus difficile d’atteindre l’ergodicité, encore plus si les régions de défaillances sont
non connexes dans l’espace d’état. Ces limitations peuvent renvoyer de moins bons estimateurs P̂ SS

f .

1. Estimation biaisée : Lorsque certaines régions contribuant à la défaillance sont rarement ou
jamais visitées pendant la simulation, l’estimateur P̂ SS

f devient biaisé. Ce biais provient de

l’exploration limitée de l’espace d’état, conduisant à une sous-représentation des régions
critiques de défaillance.

2. Difficultés d’exploration : Les régions de défaillance non continues peuvent poser des défis
importants pour l’exploration de l’espace d’état. Si le noyau de proposition, Q, manque de
capacité d’étalement suffisante par rapport à la taille des zones non défaillantes, il peut avoir
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du mal à passer d’une zone de défaillance à une autre. Cela peut conduire à un regroupement
des échantillons dans une seule zone défaillante. La figure 1.2 illustre ce phénomène.

FIGURE 1.2 – Illustration d’un exemple en 2D où la zone de défaillance est une union de plusieurs zones (ici
4) D f =⋃4

i=1 Zone i . La difficulté ici est le passage d’une zone à une autre zone afin d’explorer l’ensemble des
zones de défaillances.

Pour remédier à ces limitations et améliorer les performances en pratique, la stratégie suivante
peut être envisagée; considérer plusieurs chaînes avec différents états initiaux obtenus à partir de
l’évènement précédent F j (voir le schéma contenu dans l’algorithme 2 à la ligne 6). Ces initialisations,
tirées de différentes régions de défaillance, peuvent guider les chaînes vers divers modes de défaillance,
améliorant ainsi la couverture globale de l’espace d’état. L’efficacité de cette méthode reposerait tout
d’abord sur l’estimation de P0. Avec une bonne estimation P̂0 i.e un coefficient de variation faible, on
peut s’attendre à une meilleure répartition des échantillons dans les régions de défaillance associées
à différents événements.

Il est important de noter que les stratégies d’atténuation proposées sont valides sous l’hypothèse
que les régions ne contribuant pas à la défaillance à de bas seuils conditionnels, s j , restent inactives à
des seuils conditionnels plus élevés.

III.3 Algorithmes MCMC (M-H) dans le cas des Subset Simulation

Dans le cadre des SS, l’expression de la probabilité d’acceptation pour xi ∈ F j est la suivante :

α(x̃, xi ) = mi n

{
1,

fX (x̃)Q(xi | x̃)

fX (xi )Q(x̃ | xi )
1F j (x̃)

}
(1.9)

= a(x̃, xi )1F j (x̃) (1.10)

où a(x̃, xi ) = min

{
1, fX (x̃)Q(xi |x̃)

fX (xi )Q(x̃|xi )

}
.

L’algorithme peut être alors décomposé en 2 parties :

1. Accepter ou rejeter la proposition x̃ : v =
{

x̃ avec probabilité a(x̃, xi )

xi avec probabilité 1−a(x̃, xi ).

2. Accepter ou rejeter v : xi+1 =
{

v, v ∈ F j

xi , v ̸∈ F j .

Cette approche est intéressante, car l’évaluation de la fonction Φ en x̃ peut-être faite seulement
après acceptation avec probabilité a(x̃, xi ). En effet, il se peut que les propositions x̃ ne soient pas
satisfaisantes pour la distribution de départ fX et donc il serait inutile de faire appel au codeΦ pour
vérifier l’appartenance à F j . Ceci permettra une économie du budget.

Remark 3 (Limites en grande dimension) Il est plus difficile d’explorer l’espace état, dans un do-
maine de plus grande dimension, car l’indicatrice 1F j engendre très souvent du rejet. Une illustration
du fort rejet des MCMC en grande dimension dans l’algorithme SS est faite dans [11] avec l’exemple
du noyau gaussien.
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Maintenant que nous avons exploré en détail la méthode SS, nous allons mettre en place un test
pour évaluer son comportement dans différentes conditions, telles qu’un domaine de défaillance non
connexe ou une dimension d du vecteur élevée.

IV Exemples Tests

La fonction 4-branches est un problème de référence largement utilisée dans les analyses de
fiabilité.

Φ(x) =−min



β+ 1p
d

d∑
i=1

xi =β+ t1

β− 1p
d

d∑
i=1

xi =β− t1

β+ 1p
d

( ⌊d/2⌋∑
i=1

xi −
d∑

i=1+⌊d/2⌋
xi

)
=β+ t2

β+ 1p
d

(
−

⌊d/2⌋∑
i=1

xi +
d∑

i=1+⌊d/2⌋
xi

)
=β− t2.

Cette exemple-test définit une série de systèmes linéaires possédant 4 zones de défaillances. Il
prend en entrée un vecteur gaussien X ∼N (0, Id ) vivant dans Rd et a pour particularité d’avoir une
probabilité de défaillance indépendante de la dimension d .
En effet, comme β± ti ∼N (β,1), i = 1,2 et cov(t1, t2) = 0 (démontrée en annexe), la distribution de
Φ(X) =−min{β± ti , i = 1, . . . ,4} est indépendante de d .

On peut alors s’intéresser à l’événement de défaillance suivant :

P f =P(Φ(X ) ≥ 0) ≈ 4φN (0,1)(−β) (1.11)

Les paramètres choisis pour cet exemple sont les suivants :

β= 3.5 P f = 9.3×10−4

β= 5 P f = 1.15×10−6.

(a) Représentation dans le plan. (b) Représentation dans l’espace.

FIGURE 1.3 – Graphique du comportement de la fonction 4-branchesΦ pour le cas de la dimension d = 2

IV.1 Application de l’algorithme SS

On utilise la méthode de SS pour estimer les probabilités de défaillance de l’exemple précé-
dent. Etant donné que les entrées sont gaussiennes, nous choisissons une marche aléatoire dans
l’algorithme M-H où la perturbation est

ϵt ∼N (o, Id ×σ).

Afin de pouvoir comparer les performances entre estimateurs de P f , on introduit la mesure
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suivante :

ν= Nr eq

Ntot
avec Nr eq = 1−P f

P f cov(P̂ f
SS

)2
et Ntot , nombre total d’appel à la fonctionΦ.

Un coefficient ν< 1 signifiera qu’une simple méthode MCN suffira pour obtenir une précision égale
et à moindre coût. Tandis qu’un coefficient ν> 1 démontrera qu’il est plus intéressant de procéder
par une méthode SS.

Les propriètés (moyennes, variances ...) des estimateurs issus des algorithmes 2 et MMA sont
obtenues à partir de 100 itérations.

Application de l’algorithme SS pour le cas : β= 3.5 P f = 9.3×10−4

Dans ce cas, la probabilité P f est approximativement de l’ordre de 10−3. L’algorithme SS est
plus adapté pour des probabilités inférieures à 10−4 comme cela est couramment souligné dans la
littérature; par conséquent, les performances évaluées à travers le paramètre ν ne montrent pas de
différences significatives par rapport à une méthode MCN. Les résultats sont donnés en Table 1.1.

Dimension P̂ f
SS

CV ν σ

d = 5 9.33×10−4 0.056 1.35 0.4
d = 10 9.31×10−4 0.066 1.13 0.4
d = 50 9.29×10−4 0.13 0.27 0.3

d = 100 9.39×10−4 0.19 0.13 0.2

(a) Résumé de la qualité de l’estimateur P SS
f

Évènement F0 F1 F2 F3 F4

d = 5 0.40 0.35 0.33 0.31 0.28
d = 10 0.33 0.29 0.27 0.25 0.24
d = 50 0.20 0.19 0.17 0.16 0.15

d = 100 0.23 0.22 0.21 0.20 0.19

(b) Taux d’acceptation ρ (définit dans (4)) pour chaque
événement

TABLE 1.1 – Estimation par l’algorithme 2 pour l’événement où β= 3.5 et P f = 9.3×10−4. La probabilité fixe
p0 = 0.25. Le noyau de proposition est une marche aléatoire gaussienne. Les longueurs de chaînes sont de taille 6.
Pour les taux d’acceptation ρ, ce sont les taux moyennés sur l’ensemble des chaînes pour chaque événement Fi

FIGURE 1.4 – Boite à moustache pour les différents estimateurs P SS
f correspondant à chaque dimension d pour

le cas β= 3.5 et P f = 9.3×10−4.

On remarque que lorsqu’on augmente la dimension, il devient plus difficile d’explorer l’espace

d’état et le coefficient de variation cov(P̂ f
SS

) croît, rendant la méthode moins précise. On peut alors
choisir d’utiliser des agitations σ moins grandes, mais cela a un coût : il faut des chaînes plus longues
pour atteindre la stationnarité.

La problématique des chaînes corrélées n’est pas abordée ici, car, comme expliqué dans l’algo-
rithme 2, de faibles valeurs d’auto-corrélations ont été renvoyées par les chaînes.

15



Master 2 IS Rapport Stage

Application de l’algorithme SS pour le cas : β= 5 P f = 1.15×10−6

Dimension P̂ f
SS

CV ν σ

d = 5 1.14×10−6 0.11 127.44 0.4
d = 10 1.16×10−6 0.11 111.4 0.4
d = 50 1.16×10−6 0.54 4.66 0.3

d = 100 1.39×10−6 0.19 0.13 0.2

(a) Résumé de la qualité de l’estimateur P SS
f

Évènement F0 F1 F2 F3 F4 F5 F6 F7 F8

d = 5 0.40 0.35 0.33 0.31 0.29 0.28 0.26 0.24 0.24
d = 10 0.33 0.29 0.27 0.25 0.24 0.23 0.22 0.21 0.20
d = 50 0.20 0.19 0.17 0.16 0.16 0.15 0.15 0.14 0.14

d = 100 0.23 0.22 0.21 0.20 0.19 0.19 0.19 0.18 0.17

(b) Taux d’acceptation ρ pour chaque événement

TABLE 1.2 – Estimation par l’algorithme 2 pour l’événement où β = 5 et P f = 1.5×10−6. La probabilité fixe
p0 = 0.25. Le noyau de proposition est une marche aléatoire gaussienne. Les longueurs de chaînes sont de taille 6.
Pour les taux d’acceptation ρ, ce sont les taux moyennés sur l’ensemble des chaînes pour chaque événement Fi

FIGURE 1.5 – Boite à moustache pour les différents estimateurs P SS
f correspondant à chaque dimension d pour

le cas β= 5 et P f = 1.15×10−4.

Dans ce cas, l’utilisation de la méthode SS est plus avantageuse en termes de budget d’appel à
la fonctionΦ (valeur ν plus élevée que pour le cas précédent résumé dans la Table 1.1). Cependant,
pour les grandes dimensions, comme 50 et 100, les performances se dégradent considérablement, et
l’estimation devient beaucoup moins précise. Les résultats sont donnés en Table 1.2.

Remark 4 Les taux d’acceptation moyens pour les événements (Fi )i communs aux deux paramétrages
(β= 5 et β= 3.5) sont égaux, car on considère la même probabilité fixe p0.

Il est important de noter que les entrées pour cet exemple-test sont gaussiennes et indépendantes,
ce qui rend le noyau choisi adapter. Cependant, le fléau de la grande dimension empêche une explo-
ration efficace de l’espace d’état de manière vectorielle, car celui-ci devient "vide". Nous faisons face
à une sparsité des données et il devient difficile de trouver suffisamment de données proches les unes
des autres. Comme mentionné précédemment, il existe des variantes des algorithmes MCMC qui per-
mettent de décomposer le problème de grande dimension en plusieurs problèmes unidimensionnels
(voir section suivante).
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Pour illustrer la remarque 3, on peut constater que les taux d’acceptation moyens diminuent non
seulement au fur et à mesure que l’on progresse dans les événements (Fi )i , mais également lorsqu’on
augmente la dimension d .

Dans la Figure 1.6, on fixe la perturbationσ à 0.4 et on observe la trajectoire des taux d’acceptation
moyens pour chaque dimension d .

(a) β= 3.5 P f = 9.3×10−4 (b) β= 5 P f = 1.5×10−6

FIGURE 1.6 – Évolution du taux d’acceptation moyen pour chaque dimension d en fonction de l’événement Fi
considéré. La perturbation σ est la même pour chaque dimension.

V Modified Metropolis Algorithm (MMA)

L’algorithme MMA, introduit dans le papier [1], offre une solution pour surmonter les limitations
du noyau gaussien classique des MCMC en grande dimension. Plutôt que de générer des échantillons
à partir d’une distribution multidimensionnelle, cet algorithme procède en générant les échantillons
coordonnées par coordonnées.

Cependant, une condition nécessaire doit être respectée : le vecteur aléatoire X = (X1, . . . , Xd ) doit
avoir des composantes indépendantes, i.e que fX doit se composer comme un produit de d densités

fX (x) =
d∏

k=1
fk (xk ), x = (x1, . . . , xd ) ∈Rd . (1.12)

V.1 Principe du fonctionnement de l’algorithme MMA

Soit x = (x1, . . . , xd ) ∈Rd , un échantillon issu de la distribution fX |F j et (qk (. | xk ))d
k=1 les noyaux de

propositions unidimensionnelles. La génération d’une proposition x̃ se fait par la méthode suivante :

Pour tout k ∈ {1, . . . ,d}

1. Tirer un échantillon ηk ∼ q(. | xk )

2. Calculer le ratio

αk (ηk , xk ) = fk (ηk )qk (xk | ηk )

fk (xk )qk (ηk | xk )

3. Construction du vecteur de proposition ξ ∈Rd :

ξ=
{
ηk avec une probabilité αk (ηk , xk )

xk avec une probabilité 1−αk (ηk , xk )

4. Acceptation ou rejet de ξ

x̃ =
{
ξ si ξ ∈ F j

xk si ξ ∉ F j
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On peut démontrer que le noyau de transition renvoyé par l’algorithme MMA vérifie la condition
d’irréversibilité, soit la loi invariante est fX |F j .

On peut illustrer cette procédure par le schéma suivant

V.2 Application de l’algorithme MMA à l’exemple-test 4-branches

Application des SS avec l’algorithme MMA pour le cas : β= 3.5 P f = 9.3×10−4

Dimension P̂ f
M M A

CV ν σ

d = 5 9.31×10−4 0.043 2.30 0.4
d = 10 9.37×10−4 0.043 2.27 0.4
d = 50 9.26×10−4 0.047 2.93 0.4

d = 100 9.30×10−4 0.047 1.94 0.4

(a) Résumé de la qualité de l’estimateur P SS
f

Évènement F0 F1 F2 F3 F4

d = 5 0.63 0.57 0.53 0.49 0.46
d = 10 0.64 0.57 0.52 0.47 0.44
d = 50 0.63 0.56 0.50 0.46 0.43

d = 100 0.63 0.56 0.50 0.46 0.42

(b) Taux d’acceptation ρ pour chaque événement

TABLE 1.3 – Estimation par l’algorithme par avec MMA pour l’événement où β = 3.5 et P f = 9.3×10−4. La
probabilité fixe p0 = 0.25. Les noyaux de proposition sont des marches aléatoires gaussiennes. Les longueurs de
chaînes sont de taille 6. Pour les taux d’acceptation ρ, ce sont les taux moyennés sur l’ensemble des chaînes pour
chaque événement Fi

FIGURE 1.7 – Boite à moustache pour les différents estimateurs correspondant à chaque dimension d
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Application de l’algorithme MMA pour le cas :β= 5 P f = 1.15×10−6

Dimension P̂ f
M M A

CV ν σ

d = 5 1.14×10−6 0.05 620.08 0.4
d = 10 1.15×10−6 0.06 468.20 0.4
d = 50 1.17×10−6 0.05 648.51 0.4

d = 100 1.16×10−6 0.06 470.18 0.4

(a) Résumé de la qualité de l’estimateur P SS
f

Évènement F0 F1 F2 F3 F4 F5 F6 F7 F8

d = 5 0.63 0.58 0.52 0.48 0.46 0.44 0.42 0.40 0.38
d = 10 0.63 0.56 0.51 0.48 0.44 0.42 0.40 0.38 0.38
d = 50 0.63 0.56 0.50 0.46 0.42 0.40 0.37 0.35 0.32

d = 100 0.64 0.56 0.50 0.46 0.42 0.39 0.37 0.35 0.33

(b) Taux d’acceptation ρ pour chaque événement

TABLE 1.4 – Estimation par l’algorithme MMA pour l’événement où β = 5 et P f = 1.5−6. La probabilité fixe
p0 = 0.25. Les noyaux de proposition sont des marches aléatoires gaussiennes. Les longueurs de chaînes sont
de taille 6. Pour les taux d’acceptation ρ, ce sont les taux moyennés sur l’ensemble des chaînes pour chaque
événement (Fi )i

FIGURE 1.8 – Boites à moustache des différents estimateurs de l’exemple β= 5 et P f = 1.5−6 pour chaque cas de
dimension d

L’algorithme MMA renvoie des estimations de P f plus précises avec de faibles coefficients de
variation (CV). On observe notamment la robustesse de la méthode pour des événements à très faible
occurrence (β= 5 et P f = 1.5×10−6). En effet, les coefficients ν sont bien plus larges pour ce cas.

Enfin, la dimension n’influence pas sur le taux d’acceptation moyen, contrairement à la méthode
SS classique (voir 1.6b et 1.6a).

L’algorithme SS est une solution efficace pour estimer des probabilités de faible occurrence,
mais il présente certaines limites. Parmi celles-ci, on observe une diminution du taux d’acceptation
au fur et à mesure que l’on progresse dans les événements F j , ainsi que l’apparition d’un biais
lorsque la dimension d augmente. L’élément central de cet algorithme est l’utilisation d’algorithmes
MCMC. Dans un cadre idéal, un échantillonnage précis pour chaque événement de la séquence (F j ) j

permettrait d’obtenir des estimations de P f plus fiables. Pour améliorer ce processus, il est crucial de
disposer d’un noyau de proposition Q de qualité.

La remarque 1 nous incite à envisager les densités définies dans (1.8) ou, à défaut, une bonne
approximation de celle-ci, pour obtenir des échantillons pertinents. Plusieurs approches sont dispo-
nibles dans la littérature pour ce faire :
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1. Distributions paramétriques : Ces méthodes offrent une bonne robustesse face à la grande
dimension, mais leur nombre élevé de paramètres, ainsi que leur manque de flexibilité (formes
de distributions définies a priori), en font des candidats moins idéaux.

2. Distributions non paramétriques : Contrairement aux distributions paramétriques, ces mé-
thodes sont plus flexibles, mais elles manquent de robustesse face à la grande dimension

Les récents travaux sur les modèles génératifs nous ont amenés à envisager l’utilisation de ces
modèles pour l’apprentissage de notre loi cible fX . Ces modèles ont démontré à la fois de la flexibilité
et de la robustesse dans des applications récentes, ce qui en fait une option prometteuse pour
surmonter les limitations identifiées dans l’algorithme SS.
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Chapitre 2

Auto-encodeurs Variationnel (VAE)

Dans cette section, nous nous concentrons sur une classe spécifique de modèles d’apprentissage :
les modèles génératifs. Ces modèles probabilistes sont particulièrement adaptés à l’apprentissage de
distributions complexes, telles que les distributions multimodales ou celles définies dans des espaces
de grande dimension. Basés sur des réseaux de neurones artificiels [9], ils sont largement utilisés dans
la génération d’images, de vidéos et de textes [16].

Les modèles génératifs peuvent être classés en trois grandes catégories :

1. Modèles autorégressifs (AR)

2. Modèles basés sur les transformations de flux (flow-based models)

3. Modèles à variables latentes.

Dans cette étude, nous nous intéressons plus particulièrement aux méthodes impliquant l’utilisa-
tion de variables latentes. L’idée derrière ces méthodes est de supposer l’existence d’un espace de
plus faible dimension Z , appelé espace latent, puis de procéder à la méthode de génération suivante.{

z ∼ p, z ∈Z

x ∼ p(. | z), x ∈X .

En résumé, la distribution des les variables latentes z correspond aux informations cachées
dans les données et les distributions conditionnelles p(. | z) ∀z ∈ Z peuvent être vu comme des
générateurs.

Le premier enjeu d’une telle méthode serait alors de définir l’espace latent. Étant donné que le
but de l’espace latent est de résumer nos données, on peut considérer les méthodes de réduction de
dimension.

I Auto-encodeurs : une Méthode de réduction de dimension

Nous résumons les données sous la forme d’une matrice X ∈Rn×d , qui représente une collection
de n vecteurs de dimension d .

I.1 Principes et techniques de la réduction de dimension

La réduction de dimension consiste, dans la plupart des cas, à trouver des matrices de plus petite
taille, c’est-à-dire avec un nombre réduit de lignes n ou de colonnes d , tout en préservant une certaine
similarité avec la matrice initiale X.

Un exemple préliminaire de réduction de dimension est la décomposition UV . L’objectif est
d’approcher X par un produit de matrices :

X=U t V ,

où
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X=t
[

t X (1), . . . ,t X (n)
]

.

Supposons que nous souhaitons projeter chaque donnée X (i ) ∈ Rd pour tout i ∈ {1, . . . ,n} dans
un espace de dimension réduite Z , par exemple Rk avec k < d . Nous considérons d’abord une
représentation des données dans Z :

U =t
[

tU (1), . . . ,t U (n)
]
∈Rn×k.

De manière similaire, nous définissons la matrice

V =
[

t V (1), . . . ,t V (n)
]
∈Rd×k ,

qui constitue la base des vecteurs pour la nouvelle représentation des données.
Le problème d’optimisation peut alors être formulé comme suit :

min
(U ,V )

||X−U t V ||2f r ob . (2.1)

où | · |F r ob représente la norme de Frobenius.
Des contraintes peuvent être imposées sur U et V . Par exemple, en imposant une contrainte

d’orthogonalité, on retrouve la méthode Singular Value Decomposition (SVD). C’est une technique
fondamentale en algèbre linéaire qui décompose une matrice en trois autres matrices, révélant des
propriétés essentielles de la matrice d’origine

X=UΣt V.

— U est une matrice orthogonale de dimension n ×n
— Σ est une matrice diagonale de dimension n ×d
— V est une matrice orthogonale de dimension d ×d
En sélectionnant les premières valeurs singulières et les vecteurs associés (troncature de la SVD),

on peut obtenir une approximation de la matrice X avec une dimension réduite.
On peut quantifier l’erreur qu’on commet dans notre approximation.

On suppose que r g (X) = r (en notant r g le rang d’une matrice). alors pour B ∈Rn×d et q = min{r,r g (B)},
q < r on a :

min
B ,r g (B)≤q

||X−B ||2f r ob=
r∑

k=q+1
σ(X)2.

où σ(X)2 sont les valeurs singulières de la matrice X.
Une application spécifique de SVD aux données centrées est l’Analyse en Composantes Principales

(ACP), une technique de réduction de dimensionnalité qui transforme les données en un nouvel
ensemble de variables non corrélées appelées composantes principales. Ces composantes sont
ordonnées de manière à ce que la première retienne le plus de variance possible, la deuxième retient
le plus de variance possible sous contrainte d’être orthogonale à la première, et ainsi de suite.

Or la méthode de l’ACP présente des limites :
— Linéarité : L’ACP repose sur des transformations linéaires et peut échouer à capturer les

relations non linéaires complexes dans les données.
— Scalabilité : Pour des ensembles de données très larges, l’ACP peut devenir coûteuse en termes

de calcul, ce qui a conduit au développement de l’ACP randomisée [14].
Il s’agit donc de développer une méthode qui offre une réduction de dimension plus flexible, capable
de capturer des motifs complexes au-delà de la simple linéarité, tout en maintenant un budget de
calcul raisonnable.

I.2 Les Auto-Encodeurs

Les Auto-Encodeur (AE) sont une classe de réseaux de neurones non supervisés utilisée pour
apprendre une représentation compacte des données d’entrée. Le but est d’obtenir une solution au
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problème d’optimisation (2.1) à l’aide d’une architecture neuronale.
Un AE se compose de trois parties principales :

— Un Encodeur noté Eφ. C’est un réseau de neurones paramétré par les poids φ ∈Ξ
— Un espace latent Z

— Un Décodeur, noté Dθ . C’est un réseau de neurones paramétré par les poids θ ∈Θ
Dans un premier temps, l’encodeur comprime l’observation x ∈Rd et lui attribut une représenta-

tion z = Eφ(x) ∈Z . Dans un second temps, le décodeur réalise la procédure inverse en essayant de
reconstruire le point initial x à partir de l’encodage z et on a Dθ(z) = x̂ ∈Rd , voir la Figure 2.1.

L’objectif d’un AE est de minimiser la différence entre l’entrée x et sa reconstruction x̂. Cette diffé-
rence est quantifiée par une fonction de perte, typiquement une fonction de type erreur quadratique
moyenne (Mean Squared Error, MSE) :

Ob j (x, x̂) =|| x − x̂ ||2=|| x −Dθ(Eφ(x)) ||2, (2.2)

où || . ||2 représente la norme L2.

zx x̂

OBSERVATION RECONSTRUCTIONESPACE LATENT

Rdz

ENCODEUR DÉCODEUR

FIGURE 2.1 – Principe du fonctionnement d’un auto-encodeur

Cependant, les auto-encodeurs (AE) rencontrent des difficultés en matière de généralisation ; leur
capacité à générer de nouvelles données similaires à celles utilisées pour l’entraînement est limitée.

Remark 5 Le principe de fonctionnement de l’AE peut être reformulé de manière à correspondre
aux formulations présentées au début de cette section I.1.
Considérons les transformations linéaires suivantes :

W :Rd →Rk V :Rk →Rd

où t W et t V représentent respectivement les poids des réseaux de neurones Eφ (encodeur) et Dθ

(décodeur) avec des biais nuls. En utilisant l’identité comme fonction d’activation, chaque ligne de
X, X (i ), est transformée en zi =W X (i ), ce qui définit la matrice U mentionnée précédemment :

U =t
[

t z(1), . . . ,t z(n)
]

.

En sortie de l’auto-encodeur (AE), chaque donnée X (i ) est reconstruite par la transformation
V W X (i ) = V zi . Par transposition, les valeurs reconstruites X̂ sont données par U t V . Pour que
X≈U t V soit satisfait, il est nécessaire de résoudre le problème d’optimisation suivant :

max
(φ,θ)

||X−U t V ||2f r ob

ce qui est similaire à l’équation (2.1).
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II Fonctionnement d’un VAE

II.1 Généralités sur les VAE

Les VAE [7] constituent une classe de modèles génératifs qui étendent le principe des auto-
encodeurs classiques. En effet, un VAE se compose également d’un encodeur Eφ et d’un décodeur Dθ ,
mais à la différence des auto-encodeurs classiques, les deux composants génèrent des distributions
de probabilité plutôt que des sorties déterministes.

L’objectif principal d’un VAE est d’approximer une distribution cible, notée ici fX . Pour ce faire,
une variable latente (non observable) Z est introduite, permettant d’établir la relation suivante :

fX (x) ≈ fθ(x) =
∫

pθ(x | z) p(z)d z ∀x ∈Rd (2.3)

Cette équation représente une intégration sur l’espace des variables latentes Z . On peut interpré-
ter cette représentation comme un problème d’inférence bayésienne :

1. p est la loi de Z , appelée la loi a priori.

2. pθ(. | z) est la vraisemblance.

3. pθ(. | x) est la loi a posteriori.

Dans le cadre classique, on suppose que pθ(. | z) suit une distribution gaussienne N (µθz ,Σθz )
paramétrée par le décodeur Dθ , avec p comme distribution continue. Ainsi, le VAE approxime fX par
un mélange infini de gaussiennes.

L’intégrale (2.3) étant souvent difficile à calculer, les VAE adoptent une approche variationnelle
en introduisant une distribution approximative qφ(. | x), paramétrée par l’encodeur Eφ et appelée
distribution a posteriori variationnelle. Cette distribution est sélectionnée au sein d’une famille
paramétrique P , permettant une génération et une évaluation de la densité relativement simples.
Dans le cadre de notre étude, cherchant à approximer un vecteur aléatoire à densité continue, nous

choisissons qφ(. | x)
L oi= N (µφx ,Σφx ).

La procédure d’encodage et de reconstruction d’un point x ∈Rd par VAE est représente dans la
Figure 2.2 et donné par le schéma qui suit :

1. L’encodeur Eφ renvoie pour chaque donnée x les paramètres de la distribution a posteriori

variationnel qφ(. | x) : (µφx ,Σφx ) = Eφ(x)

2. Génération d’un point z ∼ qφ(. | x) dans l’espace latent

3. Le décodeur renvoi pour chaque donnée z les paramètres de la distribution a posteriori
pθ(. | z) : (µθz ,Σθz ) = Dθ(z)

4. Génération de la reconstruction x̂ ∼ pθ(. | z)

zx ENCODEUR

µx

Σx

ϵ∼N (0,Idz ) x̂ ∼N (µz ,Σz )DÉCODEUR

µz

Σz

ESPACE LATENT

Rdz

OBSERVATION RECONSTRUCTION

FIGURE 2.2 – Principe du fonctionnement d’un auto-encodeur variationnel utilisant une distribution standard
gausienne fixe
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Une fois le principe de fonctionnement du VAE établit, on procède à l’entraînement des poids φ
et θ de Eφ et Dθ de manière à ce que fθ soit une bonne approximation de la densité cible fX .

II.2 Entraînement d’un VAE

Pour l’entraînement, on s’intéresse à la log-vraisemblance de fθ et plus précisément, on cherche à
maximiser par rapport à θ sous fX :

max
θ∈Θ

E fX [l og ( fθ)] (2.4)

On obtient alors le développement qui suit

log ( fθ) = l og

(∫
pθ(x | z) p(z)d z

)
avec équation (2.3)

= log

(∫
pθ(x | z) p(z)

qφ(z | x)
qφ(z | x)d z

)
≥

∫
l og

(
pθ(x | z) p(z)

qφ(z | x)

)
qφ(z | x)d z par inégalité de Jensen

= Eqφ(.|x)

[
log

(
pθ(x | Z ) p(Z )

qφ(Z | x)

)]
= Eqφ(.|x)[pθ(x | Z )]−Eqφ(.|x)

[
log

(
p(Z )

qφ(Z | x)

)]
= Eqφ(.|x)[pθ(x | Z )]−DK L(qφ(. | x) || p) par définition de la divergence de Kullback-Leibler

Par linéarité de l’espérance, on a :

E fX [log ( fθ(X ))] ≥ E fX [Eqφ(.|x)[pθ(X | z)]]−E fX [DK L(qφ(. | x)] (2.5)

Maximiser la borne inférieure équivaut à résoudre le problème d’optimisation décrit par (2.4).
Cette borne est connue sous le nom de Evidence Lower BOund (ELBO).

L (θ,φ) = E fX [Eqφ(.|x)[pθ(X | Z )]]−E fX [DK L(qφ(. | x) || p)] (2.6)

On peut définir la valeur de l’ELBO pour une réalisation x ∈Rd de X comme suit :

L(x,θ,φ) = Eqφ(.|x)[log (p(Z | x))]︸ ︷︷ ︸
reconstruction

−DK L(qφ(. | x) || p)︸ ︷︷ ︸
régularisation

(2.7)

Elle est composée de deux termes qui ont un comportement opposé lors de l’optimisation de
(2.4). Maximiser ELBO revient à trouver un compromis entre ces deux termes.
Maximiser le terme de régularisation revient à optimiser les poids (θ,φ) de telle sorte que les distribu-
tions qφ(. | x) aient des supports disjoints au sein de l’espace latent. Ceci permettra au décodeur de
reconstruire fidèlement x à partir de la distribution encodée associée.
Quant au terme de régularisation, il régit la similarité entre le prior p et le posterior variationnel
qφ(. | x). L’objectif est que toutes les distributions qφ(. | x) soient proches du prior.

Si on s’intéresse de plus près à ce terme, on a la décomposition suivante :

−DK L(qφ(. | x) || p) =−Eqφ(.|x)[l og (qφ(. | x))]︸ ︷︷ ︸
Entropie

−(−Eqφ(.|x)[l og (p(Z ))]︸ ︷︷ ︸
entropie croisée

) (2.8)

Sous les hypothèses gaussiennes, on peut aisément calculer la valeur de l’entropie

Entropie = 1

2

d∑
i=1

log [2eπ(Σφx )i i ] (2.9)

Étant donné qu’on cherche à maximiser (2.9), il faut σφx (i )2 →+∞. L’entropie cherche à étaler Eφ
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autant que possible, cependant, ceci n’est pas réalisable en pratique, car le terme de reconstruction
force l’encodeur à être centré autour de chaque point.

Pour l’entropie croisée, on a :

entropie croisée =
∫
Z

qφ(z | x)l og (p(z))d z = d

2
log (2π)+ 1

2

(
(Σφx )i i +µφx (i )

2
)

(2.10)

Lorsque nous cherchons à maximiser l’ELBO, cela implique de maximiser l’entropie croisée, c’est-
à-dire d’essayer d’aligner le prior p avec le postérieur variationnel qφ(. | x). Maintenant, examinons
le comportement de l’entropie croisée lorsque l’on impose un prior gaussien standard N (0, Id ).
L’objectif est de faire correspondre cette forme fixe au fur et à mesure de l’entraînement. Cependant,
le problème est que le décodeur, en se basant sur le terme de reconstruction, aura tendance à générer
des distributions centrées autour des points d’entraînement, ce qui peut entraîner l’apparition de
"zones blanches". Dans ces zones, qφ(. | x) attribuera une très faible probabilité, tandis que le prior
les considérera comme des régions à forte masse de probabilité.

Ce décalage deviendra apparent lors du processus de génération, comme expliqué au début de la
Section 2. Lorsque des points issus de ces zones blanches seront générés à partir du prior, le décodeur,
n’ayant que peu ou pas appris sur ces zones, produira des échantillons de qualité inférieure. Dans ce
cas, il peut être plus judicieux de considérer des priors non fixes et dont les paramètres sont mis à jour
au fur à mesure de l’entraînement.

II.3 Choix de prior flexible

Classiquement, la distribution normale standard est le priori utilisé dans plusieurs applications
du VAE mais comme expliquée, il est possible de choisir un autre type de prior :

pλ(z) λ ∈Λ une famille de paramètres

Une possibilité d’a priori flexible peut être un mélange gaussien :

pλ(z) = pMoG
λ (z) =

K∑
l=1

wl g(ml ,sl )(z) λ= {wl ,ml , sl }K
l=1 (2.11)

Où, g(ml ,sl ) est la densité d’une gaussienne de moyenne ml et d’écart-type sl .

Ce prior Mélange de gaussiennes (MoG) permet une plus grande flexibilité dans la modélisation
des données en capturant des structures plus complexes, car il représente la distribution latente
comme un mélange de plusieurs gaussiennes. En plus de générer les échantillons latents, le VAE
apprend à estimer les paramètres des différentes composantes du mélange, améliorant ainsi la
capacité du modèle à capturer des distributions multimodales et à générer des échantillons plus
diversifiés. L’expression du ELBO change et on a la formulation qui suit :

L (θ,φ,λ) = E fX [Eqφ(.|x)[pθ(X | Z )]]−E fX [DK L(qφ(. | x) || pλ)]

= E fX [Eqφ(.|x)[pθ(X | Z )]]+E fX [−Eqφ(.|x)[l og (pφ(X | Z ))]]+E fX [Eqφ(.|x)[log (pλ)]] (2.12)

Avec

E fX [Eqφ(.|x)[log (pMoG
λ )(Z )]] =

∫
X

∫
Z

log

[ K∑
l=1

wl g(ml ,sl )(z)

]
qφ(z | x)d zd x (2.13)

L’équation (2.13) étant intractable, on approxime celle-ci par une méthode de Monte-Carlo lors de

l’entraînement. On s’appuie sur l’échantillon z =µφx + (Σφx )1/2ϵ généré par la procédure de reparamé-
trisation à la sortie de l’encodeur Eφ. On a alors :

E fX [−Eqφ(.|x)[log (pλ)(Z )]] ≈ 1

N

N∑
i=1

−log [pMoG
λ (Z (i ))] Z (i ) ∼ qφ(. | X (i )) (2.14)
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Avec
{

X (1), . . . , X (N )
}

, l’échantillon d’entraînement.

La quantité Eqφ(.|x)[log (pλ)] est évaluée sur un échantillon de taille 1. Ce choix peut paraître
surprenant à première vue, mais est en réalité suffisant parce que les estimations associées à chaque
observation sont en pratique moyennées par mini-batch. Un schéma récapitulatif du fonctionnement
de ce VAE est présenté dans la Figure 2.3.

zx ENCODEUR

µx

Σx

ϵ∼N (, Idz ) X̂ ∼N (µz ,Σz )DÉCODEUR

µz

Σz

ml
ml

wl

sl


sl

ml

wl

sl

 pMoG
λ

MÉLANGE DE GAUSSIENNES

FIGURE 2.3 – Principe de fonctionnement d’un VAE utilisant un prior MoG : contrairement à un VAE avec un
prior gaussien classique, ici, le modèle récupère non seulement les paramètres des distributions de Eφ et Dθ ,
mais également ceux du mélange.

La deuxième possibilité considérée dans notre étude est le VAE utilisant le prior VampPrior (VP)
développé dans l’article [15]. L’idée est de se baser sur les travaux dans l’article [8]. En cherchant le
prior optimal dans le cadre des VAE, la réécriture dans (2.12), permet de voir l’apparition de l’entropie
croisée qui fait intervenir le prior pλ. On peut donner la définition suivante

Definition 8 (Distribution a posteriori agrégée) La distribution a posterior agrégée associée à un
VAE dont les paramètres de l’encodeur Eφ et le décodeur Dθ sont définis par :

qφ(z) =
∫
X

qφ(z | x) fX (x)d x = EX∼ fX [qφ(z | X )] ∀z ∈Z (2.15)

La distribution a posteriori agrégée peut être vue comme la mixture infinie des distributions
a posteriori variationnelle pondérée par la distribution des observations fX . On réécrit l’ELBO en
réexprimant le dernier terme d’entropie croisée avec le posteriori agrégé pφ :

L (θ,φ) = E fX [Eqφ(.|x)[pθ(X | Z )]]+E fX [−Eqφ(.|x)[l og (pφ(X | Z ))]]+Epφ [l og (pλ(Z ))]. (2.16)

Comme énoncé pour le MoG, maximiser l’ELBO équivaut à maximiser l’entropie croisée. Ceci
donne lieu à l’assertion suivante (énoncé établi dans [8])

qφ = arg max
pλ∈L2

E
[

log (pλ(Z ))
]

. (2.17)
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Dans le cadre empirique, nous avons l’expression optimale suivante :

pemp
φ,opt =

1

N

N∑
i=1

pφ(z | X (i )) ∀z ∈Z (2.18)

Une limitation de ce prior est que lorsque le nombre de composantes N devient grand, le calcul des
valeurs de cette densité devient informatiquement coûteux. En outre, l’utilisation de ce prior peut
également augmenter le risque de sur-apprentissage, comme l’ont souligné [5] et [8].

La solution proposée dans [15] consiste à approcher la distribution a posteriori agrégée par un
mélange de postérieurs variationnels établis à partir de pseudo-inputs, ce qui constitue le prior VP. Ce
prior est défini par l’équation suivante :

pλ(z) = 1

K

K∑
k=1

qφ(z | uk ). (2.19)

où λ= {φ,u1, . . . ,uK } et {u1, . . . ,uK } ∈ (X )K représentent les pseudo-inputs. Ces vecteurs sont mis à
jour au fur et à mesure de l’apprentissage. En pratique, un réseau de neurones V Pλ, λ ∈Λ est utilisé
pour définir ces pseudo-inputs. Le réseau V Pλ prend en entrée K vecteurs (ek )K

k=1, qui forment la

base canonique de Rk et renvoie les pseudo-inputs (uk )K
k=1, où chaque xk ∈X .

Un schéma explicatif du VAE avec prior VP est présenté dans la Figure 2.4.
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µx

Σx

ϵ∼N (, Idz ) X̂ ∼N (µz ,Σz )DÉCODEUR
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1 , . . . ,eK
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µk

Σk
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pVP
λ,φ
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FIGURE 2.4 – Principe de fonctionnement du VAE avec prior VP : Contrairement au modèle classique, ici, le prior
pφ,u1,...,uK est un mélange de distributions dont les paramètres sont déterminés non seulement par l’encodeur
Eφ mais également par un réseau de neurones V Pλ. Ce réseau génère les pseudo-inputs qui sont utilisés pour
modéliser la distribution a priori.

Maintenant que nous avons discuté des différents modèles de VAE qu’on considérera dans le
cadre de ce stage, il est important d’aborder les problématiques que ces modèles rencontrent lors de
l’entraînement.
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II.4 Procédure d’initialisation

Lors de l’entraînement, la maximisation de l’ELBO implique un équilibre délicat entre les deux
termes qui la composent : le terme de régularisation et celui de reconstruction. Cependant, il arrive
fréquemment que l’on observe un effondrement de la distribution a posteriori, un phénomène
bien connu sous le nom de posterior collapse, tel qu’examiné dans la littérature [2]. Ce problème
survient lorsqu’une sur-régularisation du modèle fait que l’effet du terme de régularisation devient
prédominant, au point où la divergence de Kullback-Leibler devient quasi-nulle

DK L(qφ(. | x) || pλ) ≈ 0.

Une solution couramment adoptée pour remédier à ce problème est l’utilisation du β-VAE. Cette
méthode consiste à introduire un facteur multiplicatif β ∈ [0,1] devant le terme de régularisation
DK L(qφ(. | x) || pλ), afin de contrôler l’influence de ce dernier sur l’ELBO. Toutefois, cette approche a
ses limites, car la nouvelle formulation de l’ELBO ne correspond plus nécessairement à la minimisa-
tion de la log-vraisemblance.

Dans notre étude, nous nous appuyons sur la procédure de pré-entraînement développée dans
[4]. En effet, l’une des hypothèses les plus couramment avancées pour expliquer le posterior col-
lapse est que le modèle reste bloqué dans un maximum local de la fonction ELBO. Pour éviter cela,
l’entraînement débute avec des points de départ bien choisis (λ(0),φ(0),θ(0)).

Initialisation de φ et θ

Les paramètres φ et θ correspondent au poids de l’encodeur Eφ et Dθ. Pour l’initialisation, on se
basera sur le principe du AE :

(φ(0),θ(0)) = argmin
φ,θ∈Ξ×Θ

E fX

[
|| X −Dµ

θ
(Eµ

φ
(X )) ||22

]
(2.20)

où (Dµ

θ
, Eµ

φ
) représentent respectivement le décodeur et l’encodeur, ne prenant en compte que la

moyenne en sortie (la rétropropagation ne s’effectue que pour l’entraînement des moyennes).

Initialisation de λ

Pour les paramètres des priors non fixes introduit dans la sous-section précédente, la procédure
d’initialisation dépend du type de prior utilisé.

Pour le VAE MoG, on utilise l’encodage des points renvoyés lors l’initialisation de φ et θ dans
l’espace latent Z obtenu, puis on procède par algorithme EM pour l’initialisation des paramètres du
mélange :

λ(0) = (
m(0)

l , w (0)
l , s(0)

l

)K

l=1
= EM

[
Eφ(0) (X (1)), . . . ,Eφ(0) (X (N ))

]
(2.21)

Pour le VAE VP, il s’agit de pré-entraîner le réseau de neurones V Pλ de telle sorte à ce que les
pseudo-inputs soient représentatifs de la distribution cible afin que le la distribution a priori capte ses
caractéristiques. Pour ce faire, on tire uniformément et sans remise {i1 . . . iK } entiers dans �1, N� afin

de se créer le sous-échantillon d’observation
{

X (i1), . . . , X (iK )
}

distribués sous fX . Puis, on cherche

λ(0) solution de :

argmin
λ∈Λ

K∑
k=1

||V Pλ(ek )−X (ik ) ||22 (2.22)

II.5 Test des VAE sur un exemple

Afin de s’assurer du fonctionnement du modèle de VAE proposé, on décide de tester celui-ci en
apprenant la distribution suivante :

fX (x) = ϕ(x1)1|x1|>2

2(1−F (2))
× ϕ(x2)1|x2|>2

2(1−F (2))
×

d∏
i=3

ϕ(xi ) ; x = (x1, . . . , xd ) ∈Rd (2.23)

29



Master 2 IS Rapport Stage

Où ϕ est la densité d’une gaussienne standard N (0,1) définie sur R.
Il s’agit de la densité d’un vecteur gaussien standard tronqué sur les deux premières dimensions.

FIGURE 2.5 – Tracé des marginales de la densité-exemple pour la dimension d = 5. Les troncatures ne sont faites
que sur les deux premières dimensions. On obtient une distribution avec quatre modes importants, soit quatre
zones de défaillance.

Nous obtenons une distribution avec quatre modes, et dont la région de défaillance

D f =
{

x ∈Rd , |x1| > 2 et |x2| > 2
}

se décomposent en quatre zones non connexes.
Dans la suite, on considérera des échantillons issus de la distribution définie par (2.23) pour la

dimension d = 50. Pour simplifier l’affichage des résultats, on tracera seulement les 20 premières
dimensions. Ceci n’enfreindra pas à la transparence des résultats puisque les modes sont présents sur
les deux premières dimensions.

II.6 Apprentissage à l’aide du VAE Vamprior

On procède à l’apprentissage de fX par un VAE muni du prior VP. On utilise une distribution
définie sur R50. Dans un premier temps, on illustre l’importance de la procédure d’initialisation. On
utilisera un prior muni de 35 pseudo-inputs pour ce cas de figure.

(a) Histogrammes des données générées par VAE-VP. (b) Densité du VP sur l’espace latent.

FIGURE 2.6 – Caractéristique de l’apprentissage par VAE-VP sans la procédure de pré-entraînement

Le modèle VAE échoue à repérer les quatre zones. L’espace latent illustre seulement une seule
zone compacte. Si on s’intéresse à la trajectoire des pertes DK L et de reconstruction, on remarquera
que la première perte n’est pas stable tandis que la deuxième stagne très tôt dans l’apprentissage. En
somme, la trajectoire de l’ELBO n’est pas stable au cours de l’apprentissage et surtout, elle oscille. Les
résultats sont illustrés dans les Figures 2.7a et 2.7b.
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(a) Trajectoire de la perte de Kullback-Leibler lors de l’ap-
prentissage du VAE-VP.

(b) Trajectoire de la perte de reconstruction lors de l’ap-
prentissage du VAE-VP

A la différence, lorsqu’on applique la procédure de pré-entraînement, nous avons les résultats
suivants :

(a) Histogrammes des données générées par VAE-VP. (b) Densité du VP sur l’espace latent.

FIGURE 2.8 – Caractéristique de l’apprentissage par VAE-VP avec la procédure de pré-entraînement

L’apprentissage est bien meilleur dans ce cas de figure, il y a une apparition de quatre modes bien
distincts pour la distribution du VP. Cependant, certains modes sont mieux capturés que d’autres.

(a) Trajectoire de la perte de Kullback-Leibler pendant l’apprentis-
sage du VAE-VP après pré-entraînement.

(b) Trajectoire de la perte de reconstruction pendant l’ap-
prentissage du VAE-VP après pré-entraînement.

La perte DK L , diminue, car elle cherche à coller au prior puis elle augmente dans un second
temps. On évite le phénomène du posteriori-collapse. Pour la perte de reconstruction, elle décroît à
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différente vitesse. Elle décroît plus lentement à partir du moment où la divergence de Kullback-Leibler
commence à croître. Ceci illustre le compromis qu’il faut faire entre ces deux termes.

II.7 Apprentissage à l’aide du VAE Mélange de Gaussiennes

Pour ce prior, nous remarquons de moins bons résultats que pour le prior VP. Les performances
concernant la réduction de dimension avec le MoG sont bien inférieures. En effet, il y a une répartition
inégalitaire quant aux masses de probabilités dans les quatre zones d’intérêt.

(a) Histogrammes des données générées par VAE-MoG. (b) Densité du MoG sur l’espace latent

FIGURE 2.10 – Caractéristique de l’apprentissage par VAE-MoG avec la procédure de pré-entraînement
(application EM)

De plus, il est assez souvent difficile d’obtenir une convergence de l’algorithme EM à partir des
données encodées (et après initialisation de l’espace latent). On illustre ce cas dans la Figure 2.11.
Ayant constaté la nécessité d’un bon pré-entraînement, on peut penser que les performances du
VAE-MoG dans le cadre de notre étude, sont peu suffisantes.

FIGURE 2.11 – Densité du prior MoG sur l’espace latent à la fin du pré-entraînement, soit après application de
l’algorithme EM sur les données encodées dans l’espace latent.

Étant donné que le modèle VAE-VP a démontré une robustesse et une stabilité au fur à mesure
des apprentissages, nous décidons de conserver uniquement celui-ci comme modèle génératif. Nous
nous concentrons maintenant à utiliser le VAE-VP comme échantillonneur au sein de l’algorithme SS.
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Chapitre 3

Algorithme VAE et SS

L’entraînement du VAE sur les données permet d’obtenir les paramètres (θ∗,φ∗,λ∗) qui maxi-
misent l’ELBO. Ces paramètres sont déterminés à l’aide d’une descente de gradients, avec des points
d’initialisation définis par les procédures présentées dans la partie précédente. La question sui-
vante est de savoir comment intégrer un modèle génératif de type VAE, dans l’algorithme SS décrit
précédemment dans le chapitre 2.

I Subset Simulation et échantillonnage par VAE

Comme établi dans la Remarque 1, un bon noyau de transition correspond à la loi cible. En
utilisant le VAE, nous pouvons apprendre et approximer les lois conditionnelles définies dans (1.8).
Cela signifie que pour chaque densité fX |F j , nous l’approchons par un mélange infini de gaussiennes
à l’aide du VAE :

f θ
∗

X |F j
(x) =

∫
Z

pθ∗
X |F j

(x | z)pλ∗ (z)d z x ∈Rd . (3.1)

Nous utilisons ensuite ce mélange infini comme noyau de proposition indépendant de l’observation
précédente x ∈Rd , une observation provenant de la chaîne de Markov générée par l’algorithme M-H :

Q(. | x) = f θ
∗

X |F j
(.) ∀x ∈Rd . (3.2)

Cela entraînerait l’apparition de l’expression suivante pour la probabilité d’acceptation :

α(x̃, xi ) = min

{
1,

fX |F j (x̃) f θ
∗

X |F j
(xi )

fX |F j (xi ) f θ
∗

X |F j
(x̃)

}
(3.3)

= min
{

1,
fX (x̃) f θ

∗
X |F j

(xi )

fX (xi ) f θ
∗

X |F j
(x̃)

1F j (x̃)
}

(3.4)

Malgré un processus d’échantillonnage simple{
z ∼ p, z ∈Z

x ∼ p(. | z), x ∈X ,

l’expression de f θ
∗

X |F j
(x), x ∈Rd reste difficile à obtenir en raison de la nature infinie du mélange gaus-

sien. Une option consiste donc à approximer la valeur de la densité et par conséquent de l’intégrale,
en utilisant une méthode MCN :

f̂ θ
∗

X |F j
(x) = 1

Np

Np∑
n=1

pθ∗
X |F j

(x | Z (n)) avec (Z (n))n
i .i .d∼ p (3.5)

Cependant, comme pour tout estimateur, il y a une erreur d’estimation et la valeur f̂ θ
∗

X |F j
(x) n’est donc
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pas exacte. D’autant plus que nous avons déjà de l’incertitude, car f θ
∗

X |F j
est une approximation non

paramétrique de fX . Cela pose un problème pour la précision de l’algorithme M-H, où l’exactitude
de la densité du noyau de proposition dans le ratio (3.3) est cruciale. En conséquence, une autre
approche est nécessaire.

L’idée, dans ce manuscrit, est d’approcher le mélange infini de gaussienne f θ
∗

X |F j
par un mélange

fini dont on peut calculer de manière exacte la densité en tout point x ∈Rd . Voici la procédure suivie :

1. On génère {Z (1), . . . , Z (Np )}, un Np -échantillon selon le prior pλ∗

2. On tire uniformément et avec remise Np échantillons {Z̃ (1), . . . , Z̃ (Np )} dans {Z (1), . . . , Z (Np )} de

telle sorte que {Z̃ (1), . . . , Z̃ (Np )} suit le processus empirique de pλ∗ , soit p
Np

λ∗

3. Avec le décodeur Dθ∗ du VAE, on génère les distributions gaussiennes associées
(
pθ∗

X |F j
(. |

Z̃ (n))
)

n
, permettant de construire le mélange fini suivant :

Q(Np )(.) = 1

Np

Np∑
n=1

pθ∗
X |F j

(. | Z̃ (n)) (3.6)

Ce mélange fini (3.6) devient alors le noyau de proposition dans l’algorithme M-H, remplaçant
f θ

∗
X |F j

dans l’expression (3.3) par Q(Np ).

Remark 6 Le paramètre Np défini la taille du mélange gaussien. Il est choisi arbitrairement. Cepen-
dant, l’utilisateur doit garder à l’esprit qu’un entier Np élevé impliquerait un coût computationnel
pour l’évaluation de la densité Q(Np ) en un point x ∈Rd important.

Enfin, pour une amélioration des performances d’apprentissage du VAE de chaque densité fX |F j ,
nous choisissons de centrer et réduire les données d’apprentissage. Le principe repose sur la formula-
tion suivante :

Soit X ∼ fX , L = diag(Var (X ))1/2, alors U = L−1(X −E(X )) =G(X ) est la variable centrée, réduite
et sa densité a pour expression :

fU (u) =| det (G−1(U )) | fX (Lu +E(X )) (3.7)

=| det (L) | fX (Lu +E(X )) (3.8)

=
d∏

i=1
(Var (Xi ))1/2 × fX (Lu +E(X )) (3.9)

Cette expression est obtenue à partir de la formule de changement de variable.

Avec ces outils en place, nous pouvons maintenant formuler l’algorithme impliquant l’échantillon-
nage par VAE, en tenant compte de l’effet du centrage et de la réduction des données (voir algorithme
3). Cette transformation conduit à une nouvelle expression de la probabilité d’acceptation (3.10). Le
ratio de cette probabilité permet de faire disparaître le produit d’écart-type

∏d
i=1(Var (Xi ))1/2.

Nous appliquons l’algorithme qu’on nomme MCMC-VAE à l’exemple des gaussiennes tronquées
vu dans la section précédente. En résumé, on utilise la procédure d’échantillonnage expliquée ci-
dessus dans un algorithme M-H classique et dont le noyau de proposition est Q(Np ). Les points de
la Figure 3.1 représentent l’encodage dans l’espace latent des valeurs de la chaîne de Markov. On
observe qu’ils appartiennent tous aux quatre zones encodées. Enfin, les histogrammes montrent une
similarité avec la vraie distribution, néanmoins, la qualité de reconstruction n’est pas complètement
fidèle.
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(a) Encodages des valeurs de la chaîne de Markov dans
l’espace latent (points en bleu).

(b) Histogrammes des échantillons renvoyés par l’algorithme
M-H.

FIGURE 3.1 – Application d’un algorithme M-H avec échantillonnage VAE-VP afin de simuler selon la densité
de la troncature (2.23). On effectue une chaine de longueur l = 1000 et on choisit la taille du mélange gaussien
Np = 300.

Algorithm 3 Subset Simulation avec échantillonneur VAE indépendant

Require: — Seuil probabilité fixe p0

— N-échantillon de départ {X (1), . . . , X (N )}
— {Y (1), . . . ,Y (N )} = {Φ(X (1)), . . . ,Φ(X (N ))}
— Seuil limite s
— K pseudo-inputs
— Np : nombre de gaussiennes pour le mélange fini

1: On pose
←

FN

(k)
processus quantile de l’échantillon E(k) = {Y (1)

(k) , . . . ,Y (N )
(k) } et γ̂(k)

N = ←
FN

(k)
(1−p0) le

seuil considéré au ke événement et A(k) = {X (1)
(k), . . . , X (N )

(k) }, l’échantillon associé.
2: k = 1
3: while γ̂(k)

N < s do

4: On considère Ã(k) = {X (i )
(k), Y (i )

(k) > γ̂(k)
N ∀i }, par définition de γ̂(k)

N , car d

(
Ã(k)

)
= ⌊N p0⌋

5: Ũ(k) = { ˆdi ag (Var (X))× [X (i )
(k) − Ê(X)], X (i )

(k) ∈ Ã(k)} Données centrées réduites

6: Apprentissage du VAE-VP sur l’échantillon Ũ(k) pour définir le noyau de proposition :

1. Pseudo-inputs : V Pλ∗ (e1 . . . ,eK ) = (uλ∗
1 , . . . ,uλ∗

K )

2. (µλ
∗

k ,Σλ
∗

k )K
k=1 = Eφ∗ (uλ∗

1 , . . . ,uλ∗
K ) et on forme le prior VP pλ∗ définie dans (2.19).

3. {z(1), . . . , z(Np )} Np -échantillon de pλ∗ pour définir le noyau de proposition Q(Np )(.) définie
par (3.6).

7: On tire uniformément avec remise dans Ã(k) N échantillons : A∗
(k) = {X ∗(1)

(k+1), . . . , X ∗(N )
(k+1)}

8: On tire uniformément avec remise dans Ũ(k) N échantillons : U∗
(k) = {U∗(1)

(k+1), . . . ,U∗(N )
(k+1)}

9: Application de N algorithmes M-H dont chaque initialisation est un élément de A∗
(k) et U∗

(k) .
On effectue des chaînes de longueur l dont la loi stationnaire est fX |F j .
La probabilité d’acceptation pour ũ ∼Q(Np )(.) est :

min

{
1,

fX |F j

(
di ag ( ˆVar (X))ũ + Ê(X)

)
Q(Np )(ui )

fX |F j

(
di ag ( ˆVar (X))ui + Ê(X)

)
Q(Np )(ũ)

}
(3.10)

10: k = k +1
11: On pose A(k) = {X (1)

(k)[l +1], . . . , X (N )
(k) [l +1]}, E(k) = {Y (1)

(k) [l +1], . . . ,Y (N )
(k) [l +1]} et γ̂(k)

(N ) associé
12: end while

13: return P SSV AE
f = pk−1

0

car d

{
Y (i )

(k)>s, Y (i )
(k)∈E(k)

}
N
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II Application au cas 4-branches

Dans cette section, nous reprenons l’exemple test introduit dans le chapitre 1 et appliquons
l’algorithme 3. Nous utilisons un échantillon de taille N = 10 000. Ce choix est motivé par le fonction-
nement de la méthode SS, qui ne conserve que ⌊N p0⌋ échantillons à chaque étape. Ces échantillons
constituent les données d’apprentissage de notre VAE. Pour assurer la robustesse de notre modèle,
il est crucial de maintenir un nombre suffisant d’échantillons d’apprentissage, car une réduction
excessive de ce nombre pourrait compromettre la qualité du VAE.

Contrairement au chapitre 1, pour l’étude de l’estimateur P SSV AE
f , nous effectuons 50 estimations

au lieu de 100. De plus, nous introduisons deux nouvelles quantités : la taille des chaînes (qui est
variable ici) et le nombre d’estimations réussies. Nous discuterons de leur rôle et de leur importance
dans la suite.

II.1 Application de l’algorithme SS pour le cas : β= 3.5 P f = 9.3×10−4

Dimension P̂ f
SSV AE

CV ν time tailles chaînes nombre d’estimations
d = 5 9.43×10−4 0.043 1.34 178s 15 50 /50

d = 10 9.59×10−4 0.043 0.98 192s 20 50 / 50
d = 50 9.56×10−4 0.044 0.55 277s 35 47 /50

d = 100 9.53×10−4 0.042 0.42 1090s 55 45/50

(a) Résumé de la qualité de l’estimateur P SSV AE
f

Évènement F0 F1 F2 F3 F4

d = 5 0.36 0.28 0.24 0.21 0.19
d = 10 0.35 0.27 0.23 0.20 0.18
d = 50 0.34 0.25 0.21 0.19 0.18

d = 100 0.31 0.23 0.20 0.18 0.16

(b) Taux d’acceptation ρ pour chaque événement

TABLE 3.1 – Estimation par l’algorithme 3 pour l’événement où β = 3.5 et P f = 9.3 × 10−4. La probabilité
fixe p0 = 0.25. Le noyau de proposition est le mélange fini de 300 gaussiennes issues du VAE. Pour les taux
d’acceptation ρ, ce sont les taux moyennés sur l’ensemble des chaînes pour chaque événement Fi

FIGURE 3.2 – Boite à moustache pour les différents estimateurs P SSV AE
f correspondant à chaque dimension d

pour le cas β= 3.5 et P f = 9.3×10−4.

L’estimateur PV AESS
f présente un CV autour des 4% Quelle que soit la dimension, ce qui témoigne

d’une précision similaire à celle obtenue avec la méthode SS classique. Cependant, plusieurs limita-
tions de performance ont été observées pour cet estimateur. Tout d’abord, les estimations produites
sont biaisées. Bien que l’estimateur par méthode SS soit également biaisé, ce biais est généralement
d’ordre O( 1

N ), donc relativement négligeable devant N = 10 000. Ici, le biais semble plus important, et
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une explication possible pourrait résider dans le temps nécessaire pour que les chaînes de Markov
convergent vers leur état stationnaire. Pour pallier cela, nous avons tenté d’augmenter la taille des
chaînes de Markov. Toutefois, étant donné que les biais deviennent plus importants dans les dimen-
sions élevées (50 et 100), il a fallu ajuster la taille des chaînes en fonction de la dimension d . Cela pose
problème, car une augmentation excessive de la taille des chaînes se traduit par un nombre accru
d’appels au codeΦ, et comme illustrer dans la Figure 3.2, les valeurs ν restent égales ou inférieures à
1, montrant ainsi que la méthode ne parvient pas à surpasser une approche MCN dans ce cas.

Un autre aspect crucial à considérer est le nombre d’estimations réussies sur l’ensemble des 50
tentatives effectuées. Une des difficultés rencontrées lors de la mise en œuvre de l’algorithme SSVAE
réside dans l’échec de l’apprentissage du VAE à certaines étapes du processus SS. Travailler avec des
modèles génératifs comporte le risque que l’optimisation échoue parfois, menant à des solutions non
optimales. Nous avons observé des situations où les variances (Σθz ), renvoyées par le décodeur Dθ

étaient nulles ou quasi-nulles, ce qui rend impossible la construction de Q(Np ) et oblige à interrompre
l’algorithme.
Ce phénomène a été principalement constaté dans les dimensions 50 et 100, où 3 à 5 estimations
ont rencontré des problèmes d’apprentissage du VAE. Cette difficulté est en grande partie liée à la
malédiction de la dimensionnalité : dans des espaces de grande dimension, les points sont plus
éloignés les uns des autres, ce qui conduit le VAE, malgré la régularisation, à attribuer aux points
isolés une densité gaussienne avec une variance très faible.

(a) Résumé graphique du tableau des taux d’acceptation
dans 3.1, soit avec l’algorithme SSVAE.

(b) Résumé graphique du tableau des taux d’acceptations
dans 1.1, soit avec l’algorithme SS

FIGURE 3.3 – Évolution du taux d’acceptation moyen pour chaque dimension d en fonction de l’événement Fi
considéré pour le cas β= 3.5 et P f = 9.3×10−4.

En examinant le tableau des taux d’acceptation présentés dans la Figure 3.1, on observe une
différence notable par rapport à celui de la Figure 1.1 qui résulte de l’application de l’algorithme SS 2.
On résume ces deux tables dans la Figure 3.3. On constate qu’il y a une plus faible décroissance du
taux ρ lorsqu’on augmente la dimension d du problème. Ces graphiques illustrent bien la robustesse
du VAE à la grande dimension.

II.2 Application de l’algorithme SS pour le cas : β= 5 P f = 1.15×10−6

Pour le cas d’application β = 5 et P f = 1.15× 10−6, nous avons des constats similaires au cas
d’application précédent, seulement les performances face à la méthode naïve MCN sont meilleures.
Ceci n’est pas un résultat inattendu puisque la probabilité est de l’ordre de 10−6. Une méthode SS
doit-être plus performante. Toutefois, la dimension d = 100, semble poser plus de problèmes, on
remarque un biais plus important ainsi que l’apparition d’outlier (voir Figure 3.4).
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Dimension P̂ f
SSV AE

CV ν time tailles chaînes nombre d’estimations
d = 5 1.18×10−6 0.060 310.34 323s 15 50 /50

d = 10 1.18×10−6 0.063 242.56 347s 20 50 / 50
d = 50 1.27×10−6 0.057 171.16 504s 35 49 /50

d = 100 1.42×10−6 0.164 14.46 1966s 55 43/50

(a) Résumé de la qualité de l’estimateur P SS
f

Évènement F0 F1 F2 F3 F4 F5 F6 F7 F8

d = 5 0.36 0.28 0.24 0.21 0.20 0.19 0.17 0.16 0.15
d = 10 0.35 0.27 0.23 0.20 0.18 0.16 0.16 0.15 0.13
d = 50 0.34 0.25 0.21 0.19 0.18 0.16 0.15 0.14 0.14

d = 100 0.31 0.23 0.20 0.18 0.16 0.15 0.14 0.13 0.13

(b) Taux d’acceptation ρ pour chaque événement

TABLE 3.2 – Estimation par l’algorithme 3 pour l’événement où β= 5 et P f = 1.15×10−6. La probabilité fixe p0 =
0.25. Le noyau de proposition est le mélange fini de 300 gaussiennes issues du VAE. Pour les taux d’acceptation ρ,
ce sont les taux moyennés sur l’ensemble des chaînes pour chaque événement Fi

FIGURE 3.4 – Boite à moustache pour les différents estimateurs P SSV AE
f correspondant à chaque dimension d

pour le cas β= 5 et P f = 1.15×10−6.

(a) Résumé graphique du tableau des taux d’acceptation
dans 3.1.

(b) Résumé graphique du tableau des taux d’acceptations
dans 1.1.

FIGURE 3.5 – Évolution du taux d’acceptation moyen pour chaque dimension d en fonction de l’événement Fi
considéré pour

Nous explorons le comportement de notre algorithme en examinant de près la forme des densités,
en particulier celle des priors. Étant définies sur R2, il est plus simple de les visualiser. On ajoute
parfois à cette représentation l’encodage de différents points :

1. En bleu, l’encodage des échantillons d’apprentissage.

2. En violet, l’encodage des échantillons renvoyés par l’algorithme M-H
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Pour commencer, examinons le cas de la dimension 5. À cette dimension, aucun problème
d’apprentissage notable n’est observé. Au fur et à mesure que les événements progressent, la Figure 3.6
montre clairement l’apparition de quatre zones distinctes, certaines ayant des masses de probabilité
plus élevées que d’autres. Toutefois, lorsqu’on observe la Figure avec les différents points 3.7, un
décalage entre les échantillons d’apprentissage et ceux issus des chaînes de Markov devient apparent.

FIGURE 3.6 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent dans

l’espace R5

Il est important de se rappeler que seule la densité fX |F1 est approximée par le VAE avec un
échantillon distribué selon la bonne loi, i.e fX |F1 . Les autres distributions ont des approximations
basées sur des échantillons issus des précédentes chaînes de Markov. Par conséquent, on assiste à une
propagation des erreurs sur les différentes estimations f θ

∗
X |F j

, et par conséquent à une dégradation

progressive du VAE.
Lorsqu’on examine de plus près le comportement de chaque chaîne à chaque étape de l’événe-

ment, on observe qu’au sein de certaines, aucune proposition n’est acceptée. Toutefois, pour passer
des ⌊N p0⌋ échantillons qui satisfont l’appartenance à F j (voir ligne 7 de l’algorithme 3), on fait du
bootstrap, ceci induit l’apparition de doublons. Cet échantillon, avec doublons, deviendra l’entrée
des algorithmes M-H (voir ligne 9 de l’algorithme 3). Par conséquent, s’il y a un taux d’acceptation de
0 pour certaines chaînes, ceci signifie que nous avons plus de chance de retrouver des doublons au
sein des données d’apprentissage du VAE suivant.

Nous avons fait également quelques observations sur les comportements des chaînes. Par exemple,
pour cette dimension, à l’événement F1, nous avons 118 chaînes qui rejettent toutes les propositions.
Parmi, ces 118 échantillons qui n’ont pas bougé, on retrouve huit valeurs de vecteurs qui ont une
occurrence supérieure ou égale à 2. Puis au dernier événement F9, 1410 échantillons n’ont pas bougé
et parmi ces échantillons 335 valeurs de vecteur ont une occurrence supérieure ou égale à 2.

On retrouve également ces shift des données encodées pour les autres dimensions (voir annexe
II.1).
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FIGURE 3.7 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent dans

l’espace R5

Pour revenir à notre réflexion sur l’estimateur en dimension d = 100 au début de la section II.2,
il est important de souligner que cette dimension pose de sérieux problèmes d’apprentissage dans
le cadre de l’algorithme VAE-SS. Comme le montre la figure 10, le VAE peine à identifier les quatre
modes, en particulier pour l’événement F4, qui illustre bien cette difficulté. On retrouve en annexe

les graphiques des marginales des lois conditionnelles ( fX |F j ) j , pour le cas de la dimension d = 5.
On trace les marginales renvoyées par l’apprentissage VAE et on compare à l’aide d’une méthode
MCN. Il est important de noter que ces graphiques sont seulement tracés à titre indicatif, les densités
( fX |F j ) j ne définissent pas des distributions dont les composantes sont indépendantes en raison de la
présence de la présence de l’indicatrice 1F j qui empêche cela.
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Conclusion

Dans ce travail, nous nous sommes intéressés à la méthode des SS et à ses implications, en
particulier dans le contexte de l’utilisation des algorithmes MCMC. Bien que cette méthode soit
puissante, elle présente plusieurs défis en grande dimension, notamment ceux liés à la qualité des
chaînes générées. Des questions se posent naturellement quant à savoir si le régime stationnaire a été
atteint et à partir de quel moment les échantillons peuvent être considérés comme bien distribués
selon la loi cible. De plus, explorer efficacement l’espace des états reste une tâche complexe, surtout
lorsque nous avons une connaissance limitée des formes des distributions fX |F j .

Pour répondre à ces défis, nous avons proposé une méthode d’estimation des probabilités de
défaillance par SS en intégrant un modèle génératif, le VAE. L’un des objectifs principaux était d’aug-
menter les taux d’acceptation au sein de l’algorithme. Cependant, cette tâche s’est révélée extrême-
ment complexe avec l’introduction du VAE. Malgré cela, nous avons réussi à ralentir la décroissance
des taux d’acceptation avec l’augmentation de la dimension d , ce qui représente une amélioration
notable.

L’introduction du VAE avait pour but de capturer la complexité des distributions, en particulier
lorsque celles-ci présentent des structures de dépendance complexes. Cependant, dans le cadre des
SS, la dégradation progressive de la qualité des échantillons au fur et à mesure de l’avancement dans
les événements (F j ) j a entravé l’efficacité de l’apprentissage du VAE.

Il serait pertinent d’explorer de nouvelles méthodes pour améliorer le processus de récupération
des données d’apprentissage en amont du modèle VAE. Une perspective intéressante pourrait consis-
ter à utiliser des échantillons pondérés, ce qui pourrait potentiellement améliorer la robustesse et
l’efficacité de l’apprentissage, en particulier dans des contextes de grande dimension. La méthode Se-
quential Importance Sampling (SIS) peut être un point de départ de réflexion. Il s’agirait de remplacer
1F j par une fonction "lisse", par exemple la fonction de répartition d’une gaussienne [12].

Enfin, nous concluons ce rapport en abordant certaines difficultés techniques rencontrées lors de
ce stage. L’une des principales difficultés concernait la mise en œuvre des modèles VAE sur TensorFlow.
En effet, l’utilisation de la classe Model a entraîné des fuites de mémoire. Grâce au package memory-
profiler, nous avons pu surveiller l’état de la mémoire à chaque étape de notre algorithme et avons
constaté que la mémoire occupée par un modèle VAE n’était jamais libérée. Cette fuite de mémoire
provoque une consommation progressive des ressources, rendant l’exécution de l’algorithme de plus
en plus lourde.

Cette situation a rendu l’obtention de propriétés fiables sur l’estimateur P SSV AE
f plus complexe

que prévu. Effectuer plus de 15 estimations sur une machine ordinaire s’est avéré impraticable. En
conséquence, nous avons dû recourir à un supercalculateur de développement pour mener à bien
nos simulations et obtenir les résultats souhaités.
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I Preuves théoriques

Cette section contient les preuves de certaines assertions citées dans le rapport

I.1 Probabilité de défaillance pour l’exemple 4-branches

Comme introduit dans l’équation (1.11), on donne le détail du calcul pour l’approximation de la
probabilité de défaillance :

P f =P(Φ(X) ≥ 0) =P(−min{β± ti , i = 1,2} ≥ 0)

=P(max{±ti , i = 1,2} ≥β)

=P(max{| t1 |, | t2 |} ≥β)

= 1−P(max{| t1 |, | t2 |} ≤β) (11)

(cov=0)= 1−P(| t1 |≤β)2 (12)

= 1− (1−2φN (0,1)(−β))2

= 4φN (0,1)(−β)−4φN (0,1)(−β)2

≈ 4φN (0,1)(−β)

Le passage de la ligne (11) à (12) est possible car en calculant la covariance entre t1 et t2, on
s’aperçoit que celle-ci est nulle

cov(t1, t2) = 1

d

[
cov

( d∑
i=1

xi ,
⌊d/2⌋∑
i=1

xi

)
−cov

( d∑
i=1

xi ,
d∑

i=1+⌊d/2⌋
xi

)]
= 1

d

[
⌊d/2⌋−⌊d/2⌋

]
= 0

Et de même pour cov(t1,−t2) = cov(−t1, t2) = cov(−t1,−t2) = 0.

I.2 Calcul de l’entropie dans le cas Gaussien

On suppose que l’espace latent Z est Rdz . On a pour tout z ∈ Rdz , l’expression de l’opposé de
l’entropie définie dans 2.9.

Eqφ(·|x)[log qφ(Z | x)] =
∫

log
(
qφ(z | x)

)
qφ(z | x)d z

=
∫ exp

[
− 1

2

∑dz
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(
zi−µφx (i )

)2(
Σ
φ
x

)
i i

]

(2π)dz /2

(
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(
Σ
φ
x

)
i i

)1/2
×
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−d

2
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2

dz∑
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Σ
φ
x

)
i i

)
+ −1

2

dz∑
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(
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φ
x

)
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)
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i i
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(
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(
Σ
φ
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)
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d z
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2
log(2π)− 1

2
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i=1
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Σ
φ
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− 1

2
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[

2π
(
Σ
φ
x

)
i i

e
]
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II Graphiques supplémentaires

II.1 Graphiques des espaces latents lors de l’application de l’algorithme VAE-SS

FIGURE 8 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent dans

l’espace R10

FIGURE 9 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent dans

l’espace R50
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FIGURE 10 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent dans

l’espace R100

FIGURE 11 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent

dans l’espace R10. Les points bleus correspondent aux données d’apprentissages encodées et ceux en violet aux
échantillons issus des chaînes de Markov encodées.

44



Master 2 IS Rapport Stage

FIGURE 12 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent

dans l’espace R50. Les points bleus correspondent aux données d’apprentissages encodées et ceux en violet aux
échantillons issus des chaînes de Markov encodées.

FIGURE 13 – Densité VP apprise à chaque évènement F j du SS lorsque les données d’apprentissage vivent dans

l’espace R100. Les points bleus correspondent aux données d’apprentissages encodées et ceux en violet aux
échantillons issus des chaînes de Markov encodées.
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II.2 Graphiques des marginales lors de l’application de l’algorithme VAE-SS

FIGURE 14 – Histogramme des marginales pour fX |F1 , en haut les histogrammes basés sur la distribution apprise
par le VAE à la première étape de l’algorithme SS, en bas une approximation des marginales par méthode MCN.

FIGURE 15 – Histogramme des marginales pour fX |F2 , en haut les histogrammes basés sur la distribution apprise
par le VAE à la deuxième étape de l’algorithme SS, en bas une approximation des marginales par méthode MCN.
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FIGURE 16 – Histogramme des marginales pour fX |F3 , en haut les histogrammes basés sur la distribution apprise
par le VAE à la troisième étape de l’algorithme SS, en bas une approximation des marginales par méthode MCN.

FIGURE 17 – Histogramme des marginales pour fX |F4 , en haut les histogrammes basés sur la distribution apprise
par le VAE à la quatrième étape de l’algorithme SS, en bas une approximation des marginales par méthode MCN.
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