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Table des sigles et des abréviations

1. SVR : Support Vector Regression

2. MSE : Mean Square Error

3. MAE : Mean Absolute Error

4. R2 : Coefficient de détermination

5. RSSI : Received Signal Strength Indicator

6. SNR : Signal Noise Ratio

7. SF : Spread Factor
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Introduction
Au fil des années, les villes ont vu émerger une multitude d’infrastructures diverses, allant des bu-
reaux et commerces aux entrepôts logistiques, hôtels et services. Cette variété d’infrastructures,
essentielle au développement urbain et économique, est regroupée sous le terme "Immobilier
Tertiaire". Bien que ces infrastructures soient utiles dans la vie de tous les jours elles sont
malheureusement aussi la cause de grandes consommations énergétiques.

En effet d’après le Ministère de la transition écologique [1], aujourd’hui l’immobilier tertiaire
représente 40% des consommations énergétiques et 20% des émissions de gaz à effet de serre de
l’immobilier global. Au-delà du fait d’avoir un impact écologique, en 2019 le secteur tertiaire a
dépensé près de 22,5 milliards d’euros pour sa consommation finale d’énergie.[2] Ainsi l’immobilier
tertiaire soulève deux problématiques principales : une problématique écologique et économique.

Il est primordial de répondre aux impératifs de réduction des consommations énergétiques et
des émissions de gaz à effet de serre des bâtiments, tout en facilitant la mise en conformité avec
les réglementations environnementales. Cet objectif inclut le respect des normes en matière
d’efficacité énergétique, de gestion des déchets et de réduction des émissions de carbone. Il est
également essentiel de valoriser les actifs des entreprises en investissant dans des infrastructures
spécifiques et des technologies adaptées, qui permettent de rendre les bâtiments plus économes
en énergie et de réduire la pollution, contribuant ainsi à diminuer les coûts d’exploitation.

Pour répondre à ces objectifs de réduction des consommations énergétiques, des émissions
de gaz à effet de serre et de mise en conformité avec les réglementations environnementales,
l’entreprise iQspot, dans laquelle j’ai effectué mon stage de fin d’études, propose une solution
basée sur l’utilisation de la technologie. Concrètement, l’entreprise installe des capteurs sur les
compteurs d’énergie des bâtiments, permettant ainsi de suivre leur consommation en temps
réel. Ces capteurs, au cœur du système, jouent un rôle essentiel dans le suivi des performances
énergétiques des bâtiments. Ma mission lors de ce stage a été de développer un moyen d’anticiper
la fin de vie des batteries de ces capteurs, en analysant leur évolution dans le temps pour fournir
à l’entreprise des prévisions précises sur leur durée de vie restante.

Le plan que je vais suivre lors de ce rapport est le suivant : Après une présentation de l’entreprise
et une explication détaillée du fonctionnement des capteurs, nous aborderons les objectifs
spécifiques de ce projet. Ensuite, nous décrirons les sources de données et les étapes de pré-
traitement appliquées. L’analyse se poursuivra avec l’application de méthodes d’apprentissage
supervisé, ainsi que la présentation des différents modèles utilisés, pour enfin conclure par une
évaluation des résultats obtenus.

6/50



Rapport de Stage

1 Contexte et Objectifs

1.1 Présentation de l’entreprise
Située à Bordeaux, iQspot est une entreprise créé en 2015 par deux ingénieurs, Julien Bruneau
et Quentin Enard, voulant mettre au profit de l’écologie leurs connaissances technologiques afin
d’accélérer la transition immobilière durable.

L’entreprise s’articule autour de quatre pôles principaux. Voici un organigramme récapitulatif
de ces pôles Figure 1 :

iQspot

Julien Bruneau
Directeur général

Quentin Enard
Directeur technique

Pôle Marketing,
Communication &

Finance
Pôle Energie Manager Pôle Déploiement

& Instrumentation Pôle Développement

Figure 1: Organigramme d’iQspot

• Le pôle marketing, communication et finance a pour rôle de rendre l’entreprise visible
auprès des clients actuels mais surtout auprès de futurs clients potentiels.

• Le pôle énergie management analyse les données des consommations des différents bâti-
ments en temps réel et accompagne les clients pour réduire leurs consommations grâce à
des réglages de leurs équipements et ainsi décarboner leur parc immobilier.

• Le pôle déploiement et instrumentation s’occupe d’installer les capteurs sur les compteurs
des bâtiments et d’assurer leur maintenance.

• Le pôle développement, travaille à l’élaboration de la plateforme fournie ainsi qu’à sa
maintenance

Bien que le siège de l’entreprise se trouve à Bordeaux, l’entreprise possède aussi une antenne sur
Paris. Ces 4 pôles sont donc répartis dans ces deux villes. Pour ma par j’ai pour ce stage rejoint
le "pôle développement" supervisé par Quentin Enard, en tant que stagiaire data scientist sous
la direction de ma tutrice Myiam Lopez.
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Pour répondre à ces enjeux, iQspot a développé et commercialisé non seulement un outil de
suivi en temps réel des consommations énergétiques des bâtiments, mais également un service
d’accompagnement personnalisé. Ce service, assuré par une équipe d’experts en efficacité
énergétique, aide les clients à interpréter les données collectées et à mettre en œuvre des actions
concrètes pour réduire l’impact environnemental de leurs bâtiments, tout en maintenant le
confort des locataires. Ce double dispositif apporte une solution complète aux investisseurs
immobiliers, leur permettant de collecter, analyser, et optimiser la gestion énergétique de
leur parc immobilier. On appelle parc immobilier l’ensemble des propriétés immobilières qui
appartiennent à la même société. iQspot compte aujourd’hui une trentaine de clients et pilote
en temps réel 535 bâtiments correspondant à plus de 4,1 millions de m2 de parc immobilier,
répartis dans cinq pays en Europe. Mais surtout iQspot a permis d’éviter l’émission de plus de
24 609 tonnes de CO2.

Ainsi, iQspot collecte les données énergétiques en temps réel depuis les compteurs d’énergie des
bâtiments mais peut aussi agréger des données antérieures sur la base de factures ou encore
de données des fournisseurs d’énergie. Pour collecter ces données depuis les compteurs, iQspot
installe des capteurs sur les bâtiments afin de suivre les consommations énergétiques (électricité,
gaz, réseau urbain) en eau et des indicateurs de confort tels que le CO2, la température intérieure,
l’humidité, l’éclairage, le bruit et même le suivi de la production de déchets.

Ces données sont ensuite consultables sur la plateforme App iQspot, représentée par la Figure 2.
L’application est accessible aux clients, leur permettant de valoriser leurs données sous forme de
courbes de suivi en temps réel et de répondre aux exigences réglementaires.

Figure 2: Illustration d’une partie de l’application représentant la synthèse du suivi énergétique
d’un bâtiment

Sur cette figure nous avons une représentation de l’onglet synthèse de l’application App iQspot.
Cet onglet permet d’avoir une visualisation globale sur tous les types de consommations
énergétiques présentes pour un bâtiment et la consommation relevée de chaque fluide par mois.
Sur cette page nous avons aussi des renseignements sur le type de bâtiment, la surface couverte
de celui-ci et le nombre de capteurs qui y sont déployés.
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1.2 Problématique
Les capteurs sont au coeur de l’entreprise iQspot, un capteur dysfonctionnant ou n’ayant plus de
batterie peut entraîner de mauvaises informations sur les données ou même tout simplement plus
de données du tout. Si cela ce produit, la promesse de suivre les consommations énergétiques
des bâtiment en temps réel faites par iQspot à ses clients est compromise. En moyenne un
capteur vie 5 ans, toutefois il est possible que certain capteurs arrêtent de fonctionner avant.

Ainsi une solution doit être trouvée pour empêcher l’arrêt inattendu de la batterie des capteurs
et la perte de données entraînée par la même occasion. Une seule solution est possible:
"prédire l’épuisement de la batterie des capteurs et leur temps de vie restant".

Actuellement au sein de la boîte deux modèles sont déjà mis en place pour apporter des
informations sur l’état actuel des batteries des capteurs. Un premier modèle constructeur qui
calcul la batterie restante en faisant une différence normalisée entre la tension aux bornes de la
pile du capteur, et la tension minimale nécessaire. Et un second modèle physique proposé par
l’équipe instrumentation qui a mis en place un calcul de la durée de vie de la batterie en fonction
de plusieurs variables comme la capacité de la pile ou du courant de décharge. Toutefois les
résultats obtenus par ces deux modèles sont loin d’être fiables à 100%. De nombreux résultats
sont aberrants et ne peuvent pas être pris en compte.

1.3 Objectifs
La mission qui m’a été donnée pour ce stage a pour objectif d’apporter une nouvelle solution
qui sera de préférence meilleure que les deux déjà proposés, sinon complémentaire. En effet
mon rôle de stagiaire data scientist va permettre d’aider l’entreprise à avoir une idée de la durée
de vie restante des capteurs ainsi que plus d’informations sur l’évolution de la batterie dans le
temps. Trouver un troisième modèle qui pourra répondre à ces attentes va donc permettre:

• d’éviter au maximum la perte de données

• optimiser les déplacements prévu pour changer les capteurs

En effet cela permettrait de prendre en charge les équipements en fin de vie, et d’anticiper leur
remplacement, avant que ces derniers soient définitivement obsolètes. Ceci entraîne donc un
gain de temps, un gain d’argent et une baisse de pollution apporté par les déplacements en
transports.
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2 Présentation des capteurs

2.1 Modèles de capteurs
Comme expliqué précédemment les capteurs sont installés sur les différents compteurs des
bâtiments afin de collecter leurs consommations énergétiques, que ce soit pour l’eau, l’électricité,
le gaz, ou encore l’énergie thermique. Toutefois la manière dont les capteurs récupèrent les
données est différente selon le type de compteur. Pour cela il existe différents modèles de
capteurs, mais trois ressortent tout particulièrement : les modèles Flash’O, Fludia et Sens’O.

• Les capteurs Flash’O sont utilisés pour des compteurs électriques équipés de LED, et
captent les impulsions lumineuses émises. Pour en déduire les consommations, il faut alors
multiplier chaque impulsion lumineuse par le poids d’impulsion du compteur qui est en
Watt heure (Wh) correspondant au nombre de Wh consommé par l’impulsion lumineuse.

• Les capteurs Fludia sont d’autres modèles utilisés pour la collecte des consommations
électriques, cependant ils s’adaptent aussi bien aux compteurs à LED qu’aux compteurs à
roue.

• Les capteurs Sens’O représenté sur la figure ci-dessous Figure 3, sont des capteurs utilisés
pour relever les consommations sur les compteurs d’eau, de gaz ou d’énergie thermique.
Ces capteurs sont waterproof car ils sont installés dans des zones humides voire immergées,
ou près des compteurs de gaz. Ils peuvent aussi être utilisés pour lire les consommations
électriques. La particularité de ces capteurs c’est qu’ils peuvent relever plusieurs index, et
donc les données de plusieurs compteurs à la fois. Nous reviendrons plus tard sur cette
notion d’index. De plus il existe 3 types de Sens’O : Sens’O IP68, Pulse Sens’O et Sens’O
ATEX.

Figure 3: Exemple d’un capteur Sens’O
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2.2 Différents Réseaux
Une fois que les capteurs ont relevé les données de consommation elles sont transmises vers des
serveurs centraux ou des services cloud où elles peuvent être stockées, analysées puis utilisées.
Cette transmission des données est gérée via des réseaux "IoT" : Internet of things, publics
comme LoRa, Orange et Objenious. Toutefois dans certaines zones des bâtiments, le signal de ces
réseaux peut être faible ou inexistant. Pour pallier ce problème, des passerelles réseau nommées
gateways disposant d’une antenne externe, sont utilisées pour permettre aux équipements de
bénéficier d’un bon signal dans les zones mal couvertes et garantir une transmission fiable
des données, même dans ces zones. Ainsi le rôle des passerelles est d’envoyer les données des
capteurs vers un serveur central ou un service cloud où elles sont analysées et stockées. Les
capteurs peuvent alors utiliser les réseaux "IoT" publics, mais aussi le réseau LoRa privé dans
le cadre des gateways. De plus, il est possible d’associer aux gateways un nombre quasi infini
de capteurs. Toutefois même s’il existe plusieurs réseaux les données des capteurs ne sont pas
nécessairement envoyées sur un seul, elles peuvent être envoyées simultanément sur deux voire
trois réseaux.

2.3 Collecte des données
Ainsi avant que iQspot n’ai accès à l’ensemble des données des capteurs il faut passer par
plusieurs étapes. La première étape est l’audit effectué par les "Energy managers".
En effet, l’installation d’un nouveau bâtiment ne se résume pas simplement à la pose de capteurs.
L’audit consiste à répertorier l’ensemble des compteurs à suivre, ainsi qu’à définir un plan de
comptage. On appelle plan de comptage une stratégie visant à mesurer, analyser et représenter
les zones et les consommations à suivre dans le bâtiment. Il sert par la suite de base pour définir
l’installation des capteurs. En effet comme expliqué précédemment un capteur peut être relié
à un seul ou plusieurs compteurs, ceci est déterminé grâce au plan de comptage. Une fois les
capteurs installés sur les compteurs, reste à collecter les données de ceux-ci. La collecte de
données des compteurs par les capteurs ce fait à chaque impulsions lumineuses des compteurs.
L’index dont on a parlé avant, permet de représenter quel compteur a émis une impulsion et
indique le nombres de pulsions entre la dernière fois que le compteur a été allumé jusqu’au
moment t. Une fois les données collectées, elles sont ensuite centralisées via les différents réseaux
sur une base de données qui va être décrite dans la suite de ce rapport.

3 Matériel

3.1 Environnement de travail
Pendant mon stage, tous mes développements ont été réalisés en Python. J’ai utilisé
l’environnement Anaconda pour organiser efficacement mon travail. Anaconda permet de
créer des environnements indépendants, évitant ainsi les conflits de packages et facilitant
l’installation des bibliothèques nécessaires telles que NumPy, Pandas, et Matplotlib, grâce à son
gestionnaire de packages, conda. Pour le développement en Python, j’ai principalement travaillé
sur l’IDE (environnement de développement intégré) Spyder. De plus, pour la gestion du code
source et la collaboration avec l’équipe, j’ai utilisé la plateforme Bitbucket. Bitbucket est une
plateforme de gestion de code source qui permet aux développeurs de collaborer sur des projets
de développement logiciel de manière efficace et structurée.
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Pour accéder aux données des différents capteurs, l’entreprise utilise MongoDB, une base de
données NoSQL orientée documents. Les bases de données NoSQL sont conçues pour gérer de
grandes quantités de données diversifiées, non structurées ou semi-structurées, et offrent une
grande flexibilité. Contrairement aux bases de données SQL, elles n’ont pas de schéma fixe, ce
qui signifie que chaque document peut avoir une structure différente. De plus, elles peuvent
facilement s’étendre en ajoutant des serveurs. En effet, les bases de données SQL utilisent des
tables pour stocker des données de manière relationnelle, avec des structures organisées en
lignes et colonnes et des schémas rigides.

MongoDB stocke donc les données sous forme de documents analogue à une ligne dans une base
de données relationnelle, permettant des structures de données variées au sein d’une même
collection. Les collections, équivalentes aux tables dans une base de données relationnelle, sont
des ensembles de documents de structures flexibles contenant des paires clé-valeur. Chaque
paire clé-valeur se compose d’une clé, un identifiant unique référenciant la valeur associée, et
d’une valeur, l’information ou les données associées à la clé.

Dans le cas de l’entreprise une collection représente donc un réseau sur lequel les données des
capteurs ont été envoyées et un document contient l’ensemble des données d’un capteur (voir
Figure 4 ).

paire clé-valeur
Document MongoDB

Figure 4: Visualisation d’un document MongoDB

Pour mon sujet de stage se sont donc les collections NkeLora, Objenious et Orange qui vont
m’intéresser.

3.2 Description de la base de donnée
Chaque capteur utilisé dans cette étude est capable d’émettre plusieurs indicateurs différents
et à différentes fréquences. Cependant, en fonction du modèle de capteur, ces indicateurs ne
sont pas représentés de manière uniforme dans l’ensemble de la population de capteurs. En
d’autres termes, la présence ou la fréquence de certains indicateurs peut varier en fonction du
modèle de capteur ou des conditions d’enregistrement. Face à cette hétérogénéité, nous avons
choisi de réduire le champ des indicateurs à exploiter. Les indicateurs sélectionnés, qui sont
représentatifs et suffisamment disponibles dans notre ensemble de données ont été retenus pour
la construction de mon jeu de données. Ils seront détaillés dans les sections suivantes.
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• L’indicateur de type datetime : horodatage

→ L’horodatage indique la date, l’heure précise auxquelles une mesure a été enregistrée
par le capteur, ainsi que le fuseau horaire car certains bâtiments peuvent être à l’étranger.

• Les indicateurs de type chaîne de caractère : message et données brutes.

→ L’indicateur message indique le type de message envoyé par le capteur

→ L’indicateur données brutes représente les informations originales, non traitées et
non transformées, collectées directement à partir de la source. Les valeurs de l’indicateur
données brutes sont des chaînes hexadécimales dont la taille dépend du type d’information
envoyée par le capteur.

• Les indicateurs de type flottant : batterie et SNR

→ L’indicateur batterie représente le niveau de batterie du capteur au moment de la
mesure.

→ L’indicateur SNR Signal Noise Ratio, correspond au résulat du rapport signal
bruit

et
s’exprime en décibel (dB).

• Les indicateurs de type entier : index, RSSI et SF

→ L’indicateur index permet de distinguer les différents compteurs associés à un capteur,
si celui-ci surveille plusieurs compteurs.

→ L’indicateur RSSI Received Signal Strength Indicator, utilisé pour mesurer la puissance
de réception du signal radio en décibels-milliwatts (dBm) issu d’une antenne, et fournit
l’intensité du signal reçu sur une échelle de 0 à 5V. Ainsi plus le niveau de puissance
du signal est élevé, plus le RSSI est fort, ce qui indique que la qualité du signal est
meilleure. À l’inverse, un niveau de puissance de signal plus faible se traduit par un RSSI
plus faible, indiquant une qualité de signal plus faible. Pour les capteurs alimentés par
batterie, il est cependant conseillé d’éviter les valeurs RSSI inférieures à -97 dBm et de
viser la valeur RSSI la plus élevée possible afin d’éviter les pertes de paquets de données
par interférences et de prolonger la durée de vie de la batterie autant que possible. En
effet lorsqu’un paquet de données est perdu par exemple lorsque le RSSI est faible,le
capteur doit retransmettre ce paquet jusqu’à ce qu’il soit correctement reçu ou jusqu’à ce
que le nombre maximum de tentatives de retransmission soit atteint. Chaque retrans-
mission nécessite l’utilisation de l’énergie de la batterie car il doit rester actif plus longtemps

→ L’indicateur SF Spreading Factor, correspond au facteur d’étalement du signal, il est
lié au mécanisme qui adapte la puissance d’émission et la vitesse de transmission aux
conditions du réseau dans lesquelles se trouve l’objet. Le SF peut varier entre 7 et 12,
ainsi, plus il sera grand, plus la portée du signal sera élevée, mais plus la transmission des
données sera lente et donc plus il fera consommer de la batterie
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Ainsi, dans mon analyse, j’exploite ces différents indicateurs afin de construire mon jeu
de données. L’indicateur données brutes est exploité en extrayant la taille en octets des
chaînes hexadécimales, sachant qu’un caractère correspond à un demi-octet. Par exem-
ple, une chaîne typique de 26 caractères hexadécimaux équivaut à 13 octets. En général,
plus il y a de données à traiter (en octets), plus la consommation de batterie du capteur augmente.

Concernant les indicateurs de qualité de signal (RSSI, SNR, SF), ils m’ont permis de comprendre
comment la qualité de la communication affecte la consommation de la batterie. Par exemple,
un RSSI faible ou un SF élevé entraînent une plus grande consommation d’énergie, ce qui réduit
la durée de vie du capteur.

3.3 Existant
Pour rappel, l’objectif de mon stage chez iQspot est de prédire la durée de vie restante
des batteries des capteurs. Actuellement, un indicateur fournis avec les capteurs et un
modèle physique proposé par l’équipe instrumentation existent déjà pour répondre à cette
problématique, mais aucun des deux n’est véritablement fiable.

Les capteurs sont équipés d’un indicateur par défaut, défini par le constructeur, qui mesure
la tension de la pile. Cependant, cet indicateur s’est révélé peu fiable. En effet, les valeurs
affichées ne permettent pas de suivre l’évolution progressive de l’état de la batterie. La tension
reste stable au maximum, puis chute soudainement à 0 sans transition, ce qui rend impossible
l’anticipation de la fin de vie de la batterie.

L’équipe a également proposé une solution basée sur un modèle physique, dont les paramètres
sont fixés par des a priori fournis par le constructeur concernant la consommation en mAh.
Cependant, ces paramètres fixes ne reflètent pas les conditions réelles d’utilisation des capteurs,
qui varient selon l’environnement et la fréquence d’envoi des données.

Ainsi, face à ces limitations, l’objectif de mon stage a été de m’intéresser à une approche
data-driven, qui repose principalement sur les données collectées par les capteurs pour orienter
les décisions, stratégies, et actions. Pour que cette approche soit efficace, il est important de
constituer un jeu de données cohérent et fiable. C’est sur la base de ces données que nous
pourrons construire un modèle de prédiction capable de mieux anticiper la durée de vie restante
des batteries, en tenant compte des conditions réelles d’utilisation.
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4 Méthodologie

4.1 Création du jeu de données
L’objectif étant de prédire la durée de vie restante des batteries de ces capteurs, il est essentiel
que le modèle s’entraîne sur des capteurs dont la batterie est déjà épuisée, en apprenant de
leur historique. Cependant, pour rendre cette prédiction possible, nous avons besoin d’un
indicateur de l’état de santé du capteur, une sorte de jauge telle que le processus de déclin ou
de dégradation du capteur au fil du temps, permettant ainsi de mesurer la santé de la batterie.
Malheureusement, nous ne disposons pas de données concrètes sur cet indicateur de santé. Pour
surmonter cette contrainte, nous nous concentrons sur un groupe de capteurs pour lesquels
nous sommes sûrs que leur état de santé est actuellement nul. En d’autres termes, ces capteurs
sont considérés comme non fonctionnels, ce qui nous permet d’estimer leur état de santé
à chaque moment de leur vie. Ces capteurs serviront donc de base pour l’entraînement du modèle.

Pour cela, l’équipe instrumentation m’a fourni une liste de 65 capteurs identifiés comme
étant non fonctionnels. Les collections Nkelora, Objenious et Orange sont composées de 5
103 capteurs qui envoient des informations toutes les heures. Afin de pouvoir décrire la vie
de ces 65 capteurs, j’ai constitué un jeu de données basé sur les mensualités. C’est-à-dire
que chaque instance du jeu de données correspond à la représentation de la vie d’un capteur
jusqu’à un instant t, t étant exprimé en mois. Le modèle est donc entraîné sur cette population
uniquement, en se basant sur l’historique de leurs performances. Nous avons choisi de nous
baser sur des données mensuelles plutôt que journalières, car en situation de production, il est
peu probable qu’une prédiction quotidienne soit nécessaire.

Ainsi mon jeu de données sera constitué d’un ensemble X et de la variable à prédire Y. X
représente l’ensemble des instances, où chaque instance, notée x_n, est un vecteur qui décrit
l’historique de vie d’un capteur jusqu’à un instant t, t étant exprimé en mois. Chaque instance
x_n peut donc être vue comme un instantané de l’historique de vie d’un capteur à un moment
donné. La variable Y est la variable à prédire, correspondant à la durée de vie restante du
capteur, en jours. Autrement dit, Y est l’étiquette des instances qui représente le nombre de
jours restant avant que la batterie du capteur ne soit complètement épuisée, à partir du moment
t. Plus t avance dans le temps, plus Y diminue, car le capteur se rapproche de la fin de sa vie.
En conclusion, le modèle apprend à partir des instances dans X (notées x_n) pour prédire Y,
en fonction de l’historique du capteur jusqu’à l’instant t.

Identifiant Instance avec la valeur y associée
ID1 x1 → Y1 = 120 jours
ID1 x2 → Y2 = 90 jours

| ...
ID1 xn → Yn = 10 jours
ID2 x

′
1 → Y1 = 150 jours

| ...
ID2 x

′
n → Yn = 5 jours

Table 1: Tableau représentatif de deux instances et la valeur y associée.

Cette Table 1 représente, de manière simplifiée, l’historique de vie d’un capteur, représenté par
les instances, associé à une durée de vie restante, représentée par la variable Y.
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4.2 Apprentissage supervisé
L’apprentissage supervisé consiste à utiliser des jeux de données étiquetés pour entraîner un
modèle basé sur des algorithmes. Un algorithme est une suite d’instructions ou de règles précises
qu’un ordinateur suit pour résoudre un problème ou effectuer une tâche. Dans le contexte de
l’apprentissage supervisé, ces algorithmes sont conçus pour apprendre à partir des données, en
classant les informations ou en prédisant des résultats.
L’apprentissage supervisé permet de traiter deux types de problèmes :

• La classification : Cette méthode produit une réponse dont les valeurs appartiennent à un
ensemble fini de catégories. Elle consiste à regrouper des données en catégories distinctes.
Au lieu de prédire une valeur continue, comme le fait la régression, la classification assigne
chaque donnée à un groupe spécifique en fonction de ses variables.

• La régression : Cette méthode permet d’établir la relation entre les variables prédictives
et la variable à prédire. Il est couramment utilisé pour générer des projections ou des
prédictions basées sur l’apprentissage supervisé.

Dans le cadre de mon stage, l’objectif est de prédire le moment où les capteurs cesseront de
fonctionner en raison de la décharge de la batterie. Bien que l’on aurait pu aborder ce problème
en termes de classification, nous avons choisi d’utiliser une approche de régression. La régression
est plus appropriée ici, car elle permet de prédire une valeur continue, c’est-à-dire le temps de
vie restant avant l’arrêt du capteur.

Pour procéder à l’analyse en apprentissage supervisé, le jeu de données est divisé en un ensemble
d’apprentissage et un ensemble de test. L’ensemble d’apprentissage est utilisé pour que les
différents modèles s’entraînent et s’améliorent afin de produire le résultat souhaité. L’ensemble
de test, quant à lui, est un jeu de données indépendant du jeu de données d’apprentissage
utilisé pour évaluer la performance du modèle et vérifier sa fiabilité. L’ensemble de test
sert donc principalement à évaluer les performances du modèle ajusté sur le jeu de données
d’apprentissage. L’évaluation est réussie lorsque le modèle performe bien sur des données qu’il
n’a jamais vues auparavant.

L’objectif est que la performance du modèle, une fois ajusté sur l’ensemble d’apprentissage, soit
comparable à celle obtenue sur l’ensemble de test. En d’autres termes, nous visons à ce que
l’erreur relative soit faible et que le modèle généralise bien, montrant des résultats similaires
sur les données d’entraînement et de test. Pour cela, la performance du modèle est mesurée à
l’aide de scores de performance, qui évaluent le nombre d’erreurs faites par le modèle sur les
ensembles d’apprentissage et de test. Celle-ci permet de mesurer à quel point les prédictions du
modèle s’éloignent des valeurs réelles. Pour minimiser cet écart, le modèle est ajusté jusqu’à ce
que l’erreur soit suffisamment réduite.

Comme expliqué précédemment, l’apprentissage supervisé utilise des jeux de données étiquetés.
Dans le cas d’un problème de prédiction, le jeu de données d’entraînement se compose de
x_train, qui contient les variables de prédictions et de y_train, qui est la variable cible à
prédire. Le même découpage est effectué sur le jeu de données de test. Ainsi, le modèle ajusté
sur l’ensemble d’apprentissage (x_train, y_train) apprend à établir une relation mathématique
entre les instances de l’ensemble X et la variable à prédire Y.
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Cette relation mathématique est composée de paramètres induits par les données. Une fois que
le modèle est formé, il est testé sur les variables prédictives de l’ensemble de test, x_test. Le
modèle utilise les connaissances acquises lors de l’entraînement pour prédire la variable nommée
y_pred, dont on souhaite les valeurs proches de celles de la variable y_test, la variable cible
réelle du jeu de test. Pour vérifier cette similitude, on compare y_pred à y_test à l’aide de
scores, qui seront développés dans la partie Évaluation.

De plus, afin d’obtenir des résultats plus stables et d’utiliser toutes les données pour
l’entraînement, le jeu de données peut être divisé plusieurs fois en plusieurs sous-ensembles ou
"folds" de même taille, qui sont ensuite utilisés pour l’entraînement du modèle. Cette approche
est connue sous le nom de validation croisée.

La validation croisée est particulièrement utile lorsque les données sont hétérogènes. En effet,
une simple division des données peut entraîner des sous-ensembles qui ne sont pas représentatifs
de l’ensemble du jeu de données. Par exemple, 80% d’un sous-ensemble peut être très différent
des 80% d’un autre sous-ensemble, ce qui peut conduire à des scores de performance très
divergents en fonction de l’échantillonnage. Cette variation peut également se répercuter sur
les résultats en ensemble test et, à terme, sur les performances en production. En utilisant la
validation croisée, on obtient une estimation plus fiable des performances du modèle, car elle
permet de réduire la variance due à une division particulière des données.

La validation croisée est employée de deux manières :

→ Pour trouver les hyperparamètres les plus optimaux du modèle. La méthode GridSearchCV
du package scikit-learn est utilisé avec le paramètre "cv", qui définit le nombre de folds pour la
validation croisée. Cette approche permet de tester différentes combinaisons d’hyperparamètres
en utilisant la validation croisée pour chaque combinaison, afin de sélectionner celle qui
maximise les performances du modèle.

→ Pour l’évaluation des performances du modèle, la fonction cross_val_score du même package
a été employée en utilisant la validation croisée. Cette fonction calcule les scores du modèle
sur chaque fold du jeu de données et fournit une estimation plus stable des performances
en prenant la moyenne des scores obtenus. Contrairement à GridSearchCV, qui explore
différentes combinaisons d’hyperparamètres pour optimiser le modèle, cross_val_score évalue
les performances avec les paramètres fixes du modèle. Ainsi, elle permet d’obtenir une mesure
fiable de la performance du modèle sur différents sous-ensembles des données, sans optimiser les
hyperparamètres.

Une fois l’entraînement et la prédiction terminés, un jeu de données supplémentaire, qui
n’est pas soumis à la validation croisée, est normalement utilisé pour une évaluation finale.
Ce jeu de données est le jeu de données d’évaluation, obtenus à partir de capteurs, encore
en fonctionnement à ce jour. Il permet de vérifier la performance du modèle en conditions réelles.

Maintenant que le protocole à effectuer lors de la partie entraînement et prédiction a été présenté,
je vais passer à la description des différents modèles d’apprentissage supervisé que j’ai utilisés
au cours de ce stage.
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4.3 Modèles
Pour commencer les premiers modèles que j’ai testé durant ce stage sont les modèles d’analyse
de survie : Kaplan Meier ainsi que le modèle de Cox.

4.3.1 Modèle Analyse de Survie

• Kaplan Meier :
Le modèle de Kaplan-Meier est une méthode statistique utilisée principalement en analyse
de survie pour estimer la fonction de survie à partir de données de durée de vie. En résumé,
il permet de mesurer la fraction d’individus encore vivants après un certain moment t. La
courbe représentant cette fonction de survie est constituée de marches horizontales qui
diminuent à chaque événement.
L’avantage de ce modèle est sa capacité à gérer les données censurées, c’est-à-dire les
données pour lesquelles l’événement d’intérêt (dans notre cas, le décès des capteurs) n’a
pas été observé pour certains individus durant la période d’étude. Ce phénomène est
appelé « censure par la droite ».
La fonction de survie S(t) est la probabilité qu’un individu survive au-delà d’un certain
temps t. En général, cette probabilité diminue avec le temps. L’estimateur de Kaplan-Meier
fournit une estimation de cette fonction. Cette courbe de survie est en escalier, où chaque
diminution correspond à un décès observé. Elle permet de comparer les distributions de
survie entre différents groupes.

• Cox :
Le deuxième modèle d’analyse de survie que j’ai utilisé durant mon stage est le modèle de
Cox. Ce modèle est l’une des méthodes les plus couramment utilisées pour analyser des
données de survie. Le modèle de Cox, également connu sous le nom de modèle des risques
proportionnels, est un modèle de régression qui cherche à expliquer comment les variables
explicatives sont liées à un événement, dans notre cas, l’arrêt de la batterie.
Ce modèle peut être appliqué à toute situation où l’on étudie le délai avant que l’événement
d’intérêt ne survienne. Pour chaque individu, on connaît la date de la dernière observation
ainsi que son état par rapport à l’événement étudié. Cependant, pour certains individus,
l’état à la date de fin de l’étude n’est pas connu ; ces individus sont donc considérés comme
censurés. L’avantage du modèle de Cox est qu’il permet de prendre en compte ces données
même si elles sont incomplètes. Deux variables sont cruciales dans l’analyse de survie :

– La variable de survie T : qui représente le temps de survie jusqu’à la survenue de
l’événement.

– La variable d’état S : qui indique si l’événement s’est produit ou non pour chaque
individu à un moment donné.

4.3.2 Régression Linéaire multiple

La régression linéaire permet de prédire la valeur d’une variable dépendante y en fonction d’une
ou plusieurs variables indépendantes. Cette méthode établit donc une relation linéaire entre x
(l’entrée) et y (la sortie).
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Dans le cas d’une régression linéaire multiple, le modèle établit une relation entre plusieurs
variables indépendantes, appelées variables explicatives x_i, et une variable de sortie continue y,
que l’on cherche à expliquer.

Contrairement à la régression linéaire simple, qui n’utilise qu’une seule variable explicative,
la régression linéaire multiple permet d’intégrer plusieurs variables indépendantes. Cela peut
potentiellement améliorer la précision du modèle, à condition que les variables ajoutées soient
pertinentes et apportent une réelle contribution à la prédiction.
L’objectif est de trouver une fonction qui prédit y tout en minimisant l’erreur de prédiction.

Pour cet algorithme, il n’est pas nécessaire de spécifier de paramètres en entrée, les coefficients
βi sont ajustés par le modèle au cours de l’entraînement.

4.3.3 SVR

Le modèle SVR (Support Vector Regression) est un algorithme de régression basé sur les principes
du Support Vector Machine (SVM), mais adapté aux problèmes de régression. L’objectif de cet
algorithme est de trouver une fonction qui prédit y la variable cible, à partir des vecteurs d’entrée.

Le principe de SVR est de positionner cette fonction de manière à ce qu’elle sépare les données
tout en maximisant la distance, appelée « marge », entre les points de données et cette fonction.
Contrairement à la régression linéaire classique, où le but est de minimiser l’erreur de prédiction
pour chaque point de données, SVR ignore les erreurs qui se trouvent à l’intérieur de cette
marge ϵ, car les prédictions dans cette zone sont considérées comme suffisamment précises.
Seules les erreurs situées en dehors de cette marge sont pénalisées, ce qui aide à maximiser la
marge entre les points de données et la fonction prédictive.

Cependant, dans de nombreux cas, il n’est pas possible de séparer linéairement les données
dans leur espace d’origine. Pour surmonter cette difficulté, SVR utilise une technique appelée «
noyau » pour transformer les données dans un espace de dimension supérieure où une séparation
linéaire devient possible. Le choix du noyau est crucial, car il détermine la manière dont les
données sont transformées.

L’algorithme SVR comporte donc plusieurs hyperparamètres clés qui doivent être ajustés pour
obtenir des performances optimales. Les principaux hyperparamètres de SVR sont :

• Kernel : qui représente le noyau. Les choix courants de noyaux sont : linear (pour
problèmes linéaires), poly (noyau polynomial), rbf (noyau gaussien) et sigmoid (noyau
sigmoïde)

• C : qui représente le paramètre de régularisation

• Epsilon ϵ : qui définie la marge

• Gamma γ : Applicable pour les noyaux rbf, poly et sigmoid, ce paramètre définit
l’influence d’un seul exemple d’entraînement
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4.3.4 Random Forest

Le modèle de Random Forest, ou "Forêt aléatoire", est un algorithme de classification ou de
régression qui repose sur l’assemblage de plusieurs arbres de décision indépendants. Un arbre
de décision est une méthode qui divise les données en fonction de certaines conditions ou règles.
Chaque nœud de l’arbre représente une question basée sur une variable du jeu de données, et
chaque branche correspond à un résultat de cette question. Les feuilles de l’arbre représentent
les décisions finales ou les prédictions.

Bien qu’un seul arbre de décision puisse offrir des résultats précis, sa performance dépend
fortement de l’échantillon de données d’origine. Par exemple, l’ajout de nouvelles données
à l’échantillon peut modifier le modèle et les résultats de manière significative. Le modèle
Random Forest améliore la précision et la robustesse des prédictions en combinant les résultats
de plusieurs arbres de décision, chacun ayant une vision partielle et unique du problème. Le
modèle repose sur le principe que la combinaison de multiples avis (arbres) est généralement
plus fiable qu’un seul avis.

Le terme "random" (aléatoire) dans Random Forest provient du double tirage aléatoire appliqué
lors de la construction de chaque arbre, à la fois sur les observations et sur les variables. Les
deux tirages aléatoires sont les suivants :

– Tree bagging : Cette technique est basée sur un tirage avec remplacement. Pour chaque
arbre, une nouvelle base de données est créée en tirant aléatoirement des observations
(lignes) de la base de données d’origine. Certaines lignes peuvent être sélectionnées
plusieurs fois, tandis que d’autres peuvent ne pas être sélectionnées du tout. Ce principe
de diversification des arbres permet de réduire la variance du modèle.

– Feature Sampling : À chaque nœud de l’arbre, un sous-ensemble aléatoire de variables
(colonnes) est sélectionné. Seules les variables de ce sous-ensemble sont considérées pour
déterminer la meilleure division du nœud. Cela réduit la corrélation entre les arbres,
rendant le modèle plus diversifié et résilient.

Au final, tous ces arbres de décision indépendants sont assemblés. Pour un problème de
régression, la prédiction du Random Forest pour des données inconnues est la moyenne des
prédictions de tous les arbres. Pour la classification, la classe finale est celle qui a été prédite le
plus souvent.

L’algorithme Random Forest nécessite plusieurs hyperparamètres qui doivent être définis avant
l’entraînement. Voici les principaux hyperparamètres :

• n_estimators : qui représente le nombre d’arbres à utiliser dans la fôret. Plus le nombre
d’arbres est élevé, plus la performance peut être stable, mais cela augmente aussi le temps
de calcul

• max_depth : qui correspond à la profondeur maximale de chaque arbre, ce paramètre
permet de contrôler le surapprentissage (overfitting) en limitant la profondeur des arbres

• min_samples_split : qui représente le nombre minimum d’échantillons requis pour
diviser un nœud
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• min_samples_leaf : le nombre minimum d’échantillons qu’une feuille peut contenir
Dans les deux cas un nombre élevés de min_samples_split ou min_samples_leaf peut
empêcher la complexité de l’arbre.

• max_features : qui prend comme valeur : ’auto’, sqrt’, ’log2’, permet de définir le
nombre de caractéristiques à considérer lors de la recherche de la meilleure scission

Il existe d’autres hyperparamètres, mais ils n’ont pas été pris en compte ici car ils sont jugés
moins importants. Une fois ces hyperparamètres définis, le modèle Random Forest peut être
utilisé pour résoudre des problèmes de régression ou de classification.

4.3.5 Réseaux de Neurones

Un réseau de neurones est un modèle d’apprentissage inspiré du fonctionnement du cerveau
humain. Il est composé de multiples couches de neurones artificiels, qui sont des unités de calcul
simples connectées entre elles. Un réseau de neurones typique est constitué de trois types de
couches :

– Couche d’entrée (input layer) : Elle reçoit les données brutes, telles que les pixels d’une
image ou les valeurs numériques d’un tableau. Chaque neurone de cette couche représente
une caractéristique de l’entrée.

– Couches cachées (hidden layers) : Ce sont les couches intermédiaires entre l’entrée et
la sortie. Un réseau peut avoir une ou plusieurs couches cachées. Chaque neurone d’une
couche cachée reçoit des signaux des neurones de la couche précédente, effectue une somme
pondérée, applique une fonction d’activation (une transformation mathématique), puis le
résultat est transmis aux neurones de la couche suivante.

– Couche de sortie (output layer) : Elle produit le résultat final du réseau, qui peut être
une classe dans un problème de classification, une valeur numérique pour un problème de
régression, ou encore une probabilité.

Les neurones des couches cachées et de sortie sont connectés aux neurones des couches
précédentes par des poids, qui sont des paramètres ajustés pendant l’entraînement. Chaque
connexion a un poids associé qui détermine l’importance d’un neurone pour un autre.

Lors de l’entraînement d’un réseau de neurones, l’objectif est de déterminer les poids optimaux
pour minimiser l’erreur entre les prédictions du réseau et les valeurs réelles. Ce processus utilise
une méthode appelée propagation arrière : backpropagation.

• Propagation Avant Forward Propagation :
Les données d’entrée sont passées à travers les différentes couches du réseau pour générer
une prédiction. Cette prédiction est ensuite comparée à la valeur réelle pour calculer
l’erreur.

• Propagation Arrière backpropagation :
L’erreur calculée est rétropropagée (l’erreur est propagée en sens inverse) à travers le
réseau, depuis la couche de sortie vers les couches précédentes. Pour chaque poids, le
gradient est calculé en utilisant la dérivée de la fonction de perte par rapport à ce poids et
en tenant compte de l’activation du neurone dans la couche précédente. Les poids sont
ajustés en suivant ces gradients pour réduire l’erreur.
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L’algorithme de descente de gradient est une méthode utilisée pour minimiser l’erreur en
ajustant les poids du réseau. Il ajuste les poids dans la direction opposée au gradient de l’erreur
pour réduire cette perte.

Ce processus est répété sur plusieurs itérations, ce qui permet au réseau d’améliorer progressive-
ment ses prédictions en ajustant les poids de manière optimale.
Le réseau de neurones comporte plusieurs hyperparamètres qui doivent être ajustés pour obtenir
de bonnes performances. Les principaux hyperparamètres sont :

• Le nombre de couches cachées et de neurones par couche : Plus le réseau est
profond (avec de nombreuses couches) et large (avec de nombreux neurones par couche),
plus il est capable de capturer des relations complexes, mais cela augmente également le
risque de surapprentissage (overfitting).

• Le taux d’apprentissage (learning rate) : Ce paramètre contrôle la vitesse à laquelle les
poids sont mis à jour. Un taux d’apprentissage trop élevé peut entraîner une convergence
instable, tandis qu’un taux trop faible peut rendre l’entraînement trop long.

• Les fonctions d’activation : Ces fonctions introduisent des non-linéarités dans le réseau,
permettant au modèle de capturer des relations non linéaires dans les données. Les
fonctions d’activation courantes incluent : Relu, Sigmoid, Tanh

• L’optimiseur : Les algorithmes d’optimisation ajustent les poids et les biais pour
minimiser la fonction de perte. Quelques optimiseurs populaires sont :
SGD (Stochastic Gradient Descent), Adam, Adadelta

• Le nombre d’itérations (epochs) : Il s’agit du nombre de fois que le réseau passe sur
l’ensemble des données d’entraînement. Un plus grand nombre d’époques permet au réseau
d’apprendre davantage, mais au risque de surapprentissage.

• La taille du lot (batch size) : Nombre d’échantillons traités avant la mise à jour des
poids.

Pour une approche plus théorique de chacun de ces modèles, une section plus détaillée est
disponible en Annexe.

4.4 Évaluation
Comme expliqué précédemment, l’apprentissage supervisé se divise en deux étapes essentielles :
l’entraînement/prédiction et l’évaluation. Après avoir abordé la phase d’entraînement/prédiction,
il est maintenant important de se pencher sur la phase d’évaluation.

L’évaluation des modèles consiste à mesurer la capacité d’un modèle à prédire correctement
sur des données qu’il n’a jamais vues auparavant. Elle permet de comparer plusieurs modèles
pour sélectionner celui qui offre les meilleures performances selon des critères spécifiques. De
plus, l’évaluation aide à identifier et corriger des problèmes tels que le sur-apprentissage ou
sous-apprentissage, nous reviendrons sur ce point dans la partie 4.4.2.
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4.4.1 Métriques d’évaluation

Pour évaluer les performances d’un modèle, on utilise des métriques d’évaluation, qui sont des
mesures de l’erreur entre la valeur de la prédiction et la valeur de la variable Y. Le choix de la
métrique appropriée dépend notamment du type de problème (classification ou régression) et des
objectifs spécifiques du projet. Dans le cas de la régression, les métriques d’évaluation les plus
couramment utilisées sont : l’erreur absolue moyenne (MAE) et le coefficient de détermination
(R2).

• MAE : mesure l’erreur moyenne absolue entre les valeurs prédites et les valeurs réelles.
Mathématiquement elle se note : MAE : 1

n

∑n
i=1|yi − ŷi|.

Elle est facile à interpréter car elle est dans la même unité que la variable de réponse.

• R2 : mesure la proportion de la variance totale des variables dépendantes expliquée par le
modèle.
Mathématiquement elle se note : R2=1 -

∑n

i=1(yi−ŷi)2∑n

i=1(yi−ȳi)2

où n est le nombre total d’observations, y_i la valeur réelle de la i-ème observation et ŷi

la valeur prédite pour la i-ème observation.

Ainsi, la métrique MAE mesure l’erreur entre le y prédit et le y réel. Plus l’erreur est faible,
c’est-à-dire proches de zéro, plus nous serons satisfaits des prédictions obtenues par notre
modèle. L’erreur obtenue avec la MAE est facilement interprétable car elle est exprimée dans
la même unité que la variable cible, soit dans notre cas en nombre de jours restants avant le décès.

En ce qui concerne l’interprétation de la métrique R2, une valeur proche de 1 indique un bon
ajustement du modèle aux données, tandis qu’une valeur proche de 0 suggère un ajustement
médiocre.

4.4.2 Sur-apprentissage

Avoir des métriques avec des scores élevés est généralement attendu pour considérer qu’un
modèle est performant. Toutefois, si ces scores sont trop élevés, cela peut soulever des questions
concernant un possible sur-apprentissage ou sur-ajustement du modèle. Ce phénomène survient
lorsque le modèle semble fournir des prédictions précises, mais uniquement pour les données
d’entraînement, et non pour de nouvelles données. En effet, un modèle sur-appris peut être
trop adapté aux données d’entraînement, ayant mémorisé les détails spécifiques et les bruits
présents dans ces données, ce qui le rend inefficace pour prédire des résultats sur des ensembles
de données inconnus. Ainsi, un modèle en situation de sur-apprentissage pourrait produire des
prévisions inexactes sur des données nouvelles, compromettant ainsi sa performance globale.

Des scores élevés des métriques peuvent indiquer que le modèle a mémorisé les données
d’entraînement plutôt que d’avoir appris les relations générales applicables à de nouvelles
données. Pour détecter le sur-apprentissage, il existe plusieurs méthodes. Dans le cadre de
mon sujet, deux méthodes se sont avérées pertinentes : la matrice de confusion et la courbe
d’apprentissage (learning curve).
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4.4.3 Matrice de Confusion

La matrice de confusion également appelée tableau de contingence, est un outil essentiel pour
évaluer la performance d’un modèle de classification. Elle permet de comparer les résultats
prédits par le modèle avec les valeurs réelles afin de mesurer sa précision. Dans ce tableau,
chaque colonne représente une classe prédite par l’algorithme, tandis que chaque ligne représente
une classe réelle. La matrice de confusion offre une vue d’ensemble des prédictions correctes et
incorrectes, et fournit des indices précieux sur les types d’erreurs commises. Elle se décompose
en quatre catégories principales :

Vrais Positifs (VP) : la prédiction et la valeur réelle sont positives.
Vrais Négatifs (VN) : la prédiction et la valeur réelle sont négatives.
Faux Positifs (FP) : la prédiction est positive alors que la valeur réelle est négative.
Faux Négatifs (FN) : la prédiction est négative alors que la valeur réelle est positive.

La matrice de confusion est un outil précieux pour détecter les signes de sur-apprentissage.
Pour ce faire, il est utile de comparer les performances du modèle sur les données d’entraînement
et de test.

Sur les données d’entraînement, un modèle ayant sur-appris affichera généralement une matrice
de confusion avec un grand nombre de vrais positifs et de vrais négatifs, et peu de faux positifs
et de faux négatifs. En revanche, sur les données de test, un modèle sur-appris présentera
souvent une augmentation significative des faux positifs et des faux négatifs. Cela indique que
le modèle n’a pas bien généralisé aux nouvelles données. Ainsi, des écarts marqués entre les
ratios de prédictions correctes et incorrectes sur les données d’entraînement par rapport aux
données de test peuvent signaler que le modèle a mémorisé les données d’entraînement au lieu
d’apprendre des caractéristiques généralisables.

4.4.4 Courbes d’apprentissages

Les courbes d’apprentissage ou learning curves sont des outils essentiels pour évaluer la
performance des modèles. Elles permettent d’observer comment un modèle apprend et généralise
en fonction de la quantité de données d’entraînement ou le nombre d’itérations, selon qu’il
s’agit de modèles traditionnels ou de réseaux de neurones.

Courbes d’apprentissage pour les modèles traditionnels :

Les courbes d’apprentissage pour les modèles traditionnels, tels que les forêts aléatoires et les ré-
gressions linéaires, sont généralement tracées en fonction de la taille de l’ensemble d’entraînement.
L’axe des abscisses représente le nombre d’échantillons de données d’entraînement utilisés pour
entraîner le modèle, tandis que l’axe des ordonnées correspond au score de performance de
la métrique R2. Pour évaluer la généralisation d’un modèle, il est essentiel de comparer la
courbe d’entraînement et la courbe de validation. Le sur-apprentissage se produit lorsque le
score d’entraînement est élevé, mais que le score de validation est significativement plus bas,
indiquant que le modèle a trop bien appris les particularités des données d’entraînement. Le
sous-apprentissage, quant à lui, se manifeste lorsque les scores d’entraînement et de validation
sont tous deux bas et proches l’un de l’autre, suggérant que le modèle n’a pas encore suffisamment
appris.
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Courbes d’apprentissage pour les modèles de réseaux de neurones :

Les courbes d’apprentissage pour les réseaux de neurones diffèrent de celles des modèles
traditionnels, car elles sont tracées en fonction du nombre d’épochs plutôt que de la taille de
l’ensemble d’entraînement. L’axe des abscisses représente ici le nombre d’épochs, c’est-à-dire
le nombre de fois que l’ensemble complet de données a été utilisé pour entraîner le modèle.
Les réseaux de neurones nécessitent souvent beaucoup plus d’itérations pour converger et
peuvent continuer à améliorer leur performance avec l’ajout d’épochs supplémentaires. L’axe des
ordonnées, quant à lui, représente l’erreur. Pour identifier le sur-apprentissage, on compare la
courbe d’erreur d’entraînement (train loss) et la courbe d’erreur de validation (validation loss).
Une train loss qui diminue indique que le modèle apprend bien sur les données d’entraînement.
Cependant, si la validation loss commence à augmenter alors que la train loss continue de
diminuer, cela peut indiquer un surapprentissage. Un modèle bien équilibré est généralement
caractérisé par des courbes d’erreur d’entraînement et de validation qui convergent vers des
valeurs similaires à mesure que le nombre d’épochs augmente. Idéalement, la validation loss
doit être légèrement au-dessus de la train loss, et une différence significative entre les deux peut
signaler des problèmes de surapprentissage ou d’autres difficultés dans le modèle ou les données.

4.5 Évaluation en conditions réelles
Une fois que le modèle a été évalué à l’aide des métriques d’évaluation et que l’on a vérifié
l’absence de sur-apprentissage, et si les résultats des méthodes de scoring sont satisfaisants, nous
considérons alors que la phase d’entraînement et d’évaluation sur notre découpage train/test est
terminée.

Cependant, dans le contexte de notre projet, où l’objectif est de prédire la durée de vie restante
des batteries des capteurs, il est crucial de tester notre modèle sur un jeu de données indépendant.
Cette étape est essentielle pour obtenir un indicateur de performance représentatif de l’efficacité
du modèle en conditions de production. En effet, l’évaluation actuelle est insuffisante en raison
de l’échantillon réduit utilisé, qui se concentrait uniquement sur les capteurs non fonctionnels en
raison de batteries usées. Un test sur un ensemble de données indépendant permettrait de mieux
évaluer la capacité du modèle à généraliser et à fournir des prévisions fiables lorsqu’il sera déployé
en production. On se propose donc de s’appuyer sur les données des capteurs actuellement en
fonctionnement. En effet, les données utilisées pour l’évaluation initiale proviennent de capteurs
qui ont déjà atteint leur état de défaillance. Tester sur des capteurs encore actifs nous permettra
de valider la capacité du modèle à faire des prédictions sur des capteurs dont l’état est encore
en cours de changement, offrant ainsi une meilleure estimation de la performance du modèle
dans des conditions réelles d’utilisation.

Cette étape est cruciale pour garantir que le modèle fonctionne non seulement sur les données
historiques, mais qu’il peut également prédire la durée de vie des capteurs encore en activité.
Par exemple, il est possible que le modèle fonctionne bien pour identifier les capteurs dont les
batteries sont déjà usées, mais pour évaluer sa véritable efficacité, il doit aussi pouvoir anticiper
avec précision la durée de vie restante des capteurs qui n’ont pas encore montré de signes de
défaillance. Tester uniquement sur des capteurs défectueux ne donne pas une image complète
de sa performance. Il est donc essentiel d’évaluer le modèle sur un jeu de données indépendant,
incluant des capteurs à différents stades de leur cycle de vie, afin de vérifier qu’il peut généraliser
et fournir des prédictions fiables en production.
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5 Résultats et discussion
Maintenant que les différentes phases de l’apprentissage supervisé ont été présentées et que
tous les modèles utilisés durant mon stage ont été décrits, je vais aborder les résultats obtenus.
Cette section détaillera les performances des modèles, les observations clés, ainsi que les analyses
effectuées pour évaluer leur efficacité. Les courbes d’apprentissage, les métriques de performance
et les comparaisons entre les modèles seront mises en avant pour illustrer la pertinence des choix
méthodologiques effectués.

5.1 Prétraitement
5.1.1 Présentation des variables

Pour commencer cette section, je vais présenter en détail chacune des variables qui constitue
mon jeu de données. D’une part, il y a les variables quantitatives. Ces variables ont été calculées
sous forme de moyennes ou sous forme de compteurs. Puis ensuite, les variables catégorielles.

Parmis les quantitatives de type compteurs nous avons les variables nommées :
Index_total, Info_total, Info_batterie_total et Info_message_total.
En effet concernant l’index, il nous a semblé intéressant de savoir sur combien de compteur un
capteur a été associé : 1, 2 ou 3. De plus chaque champ émet son information plusieurs fois
par mois. La variable Info_total correspond donc au nombre de fois que toutes les différentes
informations ont été émises, Info_batterie_total et Info_message_total, le nombre de fois que
la variable batterie a émis une information et de la même manière pour la variable message.
Mes travaux préliminaires m’ont pas permis de démontrer un réel intérêt à conserver le nom-
bre d’information émise par variable indépendamment, sauf pour les variables batterie et message.

En termes de quantitatives moyennées nous avons cette fois-ci les variables nommées :
Moyenne_index_1, Moyenne_index_2, Moyenne_index_3 associé respectivement à chacun des
trois compteurs, Moyenne_rawddata, Moyenne_rssi, Moyenne_snr et Moyenne_sf.
La valeur de la variable index correspondant aux nombres d’impulsions entre la dernière fois que
le compteur a été allumé jusqu’à un moment t, il nous a semblé intéressant d’avoir une moyenne
de cette valeur. Concernant les données rawdata, il est aussi nécessaire d’avoir une variable qui
informe du nombre d’octets moyen utilisé. Comme expliqué, un RSSI faible et un SF élevé
peuvent être la cause d’une perte de batterie plus rapide. Ainsi, il est important d’avoir des
variables correspondant aux valeurs moyennes mensuelles de ces deux variables ainsi que du SNR.

Concernant les variables catégorielles, il y en a seulement une présente dans ce jeu de données.
Elle correspond aux différents modèles des capteurs. Le modèle du capteur étant une variable
catégorielle, elle a été encodée numériquement pour des besoins algorithmiques par des valeurs
appartenant à l’ensemble [0, 1, 2, 3, 4]. Certains capteurs n’ont cependant pas de modèle
approprié, pour cela c’est alors le chiffre -1 qui leur a été attribué. J’ai décidé de ne pas
supprimer ces capteurs car lors d’analyses préliminaires j’ai pu constater qu’il n’y avait pas de
très grandes différences statistiques sur les autres variables en fonction du modèle. Le fait de
numériser tous les capteurs qui n’ont pas de modèle attribué par -1, ne devrait pas entraîner de
biais dans la suite de l’étude.
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Mon jeu de données est constitué de 12 variables explicatives. Reste la variable à prédire, qui
est la durée de vie restante d’un capteur (en jours). Pour définir cette variable, je me suis basée
sur l’activité du capteur sur les trois réseaux combinés. Cela m’a permis de déduire l’âge du
capteur le jour où il a cessé de fonctionner, ainsi que son âge à intervalles mensuels. Cette
variable, notée Y, représente donc la variable cible que les modèles d’apprentissage supervisé
devront prédire.

En résumé, le jeu de données sur lequel j’ai travaillé est constitué de 13 variables (12 variables
explicatives et la variable Y à prédire) et 3 149 instances pour 65 capteurs. À titre d’exemple,
la table Table 2 représente une partie du jeu de données.

Instance 1 Instance 2 Instance 3
Info_batterie_total 597 624 650
Info_message_total 14 14 14

Index_total 1 1 1
Info_total 185 333 193 694 201 972

Moyenne_index1 342 763.043143 385 557.650298 417 957.202703
Moyenne_index2 0 0 0
Moyenne_index3 0 0 0

Moyenne_rawdata 22.1540 22.1545 22.1502
Moyenne_RSSI -112.88 -112.06 -112.05

Moyenne_SF 9.83 8.70 9.86
Moyenne_SNR - 5.06 -2.08 -3.56
Modèle_capteur -1 -1 -1

Durée_jours 114 83 53

Table 2: Trois instances appartenant au même capteur

5.1.2 Données manquantes

Certains capteurs utilisés pour l’entraînement sont soumis à des problème de données
manquantes. Afin d’y remédier, les données manquantes sont remplacées par une estimation
basée sur la moyenne des valeurs non manquantes.

Concernant la variable SF, le traitement doit s’effectuer différemment. En effet, la valeur du
Spread Factor se situe toujours entre 7 et 12. Nous avons donc convenu de remplacer les valeurs
manquantes par une valeur moyenne de 10. Une étude préliminaire sur le SF a été effectuée avant
mon arrivée dans l’entreprise, notamment pour la construction du modèle physique présenté en
amont. Il en est ressorti qu’un SF trop élevé entraîne des résultats biaisés, c’est pourquoi la
valeur de 10 a été considérée comme la plus juste.

5.1.3 Normalisation

Mon jeu de données comprend des variables avec des types de données différents, où certaines
valeurs numériques sont plus grandes que d’autres. Cela peut introduire un biais dans les
prédictions, car les grandes valeurs numériques pourraient dominer la modélisation.
Dans ce contexte, il est important d’utiliser la normalisation. La normalisation des données est
une technique qui standardise les variables en supprimant leur moyenne et en les redimensionnant

27/50



Rapport de Stage

à une variance de 1. En d’autres termes, elle transforme les données pour que chaque variables
aient une distribution avec une moyenne de 0 et un écart-type de 1. Cette méthode est
particulièrement utile pour certains modèles qui sont sensibles à l’échelle des variables. Dans
le cas de mon étude j’ai normalisé le jeu de données pour tous modèles traditionnels, soit le
modèle de Régression Multiple, SVR, Random Forest et le modèle de Réseau de neurones.
En normalisant, on améliore la convergence des algorithmes, la performance du modèle, et on
obtient des résultats plus fiables et comparables entre les variables.

5.1.4 Découpage entraînement/test

Comme expliqué précédemment, mon jeu de données contient des informations sur différents
capteurs dont les batteries sont épuisées, enregistrées à différents moments de leur cycle de
vie. L’objectif est d’apprendre à partir de l’historique de vie de ces capteurs pour pouvoir
prédire, sur des capteurs encore en fonctionnement, le temps restant avant leur perte d’usage.
La variable à prédire dans ce cas est le temps de vie restant de chaque capteur à partir d’un
moment t, ce qui correspond à la variable y.

Pour procéder au découpage train/test, étant donné que nous avons plusieurs instances par
capteur et un nombre limité de capteurs distincts, il est crucial d’éviter que le modèle soit testé
sur des capteurs ayant servis pour la phase d’entraînement du modèle. Si le découpage n’est pas
effectué correctement, il y a un risque que le modèle apprenne des caractéristiques spécifiques
aux capteurs, ce qui pourrait entraîner un sur-apprentissage de sa performance et une mauvaise
généralisation sur de nouveaux capteurs inconnus.

La solution est de découper les données en tenant de l’appartenance à chaque capteur, plutôt que
d’échantillonner naïvement sur l’ensemble des instances. Ainsi, la méthode GroupShuffleSplit du
package sklearn permet de diviser un ensemble de données en ensembles d’entraînement et de
test tout en respectant les groupes, ce qui signifie que les données des capteurs sont regroupées
par mois depuis le début de leur vie. Contrairement à la méthode TrainTestSplit, du même
package, qui effectue une simple division aléatoire, GroupShuffleSplit garantit que les groupes
(dans ce cas, les capteurs) ne sont pas partagés entre l’ensemble d’entraînement et l’ensemble de
test. 80% des capteurs sont utilisés d’un côté pour l’entraînement et 20% de l’autre pour le test,
assurant que les tests sont effectués sur des capteurs qui n’ont pas été vus durant l’entraînement.

Ainsi mon jeu de données d’entraînement sera constitué de 2603 instances pour 52 capteurs et
mon jeu de test de 546 instances pour 13 capteurs.

Comme indiqué dans la partie Apprentissage supervisé, toutes les analyses sont effectuées sous
validation croisée (cross-validation). Ainsi, j’ai opté pour la méthode k-fold cross-validation avec
k=4. Cela signifie que le modèle est entraîné quatre fois, chaque fois sur k-1 des sous-ensembles,
et testé sur le sous-ensemble restant. Pour chaque itération, un sous-ensemble différent est
utilisé comme ensemble de test, tandis que les k-1 autres sont utilisés pour l’entraînement. Les
performances du modèle sont ensuite calculées pour chaque itération, et la performance finale
est obtenue en prenant la moyenne des performances sur les quatre itérations. Ainsi, toutes les
analyses ont été effectuée en validation croisée de 4 itérations. J’ai choisi cv=4, compte tenu
du faible volume de données dont on dispose. De plus, au-delà de 4 ou 5 folds, les résultats ne
seront certainement pas différents au vu de la faible variabilité du jeu de donnée.
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5.2 Ajustement des paramètres des modèles traditionnels et du
réseau de neurones

Après avoir détaillé le découpage du jeu de données pour les phases d’entraînement et de
prédiction, il est essentiel de se pencher sur l’entraînement et l’ajustement des différents
modèles que nous avons utilisés. Avant de comparer les performances de ces modèles, nous de-
vons examiner en profondeur la manière dont les hyperparamètres ont été déterminés et optimisés.

Je vais seulement expliciter les hyperparamètres des modèles traditionnels, car les modèles de
survie, comme ceux utilisés dans cette étude, sont généralement plus simples et ne nécessitent
pas d’ajustement complexe des hyperparamètres.

5.2.1 Modèles traditionnels

Trois modèles traditionnels ont été utilisés lors de ce stage : la régression multiple, le Support
Vector Regression (SVR) et la Random Forest. Ces modèles proviennent de la bibliothèque
Scikit learn, avec les fonctions LinearRegression, SVR, RandomForestRegressor.

Régression Multiple :
Le premier modèle utilisé est le modèle de Régression multiple. Comme précisé dans la
présentation du modèle dans la partie méthodologie, ce modèle est directement implémenté sans
nécessiter d’optimisation des hyperparamètres via GridSearchCV, car il n’y a pas de paramètres
à ajuster.

SVR (Support Vector Regression) :
Le modèle SVR utilise les distances dans l’espace des caractéristiques pour optimiser les
prédictions. Si les caractéristiques ne sont pas sur des échelles comparables, les caractéristiques à
grande échelle peuvent dominer celles à petite échelle, ce qui peut conduire à des résultats biaisés.
Ainsi pour une meilleure performance et une meilleure stabilité des résultats, la normalisation
des données est essentielle pour éviter les biais liés aux différences d’échelle des variables. Les
principaux paramètres à ajuster sont :

• Le Noyau, qui prend ses valeurs dans [linear, poly, rbf, sigmoid]

• Le paramètre de régularisation, qui prend ses valeurs dans [0.1, 1.0, 10, 100]

• La marge ϵ, qui prend ses valeurs dans [0.001, 0.005, 0.01, 0.05, 0.1]

• Le paramètre d’influence γ, qui prend ses valeurs dans [’scale’, ’auto’]

Ainsi, le modèle ayant donné le meilleur résultat est celui avec seulement les hyperparamètres
suivants :

• Noyau : rbf

• Régularisation : 100

• ϵ : 0.005

• γ : scale
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Random Forest :

Le dernier modèle traditionnel utilisé est le modèle de Random Forest. Ce modèle utilise
plusieurs paramètres importants pour ajuster ses performances :

• Le nombre d’arbres, qui prend ses valeurs entre [10,100] avec un pas de 10

• Le paramètre de profondeur, qui prend ses valeurs dans [5, 10, 20, 30]

• Le paramètre de division de noeud, qui prend ses valeurs dans [2, 5, 10]

• Le paramètre d’échantillon d’une feuille, qui prend ses valeurs dans [1, 2, 4]

• Le paramètre de meilleur scission, qui prend ses valeurs dans [’auto’, ’sqrt’, ’log2’]

Le modèle ayant donné le meilleur résultat est celui avec seulement les hyperparamètres suivants:

• Nombre d’arbres : 40

• Profondeur : 30

• Meilleure scission : sqrt

Les modèles ont d’abord été entraînés sur un jeu de données non normalisé, mais le SVR nécessite
impérativement une normalisation pour de meilleures performances. Ainsi, afin de comparer
les performances entre les trois modèles et d’éviter les biais liés aux échelles de variables, la
régression multiple et la Random Forest ont également été entraînées sur des données normalisées.

Pour évaluer l’influence des variables, trois approches ont été utilisées : les coefficients de régres-
sion, la fonction feature_importance du Random Forest, et la fonction permutation_importance
du SVR.

– Coefficients de Régression : les coefficients montrent l’impact direct de chaque variable
sur la prédiction du modèle de régression, avec des coefficients plus élevés indiquant une
plus grande influence.

– feature_importance(Random Forest) : cette fonction calcule l’importance d’une variable
en fonction de combien elle contribue à la réduction de l’impureté dans les arbres de
décision. L’importance est la moyenne des contributions de chaque variable à travers tous
les arbres du modèle.

– permutation_importance (SVR) : cette méthode évalue l’importance des variables en
observant la perte de performance du modèle lorsque les valeurs d’une caractéristique
sont mélangées aléatoirement. Une grande diminution de performance indique une grande
importance.

Les variables les moins influentes, comme Moyenne_index_2, Moyenne_index_3 et Index_total,
ont été supprimées pour tester leur impact sur les performances du modèle. Cependant, cette
suppression n’a pas amélioré les métriques d’évaluation. Par conséquent, le jeu de données
complet avec ses 12 variables a été maintenu pour l’analyse.
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5.2.2 Réseau de Neurones

Le dernier modèle utilisé durant ce stage est un réseau de neurones, pour lequel j’ai utilisé la
librairie PyTorch. PyTorch est une librairie flexible et puissante pour construire, entraîner et
déployer des réseaux de neurones. Elle offre des outils essentiels pour la création de modèles,
comme la classe torch.nn.Module, qui permet de définir l’architecture du réseau. PyTorch
facilite également la gestion des gradients et l’optimisation, tout en supportant l’exécution sur
GPU. Les GPU (unités de traitement graphique) sont des processeurs spécialement conçus
pour effectuer de nombreux calculs en même temps, ce qui rend l’entraînement des réseaux
de neurones beaucoup plus rapide. Cela permet de développer des solutions d’apprentissage
profond efficaces et personnalisables.

Tout comme pour le modèle SVR, la normalisation des données est une étape cruciale lors de
l’utilisation des réseaux de neurones. En effet, normaliser les données avant d’entraîner un
réseau de neurones permet de stabiliser et d’accélérer l’apprentissage, d’améliorer l’efficacité
des fonctions d’activation, de traiter les caractéristiques de manière équilibrée et d’éviter les
problèmes liés aux gradients. Cela se traduit par un modèle plus performant et un processus
d’apprentissage plus efficace. Pour cette normalisation, j’ai utilisé la méthode MinMaxScaler de
la librairie Scikit learn

Ainsi, le modèle de réseau de neurones possède une architecture spécifique, et plusieurs
paramètres doivent être définis en amont pour sa construction. Ces paramètres incluent le
nombre de neurones par couche, le nombre de couches cachées, le taux d’apprentissage, les
fonctions d’activation, l’optimiseur, le nombre d’itérations et la taille du lot. Pour que le modèle
soit le plus performant possible, il est crucial de choisir les valeurs optimales pour chacun de ces
paramètres.

Contrairement aux modèles traditionnels, la méthode GridsearchCV ne peut pas être utilisée
directement pour ajuster les paramètres des réseaux de neurones. Il est donc nécessaire
de tester plusieurs valeurs pour chaque paramètre. Pour évaluer l’efficacité des différentes
configurations, il faut analyser les learnings curves. Ces courbes permettent de comparer la
perte d’entraînement (train loss) et la perte de test (test loss) de chaque modèle, afin de
déterminer lequel est le mieux ajusté.

Voici les paramètres utilisés pour l’architecture du réseau de neurones ainsi que les valeurs
choisies pour les ajuster :

• Nombre de couches cachées et de neurones par couche :
Pour mon étude, j’ai testé différentes configurations en variant le nombre de neurones par
couche de trois manières : en gardant le même nombre de neurones sur toutes les couches,
en doublant le nombre de neurones par rapport à la configuration de base, en réduisant le
nombre de neurones en faisant une différence de 4 par couche.
La couche d’entrée a un nombre de neurones équivalent au nombre de variables explicatives,
soit 12, et la couche de sortie contient 1 neurone pour la variable réponse.
Ainsi, j’ai exploré les variations suivantes pour les couches cachées :
Nombre de couche cachées entre : [2, 4, 6]
Nombre de neurones par couches cachées : [12], [12, 24, 48, 96, 192, 384, 768], [12, 8, 4]
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• Taux d’apprentissage : 0.001

• Fonction d’activation : [Sigmoide, Relu, Tanh]

• Optimiseur : [Adam, Adadelta]

• Taille du lot : [32, 64, 96]

• Nombre d’itérations : [100, 200, 500]

Figure 5: Learning-curves du meilleur modèle de réseau de neurones

La Figure 5 illustre les learning_curves du modèle ayant donné le meilleur résultat. On observe
que les deux courbes (d’entraînement et de validation) commencent avec une erreur élevée, car
le modèle n’a pas encore appris les caractéristiques des données. Elles convergent ensuite vers
une valeur plus basse, indiquant que l’erreur de prédiction diminue et que le modèle apprend
correctement sans sur-apprentissage excessif. De plus, la courbe de validation (en orange) est
légèrement au-dessus de la courbe d’entraînement (en bleu). Une validation loss légèrement
supérieure à la train loss est en effet souhaitable, car elle indique une bonne capacité de
généralisation. Un écart trop important pourrait signaler des problèmes de surapprentissage ou
un manque de généralisation du modèle. On note également que la courbe de validation semble
passer sous la courbe d’entraînement à partir de 175 itérations, ce qui suggère qu’il pourrait y
avoir un risque de sous-apprentissage si le nombre d’itérations est augmenté davantage.
Ainsi, le modèle ayant donné le meilleur résultat est celui avec les hyperparamètres suivants :

• 12 neuronnes pour toutes les couches cachées

• 64 comme taille de lot

• 4 couches cachées

• 200 itérations

• Relu comme fonction d’activation

• Adadelta comme optimiseur
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Avant de passer à la partie résultat voici avec la Table 3 un récapitulatif des hyperparamètres
les plus optimaux pour chaque modèle.

Modèle Hyperparamètres les plus optmiaux
SVR Noyau : rbf | Régularisation : 100 | ϵ : 0.005 | γ : scale

Random Forest Nombre d’arbres : 40 | Profondeur : 30 | Meilleure scission : sqrt

Réseau de neurones
Neurones: 12 pour toutes les couches cachées |

4 couches cachées | 200 itérations |
Relu comme fonction d’activation | Adadelta comme optimiseur

Table 3: Hyperparamètres les plus optimaux pour chaque modèle

5.3 Résultats

À présent, je vais présenter les résultats obtenus par les différents modèles. Cette analyse
comparative permettra de déterminer lequel des modèles s’est avéré le plus performant sur ce
jeu de données en termes de précision de prédiction et de généralisation. Les performances
seront évaluées à l’aide de métriques appropriées, et les résultats seront discutés.

5.3.1 Résultats des modèles d’analyse de survie

Pour rappel, dans le cadre de ce stage, l’objectif principal est de prédire la durée de vie
restante des batteries des capteurs. L’analyse de la fonction de survie est essentielle pour cette
prédiction car elle permet de mieux comprendre le comportement des capteurs en termes de
durée de vie. À titre d’information, la durée de vie moyenne des capteurs chez iQspot est de 5 ans.

Pour ce faire, nous avons utilisé le modèle de Kaplan-Meier, une méthode qui fournit une
estimation de la probabilité qu’un capteur survive au-delà d’un certain temps. Pour construire
cette fonction deux variables sont cruciales, la variable de survie T, qui représente le temps de
survie jusqu’à la survenue de l’événement, soit la variable à prédire Y. Ainsi que la variable
d’état S, qui indique si l’événement s’est produit ou non pour chaque individu à un moment
donné. Dans le jeu de donnée cette variable correspond à la variable nommée "status", qui a été
créée seulement pour les modèles d’analyse de survie. Cette variable est une variable catégorielle
qui a été numérisée. Les capteurs pour lesquels nous avons une valeur de la batterie finale le
jour du décès ont pour valeur status=2 et les autres ont pour valeur status=1.
Ce modèle a été implémenté avec la fonction KaplanMeierFitter de la bibliothèque lifelines.
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Figure 6: Probabilité de Survie des capteurs du jeu de données

Sur la Figure 6 nous pouvons observer la fonction de survie et la fonction d’échec du jeu de
données constitué des 65 capteurs qui ont cessé de fonctionner. La fonction de survie est
représentée en bleu, tandis que la fonction d’échec est montrée en orange. L’analyse de ces
courbes révèle plusieurs points :

– Fin de la fonction de survie : La fonction de survie s’étend jusqu’à 2000 jours soit environ
5 ans et 6 mois, ce point temporel signifie qu’il reste une probabilité que certains capteurs
fonctionnent encore au-delà de 2000 jours. Cette information fournit une vue d’ensemble
générale de la durée de vie des capteurs dans notre échantillon.

– Médiane de la Durée de Vie : La médiane, indiquée par la ligne pointillée rouge, est de
827 jours, ce qui correspond à environ 2 ans et 3 mois. Cela signifie que 50% des capteurs
ont cessé de fonctionner avant cette période, et 50% ont continué à fonctionner au-delà de
cette durée.

Ces informations fournissent un aperçu utile du comportement de la durée de vie des batteries
des capteurs et nous aident à comprendre la répartition des durées de vie au sein de notre jeu
de données.

Avec ces premières informations sur la probabilité de survie et la répartition des durées de vie,
nous allons passer à l’étape suivante : l’évaluation des modèles de prédiction. L’objectif est de
déterminer quel modèle offre les meilleures performances pour prédire avec précision la durée de
vie des capteurs.

Le premier modèle que j’ai entraîné est le modèle de Cox. Dans le contexte de ce stage, le
modèle de Cox implémenté à l’aide de la fonction CoxPHFitter de la bibliothèque lifelines,
a été utilisé pour analyser la durée de vie restante des batteries des capteurs, en prenant en
compte divers facteurs pouvant influencer cette durée de vie. En effet, les résultats du modèle
se présentent sous forme de ratios de risques (hazard ratios), qui indiquent l’effet de chaque
variable sur le risque d’événement. Toutefois, lors de son entraînement, le modèle a rencontré
des problèmes de convergence. Ces problèmes de convergence surviennent lorsque l’algorithme
de maximisation de la vraisemblance, utilisé pour estimer les coefficients associés à chaque
variable explicative, ne parvient pas à identifier des paramètres stables pour le modèle. En
d’autres termes, le modèle a du mal à "apprendre" correctement des relations entre les variables
explicatives et la survie.
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Dans le cas de cette étude, ces difficultés peuvent être attribuées à plusieurs facteurs, notamment
une quantité insuffisante de données, une forte colinéarité entre certaines variables explicatives,
ou encore la présence de variables avec des effets faibles ou complexes qui ne sont pas bien
assimilés par le modèle de Cox.

Malheureusement, les résultats obtenus avec ce modèle de survie n’ont pas été satisfaisants.
J’ai donc décidé d’explorer d’autres approches en utilisant des modèles plus traditionnels. Ces
modèles sont généralement moins complexes que les modèles de survie et peuvent offrir une
perspective différente pour la prédiction de la durée de vie restante des batteries.

5.3.2 Résultats des modèles traditionnels et du réseau de neurones

Dans cette partie nous allons donc comparer les scores obtenus pour chacun des modèles en
utilisant les différentes méthodes d’évaluation.

MAE (en jours) R2 (en %)
Régression multiple 437 0.17

SVR 475 -0.007
Random Forest 230 0.68

Réseau de Neurones 486 -0.04

Table 4: Résultats des différentes méthodes de scoring pour les différents modèles

La Table 4 représente seulement les scores les plus élevés pour chaque modèle. Nous pouvons
constater qu’avec une MAE de 230 jours, la plus faible parmi les modèles, et un R2 de 0,68, le
modèle RandomForest est le plus performant sur ce jeu de données. Ce résultat a été obtenu
avec le jeu de données non normalisé, toutefois il n’y avait pas de grande différence entre les
performances du modèle sur le jeu normalisé ou non.

Comme précisé dans la partie méthodologie, ces méthodes d’évaluation permettent de mesurer
la capacité d’un modèle à prédire correctement sur des données indépendantes des données de
l’entraînement. La métrique MAE mesure l’erreur entre la valeur prédite y_pred et la valeur
réelle y. Ainsi, avec une MAE de 230 jours, le modèle Random Forest prédit la durée de vie
restante avec une erreur d’environ 230 jours, ce qui correspond à environ 7 mois. En d’autres
termes, le modèle permet de prédire la durée de vie des capteurs avec une erreur de moins d’un
an. Rappelons que la batterie d’un capteur a une autonomie de 5 ans en moyenne. Ainsi, cette
information en parallèle de nos résultats montre que notre solution telle quelle promet d’être
relativement efficace.
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Régression Multiple Random Forest

Figure 7: Comparaison des valeurs prédites et réelles des deux modèles

Sur la Figure 7 nous pouvons comparer visuellement les prédictions y_pred par rapport aux
valeurs réelles pour le modèle de Régression Multiple et le modèle Random Forest. Chaque
point bleu représente une prédiction à un instant t (t étant un indicateur mensuel dans la
vie du capteur). Si les prédictions étaient exactes, les points bleus formeraient une droite
bleue superposée à la droite rouge, représentant une droite affine y=x, qui représente la
ligne idéale où les valeurs prédites et réelles seraient parfaitement alignées. Nous pouvons
observer que les prédictions sont mieux ajustées à la droite y_réel pour le modèle Random Forest.

J’ai choisi de représenter uniquement le modèle de Régression Multiple en plus de celui du
Random Forest, car ce dernier s’est révélé être le plus performant selon les métriques d’évaluation.
Il est à noter que ce "classement" peut sembler surprenant, étant donné que les réseaux de
neurones sont généralement connus pour offrir des performances élevées. On peut supposer que
cette situation pourrait être due à la taille relativement réduite de mon jeu de données, ce qui
pourrait limiter la capacité des réseaux de neurones à montrer leur véritable potentiel.

5.3.3 Sur-apprentissage

Le modèle qui a le mieux performé sur mon jeu de données est le modèle Random Forest.
Dans certains cas, les scores de performance semblent suffisamment élevés pour attester de
l’efficacité du modèle. Pourtant ces chiffres peuvent cacher un biais si les ensembles de test et
d’entraînement sont très différents. Pour vérifier ce biais comme expliqué dans la partie 4.4.2,
nous examinerons le comportement des courbes d’apprentissage et de validation de ce modèle.
Nous réaliserons également une matrice de confusion sur les données de test ainsi que sur les
données d’entraînement pour comparer les performances du modèle.

Pour évaluer la performance du modèle, nous avons tracé les courbes d’apprentissage, qui
montrent comment le score du modèle évolue en fonction de la taille de l’ensemble d’entraînement.
Les courbes d’apprentissage ont été générées en utilisant la fonction learning curve de la librairie
scikit learn, avec une validation croisée de 5 segments et des tailles d’échantillon allant de 10%
à 100% de l’ensemble d’entraînement.
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Figure 8: Comparaison des courbes d’apprentissage du jeu d’entraînement et du jeu de test

Sur la Figure 8 la courbe bleue représente le score d’entraînement. Une performance élevée et
stable suggère que le modèle apprend bien à partir des données d’entraînement. La courbe
rouge, quant à elle, montre la performance du modèle sur l’ensemble de validation. Une
performance élevée et proche de celle de l’entraînement indique une bonne généralisation du
modèle. Nous pouvons observer que le score de validation augmente avec l’échantillon. En effet,
à mesure que l’échantillon croît, le modèle devient plus performant, atteignant un score final
de 60% pour la métrique R2. Cependant, le score d’entraînement est quand même supérieur
au score de validation, ce qui suggère un petit sur-apprentissage. Cela signifie que le modèle
pourrait s’adapter de manière trop spécifique aux données d’entraînement.

Afin de d’étayer cette conclusion par une autre méthode, nous allons à présent étudier les
matrices de confusion. Cette approche est couramment utilisée dans les méthodes de classifi-
cation, où elle permet de comparer les résultats prédits par le modèle avec les valeurs réelles
pour chaque catégorie, ce qui est souvent plus révélateur que de comparer simplement la MAE
dans chaque ensemble d’entraînement et de test. Comparer les matrices de confusion des jeux
de données d’entraînement et de test nous aidera à déterminer si le modèle semble sur-apprendre.

Le principe de la matrice de confusion est de comparer les résultats prédits par le modèle avec
les valeurs réelles par catégories de valeurs. Cette méthode fournit une vue plus détaillée de la
performance du modèle en termes de classification. Pour ce faire, j’ai scindé mon jeu de données
en quatre catégories distinctes basées sur la durée de vie des capteurs : moins d’un an, entre 1
an et 3 ans, entre 3 ans et 5 ans, et plus de 5 ans. La matrice de confusion fournit ainsi une vue
d’ensemble des prédictions correctes et incorrectes, et offre des indications précieuses sur les
types d’erreur commis. Si la matrice de confusion pour les données d’entraînement ne montre
que des vrais positifs, cela pourrait indiquer un sur-apprentissage, où le modèle s’adapte trop
spécifiquement aux données d’entraînement et performe moins bien sur des données non vues.
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Matrice confusion du jeu de test Matrice confusion du jeu d’entraînement

Figure 9: Matrices de confusions du jeu de test et d’entraînement

• Classe 1 : moins d’un an d’historique de vie

• Classe 2 : entre 1 ans et 3 ans d’historique de vie

• Classe 3 : entre 3 ans et 5 ans d’historique de vie

• Classe 4 : plus de 5 ans d’historique de vie

La matrice de confusion à gauche sur la Figure 9 représente les données de test. On observe
que le modèle prédit globalement bien les durées de vie des capteurs. Il classe correctement 74
capteurs dans la classe 1, 190 capteurs dans la classe 2, 110 capteurs dans la classe 3, et 12
capteurs dans la classe 4. Le modèle fonctionne particulièrement bien pour les catégories 2 et 3,
avec un grand nombre de bonnes prédictions (190 et 110, respectivement). Toutefois, les erreurs
les plus courantes se produisent entre les catégories adjacentes. Par exemple, des capteurs avec
une durée de vie dans la classe 2 sont souvent classés à tort dans la classe 1 ou classe 3. Bien
que le modèle montre une performance raisonnable, il présente des faiblesses dans la distinc-
tion entre les catégories proches, ce qui est cohérent avec les scores d’évaluation modérés obtenus.

La matrice de confusion à droite, représentant les données d’entraînement, montre très peu de
mauvaises prédictions. Cela peut suggérer que le modèle a légèrement sur-appris, s’adaptant
trop spécifiquement aux données d’entraînement.

En conclusion, bien que le modèle soit efficace pour prédire les durées de vie des capteurs dans
les classes intermédiaires, ses difficultés à distinguer les catégories proches doivent être prises
en compte pour améliorer la précision des prévisions en conditions réelles. En effet les erreurs
de classification pourraient entraîner des remplacements prématurés ou tardifs des capteurs et
impacterait l’efficacité des opérations de maintenance.
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5.3.4 Approfondissement

Malgré la présence d’un léger sur-apprentissage du modèle, le modèle Random Forest demeure
le mieux ajusté pour mon jeu de données. Toutefois, une erreur de prédiction d’au moins 7 mois
n’est pas suffisamment précise pour permettre à iQspot d’anticiper efficacement l’arrêt des
batteries de leurs capteurs.

Comme nous avons pu le constater avec la Figure 6, la médiane de la fonction de survie du
modèle Kaplan-Meier est de 2 ans et 3 mois, ce qui indique que les 65 capteurs n’ont pas la
même durée de vie. De plus, les résultats de la matrice de confusion sur les données de test
montrent que le modèle fonctionne mieux pour certaines durées de vie, notamment "entre 1 et 3
ans" et "entre 3 et 5 ans".

Cela soulève une question : bien que le modèle Random Forest semble offrir des performances
moyennes sur l’ensemble des capteurs, pourrait-il avoir une meilleure performance si on se concen-
tre uniquement sur un sous-ensemble de capteurs ayant plus de 3 ans de vie ? Ce sous-ensemble
aurait potentiellement un historique de vie plus dense que les capteurs plus jeunes, avec seulement
un an de vie. De plus, il y a très peu de capteurs dans le jeu de données ayant uniquement 1
ou 2 ans de vie, alors que les capteurs avec une durée de vie moyenne de 5 ans sont plus nombreux.

Ainsi, j’ai décidé de comparer les performances du modèle sur différents échantillons spécifiques
de capteurs présentant des historiques de vie variés.

Figure 10: Comparaison des valeurs prédites et des valeurs réelles pour différent historique de
vie

39/50



Rapport de Stage

Historique de vie MAE (en jours) R2 (en %)
moins de 3 ans 375 -1.26

plus de 3 ans 219 0.72
plus de 4 ans 183 0.83
plus de 5 ans 158 0.87

Table 5: Résultats des scocres d’évaluations sur des modèles contenant des capteurs de
différentes durées de vies

Ainsi, nous pouvons voir avec la Figure 10 et la Table 5 que plus les capteurs ont un historique
de vie long, plus le modèle est performant. La Figure 10 montre que les prédictions des instances
sont mieux ajustées à la droite y=x, et la Table 5 que les scores d’évaluations de la MAE
et du coefficient de détermination R2 sont meilleurs. En effet, pour un jeu de données ne
comprenant que des capteurs ayant plus de 5 ans de vie, la MAE est de 158 jours et le coefficient
de détermination est de 87%. Cela signifie que le modèle a une précision de 87% et qu’il prédit
avec une marge d’erreur d’environ 5 mois, ce qui représente une meilleure performance par
rapport aux prédictions faites sur un jeu de données contenant des capteurs ayant des durées de
vie allant de moins d’un an à plus de 5 ans.

5.3.5 Évaluation en conditions réelles

Comme nous l’avons vu dans la partie 5.1.4, le jeu de test utilisé pour présenter les résultats
précédents contient 546 instances réparties sur 13 capteurs. Toutefois, cette quantité étant
insuffisante pour garantir une bonne qualité en production, nous avons décidé d’évaluer notre
modèle sur un autre jeu indépendant, composé uniquement de capteurs actuellement en
fonctionnement. En effet, jusqu’à présent, nous avons évalué l’efficacité du modèle uniquement
sur des capteurs dont la batterie est épuisée. Il est donc pertinent d’obtenir une estimation des
faux positifs sur des capteurs encore en fonctionnement.

Cette phase d’évaluation permettra de tester la robustesse du modèle sur des données en temps
réel et de vérifier sa capacité à prédire avec précision la durée de vie restante des capteurs
encore en activité. Le jeu de données d’entraînement ne contenant que 65 capteurs, il est
possible que le modèle n’ait pas eu suffisamment de données pour généraliser avec certitude.
En testant le modèle dans des conditions réelles, nous pourrons mieux évaluer sa capacité de
généralisation et déterminer s’il est prêt à être déployé en production.

Pour poursuivre cette étude, j’ai sélectionné une centaine de capteurs encore en fonctionnement.
J’ai construit un jeu de données pour ces 100 capteurs en suivant la même méthode que
celle utilisée pour les 65 capteurs hors service, afin de garantir que les deux jeux de données
contiennent exactement les mêmes variables, construites de la même manière. Il est crucial que
le modèle, ayant appris à partir de 12 variables explicatives, soit testé sur un jeu de données
ayant également 12 variables pour assurer la cohérence et la validité des prédictions.

Une fois le jeu de données des capteurs fonctionnels préparé, l’étape suivante consiste à appliquer
le modèle entraîné pour prédire la durée de vie restante de ces capteurs. Ces prédictions seront
ensuite analysées et comparées aux données réelles.
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Cependant, évaluer les performances du modèle sur ce jeu de données est moins trivial que
sur le jeu de données composé de capteurs défaillants. En effet, les métriques d’évaluation
classiques ne sont pas applicables ici, car les capteurs n’ont pas encore atteint la phase de
défaillance, ce qui rend impossible la comparaison avec les valeurs réelles.

Pour remédier à cette situation, j’ai décidé de conserver les prédictions de durées de vie pour des
intervalles de six mois, jusqu’à six ans de vie pour les 100 capteurs. Par exemple, si le modèle a
prédit qu’à la date des deux ans de vie d’un capteur, que ce dernier n’a plus de batterie alors
qu’il est toujours actif aujourd’hui, la prédiction est clairement erronée. En revanche, si le
modèle prédit que le capteur cessera de fonctionner dans un an à partir de la date actuelle, cela
montre une bonne capacité de prédiction. Cette comparaison permettra d’évaluer la précision
du modèle en conditions réelles et d’identifier toute divergence entre les prédictions et la réalité.

Voici un exemple de cette explication avec la Table 6.

Identifiant Date à chaque 6 mois de vie Date actuelle Date d’Arrivée Prédite (Y) Évaluation
ID1 01/08/2020 01/08/2024 22/07/2022 - 2 ans et 10 jours
ID1 01/02/2021 01/08/2024 15/06/2023 - 1 an 1 mois et 17 jours
ID1 01/08/2021 01/08/2024 21/12/2023 - 7 mois et 11 jours

| ... ... ... ...
ID1 01/08/2024 01/08/2024 09/09/2026 + 2 ans 1 mois et 8 jours
ID2 01/01/2022 01/08/2024 02/06/2023 - 7 mois et 11 jours
ID2 01/07/2022 01/08/2024 17/01/2024 - 6 mois et 15 jours
ID2 01/01/2023 01/08/2024 09/04/2025 + 8 mois et 8 jours

| ... ... ... ...
ID2 01/08/2024 01/08/2024 11/01/2027 + 2 ans 5 mois et 11 jours

Table 6: Résumé des prédictions de durée de vie pour les capteurs en fonctionnement

Ainsi, je me suis intéressée à évaluer combien de fois le modèle a fourni une prédiction plausible,
c’est-à-dire une date de fin de vie estimée pour les capteurs qui soit postérieure à la date actuelle.
Ce critère est crucial, car une prédiction réaliste doit nécessairement indiquer que les capteurs
sont encore en fonctionnement pour que la durée de vie restante soit significative. Les résultats
obtenus sont les suivants :

entre 1 et 3 ans entre 3 ans et 6 ans
57 % 81 %

Table 7: Pourcentages de prédictions possibles en fonction de la durée de vie des Capteurs

Comme on peut le voir sur la Table 7, seulement 57% des prédictions pour les instances ayant
un historique de vie compris entre 1 et 3 ans (avec un intervalle de 6 mois) sont jugées possibles,
c’est-à-dire que les dates prédites pour ces instances sont postérieures à la date actuelle. En
revanche, pour les instances ayant un historique de vie entre 3 et 6 ans, 81% des prédictions sont
possibles. Ces résultats confirment que notre modèle semble mieux performer sur des capteurs
ayant un historique de vie plus long.
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6 Conclusion et perspectives
L’objectif de cette étude était de développer une solution de prédiction de la durée de vie
restante des batteries de capteurs, dans le but d’optimiser la maintenance prédictive. Pour
atteindre cet objectif, nous avons exploré des modèles d’apprentissage supervisé par régression.

Parmi ces modèles, le Random Forest s’est distingué par ses performances. L’évaluation
initiale sur un jeu de test de taille réduite a montré que ce modèle fournissait des prédictions
satisfaisantes. En effet, le modèle est capable de prédire, avec une erreur de plus ou moins
230 jours, la date d’arrêt de la batterie des capteurs, ce qui, pour une moyenne de vie de
5 ans, est un résultat satisfaisant. De plus, il s’est avéré que le modèle a montré plus de
précision dans ses prédictions lorsqu’il s’agissait de capteurs ayant un historique de vie de plus
de 3 ans. En effet, lors des tests sur des capteurs en fonctionnement, le modèle a démontré
sa capacité à prédire avec une certaine précision dans un pourcentage significatif des cas,
en particulier pour les capteurs avec une durée de vie plus longue. Cependant, certaines
incertitudes demeurent quant à la précision des prédictions, principalement en raison de la
quantité limitée de données disponibles, des incertitudes liées à leur qualité, ainsi que de
l’absence de données labellisées, notamment en ce qui concerne les états spécifiques de la batterie.

De nouvelles analyses seront menées dans la suite de ce stage afin d’atteindre un niveau de
précision suffisant pour une utilisation opérationnelle. Les prochaines étapes de ce projet
consisteront à affiner le modèle, à tester son déploiement dans des environnements réels,
et à explorer d’autres approches de prédiction. Nous accorderons également une attention
particulière à l’analyse non supervisée, qui, bien qu’entamée durant ce stage, n’a pas produit de
résultats satisfaisants.

L’intérêt concret de ce travail aura résidé dans la capacité à anticiper les défaillances de la
batterie des capteurs. Si un modèle de prédiction de la durée de vie des batteries précis est
obtenu, l’objectif d’éviter au maximum la perte de données sera atteint. Cela permettra
également aux déployeurs d’iQspot de localiser, dans une même zone, les capteurs risquant de
s’arrêter simultanément, réduisant ainsi les déplacements nécessaires pour leur remplacement.

En conclusion, ce projet représente une avancée significative vers une solution de maintenance
prédictive efficace. Les prochaines phases d’analyse et de développement viseront à renforcer
cette solution, avec l’objectif ultime de déployer un outil fiable et opérationnel.
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Annexe
Dans cette partie annexe, je vais présenter plus en détail chaque modèle d’apprentissage supervisé.
N’ayant pas approfondi la partie théorique des modèles dans la pratique de mon stage, j’ai choisi
de ne pas entrer dans les détails dans le corps principal de ce rapport.

Annexe 1 : Kaplan Meier
Le modèle de Kaplan-Meier est une méthode statistique utilisée principalement en analyse de
survie pour estimer la fonction de survie à partir de données de durée de vie. En résumé, il
permet de mesurer la fraction d’individus encore vivants après un certain moment tt. La courbe
représentant cette fonction de survie est constituée de marches horizontales qui diminuent à
chaque événement.

L’avantage de ce modèle est sa capacité à gérer les données censurées, c’est-à-dire les données
pour lesquelles l’événement d’intérêt (dans notre cas, le décès des capteurs) n’a pas été observé
pour certains individus durant la période d’étude. Ce phénomène est appelé "censure par la
droite".

La fonction de survie S(t) est la probabilité qu’un individu survive au-delà d’un certain temps t.
En général, cette probabilité diminue avec le temps. L’estimateur de Kaplan-Meier fournit une
estimation de cette fonction. Il est calculé à l’aide de la formule suivante :

Ŝ =
∏
ti<t

ni − di

ni

– ti représente le temps au moment du i-ème événement.

– di est le nombre d’événements (nombre de décès) au temps ti

– ni est le nombre de sujets "à risque" juste avant le temps ti (c’est-à-dire les individus qui
n’ont pas encore eu l’événement d’intérêt ou été censurés).

L’estimateur de Kaplan-Meier produit une courbe de survie en escalier, où chaque diminution
correspond à un décès observé. Cette courbe permet de comparer les distributions de survie
entre différents groupes.

En analyse de survie, il existe également la fonction d’échec, qui est complémentaire à la
fonction de survie. Elle est définie comme suit :

F (t) = 1 − S(t)
où F(t) est la fonction d’échec.

Elle représente la probabilité cumulative qu’un individu ait expérimenté l’événement d’intérêt
(le décès) avant ou à un temps t. En d’autres termes, plus le temps passe, plus la probabilité de
décès ou d’échec augmente.
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Annexe 2 : Modèle de Cox
Le deuxième modèle d’analyse de survie que j’ai utilisé durant mon stage est le modèle de Cox.
Ce modèle est l’une des méthodes les plus couramment utilisées pour analyser des données de
survie. Le modèle de Cox, également connu sous le nom de modèle des risques proportionnels,
est un modèle de régression qui cherche à expliquer comment les variables explicatives sont liées
à un événement, dans notre cas, l’arrêt de la batterie.

Ce modèle peut être appliqué à toute situation où l’on étudie le délai avant que l’événement
d’intérêt ne survienne. Pour chaque individu, on connaît la date de la dernière observation ainsi
que son état par rapport à l’événement étudié. Cependant, pour certains individus, l’état à la
date de fin de l’étude n’est pas connu ; ces individus sont donc considérés comme censurés.
L’avantage du modèle de Cox est qu’il permet de prendre en compte ces données même si elles
sont incomplètes.

Deux variables sont cruciales dans l’analyse de survie :

• La variable de survie T : qui représente le temps de survie jusqu’à la survenue de
l’événement.

• La variable d’état S : qui indique si l’événement s’est produit ou non pour chaque
individu à un moment donné.

Le modèle de Cox est considéré comme un modèle semi-paramétrique et repose sur l’hypothèse
des risques proportionnels. Il permet d’exprimer la fonction de risque instantané d’arrêt de la
batterie, notée λ(t, X1, X2, ...., Xn), qui représente la probabilité que l’événement survienne en
fonction de l’instant t, sachant que l’individu est encore vivant juste avant t, et en fonction des
variables explicatives Xj, appelées facteurs de risque. La probabilité qu’un sujet k décède au
temps t, sachant qu’il est vivant juste avant, est donnée par la formule suivante :

λ(t, X1, X2, ...., Xn) = λ0(t) exp(
n∑

i=1
βiXi)

Le risque instantané se décompose en deux termes : l’un dépend du temps t , λ0(t) et
l’autre des variables Xj, exp(∑n

i=1 βiXi). Si toutes les variables explicatives sont nulles, alors
λ(t, X1, X2, ...., Xn) = λ0(t) et λ0(t) est appelé le risque de base, c’est-à-dire le risque en
l’absence de tout facteur de risque.

On dit que le modèle de Cox est semi-paramétrique car il ne cherche pas à estimer directement
la fonction λ0(t), qui est identique pour tous les individus à un instant donné. L’objectif est
plutôt d’estimer les rapports de risques instantanés de décès entre deux individus ayant des
facteurs de risque différents (c’est-à-dire des valeurs de variables explicatives différentes). Le
modèle repose sur l’hypothèse des risques proportionnels, qui spécifie que le rapport des risques
instantanés reste constant dans le temps. En d’autres termes, l’effet des variables sur le risque
de décès ne change pas au fil du temps et est multiplicatif.

Par exemple, si l’on considère deux individus j1 et j2 qui ne diffèrent que par la valeur d’une
seule variable Xk, avec Xk=0 pour j1 et XK=1 pour j2, alors quel que soit le temps t:
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λ(t, j2)
λ(t, j1) = λ0(t) exp(β1X

′
1 + ... + βk−1X

′
k−1 + βk × 1 + βk+1X

′
k+1 + ... + βnX

′
n

λ0(t) exp(β1X
′
1 + ... + βk−1X

′
k−1 + βk × 0 + βk+1X

′
k+1 + ... + βnX ′

n

= exp(βk)

Le rapport est donc indépendant du temps, ce qui signifie que, quel que soit le temps t, l’individu
j2 a un risque instantané de mourir exp(βk) fois supérieur à celui de l’individu j1. Il s’agit d’une
hypothèse forte du modèle de Cox, et il est donc nécessaire de vérifier que cette hypothèse est
respectée pour chaque variable avant d’appliquer le modèle. Si l’effet est constant, il peut être
bénéfique, nocif ou nul. La dernière étape consiste à estimer les coefficients βk en utilisant le
principe du maximum de vraisemblance.

Annexe 3 : Régression Linéaire multiple
La régression linéaire permet de prédire la valeur d’une variable dépendante y en fonction d’une
ou plusieurs variables indépendantes. Cette méthode établit donc une relation linéaire entre x
(l’entrée) et y (la sortie).
Dans le cas d’une régression linéaire multiple, le modèle établit une relation entre plusieurs
variables indépendantes, appelées variables explicatives x_i, et une variable de sortie continue y,
que l’on cherche à expliquer. Le modèle de régression linéaire multiple s’exprime sous la forme
suivante :

y = β0 + β1x1 + β2x2 + βnxn + ϵi

où :

– β0 est l’ordonnée à l’origine (intercept)

– βi sont les coefficients associés à chaque variable explicative x_i, ϵi représente l’erreur du
modèle, c’est-à-dire la différence entre la valeur prédite et la valeur réelle.

Contrairement à la régression linéaire simple, qui n’utilise qu’une seule variable explicative,
la régression linéaire multiple permet d’intégrer plusieurs variables indépendantes. Cela peut
potentiellement améliorer la précision du modèle, à condition que les variables ajoutées soient
pertinentes et apportent une réelle contribution à la prédiction.
L’objectif est de trouver une fonction qui prédit y tout en minimisant l’erreur de prédiction.

Pour cet algorithme, il n’est pas nécessaire de spécifier de paramètres en entrée, les coefficients
βi sont ajustés par le modèle au cours de l’entraînement.
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Annexe 4 : SVR
Le modèle SVR (Support Vector Regression) est un algorithme de régression basé sur les
principes du Support Vector Machine (SVM), mais adapté aux problèmes de régression.
L’objectif de cet algorithme est de trouver une fonction f(x) = wT x + b qui prédit y la variable
cible, à partir des vecteurs d’entrée x, où w est le vecteur poids et b le bais.

Le principe de SVR est de positionner cette fonction de manière à ce qu’elle sépare les données
tout en maximisant la distance, appelée « marge », entre les points de données et cette fonction.
Contrairement à la régression linéaire classique, où le but est de minimiser l’erreur de prédiction
pour chaque point de données, SVR ignore les erreurs qui se trouvent à l’intérieur de cette
marge ϵ, car les prédictions dans cette zone sont considérées comme suffisamment précises.
Seules les erreurs situées en dehors de cette marge sont pénalisées, ce qui aide à maximiser la
marge entre les points de données et la fonction prédictive.

Cependant, dans de nombreux cas, il n’est pas possible de séparer linéairement les données
dans leur espace d’origine. Pour surmonter cette difficulté, SVR utilise une technique appelée «
noyau » pour transformer les données dans un espace de dimension supérieure où une séparation
linéaire devient possible. Le choix du noyau est crucial, car il détermine la manière dont les
données sont transformées.

L’objectif de SVR reste de minimiser l’erreur, tout en évitant les erreurs en dehors de la marge.
La fonction de coût du SVR, qui inclut une régularisation pour minimiser la complexité du
modèle, est généralement formulée comme suit :

min
(w,b)

1
2∥w∥2 + C

n∑
i=1

(εi + ε∗
i )

où

– C est le paramètre de régularisation qui contrôle le compromis entre la minimisation de
l’erreur et la régularisation du modèle

– εi et ε∗
i sont des variables qui pénalisent les erreurs situées en dehors de la marge.

L’algorithme SVR comporte donc plusieurs hyperparamètres clés qui doivent être ajustés pour
obtenir des performances optimales. Les principaux hyperparamètres de SVR sont :

• Kernel : qui représente le noyau. Les choix courants de noyaux sont : linear (pour
problèmes linéaires), poly (noyau polynomial), rbf (noyau gaussien) et sigmoid (noyau
sigmoïde)

• C : qui représente le paramètre de régularisation

• Epsilon ϵ : qui définie la marge

• Gamma γ : Applicable pour les noyaux rbf, poly et sigmoid, ce paramètre définit
l’influence d’un seul exemple d’entraînement
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Annexe 5 : Random Forest
Le modèle de Random Forest, ou « Forêt aléatoire », est un algorithme de classification ou de
régression qui repose sur l’assemblage de plusieurs arbres de décision indépendants. Un arbre
de décision est une méthode qui divise les données en fonction de certaines conditions ou règles.
Chaque nœud de l’arbre représente une question basée sur une variable du jeu de données, et
chaque branche correspond à un résultat de cette question. Les feuilles de l’arbre représentent
les décisions finales ou les prédictions.

Bien qu’un seul arbre de décision puisse offrir des résultats précis, sa performance dépend
fortement de l’échantillon de données d’origine. Par exemple, l’ajout de nouvelles données
à l’échantillon peut modifier le modèle et les résultats de manière significative. Le modèle
Random Forest améliore la précision et la robustesse des prédictions en combinant les résultats
de plusieurs arbres de décision, chacun ayant une vision partielle et unique du problème. Le
modèle repose sur le principe que la combinaison de multiples avis (arbres) est généralement
plus fiable qu’un seul avis.

Le terme "random" (aléatoire) dans Random Forest provient du double tirage aléatoire appliqué
lors de la construction de chaque arbre, à la fois sur les observations et sur les variables. Les
deux tirages aléatoires sont les suivants :

– Tree bagging : Cette technique est basée sur un tirage avec remplacement. Pour chaque
arbre, une nouvelle base de données est créée en tirant aléatoirement des observations
(lignes) de la base de données d’origine. Certaines lignes peuvent être sélectionnées
plusieurs fois, tandis que d’autres peuvent ne pas être sélectionnées du tout. Ce principe
de diversification des arbres permet de réduire la variance du modèle.

– Feature Sampling : À chaque nœud de l’arbre, un sous-ensemble aléatoire de variables
(colonnes) est sélectionné. Seules les variables de ce sous-ensemble sont considérées pour
déterminer la meilleure division du nœud. Cela réduit la corrélation entre les arbres,
rendant le modèle plus diversifié et résilient.

Au final, tous ces arbres de décision indépendants sont assemblés. Pour un problème de
régression, la prédiction du Random Forest pour des données inconnues est la moyenne des
prédictions de tous les arbres. Pour la classification, la classe finale est celle qui a été prédite le
plus souvent.

L’algorithme Random Forest nécessite plusieurs hyperparamètres qui doivent être définis avant
l’entraînement. Voici les principaux hyperparamètres :

• n_estimators : qui représente le nombre d’arbres à utiliser dans la fôret. Plus le nombre
d’arbres est élevé, plus la performance peut être stable, mais cela augmente aussi le temps
de calcul

• max_depth : qui correspond à la profondeur maximale de chaque arbre, ce paramètre
permet de contrôler le surapprentissage (overfitting) en limitant la profondeur des arbres

• min_samples_split : qui représente le nombre minimum d’échantillons requis pour
diviser un nœud
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• min_samples_leaf : le nombre minimum d’échantillons qu’une feuille peut contenir
Dans les deux cas un nombre élevés de min_samples_split ou min_samples_leaf peut
empêcher la complexité de l’arbre.

• max_features : qui prend comme valeur : ’auto’, sqrt’, ’log2’, permet de définir le
nombre de caractéristiques à considérer lors de la recherche de la meilleure scission

Il existe d’autres hyperparamètres, mais ils n’ont pas été pris en compte ici car ils sont jugés
moins importants. Une fois ces hyperparamètres définis, le modèle Random Forest peut être
utilisé pour résoudre des problèmes de régression ou de classification.

Annexe 6 : Réseaux de Neurones
Un réseau de neurones est un modèle d’apprentissage inspiré du fonctionnement du cerveau
humain. Il est composé de multiples couches de neurones artificiels, qui sont des unités de calcul
simples connectées entre elles. Un réseau de neurones typique est constitué de trois types de
couches :

– Couche d’entrée (input layer) : Elle reçoit les données brutes, telles que les pixels d’une
image ou les valeurs numériques d’un tableau. Chaque neurone de cette couche représente
une caractéristique de l’entrée.

– Couches cachées (hidden layers) : Ce sont les couches intermédiaires entre l’entrée et la
sortie. Un réseau peut avoir une ou plusieurs couches cachées. Chaque neurone d’une
couche cachée reçoit des signaux des neurones de la couche précédente. Il effectue une
somme pondérée de ces signaux tel que :

zi =
∑

j

wjxj + bi

où zi est l’entrée pondérée pour le neurone i, wj est le poids de la connexion entre le
neurone j et le neurone i, xj est la sortie du neurone j, et bi est le biais du neurone i.
Et applique une fonction d’activation (une transformation mathématique) tel que :

ai = ϕ(zi)
où ai est la sortie du neurone i, et ϕ est la fonction d’activation. Puis le résultat est
transmis aux neurones de la couche suivante.

– Couche de sortie (output layer) : Elle produit le résultat final du réseau, qui peut être
une classe dans un problème de classification, une valeur numérique pour un problème de
régression, ou encore une probabilité.

Les neurones des couches cachées et de sortie sont connectés aux neurones des couches
précédentes par des poids, qui sont des paramètres ajustés pendant l’entraînement. Chaque
connexion a un poids associé qui détermine l’importance d’un neurone pour un autre.

Lors de l’entraînement d’un réseau de neurones, l’objectif est de déterminer les poids optimaux
pour minimiser l’erreur entre les prédictions du réseau et les valeurs réelles. Ce processus utilise
une méthode appelée propagation arrière : backpropagation.
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• Propagation Avant Forward Propagation :
Les données d’entrée sont passées à travers les différentes couches du réseau pour générer
une prédiction. Cette prédiction est ensuite comparée à la valeur réelle pour calculer
l’erreur.

• Propagation Arrière backpropagation :
L’erreur calculée est rétropropagée ( l’erreur est propagée en sens inverse) à travers le
réseau en sens inverse, depuis la couche de sortie vers les couches précédentes. Pour chaque
poids, le gradient est calculé en utilisant la dérivée de la fonction de perte par rapport à
ce poids et en tenant compte de l’activation du neurone dans la couche précédente. Les
poids sont ajustés en suivant ces gradients pour réduire l’erreur.

L’algorithme de descente de gradient est une méthode utilisée pour minimiser l’erreur en
ajustant les poids du réseau. Il ajuste les poids dans la direction opposée au gradient de l’erreur
pour réduire cette perte.

Ce processus est répété sur plusieurs itérations, ce qui permet au réseau d’améliorer progressive-
ment ses prédictions en ajustant les poids de manière optimale.

Le réseau de neurones comporte plusieurs hyperparamètres qui doivent être ajustés pour obtenir
de bonnes performances. Les principaux hyperparamètres sont :

• Le nombre de couches cachées et de neurones par couche : Plus le réseau est
profond (avec de nombreuses couches) et large (avec de nombreux neurones par couche),
plus il est capable de capturer des relations complexes, mais cela augmente également le
risque de surapprentissage (overfitting).

• Le taux d’apprentissage (learning rate) : Ce paramètre contrôle la vitesse à laquelle les
poids sont mis à jour. Un taux d’apprentissage trop élevé peut entraîner une convergence
instable, tandis qu’un taux trop faible peut rendre l’entraînement trop long.

• Les fonctions d’activation : Ces fonctions introduisent des non-linéarités dans le réseau,
permettant au modèle de capturer des relations non linéaires dans les données. Les
fonctions d’activation courantes incluent :
→ Sigmoïde : σ(x) = 1

1+e−x

→ ReLU (Rectified Linear Unit) : ReLU(x) = max(0, x)
→ Tanh : tanh(x) = ex−e−x

ex+e−x

• L’optimiseur : Les algorithmes d’optimisation ajustent les poids et les biais pour
minimiser la fonction de perte. Quelques optimiseurs populaires sont :
→ Adam, Adadelta

• Le nombre d’itérations (epochs) : Il s’agit du nombre de fois que le réseau passe sur
l’ensemble des données d’entraînement. Un plus grand nombre d’époques permet au réseau
d’apprendre davantage, mais au risque de surapprentissage.

• Taille du lot (batch size) : Nombre d’échantillons traités avant la mise à jour des poids.

Une fois le réseau de neurones bien configuré et entraîné, il peut être utilisé pour effectuer des
prédictions sur de nouvelles données, offrant souvent des performances impressionnantes sur des
tâches complexes où les relations entre les variables ne sont pas évidentes.

49/50



Rapport de Stage

Bibliographie

References

[1] Ministère de la Transition Écologique, Statistiques de l’immobilier tertiaire en 2024, Revue
de l’Écologie Urbaine, 2024.

[2] Ministère de la Transition Écologique, Dépenses énergétiques du secteur tertiaire en 2019,
Revue de l’Écologie Urbaine, 2019.

50/50


	Introduction
	Contexte et Objectifs
	Présentation de l'entreprise
	Problématique
	Objectifs

	Présentation des capteurs
	Modèles de capteurs
	Différents Réseaux
	Collecte des données

	Matériel
	Environnement de travail
	Description de la base de donnée
	Existant

	Méthodologie
	Création du jeu de données
	Apprentissage supervisé
	Modèles
	Modèle Analyse de Survie
	Régression Linéaire multiple
	SVR
	Random Forest
	Réseaux de Neurones

	Évaluation
	Métriques d'évaluation
	Sur-apprentissage
	Matrice de Confusion
	Courbes d'apprentissages

	Évaluation en conditions réelles

	Résultats et discussion
	Prétraitement
	Présentation des variables
	Données manquantes
	Normalisation
	Découpage entraînement/test

	Ajustement des paramètres des modèles traditionnels et du réseau de neurones
	Modèles traditionnels
	Réseau de Neurones

	Résultats
	Résultats des modèles d'analyse de survie
	Résultats des modèles traditionnels et du réseau de neurones
	Sur-apprentissage
	Approfondissement
	Évaluation en conditions réelles


	Conclusion et perspectives
	Annexe
	Bibliographie

