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alimentaire

Auteur :

Clément Poupelin
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stimulant où le partage des idées et l’entraide étaient constamment présents, me permettant ainsi de grandir tant

sur le plan personnel que professionnel.
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ont rendu cette période d’études particulièrement mémorable.

M2 Ingénierie Statistique i Poupelin Clément



INRAE Open16s

Table de sigles, notations et définitions

Sigles

INRAE : Institut National de Recherche pour

l’Agriculture, l’Alimentation et l’Environnement

MICA : Microbiologie et Châıne Alimentaire

MATHNUM : Mathématiques et Informatique pour

l’Environnement et l’Agronomie

MaIAGE : Mathématiques et Informatique Appli-

quées du Génome à l’Environnement

ADN : Acide DésoxyriboNucléique

ARN : Acides RiboNucléiques

POC : Proof Of Concept

ENA : European Nucleotide Archive

GPS : Global Positionning System

PCA : Principal Component Analysis

MDS : MultiDimensional Scaling

PCoA : Principal Coordinates Analysis

ANOVA : ANalysis Of VAriance

PERMANOVA : PERmutational Multivariate ANa-

lysis Of VAriance

SPIEC-EASI : SParse InversE Covariance Estima-

tion for Ecological ASsociation Inference

PLN : Poisson LogNormal

MB : Meinshausen et Bühlmann

GLasso : Graphical Lasso

CLR : Centered LogRatio

StARS : Stability Approach to Regularization Selec-

tion

TSS : Total Sum of Squares

AIC : Akaike information criterion

BIC : bayesian information criterion

CDD : Contrat à Durée Déterminée

Définitions

ASV (amplicon sequence variant) : désigne des séquences d’ADN individuelles récupérées à partir d’une analyse

de gène marqueur à haut débit à la suite de l’élimination de séquences artefactes générées pendant les phases de

séquençage.

CPU (Central Processing Unit) : unité de traitement ou microprocesseur principal d’un ordinateur.

Phylogénie : étude des êtres vivants afin de déterminer leurs liens de parenté.
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Notations

N0 : ensemble des entiers naturels avec 0 compris

SDP : ensemble des matrices symétriques définies positives.

X ′ : transposée de X

∑
k

:
∑K

k=1 pour k ∈ {1, ...,K}

1 : le vecteur composé de 1,


1
...

1


Zi : pour une matrice Z, cela correspond à la colonne i

Z¬i : pour une matrice Z, cela correspond à toute la matrice à laquelle on retire la colonne i

x̄ : moyenne empirique pour un vecteur x ∈ Rn : 1
n

∑n
i=1 xi pour

iid : indépendantes et identiquement distribuées

F (k, n) : loi de Fisher de paramètres k > 0 et n > 0
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1 Introduction

Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) est un organisme

national de recherche publique renommé au sein duquel j’ai eu l’opportunité de réaliser mon stage. Depuis plu-

sieurs années, INRAE mène des recherches pour mieux décrire et comprendre le fonctionnement des écosystèmes

microbiens, notamment au sein des départements MICA (Microbiologie et Châıne Alimentaire) et MATHNUM

(Mathématiques et Informatique pour l’Environnement et l’Agronomie). Ces départements jouent ainsi un rôle

important dans l’avancement des connaissances sur les interactions microbiennes et leur impact sur l’environne-

ment, l’agriculture et la santé humaine.

Aujourd’hui, les différents environnements présents dans la châıne aimentaire ont largement été étudiés à l’aide

de méthodes moléculaires et de bioinformatiques. Cependant, le cycle des microorganismes entre ces différents

environnements qui constituent la châıne alimentaire a été peu investi. Aussi, cela amène à s’interroger sur la

possibilité d’intégrer des données issues de ces différents environnements afin de les étudier simultanément.

Ces dernières années, avec l’essor de la science ouverte (open science), une augmentation de la disponibilité des

données de recherche a pu être constatée. En effet, la science ouverte est un mouvement qui cherche à rendre la

recherche scientifique et les données qu’elle produit accessibles à tous. L’idée est ainsi de permettre une transpa-

rence des processus de recherche, facilitant la collaboration et l’enrichissement des connaissances, ce qui contribue

donc à une recherche plus inclusive et participative, répondant aux défis actuels de notre société.

Par ailleurs, cette abondance de données offre des opportunités inédites pour les chercheurs en termes de réuti-

lisation de données. Mais elle engendre également un besoin croissant de spécialistes en gestion et analyse de

données, capables de manipuler des jeux de données de grande dimension.

Le sujet de mon stage porte sur l’analyse de jeux de données produits indépendamment, partagés librement dans

le cadre de l’open science, qui caractérisent les organismes microbiens présents dans différents écosystèmes. L’ob-

jectif est de comparer, intégrer, interpréter et analyser la diversité microbienne et les interactions entre espèces

dans divers environnements en lien avec la châıne alimentaire ; mais également tenter de déterminer s’il existe

des groupes d’organismes soit ubiquitaires (présents en différents endroits à la fois), soit spécifiques d’un ou de

plusieurs environnements.

Dans ce contexte, plusieurs méthodes et approches statistiques ont été envisagées pour analyser ces données.

Mon travail consistait donc à choisir, paramétrer et tester différentes méthodes adaptées aux données manipu-

lées, mais également à identifier les opportunités et les obstacles à l’intégration des jeux de données publiques

afin de promouvoir la science ouverte dans le domaine de la recherche en écologie microbienne.

M2 Ingénierie Statistique 3 Poupelin Clément
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2 Contexte

2.1 Stage et stucture d’accueil

Mon stage s’inscrit dans le cadre du Master mathématiques et applications - Ingénierie Statistique de l’Université

de Nantes et s’est déroulé au sein de INRAE à Jouy-en-Josas, d’avril 2024 à septembre 2024.

J’ai intégré l’unité de recherche MaIAGE (Mathématiques et Informatique Appliquées du Génome à l’Environne-

ment) sous la supervision principale des équipes Migale et StatInfOmics. Cette unité regroupe des mathématiciens,

des informaticiens, des bioinformaticiens et des biologistes autour de questions de biologie et agro-écologie, allant

de l’échelle moléculaire à l’échelle du paysage en passant par l’étude de l’individu, de populations ou d’écosys-

tèmes. Rattachée aux départements MathNum et MICA, l’unité est structurée en cinq équipes :

• Dynenvie : modélisation dynamique et statistique pour les écosystèmes, l’épidémiologie et l’agronomie

• Bibliome : acquisition et formalisation de connaissances à partir de textes

• BioSys : biologie des systèmes

• StatInfOmics : bioinformatique et statistique des données ”omiques”

• Migale : plateforme bioinformatique

L’inférence statistique et la modélisation dynamique sont des compétences fortes de l’unité, auxquelles s’ajoutent

la bioinformatique, l’automatique et l’algorithmique. Les activités de recherche et d’ingénierie s’appuient égale-

ment sur une forte implication dans les disciplines destinatrices : écologie, environnement, biologie moléculaire et

biologie des systèmes.

Des séminaires sont organisés régulièrement dans l’unité, offrant des opportunités d’enrichir ses connaissances

sur divers sujets et de suivre les avancées récentes dans les domaines de recherche de INRAE. J’ai également

participé à deux formations organisées par la plateforme migale : Introduction à Linux (Trainings of the “Cycle

bioinformatique par la pratique”) et Analyse de données métagénomiques 16S (Metabarcoding analyses: from

sequences to plots). Ces formations m’ont permis de renforcer mes compétences techniques et scientifiques afin

de mieux comprendre le contexte biologique ainsi que les méthodologies associés à mon projet.

Ce rapport de stage présente une grande partie du travail effectué et les résultats obtenus sur le projet Open16S

(voir 2.3). En complément, il est accompagné d’un blog [Poupelin 2024] qui est dédié à ce projet et sur lequel

peuvent être retrouvés les codes et figures.

Ce travail a été réalisé avec R 4.4.1 via l’interface RStudio, en utilisant également les capacités de calcul offertes

par les noeuds de clusters de la plateforme bioinformatique Migale allant jusqu’à 32 CPUs(∗) , assurant ainsi

une gestion efficace et performante des calculs en parallèle et des données volumineuses générées par les analyses

métagénomiques. De plus, les résultats sont partagés sous la forme de documents Quarto qui sont une nouvelle

alternative aux documents Rmarkdown et versionnés avec GitLab dans une démarche de reproductibilité des

analyses.
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2.2 Etude des écosystèmes microbiens par la métagenomique 16S

L’approche métagénomique permet d’étudier le microbiote, c’est à dire l’ensemble des micro-organismes (bacté-

ries, archées, levures, ...) vivants dans un environnement spécifique appelé microbiome ou biotope. Elle consiste

à séquencer simultanément les génomes de plusieurs micro-organismes différents présents dans un milieu donné.

Les études métagénomiques connaissent une popularité croissante et représententent une approche moderne pour

mieux connaitre les communautés microbiennes dans leurs environnements [Berg et al. 2020].

Après collecte d’échantillons de différents biotopes, vient l’étape de séquençage pour lire les bases nucléotidiques

qui forment l’ADN, fournissant des informations sur la composition génétique des micro-organismes présents dans

l’échantillon. Dans les études de métagénomique ciblée (ou ”metabarcoding”) le séquençage du gène codant pour

la sous-unité 16S de l’ARN ribosomique (ARNr), est couramment utilisé car il est hautement représentatif des

bactéries. De manière générale, le séquençage se concentre principalement sur des gènes marqueurs. Ces gènes

sont à la fois présents dans tous les organismes ciblés et constitués de régions variables permettant d’identifier

l’espèce correspondant à un gène séquencé.

Ensuite, les organismes séquencés sont identifiés

via une comparaison taxonomique à des bases de

données de référence pour retrouver les espèces

correspondantes. Ainsi cela nous permet d’avoir

pour chaque séquence des informations d’affiliation

taxonomique allant du règne (bactéries, archées,

...) jusqu’au nom précis de l’espèce (Figure 1).

Kingdom

Phylum

Class

Order

Family

Genus

Species

Figure 1 – Classification taxonomique

Enfin, les données sont transformées en table de comptage, où chaque ligne représente un organisme unique et

chaque colonne un échantillon, avec les valeurs indiquant le nombre de fois que chaque séquence a été observée

dans chaque échantillon.

Cela permet d’effectuer une analyse de diversité pour comprendre la richesse et la répartition des espèces dans

différents biotopes, ce qui inclut des analyses de la diversité au sein d’un même échantillon et de la comparaison

de la diversité entre différents échantillons.

En conclusion, les études métagénomiques s’enrichissent continuellement grâce aux avancées technologiques et

méthodologiques. Cependant, il est important de noter que des biais peuvent apparâıtre pendant la collecte des

échantillons, le séquençage, l’affiliation taxonomique et l’analyse des données, ce qui nécessite une attention par-

ticulière pour garantir la qualité et la fiabilité des résultats.
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2.3 Projet Open16S

INRAE a été un organisme pionnier en matière de science ouverte et s’est doté d’une direction pour ce domaine

dès 2020 (La science ouverte à INRAE).

Le projet Open16S, piloté par le département MICA de INRAE, est un projet original de type POC (preuve

de concept) mis en place dans le cadre de la politique du département et qui vise à répondre aux défis liés à la

réutilisation de données publiques dans le domaine de la métagénomique afin notamment de dégager de nouvelles

hypothèses biologiques originales à tester à partir de l’intégration de jeux de données.

Ainsi, l’objectif principal du projet est d’aborder de manière transversale les écosystèmes microbiens associés à la

châıne alimentaire humaine en utilisant des jeux de données métagénomiques 16S provenant de divers biotopes.

Ce projet implique 12 unités de recherche du département MICA, couvrant une gamme complète d’écosystèmes

ciblés : des aliments (food), des fermenteurs (digester), des échantillons d’intestin humain (human gut) et des

échantillons d’animaux (ici, le trayon de vache - cow).

La feuille de route actuelle du projet comprend plusieurs étapes essentielles :

• L’exploration des questions transversales d’écologie microbienne selon deux types d’approches statistiques :

une approche hypothèse-driven (analyse guidée par les hypothèses) et une approche data-driven (analyse

guidée par les données).

• L’intégration et l’exploration approfondie des jeux de données pour comprendre et formuler de nouvelles

hypothèses sur les déterminants de la structuration des communautés microbiennes.

Ainsi, mon stage avait pour objectifs de réaliser dans un premier temps des analyses statistiques exploratoires

et intégratives sur les données métagénomiques 16S puis d’inférer des réseaux d’association entre les espèces

microbiennes.

M2 Ingénierie Statistique 6 Poupelin Clément
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2.4 Description des jeux de données

Au début de mon stage, j’ai disposé de 19 jeux de données contenant les résultats des études de métagénomique

16S effectuées indépendamment par différentes équipes de recherche. Ces jeux de données en lien avec la châıne

alimentaire se répartissent selon 4 biotopes : food (10 jeux de données), digester (6 jeux de données), human gut

(3 jeux de données) et cow (1 jeux de données). Le nombre d’échantillons traités par projet varie de 24 pour

le plus petit projet PRJNA685310 jusqu’à 500 pour PRJNA589612 ; les deux projets portant sur les aliments

fermentés (respectivement fromages et levains de boulangerie). Et selon les projets, différentes régions du gène

codant pour l’ARNr 16S ont été séquencées (Table 1).

Table 1 – Tableau récapitulatif des jeux de données

Métadonnées minimales associées aux projets

ID projet Titre Biotope Echantillons Région 16S

PRJNA345074 Structural robustness of the gut mucosal microbiota is associated

with Crohn’s disease remission after surgery (article) human gut 46 V6-V8

PRJNA459479 Deciphering intra-species bacterial diversity of meat and seafood spoilage

microbiota using gyrB amplicon sequencing (article) food 40 V3-V4

PRJEB39897 Deciphering Microbial Community Dynamics and Biochemical Changes

During Nyons Black Olive Natural Fermentations (article) food 215 V3-V4

PRJNA735449 Microbial community redundance in biomethanation systems lead to faster

recovery of methane production rates after starvation (article) digester 57 V3-V4

PRJEB39821 Indicative Marker Microbiome Structures Deduced from

the Taxonomic Inventory of 67 Full-Scale Anaerobic Digesters

of 49 Agricultural Biogas Plants (article) digester 201 V3-V4

PRJNA578621 Robustness and efficacy of an inhibitory consortium against

E. coli O26 :H11 in raw milk cheese (article) food 108 V3-V4

PRJEB15657 Carrot Juice Fermentations as Man-Made Microbial Ecosystems

Dominated by Lactic Acid Bacteria (article) food 310 V4

PRJEB44120 Amplicon sequencing data for publication : Lactic starter

dose shapes S. aureus and STEC O26 : H11 growth, and bacterial

community patterns in raw milk uncooked pressed cheeses (article) food 60 V3-V4

PRJEB21187 A Single Community Dominates Structure and Function

of a Mixture of Multiple Methanogenic Communities (article) digester 60 V4

PRJEB21193 A Single Community Dominates Structure and Function

of a Mixture of Multiple Methanogenic Communities (article) digester 42 V4

PRJNA589612 The diversity and function of sourdough starter

microbiomes (article) food 500 V4

PRJNA681555 Description of the temporal dynamics in microbial

community composition and beer chemistry in

sour beer production via barrel ageing of finished beers (article) food 60 V4

PRJEB50379 Integration of multiomic data to characterize the influence

of milk fat composition on Cantal-type cheese microbiota (article) food 36 V3-V4

PRJEB51233 Influence of Post-Milking Treatment on Microbial Diversity

on the Cow Teat Skin and in Milk (article) food et cow 245 V3-V4

PRJNA685310 Temporal differences in microbial composition of

Epoisses cheese rinds during ripening and storage (article) food 24 V3-V4

PRJNA450513 Influence of support media supplementation to reduce

the inhibition of anaerobic digestion by phenol and

ammonia : Effect on degradation performances and microbial dynamics (article) digester 59 V4-V5

PRJNA450311 Inhibition of anaerobic digestion by phenol and ammonia :

Effect on degradation performances and microbial dynamics (article) digester 96 V4-V5

PRJEB28341 Ceftriaxone and Cefotaxime Have Similar Effects on

the Intestinal Microbiota in Human Volunteers Treated

by Standard-Dose Regimens (article) human gut 186 V4

PRJEB6070 Potential of fecal microbiota for early-stage detection of

colorectal cancer (article) human gut 255 V4
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Pour garantir la cohérence et la qualité des données, plusieurs critères de sélection des jeux de données avaient

été établis :

• Publication : les jeux de données devaient déjà avoir été valorisés dans des articles scientifiques. Compte

tenu de l’aspect pilote du projet, il a aussi été décidé de prioriser les jeux de données produits par des

équipes du département MICA.

• Disponibilité publique : les jeux de données devaient être disponibles en libre accès dans des entrepôts

publics, ici l’ENA (European Nucleotide Archive ), garantissant leur accessibilité et leur transparence pour

la communauté scientifique.

• Variété des biotopes : les données devaient provenir d’un biotope en lien avec la châıne alimentaire.

• Uniformité de technique de séquençage : les données devaient avoir été obtenues par la même technique

de séquencage (ou similaires). Ici, nous sommes sur les techniques de séquençage Illumina et IonTorrent

ciblant une région particulière du gène codant pour l’ARNr 16S et qui sont les plus communément utilisées

pour identifier des organismes bactériens.

• Uniformité des régions séquencées : idéalement, les données devaient provenir du séquençage des mêmes

régions variables du gène codant pour l’ARNr 16S. Toutefois, ce critère a été légèrement assoupli pour

garantir un nombre suffisant de jeux de données pour représenter les différents biotopes.

Il faut noter que dans la communauté des chercheurs en génomique, il est obligatoire de déposer les données

brutes de séquençage dans des bases de données publiques au moment de la publication d’un article. Ces dépôts

permettent non seulement de partager les données avec la communauté scientifique mondiale mais aussi d’assurer

la transparence et la reproductibilité des recherches. Ainsi, lors du dépôt, les chercheurs renseignent également

des métadonnées, incluant des informations sur les conditions expérimentales, les protocoles utilisés, et l’origine

des échantillons. Cependant, il s’avère que ces métadonnées sont parfois incomplètes ou imprécises. Néanmoins

pour l’analyste des données (bioinformaticien, statisticien), ces métadonnées restent essentielles pour traiter les

données et pour réaliser des comparaisons.

Comme mentionné précédemment, tous les jeux de données sont des études de métagénomiques 16S basées sur

le séquençage du gène codant pour la sous-unité 16S de l’ARN ribosomique. Celui-ci est composé de régions très

conservées et de neuf régions (V1-V9) qui sont dites hypervariables et qui permettent de distinguer efficacement

différentes espèces de bactéries (Figure 2). Ceci évite donc de séquencer le génome complet permettant ainsi

une réduction des coûts.

V1 V2 V3 V4 V5 V6 V7 V8 V9

Régions conservéesRégions variables

Figure 2 – Représentation théorique du 16S et de ses différentes régions
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Les données brutes sont donc constituées de séquences (reads ou lectures) du gène codant pour l’ARNr 16S pouvant

contenir une ou plusieurs régions hypervariables.

2.5 Pré-traitement bioinformatique

Avant mon arrivée, ces données brutes de séquençage et métadonnées associées ont été analysées via un pipeline bioinfor-

matique (Figure 3) développé par C.Midoux et O.Rué (Open16s-WP2-results) en accord avec les pratiques définies par

INRAE [Falentin et al. 2019] et composé de quatre grandes étapes appliquées pour chacun des projets.

1. Nettoyage des données brutes pour ne conserver que

les séquences correspondant aux régions d’intérêts va-

riables du gène codant pour l’ARNr 16S. Les primers

ou amorces (définit dans les région conservées), utili-

sés comme points de départ pour la détection des zones

d’intérêt lors du séquençage sont éliminés lors de cette

étape.

2. Utilisation d’un modèle permettant de corriger les

éventuelles erreurs de séquençage afin d’obtenir des

séquences plus précises et fiables (utilisation de l’ou-

til DADA2 [Callahan et al. 2016]). Cela permet de

former des ASV(∗)

3. Détection et suppression des possibles chimères, c’est-

à-dire des séquences provenant d’origines différentes

fusionnées et pouvant fausser l’analyse (utilisation de

l’outil FROGS [Escudié et al. 2017]).

4. Affiliation taxonomique, via la base de référence silva

138.1 (utilisation de l’outil FROGS [Escudié et al.

2017]).

5. Stockage des données et métadonnées dans un objet

phyloseq [McMurdie et Holmes 2013] via le package

R du même nom. Cela permet d’organiser et gérer les

données de manière à faciliter les analyses statistiques.

Correction des erreurs de séquançage

Nettoyage

Données brutes

Détection de chimères

Affiliation taxonomique

Phyloseq

Métadonnées

Figure 3 – Pipeline bioinformatique simplifiée

M2 Ingénierie Statistique 9 Poupelin Clément

https://cati-boom.pages.mia.inra.fr/Open16S-WP2-results/#donn%C3%A9es-dentr%C3%A9e
https://www.arb-silva.de/documentation/release-138/
https://www.arb-silva.de/documentation/release-138/


INRAE Open16s

Un objet phyloseq est organisé de la manière suivante (Figure 4) :

• Un tableau d’abondance (otu table)

• Un tableau taxonomique (tax table)

• Une table de métadonnées (sample data)

OTU table (matrix)

Sample data

(dataframe)

Tax table

(matrix)A
S
V

Samples

Figure 4 – Objet phyloseq

La table d’abondance (otu table) est une matrice de comptage avec en ligne les ASV et en colonne les échantillons

(samples). Chaque élément de la matrice représente l’abondance de l’ASV dans l’échantillon, c’est à dire le nombre de

séquences (reads) de l’ASV présentes dans l’échantillon.

Les informations portant sur les échantillons en lien avec les conditions expérimentales (numéro de projet correspondant,

organisme associé, condition, etc...) sont contenues dans la table sample data.

Puis, l’assignation taxonomique des ASV (au niveau du règne jusqu’au niveau espèce lorsque cela est possible) est rensei-

gnée dans la table tax table.

A l’issue de l’analyse bioinformatique, deux objets phyloseq on été construits. Le premier regroupant toutes les données

du projet Open16S avec n = 74833 ASV (Figure 5) et le second ayant subi une agglomération par espèce avec n = 3452

espèces (Figure 6). C’est à dire que dans ce second objet, tous les ASV possédant la même affiliation taxonomique de

règne jusqu’à espèce ont été fusionnées avec addition des comptages.

Figure 5 – Objet ”brut” Figure 6 – Objet avec agglomération par espèce

J’ai donc choisi d’effectuer les analyses statistiques sur l’objet phyloseq généré après agglomération des ASV par espèce.

Cela permettait de traiter une matrice avec moins de zéros de plus petite dimension 3452 × 2565 et de simplifier l’inter-

prétation des résultats en travaillant sur des noms d’espèces.
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3 Préparation et premières explorations des données

Un des grands enjeux de la science ouverte est la description normalisée des données de la recherche via leurs métadonnées.

Et malgré les efforts de normalisation des métadonnées des entrepôts génomiques (ENA), il a été constaté une grande

hétérogénéité des métadonnées associées aux échantillons.

En effet, les différents jeux de données selectionnés étaient des études indépendantes qui n’étaient pas initialement prévues

pour être intégrées. Cette intégration a donc conduit à des ensembles de données hétérogènes et souvent incomplets, posant

des défis importants autour des données manquantes, de la normalisation des variables et de la grande dimension.

3.1 Création de variable d’intérêt à partir des métadonnées renseignées

Les métadonnées jouent un rôle important dans l’analyse de données, fournissant un contexte essentiel pour analyser et in-

terpréter les résultats. Cependant, du fait de la nature ”patchwork”des données qui sont comme un assemblage de plusieurs

jeux de données indépendants, celles-ci sont complexes à traiter. En effet, il a été constaté une redondance, notamment avec

plusieurs variables décrivant des aspects similaires de la localisation géographique. Par exemple, un jeu de données pouvait

avoir les informations géographiques de l’échantillon dans une variable nommée geo loc name et un autre dans une variable

lat lon. Et si dans un jeu de données il avait été décidé de renseigner la ville de prélèvement et un autre les coordonnées

GPS, un vrai problème de normalisation de l’information se posait. J’ai donc décidé de sélectionner quelques métadon-

nées indispensables en regroupant celles qui donnaient les mêmes informations (ou informations équivalentes). De plus,

une variable Biotope, représentant les écosystèmes étudiés, a été créée manuellement et contient aucune valeur manquante.

J’ai donc sélectionné 6 métadonnées sur les 140 disponibles. La table de métadonnées (sample data de l’objet phyloseq)

est donc composée des variables :

• Biotope : lieu de vie associé à l’échantillon

• Sample : identifiant de l’échantillon

• Location : information de localisation géographique de prélèvement de l’échantillon

• Source : information sur la source de prélèvement de l’échantillon

• organism name : organisme ou environnement séquencé

• PRJN : numéro de projet auquel l’échantillon appartient

Ici, les variables Location et Source sont la fusion de plusieurs autres variables (respectivement 8 et 5 variables). Ces fusions

ont été réalisées en manipulant les données grâce aux outils du package R {tidyverse} et se trouve dans la section 0 du

blog [Poupelin 2024].
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3.2 Co-occurences des espèces dans les différents biotopes

Dans un premier temps, nous souhaitons étudier la présence d’espèces trans-biotopes (communes à plusieurs biotopes) de

la chaines alimentaires avec une analyse de co-occurences. Cette analyse exploratoire a permis de détecter, visualiser et

quantifier le nombre de co-occurences d’espèces entre deux ou plus biotopes.

A l’aide d’Upset plot (similaires aux diagrammes de Venn) j’ai développé deux fonctions sous R. Une première fonction

permet de construire la matrice de combinaison entre les biotopes et d’extraire le nom des espèces de cette combinaison

(Figure 7). Une espèce est présente dans un biotope si elle est comptée au moins une fois dans un des échantillons de

ce biotope. Puis, la seconde fonction permet de visualiser de manière simple l’Upset plot qui découle de cette matrice de

combinaison (Figure 8).

Figure 7 – Extraction des espèces communes aux
quatre biotopes (n = 153)

Figure 8 – Upset plot des co-occurences d’espèces
pour les différents biotopes

Cela nous permet donc, dans un premier temps, de visualiser et quantifier le nombre de co-occurrences d’espèces puis

ensuite de les identifier. Nous pouvons alors constater que 2202 espèces restent spécifiques à un biotope mais 1246 sont

partagées par nos biotopes. Et nous avons même 153 espèces communes aux quatre biotopes ce qui nous conforte dans la

possibilité d’ illustrer des relations inter-biotopes.

Maintenant, il faut tout de même préciser que beaucoup de ces espèces communes extraites étaient renseignées comme

inconnues (Figure 7) puisque la notation ”UnkSp”correspond à unknown species et ”MulSp” correspond à multi-affiliation

species. Ce qui veut dire que des séquences correspondent à des espèces notifiées comme inconnues où alors qu’elles cor-

respondent de manière équivalente à plusieurs affiliations possibles dans la base de données de référence.

Cela nous donne un premier aperçu des difficultés rencontrées lorsque l’on se positionne sur une résolution au niveau

espèces. Et c’est pourquoi, les fonctions ont été construites de sorte à pouvoir se placer à un autre niveau de taxonomie.

Cela nous rendra moins résolutif mais nous pourrons statuer sur des informations plus fiables.
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Ainsi, au niveau phylum nous pouvons

voir les co-occurrences détectées dans les

quatre biotopes (Figure 9). Nous pouvons

constater une prédominance d’espèces ap-

partenant au phylum des firmicutes.

Mais nous avons aussi la présence élevée

d’espèces appartenant aux Proteobacteria

et Bacteroidota dont l’un est très présent

dans l’homme et l’autre plus répandu dans

le sol ou les intestins d’animaux.

Figure 9 – Extraction des phylum communs aux quatre
biotopes

En conclusion, cette analyse nous montre bien que des espèces sont présentes sur plusieurs biotopes de la châıne alimentaire

ce qui amène à envisager la présence de relations entre ces espèces. Mais, cela nous montre aussi que ces études restent très

dépendantes des possibilités d’affiliation taxonomique et qu’étudier les espèces implique que certaines soient affiliées à des

unknown ou qu’elles soient multi-affiliation. C’est pour cela qu’une pratique courante est d’effectuer une agglomération à

des niveaux taxonomiques supérieurs même si cela implique une perte de résolution (Figure 1).

M2 Ingénierie Statistique 13 Poupelin Clément



INRAE Open16s

4 Analyse de diversité

La diversité, ou richesse, fait référence au nombre de taxons (ASV, espèces, ...) différents, comptés ou estimés, dans un

système ou échantillon étudié (par simplicité de compréhension, on utilisera tout du long de se rapport le terme espèce plu-

tôt que taxon). Pour estimer la diversité, nous faisons certaines hypothèses. Premièrement, les systèmes d’où viennent les

prélèvements sont connus et la taxonomie des différentes espèces peut être identifiée. Ensuite, les systèmes sont considérés

comme équidistant dans le sens que si nous rajoutons une espèce dans un système, cela correspondra à une augmentation

de diversité d’une unité. Cela ne dépendra donc pas du fait que l’espèce soit proche ou non des autres (sauf si nous utilisons

des distances spécifiques reposant sur la phylogénie(∗)).

En écologie microbienne, deux grands types d’analyses de diversité sont réalisées en fonction des questions biologiques

posées :

• α-diversité : elle correspond à la diversité dans un système uniforme de taille fixe. Dans notre contexte, cela signifie

que l’on regarde la diversité d’espèces dans chacun des échantillons.

• β-diversité : elle mesure à quel point des systèmes locaux sont différents. Dans notre contexte, cela signifie que l’on

va regarder si différents échantillons ont une diversité proche ou non.

Ces mesures sont donc très importantes dans les analyses microbiennes, car elles permettent d’identifier les facteurs qui

influencent la diversité microbienne et de comprendre les dynamiques des communautés microbiennes. Nous pouvons alors

nous poser la question de savoir si les données du projet Open16S issues d’une démarche de science ouverte permettent

de retrouver les caractéristiques de diversité propre à chaque biotope même si les échantillons proviennent d’études indé-

pendantes et de matériels biologiques différents.
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4.1 Méthodes et théorie

4.1.1 Indices d’alpha-diversité

Différents indices sont utilisés pour quantifier l’α-diversité qui est spécifique à un échantillon donné. Les indices que nous

allons présenter sont les plus couramment utilisés et permettent de mesurer non seulement le nombre d’espèces présentes

mais aussi leur abondance relative et leur distribution.

L’abondance relative ps fait référence au rapport entre le nombre de fois qu’une espèce s est observée dans un système

par rapport au nombre total d’espèces S dans ce même système, avec s = 1 . . . S.

Ainsi, soit ps avec s ∈ {1, ..., S} la probabilité d’appartenir à l’espèce s et ci, i ∈ N, le nombre d’espèces observées i fois.

Richesse observée

Srich =
∑
s

1ps>0 =
∑
i

ci

Cet indice représente le nombre d’espèces différentes observées dans un échantillon. Il ne prend pas en compte l’abondance

relative des espèces, offrant ainsi une mesure brute de la richesse de l’échantillon et est fortement influencé par les espèces

rares.

Chao1

SChao1 = Srich + ĉ0

L’indice de Chao1 est défini par le nombre d’espèces différentes observées dans l’échantillon auquel on associe une estima-

tion du nombre d’espèces non observées ĉ0.

Cette estimation se fait à partir de celles observées une et deux fois (annexe).

Shannon entropy

SShan = −
∑
s

psln(ps)

L’indice de Shannon représente l’entropie de la distribution de l’abondance relative des espèces dans un échantillon. Ainsi,

il prend en compte à la fois la richesse et l’abondance relative, offrant une mesure plus nuancée de la diversité en tenant

compte de l’équité des espèces présentes (annexe).

Inverse Simpson

SInvSimp =
1

p21 + ...+ p2s

Cet indice évalue quant à lui l’inverse de la probabilité que deux séquences tirées aléatoirement dans un échantillon puissent

appartenir à la même espèce. Plus l’indice est élevé, plus la diversité est importante et il est influencé par les espèces très

abondantes (annexe).
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4.1.2 ANOVA

L’α-diversité mesure la diversité au sein d’un échantillon et produit donc une valeur de diversité par échantillon. Dans

ce contexte l’objectif de l’ANOVA, ou analyse de variance, va être de tester l’influence de facteurs expérimentaux sur

l’α-diversité en comparant les diversités moyennes entre plusieurs groupes définis par ces facteurs.

Pour expliquer la variabilité de l’α-diversité en fonction d’un facteur contenant I groupes (par exemple le biotope à quatre

groupes), l’ANOVA à un facteur se base sur un modèle de la forme :

yij = µ+ βi + εij pour i ∈ {1, ..., I} et j ∈ {1, ..., ni}

• yij la variable réponse ou variable à expliquer

• ni la taille du groupe i

• µ constante (intercept)

• βi l’effet du facteur à tester

• εij ∼
iid

N (0, σ2) l’erreur

Nous posons les moyennes suivantes :

ȳi =
1

ni

ni∑
j=1

yij la moyenne par groupe , ȳ =
1∑I

i=1 ni

I∑
i=1

ni∑
j=1

yij la moyenne totale

Sous l’hypothèse nulle selon laquelle les diversités moyennes des différents groupes sont égales et en supposant que les

hypothèses de l’ANOVA sont vérifiées (indépendances des erreurs, homoscédasticité, normalité), la statistique de test

s’écrit :

F =
SSB

SSW

n− I

I − 1
, F ∼ F (I − 1, n− I)

Avec

SSB =

I∑
i=1

ni(ȳi − ȳ)2 et SSW =

I∑
i=1

ni∑
j=1

(yij − ȳi)
2

SSB représente la variabilité inter-classes et SSW la variabilité intra-classe. Et la variabilité totale se décompose en

SST = SSB + SSW

.

Cela permet donc de tester l’égalité des moyennes de la variable réponse (α-diversité) entre les groupes (par exemple les

biotopes).
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4.1.3 Indices de bêta diversité

Contrairement à la diversité α, la diversité β permet de comparer la composition microbienne entre plusieurs communautés

microbiennes (d’échantillons différents). Plusieurs distances ou pseudo-distances ont été développées et sont communément

utilisées.

Notons ns,1 le nombre de séquences de l’espèce s dans l’échantillon 1 et ns,2 celui dans l’échantillon 2.

Jaccard

La distance de Jaccard (1− indice de Jaccard) est définie par

dJ =

∑
s 11ns,1>0,ns,2=0 + 11ns,2>0,ns,1=0∑

s 1ns,1+ns,2>0

et représente le nombre d’espèces spécifiques de chaque échantillon rapporté à la somme totale des espèces.

Bray-Curtis

L’indice de dissimilarité de Bray-Curtis est un indice de dissimilarité défini par

dBC =

∑
s |ns,1 − ns,2|∑
s(ns,1 + ns,2)

et prend directement en compte l’abondance des espèces. Il prend la valeur 0 si les échantillons sont identiques et 1 s’ils

sont complétement dissemblants.

De plus, il existe d’autres indices de β-diversité : Unifrac et Weighted Unifrac. Ils se basent sur la distance phylogénétique

et ne sont pas applicables pour les données du projet Open16S. Ces indices utilisent une longueur de branche de l’arbre

phylogénétique construit à partir de l’alignement de tous les ASV (74833, Figure 5). Un tel alignement n’est pas possible

à produire et par conséquent, ces indices ne sont pas adaptés à la compléxité des données due à l’intégration.

4.1.4 Visualisation par méthode d’ordination

Les méthodes d’ordination sont des méthodes statistiques de représentation graphique utilisées pour visualiser les échan-

tillons dans un espace de dimension inférieure tout en préservant la structure globale des données.

Nous pouvons citer deux méthodes dites d’ordination sans contrainte, c’est à dire sans hypothèse sur la structure des don-

nées ou les relations entre variables : Analyse en composantes principales (PCA) et le positionnement multidimensionnel

(MDS ou PCoA).

La PCA s’applique directement sur des matrices multidimensionnelles de données individuelles où chaque échantillon

(communauté microbienne) est décrit par l’abondance des ASV ou espèces. Et le MDS permet de projeter les échantillons

dans un espace euclidien à partir des matrices de distance ou dissimilarité en préservant les proximités. Ces méthodes sont

intéressantes pour identifier les facteurs impliqués dans la structuration des communautés (annexe).
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4.1.5 PERMANOVA

La β-diversité mesure la diversité entre plusieurs échantillons, souvent représentée par des matrices de distance ou de

dissimilarité entre les paires d’échantillons. Ces données de distances ne suivent généralement pas une distribution normale

et peuvent avoir des structures complexes de dépendance, ce qui rend l’ANOVA inappropriée.

Nous avons alors réalisé l’analyse PERMANOVA (analyse de la variance par permutation) qui :

• permet de partitionner la variance à partir de distances ou dissimilarités en fonction de facteurs expérimentaux

(modélisation similaire à l’ANOVA)

• se base sur des permutations et ne fait pas d’hypothèses strictes sur la distribution des données (normalité).

• teste si les centres des groupes (les centrôıdes) diffèrent, en prenant en compte les distances multidimensionnelles

entre les échantillons.

Cette partie s’inspire de la publication de [J.Anderson 2005]. L’analyse PERMANOVA à un facteur (par exemple le

biotope) se base sur une matrice de distances ou dissimilarités D = {dij}i,j∈R.

Soit N le nombre d’échantillons.

La somme des carrés des écarts totale se définit comme suit :

SST =
1

N

N−1∑
i=1

N∑
j=i+1

d2ij

Il faut ensuite définir la somme des carrés des écarts entre les observations et les centröıdes au sein des groupes :

SSW =
1

n

N−1∑
i=1

N∑
j=i+1

d2ijδij

avec n le nombre de répétitions (réplicats) dans le groupe et δij = 1 si i et j sont dans le même groupe et 0 sinon

De plus, nous avons la relation SST = SSB + SSW où SSB représente la somme des carrés des écarts entre les centröıdes

des groupes et le centrôıde global.

Cela permet de construire la statistique de test

F =
SSB

SSW

N − I

I − 1
avec I le nombre de groupes

Ensuite, les données sont permutées K fois. À chaque permutation, de nouveaux labels sont réattribués aux échantillons

et une statistique Fk est calculée, pour k allant de 1 à K.

Puis la p-value est déterminée par

p =
Nombre de |Fk| ≥ F

Nombre total de permutations
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4.1.6 Rarefaction et Breakaway

Pour l’α-diversité, de nombreux indices dépendent de la taille de l’échantillon, caractérisée par le nombre de séquences à

l’intérieur de celui-ci. Dans les données disponibles du projet Open16s, le nombre total de séquences varie de 122 pour un

des échantillons du projet PRJEB15657 à 473768 pour un échantillon du projet PRJEB6070. Cette différence vient de ce

qu’on appelle la profondeur (ou couverture) de séquençage qui est un effet expérimental. Et puisque les projets ont été

fait indépendamment, les profondeurs de séquençage sont également différentes. L’objectif étant de comparer l’α-diversité

entre les échantillons, les données d’abondances sont parfois raréfiées sur la base du minimum de séquences détectées dans

un échantillon.

Supposons que nous avons deux échantillons de tailles n1 et n2 telles que n1 < n2. De manière simple, la raréfaction

consiste à tirer aléatoirement (tirage avec remise) n1 séquences que l’on gardera pour le deuxième échantillon de taille

nrar
2 = n1. Les espèces détectées dans ce nouvel échantillon raréfié varient en fonction du tirage effectué et c’est pourquoi

la procédure est itérée plusieurs fois afin d’obtenir différentes valeurs d’espèces détectées. Par la suite, cela nous permet

d’obtenir le nombre moyen de fois qu’une espèce est observé dans un échantillon. Les courbes de raréfaction peuvent

ensuite mettre en évidence que la richesse observée augmente en fonction de la taille de l’échantillon (Figure 10).

Figure 10 – Courbe de raréfaction d’échantillons selon le projet

La majorité des courbes

approche une asymptote, ce

qui signifie qu’augmenter

le nombre de séquences

ne fera probablement pas

découvrir de nouvelles es-

pèces. En m’appuyant sur

la littérature, j’ai choisi un

seuil de raréfaction à 2000

séquences pour effectuer

les analyses de diversité.

Ainsi, environ 1.29% des

échantillons seront retirés de

l’analyse car ils possèdent

moins de 2000 séquences.

La raréfaction permet de rendre comparable les mesures de diversité malgré l’exclusion de séquences au cours du processus

et potentiellement la perte d’espèces rares, ce qui suscite la controverse depuis quelques années [McMurdie et Holmes

2014].

En réponse à cette controverse, une autre méthode a été développée [Willis et Bunge 2015] et implémentée dans le

package R Breakaway. Pour estimer et modéliser la richesse observée, l’objectif est d’estimer le nombre d’espèces non ob-

servées même si les échantillons sont de tailles différentes en utilisant une régression non linéaire sur les ratios de fréquence
ci+1

ci
(ci défini en 4.1.1). J’ai donc testé cette méthode afin de voir si elle apportait des résultats différents.
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4.2 Résultats

4.2.1 Alpha Diversité

Nous avons exploré l’α-diversité des échantillons selon le biotope en utilisant plusieurs méthodes d’estimation.

Figure 11 – Boxplot de l’α-diversité des échantillons selon leur biotope

Ces résultats permettent de visualiser une diversité élevée pour quelques échantillons des biotopes tels que digester, cow

et human gut, et cela, quelle que soit l’indice utilisé (Figure 11).

Toutefois, il faut également noter que le grand nombre d’échantillons du biotope food contribue à ce que l’α-diversité soit

étendue et très variable : des échantillons ont une richesse faible et d’autres une richesse aussi élevée que dans les autres

biotopes. En effet, le biotope food est représenté par des échantillons provenant de sources très variées (Figure 12).

Puis, nous pouvons noter également une différence forte dans les valeurs obtenues avec l’indice de Shannon s’expliquant

par une meilleur prise en compte l’équité entre les espèces.

Aussi, l’estimation de la richesse observée avec le package breakaway est similaire à celle estimée par Chao1 après la

raréfaction. Par conséquent, nous ne développerons pas d’avantage sur cette méthode.
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Ainsi, il semble clair que le biotope a un effet sur la diversité présente dans les échantillons. Pour confirmer cela, nous avons

effectué plusieurs ANOVA en utilisant différentes mesures de l’α-diversité (Observed, Chao1, Shannon, Inverse Simpson)

comme variables de réponse, avec le biotope comme facteur explicatif.

Pour chaque mesure de l’α-diversité, nous avons testé l’hypothèse nulle selon laquelle les diversités moyennes des différents

biotopes sont égales. Un rejet de l’hypothèse nulle indiquerait que le biotope a un effet significatif sur la diversité.

Table 2 – Analyse de variance

Response : Observed

Df Sum Sq Mean Sq F value Pr(>F)

Biotope 3 2833802 944601 1864.5 <2.2e-16

Residuals 2523 1278199 507

Response : Chao1

Df Sum Sq Mean Sq F value Pr(>F)

Biotope 3 3631410 1210470 1669 <2.2e-16

Residuals 2523 1829810 725

Response : Shannon

Df Sum Sq Mean Sq F value Pr(>F)

Biotope 3 2192.66 730.89 2200.8 < 2.2e-16

Residuals 2523 837.88 0.33

Response : Inverse Simpson

Df Sum Sq Mean Sq F value Pr(>F)

Biotope 3 59429 19809.7 978.51 < 2.2e-16

Residuals 2523 51077 20.2

Pour toutes les mesures de l’α-diversité, les p-values obtenues sont inférieures à 0.05 (Table 2), ce qui conduit au

rejet de l’hypothèse nulle. Cela signifie que les diversités moyennes diffèrent significativement entre les biotopes,

confirmant ainsi l’impact du biotope sur la variabilité de l’α-diversité.

De plus, grâce aux métadonnées, nous pouvons analyser plus en détail quelles sources et quels organismes contri-

buent également à la diversité intra-biotope.
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Figure 12 – Richesse observée pour les échantillons selon les variables Source et organism name

Nous constatons dans un premier temps que cow teat skin, batch anaerobic digester, biogas fermenter, beer, cow

milk et human feces ont une richesse plus élevée au sein des biotopes et une plus grande variabilité (Figure 12).

Aussi, dans le biotope food le lait (avant quelconque transformation) présente la diversité la plus élevée. En

revanche, les autres sources alimentaires montrent une diversité plus faible (Figure 12), ce qui peut être dû à

des procédés de transformation ou de conservation qui réduisent la diversité microbienne.

Bien entendu, ces analyses dépendent fortement de la qualité des métadonnées disponibles. Certaines informa-

tions peuvent être manquantes ou imprécises comme par exemple métagenome de la variable organism name et

dans le biotope human gut qui est sans précision particulière (Figure 12).

Cette analyse révèle donc que le biotope a un impact sur la diversité microbienne. Cependant, le manque de

précision des métadonnées ne nous permet pas d’aller plus loin dans les analyses de l’α-diversité pour la compré-

hension des environnements microbiens de la châıne alimentaire.
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4.2.2 Bêta Diversité

Pour évaluer la β-diversité, nous avons donc utilisé les indices de Jaccard et de Bray-Curtis avec la méthode de

positionnement multidimensionnel (MDS).

Figure 13 – Représentation en deux dimensions de la β−diversité en fonction du biotope

Ici encore, le biotope semble impacter la β-diversité. En effet, nous observons une structuration des échantillons

en fonction des biotopes dans le plan euclidien (Figure 13). Notons aussi que, bien que le pourcentage d’ex-

plication des axes semble faible, il est conforme à la littérature des analyses de données métagénomiques en

écologie microbiennes. La réduction de dimension nous fait passer de plus de 2500 axes (l’équivalent d’un axe

par échantillons) à deux axes. Et donc, l’analyse de β-diversité bénéficie des avancées méthodologiques dans le

domaine de la réduction de dimension.

De plus, il est intéressant de noter que le pourcentage d’explication est plus élevé en utilisant l’indice de Bray-

Curtis qui prend en compte l’abondance des espèces contrairement à Jaccard.
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Aussi, il est intéressant de re-

garder la β-diversité en fonction

d’autres variables et principalement

voir l’impact des sources de prélè-

vement. Nous pouvons retrouver ici

présence de structuration selon la

source de prélèvement (Figure 14).

Mais nous constatons à nouveau une

limitation due aux données man-

quantes et à la normalisation des

termes (voir 3.1).

Figure 14 – Représentation en deux dimensions de la
β−diversité en fonction de la variable Source pour la

dissimilarité de Bray Curtis

L’analyse PERMANOVA, basée sur une matrice de distance ou dissimilarité, a été utilisée pour tester l’impact

du biotope. L’hypothèse nulle est définie par les centröıdes et la dispersion des groupes équivalents entre les

différents biotopes (cela signifie que les échantillons des différents biotopes ne diffèrent pas significativement en

terme de composition microbienne).

Table 3 – Analyse PERMANOVA

Jaccard

Df SumOfSqs R2 F value Pr(>F)

Biotope 3 236.91 0.20212 215.66 0.01

Residuals 2554 935.22 0.79788

Total 2557 1172.13 1.00000

Bray Curtis

Df SumOfSqs R2 F value Pr(>F)

Biotope 3 225.97 0.19723 209.17 0.01

Residuals 2554 919.74 0.80277

Total 2557 1145.71 1.00000

Nous constatons un rejet de l’hypothèse nulle pour les deux indices, avec des p-values inférieures à 0.05, indiquant

que les échantillons des différents biotopes diffèrent significativement (Table 3). Nous pouvons aussi voir que la

variable biotope semble expliquer environ un cinquième de la variablilité totale.

Pour conclure cette partie, l’étude de la diversité, tant α que β, a confirmé que les communautés microbiennes

sont différentes selon les biotopes et aussi les sources de la châıne alimentaire. Nous avons retrouvé des résultats

connus de la littérature, notamment une richesse d’espèce plus importante dans les écosystèmes humains (human

gut) et animaux (cow), ainsi que pour les fermenteurs (digester). Tout cela offre une base solide pour des études

plus approfondies sur les interactions entre les différentes espèces.
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5 Inférence de réseau

L’inférence de réseau dans l’étude des données microbiennes permet de modéliser et de visualiser les interactions,

au sens mathématique, entre différentes espèces microbiennes (en biologie, une interaction entre des espèces doit

être validée expérimentalement). Ainsi, il est possible d’identifier les espèces liées à un environnement spécifique

ou plus transversales.

De manière concrète, un réseau est composé de nœuds et d’arêtes. Chaque nœud correspond à une espèce tandis

que les arêtes correspondent aux interactions entre les espèces.

L’inférence de réseau est une thématique de recherche en plein essor en biologie et en particulier en écologie

microbienne. Plusieurs modèles de réseaux ont été développés récemment reposant sur des méthodologies diffé-

rentes. Certaines méthodes peuvent donc être plus adaptés à des types spécifiques de données ou des questions

de recherche.

Parmi ces méthodes, il a été choisi dans le cadre du stage de se concentrer sur celles reposant sur l’estimation

des dépendances conditionnelles et de tester plus particulièrement :

• SPIEC-EASI (Sparse InversE Covariance estimation for Ecological Association and Statistical Inference)

[D.Kurtz et al. 2015]

• PLN (Poisson LogNormal) [Chiquet, Mariadassou et Robin 2021].

L’application des réseaux dans l’étude des données microbiennes apporte une richesse d’informations et d’inter-

prétations qui sont essentielles pour comprendre la complexité des interactions microbiennes. Mon idée ici était

avant tout de découvrir et tester plusieurs approches d’inférence de réseau. De plus, cela a permis l’utilisation du

modèle PLN co-développé par un chercheur de l’unité MaIAGE.
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5.1 Méthodes et théorie

5.1.1 Filtration et agglomération

Dans l’objectif d’inférer un réseau calculable et interprétable, j’ai élaboré plusieurs stratégies pour construire

des jeux de données adaptés. En effet, les techniques de réseau nécessite que les données ne soient pas de trop

grande dimension sinon le calcul serait trop coûteux (voir impossible) et il y a aussi un risque qu’il ne soit pas

interprétable car beaucoup trop dense.

Tout d’abord, un filtrage global basé sur la profondeur de séquençage (quantité totale de séquences obtenues

par échantillon) est effectué. Nous rappelons que le nombre total de séquences produites est différent entre les

échantillons et est lié à la technique de séquençage (illustration lors de la raréfaction 4.1.6)).

Le seuil, fixé à 10000 séquences, a été choisi en s’inspirant de la littérature. Cela implique la suppression des

échantillons possèdant moins de 10000 séquences lues et quelque soit le projet d’où viennent les échantillons.

Ainsi, 2210 échantillons sont conservés sur les 2558 (plus de 86.4% des échantillons).

Figure 15 – Nombre d’échantillons par projet avant et après filtrage sur la profondeur de séquençage
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Par contre, nous pouvons remarquer que le projet PRJNA681555 (Table 1) est fortement impacté par ce filtrage

(Figure 15) avec 96,72% des échantillons du projet supprimés. En effet, la profondeur de séquençage du projet

sur la bière (biotope food) est largement inférieure aux autres projets, nous avons alors décidé de retirer tous les

échantillons de ce projet pour la suite des analyses afin de ne pas introduire un effet spécifique à celui-ci.

Ensuite, j’ai développé une approche de sélection des espèces selon des critères de prévalence et d’abondance. Ces

deux notions se définissent comme suit :

Abondance =
Nombre de fois où l’espèce est présente dans l’échantillon

Nombre total d’espèces

Prévalence =
Nombre d’échantillons où l’espèce est présente

Nombre d’échantillons

Le but de notre étude étant de regarder les interactions d’espèces de différents biotopes, j’ai défini une grille de

valeurs (Figure 17) pour les seuils de prévalence et d’abondance afin de choisir une combinaison adaptée pour

l’inférence de réseau. Ces seuils varient entre 1e−05 et 0.4 pour la prévalence (un seuil à 0.4 signifie qu’une espèce

est présente au minimum dans 40% des échantillons du biotope) puis entre 0 et 0.3 pour l’abondance (un seuil

à 0.3 indique qu’une espèce est présente au minimum à 30% par rapport aux autres espèces du biotope). Cela

donne donc, pour chaque biotope, un total de 56 combinaisons de couples de seuils.

En d’autres termes, pour un biotope, nous avons sélectionné les espèces dont la prévalence est supérieure à un

seuil minimal par échantillon et dont l’abondance est supérieure à un seuil minimal dans au moins un échantillon.

Ce qui permet la présence d’espèces rares dans certains échantillons.

Enfin, une dernière stratégie communément utilisée consiste à agglomérer les comptages de la table d’abondance

à un rang taxonomique supérieur à celui de l’espèce (Figure 1).

Cette table d’abondance est alors de dimension plus réduite et l’affiliation taxonomique est mieux renseignée.
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5.1.2 SPIEC EASI

Cette partie se base sur la publication dédiée à l’inférence de réseau via la méthode SPIEC-EASI (SParse InversE

Covariance Estimation for Ecological ASsociation Inference)[D.Kurtz et al. 2015] et par simplicité de compré-

hension, le terme espèce sera utilisé plutôt que ASV ou taxon. Cette méthode a été développée spécifiquement

pour l’inférence de réseau sur des données d’écologie microbienne et elle est implémentée dans le package R

{SpiecEasi}. L’inférence via SPIEC-EASI se déroule en deux étapes principales :

1. Transformation des données à partir de la matrice de comptage des espèces (otu table).

2. Inférence d’un réseau d’interactions à partir des données transformées.

Contrairement aux réseaux d’association basés sur des corrélations empiriques comme la corrélation de Pearson,

SPIEC-EASI vise à inférer un modèle basé sur les dépendances conditionnelles. Deux nœuds sont conditionnel-

lement indépendants s’ils n’apportent aucune information supplémentaire l’un à l’autre, une fois que l’effet de

tous les autres nœuds du réseau est pris en compte.

Le réseau est considéré comme un graphe non orienté G = {V,E}, avec V = {v1, ..., vp} représentant l’ensemble

des sommets ou nœuds du graphe et E ⊂ V × V contenant les couples de noeuds (ASV, espèces, ...) étant en

interaction. L’interaction mesure l’association potentielle entre deux espèces.

Pour inférer ce graphe, SPIEC-EASI propose deux approches :

• MB (Meinshausen et Bühlmann) : sélection par proche voisin en effectuant une régression multiple pénalisée

pour chaque nœud.

• GLasso (Graphical Lasso) : estimation de la matrice de précision par maximum de vraisemblance pénalisé.

5.1.2.1 Transformation des données

La transformation utilisée pour l’inférence via SPIEC-EASI est la transformation centered log-ratio (CLR). Cette

transformation est essentielle car elle permet de gérer la nature compositionnelle des données métagénomiques,

où les abondances relatives des espèces sont exprimées en proportion. Les abondances relatives permettent de

prendre en compte la différence de profondeur de séquençage entre les échantillons (illustration lors de la raré-

faction 4.1.6)).

Soit W la matrice de comptage (otu table, Figure 4) transposée avec les n échantillons en ligne et les p espèces

en colonne. Cela donne W ∈ Nn×p
0 avec w(j) = [w

(j)
1 , ..., w

(j)
p ] représentant les comptages pour l’échantillon j.

Une première étape consiste à normaliser les comptages par la somme totale des comptages. Ainsi, la matrice X

des données compositionnelles est définies par les vecteurs

x(j) = [
w

(j)
1

m(j)
, ...,

w
(j)
p

m(j)
]
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où x(j) représente les abondances relatives des espèces dans l’échantillon j avec m(j) =
∑p

i=1 w
(j)
i .

Nous pouvons constater ici que les comptages relatifs des espèces ne peuvent plus être considérés comme indé-

pendants puisque l’espace de chaque échantillon est le simplex unité de dimension p, Sp = {x|xi > 0,
∑p

i=1 xi = 1}.

La transformation CLR est ensuite appliquée pour obtenir la matrice Z, où chaque élément z(j) est le logarithme

du ratio entre une abondance relative et la moyenne géométrique des abondances relatives de l’échantillon.

z(j) = clr(x(j)) =

[
log

(
x
(j)
1

g(x(j))

)
, ..., log

(
x
(j)
p

g(x(j))

)]
, g(x(j)) =

(
p∏

i=1

x
(j)
i

) 1
p

5.1.2.2 Approche MB

Soient Zi ∈ Rn la colonne i de Z et Z¬i ∈ Rn×(p−1) les autres colonnes de Z.

Pour chaque noeud vi ∈ V , on résout alors le problème suivant :

β̂i,λ = argmin
β∈Rp−1

(
1

n
||Zi − Z¬iβ||2 + λ||β||1

)

avec ||.||1 correspond à la norme 1 (pour a ∈ Rn, ||a||1 =
∑n

i=1 |ai|) et λ ≥ 0 est un scalaire de pénalisation. Les

estimations de β sont obtenues en réalisant p régressions linéaires régularisées par une approche Lasso.

Par la suite, un voisinage local de vi peut être construit Nλ
i =

{
j ∈ {1, ..., p}\i | β̂i,λ ̸= 0

}
. C’est en fonction

de l’appartenance à l’intersection ou l’union des voisinages Nλ
i et Nλ

j qu’une arête est construite entre les noeuds

vi et vj avec le poids de l’arête défini par la moyenne des β correspondants.

Le choix de λ est déterminé ensuite de telle sorte à contrôler la sparsité en utilisant la méthode StARS (voir

5.1.4).

5.1.2.3 Approche GLasso

L’estimation de la matrice de précision (inverse de la matrice de covariance) à partir des données transformées

CLR se fait via le problème d’optimisation suivant :

Ω̂ = argmin
Ω∈SPD

(
−log(det(Ω) + tr(ΩΓ̂) + λ||Ω||1

)
Avec Γ̂ la covariance empirique de la matrice Z, ||.||1 correspond à la norme 1 et λ ≥ 0 est un scalaire de pénali-

sation. De plus, l’ensemble SDP correspond aux matrices symétriques définies positives.

Ainsi, les valeurs non nulles et hors diagonale de Ω̂ définissent les arêtes (interactions) et leurs poids associés.

Comme pour l’approche MB, le choix de λ est déterminé de telle sorte à contrôler la sparsité en utilisant la

méthode StARS (voir 5.1.4).
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5.1.3 PLN models

Cette partie concerne l’inférence de réseaux par le modèle Poisson Lognormal (PLN) [Chiquet, Mariadassou

et Robin 2021] et toujours par simplicité de compréhension, le terme espèce sera utilisé plutôt que ASV ou

taxon. Le modèle PLN est spécialement conçu pour l’analyse de données de comptage, ce qui en fait un outil

particulièrement adapté aux données d’écologie microbienne où les tables d’abondances représentent le nombre

de fois qu’un ASV ou une espèce est comptée dans un échantillon. L’inférence du modèle PLN est implémentée

dans le package R {PLNmodels} et suit une démarche en deux étapes principales :

1. Modélisation des données par un modèle PLN à partir de la matrice de comptage des espèces

2. Inférence d’un réseau d’interactions à partir du modèle ajusté

Le réseau obtenu est un graphe non orienté G = {V,E}, où V = {v1, ..., vp} représentant l’ensemble des sommets

ou nœuds du graphe et E ⊂ V × V contenant les couples de noeuds (ASV, espèces, ...) en interaction.

L’une des forces du modèle PLN réside dans sa capacité à prendre en compte l’hétérogénéité des données de

comptage, tout en inférant un réseau d’interactions basé sur des dépendances conditionnelles, similaire à ce que

propose SPIEC-EASI. Contrairement à SPIEC-EASI, le modèle PLN à l’avantage de permettre d’intégrer des

covariables provenant des métadonnées qui peuvent avoir un effet sur les comptages observés.

5.1.3.1 Modèle

Soit W la matrice de comptage des espèces (otu table, Figure 4) transposée avec les n échantillons en ligne

et les p espèces en colonne. Cela donne W ∈ Nn×p
0 avec w(i) = [w

(i)
1 , ..., w

(i)
p ] représentant les comptages pour

l’échantillon i.

Le modèle PLN-Network se définit pour chaque échantillon i avec un vecteur latent Zi gaussien :

Variable latente : Zi ∼ N (µ,Ω−1) avec ||Ω||1,0 < c

Observation : Wij |Zij ∼ P(exp(Zij))

Avec µ qui correspond à un effet principal, Ω la matrice de précision (inverse de la matrice de covariance) qui

décrit la structure de dépendance entre les p espèces, c une constante réelle positive qui représente la contrainte

de sparsité mise sur la matrice de précision et ||Ω||1,0 correspond à la somme des valeurs absolue des termes hors

de la diagonale.

Les variables Zi sont supposées indépendantes et donc les Wij sont conditionnellement indépendants par rapport

aux variables Zi.

La quantité fixe oi, appelée Offset, est utilisée pour ajuster les différences de profondeur de séquençage entre les

échantillons (illustration lors de la raréfaction 4.1.6).
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Dans ce modèle, l’Offset est défini par la méthode TSS (Total Sum Scaling) qui consiste à transformer la matrice

d’abondance en une matrice d’abondance relative où pour un échantillon i on a :

[
w

(i)
1

m(i)
, ...,

w
(i)
p

m(i)
] avec m(i) =

p∑
j=1

w
(i)
j

De plus, lorsque des variables introduisent une structure dépendante sur les comptages observés (par exemple la

profondeur de sequançage, le biotope, ...), celles-ci peuvent être intégrées dans le modèle via des covariables. On

définit alors la variable latente :

Variable latente : Zi ∼ N (µi,Ω
−1) avec ||Ω||1,0 < c

L’effet fixe se décompose alors en µi = oi + x′
iθi où oi est l’Offset, xi ∈ Rd est le vecteur des covariables pour

l’échantillon i et θi ∈ Rd le vecteur des coefficients de régression associés aux d covariables. Ces vecteurs de

régression forment la matrice Θ de dimension d× p.

Comme pour l’approche GLasso, les valeurs de la matrice de précision hors de la diagonale définissent les arêtes

(interactions) et leurs poids associés.

Et le paramètre de pénalisation est déterminé en utilisant la méthode StARS (voir 5.1.4) de telle sorte à contrôler

la sparsité de la matrice de précision .

5.1.4 StARS selection

La sélection StARS (Stability Approach to Regularization Selection) [Liu, Roeder et Wasserman 2010] est

une méthode conçue pour déterminer le paramètre de pénalisation/régularisation λ dans les modèles d’inférence

de réseau afin de contrôler la sparsité, particulièrement dans les contextes de haute dimension. Les méthodes

classiques comme la validation croisée K-fold, le critère d’information d’Akaike (AIC) et le critère d’information

bayésien (BIC) sont efficaces pour des problèmes de petite dimension, mais elles se révèlent inadéquates pour

les problèmes de grande dimension. Par exemple, en grande dimension, la validation croisée peut entrâıner un

surajustement des données, tandis que les critères AIC et BIC tendent vers des valeurs infinies, rendant difficile

la sélection de modèles pertinents.

C’est dans ce contexte que la méthode StARS a été développée. L’idée principale de StARS est de trouver le

paramètre de régularisation optimal qui permet de créer un graphe à la fois sparse et stable. Une grande valeur

de λ tend à construire un réseau sparse alors qu’une faible valeur de λ correspond à des réseaux plus denses.

Le fonctionnement de StARS repose sur le sous-échantillonnage de 80% des échantillons (valeur par défaut).

Contrairement à des techniques comme la validation croisée K-fold, où les échantillons sont disjoints, les sous-

échantillons de StARS peuvent se chevaucher. Pour chaque sous-échantillon, un graphe dépendant de λ est

construit. Le but est de sélectionner un paramètre λ qui permet d’obtenir une stabilité supérieure à un seuil

pré-déterminé (par exemple 90%). La stabilité est mesurée par la variabilité globale du réseau, en lien avec la

fréquence de sélection des arêtes des réseaux obtenus à chaque sous-échantillonnage.
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5.1.5 Mesures de robustesse du réseau

Pour évaluer la robustesse et la stabilité d’un réseau, je me suis particulièrement intéressé à la distribution des de-

grés et à la centralité d’intermédiarité (betweenness centrality). La méthode d’évaluation que j’ai utilisée consiste

à supprimer progressivement les nœuds les plus ”centraux” du réseau et à chaque étape de suppression regarder

l’impact que cela a eu sur la structure du réseau. Ces nœuds sont déterminés selon leur centralité d’intermédiarité

qui correspond au nombre de fois qu’un nœud est sur le chemin le plus court entre deux autres nœuds quelconque

du graphe.

Figure 16 – Illustration de la centralité d’intermédiarité

Le noeud en rouge est celui qui se trouve

le plus souvent sur le chemin le plus

court entre deux autres noeuds (Figure

16).

Ainsi, en supposant que les chemins les plus courts correspondent à des relations d’interaction rapprochées entre

deux espèces, un nœud possédant une grande centralité d’intermédiarité a une grande influence sur les interactions

du réseau.

Donc, à chaque suppression de nœuds centraux, l’indice de connectivité naturelle (natural connectivity) [Wu

et al. 2010] a été calculé pour représenter la robustesse du réseau. Il est basé sur les valeurs propres de la matrice

d’adjacence (matrice binaire contenant des 1 lorsque deux nœuds sont en interaction et 0 sinon). Ces valeurs

propres caractérisent des aspects importants de la robustesse globale du graphe et l’indice peut donc permettre

d’évaluer la structure du réseau et sa résistance aux perturbations.

Soit N le nombre de noeuds du réseau et λi, i allant de 1 à N , les valeurs propres de la matrice d’adjacence.

L’indice de connectivité naturelle est de la forme :

NC = ln

(
1

N

N∑
i=1

eλi

)

J’ai donc développé deux fonctions R. La première calcule l’indice de connectivité naturelle du réseau (NC). La

seconde construit à chaque étape de suppression d’un noeud central, une nouvelle matrice d’adjacence et calcule

un nouvel indice de connectivité naturelle.

Par la suite, nous pouvons visualiser l’impact de la suppression successive des noeuds centraux sous la forme

d’une courbe représentant la connectivité naturelle en fonction de la proportion de nœuds centraux enlevés. Et

en complément, nous proposons un histogramme qui représente les fréquences des différences NCt − NCt−1, t

allant de 1 à T nombre de suppressions.
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5.2 Résultats

Dans cette partie, tous les réseaux ont été construits de manière interactive, permettant ainsi d’afficher pour

chaque nœud (espèce ou classe) toutes les informations taxonomiques affiliées, ainsi que les valeurs de prévalence

et d’abondance dans le ou les biotopes concernés. Cette interactivité est intéressante pour étudier les réseaux et

rendre accessible les informations à tous les acteurs dans un contexte multi-disciplinaire.

Vous pouvez retrouver les réseaux interactifs présentés dans les sections 7 et 9 du blog [Poupelin 2024], offrant

une exploration détaillée et dynamique sur chaque noeuds.

5.2.1 Création de jeux de données pour l’inférence de réseau

L’inférence de réseau de grande dimension représente un défi et une complexité à prendre en considération. En

effet, au niveau espèce les données sont de grande dimension (3448 espèces × 2210 échantillons) et il n’est pas

raisonnable d’inférer un réseau directement sur cette matrice d’abondance (faisabilité et temps de calcul). J’ai

donc réfléchi à plusieurs approches permettant de créer des jeux de données pertinents pour l’inférence de réseau.

Tous les réseaux ont été construits à partir du jeu de données dont la profondeur de séquençage des échantillons

est supérieure à 10000 (voir 4.1.1).

5.2.1.1 Jeu de données pour l’inférence de réseau avec SPIEC EASI

Dans l’optique de rester au niveau de la résolution espèce, j’ai décidé de filtrer les espèces selon leur abondance

et prévalence au sein de leur biotope à partir des grilles (Figure 17) construites à cet effet. Nous pouvons y

retrouver le nombre d’espèces selon les différents couples de seuils. Par exemple, pour un seuil de prévalence à

1e−05 (Prev=1e−05) et aucun seuil minimal d’abondance (Ab=0 ) nous obtenons 1300 espèces dans le biotope

food.

Aussi, concernant les 1246 espèces partagées par au moins deux biotopes (Figure 7), j’ai choisi de considérer

qu’une espèce appartenait au biotope dans lequel elle était la plus prévalente et elle sera donc filtrée en fonction

de ce biotope principal.

food cow
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digester human gut

Figure 17 – Nombre d’espèces différentes selon les seuils de prévalence et d’abondance

Nous constatons que le nombre d’espèces présentes dans les biotopes cow, digester et human gut diminue rapide-

ment lorsque le critère d’abondance augmente (Figure 17). Ceci suggère que peu d’espèces sont très abondantes

dans ces biotopes (par exemple, 9 espèces sont abondantes à plus de 25% avec un prévalence minimale de 1e−05

pour le biotope cow, Figure 17). Par contre, beaucoup d’espèces sont prévalentes dans ces biotopes (par exemple,

69 espèces sont présentes dans plus de 40% des échantillons du biotope cow, Figure 17). J’ai donc choisi pour

ces trois biotopes de favoriser des couples de seuils où la prévalence était plus élevée afin de ne garder qu’une

cinquantaine d’espèces.

Puis la même démarche a été suivie pour le biotope food mais cette fois-ci les espèces semblent majoritairement

être peu prévalentes mais très abondantes (par exemple, 44 espèces sont abondantes à plus de 30% avec un préva-

lence minimale de 1e−05 pour le biotope food, Figure 17). À noter que, comme pour les analyses d’α-diversité, la

faible prévalence peut s’expliquer par le nombre important de sources différentes des échantillons liés à ce biotope

(voir 4.2.1 Figure 12).

Cela m’a donc amené à choisir des couples de seuils adaptés à chaque biotope. Plusieurs jeux de données filtrés

ont alors été construits afin de tester la démarche. Mais ici, un seul de ces jeux de données sera utilisé contenant

un nombre d’espèces ”raisonnable” pour inférer un réseau d’interactions tout en préservant au maximum les ca-

ractéristiques des échantillons de chaque biotope en terme d’abondance et prévalence (Table 4).

Table 4 – Seuils de filtrage appliqués sur le jeu de données

Biotope Seuil de prévalence Seuil d’abondance Nombre d’espèces

Food 0.001 0.25 51

Cow 0.1 0.05 41

Digester 0.3 0.05 58

Human gut 0.4 0.05 48
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Figure 18 – Objet phyloseq filtré pour les réseaux SPIEC-EASI et l’Upset plot associé

Cette stratégie de filtrage a permis d’obtenir :

• un jeu de données contenant 182 espèces, les plus représentatives d’un biotope en termes de prévalence et

d’abondance.

• un jeu de données où des espèces partagées entre plusieurs biotopes (n = 13) sont présentes avec possible-

ment des espèces très représentées (abondante et prévalente) dans un biotope mais plus rare dans un autre

(Figure 18).

Cependant, cette sélection ne permet pas de se concentrer sur des espèces transversales au biotope (les espèces

communes à plusieurs biotopes). En réponse à cela, un autre jeu de données a été construit.
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5.2.1.2 Jeu de données pour l’inférence de réseau avec PLN

Pour cette stratégie, j’ai décidé d’agglomérer les comptages à un rang taxonomique supérieur. En effet, on constate

que 1139 espèces sont inconnues parmi les 3448 (Figure 19).

Figure 19 – Liste des espèces et leur fréquence dans dans le jeu de données aggloméré par espèces

Lorsque les comptages sont agglomérés au niveau ordre (n = 317) ou classe (n = 138), l’affiliation taxonomique

est plus complète mais nous perdons en précision sur la nature des organismes présents. Au niveau ordre on

constate la présence de 54 unknown et 10 multi affiliation et au niveau classe nous avons 12 unknown et 3 multi

affiliation (Figure 20).

Figure 20 – Liste des ordres et classes ainsi que leur fréquence

Puis, afin de proposer un jeu de données principalement centré sur la transversatilité entre les biotopes, j’ai

sélectionné les taxa au rang taxonomique ordre et classe qui sont communs à au moins deux biotopes.
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Par conséquent, au rang ordre (n = 154) on constate la présence de 10 unknown et 4 multi affiliation et au rang

classe (n = 62) nous avons 3 unknown et 2 multi affiliation (Figure 21).

Figure 21 – Liste des ordres et classes communs à au moins deux biotopes ainsi que leur fréquence

Finalement, le jeu de données contenant les 62 classes communes à au moins deux biotopes a été retenu (Figure

22). Cela permet d’avoir un jeu de données dont la taille est adaptée à l’inférence de réseau avec la méthode PLN.

Figure 22 – Objet phyloseq filtré pour les réseaux PLN et l’Upset plot associé

En conclusion de cette section, nous avons créé deux jeux de données associés aux deux objets phyloseq distincts

(Figure 18 et Figure 22) pour l’inféence de réseaux avec les méthodes SPIEC-EASI (au rang espèce) et PLN

(au rang classe). Cette méthodologie a pour objectif d’obtenir des résultats pertinents et différenciés, apportants

ainsi une meilleure compréhension des interactions microbiennes au sein des biotopes étudiés.
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5.2.2 SPIEC EASI

Les premières approches de réseau que j’ai testé étaient Glasso et MB via le package {SpiecEasi} dans R. L’idée

était ici, en utilisant la capacité d’estimation sparse de SPIEC-EASI, de créer des réseaux avec un nombre de

nœuds compris entre 100 et 200 afin de voir si des structures se dégageaient. J’ai donc inféré les réseaux sur

l’objet phyloseq, contenant les 182 espèces, présenté précédemment (voir 5.2.1.1 et Figure 18).

Figure 23 – Réseau d’interaction via GLasso
avec 182 espèces

Figure 24 – Réseau d’interaction via MB
avec 182 espèces

Nous constatons une structuration par biotope (Figure 23 et Figure 24) ce qui signifie que les espèces appar-

tenant à un même biotope sont en interaction entre elles. Les espèces qui appartiennent à plusieurs biotopes

(multi2, multi3 et multi4 selon qu’elles soient communes à 2, 3 ou 4 biotopes, en orange sur les figures) sont

principalement en interaction avec d’autres espèces du même biotope avec l’approche GLasso (Figure 23) et des

espèces d’un biotope différent avec l’approche MB (Figure 24).

Par exemple, pour une des espèces située entre human gut et cow (Figure 24), en regardant les informations sur

cette espèce (blog [Poupelin 2024] section 7), nous constatons qu’elle est majoritairement prévalente et abon-

dante pour le biotope cow (abondance à 1.88% et prévalence à 78.51%) mais qu’elle est également présente au

sein du biotope human gut (abondance à 0.04% et prévalence à 0.47%). Cette espèce est renseignée en unknown

mais nous pouvons tout de même savoir qu’elle fait partie de la famille des Sphingomonadaceae.

Il est aussi intéressant de remarquer que les espèces du biotope cow occupent une place centrale dans le réseau

inféré via la méthode MB (Figure 24) ce qui peut amener à une envie d’analyser plus en profondeur les espèces

constituant le biotope cow.

De plus, nous pouvons remarquer la formation de deux groupes distincts au sein du biotope food (Figure 23).

Cela pourrait s’expliquer par la diversité des sources alimentaires présentes dans ce biotope, qui engendre une

variation importante au sein même du groupe. Puis, les interactions entre les biotopes cow et food (Figure 23

et surtout Figure 24) semblent illustrer une proximité entre ces deux biotopes qui n’est pas incohérente étant

donné que beaucoup d’échantillons du biotope food proviennent de lait de vache (Table 1).
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Par la suite, différents critères sont utilisés pour décrire les réseaux. Dans un premier temps, on s’intéresse au de-

gré associé à chacun des nœuds. Le degré d’un nœud représente le nombre d’arêtes qui le relient à d’autres nœuds.

Figure 25 – Distribution des degrés des noeuds du
réseau via GLasso

Figure 26 – Distribution des degrés des noeuds du
réseau via MB

De cette manière, on voit bien une différence entre le réseau d’interaction construit avec l’approche GLasso et

celui construit avec l’approche MB (Figure 25 et Figure 26). Pour l’approche GLasso, les espèces sont souvent

liées majoritairement à un petit nombre d’espèces (1 à 5) alors que pour l’approche MB elles sont majoritairement

liées à 6 ou 7 autres espèces. Cela témoigne donc d’une plus forte densité du réseau construit par l’approche MB.

Par contre, dans les deux approches, peu d’espèces sont fortements liées aux autres.

De plus, nous pouvons également regarder la robustesse des réseaux construits lorsque l’on retire successivement

des noeuds centraux (voir 5.1.5) correspondants aux espèces qui intéragissent le plus avec d’autres.

(a) (b)

Figure 27 – Connectivité du réseau via GLasso
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(a) (b)

Figure 28 – Connectivité du réseau via MB

Avec une proportion de 40% de nœuds supprimés, le réseau basé sur la méthode GLasso, malgré de fortes valeurs

de connectivité naturelle (NC), est beaucoup plus fragile à la perte des noeuds centraux que le réseau basé sur

la méthode MB (Figure 27 (a) et Figure 28 (a)).

En complément, on regarde aussi la distribution des différences de connectivité à chaque étape de suppression

d’un noeud central (Figure 27 (b) et Figure 28 (b)). Les histogrammes montrent les fréquences des différences

NCt −NCt−1 avec t allant de 1 à T suppressions. Alors, une valeur de différence proche de zéro indique que la

suppression du noeud a peu d’influence sur la connectivité du réseau.

Ces figures, complémentaires, semblent indiquer que les deux réseaux sont relativelent robustes. Cependant, le

réseau basé sur la méthode MB est le plus stable à la suppression de nœuds centraux avec des valeurs de diffé-

rences moins étendues et une fréquence plus élevée de différence proche de zéro.

Ces mesures liées à la connectivité sont une aide à la décision pour le choix du modèle (GLasso, MB) et pour

l’interprétation des interactions entre les espèces.

En conclusion, la méthode SPIEC EASI nous a permis dans un premier temps de visulaiser la cohérence des

données issues du projet Open16S où les espèces appartenant au même biotope ont tendance à plus interagir

entre elles. Puis nous avons montré que l’approche MB permet de mettre en évidence des interactions entre les

espèces appartenant à des biotopes différents (par exemple des espèces des familles Rikenellaceae, Yersiniaceae,

Streptococcaceae ou encore Lachnospiraceae).
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5.2.3 Les réseaux PLN

La seconde approche d’inférence de réseau que j’ai utilisée est celle construite à partir du modèle PLN (Poisson

LogNormal) via le package R {PLNmodels}. Les réseaux ont été construits à partir du jeu de données transversal

aux biotopes contenant 62 classes (agglomération des comptages au niveau taxonomique classe, voir 5.2.1.2 et

Figure 22). C’est à dire que les 62 classes du réseau sont toutes communes à au moins deux biotopes. Il est

important de noter que nous parlerons donc maintenant de classe et non plus d’espèce. Le niveau classe étant un

autre niveau plus large d’affiliation taxonomique (Figure 1).

Et donc, bien que toutes les classes soient partagées par les différents biotopes, pour la simplicité de lecture j’ai

décidé de les colorier en fonction du biotope où elles sont le plus prévalente.

L’idée ici est d’utiliser la possibilité qu’offre PLN d’inclure des covariables dans le modèle afin de visualiser les

interactions conditionnellement au biotope.

En effet, nous avons constaté lors de l’inférence de réseau avec la méthode SPIEC EASI que les espèces appartenant

à un même biotope interagissent davantage entre elles. Cependant, nous souhaitons aussi identifier des interactions

entre des espèces de biotopes différents.

J’ai donc estimé deux modèles statistiques différents :

Abundance ∼ 1 +Offset (1)

Abundance ∼ 0 + Biotope+Offset (2)

Figure 29 – Réseau d’interaction via PLN avec 46
classes pour le modèle (1)

Figure 30 – Réseau d’interaction via PLN avec 33
classes pour le modèle (2)

Les résultats obtenus avec les réseaux PLN montrent des particularités intéressantes sur les interactions micro-

biennes en fonction du biotope et sont très distincts selon que l’on prenne en compte l’effet du biotope ou non

dans le modèle.
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Aussi, parmi les 62 classes présentes dans le jeu de données, les réseaux suggèrent que de nombreuses classes ne

semblent pas interagir (Figure 29 et Figure 30) puisqu’ils sont constitués respectivement de 46 et 33 noeuds.

Il est également intéressant de noter que le nombre d’interactions augmente lorsque le biotope n’est pas inclus

dans le modèle (surtout dans le biotope digester, Figure 29).

Et, selon les résultats du réseau avec le modèle (2) (Figure 30), les interactions entre les classes sont peu nom-

breuses, ce qui renforce l’idée que le biotope joue un rôle crucial dans la structuration des réseaux microbiens.

Un autre point d’intérêt est le nœud ”central” visible dans le réseau avec le mdoèle (2) (Figure 30), qui mal-

heureusement reste non renseigné au niveau de la classe et du phylum (nous savons donc juste qu’il s’agit d’une

bactérie). Cette observation souligne une fois de plus les limitations liées aux informations manquantes. Mais,

le résultat reste tout de même prometteur concernant l’existence d’une bactérie jouant un rôle central dans les

interactions entre biotopes.

Pour décrire les réseaux construits avec le modèle PLN, nous pouvons nous intéresser au degré associé à chacun

des noeuds.

Figure 31 – Distribution des degrés des noeuds du
réseau pour le modèle (1)

Figure 32 – Distribution des degrés des noeuds du
réseau pour le modèle (2)

Nous pouvons constater qu’il y a majoritairement des interactions de degrés faibles (entre 1 et 3) pour les deux

réseaux (Figure 31 et Figure 32). Lorsque le biotope n’est pas inclus dans le modèle, le réseau possède quelques

noeuds de degré supérieur (entre 13 et 16, Figure 31) correspondant probablement aux classes du biotope di-

gester.
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Nous pouvons ensuite illustrer la stabilité avec les graphiques de stabilité disponible via le package R {PLNmo-

dels} et calculés lors de la procédure de sélection de modèle StARS.

Figure 33 – Stabilité et densité du réseau pour le
modèle (1)

Figure 34 – Stabilité et densité du réseau pour le
modèle (2)

Nous pouvons constater une très bonne stabilité des réseaux, ce qui indique que les interactions identifiées sont

robustes et fiables pour identifier les relations inter-classes (Figure 33 et Figure 34).

De plus, les réseaux obtenus ne sont pas trop denses, ce qui suggère un bon équilibre entre la détection d’inter-

actions pertinentes et la sparsité du réseau. Et nous pouvons également retrouver que le réseau pour le modèle

(1) est plus dense que celui pour le modèle (2) (Figure 33 et Figure 34).

Cependant, il est important de noter que si l’on réduit la pénalisation, la densité des réseaux augmente fortement,

ce qui complique l’interprétation des résultats en rendant difficile la distinction entre interactions significatives

et bruit.

En conclusion, la méthode PLN nous a permis d’obtenir des premiers résultats intéressants et exploitables pouvant

constituer une base solide pour l’analyse des interactions microbiennes. Ces résultats soulignent la forte influence

du biotope dans les interactions microbiennes et suggèrent que si on inclut cet effet dans le modèle, les interactions

deviennent considérablement moins nombreuses.
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6 Discussion et perspectives

Ce travail a permis de montrer que la réutilisation et l’intégration de jeux de données publiques de métagéno-

mique bactérienne est une approche pertinente et prometteuse en écologie microbienne.

En ce qui concerne les réseaux d’interaction, bien qu’une partie du travail ait porté sur certaines méthodes spé-

cifiques, il est important de rappeler qu’il n’existe pas encore de consensus sur la méthode optimale à utiliser.

Par conséquent, une perspective intéressante serait de tester d’autres approches pour mieux comprendre leurs

avantages et leurs limites dans le contexte de l’analyse des communautés microbiennes. Plusieurs méthodes dif-

férentes sont développées dans le package R {PLNmodels} et elles mériteraient d’être approfondies.

Il faut rappeler également que des questions importantes se posent aussi lors de la construction du jeu de données

étudié que ce soit sur le choix de la résolution taxonomique (espèce, genre, ...) ou sur l’impact des filtres pouvant

être nécessaires avant l’inférence de réseau.

Aussi, les métadonnées publiques associées aux différents jeux de données restent un facteur limitant et la nor-

malisation des termes est un point crucial pour améliorer l’intégration des données issues de différentes études.

Une piste intéressante pour la continuité de ce travail serait de contribuer à la conception de nouveaux guides

pour les études métagénomiques 16S, dans le but de faciliter les étapes d’intégration dans un contexte de science

ouverte. L’utilisation d’ontologies telles que OntoBiotope [Nédellec et al. 2018] pourrait jouer un rôle clé pour

uniformiser les termes sur les sources de prélèvement des échantillons (par exemple, les aliments, les intestins, ...).

De plus, le recours à des techniques de fouille de texte (text mining) pour extraire des informations directement

depuis les publications associées aux jeux de données est une perspective à envisager.

Une prolongation en CDD sur le projet m’a donc été proposée afin de continuer à approfondir ces différentes pistes

et renforcer les bases méthodologiques posées pendant ce stage. Cette prolongation permettra non seulement de

consolider les résultats obtenus, mais aussi de contribuer de manière plus significative au développement de la

science ouverte à INRAE.
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7 Conclusion

Ce stage a été une expérience très enrichissante, marquée par une grande liberté d’exploration et d’initiative. J’ai

eu l’opportunité de travailler sur des problématiques nouvelles, ce qui m’a permis de développer ma créativité et

mon autonomie. J’ai aussi pu améliorer mes compétences sur la mise en œuvre d’outils interactifs. Ces visuels

peuvent ainsi être explorés par tous (des biologistes, des bioinformaticiens, ...) et permettent une meilleure com-

munication entre les différents acteurs de la recherche.

Cependant, cette liberté s’est aussi révélée être un véritable challenge. Travailler sur un projet où peu de travaux

préalables existent signifie qu’il n’y a pas de modèle ou de référence claire à suivre. Cela a rendu le travail plus

complexe dans la mesure où il était plus difficile de se raccrocher à des méthodes ou des solutions déjà éprouvées.

Néanmoins, cette situation est inhérente au monde de la recherche, où l’innovation et la prise de risque sont

indispensables pour avancer.

En somme, le stage a été une excellente introduction à la réalité du travail d’ingénieur dans le domaine de la

recherche, m’offrant à la fois un défi stimulant et une expérience très formatrice.
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Annexe

Chao1 [Marcon 2015]

L’indice de Chao1 est donc de la forme suivante :

SChao1 = Srich + ĉ0

Cela représente le nombre d’espèces observées (Srich) dans un échantillon auquel on associe une estimation du

nombre d’espèces non observées.

Nous allons montrer ici comment est construit ĉ0.

Soit ps avec s ∈ {1, ..., S} la probabilité qu’une séquence appartienne à l’espèce s et ci, i ∈ N, le nombre d’espèce

observées i fois. Supposons que dans un échantillon de taille n résultant d’un tirage indépendant de séquences, la

probabilité que l’espèce s soit observée k fois suit une loi binomiale. L’espérance du nombre d’espèces observées

k fois est alors de la forme :

E(ck) =
∑
s

P(s observée k fois) =
∑
s

(
n

k

)
pks(1− ps)

n−k

L’idée est d’estimer le nombre d’espèces non observées à partir de celles observées 1 et 2 fois.

Ainsi on obtient que

E(c0) =
∑
s

(1− ps)
n E(c1) = n

∑
s

ps(1− ps)
n−1 E(c2) =

n(n− 1)

2

∑
s

p2s(1− ps)
n−2

Puis grâce à l’inégalité de Cauchy-Schwarz, on a

(∑
s

ps(1− ps)
n−1

)2

≤

(∑
s

(1− ps)
n

)(∑
s

p2s(1− ps)
n−2

)

d’où l’inégalité suivante

E(c0) ≥
n− 1

2n

E(c1)2

E(c2)

Ainsi, on peut utiliser les moyennes observées pour remplacer les espérances de c1 et c2. Cela nous permet de

construire un estimateur minimum où l’espérance du nombre d’espèces observées zéro fois est supérieure ou égale

au nombre estimé.

ĉ0 =
n− 1

2n

(c̄1)
2

(c̄2)
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Shannon entropy [Marcon 2015]

Soit un échantillon à n séquences avec n grand et ps la probabilité qu’une séquence appartienne à l’espèce s.

On enregistre alors la liste (ordonnée) des espèces de n séquences. Le nombre de séquence correspondant à l’espèce

s pourra être quantifié par nps.

Ainsi, en calculant le nombre de positions possibles dans la liste des séquences appartenants à une première

espèce on a
(

n
np1

)
. Pour une deuxième on aurait

(
n−np1

np2

)
et pour la S-ième

(
n−np1−...−npS−1

npS

)
. Le produit de ces

combinaisons est :

L =
n!

Πs(nps)!

En passant au logarithme, on obtient

ln(L) = ln(n!)−
∑
s

ln((nps)!)

Ensuite, on utilise l’approximation de stirling qui, pour un x suffisament grand, nous donne que ln(x!) ≈ xln(x)−x.

On obtient alors que

ln(L) ≈ nln(n)− n−
∑
s

npsln(nps)− nps

≈ n (ln(n)− 1)− n

(∑
s

psln(nps)−
∑
s

ps

)
Or,

∑
s

ps = 1

ln(L) ≈ n (ln(n)− 1)− n

(∑
s

psln(nps)− 1

)

≈ n (ln(n)− 1)− n

(∑
s

psln(n) +
∑
s

psln(ps)− 1

)

≈ n (ln(n)− 1)− n

(
ln(n) +

∑
s

psln(ps)− 1

)

≈ n

(
ln(n)− 1− ln(n)−

∑
s

psln(ps) + 1

)
≈ −n

∑
s

psln(ps)

Ainsi, on obtient l’indice de Shannon

SShan = −
∑
s

psln(ps) ≈
ln(L)

n
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Inverse Simpson [Marcon 2015]

Soit ps la probabilité qu’une séquence tirée aléatoirement dans un échantillon appartienne à l’espèce s.

Soit A et B deux séquences, en supposant les tirages indépendants, on a

P(”A appartient à l’espèce s”, ”B appartient à l’espèce s”) = p2s

Alors, on peut poser λ comme étant probabilité que 2 séquences tirées aléatoirement puissent appartenir à la

même espèce :

λ = P

(⋃
s

(”A appartient à l’espèce s”, ”B appartient à l’espèce s”)

)
=
∑
s

p2s

Ainsi, l’indice d’inverse de Simpson est 1
λ de telle sorte que si λ grand, alors beaucoup de séquences sont de la

même espèce ce qui implique moins de diversité. Et en prenant l’inverse on aura que si l’indice est faible, alors la

diversité sera faible. D’où

SInvSimp =
1

p21 + ...+ p2s
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MDS (MultiDimensional scaling) [Wilimitis 2019] et [Jung 2013]

Il existe plusieurs techniques référencées comme du positionnement multidimensionnel. Ici, c’est la technique du

positionnement multidimensionnel classique (classical multidimensional scaling) dont il est question.

Le positionnement multidimensionnel classique aussi connu sous le nom d’analyse en coordonnées principales

(PCoA) permet de visualiser les données de grande dimension dans un espace euclidien de dimension réduite.

Le principe de la MDS est proche de la PCA (Analyse en Composantes Principales) à l’exception que la PCA

est basée uniquement sur des matrices de distance euclidienne alors que la MDS peut être appliquée à toute

matrices D = {dij}i,j∈R de distance ou de dissimilarité (par exemple Bray-Curtis pour les données d’écologie

microbienne). Ainsi, MDS diffère des autres méthodes de réduction de dimensionnalité dans la mesure où l’entrée

dans MDS est uniquement la matrice de distance/dissimilarité, au lieu des vecteurs de position réels des données.

Alors, étant donné une matrice de distance/dissimilarité D ∈ Rn×n avec dij représentant la distance/dissimilarité

entre i et j, nous avons x1, ..., xn ∈ Rk, avec k qui va définir la dimension de sortie, tel que :

d2ij︸︷︷︸
distance/dissimilarité original

≈ ||xi − xj ||2︸ ︷︷ ︸
configuration de sortie

On retrouve une configuration qui maintient les distances euclidiennes dans Rk (généralement dans R2) aussi

proche que possible de nos distances/dissimilarité d’origine.

Soit X = (x1, ..., xn)
′ et G = XX ′.

En transformant la matrice de distance/dissimilarité par un double centrage, nous obtenons la relation :

G = −1

2
CD2C avec C = I − 1

N
11′

I désigne la matrice identité de dimension N et 1 le vecteur de 1 de dimension N .

Une décomposition via les valeurs propres est ensuite effectuée sur G pour définir X dont les lignes contiennent

les coordonnées principales.

G = UΛU ′

X = UΛ
1
2

avec U la matrice des vecteurs propres symétrique définie positive.

Le MDS est particulièrement adapté pour l’analyse de données métagénomiques 16S afin de représenter graphique-

ment les échantillons tout en préservant les distances ou dissimilarités entre eux. La dissimilarité de Bray-Curtis

étant la plus souvent choisie.
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