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Sigles

INRAE
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Institut National de Recherche pour

MICA : Microbiologie et Chaine Alimentaire

MATHNUM : Mathématiques et Informatique pour

I’Environnement et I’Agronomie

MalAGE : Mathématiques et Informatique Appli-
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POC : Proof Of Concept
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PCoA : Principal Coordinates Analysis

Définitions

ANOVA : ANalysis Of VAriance

PERMANOVA : PERmutational Multivariate ANa-
lysis Of VAriance

SPIEC-EASI : SParse InversE Covariance Estima-

tion for Ecological ASsociation Inference

PLN : Poisson LogNormal

MB : Meinshausen et Biithlmann

GLasso : Graphical Lasso

CLR : Centered LogRatio

StARS : Stability Approach to Regularization Selec-

tion

TSS : Total Sum of Squares

AIC : Akaike information criterion

BIC : bayesian information criterion

CDD : Contrat & Durée Déterminée

ASV (amplicon sequence variant) : désigne des séquences I’ADN individuelles récupérées a partir d’une analyse

de géne marqueur & haut débit a la suite de I’élimination de séquences artefactes générées pendant les phases de

séquencage.

CPU (Central Processing Unit) : unité de traitement ou microprocesseur principal d’un ordinateur.

Phylogénie : étude des étres vivants afin de déterminer leurs liens de parenté.
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Notations
No : ensemble des entiers naturels avec 0 compris
SDP : ensemble des matrices symétriques définies positives.

X' : transposée de X

S e pour ke {l,..,K}
k
1 : le vecteur composé de 1,

Z" . pour une matrice Z, cela correspond a la colonne i

Z " : pour une matrice Z, cela correspond a toute la matrice a laquelle on retire la colonne ¢

— . .. n .1 n
T : moyenne empirique pour un vecteur z € R" : =~ " | z; pour

iid : indépendantes et identiquement distribuées

F(k,n) : loi de Fisher de parametres k > 0 et n > 0
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1 Introduction

Institut National de Recherche pour I’Agriculture, I’Alimentation et ’Environnement (INRAE) est un organisme
national de recherche publique renommé au sein duquel j’ai eu 'opportunité de réaliser mon stage. Depuis plu-
sieurs années, INRAE meéne des recherches pour mieux décrire et comprendre le fonctionnement des écosystémes
microbiens, notamment au sein des départements MICA (Microbiologie et Chaine Alimentaire) et MATHNUM
(Mathématiques et Informatique pour I’Environnement et I’Agronomie). Ces départements jouent ainsi un role
important dans 'avancement des connaissances sur les interactions microbiennes et leur impact sur I’environne-
ment, 'agriculture et la santé humaine.

Aujourd’hui, les différents environnements présents dans la chaine aimentaire ont largement été étudiés a l'aide
de méthodes moléculaires et de bioinformatiques. Cependant, le cycle des microorganismes entre ces différents
environnements qui constituent la chalne alimentaire a été peu investi. Aussi, cela amene & s’interroger sur la

possibilité d’intégrer des données issues de ces différents environnements afin de les étudier simultanément.

Ces dernieres années, avec l’essor de la science ouverte (open science), une augmentation de la disponibilité des
données de recherche a pu étre constatée. En effet, la science ouverte est un mouvement qui cherche a rendre la
recherche scientifique et les données qu’elle produit accessibles a tous. L’idée est ainsi de permettre une transpa-
rence des processus de recherche, facilitant la collaboration et I’enrichissement des connaissances, ce qui contribue
donc a une recherche plus inclusive et participative, répondant aux défis actuels de notre société.

Par ailleurs, cette abondance de données offre des opportunités inédites pour les chercheurs en termes de réuti-
lisation de données. Mais elle engendre également un besoin croissant de spécialistes en gestion et analyse de

données, capables de manipuler des jeux de données de grande dimension.

Le sujet de mon stage porte sur I’analyse de jeux de données produits indépendamment, partagés librement dans
le cadre de 'open science, qui caractérisent les organismes microbiens présents dans différents écosystemes. L.’ob-
jectif est de comparer, intégrer, interpréter et analyser la diversité microbienne et les interactions entre especes
dans divers environnements en lien avec la chaine alimentaire; mais également tenter de déterminer s’il existe
des groupes d’organismes soit ubiquitaires (présents en différents endroits & la fois), soit spécifiques d’un ou de
plusieurs environnements.

Dans ce contexte, plusieurs méthodes et approches statistiques ont été envisagées pour analyser ces données.
Mon travail consistait donc & choisir, paramétrer et tester différentes méthodes adaptées aux données manipu-
lées, mais également a identifier les opportunités et les obstacles a l'intégration des jeux de données publiques

afin de promouvoir la science ouverte dans le domaine de la recherche en écologie microbienne.
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2 Contexte

2.1 Stage et stucture d’accueil

Mon stage s’inscrit dans le cadre du Master mathématiques et applications - Ingénierie Statistique de I’Université
de Nantes et s’est déroulé au sein de INRAE a Jouy-en-Josas, d’avril 2024 a septembre 2024.

J’ai intégré I'unité de recherche MaIAGE (Mathématiques et Informatique Appliquées du Génome & I’Environne-
ment) sous la supervision principale des équipes Migale et StatInfOmics. Cette unité regroupe des mathématiciens,
des informaticiens, des bioinformaticiens et des biologistes autour de questions de biologie et agro-écologie, allant
de T’échelle moléculaire a 1’échelle du paysage en passant par I’étude de 'individu, de populations ou d’écosys-

temes. Rattachée aux départements MathNum et MICA, I'unité est structurée en cinq équipes :
e Dynenvie : modélisation dynamique et statistique pour les écosystémes, I’épidémiologie et I’agronomie

e Bibliome : acquisition et formalisation de connaissances & partir de textes

BioSys : biologie des systemes

StatInfOmics : bioinformatique et statistique des données "omiques”

Migale : plateforme bioinformatique

L’inférence statistique et la modélisation dynamique sont des compétences fortes de I'unité, auxquelles s’ajoutent
la bioinformatique, I’automatique et ’algorithmique. Les activités de recherche et d’ingénierie s’appuient égale-
ment sur une forte implication dans les disciplines destinatrices : écologie, environnement, biologie moléculaire et

biologie des systemes.

Des séminaires sont organisés régulierement dans 'unité, offrant des opportunités d’enrichir ses connaissances
sur divers sujets et de suivre les avancées récentes dans les domaines de recherche de INRAE. J’ai également
participé & deux formations organisées par la plateforme migale : Introduction & Linux (Trainings of the “Cycle
bioinformatique par la pratique”) et Analyse de données métagénomiques 16S (Metabarcoding analyses: from
sequences to plots). Ces formations m’ont permis de renforcer mes compétences techniques et scientifiques afin

de mieux comprendre le contexte biologique ainsi que les méthodologies associés a mon projet.

Ce rapport de stage présente une grande partie du travail effectué et les résultats obtenus sur le projet Openl6S
(voir 2.3). En complément, il est accompagné d’un blog [POUPELIN 2024] qui est dédié & ce projet et sur lequel
peuvent étre retrouvés les codes et figures.

Ce travail a été réalisé avec R 4.4.1 via I'interface RStudio, en utilisant également les capacités de calcul offertes
par les noeuds de clusters de la plateforme bioinformatique Migale allant jusqu’a 32 CPUs(™®) | assurant ainsi
une gestion efficace et performante des calculs en parallele et des données volumineuses générées par les analyses
métagénomiques. De plus, les résultats sont partagés sous la forme de documents Quarto qui sont une nouvelle
alternative aux documents Rmarkdown et versionnés avec GitLab dans une démarche de reproductibilité des

analyses.
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2.2 Etude des écosystemes microbiens par la métagenomique 16S

L’approche métagénomique permet d’étudier le microbiote, c’est & dire 'ensemble des micro-organismes (bacté-
ries, archées, levures, ...) vivants dans un environnement spécifique appelé microbiome ou biotope. Elle consiste
a séquencer simultanément les génomes de plusieurs micro-organismes différents présents dans un milieu donné.
Les études métagénomiques connaissent une popularité croissante et représententent une approche moderne pour

mieux connaitre les communautés microbiennes dans leurs environnements [BERG et al. 2020].

Apres collecte d’échantillons de différents biotopes, vient I’étape de séquengage pour lire les bases nucléotidiques
qui forment ’ADN, fournissant des informations sur la composition génétique des micro-organismes présents dans
Péchantillon. Dans les études de métagénomique ciblée (ou "metabarcoding”) le séquencage du gene codant pour
la sous-unité 16S de ’ARN ribosomique (ARNr), est couramment utilisé car il est hautement représentatif des
bactéries. De maniere générale, le séquencgage se concentre principalement sur des genes marqueurs. Ces genes
sont a la fois présents dans tous les organismes ciblés et constitués de régions variables permettant d’identifier

I’espece correspondant a un gene séquencé.

[ Kingdom ]
Ensuite, les organismes séquencés sont identifiés [ Phylum J
via une comparaison taxonomique a des bases de [ Class ]
données de référence pour retrouver les especes [ Order ]
correspondantes. Ainsi cela nous permet d’avoir -
pour chaque séquence des informations d’affiliation [ Family ]

taxonomique allant du régne (bactéries, archées,
...) jusqu’au nom précis de l'espece (Figure 1). -

FIGURE 1 — Classification taxonomique

Enfin, les données sont transformées en table de comptage, ou chaque ligne représente un organisme unique et
chaque colonne un échantillon, avec les valeurs indiquant le nombre de fois que chaque séquence a été observée
dans chaque échantillon.

Cela permet d’effectuer une analyse de diversité pour comprendre la richesse et la répartition des especes dans
différents biotopes, ce qui inclut des analyses de la diversité au sein d’un méme échantillon et de la comparaison

de la diversité entre différents échantillons.

En conclusion, les études métagénomiques s’enrichissent continuellement grace aux avancées technologiques et
méthodologiques. Cependant, il est important de noter que des biais peuvent apparaitre pendant la collecte des
échantillons, le séquencgage, Iaffiliation taxonomique et I’analyse des données, ce qui nécessite une attention par-

ticuliere pour garantir la qualité et la fiabilité des résultats.
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2.3 Projet Openl6S

INRAE a été un organisme pionnier en matiere de science ouverte et s’est doté d’une direction pour ce domaine
des 2020 (La science ouverte a INRAE).

Le projet Openl6S, piloté par le département MICA de INRAE, est un projet original de type POC (preuve
de concept) mis en place dans le cadre de la politique du département et qui vise & répondre aux défis liés a la
réutilisation de données publiques dans le domaine de la métagénomique afin notamment de dégager de nouvelles

hypotheses biologiques originales a tester a partir de l'intégration de jeux de données.

Ainsi, 'objectif principal du projet est d’aborder de maniere transversale les écosystémes microbiens associés a la
chaine alimentaire humaine en utilisant des jeux de données métagénomiques 16S provenant de divers biotopes.
Ce projet implique 12 unités de recherche du département MICA, couvrant une gamme compléte d’écosysteémes
ciblés : des aliments (food), des fermenteurs (digester), des échantillons d’intestin humain (human gut) et des

échantillons d’animaux (ici, le trayon de vache - cow).

La feuille de route actuelle du projet comprend plusieurs étapes essentielles :

e L’exploration des questions transversales d’écologie microbienne selon deux types d’approches statistiques :
une approche hypotheése-driven (analyse guidée par les hypotheses) et une approche data-driven (analyse

guidée par les données).

e L’intégration et I'exploration approfondie des jeux de données pour comprendre et formuler de nouvelles

hypotheses sur les déterminants de la structuration des communautés microbiennes.

Ainsi, mon stage avait pour objectifs de réaliser dans un premier temps des analyses statistiques exploratoires
et intégratives sur les données métagénomiques 16S puis d’inférer des réseaux d’association entre les especes

microbiennes.
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2.4 Description des jeux de données

Au début de mon stage, j’ai disposé de 19 jeux de données contenant les résultats des études de métagénomique

16S effectuées indépendamment par différentes équipes de recherche. Ces jeux de données en lien avec la chaine

alimentaire se répartissent selon 4 biotopes : food (10 jeux de données), digester (6 jeux de données), human gut

(3 jeux de données) et cow (1 jeux de données). Le nombre d’échantillons traités par projet varie de 24 pour
le plus petit projet PRIJINA685310 jusqu’a 500 pour PRIJNA589612; les deux projets portant sur les aliments
fermentés (respectivement fromages et levains de boulangerie). Et selon les projets, différentes régions du gene
codant pour PARNr 16S ont été séquencées (Table 1).

TABLE 1 — Tableau récapitulatif des jeux de données

Métadonnées minimales associées aux projets

ID projet [ Titre Biotope Echantillons Région 16S
PRJINA345074 Structural robustness of the gut mucosal microbiota is associated

with Crohn’s disease remission after surgery (article) human gut 46 V6-V8
PRJNA459479 Deciphering intra-species bacterial diversity of meat and seafood spoilage

microbiota using gyrB amplicon sequencing (article) food 40 V3-V4
PRJEB39897 Deciphering Microbial Community Dynamics and Biochemical Changes

During Nyons Black Olive Natural Fermentations (article) food 215 V3-V4
PRJNAT735449 Microbial community redundance in biomethanation systems lead to faster

recovery of methane production rates after starvation (article) digester 57 V3-V4
PRJEB39821 Indicative Marker Microbiome Structures Deduced from

the Taxonomic Inventory of 67 Full-Scale Anaerobic Digesters

of 49 Agricultural Biogas Plants (article) digester 201 V3-V4
PRJINA578621 Robustness and efficacy of an inhibitory consortium against

E. coli 026 :H11 in raw milk cheese (article) food 108 V3-V4
PRJEB15657 Carrot Juice Fermentations as Man-Made Microbial Ecosystems

Dominated by Lactic Acid Bacteria (article) food 310 V4
PRJEB44120 Amplicon sequencing data for publication : Lactic starter

dose shapes S. aureus and STEC 026 : H11 growth, and bacterial

community patterns in raw milk uncooked pressed cheeses (article) food 60 V3-V4
PRJEB21187 A Single Community Dominates Structure and Function

of a Mixture of Multiple Methanogenic Communities (article) digester 60 V4
PRJEB21193 A Single Community Dominates Structure and Function

of a Mixture of Multiple Methanogenic Communities (article) digester 42 V4
PRJNA589612 The diversity and function of sourdough starter

microbiomes (article) food 500 V4
PRINA681555 Description of the temporal dynamics in microbial

community composition and beer chemistry in

sour beer production via barrel ageing of finished beers (article) food 60 V4
PRJEB50379 Integration of multiomic data to characterize the influence

of milk fat composition on Cantal-type cheese microbiota (article) food 36 V3-V4
PRJEB51233 Influence of Post-Milking Treatment on Microbial Diversity

on the Cow Teat Skin and in Milk (article) food et cow | 245 V3-V4
PRJNA685310 Temporal differences in microbial composition of

Epoisses cheese rinds during ripening and storage (article) food 24 V3-V4
PRJNA450513 Influence of support media supplementation to reduce

the inhibition of anaerobic digestion by phenol and

ammonia : Effect on degradation performances and microbial dynamics (article) digester 59 V4-V5
PRJNA450311 Inhibition of anaerobic digestion by phenol and ammonia :

Effect on degradation performances and microbial dynamics (article) digester 96 V4-V5
PRJEB28341 Ceftriaxone and Cefotaxime Have Similar Effects on

the Intestinal Microbiota in Human Volunteers Treated

by Standard-Dose Regimens (article) human gut 186 V4
PRJEB6070 Potential of fecal microbiota for early-stage detection of

colorectal cancer (article) human gut 255 V4

M2 Ingénierie Statistique 7

Poupelin Clément



http://dx.doi.org/10.1136/gutjnl-2015-309184 
https://doi.org/10.1371/journal.pone.0204629
https://doi.org/10.3389/fmicb.2020.586614 
https://doi.org/10.1016/j.scitotenv.2021.150073
https://doi.org/10.3390/microorganisms9071457
https://doi.org/10.1016/j.foodcont.2020.107282 
https://doi.org/10.1128/AEM.00134-18
https://doi.org/10.3390/microorganisms9051081 
https://doi.org/10.1016/j.cub.2017.09.056 
https://doi.org/10.1016/j.cub.2017.09.056 
https://doi.org/10.7554/eLife.61644 
https://doi.org/10.1016/j.ijfoodmicro.2020.109030 
https://doi.org/10.3390/microorganisms10020334 
 https://doi.org/10.3390/dairy3020021 
https://doi.org/10.3168/jds.2021-20123 
https://doi.org/10.1016/j.dib.2018.06.071
https://doi.org/10.1016%2Fj.dib.2018.06.119 
https://doi.org/10.1128/aac.02244-18
https://doi.org/10.15252/msb.20145645

INRAE Openl6s

Pour garantir la cohérence et la qualité des données, plusieurs critéres de sélection des jeux de données avaient

été établis :
e Publication : les jeux de données devaient déja avoir été valorisés dans des articles scientifiques. Compte
tenu de ’aspect pilote du projet, il a aussi été décidé de prioriser les jeux de données produits par des

équipes du département MICA.

e Disponibilité publique : les jeux de données devaient étre disponibles en libre acces dans des entrepots
publics, ici 'ENA (European Nucleotide Archive ), garantissant leur accessibilité et leur transparence pour

la communauté scientifique.
e Variété des biotopes : les données devaient provenir d’un biotope en lien avec la chaine alimentaire.

e Uniformité de technique de séquencage : les données devaient avoir été obtenues par la méme technique
de séquencage (ou similaires). Ici, nous sommes sur les techniques de séquengage Illumina et IonTorrent
ciblant une région particuliere du gene codant pour ’ARNr 16S et qui sont les plus communément utilisées

pour identifier des organismes bactériens.

e Uniformité des régions séquencées : idéalement, les données devaient provenir du séquencage des mémes
régions variables du geéne codant pour PARNr 16S. Toutefois, ce critere a été légerement assoupli pour

garantir un nombre suffisant de jeux de données pour représenter les différents biotopes.

Il faut noter que dans la communauté des chercheurs en génomique, il est obligatoire de déposer les données
brutes de séquengage dans des bases de données publiques au moment de la publication d’un article. Ces dépots
permettent non seulement de partager les données avec la communauté scientifique mondiale mais aussi d’assurer
la transparence et la reproductibilité des recherches. Ainsi, lors du dépot, les chercheurs renseignent également
des métadonnées, incluant des informations sur les conditions expérimentales, les protocoles utilisés, et ’origine
des échantillons. Cependant, il s’avere que ces métadonnées sont parfois incomplétes ou imprécises. Néanmoins
pour l'analyste des données (bioinformaticien, statisticien), ces métadonnées restent essentielles pour traiter les

données et pour réaliser des comparaisons.

Comme mentionné précédemment, tous les jeux de données sont des études de métagénomiques 16S basées sur
le séquengage du gene codant pour la sous-unité 16S de ’ARN ribosomique. Celui-ci est composé de régions tres
conservées et de neuf régions (V1-V9) qui sont dites hypervariables et qui permettent de distinguer efficacement
différentes especes de bactéries (Figure 2). Ceci évite donc de séquencer le génome complet permettant ainsi
une réduction des cofits.

Régions conservées

D N g
Cqvi—/] v2 |/ v3 [ v4 |1 v5 /1 v6 /1 vr [ v8 | Vo[

I

FIGURE 2 — Représentation théorique du 16S et de ses différentes régions

M2 Ingénierie Statistique 8 Poupelin Clément


https://www.ebi.ac.uk/ena/browser/home

INRAE Openl6s

Les données brutes sont donc constituées de séquences (reads ou lectures) du gene codant pour ’ARNr 16S pouvant

contenir une ou plusieurs régions hypervariables.

2.5 Pré-traitement bioinformatique

Avant mon arrivée, ces données brutes de séquencgage et métadonnées associées ont été analysées via un pipeline bioinfor-
matique (Figure 3) développé par C.Midoux et O.Rué (Openl6s-WP2-results) en accord avec les pratiques définies par
INRAE [FALENTIN et al. 2019] et composé de quatre grandes étapes appliquées pour chacun des projets.

1. Nettoyage des données brutes pour ne conserver que

les séquences correspondant aux régions d’intéréts va-

riables du géne codant pour ARNr 16S. Les primers

Données brutes

Nettoyage

Correction des erreurs de séquangage

ou amorces (définit dans les région conservées), utili-
sés comme points de départ pour la détection des zones
d’intérét lors du séquencgage sont éliminés lors de cette

étape.

2. Utilisation d’un modele permettant de corriger les

éventuelles erreurs de séquencage afin d’obtenir des
séquences plus précises et fiables (utilisation de l'ou-
til DADA2 [CALLAHAN et al. 2016]). Cela permet de l
former des ASV™

3. Détection et suppression des possibles chimeéres, c’est- Détection de chimeres

a~dire des séquences provenant d’origines différentes v

fusionnées et pouvant fausser Uanalyse (utilisation de

] i Affiliation taxonomique
loutil FROGS [ESCUDIE et al. 2017]).

4. Affiliation taxonomique, via la base de référence silva \
138.1 (utilisation de l'outil FROGS [ESCUDIE et al.
Phyloseq
2017]).

5. Stockage des données et métadonnées dans un objet
hyl McMURDIE et HOLMES 2013] via I k R - . . cn s
phylosed | ¢ ] via fe package F1GURE 3 — Pipeline bioinformatique simplifiée

R du méme nom. Cela permet d’organiser et gérer les

données de maniere a faciliter les analyses statistiques.
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[ Samples j

M
Un objet phyloseq est organisé de la maniere suivante (Figure 4) :
> . Tax table
@ || OTU_table (matrix) .
e Un tableau d’abondance (otu_table) < (matrix)
e Un tableau taxonomique (tax_table)
)
e Une table de métadonnées (sample_data) Sample_data
(dataframe)

F1GURE 4 — Objet phyloseq

La table d’abondance (otu_table) est une matrice de comptage avec en ligne les ASV et en colonne les échantillons
(samples). Chaque élément de la matrice représente ’'abondance de ’ASV dans ’échantillon, c’est & dire le nombre de
séquences (reads) de ’ASV présentes dans ’échantillon.

Les informations portant sur les échantillons en lien avec les conditions expérimentales (numéro de projet correspondant,
organisme associé, condition, etc...) sont contenues dans la table sample_data.

Puis, ’assignation taxonomique des ASV (au niveau du régne jusqu’au niveau espece lorsque cela est possible) est rensei-

gnée dans la table tax table.

A Tlissue de ’analyse bioinformatique, deux objets phyloseq on été construits. Le premier regroupant toutes les données
du projet Openl6S avec n = 74833 ASV (Figure 5) et le second ayant subi une agglomération par espéce avec n = 3452
espeéces (Figure 6). C’est & dire que dans ce second objet, tous les ASV possédant la méme affiliation taxonomique de

régne jusqu’a espece ont été fusionnées avec addition des comptages.

el open -0 Lass #uper jsen - Jewe ] obpeat Pyl -clasy ragor it - level abjest

otu_takled)  OTU Table: [ TEENY tmmm and 23995 smsples ot Eabledl Gy Takis badd pawa ard PRAS mamplex ]

pamp e odagal § Aaspls Dats | rid pasples By jab pesple varishles pample_dafaf ) Sesgls Dwie: IS samplen By 140 sssple waritabhles |

Ban CaBldd § Tacerdey Talils | FEEIY Lhi& by T landeesls renks | paE_takledd Taaargsy Tehls | Bad camEa by 7 rheonaaic ranks ]
FI1GURE 5 — Objet "brut” FI1GURE 6 — Objet avec agglomération par espece

J’ai donc choisi d’effectuer les analyses statistiques sur I’objet phyloseq généré apres agglomération des ASV par espece.
Cela permettait de traiter une matrice avec moins de zéros de plus petite dimension 3452 x 2565 et de simplifier 'inter-

prétation des résultats en travaillant sur des noms d’especes.
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3 Préparation et premieres explorations des données

Un des grands enjeux de la science ouverte est la description normalisée des données de la recherche via leurs métadonnées.
Et malgré les efforts de normalisation des métadonnées des entrepots génomiques (ENA), il a été constaté une grande
hétérogénéité des métadonnées associées aux échantillons.

En effet, les différents jeux de données selectionnés étaient des études indépendantes qui n’étaient pas initialement prévues
pour étre intégrées. Cette intégration a donc conduit & des ensembles de données hétérogenes et souvent incomplets, posant

des défis importants autour des données manquantes, de la normalisation des variables et de la grande dimension.

3.1 Création de variable d’intérét a partir des métadonnées renseignées

Les métadonnées jouent un role important dans ’analyse de données, fournissant un contexte essentiel pour analyser et in-
terpréter les résultats. Cependant, du fait de la nature "patchwork” des données qui sont comme un assemblage de plusieurs
jeux de données indépendants, celles-ci sont complexes a traiter. En effet, il a été constaté une redondance, notamment avec
plusieurs variables décrivant des aspects similaires de la localisation géographique. Par exemple, un jeu de données pouvait
avoir les informations géographiques de ’échantillon dans une variable nommée geo_loc_name et un autre dans une variable
lat_lon. Et si dans un jeu de données il avait été décidé de renseigner la ville de prélevement et un autre les coordonnées
GPS, un vrai probléeme de normalisation de I'information se posait. J’ai donc décidé de sélectionner quelques métadon-
nées indispensables en regroupant celles qui donnaient les mémes informations (ou informations équivalentes). De plus,

une variable Biotope, représentant les écosystémes étudiés, a été créée manuellement et contient aucune valeur manquante.

J’ai donc sélectionné 6 métadonnées sur les 140 disponibles. La table de métadonnées (sample_data de 1'objet phyloseq)

est donc composée des variables :

Biotope : lieu de vie associé a 1’échantillon

Sample : identifiant de ’échantillon

e Location : information de localisation géographique de prélevement de I’échantillon

e Source : information sur la source de prélevement de 1’échantillon

e organism name : organisme ou environnement séquencé

e PRJN : numéro de projet auquel I’échantillon appartient

Ici, les variables Location et Source sont la fusion de plusieurs autres variables (respectivement 8 et 5 variables). Ces fusions
ont été réalisées en manipulant les données grace aux outils du package R {tidyverse} et se trouve dans la section 0 du
blog [POUPELIN 2024].
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3.2 Co-occurences des especes dans les différents biotopes

Dans un premier temps, nous souhaitons étudier la présence d’espéces trans-biotopes (communes & plusieurs biotopes) de
la chaines alimentaires avec une analyse de co-occurences. Cette analyse exploratoire a permis de détecter, visualiser et

quantifier le nombre de co-occurences d’especes entre deux ou plus biotopes.

A T'aide d’Upset plot (similaires aux diagrammes de Venn) j’ai développé deux fonctions sous R. Une premiére fonction
permet de construire la matrice de combinaison entre les biotopes et d’extraire le nom des espéces de cette combinaison
(Figure 7). Une espece est présente dans un biotope si elle est comptée au moins une fois dans un des échantillons de
ce biotope. Puis, la seconde fonction permet de visualiser de maniere simple I’'Upset plot qui découle de cette matrice de

combinaison (Figure 8).

T i Pimg E L
i
i
- —— .
:\1:r"-' -r-:.r.-. n-.l: s
FIGURE 7 — Extraction des espéces communes aux FIGURE 8 — Upset plot des co-occurences d’especes
quatre biotopes (n = 153) pour les différents biotopes

Cela nous permet donc, dans un premier temps, de visualiser et quantifier le nombre de co-occurrences d’especes puis
ensuite de les identifier. Nous pouvons alors constater que 2202 especes restent spécifiques a un biotope mais 1246 sont
partagées par nos biotopes. Et nous avons méme 153 especes communes aux quatre biotopes ce qui nous conforte dans la

possibilité d’ illustrer des relations inter-biotopes.

Maintenant, il faut tout de méme préciser que beaucoup de ces especes communes extraites étaient renseignées comme
inconnues (Figure 7) puisque la notation ”UnkSp” correspond & unknown species et "MulSp” correspond & multi-affiliation
species. Ce qui veut dire que des séquences correspondent a des especes notifiées comme inconnues ou alors qu’elles cor-
respondent de maniere équivalente a plusieurs affiliations possibles dans la base de données de référence.

Cela nous donne un premier apercu des difficultés rencontrées lorsque I'on se positionne sur une résolution au niveau
especes. Et c’est pourquoi, les fonctions ont été construites de sorte a pouvoir se placer & un autre niveau de taxonomie.

Cela nous rendra moins résolutif mais nous pourrons statuer sur des informations plus fiables.
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iyl Frag

Ainsi, au niveau phylum nous pouvons

voir les co-occurrences détectées dans les

quatre biotopes (Figure 9). Nous pouvons . . 1
constater une prédominance d’especes ap-

partenant au phylum des firmicutes.

Mais nous avons aussi la présence élevée s
d’especes appartenant aux Proteobacteria
et Bacteroidota dont I'un est tres présent
dans I’homme et 'autre plus répandu dans

le sol ou les intestins d’animaux.

F1GURE 9 — Extraction des phylum communs aux quatre
biotopes

En conclusion, cette analyse nous montre bien que des espéces sont présentes sur plusieurs biotopes de la chaine alimentaire
ce qui amene a envisager la présence de relations entre ces espéces. Mais, cela nous montre aussi que ces études restent tres
dépendantes des possibilités d’affiliation taxonomique et qu’étudier les espeéces implique que certaines soient affiliées a des
unknown ou qu’elles soient multi-affiliation. C’est pour cela qu’une pratique courante est d’effectuer une agglomération a

des niveaux taxonomiques supérieurs méme si cela implique une perte de résolution (Figure 1).
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4 Analyse de diversité

La diversité, ou richesse, fait référence au nombre de taxons (ASV, espéces, ...) différents, comptés ou estimés, dans un
systéme ou échantillon étudié (par simplicité de compréhension, on utilisera tout du long de se rapport le terme espéce plu-
tot que taxon). Pour estimer la diversité, nous faisons certaines hypothéses. Premiérement, les systémes d’ou viennent les
préléevements sont connus et la taxonomie des différentes espéces peut étre identifiée. Ensuite, les systémes sont considérés
comme équidistant dans le sens que si nous rajoutons une espece dans un systéme, cela correspondra a une augmentation
de diversité d’une unité. Cela ne dépendra donc pas du fait que ’espece soit proche ou non des autres (sauf si nous utilisons

des distances spécifiques reposant sur la phylogénie(*>).

En écologie microbienne, deux grands types d’analyses de diversité sont réalisées en fonction des questions biologiques

posées :

e a-diversité : elle correspond a la diversité dans un systéme uniforme de taille fixe. Dans notre contexte, cela signifie

que l'on regarde la diversité d’especes dans chacun des échantillons.

e (-diversité : elle mesure a quel point des systémes locaux sont différents. Dans notre contexte, cela signifie que I’on

va regarder si différents échantillons ont une diversité proche ou non.

Ces mesures sont donc tres importantes dans les analyses microbiennes, car elles permettent d’identifier les facteurs qui
influencent la diversité microbienne et de comprendre les dynamiques des communautés microbiennes. Nous pouvons alors
nous poser la question de savoir si les données du projet Openl6S issues d’'une démarche de science ouverte permettent
de retrouver les caractéristiques de diversité propre a chaque biotope méme si les échantillons proviennent d’études indé-

pendantes et de matériels biologiques différents.
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4.1 Meéthodes et théorie

4.1.1 Indices d’alpha-diversité

Différents indices sont utilisés pour quantifier I’a-diversité qui est spécifique & un échantillon donné. Les indices que nous
allons présenter sont les plus couramment utilisés et permettent de mesurer non seulement le nombre d’especes présentes
mais aussi leur abondance relative et leur distribution.

L’abondance relative p, fait référence au rapport entre le nombre de fois qu’une espece s est observée dans un systeme

par rapport au nombre total d’especes S dans ce méme systeme, avec s =1...5.
Alinsi, soit ps avec s € {1, ..., S} la probabilité d’appartenir a I’espece s et c;, ¢ € N, le nombre d’especes observées i fois.

Richesse observée

Srich = § 1;DS>O = E Ci
S

i

Cet indice représente le nombre d’espeéces différentes observées dans un échantillon. Il ne prend pas en compte I’abondance
relative des especes, offrant ainsi une mesure brute de la richesse de ’échantillon et est fortement influencé par les especes

rares.

Chaol

SChaol = Srich + éO

L’indice de Chaol est défini par le nombre d’especes différentes observées dans 1’échantillon auquel on associe une estima-
tion du nombre d’especes non observées ¢o.

Cette estimation se fait & partir de celles observées une et deux fois (annexe).

Shannon entropy

Sshan = — Zpsln(ps)

L’indice de Shannon représente ’entropie de la distribution de I'abondance relative des especes dans un échantillon. Ainsi,
il prend en compte a la fois la richesse et I’abondance relative, offrant une mesure plus nuancée de la diversité en tenant

compte de 1’équité des espeéces présentes (annexe).

Inverse Simpson

1

S’n’u zm = 5 . 5
frosime = a2

Cet indice évalue quant a lui I'inverse de la probabilité que deux séquences tirées aléatoirement dans un échantillon puissent
appartenir a la méme espece. Plus l'indice est élevé, plus la diversité est importante et il est influencé par les especes tres

abondantes (annexe).
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4.1.2 ANOVA

L’a-diversité mesure la diversité au sein d’un échantillon et produit donc une valeur de diversité par échantillon. Dans
ce contexte 1'objectif de PANOVA, ou analyse de variance, va étre de tester 'influence de facteurs expérimentaux sur

I'a-diversité en comparant les diversités moyennes entre plusieurs groupes définis par ces facteurs.

Pour expliquer la variabilité de I’a-diversité en fonction d’un facteur contenant I groupes (par exemple le biotope & quatre

groupes), 'TANOVA & un facteur se base sur un modele de la forme :

Yij; = b+ Bi + €45 pouri e {1,...1} et j€{1,...,n;}

yi; la variable réponse ou variable a expliquer

n; la taille du groupe

e . constante (intercept)

Bi Veffet du facteur a tester

€ij _f_vd./\f(O,JQ) lerreur
kX3

Nous posons les moyennes suivantes :

. I n,

1 ng 1 i

Y = — Yij la moyenne par groupe y=—— Yij la moyenne totale
7 i J; 1] I le ni ;]:Zl (¥

Sous I'hypothese nulle selon laquelle les diversités moyennes des différents groupes sont égales et en supposant que les

hypotheses de PANOVA sont vérifiées (indépendances des erreurs, homoscédasticité, normalité), la statistique de test

s’écrit :
_SSBn-—1
TSSWI-1

Fr~F(I-1n-1)

Avec

1 I ny
SSB=> ni(gi—7)° et SSW=1>>(yi; — %)
i=1

i=1 j=1

SSB représente la variabilité inter-classes et SSW la variabilité intra-classe. Et la variabilité totale se décompose en

SST = SSB + SSW

Cela permet donc de tester ’égalité des moyennes de la variable réponse (a-diversité) entre les groupes (par exemple les

biotopes).
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4.1.3 Indices de béta diversité

Contrairement a la diversité «, la diversité 8 permet de comparer la composition microbienne entre plusieurs communautés
microbiennes (d’échantillons différents). Plusieurs distances ou pseudo-distances ont été développées et sont communément

utilisées.

Notons ns,1 le nombre de séquences de I’espece s dans 1’échantillon 1 et n, 2 celui dans I’échantillon 2.

Jaccard

La distance de Jaccard (1 — indice de Jaccard) est définie par

Zs 11n571>0.n3,2=0 Jr 11"5,2>07“5,1=0

Zs 1ns,1+ns,2 >0

dj =

et représente le nombre d’espéces spécifiques de chaque échantillon rapporté a la somme totale des especes.

Bray-Curtis

L’indice de dissimilarité de Bray-Curtis est un indice de dissimilarité défini par

Do Ims1 — ns 2]

d =
BCT ST (nan + ns2)

et prend directement en compte ’abondance des especes. Il prend la valeur 0 si les échantillons sont identiques et 1 s’ils

sont complétement dissemblants.

De plus, il existe d’autres indices de S-diversité : Unifrac et Weighted Unifrac. 1ls se basent sur la distance phylogénétique
et ne sont pas applicables pour les données du projet Openl6S. Ces indices utilisent une longueur de branche de I’arbre
phylogénétique construit & partir de I'alignement de tous les ASV (74833, Figure 5). Un tel alignement n’est pas possible

a produire et par conséquent, ces indices ne sont pas adaptés a la compléxité des données due a 'intégration.

4.1.4 Visualisation par méthode d’ordination

Les méthodes d’ordination sont des méthodes statistiques de représentation graphique utilisées pour visualiser les échan-
tillons dans un espace de dimension inférieure tout en préservant la structure globale des données.

Nous pouvons citer deux méthodes dites d’ordination sans contrainte, c’est a dire sans hypothese sur la structure des don-
nées ou les relations entre variables : Analyse en composantes principales (PCA) et le positionnement multidimensionnel
(MDS ou PCoA).

La PCA s’applique directement sur des matrices multidimensionnelles de données individuelles ou chaque échantillon
(communauté microbienne) est décrit par 'abondance des ASV ou especes. Et le MDS permet de projeter les échantillons
dans un espace euclidien a partir des matrices de distance ou dissimilarité en préservant les proximités. Ces méthodes sont

intéressantes pour identifier les facteurs impliqués dans la structuration des communautés (annexe).
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4.1.5 PERMANOVA

La p-diversité mesure la diversité entre plusieurs échantillons, souvent représentée par des matrices de distance ou de
dissimilarité entre les paires d’échantillons. Ces données de distances ne suivent généralement pas une distribution normale
et peuvent avoir des structures complexes de dépendance, ce qui rend ’ANOVA inappropriée.

Nous avons alors réalisé ’analyse PERMANOVA (analyse de la variance par permutation) qui :

e permet de partitionner la variance a partir de distances ou dissimilarités en fonction de facteurs expérimentaux
(modélisation similaire & ’ANOVA)

e se base sur des permutations et ne fait pas d’hypothéses strictes sur la distribution des données (normalité).

e teste si les centres des groupes (les centroides) différent, en prenant en compte les distances multidimensionnelles

entre les échantillons.

Cette partie s’inspire de la publication de [J.ANDERSON 2005]. L’analyse PERMANOVA & un facteur (par exemple le
biotope) se base sur une matrice de distances ou dissimilarités D = {d;;} jer-

Soit N le nombre d’échantillons.

La somme des carrés des écarts totale se définit comme suit :

2

—1

SST =

P

HM

N
Il faut ensuite définir la somme des carrés des écarts entre les observations et les centroides au sein des groupes :

N-—-1
ssw_fz Zd

i=1 j=1i+1

avec n le nombre de répétitions (réplicats) dans le groupe et d;; = 1 si i et j sont dans le méme groupe et 0 sinon

De plus, nous avons la relation SST = SSB + SSW ol SSB représente la somme des carrés des écarts entre les centroides

des groupes et le centroide global.
Cela permet de construire la statistique de test

_ SSB N —
T SSW -1

avec I le nombre de groupes

Ensuite, les données sont permutées K fois. A chaque permutation, de nouveaux labels sont réattribués aux échantillons
et une statistique F} est calculée, pour k allant de 1 a K.

Puis la p-value est déterminée par
Nombre de |Fy| > F

Nombre total de permutations

p=
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4.1.6 Rarefaction et Breakaway

Pour I’a-diversité, de nombreux indices dépendent de la taille de I’échantillon, caractérisée par le nombre de séquences a
Iintérieur de celui-ci. Dans les données disponibles du projet Openl6s, le nombre total de séquences varie de 122 pour un
des échantillons du projet PRJEB15657 a 473768 pour un échantillon du projet PRJEB6070. Cette différence vient de ce
qu’on appelle la profondeur (ou couverture) de séquengage qui est un effet expérimental. Et puisque les projets ont été
fait indépendamment, les profondeurs de séquencgage sont également différentes. L’objectif étant de comparer I’a-diversité
entre les échantillons, les données d’abondances sont parfois raréfiées sur la base du minimum de séquences détectées dans

un échantillon.

Supposons que nous avons deux échantillons de tailles n1 et ng telles que n; < nz. De manieére simple, la raréfaction
consiste & tirer aléatoirement (tirage avec remise) nq séquences que 'on gardera pour le deuxieéme échantillon de taille
n5*" = ny. Les especes détectées dans ce nouvel échantillon raréfié varient en fonction du tirage effectué et c’est pourquoi
la procédure est itérée plusieurs fois afin d’obtenir différentes valeurs d’especes détectées. Par la suite, cela nous permet
d’obtenir le nombre moyen de fois qu’une espece est observé dans un échantillon. Les courbes de raréfaction peuvent

ensuite mettre en évidence que la richesse observée augmente en fonction de la taille de ’échantillon (Figure 10).

Rarefaction curves

PRLIER" 5447 PHRJERC 18 PRIEED B8 PRIER2E3L [PRUER M
pa——— o
i—-' K - = La majorité des courbes
: ; approche une asymptote, ce
. PLIEBAS [ qui signifie qu’augmenter
le nombre de séquences
] — ne fera probablement pas
— F ; ; . E i découvrir de nouvelles es-
ﬁ . peces. En m’appuyant sur
PRMAIETE PRAALRGE PRUNALGP ]

la littérature, j’ai choisi un

seuil de raréfaction a 2000

Spases Richneas

séquences pour effectuer
les analyses de diversité.

Ainsi, environ 1.29% des

échantillons seront retirés de
i I I’analyse car ils possedent
r = —_—
%_ Ik i: moins de 2000 séquences.

Samodn Simo

F1GURE 10 — Courbe de raréfaction d’échantillons selon le projet

La raréfaction permet de rendre comparable les mesures de diversité malgré I’exclusion de séquences au cours du processus
et potentiellement la perte d’espéces rares, ce qui suscite la controverse depuis quelques années [MCMURDIE et HOLMES
2014].

En réponse a cette controverse, une autre méthode a été développée [WILLIS et BUNGE 2015] et implémentée dans le
package R Breakaway. Pour estimer et modéliser la richesse observée, I’objectif est d’estimer le nombre d’espéces non ob-
servées méme si les échantillons sont de tailles différentes en utilisant une régression non linéaire sur les ratios de fréquence

SEL (¢; défini en 4.1.1). J’ai donc testé cette méthode afin de voir si elle apportait des résultats différents.
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4.2 Résultats

4.2.1 Alpha Diversité

Nous avons exploré ’a-diversité des échantillons selon le biotope en utilisant plusieurs méthodes d’estimation.
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FIGURE 11 — Boxplot de 'a-diversité des échantillons selon leur biotope

Ces résultats permettent de visualiser une diversité élevée pour quelques échantillons des biotopes tels que digester, cow
et human gut, et cela, quelle que soit I'indice utilisé (Figure 11).

Toutefois, il faut également noter que le grand nombre d’échantillons du biotope food contribue a ce que I’a-diversité soit
étendue et tres variable : des échantillons ont une richesse faible et d’autres une richesse aussi élevée que dans les autres

biotopes. En effet, le biotope food est représenté par des échantillons provenant de sources trés variées (Figure 12).

Puis, nous pouvons noter également une différence forte dans les valeurs obtenues avec l'indice de Shannon s’expliquant

par une meilleur prise en compte ’équité entre les especes.

Aussi, l'estimation de la richesse observée avec le package breakaway est similaire a celle estimée par Chaol apres la

raréfaction. Par conséquent, nous ne développerons pas d’avantage sur cette méthode.
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Ainsi, il semble clair que le biotope a un effet sur la diversité présente dans les échantillons. Pour confirmer cela, nous avons
effectué plusieurs ANOVA en utilisant différentes mesures de 1'a-diversité (Observed, Chaol, Shannon, Inverse Simpson)

comme variables de réponse, avec le biotope comme facteur explicatif.

Pour chaque mesure de I’a-diversité, nous avons testé ’hypothese nulle selon laquelle les diversités moyennes des différents

biotopes sont égales. Un rejet de ’hypothese nulle indiquerait que le biotope a un effet significatif sur la diversité.

TABLE 2 — Analyse de variance

Response : Observed Response : Chaol

‘ Df ‘ Sum Sq ‘ Mean Sq | F value ‘ Pr(>F) ‘ Df ‘ Sum Sq | Mean Sq | F value ‘ Pr(>F)
Biotope 3 2833802 944601 1864.5 | <2.2e-16 Biotope 3 3631410 | 1210470 1669 <2.2e-16
Residuals | 2523 | 1278199 507 Residuals | 2523 | 1829810 725
Response : Shannon Response : Inverse Simpson

‘ Df ‘ Sum Sq | Mean Sq | F value ‘ Pr(>F) ‘ Df ‘ Sum Sq | Mean Sq | F value ‘ Pr(>F)
Biotope 3 2192.66 730.89 2200.8 | < 2.2e-16 Biotope 3 59429 19809.7 978.51 | < 2.2e-16
Residuals | 2523 837.88 0.33 Residuals | 2523 | 51077 20.2

Pour toutes les mesures de I'a-diversité, les p-values obtenues sont inférieures & 0.05 (Table 2), ce qui conduit au
rejet de I'hypothese nulle. Cela signifie que les diversités moyennes different significativement entre les biotopes,

confirmant ainsi I'impact du biotope sur la variabilité de I’a-diversité.

De plus, grace aux métadonnées, nous pouvons analyser plus en détail quelles sources et quels organismes contri-

buent également a la diversité intra-biotope.

[ R R o ) 1S ] b Pren, g
L e P T SRR LT ¥ | e
-,
Stnrn el rm—— o bl = T i s riougt e L
ik L e e o] Ko £ i b i na
f==) il oo L T
i gt
| =0 LR
| | | '
1 1 4
1 i ol ]
. g 3 -
T | T
]
™r 1
| e ] sl -
ey T == e | i . B ——

M2 Ingénierie Statistique 21 Poupelin Clément



INRAE Openl6s

ek dgryen a1 B em e g Ho=e wapse e
OAJEUNSITY P ITi e d ns 59 Kyl e S il S v S ke Sl m b e St
] ] e e g
o iR b homn g
1 I
e — e |

FIGURE 12 — Richesse observée pour les échantillons selon les variables Source et organism name

Nous constatons dans un premier temps que cow teat skin, batch anaerobic digester, biogas fermenter, beer, cow

milk et human feces ont une richesse plus élevée au sein des biotopes et une plus grande variabilité (Figure 12).

Aussi, dans le biotope food le lait (avant quelconque transformation) présente la diversité la plus élevée. En
revanche, les autres sources alimentaires montrent une diversité plus faible (Figure 12), ce qui peut étre di a

des procédés de transformation ou de conservation qui réduisent la diversité microbienne.

Bien entendu, ces analyses dépendent fortement de la qualité des métadonnées disponibles. Certaines informa-
tions peuvent étre manquantes ou imprécises comme par exemple métagenome de la variable organism_name et

dans le biotope human gut qui est sans précision particuliere (Figure 12).

Cette analyse révele donc que le biotope a un impact sur la diversité microbienne. Cependant, le manque de
précision des métadonnées ne nous permet pas d’aller plus loin dans les analyses de I’a-diversité pour la compré-

hension des environnements microbiens de la chaine alimentaire.
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4.2.2 Béta Diversité

Pour évaluer la 8-diversité, nous avons donc utilisé les indices de Jaccard et de Bray-Curtis avec la méthode de

positionnement multidimensionnel (MDS).

Bray-Curtis Jaccard
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FI1GURE 13 — Représentation en deux dimensions de la f—diversité en fonction du biotope

Ici encore, le biotope semble impacter la 8-diversité. En effet, nous observons une structuration des échantillons
en fonction des biotopes dans le plan euclidien (Figure 13). Notons aussi que, bien que le pourcentage d’ex-
plication des axes semble faible, il est conforme a la littérature des analyses de données métagénomiques en
écologie microbiennes. La réduction de dimension nous fait passer de plus de 2500 axes (I’équivalent d’un axe
par échantillons) & deux axes. Et donc, Panalyse de S-diversité bénéficie des avancées méthodologiques dans le

domaine de la réduction de dimension.

De plus, il est intéressant de noter que le pourcentage d’explication est plus élevé en utilisant I'indice de Bray-

Curtis qui prend en compte 'abondance des espéces contrairement a Jaccard.
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Aussi, il est intéressant de re-
garder la p-diversité en fonction
d’autres variables et principalement

voir I'impact des sources de préle- : =
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FIGURE 14 — Représentation en deux dimensions de la
B—diversité en fonction de la variable Source pour la
dissimilarité de Bray Curtis

L’analyse PERMANOVA, basée sur une matrice de distance ou dissimilarité, a été utilisée pour tester I'impact
du biotope. L’hypothese nulle est définie par les centroides et la dispersion des groupes équivalents entre les
différents biotopes (cela signifie que les échantillons des différents biotopes ne different pas significativement en

terme de composition microbienne).

TABLE 3 — Analyse PERMANOVA

Jaccard Bray Curtis

‘ Df ‘ SumOfSqs ‘ R2 ‘ F value ‘ Pr(>F) ‘ Df ‘ SumOfSqs R2 F value ‘ Pr(>F)
Biotope 3 236.91 0.20212 | 215.66 0.01 Biotope 3 225.97 0.19723 | 209.17 0.01
Residuals | 2554 935.22 0.79788 Residuals | 2554 919.74 0.80277
Total 2557 1172.13 1.00000 Total 2557 1145.71 1.00000

Nous constatons un rejet de I’hypothese nulle pour les deux indices, avec des p-values inférieures a 0.05, indiquant
que les échantillons des différents biotopes différent significativement (Table 3). Nous pouvons aussi voir que la

variable biotope semble expliquer environ un cinquieéme de la variablilité totale.

Pour conclure cette partie, I’étude de la diversité, tant « que 3, a confirmé que les communautés microbiennes
sont différentes selon les biotopes et aussi les sources de la chaine alimentaire. Nous avons retrouvé des résultats
connus de la littérature, notamment une richesse d’espece plus importante dans les écosystémes humains (human
gut) et animaux (cow), ainsi que pour les fermenteurs (digester). Tout cela offre une base solide pour des études

plus approfondies sur les interactions entre les différentes especes.
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5 Inférence de réseau

L’inférence de réseau dans 1’étude des données microbiennes permet de modéliser et de visualiser les interactions,
au sens mathématique, entre différentes especes microbiennes (en biologie, une interaction entre des especes doit
étre validée expérimentalement). Ainsi, il est possible d’identifier les especes liées & un environnement spécifique

ou plus transversales.

De maniére concrete, un réseau est composé de nceuds et d’arétes. Chaque nceud correspond a une espece tandis

que les arétes correspondent aux interactions entre les especes.

L’inférence de réseau est une thématique de recherche en plein essor en biologie et en particulier en écologie
microbienne. Plusieurs modeéles de réseaux ont été développés récemment reposant sur des méthodologies diffé-
rentes. Certaines méthodes peuvent donc étre plus adaptés a des types spécifiques de données ou des questions

de recherche.

Parmi ces méthodes, il a été choisi dans le cadre du stage de se concentrer sur celles reposant sur I’estimation

des dépendances conditionnelles et de tester plus particulierement :

e SPIEC-EASI (Sparse InversE Covariance estimation for Ecological Association and Statistical Inference)
[D.KURTZ et al. 2015]

o PLN (Poisson LogNormal) [CHIQUET, MARIADASSOU et ROBIN 2021].

L’application des réseaux dans I’étude des données microbiennes apporte une richesse d’informations et d’inter-
prétations qui sont essentielles pour comprendre la complexité des interactions microbiennes. Mon idée ici était
avant tout de découvrir et tester plusieurs approches d’inférence de réseau. De plus, cela a permis 'utilisation du

modele PLN co-développé par un chercheur de 'unité MalAGE.
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5.1 Meéthodes et théorie

5.1.1 Filtration et agglomération

Dans l'objectif d’inférer un réseau calculable et interprétable, j’ai élaboré plusieurs stratégies pour construire
des jeux de données adaptés. En effet, les techniques de réseau nécessite que les données ne soient pas de trop
grande dimension sinon le calcul serait trop cotiteux (voir impossible) et il y a aussi un risque qu’il ne soit pas

interprétable car beaucoup trop dense.

Tout d’abord, un filtrage global basé sur la profondeur de séquengage (quantité totale de séquences obtenues
par échantillon) est effectué. Nous rappelons que le nombre total de séquences produites est différent entre les
échantillons et est lié & la technique de séquengage (illustration lors de la raréfaction 4.1.6)).

Le seuil, fixé a 10000 séquences, a été choisi en s’inspirant de la littérature. Cela implique la suppression des
échantillons possedant moins de 10000 séquences lues et quelque soit le projet d’ou viennent les échantillons.

Ainsi, 2210 échantillons sont conservés sur les 2558 (plus de 86.4% des échantillons).

S0

400

e Legend
B e fitriage
sans fifrage

Mombre déchantillons

FIGURE 15 — Nombre d’échantillons par projet avant et apres filtrage sur la profondeur de séquengage
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Par contre, nous pouvons remarquer que le projet PRJNA681555 (Table 1) est fortement impacté par ce filtrage
(Figure 15) avec 96,72% des échantillons du projet supprimés. En effet, la profondeur de séquencage du projet
sur la biere (biotope food) est largement inférieure aux autres projets, nous avons alors décidé de retirer tous les

échantillons de ce projet pour la suite des analyses afin de ne pas introduire un effet spécifique a celui-ci.

Ensuite, j’ai développé une approche de sélection des especes selon des criteres de prévalence et d’abondance. Ces

deux notions se définissent comme suit :

Nombre de fois ou 'espece est présente dans 1’échantillon
Abondance =

Nombre total d’especes

Nombre d’échantillons ou ’espece est présente

Prévalence =
revaselt Nombre d’échantillons

Le but de notre étude étant de regarder les interactions d’especes de différents biotopes, j’ai défini une grille de
valeurs (Figure 17) pour les seuils de prévalence et d’abondance afin de choisir une combinaison adaptée pour

Pinférence de réseau. Ces seuils varient entre 1e~°

et 0.4 pour la prévalence (un seuil & 0.4 signifie qu’'une espece
est présente au minimum dans 40% des échantillons du biotope) puis entre 0 et 0.3 pour ’abondance (un seuil
a 0.3 indique qu’une espeéce est présente au minimum a 30% par rapport aux autres especes du biotope). Cela
donne donc, pour chaque biotope, un total de 56 combinaisons de couples de seuils.

En d’autres termes, pour un biotope, nous avons sélectionné les especes dont la prévalence est supérieure a un
seuil minimal par échantillon et dont I’abondance est supérieure a un seuil minimal dans au moins un échantillon.

Ce qui permet la présence d’espéces rares dans certains échantillons.

Enfin, une derniere stratégie communément utilisée consiste a agglomérer les comptages de la table d’abondance
a un rang taxonomique supérieur a celui de l'espece (Figure 1).

Cette table d’abondance est alors de dimension plus réduite et Daffiliation taxonomique est mieux renseignée.
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5.1.2 SPIEC EASI

Cette partie se base sur la publication dédiée a 'inférence de réseau via la méthode SPIEC-EASI (SParse InversE
Covariance Estimation for Ecological ASsociation Inference)[D.KURTZ et al. 2015] et par simplicité de compré-
hension, le terme espece sera utilisé plutdot que ASV ou taxon. Cette méthode a été développée spécifiquement
pour l'inférence de réseau sur des données d’écologie microbienne et elle est implémentée dans le package R

{SpiecEasi}. L’inférence via SPIEC-EASI se déroule en deux étapes principales :

1. Transformation des données & partir de la matrice de comptage des especes (otu_table).

2. Inférence d’un réseau d’interactions a partir des données transformées.

Contrairement aux réseaux d’association basés sur des corrélations empiriques comme la corrélation de Pearson,
SPIEC-EASI vise & inférer un modele basé sur les dépendances conditionnelles. Deux nceuds sont conditionnel-
lement indépendants s’ils n’apportent aucune information supplémentaire 'un a 'autre, une fois que l'effet de

tous les autres nocuds du réseau est pris en compte.

Le réseau est considéré comme un graphe non orienté G = {V, E}, avec V = {v1, ..., v, } représentant ’ensemble
des sommets ou noeuds du graphe et F C V x V contenant les couples de noeuds (ASV, especes, ...) étant en

interaction. L’interaction mesure ’association potentielle entre deux especes.

Pour inférer ce graphe, SPIEC-EASI propose deux approches :

e MB (Meinshausen et Bithlmann) : sélection par proche voisin en effectuant une régression multiple pénalisée

pour chaque nceud.

e GLasso (Graphical Lasso) : estimation de la matrice de précision par maximum de vraisemblance pénalisé.

5.1.2.1 Transformation des données

La transformation utilisée pour l'inférence via SPTEC-EAST est la transformation centered log-ratio (CLR). Cette
transformation est essentielle car elle permet de gérer la nature compositionnelle des données métagénomiques,
ou les abondances relatives des espeéces sont exprimées en proportion. Les abondances relatives permettent de
prendre en compte la différence de profondeur de séquencage entre les échantillons (illustration lors de la raré-
faction 4.1.6)).

Soit W la matrice de comptage (otu_table, Figure 4) transposée avec les n échantillons en ligne et les p especes

en colonne. Cela donne W € Nj*? avec w() = [ng), - wz(,j)] représentant les comptages pour ’échantillon j.

Une premiere étape consiste a normaliser les comptages par la somme totale des comptages. Ainsi, la matrice X
des données compositionnelles est définies par les vecteurs

ng) w,(gj)
m)7 "7 m )

20 — [

]
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(@)

i

ot #(7) représente les abondances relatives des especes dans I'échantillon j avec m() =37 w
Nous pouvons constater ici que les comptages relatifs des especes ne peuvent plus étre considérés comme indé-

pendants puisque I'espace de chaque échantillon est le simplex unité de dimension p, SP = {z|z; > 0, Zle x; =1}

La transformation CLR est ensuite appliquée pour obtenir la matrice Z, o1 chaque élément z() est le logarithme

du ratio entre une abondance relative et la moyenne géométrique des abondances relatives de I’échantillon.

() ©)) xgj) xl(’j) ) 5 ) ’
7 — Ny = )y —
2V =clr(zV) = |log a@) ) log e ,  gaV) = ilzll x,;

5.1.2.2 Approche MB

Soient Z¢ € R™ la colonne i de Z et Z7% € R**(®~1) leg autres colonnes de Z.

Pour chaque noeud v; € V, on résout alors le probleme suivant :

2 T
A = argmin <||Z -7 5||2+/\|ﬂ||1>
BeRp—1 n

avec ||.|[1 correspond a la norme 1 (pour a € R”, ||a||y = Y./, |ai|) et A > 0 est un scalaire de pénalisation. Les

estimations de (8 sont obtenues en réalisant p régressions linéaires régularisées par une approche Lasso.

Par la suite, un voisinage local de v; peut étre construit Ni)‘ = {j e{l,..,p}\i | Bi”\ #* 0}. C’est en fonction
de I'appartenance & I'intersection ou 'union des voisinages N;* et N, j)‘ qu’une aréte est construite entre les noeuds

v; et v; avec le poids de I'aréte défini par la moyenne des 3 correspondants.

Le choix de A est déterminé ensuite de telle sorte & controler la sparsité en utilisant la méthode StARS (voir
5.1.4).

5.1.2.3 Approche GLasso

L’estimation de la matrice de précision (inverse de la matrice de covariance) a partir des données transformées

CLR se fait via le probleme d’optimisation suivant :

Q = argmin (—log(det(Q) + tr(Q) + )\||Q||1>
QeSPD

Avec T la covariance empirique de la matrice Z, ||.]|1 correspond & la norme 1 et A > 0 est un scalaire de pénali-

sation. De plus, ’ensemble SDP correspond aux matrices symétriques définies positives.
Ainsi, les valeurs non nulles et hors diagonale de €2 définissent les arétes (interactions) et leurs poids associés.

Comme pour 'approche MB, le choix de A est déterminé de telle sorte a controler la sparsité en utilisant la
méthode StARS (voir 5.1.4).
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5.1.3 PLN models

Cette partie concerne l'inférence de réseaux par le modele Poisson Lognormal (PLN) [CHIQUET, MARIADASSOU
et ROBIN 2021] et toujours par simplicité de compréhension, le terme espece sera utilisé plutét que ASV ou
taxon. Le modele PLN est spécialement concu pour I’analyse de données de comptage, ce qui en fait un outil
particulierement adapté aux données d’écologie microbienne ou les tables d’abondances représentent le nombre
de fois qu'un ASV ou une espéce est comptée dans un échantillon. L’inférence du modele PLN est implémentée

dans le package R {PLNmodels} et suit une démarche en deux étapes principales :

1. Modélisation des données par un modele PLN a partir de la matrice de comptage des especes

2. Inférence d’un réseau d’interactions a partir du modele ajusté

Le réseau obtenu est un graphe non orienté G = {V, E'}, o V' = {v1, ..., v, } représentant ’ensemble des sommets

ou nceuds du graphe et £ C V' x V contenant les couples de noeuds (ASV, especes, ...) en interaction.

L’une des forces du modele PLN réside dans sa capacité a prendre en compte I’hétérogénéité des données de
comptage, tout en inférant un réseau d’interactions basé sur des dépendances conditionnelles, similaire & ce que
propose SPIEC-EASI. Contrairement & SPIEC-EASI, le modele PLN a avantage de permettre d’intégrer des

covariables provenant des métadonnées qui peuvent avoir un effet sur les comptages observés.

5.1.3.1 Modéele

Soit W la matrice de comptage des especes (otu_table, Figure 4) transposée avec les n échantillons en ligne
et les p especes en colonne. Cela donne W € Ni*? avec w = [wgl), ...,w,(f)] représentant les comptages pour

I’échantillon 7.

Le modele PLN-Network se définit pour chaque échantillon ¢ avec un vecteur latent Z; gaussien :

Variable latente : Z; ~ N(M,Q_l) avec ||Q|10<c

Observation : Wij\Zij ~ P(GXP(Zij))

Avec p qui correspond & un effet principal, Q la matrice de précision (inverse de la matrice de covariance) qui
décrit la structure de dépendance entre les p especes, ¢ une constante réelle positive qui représente la contrainte
de sparsité mise sur la matrice de précision et ||Q||1,0 correspond a la somme des valeurs absolue des termes hors
de la diagonale.

Les variables Z; sont supposées indépendantes et donc les W;; sont conditionnellement indépendants par rapport

aux variables Z;.

La quantité fixe o;, appelée Offset, est utilisée pour ajuster les différences de profondeur de séquencage entre les

échantillons (illustration lors de la raréfaction 4.1.6).
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Dans ce modele, I’ Offset est défini par la méthode TSS (Total Sum Scaling) qui consiste & transformer la matrice
d’abondance en une matrice d’abondance relative ot pour un échantillon ¢ on a :
(@) (4)

P

. (i) — (i)

[m(i)’m’m(i)] avec m'Y = Ele
J:

De plus, lorsque des variables introduisent une structure dépendante sur les comptages observés (par exemple la
profondeur de sequancage, le biotope, ...), celles-ci peuvent étre intégrées dans le modele via des covariables. On

définit alors la variable latente :
Variable latente : Z; ~ N (u;, Q1) avec ||Q[10 < ¢

L’effet fixe se décompose alors en p; = o; + x40; ol o; est I'Offset, x; € R? est le vecteur des covariables pour
I’échantillon i et §; € R? le vecteur des coefficients de régression associés aux d covariables. Ces vecteurs de

régression forment la matrice © de dimension d X p.

Comme pour "approche GLasso, les valeurs de la matrice de précision hors de la diagonale définissent les arétes
(interactions) et leurs poids associés.
Et le parametre de pénalisation est déterminé en utilisant la méthode StARS (voir 5.1.4) de telle sorte & controler

la sparsité de la matrice de précision .

5.1.4 StARS selection

La sélection StARS (Stability Approach to Regularization Selection) [L1U, ROEDER et WASSERMAN 2010] est
une méthode congue pour déterminer le parametre de pénalisation/régularisation A dans les modeles d’inférence
de réseau afin de contrdler la sparsité, particulierement dans les contextes de haute dimension. Les méthodes
classiques comme la validation croisée K-fold, le critére d’information d’Akaike (AIC) et le critere d’information
bayésien (BIC) sont efficaces pour des problémes de petite dimension, mais elles se révélent inadéquates pour
les problemes de grande dimension. Par exemple, en grande dimension, la validation croisée peut entrainer un
surajustement des données, tandis que les criteres AIC et BIC tendent vers des valeurs infinies, rendant difficile

la sélection de modeles pertinents.

C’est dans ce contexte que la méthode StARS a été développée. L’idée principale de StARS est de trouver le
parametre de régularisation optimal qui permet de créer un graphe a la fois sparse et stable. Une grande valeur

de X tend a construire un réseau sparse alors qu’une faible valeur de A correspond & des réseaux plus denses.

Le fonctionnement de StARS repose sur le sous-échantillonnage de 80% des échantillons (valeur par défaut).
Contrairement a des techniques comme la validation croisée K-fold, ou les échantillons sont disjoints, les sous-
échantillons de StARS peuvent se chevaucher. Pour chaque sous-échantillon, un graphe dépendant de \ est
construit. Le but est de sélectionner un parametre A qui permet d’obtenir une stabilité supérieure a un seuil
pré-déterminé (par exemple 90%). La stabilité est mesurée par la variabilité globale du réseau, en lien avec la

fréquence de sélection des arétes des réseaux obtenus a chaque sous-échantillonnage.
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5.1.5 Mesures de robustesse du réseau

Pour évaluer la robustesse et la stabilité d’un réseau, je me suis particulierement intéressé a la distribution des de-
grés et a la centralité d’'intermédiarité (betweenness centrality). La méthode d’évaluation que j’ai utilisée consiste
a supprimer progressivement les nceuds les plus "centraux” du réseau et a chaque étape de suppression regarder
I'impact que cela a eu sur la structure du réseau. Ces nceuds sont déterminés selon leur centralité d’intermédiarité
qui correspond au nombre de fois qu’un noeud est sur le chemin le plus court entre deux autres noeuds quelconque

du graphe.

Le noeud en rouge est celui qui se trouve
le plus souvent sur le chemin le plus
court entre deux autres noeuds (Figure
16).

FIGURE 16 — Illustration de la centralité d’intermédiarité

Ainsi, en supposant que les chemins les plus courts correspondent & des relations d’interaction rapprochées entre
deux especes, un nceud possédant une grande centralité d’intermédiarité a une grande influence sur les interactions
du réseau.

Done, a chaque suppression de nceuds centraux, 'indice de connectivité naturelle (natural connectivity) [Wu
et al. 2010] a été calculé pour représenter la robustesse du réseau. Il est basé sur les valeurs propres de la matrice
d’adjacence (matrice binaire contenant des 1 lorsque deux nceuds sont en interaction et 0 sinon). Ces valeurs
propres caractérisent des aspects importants de la robustesse globale du graphe et I'indice peut donc permettre
d’évaluer la structure du réseau et sa résistance aux perturbations.

Soit N le nombre de noeuds du réseau et \;, i allant de 1 & N, les valeurs propres de la matrice d’adjacence.

L’indice de connectivité naturelle est de la forme :
1
_ Ai
NC =1In ( 2_1 e )

J’ai donc développé deux fonctions R. La premiere calcule U'indice de connectivité naturelle du réseau (NC). La
seconde construit a chaque étape de suppression d’'un noeud central, une nouvelle matrice d’adjacence et calcule
un nouvel indice de connectivité naturelle.

Par la suite, nous pouvons visualiser I'impact de la suppression successive des noeuds centraux sous la forme
d’une courbe représentant la connectivité naturelle en fonction de la proportion de nocuds centraux enlevés. Et
en complément, nous proposons un histogramme qui représente les fréquences des différences NCy — NCy_q, t

allant de 1 & T nombre de suppressions.
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5.2 Résultats

Dans cette partie, tous les réseaux ont été construits de maniere interactive, permettant ainsi d’afficher pour
chaque neeud (espeéce ou classe) toutes les informations taxonomiques affiliées, ainsi que les valeurs de prévalence
et d’abondance dans le ou les biotopes concernés. Cette interactivité est intéressante pour étudier les réseaux et
rendre accessible les informations a tous les acteurs dans un contexte multi-disciplinaire.

Vous pouvez retrouver les réseaux interactifs présentés dans les sections 7 et 9 du blog [POUPELIN 2024], offrant

une exploration détaillée et dynamique sur chaque noeuds.

5.2.1 Création de jeux de données pour I'inférence de réseau

L’inférence de réseau de grande dimension représente un défi et une complexité & prendre en considération. En
effet, au niveau espeéce les données sont de grande dimension (3448 espéces x 2210 échantillons) et il n’est pas
raisonnable d’inférer un réseau directement sur cette matrice d’abondance (faisabilité et temps de calcul). J'ai

donc réfléchi a plusieurs approches permettant de créer des jeux de données pertinents pour l'inférence de réseau.

Tous les réseaux ont été construits a partir du jeu de données dont la profondeur de séquencage des échantillons
est supérieure & 10000 (voir 4.1.1).

5.2.1.1 Jeu de données pour l'inférence de réseau avec SPIEC EASI

Dans 'optique de rester au niveau de la résolution espece, j’ai décidé de filtrer les espéces selon leur abondance
et prévalence au sein de leur biotope & partir des grilles (Figure 17) construites a cet effet. Nous pouvons y
retrouver le nombre d’espéces selon les différents couples de seuils. Par exemple, pour un seuil de prévalence a
1e7% (Prev=1e7%) et aucun seuil minimal d’abondance (Ab=0) nous obtenons 1300 especes dans le biotope
food.

Aussi, concernant les 1246 especes partagées par au moins deux biotopes (Figure 7), j’ai choisi de considérer
qu’une espece appartenait au biotope dans lequel elle était la plus prévalente et elle sera donc filtrée en fonction

de ce biotope principal.
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FIGURE 17 — Nombre d’especes différentes selon les seuils de prévalence et d’abondance

Nous constatons que le nombre d’especes présentes dans les biotopes cow, digester et human gut diminue rapide-
ment lorsque le critere d’abondance augmente (Figure 17). Ceci suggere que peu d’especes sont tres abondantes
dans ces biotopes (par exemple, 9 especes sont abondantes & plus de 25% avec un prévalence minimale de 1e~%
pour le biotope cow, Figure 17). Par contre, beaucoup d’espéces sont prévalentes dans ces biotopes (par exemple,
69 especes sont présentes dans plus de 40% des échantillons du biotope cow, Figure 17). J’ai donc choisi pour
ces trois biotopes de favoriser des couples de seuils ou la prévalence était plus élevée afin de ne garder qu’une
cinquantaine d’espéces.

Puis la méme démarche a été suivie pour le biotope food mais cette fois-ci les especes semblent majoritairement
étre peu prévalentes mais tres abondantes (par exemple, 44 espeéces sont abondantes & plus de 30% avec un préva-
lence minimale de 1e~% pour le biotope food, Figure 17). A noter que, comme pour les analyses d’a-diversité, la
faible prévalence peut s’expliquer par le nombre important de sources différentes des échantillons liés a ce biotope
(voir 4.2.1 Figure 12).

Cela m’a donc amené a choisir des couples de seuils adaptés a chaque biotope. Plusieurs jeux de données filtrés
ont alors été construits afin de tester la démarche. Mais ici, un seul de ces jeux de données sera utilisé contenant
un nombre d’espéces "raisonnable” pour inférer un réseau d’interactions tout en préservant au maximum les ca-

ractéristiques des échantillons de chaque biotope en terme d’abondance et prévalence (Table 4).

TABLE 4 — Seuils de filtrage appliqués sur le jeu de données

Biotope Seuil de prévalence Seuil d’abondance | Nombre d’espéces
Food 0.001 0.25 51
Cow 0.1 0.05 41
Digester 0.3 0.05 58
Human gut 0.4 0.05 48
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F1GURE 18 — Objet phyloseq filtré pour les réseaux SPIEC-EASI et 1'Upset plot associé

Cette stratégie de filtrage a permis d’obtenir :

e un jeu de données contenant 182 especes, les plus représentatives d’'un biotope en termes de prévalence et

d’abondance.

e un jeu de données ol des especes partagées entre plusieurs biotopes (n = 13) sont présentes avec possible-

ment des especes tres représentées (abondante et prévalente) dans un biotope mais plus rare dans un autre

(Figure 18).

Cependant, cette sélection ne permet pas de se concentrer sur des especes transversales au biotope (les especes

communes & plusieurs biotopes). En réponse & cela, un autre jeu de données a été construit.
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5.2.1.2 Jeu de données pour l’inférence de réseau avec PLN

Pour cette stratégie, j’ai décidé d’agglomérer les comptages a un rang taxonomique supérieur. En effet, on constate

que 1139 espeéces sont inconnues parmi les 3448 (Figure 19).

Speied Freq

T i

FIGURE 19 — Liste des especes et leur fréquence dans dans le jeu de données aggloméré par especes

Lorsque les comptages sont agglomérés au niveau ordre (n = 317) ou classe (n = 138), l'affiliation taxonomique
est plus compléte mais nous perdons en précision sur la nature des organismes présents. Au niveau ordre on
constate la présence de 54 unknown et 10 multi affiliation et au niveau classe nous avons 12 unknown et 3 multi
affiliation (Figure 20).

LT Trag Clams [

F1GURE 20 — Liste des ordres et classes ainsi que leur fréquence

Puis, afin de proposer un jeu de données principalement centré sur la transversatilité entre les biotopes, j’ai

sélectionné les taxa au rang taxonomique ordre et classe qui sont communs a au moins deux biotopes.
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Par conséquent, au rang ordre (n = 154) on constate la présence de 10 unknown et 4 multi affiliation et au rang

classe (n = 62) nous avons 3 unknown et 2 multi affiliation (Figure 21).

FIGURE 21 — Liste des ordres et classes communs & au moins deux biotopes ainsi que leur fréquence

Finalement, le jeu de données contenant les 62 classes communes & au moins deux biotopes a été retenu (Figure

22). Cela permet d’avoir un jeu de données dont la taille est adaptée a I'inférence de réseau avec la méthode PLN.
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FIGURE 22 — Objet phyloseq filtré pour les réseaux PLN et I'Upset plot associé

En conclusion de cette section, nous avons créé deux jeux de données associés aux deux objets phyloseq distincts
(Figure 18 et Figure 22) pour inféence de réseaux avec les méthodes SPIEC-EASI (au rang espece) et PLN
(au rang classe). Cette méthodologie a pour objectif d’obtenir des résultats pertinents et différenciés, apportants

ainsi une meilleure compréhension des interactions microbiennes au sein des biotopes étudiés.
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5.2.2 SPIEC EASI

Les premiéres approches de réseau que j’ai testé étaient Glasso et MB via le package {SpiecFasi} dans R. L’idée
était ici, en utilisant la capacité d’estimation sparse de SPIEC-FASI, de créer des réseaux avec un nombre de
neeuds compris entre 100 et 200 afin de voir si des structures se dégageaient. J’ai donc inféré les réseaux sur

lobjet phyloseq, contenant les 182 especes, présenté précédemment (voir 5.2.1.1 et Figure 18).

FIGURE 23 — Réseau d’interaction via GLasso FIGURE 24 — Réseau d’interaction via MB
avec 182 especes avec 182 especes

Nous constatons une structuration par biotope (Figure 23 et Figure 24) ce qui signifie que les espéces appar-
tenant a un méme biotope sont en interaction entre elles. Les especes qui appartiennent & plusieurs biotopes
(multi2, multi3 et multi4 selon qu’elles soient communes & 2, 3 ou 4 biotopes, en orange sur les figures) sont
principalement en interaction avec d’autres espéces du méme biotope avec Papproche GLasso (Figure 23) et des
especes d'un biotope différent avec 'approche MB (Figure 24).

Par exemple, pour une des especes située entre human gut et cow (Figure 24), en regardant les informations sur
cette espece (blog [POUPELIN 2024] section 7), nous constatons qu’elle est majoritairement prévalente et abon-
dante pour le biotope cow (abondance & 1.88% et prévalence & 78.51%) mais qu’elle est également présente au
sein du biotope human gut (abondance & 0.04% et prévalence a 0.47%). Cette espéce est renseignée en unknown

mais nous pouvons tout de méme savoir qu’elle fait partie de la famille des Sphingomonadaceae.

Il est aussi intéressant de remarquer que les especes du biotope cow occupent une place centrale dans le réseau
inféré via la méthode MB (Figure 24) ce qui peut amener & une envie d’analyser plus en profondeur les especes
constituant le biotope cow.

De plus, nous pouvons remarquer la formation de deux groupes distincts au sein du biotope food (Figure 23).
Cela pourrait s’expliquer par la diversité des sources alimentaires présentes dans ce biotope, qui engendre une
variation importante au sein méme du groupe. Puis, les interactions entre les biotopes cow et food (Figure 23
et surtout Figure 24) semblent illustrer une proximité entre ces deux biotopes qui n’est pas incohérente étant

donné que beaucoup d’échantillons du biotope food proviennent de lait de vache (Table 1).
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Par la suite, différents critéres sont utilisés pour décrire les réseaux. Dans un premier temps, on s’intéresse au de-

gré associé a chacun des nceuds. Le degré d’un noeud représente le nombre d’arétes qui le relient a d’autres nceuds.
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FIGURE 25 — Distribution des degrés des noeuds du FIGURE 26 — Distribution des degrés des noeuds du
réseau via GLasso réseau via MB

De cette maniere, on voit bien une différence entre le réseau d’interaction construit avec ’approche GLasso et
celui construit avec 'approche MB (Figure 25 et Figure 26). Pour 'approche GLasso, les espéces sont souvent
liées majoritairement & un petit nombre d’especes (1 a 5) alors que pour ’approche MB elles sont majoritairement
liées a 6 ou 7 autres especes. Cela témoigne donc d’une plus forte densité du réseau construit par 'approche MB.

Par contre, dans les deux approches, peu d’especes sont fortements liées aux autres.

De plus, nous pouvons également regarder la robustesse des réseaux construits lorsque I'on retire successivement

des noeuds centraux (voir 5.1.5) correspondants aux especes qui intéragissent le plus avec d’autres.
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FIGURE 27 — Connectivité du réseau via GLasso
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FIGURE 28 — Connectivité du réseau via MB

Avec une proportion de 40% de noeuds supprimés, le réseau basé sur la méthode GLasso, malgré de fortes valeurs
de connectivité naturelle (NC), est beaucoup plus fragile & la perte des noeuds centraux que le réseau basé sur
la méthode MB (Figure 27 (a) et Figure 28 (a)).

En complément, on regarde aussi la distribution des différences de connectivité a chaque étape de suppression
d’un noeud central (Figure 27 (b) et Figure 28 (b)). Les histogrammes montrent les fréquences des différences
NC; — NC;_1 avec t allant de 1 a T suppressions. Alors, une valeur de différence proche de zéro indique que la
suppression du noeud a peu d’influence sur la connectivité du réseau.

Ces figures, complémentaires, semblent indiquer que les deux réseaux sont relativelent robustes. Cependant, le
réseau basé sur la méthode MB est le plus stable a la suppression de noeuds centraux avec des valeurs de diffé-
rences moins étendues et une fréquence plus élevée de différence proche de zéro.

Ces mesures liées a la connectivité sont une aide a la décision pour le choix du modele (GLasso, MB) et pour

Iinterprétation des interactions entre les especes.

En conclusion, la méthode SPIEC EASI nous a permis dans un premier temps de visulaiser la cohérence des
données issues du projet Openl6S ou les especes appartenant au méme biotope ont tendance a plus interagir
entre elles. Puis nous avons montré que ’approche MB permet de mettre en évidence des interactions entre les
especes appartenant & des biotopes différents (par exemple des especes des familles Rikenellaceae, Yersiniaceae,

Streptococcaceae ou encore Lachnospiraceae).
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5.2.3 Les réseaux PLN

La seconde approche d’inférence de réseau que j’ai utilisée est celle construite & partir du modele PLN (Poisson
LogNormal) via le package R { PLNmodels}. Les réseaux ont été construits & partir du jeu de données transversal
aux biotopes contenant 62 classes (agglomération des comptages au niveau taxonomique classe, voir 5.2.1.2 et
Figure 22). Clest & dire que les 62 classes du réseau sont toutes communes & au moins deux biotopes. Il est
important de noter que nous parlerons donc maintenant de classe et non plus d’espece. Le niveau classe étant un

autre niveau plus large d’affiliation taxonomique (Figure 1).

Et donc, bien que toutes les classes soient partagées par les différents biotopes, pour la simplicité de lecture j’ai
décidé de les colorier en fonction du biotope ou elles sont le plus prévalente.

L’idée ici est d’utiliser la possibilité qu’offre PLN d’inclure des covariables dans le modele afin de visualiser les
interactions conditionnellement au biotope.

En effet, nous avons constaté lors de 'inférence de réseau avec la méthode SPIEC EASI que les especes appartenant
a un méme biotope interagissent davantage entre elles. Cependant, nous souhaitons aussi identifier des interactions
entre des especes de biotopes différents.

J’ai donc estimé deux modeles statistiques différents :

Abundance ~ 1 + Offset (1)

Abundance ~ 0 + Biotope + Offset (2)

FIGURE 29 — Réseau d’interaction via PLN avec 46 FIGURE 30 — Réseau d’interaction via PLN avec 33
classes pour le modele (1) classes pour le modele (2)

Les résultats obtenus avec les réseaux PLN montrent des particularités intéressantes sur les interactions micro-
biennes en fonction du biotope et sont tres distincts selon que I'on prenne en compte 1'effet du biotope ou non

dans le modele.
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Aussi, parmi les 62 classes présentes dans le jeu de données, les réseaux suggerent que de nombreuses classes ne
semblent pas interagir (Figure 29 et Figure 30) puisqu’ils sont constitués respectivement de 46 et 33 noeuds.

Il est également intéressant de noter que le nombre d’interactions augmente lorsque le biotope n’est pas inclus
dans le modele (surtout dans le biotope digester, Figure 29).

Et, selon les résultats du réseau avec le modele (2) (Figure 30), les interactions entre les classes sont peu nom-

breuses, ce qui renforce 1'idée que le biotope joue un role crucial dans la structuration des réseaux microbiens.

Un autre point d’intérét est le nceud “central” visible dans le réseau avec le mdoele (2) (Figure 30), qui mal-
heureusement reste non renseigné au niveau de la classe et du phylum (nous savons donc juste qu’il s’agit d’une
bactérie). Cette observation souligne une fois de plus les limitations liées aux informations manquantes. Mais,

le résultat reste tout de méme prometteur concernant ’existence d’une bactérie jouant un role central dans les
interactions entre biotopes.

Pour décrire les réseaux construits avec le modele PLN, nous pouvons nous intéresser au degré associé a chacun
des noeuds.
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FI1GURE 31 — Distribution des degrés des noeuds du

FIGURE 32 — Distribution des degrés des noeuds du
réseau pour le modele (1)

réseau pour le modele (2)

Nous pouvons constater qu’il y a majoritairement des interactions de degrés faibles (entre 1 et 3) pour les deux
réseaux (Figure 31 et Figure 32). Lorsque le biotope n’est pas inclus dans le modele, le réseau possede quelques

noeuds de degré supérieur (entre 13 et 16, Figure 31) correspondant probablement aux classes du biotope di-
gester.
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Nous pouvons ensuite illustrer la stabilité avec les graphiques de stabilité disponible via le package R { PLNmo-

dels} et calculés lors de la procédure de sélection de modele StARS.
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FIGURE 33 — Stabilité et densité du réseau pour le FIGURE 34 — Stabilité et densité du réseau pour le
modele (1) modele (2)

Nous pouvons constater une tres bonne stabilité des réseaux, ce qui indique que les interactions identifiées sont

robustes et fiables pour identifier les relations inter-classes (Figure 33 et Figure 34).

De plus, les réseaux obtenus ne sont pas trop denses, ce qui suggere un bon équilibre entre la détection d’inter-
actions pertinentes et la sparsité du réseau. Et nous pouvons également retrouver que le réseau pour le modele

(1) est plus dense que celui pour le modele (2) (Figure 33 et Figure 34).

Cependant, il est important de noter que si ’on réduit la pénalisation, la densité des réseaux augmente fortement,
ce qui complique l'interprétation des résultats en rendant difficile la distinction entre interactions significatives
et bruit.

En conclusion, la méthode PLN nous a permis d’obtenir des premiers résultats intéressants et exploitables pouvant
constituer une base solide pour 'analyse des interactions microbiennes. Ces résultats soulignent la forte influence
du biotope dans les interactions microbiennes et suggerent que si on inclut cet effet dans le modele, les interactions

deviennent considérablement moins nombreuses.
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6 Discussion et perspectives

Ce travail a permis de montrer que la réutilisation et I'intégration de jeux de données publiques de métagéno-

mique bactérienne est une approche pertinente et prometteuse en écologie microbienne.

En ce qui concerne les réseaux d’interaction, bien qu'une partie du travail ait porté sur certaines méthodes spé-
cifiques, il est important de rappeler qu’il n’existe pas encore de consensus sur la méthode optimale & utiliser.
Par conséquent, une perspective intéressante serait de tester d’autres approches pour mieux comprendre leurs
avantages et leurs limites dans le contexte de I'analyse des communautés microbiennes. Plusieurs méthodes dif-

férentes sont développées dans le package R { PLNmodels} et elles mériteraient d’étre approfondies.

Il faut rappeler également que des questions importantes se posent aussi lors de la construction du jeu de données
étudié que ce soit sur le choix de la résolution taxonomique (espece, genre, ...) ou sur 'impact des filtres pouvant

étre nécessaires avant l'inférence de réseau.

Aussi, les métadonnées publiques associées aux différents jeux de données restent un facteur limitant et la nor-
malisation des termes est un point crucial pour améliorer 'intégration des données issues de différentes études.
Une piste intéressante pour la continuité de ce travail serait de contribuer a la conception de nouveaux guides
pour les études métagénomiques 16S, dans le but de faciliter les étapes d’intégration dans un contexte de science
ouverte. L’utilisation d’ontologies telles que OntoBiotope [NEDELLEC et al. 2018] pourrait jouer un role clé pour
uniformiser les termes sur les sources de prélevement des échantillons (par exemple, les aliments, les intestins, ...).
De plus, le recours a des techniques de fouille de texte (text mining) pour extraire des informations directement

depuis les publications associées aux jeux de données est une perspective a envisager.

Une prolongation en CDD sur le projet m’a donc été proposée afin de continuer a approfondir ces différentes pistes
et renforcer les bases méthodologiques posées pendant ce stage. Cette prolongation permettra non seulement de
consolider les résultats obtenus, mais aussi de contribuer de maniere plus significative au développement de la

science ouverte a INRAE.
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7 Conclusion

Ce stage a été une expérience tres enrichissante, marquée par une grande liberté d’exploration et d’initiative. J’ai
eu lopportunité de travailler sur des problématiques nouvelles, ce qui m’a permis de développer ma créativité et
mon autonomie. J’ai aussi pu améliorer mes compétences sur la mise en ceuvre d’outils interactifs. Ces visuels
peuvent ainsi étre explorés par tous (des biologistes, des bioinformaticiens, ...) et permettent une meilleure com-

munication entre les différents acteurs de la recherche.

Cependant, cette liberté s’est aussi révélée étre un véritable challenge. Travailler sur un projet ou peu de travaux
préalables existent signifie qu’il n’y a pas de modele ou de référence claire a suivre. Cela a rendu le travail plus
complexe dans la mesure ou il était plus difficile de se raccrocher a des méthodes ou des solutions déja éprouvées.
Néanmoins, cette situation est inhérente au monde de la recherche, ou I'innovation et la prise de risque sont

indispensables pour avancer.

En somme, le stage a été une excellente introduction a la réalité du travail d’ingénieur dans le domaine de la

recherche, m’offrant a la fois un défi stimulant et une expérience tres formatrice.
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Annexe

Chaol [Marcon 2015]

L’indice de Chaol est donc de la forme suivante :

SChaol = Sm'ch + é0

Cela représente le nombre d’especes observées (Sy;cn) dans un échantillon auquel on associe une estimation du
nombre d’especes non observées.

Nous allons montrer ici comment est construit ¢g.

Soit ps avec s € {1, ..., S} la probabilité qu'une séquence appartienne a l’espéce s et ¢;, ¢ € N, le nombre d’espéce
observées i fois. Supposons que dans un échantillon de taille n résultant d’un tirage indépendant de séquences, la
probabilité que I’espece s soit observée k fois suit une loi binomiale. L’espérance du nombre d’espéces observées

k fois est alors de la forme :
, . n .
E(cr) = Es P(s observée k fois) = ES (k>p§(1 —ps)" 7k

L’idée est d’estimer le nombre d’especes non observées a partir de celles observées 1 et 2 fois.

Ainsi on obtient que

Ee) =Y 0-p)" Ee)=nXp-py B =" 0 g

S

Puis grace a l'inégalité de Cauchy-Schwarz, on a

S

2
(Zps(l ps)”1> < (Z(l ps)"> (Zzﬁ(l ps)"2>

d’ou 'inégalité suivante

n—1 E(Cl)2
2n  E(co)

E(Co) Z

Ainsi, on peut utiliser les moyennes observées pour remplacer les espérances de ¢; et ¢o. Cela nous permet de
construire un estimateur minimum ou ’espérance du nombre d’especes observées zéro fois est supérieure ou égale

au nombre estimé.
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Shannon entropy [Marcon 2015]

Soit un échantillon a n séquences avec n grand et ps la probabilité qu'une séquence appartienne a ’espéce s.
On enregistre alors la liste (ordonnée) des especes de n séquences. Le nombre de séquence correspondant & I’espéce
s pourra étre quantifié par np,.

Ainsi, en calculant le nombre de positions possibles dans la liste des séquences appartenants & une premiere

n-npr)

" ) Pour une deuxiéme on aurait (
np2

npi
combinaisons est :

n—npi—..—nps_1

et pour la S-ieme ( s

espece on a ( ) Le produit de ces

En passant au logarithme, on obtient

In(L) =In(n!) = Y " In((nps)!)
Ensuite, on utilise 'approximation de stirling qui, pour un « suffisament grand, nous donne que In(z!) ~ zln(z)—=z.

On obtient alors que

In(L) = nln(n) —n — Z npsln(nps) — nps

~n(ln(n)—1)—n (Zpsln(nps) - ZPs)
Or, Zps =1

In(L) ~n(In(n) —1) —n (Z psln(nps) — 1>

S

~n(nn)—1)—n (Zpsln(n) + Zpsln(ps) - 1)
~n(nn)—1)—n (ln(n) + Zpsln(ps) - 1)

~n <ln(n) —1—In(n) — Zpsln(ps) + 1)
~—n Zpsln(ps)

Ainsi, on obtient I'indice de Shannon

In(L
SSILan = - Zpsln(ps) ~ L
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Inverse Simpson [Marcon 2015]

Soit p, la probabilité qu’une séquence tirée aléatoirement dans un échantillon appartienne a ’espece s.
Soit A et B deux séquences, en supposant les tirages indépendants, on a
P(”A appartient a l’espece s”, ”B appartient a l’espece s”) = pg

Alors, on peut poser A comme étant probabilité que 2 séquences tirées aléatoirement puissent appartenir a la

méme espece :

A=P (U(”A appartient a I’espece s”, ”B appartient a ’espece s”))

S

Ainsi, 'indice d’inverse de Simpson est % de telle sorte que si A grand, alors beaucoup de séquences sont de la
méme espece ce qui implique moins de diversité. Et en prenant 'inverse on aura que si 'indice est faible, alors la

diversité sera faible. D’ou

1

StrvsSimp = 35—
nv ’me p%_i'_.“_i_pg
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MDS (MultiDimensional scaling) [Wilimitis 2019] et [Jung 2013]

Il existe plusieurs techniques référencées comme du positionnement multidimensionnel. Ici, c¢’est la technique du
positionnement multidimensionnel classique (classical multidimensional scaling) dont il est question.
Le positionnement multidimensionnel classique aussi connu sous le nom d’analyse en coordonnées principales

(PCoA) permet de visualiser les données de grande dimension dans un espace euclidien de dimension réduite.

Le principe de la MDS est proche de la PCA (Analyse en Composantes Principales) & I'exception que la PCA
est basée uniquement sur des matrices de distance euclidienne alors que la MDS peut étre appliquée a toute
matrices D = {d;;}; jer de distance ou de dissimilarité (par exemple Bray-Curtis pour les données d’écologie
microbienne). Ainsi, MDS differe des autres méthodes de réduction de dimensionnalité dans la mesure ou l'entrée
dans MDS est uniquement la matrice de distance/dissimilarité, au lieu des vecteurs de position réels des données.
Alors, étant donné une matrice de distance/dissimilarité D € R™*™ avec d;; représentant la distance/dissimilarité

entre i et j, nous avons , ..., , € R¥, avec k qui va définir la dimension de sortie, tel que :

dz; ~ o o —

distance/dissimilarité original configuration de sortie

On retrouve une configuration qui maintient les distances euclidiennes dans R* (généralement dans R?) aussi

proche que possible de nos distances/dissimilarité d’origine.

Soit X = (1,...,2,) et G = XX'.

En transformant la matrice de distance/dissimilarité par un double centrage, nous obtenons la relation :
G =—~CDC C=1-—11
=—z avec =I—-—
2 N

I désigne la matrice identité de dimension N et 1 le vecteur de 1 de dimension N.

Une décomposition via les valeurs propres est ensuite effectuée sur G pour définir X dont les lignes contiennent
les coordonnées principales.
G =UAU’

X = UA?

avec U la matrice des vecteurs propres symétrique définie positive.

Le MDS est particulierement adapté pour ’analyse de données métagénomiques 16S afin de représenter graphique-
ment les échantillons tout en préservant les distances ou dissimilarités entre eux. La dissimilarité de Bray-Curtis

étant la plus souvent choisie.
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