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Résumé

Nous avons développé une méthode domaine fictif avec multiplicateurs de Lagrange
distribués pour simuler le mouvement de particules circulaires rigides en suspension dans
un fluide newtonien. Cette approche est une généralisation de la méthode de Patankar. [1],
adaptée aux mêmes problèmes d’écoulements.

Dans notre mise en œuvre MDF/MLD le système fluide-particules est traité explici-
tement : chaque particule est prise en compte à l’aide d’une formulation faible combinée,
garantissant que les forces et moments entre les particules et le fluide se compensent de
manière adéquate. Les équations régissant le fluide sont résolues dans l’ensemble du do-
maine d’écoulement, y compris à l’intérieur des particules où le fluide est modélisé comme
rigide grâce à une distribution appropriée de multiplicateurs de Lagrange.

Pour traiter les difficultés liées à la contrainte d’incompressibilité et à la convection,
nous avons utilisé la technique de séparation d’opérateurs de Patankar. [1]. Nous avons
modifié ce schéma à trois étapes pour résoudre le problème en deux étapes en utilisant la
méthode des caractéristiques, ce qui nous permet d’éviter la résolution d’un sous-problème
non linéaire. Pour la résolution des sous-problèmes linéaires mixtes apparaissant à chaque
étape, nous avons employé la méthode du gradient conjugué sur le complément de Schrur
et la transformation de Fourier Ceci est notamment rendu possible par une reformulation
permettant d’éliminer la pondération par la masse volumique (qui est variable en espace)
dans la matrice de masse..

La validation du code a été effectuée par une étude de cas sur la sédimentation d’une
particule dans le fluide. Nous avons ensuite étendu l’analyse au cas de la sédimentation
de deux particules dans un canal en variant le nombre de Reynolds et le nombre de
Froude. Les résultats ont été comparés à ceux obtenus par Patankar. [1] pour vérifier leur
cohérence.

Keywords : Multiplicateur de Lagrange Distribué, Domaine Fictif, Eléments Finis, Sé-
dimention, DKT, Simulation et Analyse Numérique.
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1 Introduction

L’Université Gustave Eiffel est une université nationale multi-site créée
en 2020 sur un modèle innovant rassemblant pour la première fois en France
le triptyque université/écoles/organisme de recherche, et dont l’ambition
est de transformer la vie et les villes, ainsi que de répondre aux défis envi-
ronnementaux et climatiques. Le campus de Nantes de cette université, ini-
tialement Laboratoire Central des Ponts et Chaussées, est caractérisé par
ses grands équipements permettant des expérimentations à échelle réelle
dans les domaines du génie civil et, plus récemment, du développement
durable.

Ce campus rassemble des chercheurs aux compétences variées au sein
de son laboratoire GPEM (Granulats et Procédés d’Élaboration des Ma-
tériaux), reconnu pour son interdisciplinarité, allant de la recherche fon-
damentale aux applications concrètes. Les domaines couverts incluent les
mathématiques appliquées, la physique, le génie civil, le génie des procédés
et la chimie. Par exemple, la mécanique des fluides et des solides fait ap-
pel aux équations aux dérivées partielles pour modéliser l’écoulement des
fluides dans les matériaux poreux. La simulation des transferts thermiques,
via l’équation de la chaleur, optimise les procédés de séchage des matériaux.
La méthode des éléments finis est utilisée pour analyser la résistance des
structures, tandis que la cinétique chimique modélise les réactions au sein
des matériaux en cours de fabrication. Enfin, la mécanique des milieux
granulaires s’appuie sur des simulations pour étudier le comportement des
granulats sous contrainte. Ces approches permettent d’améliorer la com-
préhension et l’optimisation des processus en génie civil.

1
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2 CHAPITRE 1. INTRODUCTION
1.1 Énoncé du problème

La simulation numérique directe du mouvement de corps rigides dans un fluide peut
être appliquée dans de nombreux contextes liées à la ville durable, par exemple, les sus-
pensions en sédimentation et fluidisées, le transport lubrifié, la fracturation hydraulique
des réservoirs, blocage d’écoulement dans les procédés industriels, etc. La capacité de si-
muler le mouvement d’un grand nombre de particules dans un fluide est importante pour
prédire les propriétés effectives du mélange particulaire dans de telles applications.

1.2 Objectifs
Dans notre travail, nous allons Simuler numériquement l’interaction entre deux grains

solides séparés par une couche de fluide d’épaisseur variable « drafting-kissing-tumbling
(DKT) »,dont l’objectif est de calculer la trajectoire des grains ainsi que les champs de
vitesses et de pression dans le fluide. La principale difficulté réside dans le calcul des forces
d’interaction fluide/grain et grain/grain. D’un point de vue méthodologique, deux code
de calcul développés au laboratoire GPEM : un code mettant en œuvre la méthode des
domaines fictifs avec multiplicateurs de Lagrange distribués [1].

1.3 Synthèse du travail
Dans ce rapport, nous présentons une méthode de domaine fictif basée sur des multi-

plicateurs de Lagrange distribués (DLM) pour simuler le mouvement de particules rigides
dans un fluide newtonien. Cette approche utilise une grille structurée fixe, supprimant
la nécessité de remailler le domaine, tout en permettant l’emploi de solveurs rapides et
économes en mémoire.

Les multiplicateurs de Lagrange contraignent le tenseur de taux de déformation à
l’intérieur des particules, garantissant leur rigidité. Cette méthode simplifie la modélisa-
tion des interactions fluide-particule, rendant possible l’étude de phénomènes tels que la
sédimentation et l’agglomération dans diverses applications.

La discrétisation temporelle est réalisée avec la méthode de Marchuk modifiée, tandis
que la discrétisation spatiale repose sur un maillage rectangulaire global, facilitant le cal-
cul avec des méthodes comme la Transformée de Fourier rapide (FST pour Fast Fourier
Transform dans la litérature) et les éléments finis classiques. En somme, cette méthode op-
timise le coût numérique des simulations tout en assurant des interactions fluide-particule
réalistes dans des systèmes complexes.
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1.4 Organisation du rapport
Ce rapport est structuré pour offrir une compréhension claire et approfondie des travaux
réalisés durant le stage. Chaque section est conçu pour aborder des aspects spécifiques du
projet, depuis les bases théoriques jusqu’aux résultats finaux. Voici la structure détaillée
du rapport :

La section 2 est dédiée aux modèles mathématiques utilisés pour analyser les phéno-
mènes étudiés. Elle présente la formulation des équations régissant le mouvement du fluide
et des particules, ainsi que leur mise adimensionnelle. Elle aborde également la formula-
tion variationnelle mixte du problème, fournissant ainsi les bases théoriques nécessaires
pour les méthodes numériques employées par la suite.

La section 3 détaille les méthodes numériques employées pour résoudre les modèles
mathématiques. Elle débute par une présentation du schéma en trois étapes de Patankar,
puis décrit les modifications apportées via la méthode des caractéristiques. Cette section
explique également les aspects relatifs à l’existence et à l’unicité des solutions pour les
sous-problèmes, ainsi que les techniques d’approximation numérique utilisées. Les consi-
dérations sur les systèmes linéaires, notamment le complément de Schur et les solveurs
algébriques, y sont également abordées en détail.

Enfin, la section 4 présente et analyse les résultats des simulations numériques. Elle
commence par la validation du code utilisé, suivie de l’analyse de la sédimentation d’une
particule et de la technique DKT. Les résultats sont comparés aux prévisions théoriques
pour évaluer la performance des méthodes numériques appliquées et valider les approches
employées.

Divers détails sont renvoyés en annexe pour facilité la fluidité de la lecture du rap-
port. En particulier le théorème de Stokes en 2D, le théorème d’existence et d’unicité du
problème continu, le théorème de l’inf-sup (ou LBB), le produit tensoriel et ses propriétés
importantes, un exemple de couples d’espaces incompatibles, ainsi que l’algorithme du
gradient conjugué.
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1.5 Liste des symboles

• Re = ρf UL

η
est le nombre de Reynolds,

• ∆t est le pas de temps,
• Fr = U√

g0L
est le nombre de Froude,

• g est le champ de gravité,
• ρf est la densité du fluide,
• ρs est la densité de la particule,
• t est le temps, x= (x, y) est l’espace,
• D[u] = 1

2(∇u+ (∇u)T ) est le tenseur des taux de déformation,
• (u · ∇)u = ∑N

i=1 ui
∂u
∂xi

∈ R2,
• div u = ∑N

i=1
∂ui

∂xi
∈ R,

• ∇u =
(

∂u1
∂x

∂u2
∂x

∂u1
∂y

∂u2
∂y

)
,

• U une vitesse caractéristique,
• L une longueur caractéristique,
• P pression caractéristique,
• η viscosité dynamique,
• T = L

U
temps caractéristique,

• u∗ = u
U

Vitesse adimensionnelle,
• p∗ = p

P0
Pression adimensionnelle,

• x∗ = x
L

Position adimensionnelle,
• t∗ = t

T
Temps adimensionnel,

• ∆t∗ = ∆t
T

Intervalle de temps adimensionnel.



2 Modèle mathématique

2.1 Modèle formel
Nous considérons deux particules en chute libre, P1 et P2, dans un réservoir Ω fermé et

rempli de fluide, placées l’une derrière l’autre. Nous nous limitons ici à une présentation en
2D, où P1 et P2 sont des particules circulaires de même masse volumique, ρs. Le fluide est
supposé être newtonien, c’est-à-dire qu’il ne présente pas de propriétés complexes telles
que la viscoélasticité ou la viscoplasticité. L’accent est mis principalement sur l’étude
d’un schéma numérique, laissant de côté les cas de géométries complexes de grains et du
domaine.

Soit Ω le domaine de calcul, un rectangle délimité par les côtés Γ1, Γ2, Γ3 et Γ4,
contenant à la fois le fluide et les particules, et P (t) = ⋃2

i=1 Pi(t) représentant le domaine
des particules à l’instant t, où chaque Pi(t) désigne l’intérieur de la ième particule avec
i = 1, 2 (voir figure 2.1).

Nous supposons, pour simplifier, que la vitesse du fluide satisfait une condition aux
limites de Dirichlet homogène sur la frontière extérieure Γ = ⋃4

i=1 Γi, et que ρs (masse
volumique des particules) et ρf (masse volumique du fluide) sont constantes et non néces-
sairement égales. De plus, nous supposons qu’aucune autre force volumique n’intervient
dans l’écoulement.

Figure 2.1 – Système :Fluide +particle

5
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2.1.1 Équations du mouvement du fluide

Les équations qui régissent le mouvement du fluide sur Ω\P (t) sont alors données par :

ρf

(
∂u
∂t

+ u · ∇u
)

= ∇ · σ + ρfg, Ω\P (t), (1)

∇ · u = 0, Ω\P (t), (2)
u = ui ∂Pi(t), i = 1, 2 (3)
u = 0 Γ, (4)

σ · n = t ∂Pi(t), i = 1, 2, (5)
u|t=0 = u0(x) Ω\P (0). (6).

(2.1)

avec :
— u(x,t) est le vecteur vitesse du fluide et p(x ;t) est la pression,
— ∇·u = 0 sur Ω/P (t), car la masse du fluide reste constante au cours du mouvement

pour un fluide incompressible, (la densité du fluide est considérée comme constante).
— σ représente le tenseur des contraintes, σ = −pI + τ , où p est la pression thermo-

dynamique du fluide, I est le tenseur identité, τ est le tenseur des contraintes. Dans
notre étude, le fluide sélectionné est de nature newtonienne, pour lequel la relation
τ = 2ηD[u] est vérifiée.

2.1.2 Équations du mouvement de la particule
Les mouvements des particules peuvent être représentés en termes de vitesses de trans-

lation et angulaires en utilisant la deuxième loi de Newton Gloviwnski et al.[2].
Dans la formulation actuelle, nous traitons la particule comme un fluide soumis à

une contrainte de rigidité supplémentaire comme dans l’article de Patankar et al.[1]. Les
équations gouvernant le mouvement des particules sont alors données par :

ρs

(
∂u
∂t

+ u · ∇u
)

= ∇ · σ + ρsg, dans P (t), (1)

∇ · u = 0, dans P (t), (2)
D[u] = 0, dans P (t), (3)

u = ui, sur ∂P (t), (4)
σ · n = t, sur ∂P (t), (5)

u = u0(x), dans P (0). (6)

(2.2)

avec :
• u(x,t) est le vecteur vitesse du fluide dans la zone rigide,
• ∇ · u = 0 sur P (t), car la densité du fluide est considérée comme constante.
• D[u] = 0 sur P (t), la contrainte de rigidité et qu il faut que la vitesse initiale u0

doit satisfaire cette équation.
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• g représente l’accélération de la pesanteur, c’est un vecteur constant de R2.
• σ représente le tenseur des contraintes, σ = −pI + L + τ , où p est la pression du

fluide, I est le tenseur identité, L est la contrainte de rigidité (multiplicateur de
Lagrange) donne lieu à un champ λ tel que L = D[λ].

Stratégie de collision Gloviwnski et al.[3]
Pour empêcher les particules de se pénétrer les unes les autres ou de pénétrer les quatre

parois Γ1, Γ2, Γ3 et Γ4, nous adoptons la stratégie de collision suivante. Notez bien que
les particules sont circulaires donc la technique peut facilement être étudier.

Considérons ici N particules P1, P2, ...PN ,la stratégie consiste à ajouter une force ré-
pulsive exercée sur la ième particule par les autres particules et par les parois. Pour la
force répulsive entre particules, nous prenons

Fi,j =

0, si di,j > Ri +Rj + r;
1

Ep

(
Ri+Rj+r−di,j

Ri+Rj+r

)2
(Xi −Xj), si di,j ≤ Ri +Rj + r;

où di,j = ∥Xi − Xj∥ est la distance entre les centres des particules ième et jème, Ri est
le rayon de la ième particule, r est la portée de la force, et Ep est un petit paramètre de
“raideur” positive.

Pour la force répulsive entre une particule et une paroi, nous prenons

Fwi,j
=


0, si d′

i,j > 2Ri + r;
1

Ew

(
2Ri+r−d′

i,j

2Ri+r

)2
(Xi −X ′

i,j), si d′
i,j ≤ 2Ri + r;

où d′
i,j = ∥Xi −X ′

i,j∥ est la distance entre le centre de la ième particule et la particule ima-
ginaire P ′

i,j située de l’autre côté de Γj (voir Fig. 2.2), et Ew est un autre petit paramètre
de “raideur” positive.

Figure 2.2 – Particule-Frontière
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2.1.3 Transformation adimensionnelle

L’adimensionnement des équations est une technique fondamentale en physique et en
ingénierie qui présente de nombreux avantages. Adimensionner des équations consiste à
utiliser des variables adimensionnelles au lieu de variables physiques.

L’adimensionnement des équations du mouvement est une étape importante car il
permet de remplacer les inconnues du problème, telles que la vitesse et la pression, par
des inconnues ayant le même ordre de grandeur. Cela est particulièrement utile d’un point
de vue numérique.

Cette technique permet de simplifier les équations et de réduire la complexité des
problèmes, tout en mettant en évidence les paramètres clés et les relations de similitude.

Forme adimensionnelle de l’équation (2.1)

Nous avons :

• ρf
∂u
∂t
u+ u · ∇u : ρf

U2

L
(∂u∗

∂t∗ u
∗ + u∗ · ∇∗u∗)

• ∇p : P0
L

∇p∗

• 2η∇ ·D[u] : 2η U
L2 ∇ ·D[u∗]

• ρfg : ρfg0ez

En remplaçant ces termes dans l’équation (1) du système (2.1) :

ρf
U2

L
(∂u

∗

∂t∗
+ u∗ · ∇∗u∗) = −P0

L
∇p∗ + 2η U

L2 ∇ ·D[u∗] + ρfg0ez

En multipliant par L2

ηU
, Nous otbtenons :

ρf
UL

η
(∂u

∗

∂t∗
u∗ + u∗ · ∇∗u∗) = −P0L

ηU
∇p∗ + 2∇ ·D[u∗] + ρf

UL

η

g0L

U2 g
∗ (2.3)

Nous remplaçons Re est le nombre de Reynolds par ρf UL

η
et Fr est le nombre de Froude

par U√
g0L

dans l’équation (2.3), nous obtenons :

Re(∂u
∗

∂t∗
+ u∗ · ∇∗u∗) = −P0L

ηU
∇p∗ + 2∇ ·D[u∗] + Re

Fr2 g
∗

N.B. : Nous allons supprimer l’astérisque (*) dans la forme adimensionnée pour rendre
l’équation plus lisible.

Re(∂u
∂t

+ u · ∇u) = −P0L

ηU
∇p+ 2∇ ·D[u] + Re

Fr2 g

Nous choississons la pression caractéristique d’une facon P0 = ηU
L

, nous obtenons alors :
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

Re(∂u
∂t

+ u · ∇u) = −∇p+ 2∇ ·D[u] + Re
Fr2 g, ∀x ∈ Ω/P (t) (1)

∇ · u = 0, Ω/P (t) (2)
u = ui ∂Pi(t), i = 1, 2 (3)
u = 0 Γ, (4)

σ · n = t ∂Pi(t), i = 1, 2 (5)
u|t=0 = u0(x) Ω/P (0) (6).

(2.4)

Forme adimensionnelle du système (2.2) Nous avons :

• ρs
∂u
∂t
u+ u · ∇u : ρs

U2

L
(∂u∗

∂t∗ u
∗ + u∗ · ∇∗u∗)

• ∇p : P0
L

∇p∗

• 2η∇ ·D[u] : 2η U
L2 ∇ ·D[u∗]

• ρsg : ρsg0g
∗

• 2∇ ·D[λ] : λ0
L2 ∇ ·D[λ∗]

En remplaçant ces termes dans l’équation (1) du système (2.2) :

ρs
U2

L
(∂u

∗

∂t∗
+ u∗ · ∇∗u∗) = −P0

L
∇p∗ + 2η U

L2 ∇ ·D[u∗] + λ0

L2 ∇ ·D[λ∗] + ρsg0ez

En multipliant par L2

ηU
, Nous otbtenons :

ρs

ρf

ρfUL

η
(∂u

∗

∂t∗
+u∗ ·∇∗u∗) = −P0L

ηU
∇p∗ +2∇·D[u∗]+ λ0

ηU
∇·D[λ∗]+ ρs

ρf

ρfUL

η

g0L

U2 ez (2.5)

En remplaçant le nombre de Reynolds Re par ρf UL

η
et le nombre de Froude Fr par

U√
g0L

dans l’équation (2.5), nous obtenons :

ρs

ρf

Re(∂u
∗

∂t∗
+ u∗ · ∇∗u∗) = −P0L

ηU
∇p∗ + 2∇ ·D[u∗] + λ0

ηU
∇ ·D[λ∗] + ρs

ρf

Re
Fr2 g

∗

N.B. : Pour des raisons de lisibilité, nous allons supprimer l’astérisque (*) dans la
forme adimensionnée de l’équation. Nous choisissons la caractéristique de longueur λ0 de
la manière suivante : λ0 = ηU et la pression caractéristique P0 telle que P0 = ηU

L
. Nous

obtenons alors :
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

ρs

ρf

Re(∂u
∂t

+ u · ∇u) = −∇p+ 2∇ ·D[u] + ∇ ·D[λ] + ρs

ρf

Re
Fr2 g ∀x ∈ P (t), (1)

∇ · u = 0, dans P (t), (2)
D[u] = 0, dans P (t), (3)

u = ui, sur ∂P (t), (4)
σ · n = t, sur ∂P (t), (5)

u = u0(x), pour t = 0 dans P (0) (6).
(2.6)

2.2 Formulation variationnelle mixte du problème
En dérivant la forme faible en espace les équations (1) des systèmes (2.4) et (2.6),

les forces et les moments hydrodynamiques sur les particules peuvent être complètement
éliminés en combinant les équations de mouvement du fluide et des particules en une seule
équation faible de mouvement pour le système fluide-particule combiné. Cette équation,
appelée l’équation combinée de mouvement, a été introduite pour la première fois par
Hesla (1991), qui l’a utilisée comme base pour un schéma par éléments finis pour la
simulation directe du mouvement des particules dans un fluide newtonien. Comme nous
le verrons, l’équation combinée de mouvement est complètement générale, elle s’applique
à tout système fluide-particule, même si le fluide est viscoélastique.

Soit H1
0 (Ω\P (t)) l’espace des fonctions test pour le champ de vitesse u, muni de la

norme

∥u∥H1
0 (Ω\P (t)) = ∥D[u]∥L2 .

Soit également L2
0(Ω\P (t)) l’espace des fonctions pour la pression p, défini par

L2
0(Ω\P (t)) = {q ∈ L2(Ω\P (t)) |

∫
Ω\P (t)

q dx = 0}.

Nous multiplions l’équation (1) du système (2.4) par une fonction test v ∈ H1
0 et nous

intégrons sur Ω\P (t). Nous obtenons alors :

Re
∫

Ω\P (t)

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx+

∫
Ω\P (t)

∇p · v dx− 2
∫

Ω\P (t)
(∇ · D[u]) · v dx = 0

En utilisant la formule de Green sur les termes de la contrainte et de la pression, nous
obtenons :
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Re
∫

Ω\P (t)

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx+

∫
∂(Ω\P (t))

p(v · n) dx−
∫

Ω\P (t)
p(∇ · v) dx

− 2
∫

∂(Ω\P (t))
(∇ · D[u]) · v dx+ 2

∫
Ω\P (t)

D[u] : D[v] dx = 0.

Figure 2.3 – Normale de domaine

Or,
∫

∂(Ω\P (t)) p(v · n) dx =
∫

Γ p(v · n1) dx+
∫

∂P (t) p(v · n2) dx et comme v = 0 sur Γ car
v ∈ H1

0 (Ω\P (t)), alors ∫
∂(Ω\P (t))

p(v · n) dx =
∫

∂(Ω\P (t))
p(v · n2) dx.

Or n2 = −N (voir figure 2.3), donc∫
∂(Ω\P (t))

p(v · n) dx = −
∫

∂(Ω\P (t))
p(v ·N) dx.

De même,∫
∂(Ω\P (t)

(∇ ·D[u] · n) · v dx =
∫

Γ
(∇ ·D[u] · n1 ) · v dx+

∫
∂P (t)

(∇ ·D[u] · n2) · v dx,
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et donc, ∫

∂(Ω\P (t)
(∇ · D[u] · n) · v dx =

∫
∂P (t)

(∇ · D[u] · n2) · v dx,

ce qui implique que∫
∂(Ω\P (t))

(∇ · D[u] · n) · v dx = −
∫

∂P (t)
(∇ · D[u] ·N) · v dx.

D’où l’équation :

∫
Ω\P (t)

[Re
(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v − p(∇ · v)] dx

+2
∫

Ω\P (t)
D[u] : D[v] dx+

∫
∂P (t)

[2(∇ ·D[u] ·N) · v − p(v ·N)] dx = 0.
(2.7)

Pour la contrainte d’incompressibilité, nous multiplions par une fonction test scalaire
q ∈ L2(Ω\P (t)) et intégrons sur Ω\P (t) :∫

Ω\P (t)
(∇ · u)q dx = 0 (2.8)

En ajoutant les équations (2.7) et (2.8), nous obtenons :

Re
∫

Ω\P (t)

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx−

∫
∂P (t)

p(v ·N) dx−
∫

Ω\P (t)
p(∇ · v) dx

+2
∫

Ω\P (t)
D[u] : D[v] dx+ 2

∫
∂P (t)

(∇ · D[u] ·N) · v dx+
∫

Ω\P (t)
(∇ · u)q dx = 0

(2.9)

D’où la formulation faible du système (2.4) :

Trouver u ∈ H1
0 (Ω\P (t)) et p ∈ L2

0(Ω\P (t)) tels que :

∫
Ω\P (t)[Re

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v + 2D[u] : D[v]] dx

−
∫

∂P (t) p(v ·N) dx+ 2
∫

∂P (t)(∇ ·D[u] ·N) · v dx

+
∫

Ω\P (t)(∇ · u)q dx−
∫

Ω\P (t) p(∇ · v) dx = 0, Ω\P (t), (1)
u = ui sur ∂Pi(t), i = 1, 2, (2)

u|t=0 = u0(x) Ω\P (0). (3)

(2.10)

∀v ∈ H1
0 (Ω\P (t)), ∀q ∈ L2(Ω\P (t))



2.2. FORMULATION VARIATIONNELLE MIXTE DU PROBLÈME 13
Soit H1(Ω\P (t))2 l’espace des solutions pour le champ de vitesse dans le domaine

rigide P (t). Nous multiplions l’équation (1) du système (2.6) par une fonction test v et
intégrons sur P (t). Nous obtenons alors :

Re
∫

P (t)

ρs

ρf

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx+

+
∫

P (t)
∇p · v dx− 2

∫
P (t)

(∇ ·D[u]) · v dx−
∫

P (t)
(∇ ·D[λ]) · v dx = 0

En utilisant la formule de Green sur le terme de contrainte et de la pression, nous obte-
nons :


Re

∫
P (t)

ρs
ρf

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx+

∫
∂p(t) p(v ·N) dx−∫

p(t) p(∇ · v) dx+ 2
∫

p(t) D[u] : D[v] dx− 2
∫

∂p(t)(∇ · D[u] ·N) · v dx
+
∫

P (t) D[λ] · D[v] dx−
∫

P (t)((∇ · D[λ]) ·N) · v dx = 0
(2.11)

Pour la contrainte d’incompressibilité, nous multiplions par une fonction test scalaire
q ∈ L2(P (t)) et intégrons sur Ω\P (t), nous obtenons alors :∫

P (t)
(∇ · u)q dx = 0 (2.12)

La contrainte de rigidité (3) du système (2.6) peut également être mise en œuvre en
imposant : {

∇ ·D[u] = 0 P (t), (1)
D[u] · n = 0 sur ∂P (t). (2)

(2.13)

Les deux équations (1) et (2) du système (2.13) peuvent se combiner pour s’écrire sous
la contrainte suivante :∫

p(t)
D[µ] : D[u] dx = 0 ∀µ ∈ H1(P (t))2. (2.14)

En effet :
Comme les conditions pour appliquer le théorème de Green sont bien remplies, en

l’appliquant D[µ] : D[u], nous obtenons :∫
P (t)

∇µ : D[u] dx =
∫

∂P (t)
µ · (D[u] · n) ds−

∫
P (t)

µ · (∇ · D[u]) dx.

Nous avons :
•
∫

∂P (t) µ · (D[u] · n) ds = 0 car D[u] · n = 0 sur ∂P (t)
•
∫

P (t) µ · (∇ · D[u]) dx = 0 car ∇ · D[u] = 0 sur P (t)
Nous déduisons que

∫
P (t) D[µ] : D[u] dx = 0 ∀µ ∈ H1(P (t))2.

En ajoutant les trois équations (2.11), (2.12) et (2.14) , nous obtenons :
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Re
∫

P (t)

ρs

ρf

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx

+
∫

∂P (t)
p(v ·N) dx−

∫
P (t)

p(∇ · v) dx+ 2
∫

P (t)
D[u] : D[v] dx− 2

∫
∂P (t)

(∇ · D[u] ·N) · v dx

+
∫

P (t)
D[λ]·D[v] dx−

∫
∂P (t)

((∇·D[λ])·N)·v dx+
∫

P (t)
q(∇·u) dx+

∫
P (t)

D[µ] : D[u] dx = 0.

∀µ ∈ H1(P (t))2,∀v ∈ H1(P (t))2 et ∀q ∈ L2(P (t))

D’où la formulation faible du problème (2.6)
Trouver u ∈ H1(Ω\P (t))2 et λ ∈ H1(P (t))2 tels que :

Re
∫

P (t)

ρs

ρf

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx−

∫
P (t)

p(∇ · v) dx

+
∫

P (t)
q(∇ · u) dx+

∫
∂P (t)

p(v ·N) dx+ 2
∫

P (t)
D[u] : D[v] dx

−2
∫

∂p(t)
(∇ · D[u] ·N) · v dx+

∫
P (t)

D[λ] · D[v] dx

−
∫

∂P (t)
((∇ · D[λ]) ·N) · v dx+

∫
P (t)

D[µ] : D[u] dx = 0, (1)

u = ui, sur ∂P (t), (2)
σ · n = t, sur ∂P (t), (3)

u = u0(x), dans P (0). (4).

(2.15)

∀v ∈ H1
0 (Ω),∀q ∈ L2(Ω) et ∀µ ∈ H1(P(t))2

En additionnant les équations (1) de chacun des systèmes (2.10) et (2.15), nous obte-
nons :

Re
∫

Ω

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx+ Re

∫
p(t)

(ρs

ρf

− 1)
(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx

−
∫

Ω
p(∇ · v) dx+

∫
Ω
q(∇ · u) dx+ 2

∫
Ω
D[u] : D[v] dx

+
∫

P (t)
D[λ] : D[v] dx+

∫
P (t)

D[µ] : D[u] dx = 0

∀v ∈ H1
0 (Ω),∀q ∈ L2(Ω) et ∀µ ∈ H1(P (t))2.
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Trouver u ∈ H1

0 (Ω), p ∈ L2
0(Ω) et λ ∈ H1(P (t))2 tels que :

Re
∫

Ω

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx+ Re

∫
P (t)

(ρs

ρf
− 1)

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx

−
∫

Ω
p(∇ · v) dx+

∫
Ω

q(∇ · u) dx+ 2
∫

Ω
D[u] : D[v] dx

+
∫

P (t)
D[λ] : D[v] dx+

∫
P (t)

D[µ] : D[u] dx = 0, (1)

u = u0(x), dans Ω, (2)
(2.16)

∀v ∈ H1
0 (Ω), ∀q ∈ L2(Ω) et ∀µ ∈ H1(P (t))2

Soit la fonction ρ(x) =


ρs

ρf

, ∀x ∈ P (t)

1, ∀x ∈ Ω\P (t)
Ainsi, le système (2.16) devient :



Re
∫

Ω

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx+ Re

∫
Ω
(ρ(x) − 1)

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx

−
∫

Ω
p(∇ · v) dx+

∫
Ω

q(∇ · u) dx+ 2
∫

Ω
D[u] : D[v] dx

+
∫

P (t)
D[λ] : D[v] dx+

∫
P (t)

D[µ] : D[u] dx = 0, (1)

u = u0(x) dans Ω. (2)
(2.17)

En simplifiant l’équation (1) du système (2.17), nous obtenons :
Trouver u ∈ H1

0 (Ω), p ∈ L2
0(Ω) et λ ∈ H1(P (t))2 tels que :



Re
∫

Ω
ρ(x)

(
∂u
∂t

+ u · ∇u − 1
Fr2 g

)
· v dx−

∫
Ω
p(∇ · v) dx+

∫
Ω
q(∇ · u) dx

+2
∫

Ω
D[u] : D[v] dx+

∫
P (t)

D[λ] : D[v] dx+
∫

P (t)
D[µ] : D[u] dx = 0. (1)

u = u0(x), dans Ω, (2)

(2.18)

∀v ∈ H1
0 (Ω),∀q ∈ L2(Ω) et ∀µ ∈ H1(P (t))2

Dans la section suivante, nous présentons la méthode numérique utilisée dans l’article
de Patankar et al. [4] pour résoudre le système d’équations, afin de mieux comprendre les
modifications et le schéma employés dans notre travail.



3 Méthode numérique

Dans ce chapitre, nous présentons la méthode numérique utilisée dans l’article de
Patankar et al.[4], pour résoudre le système d’équations (2.18). Nous proposons une mo-
dification originale qui simplifie ce schéma et sa mise en oeuvre.

La nouvelle formulation est mise en œuvre pour les écoulements particulaires bidimen-
sionnels, comme développé par Singh et al. [2]. Afin de mettre en évidence les modifications
apportées par Patankar et al. [4] considèrent que le fluide en suspension est newtonien et
que les particules sont circulaires,ce qui entraine à negliger le mouvement angulaire des
particules et simplifie le problème. Dans notre travail, nous avons respecté ces conditions
afin de pouvoir comparer nos résultats à ceux de l’article de Patankar et al. [4].

Singh et al. [2] utilisent le schéma de séparation des opérateurs de Marchuk-Yanenko
[5] pour la discrétisation temporelle, comme décrit également par Patankar et al. [4]. Cette
méthode permet de gérer efficacement la discrétisation temporelle dans le contexte de la
formulation modifiée.

Le système d’équations (2.18) constitue un problème entièrement couplé difficile à
résoudre directement en raison de plusieurs sources de difficulté [6] :

1. La condition d’incompressibilité et la pression inconnue p associée ;
2. Les termes d’advection et de diffusion ;
3. La contrainte du mouvement de corps rigide dans P (t) et le multiplicateur de La-

grange distribué λ associé.
4. la détection et le calcul des forces de contact Fi et des couples Ti pour les deux

particules.
Chacune de ces difficultés correspond à un opérateur spécifique (les premier et dernier

étant essentiellement des opérateurs de projection).
Patankar et al. ont utilisé une approche de fractionnement d’opérateur de premier

ordre [3] pour diviser le problème couplé en plusieurs sous-problèmes pour résoudre sé-
quentiellement. Cette approche a été introduite pour la première fois par Glowinski et al.
[7] dans le contexte des calculs d’écoulement chargé de particules et a ensuite été large-
ment utilisée dans de nombreux articles. Les équations couplées peuvent être considérées
comme un problème de valeur initiale de la forme générale suivante :

dΦ
dt

+
m∑

i=1
Ai(Φ) = f

Φ(t = 0) = Φ0

où les opérateurs Ai, i = 1, . . . ,m varient selon les différentes stratégies de fraction-
nement Patankar et al.[1], et Φ est un vecteur de champs inconnus. Dans le travail de
Patankar et al. [4] Φ = (u, p, λ) et une stratégie de fractionnement en trois étapes :

Φn+1/3 − Φn

∆t + A1(Φn,Φn+1/3) = fn+1
1

Φn+2/3 − Φn+1/3

∆t + A2(Φn,Φn+2/3) = fn+1
2

16
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Φn+1 − Φn+2/3

∆t + A3(Φn,Φn+1) = fn+1
3

fn+1
1 + fn+1

2 + fn+1
3 = f((n+ 1)∆t)

où ∆t est l’amplitude du pas de temps.
Nous avons utilisé deux étapes dans notre schéma ce qui rend le temps de calcul plus

rapide et efficace.Dans les sections suivantes, nous présentons le schéma de Patankar et
al. de discrétisation temporelle de chaque sous-problème,ainsi le schéma de notre travail.

3.1 Le schéma à trois étapes de Patankar et al.

Dans cette sous-section, nous allons détailler le schéma utilisé par Patankar et al.[1]
afin de mieux comprendre son approche pour la discrétisation en temps.

— Étape 1 : Problème Stokes généralisé
Trouver un+1/3 ∈ H1

0 (tn+1) et pn+1/3 ∈ L2
0(Ω) satisfaisant :

∫
Ω

Re
(

un+1/3 − un

∆t − 1
Fr2 g

)
· v dx −

∫
Ω
pn+1/3 (∇ · v) dx +

∫
Ω
q
(
∇ · un+1/3

)
dx

+0.5 ×
∫

Ω
2D(un+1/3) : D(v) dx = 0. ∀v ∈ W0 et q ∈ L2(Ω)

Forme simplifiée :
Trouver un+1/3 ∈ H1

0 (tn+1) et pn+1/3 ∈ L2
0(Ω) satisfaisant :

∫
Ω

Re
(

un+1/3

∆t

)
·v dx−

∫
Ω
pn+1/3 (∇ · v) dx+

∫
Ω

q
(
∇ · un+1/3

)
dx+

∫
Ω
ηD[un+1/3] : D[v] dx =

∫
Ω

Re
(un

∆t + 1
Fr2 g

)
· v dx ∀v ∈ H1

0 et q ∈ L2(Ω).

où v appartient à H1
0 (Ω/p(t)) et q appartient à L2(Ω).

— Étape 2 : Les termes d’advection et de diffusion
Trouver un+2/3 ∈ H1

0 (tn+1) satisfaisant :

∫
Ω

Re
(

un+2/3 − un+1/3

∆t +
(
un+2/3 · ∇

)
un+2/3

)
·v dx+0.5×

∫
Ω

2D[un+2/3] : D[v] dx = 0,

pour tout v ∈ H1
0 (t) et q ∈ L2(Ω).

Forme simplifiée :
Trouver un+2/3 ∈ H1

0 (tn+1) satisfaisant :



18 CHAPITRE 3. MÉTHODE NUMÉRIQUE

∫
Ω

Re
(

un+2/3

∆t +
(
un+2/3 · ∇

)
un+2/3

)
· v dx +

∫
Ω
D[un+2/3] : D[v] dx

=
∫

Ω
Re

(
un+1/3

∆t

)
· v dx,

pour tout v ∈ H1
0 et q ∈ L2(Ω).

— Étape 3 : Particules + rigidités
Trouver un+1 ∈ H1

0 et λn+1 ∈ H1(P (tn+1))2 satisfaisant :

∫
P (tn+1)

Re
(

un+1 − un+2/3

∆t

)
· v dx −

∫
P (tn+1)

An+1
c · v dx

+
∫

P (tn+1)
D[λn+1] : D[v] dx

+
∫

P (tn+1)
D[µ] : D[un+1] dx

+
∫

P (tn+1)
Re(ρ0 − 1)

(
un+1 − un

∆t +
(
un+2/3 · ∇

)
un+2/3 − 1

Fr2 g
)

· v dx = 0,

pour tout v ∈ H1
0 et µ ∈ H1(P (tn+1))2.

Forme simplifiée :
Trouver un+1 ∈ H1

0 (tn+1) et λn+1 ∈ H1(P (tn+1))2 satisfaisant :
∫

P (tn+1)
ρf

(
un+1

∆t

)
· v dx+

∫
P (tn+1)

D[λn+1] : D[v] dx

+
∫

P (tn+1)
D[µ] : D[un+1] dx

+
∫

P (tn+1)
Re(ρ0 − 1)

(
un+1

∆t

)
· v dx

=
∫

P (tn+1)
Re

(
un+2/3

∆t

)
· v dx

+
∫

P (tn+1)
ρsAn+1

c · v dx

+
∫

P (tn+1)
Re(ρ0 − 1)

(un

∆t −
(
un+2/3 · ∇

)
un+2/3 + 1

Fr2 g
)

· v dx,

pour toutv ∈ H1
0 et µ ∈ H1(P (tn+1))2.
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3.2 Modification du Schéma numérique avec la mé-

thode de caractéristiques
Le but principal de ce stage est de modifié le schéma proposé par Patankar en l’adap-

tant à une approche en deux étapes, intégrant l’utilisation de la méthode des caractéris-
tiques. Cette adaptation vise à simplifier et, potentiellement, accélérer les calculs.

Dans la sous-section suivante, nous décrirons brièvement la démarche utilisée pour
réaliser ces modifications. Nous aborderons les détails techniques de l’implémentation du
schéma en deux étapes et la manière dont la méthode des caractéristiques est intégrée
pour améliorer les résultats obtenus.

3.2.1 Méthode des caractéristiques
La méthode des caractéristiques permet de découpler la partie purement convective de

l’équation (1) du système (2.17). En effet, l’opérateur 1
∂t

+u·∇ peut être interprété comme
une dérivée particulaire, transformant ainsi les coordonnées eulériennes en coordonnées
lagrangiennes. Grâce à cette reformulation, il devient théoriquement possible de suivre
l’évolution des particules dans le temps le long de leur trajectoire, en résolvant pour
chacune d’elles une équation différentielle, dite équation de caractéristiques :

dX(x, s; t)
dt

= u(X(x, s; t))

où X(x; s, t) définit la position d’une particule à l’instant t qui se trouvait en x à l’instant
s, avec X(x; s, s) = x.

Le traitement du terme convectif non linéaire se réduit ainsi à un problème de recherche
du pied de caractéristiques, c’est-à-dire la position de la particule à l’instant précédent.
Cette approche permet théoriquement d’éviter la contrainte liée à une condition CFL
pour la discrétisation temporelle.

En effet, il a été démontré que si la trajectoire caractéristique est calculée avec pré-
cision, le schéma résultant est inconditionnellement stable. En somme, l’utilisation de la
méthode des caractéristiques pour la discrétisation de l’équation (1) du système permet
d’éliminer le terme non linéaire de cette équation.

Principe de cette méthode
1. Dérivée particulaire : On calcule la dérivée temporelle d’une fonction dépendant de
la trajectoire temporelle. Si t 7→ X(t) est une trajectoire, alors on dérive t 7→ u(t,X(t)),
ce qui donne :

∂u

∂t
+ u · ∇u au point (t,X(t)).

Nous avons
∂u

∂t

∣∣∣
(t,X(t))

+ u · ∇u
∣∣∣
(t,X(t))

= du

dt

∣∣∣
(t,X(t))
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2. Différences finies : Pour approcher cette dérivée particulaire via un schéma en diffé-
rences finies, on utilise :

d

dt
(u(t,X(t))) = u(tn+1,X(tn+1)) − u(tn,X(tn))

∆t .

La position X(tn) est estimée par la méthode des caractéristiques, qui consiste à suivre
la trajectoire des particules dans le champ de vitesse u.
3. Vitesse : La vitesse u est la dérivée temporelle de la trajectoire X, donnée par :

u(t,X(t)) = ∂X
∂t

(t,X(t))
Xn+1 − Xn

∆t = u(tn+1,X(tn+1))

Xn+1 = X ij

où Xn et Xn+1 représentent les positions de la particule aux temps tn et tn+1 .
4. Estimation de Xn : On réarrange cette équation pour obtenir :

Xn = X(tn+1) − ∆t · u(tn+1,X(tn+1)).

Ici, X(tn+1) est un point connu de la grille, mais u(tn+1,X(tn+1)) est une quantité incon-
nue.
5. Approximation de u(tn+1,X(tn+1)) : Pour contourner ce problème, on fait l’approxi-
mation suivante :

u(tn+1,X(tn+1)) ≈ u(tn,X(tn+1)).

Cette approximation consiste à utiliser la vitesse au temps précédent tn, mais évaluée au
point X(tn+1). Cela est généralement acceptable lorsque u ne varie pas fortement entre
deux pas de temps.

Évaluation de u

Pour évaluer u (ou son approximation discrète uh) au point X(tn) (ou plutôt Xn), il
est nécessaire d’interpoler car Xn ne correspond généralement pas à un point de la grille.

— Interpolation : Dans un maillage cartésien, cette interpolation est facilitée car il
est aisé de localiser Xn dans la grille en temps constant. On utilise les valeurs des
points voisins pour interpoler la valeur de u à Xn.

— Dérivée particulaire : Approximée par une différence finie.
— Caractéristique : Utilisée pour estimer les positions antérieures des particules.
— Interpolation : Nécessaire pour évaluer u en des points non-grillés.
En résumé, cette méthode combine dérivation temporelle et spatiale en utilisant les

caractéristiques et les différences finies, avec une interpolation pour estimer les valeurs en
des points non-grillés, permettant ainsi de résoudre des problèmes dynamiques en suivant
les trajectoires des particules dans un champ de vitesse.
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3.2.2 Schéma numérique en deux étapes : Prediction - Correc-

tion
Nous avons utilisé la décomposition de Patankar et al. [1], que nous avons modifiée

pour décomposer notre schéma en deux étapes distinctes. L’objectif de cette modification
est de réduire le temps de calcul tout en conservant la même précision. Afin d’éviter de
résoudre directement l’équation avec le terme non linéaire u · ∇u, nous avons adopté la
méthode des caractéristiques. Cette approche permet de découpler la partie convective du
problème en remplaçant

(
1
∂t

+ u · ∇
)
u par du

dt
.

Soit la décomposition en temps suivante :

Étape 1 [n ; n+1
2] : Résoudre un problème Stokes generalisé avec

advection



Re
∆t

∫
Ω u

n+1/2 · v dx−
∫

Ω p
n+1/2 (∇ · v) dx+ 2

∫
Ω D[un+1/2] : D[v] dx

= Re

F 2
r

∫
Ω g · v dx+ Re

∆t

∫
Ω u

n ◦Xn · v dx.∫
Ω q

(
∇ · un+1/2

)
dx = 0

(3.1)

Étape 2 [n+1
2 ; n+1 ] : Imposer la rigidité



Re
∆t

∫
Ω u

n+1 · vdx+ 1
ρ0

∫
P (n+1) D[λn+1] : D[v]dx = Re

∫
P (n+1)[ 1

F 2
r
An+1

c +
((1 − 1

ρ0
)( 1

F r2 g + un◦xn−un+1/2

∆t
)] · vdx+ Re

∆t

∫
Ω u

n+1/2 · vdx

1
ρ0

∫
P (n+1) D[un+1] : D[v]dx = 0

(3.2)

Vérification :
Nous réécrivons l’équation (1) des systèmes (3.1) et (3.2) sous la forme suivante afin

de faciliter sa simplification :

 Re
∫

Ω(un+1/2−un◦Xn

∆t
− 1

F 2
r
g) · v dx−

∫
Ω p

n+1/2 (∇ · v) dx+ 2
∫

Ω D[un+1/2] : D[v] dx = 0.∫
Ω q

(
∇ · un+1/2

)
dx = 0



Re
∫

Ω(un+1−un+1/2

∆t
· v dx+ 1

ρ0

∫
P (tn+1) D[λn+1] : D[v] dx

= Re
F 2

r

∫
P (n+1) A

n+1
c · v dx+ Re((1 − 1

ρ0
)[ 1

F r2 g + Reun◦xn−un+1/2

∆t
]) · v dx

1
ρ0

∫
P (n+1) D[un+1] : D[v]dx = 0 ∀x ∈ P (tn+1).

Re
un+1−un+1/2

∆t
= 0 ∀x ∈ Ω\P (tn+1).
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Ensuite, nous écrivons sous la forme suivante :



Re
∫

P (tn+1)(ρ0
un+1−un+1/2

∆t
− (ρ0 − 1)un◦xn−un+1/2

∆t
]) + ·v dx+

∫
P (n+1) D[λn+1] : D[v] dx

= Re
F 2

r

∫
P (n+1) A

n+1
c · v dx+ Re(ρ0 − 1)[ 1

F r2 g + Re · v dx

1
ρ0

∫
P (n+1) divD[un+1] : D[v]dx = 0 ∀x ∈ P (tn+1).

Re
un+1−un+1/2

∆t
= 0 ∀x ∈ Ω/P (tn+1).



Re
∫

P (tn+1)
un+1−un+1/2

∆t
· v dx+

∫
P (n+1) D[λn+1] : D[v] dx

+Re
∫

P (tn+1)(ρ0 − 1)(un+1−un◦Xn

∆t
− 1

F r2 g) · v dx+
= Re

F 2
r

∫
P (n+1) ρ0A

n+1
c · v dx

1
ρ0

∫
P (n+1) divD[un+1] : D[v]dx = 0 ∀x ∈ P (tn+1).

Re
un+1−un+1/2

∆t
= 0 ∀x ∈ Ω/P (tn+1).

Puis, en ajoutant les équations (1) des systèmes (3.1) et (3.2), nous obtenons :


Re

∫
Ω
ρ(x)

(
un+1 − un ◦Xn

∆t − 1
Fr2 g

)
· v dx−

∫
Ω

pn+1/2(∇ · v) dx

+2
∫

Ω
D[un+1/2] : D[v] dx+

∫
P (n+1)

D[λn+1] : D[v] dx = Re
F 2

r

∫
P (n+1)

ρ0A
n+1
c · v dx

(3.3)

Donc nous avons obtenons la même équation (2.18).

3.2.3 Existence et unicité pour les sous problèmes.
Dans cette sous-section, nous montrons l’unicité et l’existence de la solution du pro-

bleme (3.1).

{ Re
∆t

∫
Ω u

n+1/2 · v dx−
∫

Ω p
n+1/2 (∇ · v) dx+ 2

∫
Ω D[un+1/2] : D[v] dx = fn+1/2∫

Ω q
(
∇ · un+1/2

)
dx = 0

avec fn+1/2 = Re

F 2
r

∫
Ω
g · v dx+ Re

∆t

∫
Ω
un ◦ xn · v dx.

Pour des raisons de lisibilité, nous omettons les indices n+ 1
2 dans les notations. Les termes

variationnels de notre problème sont :
• u : Ω → R2 est le champ de vitesse (inconnu).
• p : Ω → R est la pression (inconnue).
• v ∈ H1

0 (Ω)2 est une fonction test.
• q ∈ L2(Ω) est une fonction test.
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Les termes de l’équation ont un sens car u, v ∈ H1

0 (Ω)2 et p ∈ L2(Ω). On constate en
outre que : f ∈ L2(Ω)2. Ainsi, le problème est bien posé.

Espaces Fonctionnels
Nous cherchons p ∈ L2

0(Ω), où L2
0(Ω) = {q ∈ L2(Ω) |

∫
Ω q dx = 0}, cette condition

assurant l’unicité de la solution.
Nous allons introduire les formes bilinéaires suivantes :

a : H1
0 (Ω)2 ×H1

0 (Ω)2 → R

(u, v) 7→ a(u, v) = Re
∆t

∫
Ω
u · v dx+ 2

∫
Ω
D[u] : D[v] dx

b : H1
0 (Ω)2 × L2(Ω) → R

(v, p) 7→ b(v, p) = −
∫

Ω
p (∇ · v) dx

f(v) = Re
F 2

r

∫
Ω
g · v dx+ Re

∆t

∫
Ω
(u ◦X) · v dx.

Avec les notations précédentes, la formulation mixte du problème (3.1) s’écrit :
Trouver (u, p) ∈ H1

0 (Ω)2 × L2
0(Ω) tels que

a(u, v) + b(v, p) = (f, v), ∀v ∈ H1
0 (Ω)2 (3.4a)

b(v, q) = 0, ∀q ∈ L2
0(Ω) (3.4b)

(3.4)

Pour prouver l’existence et l’unicité de la solution (u, p), nous devons nous appuyer
sur l’analyse fonctionnelle et des résultats classiques tels que le théorème de Lax-Milgram
et le lemme de Ladyzhenskaya-Babuška-Brezzi (LBB).

Le théorème de Lax-Milgram assure que pour une forme bilinéaire coercive et continue,
il existe une solution unique au problème associé.

Le lemme de Ladyzhenskaya-Babuška-Brezzi (LBB), également connu sous le nom de
condition de stabilité inf-sup, est crucial pour assurer l’existence et l’unicité des solutions
dans les problèmes de fluides incompressibles. Cette condition stipule que pour les espaces
fonctionnels appropriés, il doit exister une constante β > 0 telle que pour tous les v ∈ V
et q ∈ Q (où V et Q sont les espaces de fonctions pour les vitesses et les pressions,
respectivement), on ait :

sup
v∈X,v ̸=0

b(v, q)
∥v∥X

≥ β∥q∥Y ∀q ∈ Y.

En vérifiant ces conditions dans le cadre de notre problème, nous pouvons garantir
l’existence et l’unicité de la solution (u, p) du problème (3.4).

Linéarité de a(u, v) et b(u, q)
D’après la linéarité de l’intégrale et du produit scalaire, nous pouvons déduire que la
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forme a(u, v) et b(v, q) sont bilinéaire.

Continuité de a(u, v)
Nous devons montrer qu’il existe une constante C > 0 telle que pour tout u, v ∈

H1
0 (Ω)2,

|a(u, v)| ≤ C∥u∥H1
0 (Ω)2∥v∥H1

0 (Ω)2 .

En effet, soient u et v [∈ H1
0 (Ω)]2, nous avons :

a(u, v) = Re

∆t

∫
Ω
u · v dx+ 2

∫
Ω
D[u] : D[v] dx

= Re

∆t

2∑
i=1

∫
Ω
ui · vi dx+ 2

∫
Ω
[∂u1

∂x

∂v1

∂x
+ (∂u1

∂y
+ ∂u2

∂x
)(∂v1

∂y
+ ∂v2

∂x
) + ∂u2

∂y

∂v2

∂y
] dx (3.5)

Par l’inégalité de Hölder, il vient :

a(u, v) ≤ Re

∆t

2∑
i=1

∥ui∥L2(Ω)∥vi∥L2(Ω) + 2
2∑

i=1
∥D[ui]∥L2(Ω)∥D[vi]∥L2(Ω)

≤ Re

∆t∥u∥L2(Ω)∥v∥L2(Ω) + 2∥D[u]∥L2(Ω)2∥D[v]∥L2(Ω)2

≤ C∥u∥H1(Ω)2∥v∥H1(Ω)2 ∀u, v ∈ [H1
0 (Ω)]2et C = max{2, Re∆t}

ce qui établit la continuité de a sur H1(Ω)2 ×H1(Ω)2.
Par ailleurs, l’inégalité de Korn :

∥∇u∥L2(Ω) ≤ C∥D[u]∥L2(Ω) ∀u ∈ H1(Ω)n,

Coercivité de a(u, v)
On doit montrer qu’il existe une constante α > 0 telle que pour tout u ∈ V ,

a(u, u) ≥ α∥u∥2
V .

En effet, pour toutv dans [H1
0 (Ω)]2, En utilisant l’inégalité de Poincaré, nous avons :

a(u, u) = Re
∆t∥u∥2

L2(Ω) + 2∥D[u]∥2
L2(Ω) ≥ Re

∆t∥u∥2
L2(Ω).

a(u, u) = Re

∆t∥u∥2
L2(Ω)2 + 2∥D[u]∥2

L2(Ω)2 ≥ min{2, Re∆t}C∥u∥2
H1(Ω)2 ∀u ∈ [H1

0 (Ω)]2

Continuité de b

La forme b est continue sur [H1
0 (Ω)]2 × L2(Ω) :
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b(v, q) = −
∫

Ω
(div v)q dx ≤ ∥v∥H1(Ω)2∥q∥L2(Ω) ∀v ∈ [H1(Ω)]2,∀q ∈ L2(Ω)

Pour établir que b du problème (3.1) vérifie la condition ’inf-sup’, nous avons utlisé
[Brezzi-Fortin]Mixed and Hybrid Finite Element Methods page 58.

Conclusion
Le problème (3.1) continu admet une unique solution (u, p) ∈ [H1

0 (Ω)]2 × L2
0(Ω).

Dans cette partie, nous montrons l’existence et l’unicité de la solution du problème
(3.2). 

Re

∆t

∫
Ω u

n+1 · v dx− 1
ρ

∫
p(tn+1) D[λn+1] : D[v] dx = fn+1∫

P(tn+1) D[un+1] : D[µ] dx = 0 ∀µ ∈ H1(P(tn+1))2.
(3.6)

avec fn+1 = Re

F 2
r

∫
P(tn+1)

((1−1
ρ

)g+An+1
c )·v dx+Re

∆t

∫
Ω
un+1/2·v dx+Re

∆t(1−1
ρ

)
∫

P(tn+1)
un◦Xn·v dx

Pour des raisons de lisibilité, nous omettons les indices n+1 dans les notations. Les termes
variationnels de notre problème sont :

• u : Ω → R2 est le champ de vitesse (inconnu).
• L est la contrainte de rigidite (inconnue).
• v ∈ V est une fonction test.

Les termes de l’équation ont un sens car u, v ∈ H1
0 (Ω)2. On constate en outre que

f ∈ L2(Ω)2. Ainsi, le problème est bien posé.
Nous réécrivons le système (3.6) sous la forme suivante :

Re

∆t

∫
Ω

u · v dx− 1
ρ

∫
p(tn+1)

D[λ] : D[v] dx =

Re

F 2
r

∫
p(tn+1)

(g + An+1
c ) · v dx+ Re

∆t

∫
Ω

un+1/2 · v dx

+ Re

∆t

(
1 − 1

ρ

)∫
p(tn+1)

un ◦ Xn · vh dx,∫
p(tn+1)

−1
ρ

D[u] : D[µ] dx = 0 ∀µ ∈ H1(p(tn+1))2.

(3.7)

Nous allons maintenant introduire les formes bilinéaires suivantes :

a′ : H1
0 (Ω)2 ×H1

0 (Ω)2 → R

(u, v) 7→ a′(u, v) = Re

∆t

∫
Ω
u · v dx
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b′ : H1
0 (Ω)2 ×H1(p(tn+1))2 → R

(v, λ) 7→ b′(v, λ) = −1
ρ

∫
p(tn+1)

D[λ] : D[v] dx

l : H1
0 (Ω)2 → R

(v) 7→ l(v) = Re

F 2
r

∫
p(tn+1)

(g + An+1
c ) · v dx

+ Re

∆t

∫
Ω∗
un+1/2 · v dx

+ Re

∆t(1 − 1
ρ

)
∫

p(tn+1)
un ◦Xn · vh dx

Avec les notations précédentes, la formulation mixte du problème (3.2) s’écrit :


Trouver (u, λ) ∈ H1

0 (Ω)2 ×H1(p(tn+1))2 tels que
a′(u, v) + b′(v, λ) = (f, v), ∀v ∈ H1

0 (Ω)2 (3.8a)
b′(u, µ) = 0, ∀µ ∈ H1(p(tn+1))2 (3.8b)

(3.8)

Linéarité de a′(u, v) et b′(u, q)

D’après la linéarité de l’intégrale et du produit scalaire, nous pouvons déduire que la
forme a′(u, v) et b′(u, q) sont bilinéaire.

Continuité de la forme b′

La forme b′ est continue sur H1
0 (Ω)2 ×H1(p(tn+1))2 :

|b′(v, λ)| =
∣∣∣∣∣−1
ρ

∫
p(tn+1)

D[λ] : D[v] dx
∣∣∣∣∣

≤ c(ρ0)∥v∥H1(Ω)2∥λ∥H1(p(tn+1))2 ∀v ∈ [H1(Ω)]2,∀λ ∈ H1(p(tn+1))2

Pour la continuité et la coercivité de la forme a′, nous supposons qu’elle est continue
et coercive, car cela semble rester une question ouverte dans la littérature.

Conclusion Nous supposons ici que la condition inf-sup est vérifiée. C’est un pro-
blème qui semble rester une question ouverte dans la littérature. En particulier, l’analyse
numérique théorique de méthodes de type MDF/MLD a été réalisée dans [3] pour jus-
tifier notamment les simulations de Patankar, mais l’analyse a été faite avec un opé-
rateur de projection différent. Le problème (3.2) continu admet une unique solution
(u, λ) ∈ [H1

0 (Ω)]2 ×H1(p(tn+1))2.
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3.3 Approximation spatiale par éléments finis

Nous reprenons d’abord les résultats théoriques de la section 3.1 en les appliquant à
notre problème. En particulier, nous dégageons la condition de compatibilité que doivent
satisfaire les espaces d’approximation en vitesse et en pression pour que le problème
approché soit bien posé. Enfin,nous présentons un lemme utile permettant de vérifier
cette condition de compatibilité.

Étape 1
Soit Xh ⊂ [H1

0 (Ω)]2 , Mh ⊂ L2
0(Ω) et Yh ⊂ [H1

0 (P (t))]2, les sous-espaces de dimension
finie. La formulation mixte approchée s’écrit de façon suivante :


Trouver uh ∈ Xh, ph ∈ Mh tels que
a(uh, vh) + b(vh, ph) = (fh, vh), ∀vh ∈ Xh (3.6a)
b(uh, qh) = 0, ∀qh ∈ Mh (3.6b)

Pour le problème discrete mixte (3.6) est bien posé si et seulement si les espaces Xh

et Mh satisfont l’hypothese de compatibilité, où Xh est un sous-espace discret pour la
variable de vitesse u et Mh est un sous-espace discret pour la pression p.

A ce stade, nous devons montrer que la forme b vérifie la condition ’inf-sup’ discrète
suivante sur Xh ×Mh.

Nous supposons que b vérifie la condition ’inf-sup’ discrète et qu’il existe une solution
unique (uh, ph) du problème (3.3a) discret dans Xh ×Mh.

Étape 2


Trouver uh ∈ Xh, λh ∈ Yh tels que
a′(uh, vh) + b′(vh, λh) = (fh, vh), ∀vh ∈ Xh (3.7a)
b′(uh, µh) = 0, ∀µh ∈ Yh (3.7b)

Le problème mixte discret (3.7) est bien posé si et seulement si les espaces Xh et Yh

satisfont l’hypothèse de compatibilité, où Xh est un sous-espace discret pour la variable
de vitesse u et Yh est un sous-espace discret pour le multiplicateur de Lagrange λ.

À ce stade, il est nécessaire de démontrer que la forme bilinéaire b satisfait la condition
discrète ’inf-sup’ sur Xh × Yh. Pour plus de détails sur cette démonstration, vous pouvez
consulter de [Brezzi et Fortin]Mixed and Hybrid Finite Element Methods page 163 - 165.

La satisfaction de la condition ’inf-sup’ discrète est essentielle afin d’éviter des pro-
blèmes tels que l’instabilité de la solution ou une mauvaise convergence de la méthode
numérique. Lors de la construction de méthodes numériques pour résoudre des problèmes
mixtes, il est donc crucial de choisir les espaces d’approximation de u et λ de manière à
respecter cette condition.
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3.3.1 Choix des espaces d’approximation

Dans notre travail, nous utilisons les éléments finis Q1iso − Q2 pour la vitesse et Q0
pour la pression. Il est crucial de bien choisir les espaces d’approximation Xh et Mh pour
la vitesse et la pression afin de satisfaire la condition discrète d’incompatibilité inf-sup.
Nous illustrerons un exemple de couples d’éléments finis pour la vitesse et la pression qui
ne respectent pas cette condition (voir l’appendice C), puis nous présenterons le couple
choisi qui garantit sa satisfaction.

Avantages du choix 4Q1 et Q0
Le couple d’éléments finis 4Q1 pour la vitesse et Q0 pour la pression présente plusieurs

avantages dans la résolution des équations de Navier-Stokes.
— Compatibilité des espaces et condition inf-sup (LBB) : Ce choix satisfait

la condition inf-sup, garantissant la stabilité numérique et évitant les oscillations
spurielles de la pression.

— Simplicité de mise en œuvre : L’utilisation de Q0 pour la pression, constante
sur chaque élément, réduit la complexité des calculs, facilitant ainsi la résolution
des équations de Navier-Stokes.

— Équilibre entre précision et coût computationnel : Le choix de 4Q1 permet
de mieux capturer les variations de la vitesse en subdivisant chaque élément, tout
en maintenant un coût computationnel raisonnable.

3.3.2 Discrétisation de problème
Pour discrétiser le domaine, nous introduisons une grille d’éléments finis uniforme et

fixe, indépendamment de la frontière réelle des particules mobiles, qui sera discrétisée
par une triangulation TH de manière à ce que H > h pour garantir que les triangles ne
soient pas inclus dans un rectangle. Cela évite la construction de maillages adaptés aux
frontières pour chaque position différente des particules mobiles et permet l’utilisation de
solveurs rapides et efficaces.

Définir le domaine et le maillage :
Boîte 2D (maillage cartésien rectilinéaire).
Soient X0 = (0; 0) ∈ R2, L1, L2 ∈ R∗

+, Ω = X0+]0, L1[×]0, L2[ avec L1 = 2 et L2 = 8.0.
Soient de plus N1, N2 ∈ N∗ et δxi, δyj ∈ R∗

+, pour i = 1, . . . , N1 et j = 1, . . . , N2, on définit
Xi,j = (xi, yj) ∈ R2 :

X1,1 = X0, Xi+1,j = Xi,j + δxie1, Xi,j+1 = Xi,j + δyje2, X1+N1,1+N2 = X0 + (L1, L2)

Ki,j =]xi, xi+1[×]yj, yj+1[,

Th(Ω) = {Ki,j; i = 1, . . . , N1 et j = 1, . . . , N2}

Avantages
— construction simple, rapide, (sans stockage)
— localisation d’un point en O(1) opérations
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Dans notre simulation, nous avons
utilisé les paramètres suivants :

• X0 = (0, 0),

• L1 = 2.0,

• L2 = 8.0,

• N1 = 128 et N2 = int(L2
L1

) × 128 ,

• δyj = δxj = H.

Figure 3.1 – Maillage : fluide + particules

Nous désignons les fonctions de base par :
— {φi}

NXh
i=1 fonctions de base de Xh ⊂ H1

0 (Ω)2 .
— {ψi}

NMh
i=1 fonctions de base de Mh ⊂ L2(Ω).

— {ηi}
NYh
i=1 fonctions de base de Yh ⊂ H1(p(tn+1))2.

On considére un élément de reférence K̂1 Q1-IsoQ2 pour le champ vitesse u en 2D .
Voir figure (3.2) , K̂2 Q0 pour la pression P en 2D Voir figure (3.3) et K̂3 P1 pour λ en
2D Voir figure (3.4).

(−1,−1) (1,−1)

(1, 1)(−1, 1)

(0,−1)

(1, 0)

(0, 1)

(−1, 0)
(0, 0)

Figure 3.2 – Élément de reférence Q1-IsoQ2 pour le champ vitesse

Nous allons d’abord déterminer les fonctions de base sur l’élément de référence. En-
suite, nous définirons la transformation affine Fi : T̂ → Ti permettant de passer de
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(−1,−1) (1,−1)

(1, 1)(−1, 1)

Figure 3.3 – Élément de référence Q0
pour la pression P

(0, 0) (1, 0)

(0, 1)

Figure 3.4 – Élément triangulaire de
référence P1 pour λ

l’élément de référence T̂ à un élément général Ti,j, pour un indice i fixé dans l’ensemble
{1, . . . , Néléments}. Enfin, nous déduirons la base de chaque élément Ti,j en utilisant la
relation ϕi

j = ϕ̂j ◦ F−1
i , où j dépend des éléments recherchés.

Détermination de la base de l’espace Xh (éléments isoQ2)
Pour un maillage quadrangulaire, les fonctions de base pour l’espace Xh peuvent être

représentées comme suit. Les fonctions de base sont des polynômes de degré inférieur ou
égal à 1 par rapport à chaque variable sur chaque maille du sous-maillage Th/2, obtenu en
divisant par 2 le pas du maillage Th de Ω. Une fonction de base associée au nœud (i, j)
vaut 1 en ce nœud et zéro aux autres nœuds. Son support est donc restreint à quatre
mailles de Th/2.

Détermination de la base de l’espace Mh (éléments Q0)
Pour chaque élément du maillage (chaque quadrilatère), les fonctions de base pour

l’espace Mh sont des constantes. La fonction de base typique ψk pour un élément k est
définie comme suit :

ψk(x, y) =

1 si (x, y) est dans l’élément k,
0 sinon.

Ainsi, pour un maillage quadrangulaire, vous aurez une fonction de base constante par
élément, souvent notée ψk, où ψk est 1 sur l’élément k et 0 ailleurs.

Détermination de la base de l’espace Yh

La particule est modélisée à l’aide d’un maillage triangulaire. Dans ce cadre, l’espace
Yh utilisé est un espace d’éléments finis de type P1. Cela signifie que les fonctions de base
de cet espace sont des polynômes linéaires (de degré 1) définis sur chaque triangle du
maillage.
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Remplacement du tenseur de déformation D[λ] par une matrice
symétrique L

Dans notre approche numérique, nous remplaçons le tenseur de déformation D[λ] par
une matrice symétrique L afin de simplifier la détermination des fonctions de base dans
l’espace Yh.

Pour un maillage triangulaire, l’espace Yh est de type P1, c’est-à-dire que les fonctions
de base sont des polynômes de degré 1 sur chaque triangle du maillage. Toutefois, la
manipulation des fonctions P1 peut être complexe et requiert des calculs plus élaborés.

Afin de simplifier ces calculs, nous avons choisi d’approximer D[λ] par une matrice
symétrique L, dont les composantes sont constantes P0 sur chaque élément du maillage.
Ainsi, chaque maille contribue une valeur constante à l’approximation, réduisant ainsi le
degré des fonctions de base et la complexité des calculs associés.

Avantages de la Simplification
Le passage de D[λ] (avec des fonctions de base P1) à L (avec des fonctions de base

P0) présente plusieurs avantages :
— Réduction de la Complexité : Les fonctions constantes P0 sont plus simples à

gérer que les fonctions linéaires P1. La détermination et l’intégration des fonctions
P0 sont plus directes et moins coûteuses.

— Facilitation des Calculs : L’utilisation de la matrice symétrique L permet d’expri-
mer les équations du problème de manière plus simple, facilitant ainsi les opérations
algébriques et les intégrations nécessaires pour la résolution du problème.

— Optimisation des Algorithmes : Les algorithmes de résolution sont plus efficaces
avec les matrices symétriques et les fonctions constantes, ce qui réduit le temps de
calcul et les ressources nécessaires.

Ainsi, le remplacement de D[λ] par L et l’utilisation de fonctions P0 permettent d’ob-
tenir des résultats avec une complexité moindre tout en simplifiant les processus de calcul.
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3.3.3 Sous-systèmes linéaires à résoudre

Étape 1
Nous substituons dans la formulation mixte approchée (3.6a), (3.6b), les développe-

ments suivants : uh(x) = ∑NXh
i=1 uiφi(x) et ph(x) = ∑NMh

i=1 piψi(x). Nous considérons le
problème discret approché

Trouver u1, u2, . . . , uNXh
, p1, p2, . . . , pNMh

tels que
Re
∆t
uj
∑NXh

j=1
∫

Ω φi(x) · φj(x) dx+ 2
∫

Ω D[φi(x)] : D[φj(x)] dx
−∑NMh

j=1 pj

∫
Ω ψj(x) divφi(x) dx =

∫
Ω f(x)φi(x) dx∑NXh

j=1 uj

∫
Ω divφi(x)ψj(x) dx = 0.

Assembler les matrices du système linéaire
Posons :
Fi = Re

F 2
r

∫
Ω
g · ϕi dx+Re

∫
Ω
un ◦ xn ·

(
ϕi

∆t

)
dx

F ∈ RNXh , Fi = (f, φi)

Aij = Re

∆t

∫
Ω
φi(x) · φj(x) dx+ 2

∫
Ω
D[φi(x)] : D[φj(x)] dx

A ∈ MNXh
×NXh , Aij = a(φi, φj)

Bij = −
∫

Ω
ψj divφi dx, B ∈ MNYh

×NXh , Bji = b(φi, ψj)
Alors nous avons :

NXh∑
j=1

Aijuj +
NMh∑
j=1

BT
ijpj = Fi ∀i = 1, . . . , NXh

(3.9)

NXh∑
j=1

Bijuj = 0 ∀i = 1, . . . , NYh
(3.10)

Nous avons ainsi obtenu un système linéaire de NXh
+ NMh

équations à NXh
+ NMh

inconnues, qui peut s’écrire sous la forme matricielle suivante :(
A BT

B 0

)(
U
P

)
=
(
F
0

)
(3.11)

où les inconnues sont U = (u1, . . . , uNXh
)T ∈ RNXh et P = (p1, . . . , pNMh

)T ∈ RNMh .
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Étape 2

Nous substituons dans la formulation mixte approchée (3.7a), (3.7b), les développe-
ments suivants : uh(x) = ∑NXh

i=1 uiφi(x) et λh(x) = ∑NMh
i=1 λiηi(x).

Nous considérons le problème discret approché suivant :
Trouver u1,u2, . . . ,uNXh

, λ1, λ2, . . . , λNYh
tels que

Re
∆t

uj
∑NXh

j=1
∫

Ω φi(x) · φj(x) dx − 1
ρ0

∑NYh
j=1 λj

∫
P (tn+1) D[λj] : D[φi] dx

=
∫

P (tn+1) f(x)φi(x) dx,∑NXh
j=1 uj

∫
P (tn+1) D[φj] : D[φi] dx = 0.

Assembler les matrices du système linéaire
Posons :
F ′

i = Re

F 2
r

∫
Ω
g · ϕi dx+Re

∫
Ω
un ◦ xn ·

(
ϕi

∆t

)
dx

F ∈ RNXh , Fi = (f, φi)

A′
ij = Re

∆t

∫
Ω
φi(x) · φj(x) dx

A ∈ MNXh
×NXh , Aij = a(φi, φj)

B′
ij = −

∫
Ω
ψj divφi dx, B′ ∈ MNYh

×NXh , B′
ji = b(φi, ψj)

Alors nous avons : ∑NXh
j=1 A

′
ijuj +∑NMh

j=1 B
′T
ij pj = Fj ∀i = 1, . . . , NXh

NXh∑
j=1

B
′

ijuj = 0 ∀i = 1, . . . , NYh

Nous avons ainsi obtenu un système linéaire de NXh
+ NYh

équations à NXh
+ NYh

inconnues, qui peut s’écrire sous la forme matricielle suivante :(
A′ B′T

B′ 0

)(
U
λ

)
=
(
F ′

0

)
(3.12)

où les inconnues sont U = (u1, . . . , uNXh
)T ∈ RNXh et λ = (λ1, . . . , λNYh

)T ∈ RNMh .
Les matrices A et A′ des systèmes linéaires (3.11) et (3.12) sont de grande taille et

possèdent une structure très particulière (creuse et tridiagonale par blocs). Il est donc
important de connaître une technique de résolution de ces systèmes, qui soit moins coû-
teuse en temps tout en préservant la précision. Dans la section suivante, nous présentons
la méthode de résolution de notre problème.
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Discrétisation de ∫

P (t)(D(uh) : D(µH)) dx = 0
Pour discrétiser le problème∫

P (t)
(D(uh) : D(µH)) dx = 0

où P (t) est un disque de rayon r, avec uh sont des champs vitesse approchées définie
sur (H1(Ω))2 et ∀µ ∈ (H1(p(tn+1)))2. Nous allons utiliser la méthode des éléments finis,
uh = ∑

uihψi, avec ψi sont les fonctions de base de type Q1 definie sur le maillage 4Q1
de Ω et nous considerons µ comme fonction de base de type P1 definie sur le maille
triangulaire de p(t).

Étapes de l’algorithme
• Maillage :

— Utiliser un maillage triangulaire pour discrétiser le disque P (t).
— Utiliser une grille quadrilatérale pour discrétiser la grille de fond Gh.

• Calcul des dérivées des fonctions de base :
— Calculer les dérivées des fonctions de base P1 sur chaque triangle.
— Calculer les dérivées des fonctions de base 4Q1 sur chaque quadrilatère.
— Les fonctions de base P1 ont des dérivées constantes sur chaque triangle.
— Les fonctions 4Q1 ont des dérivées qui varient linéairement sur chaque quadri-

latère.
• Calculer la géometrie P1/4Q1 :

— Algorithme Surtherlond - Hodgman.

A B

C
D

• Intégration sur les éléments :
— Utiliser la quadrature de Gauss pour intégrer le produit des dérivées sur chaque

élément.
— L’intégration est effectuée en utilisant des points de quadrature de Gauss. Pour

un triangle, une quadrature de Gauss à 3 points peut être utilisée.
• Assemblage de la matrice :

— Assembler les contributions des éléments pour former la matrice de raideur
globale K.
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3.4 Considérations sur les systèmes linéaires

Dans cette section, nous rappelons des concepts clés de la théorie des matrices et de
l’analyse de Fourier (FST) utilisés pour résoudre les systèmes linéaires (3.11) et (3.12).
Nous introduisons d’abord la notion de complément de Schur, un outil fondamental pour
la résolution de systèmes linéaires de grande dimension.

Nous présentons ensuite certaines propriétés importantes du système linéaire approché,
essentielles pour comprendre son comportement et appliquer efficacement les méthodes
de résolution.

Nous décrivons l’utilisation d’un solveur linéaire basé sur la transformée de Fourier
rapide (FST) à chaque itération du gradient conjugué pour résoudre les systèmes (3.11)
et (3.12). La FST optimise les calculs en exploitant la structure des matrices, réduisant
ainsi le coût computationnel.

Enfin, nous examinons la méthode du gradient conjugué, une approche itérative effi-
cace pour les grands systèmes linéaires avec des matrices symétriques définies positives.
Elle permet une convergence rapide et une gestion optimale de la mémoire. Nous expli-
quons son application dans notre cas et les avantages qu’elle offre par rapport à d’autres
techniques.

3.4.1 Complément de Schur
Soient les matrices A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p, et D ∈ Rq×q, avec D inversible.

Considérons également la matrice M ∈ R(p+q)×(p+q) définie par :

M =
[
A B
C D

]
.

Le complément de Schur du bloc D de la matrice M est la matrice Rp×p donnée par :

A−BD−1C.

Pour plus d’informations sur le complément de Schur, vous pouvez consulter la page
Wikipédia suivante : Complément de Schur.

Nous avons obtenu les systèmes linéaires (3.11) et (3.12) sous la forme générale sui-
vante : (

A BT

B 0

)(
U
P

)
=
(
F
0

)
,

où les blocs de matrices A, B, U , et F dépendent de chaque étape. Le complément de
Schur du bloc A de la matrice M est alors la matrice Rq×q donnée par :

S = BA−1BT .

https://fr.wikipedia.org/wiki/Compl%C3%A9ment_de_Schur
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Démonstration :
À partir de l’équation du système :

AU +BTP = F,

isolons U :

U = A−1(F −BTP ).

Substituons cette expression de U dans l’équation :

BU = 0.

Cela donne :

BA−1(F −BTP ) = 0.

En développant et simplifiant, nous obtenons :

BA−1F −BA−1BTP = 0.

Ainsi :

−BA−1BTP = −BA−1F.

Finalement, nous avons :

SP = BA−1F,

où S = BA−1BT .

Propriétés de la Matrice S

Symétrie de S

La matrice S est symétrique. Pour le démontrer, considérons la transposée de S :

S = BA−1BT

Calculons la transposée de S :

ST = (BA−1BT )T = (BT )T (A−1)TBT = BA−1BT

Ainsi, S est égale à sa transposée, ce qui montre qu’elle est symétrique.
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Définie Positive de S

La matrice S est définie positive. Pour le démontrer, considérons un vecteur non nul
P . Nous souhaitons montrer que :

P TSP > 0

Calculons cette expression :

P TSP = P T (BA−1BT )P = (BTP )TA−1(BTP )

Comme les espaces Xh et Mh sont compatibles, la condition LBB est satisfaite, alors
B est surjective . De plus, comme A est définie positive, A−1 est également définie positive.

Soit P ̸= 0. Alors, BTP ̸= 0. Cela est dû au fait que B est surjective, ce qui im-
plique que B est également injective (c’est-à-dire que son noyau est réduit à zéro). Par
conséquent, BTP est également non nul.

Résolution des système linéaires

Nous ecrivons le système linéaire (3.11) sous la forme :AU +BTP = F

BU = 0
↔

AU = F −BTP

BU = 0
↔

U = A−1(F −BTP )
BU = 0

↔

AU = F −BTP

SP = BA−1F avec S = BA−1BT
(3.13)

Pour résoudre l’équation (2) du système (3.13), nous avons utilisé la méthode du
gradient conjugué, car S est symétrique et définie positive.

Étant donné que A possède une structure particulière (tridiagonale par blocs), les
calculs peuvent utiliser la transformée de Fourier rapide (FST). Dans la sous-section
suivante, nous décrivons brièvement ce solveur et expliquons son intérêt dans notre travail.
Nous avons ainsi adopté une approche basée sur le solveur rapide de Poisson (FSP), que
nous détaillerons dans la même sous-section.

En substituant P dans l’équation (1) du système (3.13), nous obtenons un système de
la forme

AU = W, où W = F −BTP (3.14)

Comme A est symétrique et définie positive, l’équation (1) de (3.13) par la méthode
du gradient conjugué. Cependant, la taille importante de la matrice A dans les systèmes
(3.11) et (3.12) rend les calculs coûteux en temps, notamment lors de la phase de produit
matrice-vecteur Apk à chaque itération du gradient conjugué. Pour atténuer ce coût, nous
avons appliqué la méthode FSP, qui sera détaillée dans la sous-section suivante.
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3.4.2 Solveur algébrique FPS

Difficultés rencontrées et méthodes utilisées
Dans cette sous-section, nous aborderons les difficultés rencontrées lors de l’utilisation

de la méthode du gradient conjugué pour résoudre le système SP = BA−1F , ainsi que la
méthode employée pour résoudre l’équation AU = F −BTP .

Les méthodes directes classiques, telles que l’élimination de Gauss ou la factorisation
LU, sont souvent inefficaces pour des matrices de grande dimension en raison de leur
consommation élevée de mémoire et de temps de calcul. En particulier, la résolution
des systèmes (3.11) et (3.12) par la méthode du gradient conjugué est particulièrement
coûteuse en temps à cause du produit matrice-vecteur à chaque itération (voir l’algorithme
à l’Appendice D).

Pour surmonter cette difficulté, nous avons utilisé le solveur rapide de Poisson (FSP),
qui se révèle extrêmement efficace, notamment avec un maillage régulier.

La matrice A est adaptée à l’utilisation de la Transformée de Fourier Rapide (FST)
car :

• A est une matrice tridiagonale par blocs.
• A la condition des sommes croisées .
La Transformée de Fourier Rapide (FST) convertit les opérations de multiplication

matricielle en un produit point à point dans l’espace de Fourier. Cela réduit le coût de
calcul de O((N1 ×N2)2) à O(N1 ×N2 log(N2)) et le stockage de O((N1 ×N2)3/2) à O(N1).
C’est une méthode quasi optimale, ce qui est particulièrement avantageux pour les grands
systèmes.

Ainsi, le solveur FST peut diagonaliser les blocs de la matrice A, transformant le
système linéaire en un ensemble de systèmes beaucoup plus simples à résoudre.

Nous définirons la Transformée de Fourier Rapide (FST) pour le calcul de A−1F , où A
est une matrice de grande taille et tridiagonale par blocs, et F est un vecteur connu. Nous
présenterons ensuite le solveur rapide de Poisson pour résoudre le problème SP = BA−1F ,
avec S = BA−1BT , où A, B, et F sont des éléments connus.

Définition de la Transformée de Fourier Rapide et du solveur
rapide de Poisson

Considérons une matrice A de grande taille, ainsi qu’une matrice tridiagonale par blocs
qui satisfait la même structure que A dans le système (3.11) et A′ dans le système (3.12).
Soit F un vecteur connu et w un vecteur inconnu dont l’objectif est de trouver w tel que :

w = A−1F

Cela peut être réécrit comme :

Aw = F
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Étant donné que A est une matrice tridiagonale par blocs symétrique, nous pouvons

l’exprimer sous la forme :

A = TN2 ⊗ IN3 + IN2 ⊗ TN3 (3.15)

Les matrices tridiagonales symétriques telles que TN2 et TN3 peuvent souvent être
simplifiées en utilisant la Transformation de Fourier discrète (FST). Plus précisément, il
existe une matrice S symétrique telle que :

TN = SNΛNS
T
N

où ΛN est une matrice diagonale contenant les valeurs propres de TN , et S est la
matrice associée à la FST, définie par :

[SN ]jk =
√

2
N + 1 sin

(
jkπ

N + 1

)
pour tout j, k ∈ {1, . . . , N2},

et

ΛN = diag(λ1, . . . , λN)

avec

λk = a+ 2b cos
(

kπ

N + 1

)

Nous appliquons SN2 ⊗ IN3 à l’équation Aw = F , ce qui donne :

(SN2 ⊗ IN3)Aw = (SN2 ⊗ IN3)F

Posons G = (SN2 ⊗ IN3)F et substituons (3.15) dans l’équation Aw = F . Nous obte-
nons :

(SN2 ⊗ IN3)(TN2 ⊗ IN3 + IN2 ⊗ TN3)w = G (3.16)

En développant cette équation, nous avons :

(SN2 ⊗ IN3)(TN2 ⊗ IN3)w + (SN2 ⊗ IN3)(IN2 ⊗ TN3)w = G

Posons V = (SN2 ⊗ IN3)w. Alors, w = (SN2 ⊗ IN3)−1V , et comme (SN2 ⊗ IN3)−1 =
(SN2 ⊗ IN3), nous avons :

w = (SN2 ⊗ IN3)V (3.17)

En développant (3.16), nous obtenons :
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(SN2 ⊗ IN3)(TN2 ⊗ IN3)(SN2 ⊗ IN3) + (SN2 ⊗ IN3)(IN2 ⊗ TN3)(SN2 ⊗ IN3)V = G (3.18)

En utilisant la propriété de produit matriciel (A⊗ B)(C ⊗D) = (AC) ⊗ (BD), nous
obtenons :

(SN2⊗IN3)(TN2⊗IN3)(SN2⊗IN3)+(SN2⊗IN3)(IN2⊗TN3)(SN2⊗IN3) = ΛN2⊗IN3+IN2⊗TN3

En effet :

(SN2 ⊗ IN3)(TN2 ⊗ IN3)(SN2 ⊗ IN3) = (SN2TN2S
−1
N2) ⊗ (IN3)

Comme SN2TN2S
−1
N2 = ΛN2, on a :

(SN2 ⊗ IN3)(TN2 ⊗ IN3)(SN2 ⊗ IN3) = ΛN2 ⊗ IN3

D’où l’équation (3.16) se simplifie en :

(ΛN2 ⊗ IN3 + IN2 ⊗ TN3)V = G (3.19)

Ce qui équivaut à résoudre N3 systèmes de la forme :

(ΛjIN3 + TN3)Vj = Gj ∀j ∈ {1, . . . , N3}

avec T étant une matrice tridiagonale. Pour résoudre ce problème, nous pouvons uti-
liser une méthode directe d’ordre O(N1 × N2). Ensuite, nous déterminons U en utilisant
w = (SN2 ⊗ IN3)V . En conclusion, nous avons :


G = (SN2 ⊗ IN3)F (FST)
(ΛjIN3 + TN3)Vj = Gj ∀j ∈ {1, . . . , N3} (Méthode directe)
w = (SN2 ⊗ IN3)V (FST inverse)

Pour résoudre le problème SP = BA−1F avec S = BA−1BT , nous procédons comme
suit :

1. Nous calculons d’abord W1 = A−1F en utilisant la méthode FSP.
2. Ensuite, nous calculons W2 = BW1. Ce produit n’est pas coûteux en temps puisque

la matrice est creuse.
3. Nous obtenons alors SP = W2 avec S = BA−1BT .
Pour résoudre le nouveau problème, étant donné que S est une matrice définie positive

et de très grande dimension, nous utilisons la méthode du gradient conjugué. Cependant,
une contrainte dans la résolution de ce système SP = W2 est que le produit de la matrice
S par PK est très coûteux en temps et en stockage à chaque itération du gradient conjugué.
Pour plus de détails, voir l’algorithme du gradient conjugué à l’appendice D.
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Pour résoudre notre problème, nous appliquons à l’itération k-ième du gradient conju-

gué l’algorithme suivant :
1. Nous cherchons W3 = BTPK .
2. Puis, nous calculons W4 = A−1W2 en utilisant la méthode FSP.
3. Ensuite, nous obtenons W5 = BW4. Ainsi, nous calculons à chaque itération du

gradient conjugué le vecteur WK de manière rapide.
Enfin, pour trouver U , nous remplaçons P dans l’équation AU = F−BTP et résolvons

ce système par la méthode FSP.

3.5 Méthode de résolution des systèmes
Pour résoudre le problème

SP = BA−1F avec S = BA−1BT ,

nous procédons de la manière suivante :
1. **Calcul de W1** : Tout d’abord, nous calculons W1 = A−1F en utilisant la méthode

FPS (Méthode de Factorisation de Pivot de Schur).
2. **Calcul de W2** : Ensuite, nous calculons W2 = BW1. Ce produit est peu coûteux

en temps de calcul car la matrice est creuse.
3. **Obtention de SP** : Nous obtenons alors SP = W2, avec S = BA−1BT .
Pour résoudre le nouveau problème, étant donné que S est une matrice définie positive

et de grande dimension, nous utilisons la méthode du gradient conjugué. Cependant, le
produit SPK est très coûteux en termes de temps et de stockage à chaque itération
du gradient conjugué. Pour plus de détails, voir l’algorithme du gradient conjugué à
l’appendice D.

Pour résoudre notre problème, nous appliquons à l’itération k-ième du gradient conju-
gué l’algorithme suivant :

1. **Calcul de W3** : Cherchez W3 = BTPK .
2. **Calcul de W4** : Puis calculez W4 = A−1W2 en utilisant la méthode FPS.
3. **Calcul de W5** : Ensuite, calculez W5 = BW2. Ainsi, nous calculons à chaque

itération du gradient conjugué le vecteur WK de manière rapide.
Enfin, pour déterminer U , nous remplaçons P dans l’équation AU = F −BTP et nous

résolvons ce système par la méthode FPS.
Pour résoudre les systèmes (3.11) et (3.12), nous appliquons la même méthode en

ajustant la matrice de masse A ∈ MN2×N3 pour chaque système.
Pour le système (3.11), nous avons :

Aij = Re

dt
(ϕi, ϕj) − 2((∇ϕi,∇ϕj))

donc A = tridN2(∆, T ), où ∆j et Tj sont des matrices tridiagonales symétriques par
blocs, avec des lignes de chaque bloc identiques (maillage régulier et pas ∆x constant).
La matrice A vérifie la condition des sommes croisées avec C ∈ Mn×m(R) :
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Ci−1,j + Ci+1,j = Ci,j−1 + Ci,j+1 ∀i = 2, . . . , n− 1 et j = 2, . . . ,m− 1

Ainsi, nous pouvons utiliser la méthode FPS pour la résolution des systèmes (3.11) et
(3.12).

Pour le système (3.12), nous avons :

Aij = Re

dt
(ϕi, ϕj)

et nous remarquons l’importance de la division par ρ0 pour obtenir une matrice de
masse A tridiagonale symétrique par blocs avec des lignes de chaque bloc identiques
(maillage régulier et pas ∆x constant). La matrice A vérifie également la condition des
sommes croisées avec C ∈ Mn×m(R) :

Ci−1,j + Ci+1,j = Ci,j−1 + Ci,j+1 ∀i = 2, . . . , n− 1 et j = 2, . . . ,m− 1

Par conséquent, nous utilisons la méthode FPS pour la résolution des systèmes (3.11)
et (3.12).

Dans notre travail, nous avons codé deux routines, cg_div et cg_D, pour bien distin-
guer la matrice de masse dans les deux systèmes différents (3.11) et (3.12).

Le but est de calculer la vitesse et la pression aux étapes intermédiaires et finales de
chaque pas de temps. Voici les principales étapes de la résolution impliquées entre n et
n+ 1/2 , puis entre n+ 1/2 et n+ 1 :
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Figure 3.5 – Schéma en temps
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Algorithm 1: Schéma de calcul pour la mise à jour des positions et des vitesses

Input: u0,h, U0, X0, M , r, ∆t, K
Output: Un, Xn+1, An+1

c

1 Initialisation :
2 u0 = u0,h, U0 = U0, X0 = X0;
3 for n = 1 to Ndt do
4 1. Calcul de la vitesse de translation Un :

Un = 1
M

∫
P (tn)

ρsu
n dx

5 2. Initialisation de la position intermédiaire : Xn+1,0 = Xn;
6 for k = 1 to K do
7 3. Calcul de la position prédite X∗n+1,k :

X∗n+1,k = Xn+1,k−1 + Un + Un−1

2
∆t
K

4. Correction de la position Xn+1,k :

Xn+1,k = X∗n+1,k +M−1F (Xn+1,k−1) + F (X∗n+1,k)
2

(∆t)2

2K2

8 5. Mise à jour de la position de la particule :

Xn+1 = Xn+1,K

6. Mise à jour de l’accélération :

An+1
c =

Xn+1 −Xn − ∆tUn+Un−1

2
∆t2/2

7. Calcul de un+ 1
2 , pn+ 1

2 par Gradient Conjugué + FPS(
A BT

B 0

)(
un+ 1

2

pn+ 1
2

)
=
(
F ′

0

)

8. Calcul de un+1 et λn+1 par Gradient Conjugué + FPS(
A′ B′T

B′ 0

)(
un+1

λn+1

)
=
(
F ′

0

)

Notes : F force de collision agissant sur les particules pour les empêcher de se pénétrer
mutuellement ou de pénétrer les parois du domaine.



4 Résultats numériques

4.1 Validation du code

4.1.1 Sédimentation d’une particule
Dans cette section, nous allons valider notre code de domaine fictif MDL sur une

boite rectangulaire en le comparant aux résultats existants pour la sédimentation d’une
particule circulaire dans un fluide newtonien. La sédimentation d’une particule circulaire
dans une boite rectangulaire est utilisée comme premier test.

Une grille uniforme deNy×Ny×intL2
L1

est utilisée pour la simulation. Pour comparaison,
d’autres résultats publiés [7] pour le même problème sont également présentés dans la
figure (4.3). On peut clairement observer une bonne concordance entre ces résultats. La
petite différence observée sur la figure (4.1.1) après que la particule touche le fond est
attribuée à la différence dans les méthodes numériques et les traitements des interactions
particule-paroi dans les calculs.

45



46 CHAPITRE 4. RÉSULTATS NUMÉRIQUES

Figure 4.1 – Graphes des solutions approchées de G

(a) Trajectoire de G sur (0.9995 ;1.00025)
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(b) Trajectoire de G sur (0 ;2)
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(c) La composante x de G en fonction de T
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(d) La composante y de G en fonction de T
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(e) vx de G en fonction de T
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(f) vy de G en fonction de T
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Analyse de la Sédimentation d’une Particule dans un
Fluide Newtonien

La simulation se déroule dans un domaine rectangulaire de largeur L1 = 2 et de
hauteur L2 = 8. Une particule circulaire rigide, de diamètre D = 0,25 cm et de densité
ρs = 10, est initialement placée à la position (1; 6) dans un fluide de densité ρf = 1,0. Le
nombre de Reynolds est Re = 1,0, et le nombre de Froude est Fr = 0,1. Le pas de temps
utilisé est dt = 3 × 10−4, et le nombre total de pas de temps est Ndt = 2 × 104. Au temps
initial t = 0, la particule ainsi que le fluide sont au repos.

Sous l’influence de la gravité avec une accélération g, la particule commence à se
déplacer vers le bas. Le processus de sédimentation peut être résumé en plusieurs phases :

1. Phase initiale (mise en mouvement) : La particule, soumise à la force gravita-
tionnelle, surmonte la résistance du fluide et commence à accélérer vers le bas.

2. Phase de stabilisation : La particule atteint une vitesse stable lorsque les forces
de gravité sont compensées par la résistance du fluide (force de traînée).

3. Interaction avec les parois : Lorsque la particule approche du fond du domaine,
des interactions hydrodynamiques avec les parois peuvent se manifester, affectant
son mouvement.

4. Phase finale (arrêt) : La particule finit par atteindre le fond du domaine, où
elle s’immobilise. À ce stade, la vitesse de la particule devient nulle en raison de
l’absence de mouvement possible et des forces équilibrées entre le fluide et la paroi.
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Figure 4.2 – Graphes des Courbes de G en fonction de dt

(a) Solutions approchées vy

-0.02

-0.01

	0

	0.01

	0.02

	0.03

	0.04

	0.05

	0 	1 	2 	3 	4 	5 	6

Vx

Temps	

dt	=	2e-3
dt	=	3e-3
dt	=	4e-3

(b) Solutions approchées vx

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

	0

	0 	1 	2 	3 	4 	5 	6

Vy

Temps	

dt	=	2e-3
dt	=	3e-3
dt	=	4e-3

(c) La composante X de G

	0.9995

	1

	1.0005

	1.001

	1.0015

	1.002

	1.0025

	1.003

	0 	1 	2 	3 	4 	5 	6

xG

Temps	

dt	=	2e-3
dt	=	3e-3
dt	=	4e-3
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Les composantes y de la vitesse en fonction du temps pour un maillage Ny = 64 avec
des pas de temps de 0, 002 ,0, 003 et 0, 004. Les courbes obtenues pour les quatre simu-
lations (T1, T2 et T3) montrent que les courbes de la vitesse verticale vy en fonction du
pas de temps dt sont pratiquement identiques. La particule accélère vers le bas jusqu’à
atteindre sa vitesse terminale autour de t ≈ 0, 2. Après avoir atteint cette vitesse termi-
nale, elle continue à tomber avec une vitesse presque constante. Le nombre de Reynolds
pour la particule est Re = 1 et le nombre de Froude est 0, 1.

Pour évaluer la stabilité numérique de notre méthode, nous avons effectué des simu-
lations avec quatre cas de test différents en variant le pas de temps (∆t) et le nombre
d’itérations (Ndt). Les détails des paramètres utilisés sont les suivants :

— T1 : ∆t = 2 × 10−3, Ndt = 3000
— T2 : ∆t = 3 × 10−3, Ndt = 2000
— T3 : ∆t = 4 × 10−3, Ndt = 1500
Les simulations ont été effectuées sur l’intervalle de temps T ∈ [0; 6]. La figure 4.1.1

montre les courbes obtenues pour ces différents cas de test.
Comme le montre la figure 4.1.1, les courbes de vitesse correspondant aux différents
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Figure 4.3 – vy de G en fonction de dt

pas de temps sont très proches les unes des autres. Cette similitude est particulièrement
évidente tout au long de l’intervalle de temps étudié, T ∈ [0; 6].

Les courbes presque identiques pour les différentes valeurs de ∆t indiquent que la
méthode numérique est stable. La stabilité est confirmée par l’absence de variations si-
gnificatives dans les résultats, même lorsque le pas de temps varie considérablement.

La proximité des courbes, indépendamment des variations de ∆t, démontre que les
solutions numériques sont convergentes. Cela signifie que la méthode converge vers une
solution stable lorsque le pas de temps est réduit, ce qui assure la fiabilité des résultats
obtenus avec différents paramètres de simulation.

La validation est renforcée par le fait que les différences entre les courbes sont minimes,
ce qui confirme que notre méthode numérique est bien conçue et que les résultats ne dé-
pendent pas de manière significative du choix du pas de temps. Cette constatation permet
de choisir un pas de temps plus grand, ce qui peut améliorer l’efficacité computationnelle
sans compromettre la précision des résultats.

En conclusion, les résultats des simulations montrent une bonne stabilité numérique
et une convergence des solutions. La similarité des courbes pour différents pas de temps
valide la robustesse de notre méthode numérique et permet d’optimiser les simulations en
utilisant des pas de temps plus grands lorsque cela est approprié.
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Figure 4.4 – Graphes des Courbes de vy et vx de G en fonction de ρ

(a) Solution approchée vy (b) Solution approchée vx

Analyse de la variation de la densité des particules
Dans cette section, nous étudions l’influence de la densité des particules ρ sur leur

vitesse de sédimentation dans un fluide newtonien, en maintenant les autres paramètres
constants.

Analyse numérique
Nous avons observé que l’augmentation de la densité ρ entraîne une accélération de la

vitesse verticale vy :
— Pour ρ = 5, la vitesse vy est modérée.
— À ρ = 10, vy augmente de manière significative.
— Enfin, pour ρ = 15, la vitesse continue d’augmenter.

Cette tendance montre une relation positive entre la densité des particules et leur vitesse
verticale.

Interprétation physique
L’augmentation de la densité ρ modifie l’équilibre des forces agissant sur la particule :

— Force de gravité : Elle augmente proportionnellement à ρ, car Fg = ρV g, où V
est le volume de la particule.

— Force de flottabilité : Elle reste constante, dépendant uniquement de la densité
du fluide et du volume de la particule.

— Force de traînée : La traînée augmente avec la vitesse vy, mais une particule
plus dense atteint une vitesse plus élevée avant que cette force n’équilibre les forces
gravitationnelles.

Ainsi, une particule plus dense subit une accélération verticale plus rapide, d’où l’aug-
mentation de vy.
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Analyse de la composante horizontale vx

La composante horizontale vx reste pratiquement inchangée malgré la variation de ρ.
Ceci s’explique par l’absence de forces horizontales significatives :

— Inertie horizontale : En l’absence de perturbations latérales, la particule conserve
sa vitesse initiale.

— Absence de force motrice horizontale : Contrairement à la direction verticale,
il n’y a pas de force notable qui affecte la direction horizontale.

Ainsi, la densité des particules n’a pratiquement aucun impact sur la composante hori-
zontale vx, qui reste stable.
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4.1.2 Phénomène DKT

Le phénomène DKT (Drafting, Kissing, Tumbling) décrit l’interaction dynamique
entre deux particules en suspension dans un fluide, et se déroule en trois phases dis-
tinctes :

Figure 4.5 – Séquence de Drafting-Kissing-Tumbling (DKT)

(a) (b)

1. Drafting (Aspiration ou sillage)

Description : Les particules se déplacent l’une vers l’autre sous l’effet des forces hy-
drodynamiques et gravitationnelles. Elles interagissent par les forces de pression et de
viscosité du fluide sans contact direct.

Comportement : Les particules se rapprochent progressivement, influencées par le
sillage créé par la particule en amont, mais restent séparées.

2. Kissing (Collision ou rapprochement)

Description : Les particules se rapprochent suffisamment pour que leurs surfaces se
touchent légèrement, sans fusionner.

Comportement : Les forces de contact, telles que la répulsion ou l’attraction, de-
viennent significatives. Les particules interagissent plus fortement mais ne se collent pas
encore.

3. Tumbling (Séparation ou basculement)

Description : Les particules peuvent entrer en contact substantiel et commencer à
fusionner ou se coller l’une à l’autre.
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Comportement : Les particules modifient leur trajectoire en raison de l’agrégation ou
de la collision, avec des changements possibles dans la dynamique du fluide autour des
particules.

Problème de test de sédimentation
Nous validons le code en simulant la sédimentation de deux particules circulaires dans

un fluide newtonien, en utilisant des conditions similaires à celles de Jafari et al. [8]. Les
paramètres de la simulation sont les suivants :

— Dimensions de la boîte : L1 × L2 = 2 × 8
— Densité du fluide : ρf = 1.0
— Densité des particules : ρs = 1.01
— Diamètre des particules : D = 0.125
— Positions initiales : Les particules sont placées sur la ligne centrale de la boîte, à

des hauteurs de 7.2 et 6.8, respectivement.
Les simulations débutent avec les particules au repos à t = 0 et sont soumises à la

gravité. La dérivée normale de la vitesse est supposée nulle à la frontière de sortie, et des
conditions de non-glissement sont appliquées aux parois gauche et droite. Les tests sont
réalisés avec deux pas de temps différents et deux tailles de maillage, conformément aux
conditions décrites par Singh et al. [2].

Figure 4.6 – Trajectoires transversales des particules.

Trajectoires transversales des deux particules dans le phénomène
DKT

1. Drafting (Aspiration ou sillage)

Au début de la sédimentation, la particule G1 crée un sillage derrière elle, réduisant
la résistance pour la particule G2, qui modifie sa trajectoire transversale.
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Position x(t) :

— Pour la particule G1 : La position transverse xG1(t) reste quasiment constante.
— Pour la particule G2 : La position transverse xG2(t) peut légèrement varier en

raison du sillage de G1.
En résumé :

xG1(t) ≈ constante,
xG2(t)peut légèrement varier.

2. Kissing (Collision ou rapprochement)

Lors de la phase de "kissing", G2 rattrape G1. Les deux particules se rapprochent,
modifiant légèrement leurs trajectoires transversales.

Position x(t) :
— Pour la particule G1 : La position transverse xG1(t) peut rester constante ou

légèrement dévier.
— Pour la particule G2 : La position transverse xG2(t) continue à converger vers

celle de G1, avec une possible réduction de la vitesse transverse.
En résumé :

xG1(t)peut rester constant ou légèrement dévier,
xG2(t)se rapproche de xG1(t).

3. Tumbling (Séparation ou basculement)

Après le rapprochement, les particules se séparent en raison des forces hydrodyna-
miques accrues, entraînant un basculement des trajectoires.

Position x(t) :
— Pour la particule G1 : Sa position transverse xG1(t) peut montrer une légère

augmentation ou diminution en raison des perturbations.
— Pour la particule G2 : La position transverse xG2(t) montre un écart plus impor-

tant en raison de la séparation.
En résumé :

xG1(t)commence à s’écarter légèrement,
xG2(t)montre un écart plus important.
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Figure 4.7 – Trajectoires verticales des particules.

Trajectoires verticales des deux particules dans le phénomène
DKT

Les trajectoires verticales des particules sont également affectées par le phénomène
DKT, en raison des interactions hydrodynamiques.

1. Drafting (Aspiration ou sillage)

Dans cette phase, la particule G2, bénéficiant du sillage créé par G1, accélère plus
rapidement.

Trajectoire verticale y(t) :
— Pour la particule G1 : La trajectoire verticale yG1(t) est relativement constante.
— Pour la particule G2 : La trajectoire verticale yG2(t) est accélérée, grâce à la

réduction de la traînée fluide.
En résumé :

yG1(t)descend régulièrement,
yG2(t)descend plus rapidement.

2. Kissing (Collision ou rapprochement)

Lorsque G2 rattrape G1, les deux particules ont des vitesses verticales proches.

Trajectoire verticale y(t) :
— Pour la particule G1 : La trajectoire verticale yG1(t) reste relativement constante,

avec des perturbations possibles.
— Pour la particule G2 : La trajectoire verticale yG2(t) ralentit légèrement à mesure

qu’elle entre dans une zone de perturbation accrue.
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En résumé :

yG1(t)reste constante ou légèrement perturbée,
yG2(t)ralentit et converge vers yG1(t).

3. Tumbling (Séparation ou basculement)

Après le rapprochement, les particules se séparent, modifiant leurs trajectoires verti-
cales.

Trajectoire verticale y(t) :
— Pour la particule G1 : La trajectoire verticale yG1(t) peut légèrement augmenter

en vitesse.
— Pour la particule G2 : La trajectoire verticale yG2(t) ralentit à cause de la traînée

accrue après la séparation.
En résumé :

yG1(t)peut légèrement augmenter en vitesse,
yG2(t)ralentit progressivement.

Figure 4.8 – Solution approchée vx

Comportement de Vx des deux particules dans le phénomène
DKT

La vitesse transverse Vx(t) des particules dans le phénomène DKT est influencée par
les interactions hydrodynamiques à chaque étape du phénomène.
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1. Drafting (Aspiration ou sillage)

Pendant la phase de drafting, la particule G1 crée un sillage qui réduit la résistance
pour la particule G2, modifiant leurs vitesses transversales.

Comportement de Vx(t) :
— Pour la particule G1 : La vitesse transverse Vx,G1(t) reste relativement constante

au début, car G1 se déplace principalement verticalement avec peu d’interaction
latérale.

— Pour la particule G2 : La particule G2 bénéficie du sillage, ce qui peut entraîner
une légère augmentation de sa vitesse transverse Vx,G2(t) en raison de la réduction
de la résistance fluide et de l’attraction vers le sillage de G1.

En résumé :

Vx,G1(t) ≈ constante,
Vx,G2(t)peut légèrement augmenter.

2. Kissing (Collision ou rapprochement)

Lors de la phase de kissing, la particule G2 rattrape G1, et leurs vitesses transversales
s’ajustent en fonction de leur proximité.

Comportement de Vx(t) :
— Pour la particule G1 : La vitesse transverse Vx,G1(t) peut rester constante ou

subir une légère perturbation due à la présence accrue de la particule G2 et aux
modifications de l’écoulement autour de G1.

— Pour la particule G2 : La vitesse transverse Vx,G2(t) peut diminuer légèrement
ou devenir plus stable à mesure que G2 se rapproche de G1, avec une courbe plus
plate pendant le rapprochement.

En résumé :

Vx,G1(t)peut rester constant ou légèrement perturbé,
Vx,G2(t)tend à se stabiliser ou diminuer.

3. Tumbling (Séparation ou basculement)

Après le rapprochement, les particules se séparent, ce qui modifie leur vitesse trans-
verse.

Comportement de Vx(t) :
— Pour la particule G1 : La vitesse transverse Vx,G1(t) peut montrer une légère

variation en raison des perturbations causées par la séparation des particules.
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Figure 4.9 – Solution approchée vy

— Pour la particule G2 : La vitesse transverse Vx,G2(t) peut augmenter ou montrer
une variation plus marquée en raison du basculement des trajectoires et des forces
hydrodynamiques accrues.

En résumé :

Vx,G1(t)peut varier légèrement,
Vx,G2(t)peut augmenter ou montrer une variation plus marquée.

Comportement de Vy des deux particules dans le phénomène
DKT

La vitesse verticale Vy(t) des particules dans le phénomène DKT est influencée par les
interactions hydrodynamiques et la gravité à chaque étape du phénomène.

1. Drafting (Aspiration ou sillage)

Pendant la phase de drafting, la particule G1 génère un sillage qui réduit la traînée
pour la particule G2, affectant ainsi leurs vitesses verticales.

Comportement de Vy(t) :
— Pour la particule G1 : La vitesse verticale Vy,G1(t) reste relativement constante,

car G1 est principalement influencée par la gravité avec une traînée fluide stable.
— Pour la particule G2 : En raison du sillage créé par G1, la particule G2 subit moins

de résistance, ce qui conduit à une augmentation de sa vitesse verticale Vy,G2(t). Sa
vitesse verticale est donc plus élevée comparée à celle de G1.
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En résumé :

Vy,G1(t) ≈ constante,
Vy,G2(t)augmente en raison de la réduction de la traînée.

2. Kissing (Collision ou rapprochement)

Lors de la phase de kissing, la particule G2 rattrape G1, et leurs vitesses verticales se
rapprochent.

Comportement de Vy(t) :
— Pour la particule G1 : La vitesse verticale Vy,G1(t) reste relativement constante,

bien que de légères perturbations puissent se produire en raison des interactions
avec la particule G2.

— Pour la particule G2 : La vitesse verticale Vy,G2(t) peut montrer une légère
diminution à mesure que G2 se rapproche de G1 et que les forces hydrodynamiques
deviennent plus complexes.

En résumé :

Vy,G1(t)reste constante ou légèrement perturbée,
Vy,G2(t)peut légèrement diminuer.

3. Tumbling (Séparation ou basculement)

Après le rapprochement, les particules se séparent, entraînant des modifications dans
leurs vitesses verticales.

Comportement de Vy(t) :
— Pour la particule G1 : La vitesse verticale Vy,G1(t) peut légèrement augmenter en

raison des modifications dans l’écoulement fluide après la séparation des particules.
— Pour la particule G2 : La vitesse verticale Vy,G2(t) peut montrer une diminution

progressive en raison de l’augmentation de la traînée après la séparation, ce qui
ralentit la particule.

En résumé :

Vy,G1(t)peut légèrement augmenter,
Vy,G2(t)diminue progressivement.



5 Conclusion

Dans cet article, nous avons présenté une nouvelle formulation de la méthode des
domaines fictifs basée sur les multiplicateurs de Lagrange pour les écoulements particu-
laires. Dans cette approche, le mouvement rigide est imposé en exigeant que le tenseur de
taux de déformation soit nul aux points occupés par des solides rigides. Cette formulation
conduit à un champ de multiplicateurs de Lagrange pour le mouvement rigide, de manière
analogue à la façon dont la pression apparaît comme un multiplicateur de Lagrange pour
l’incompressibilité. La nouvelle formulation est mise en œuvre en modifiant le code DLM
pour les écoulements particulaires bidimensionnels développé par Singh et al.[2]. Le code
fournit des résultats qui concordent avec l’approche DLM originale lorsque les densités ne
correspondent pas et avec les expériences.

L’algorithme actuel ne nécessite aucune condition supplémentaire sur l’espace des
multiplicateurs de Lagrange lorsque les densités du fluide et des particules correspondent.
Dans cette approche, les vitesses de translation des particules ne sont pas présentes dans
les équations de mouvement combinées.
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6 Annexe

.1 Appendice A

Théorème de Stokes en 2D

Soit V une fonction vectorielle, tel que v = (v1, v2) s’exprime comme suit :∫
K

∇ · v dx =
∫

∂K
v · n ds

où K est le domaine, ∂K est sa frontière (contour), n est le vecteur normal sortant de
∂K, et ds est l’élément de longueur sur ∂K.

Pour géneraliser : ∫
K
D(vi) dx =

∫
∂K

(v1i, v2i) · n ds

avec le tenseur des déformations D(vi) pour un vecteur vi = (v1i, v2i) est défini par :

D(vi) = 1
2
(
∇vi + (∇vi)T

)
Pour chaque composante v1i et v2i, le tenseur D(vi) est :

D(vi) =
 ∂v1i

∂x
1
2

(
∂v1i

∂y
+ ∂v2i

∂x

)
1
2

(
∂v1i

∂y
+ ∂v2i

∂x

)
∂v2i

∂y



Formule de Green

∫
Ω/p(t)

(∇ · σ) · v dΩ = −
∫

Ω/p(t)
σ : D[v] dΩ +

∫
∂(Ω/p(t))

(σ · n) · v dS

Or ∫
∂(Ω/p(t))

(σ · n) · v dS =
∫

Γ
(σ · n) · v dS −

∫
∂p(t)

(σ · n) · v dS

Théorème de l’Existence et unicité du problème continu

On fait les hypothèses suivantes :
1. La forme a est coercive sur X ×X :

Il existe α > 0 tel que a(v, v) ≥ α∥v∥2
X ∀v ∈ X.

2. Lemme de Ladyzhenskaya-Babuška-Brezzi (LBB)La forme b satisfait la
condition ’inf-sup’ :
Il existe β > 0 tel que

sup
v∈X,v ̸=0

b(v, q)
∥v∥X

≥ β∥q∥Y ∀q ∈ Y.
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Théorème de l’inf-sup (ou LBB)

Considérons un problème de type Stokes ou un problème de diffusion-élévation dans
un domaine Ω ⊂ Rd. On suppose que :

— V est un espace de fonctions pour les vitesses (par exemple, des fonctions vectorielles
dans H1(Ω)d).

— Q est un espace de fonctions pour les pressions (par exemple, des fonctions scalaires
dans L2(Ω)).

Le théorème de l’inf-sup affirme qu’il existe une constante β > 0 telle que :

inf
q∈Q

sup
v∈V

a(v, q)
∥v∥V ∥q∥Q

≥ β

où a(v, q) est une forme bilinéaire associée au problème, et ∥ · ∥V et ∥ · ∥Q sont les
normes respectives dans les espaces V et Q. En d’autres termes :

inf
q∈Q

sup
v∈V

a(v, q)
∥v∥V ∥q∥Q

> 0
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.2 Appendice B

Produit tensoriel

Le produit tensoriel entre deux matrices A et B est noté A⊗B. Si A est une matrice
de taille m×n et B est une matrice de taille p× q, alors le produit A⊗B est une matrice
de taille (m× p) × (n× q).

Formellement, si :

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...
am1 am2 · · · amn

 , B =
(
b11 b12
b21 b22

)

Alors le produit tensoriel A⊗B est défini comme :

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

... ... . . . ...
am1B am2B · · · amnB


Chaque élément aij de la matrice A est multiplié par la matrice entière B.

Propriétés importantes du produit tensoriel
Le produit tensoriel de Kronecker possède plusieurs propriétés intéressantes :

— Associativité :
(A⊗B) ⊗ C = A⊗ (B ⊗ C)

— Distributivité (sur l’addition) :

A⊗ (B + C) = A⊗B + A⊗ C

— Interaction avec le produit matriciel classique :

(A⊗B)(C ⊗D) = (AC) ⊗ (BD)

Cette propriété est particulièrement utile pour factoriser des produits de matrices
de grande dimension.

— Transposition :
(A⊗B)T = AT ⊗BT

— Multiplication par un scalaire : Si α est un scalaire, alors :

α(A⊗B) = (αA) ⊗B = A⊗ (αB)
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— Inverse (s’il existe) : Si A et B sont des matrices inversibles, alors :

(A⊗B)−1 = A−1 ⊗B−1

Recherche de ΛN et SN

Pour une matrice tridiagonale symétrique de Toeplitz TN , nous pouvons calculer ses
valeurs propres ΛN et sa matrice de diagonalisation SN .

1. Trouver les valeurs propres ΛN

Les matrices tridiagonales symétriques de Toeplitz ont des valeurs propres qui peuvent
être calculées analytiquement. Pour une matrice TN de taille N ×N , de la forme :

TN =



a b 0 · · · 0
b a b · · · 0
0 b a · · · 0
... ... ... . . . b
0 0 0 b a


les valeurs propres λk sont données par la formule suivante :

λk = a+ 2b cos
(

kπ

N + 1

)
, k = 1, 2, . . . , N

où a est l’élément diagonal de TN , et b est l’élément hors-diagonal. La matrice diagonale
des valeurs propres sera donc :

ΛN = diag(λ1, λ2, . . . , λN)

2. Trouver la matrice de diagonalisation SN

La matrice de diagonalisation SN , qui diagonalise TN , est formée à partir des vecteurs
propres de TN . Les éléments de SN sont donnés par :

[SN ]jk =
√

2
N + 1 sin

(
jkπ

N + 1

)
, j, k = 1, 2, . . . , N

Les colonnes de SN représentent les vecteurs propres associés à chaque λk.

Résumé des étapes :
1. Calcul des valeurs propres ΛN : Utiliser la formule

λk = a+ 2b cos
(

kπ

N + 1

)
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pour trouver les valeurs propres.

2. Construction de la matrice SN : Utiliser la relation

[SN ]jk =
√

2
N + 1 sin

(
jkπ

N + 1

)

pour construire la matrice de diagonalisation.
Ainsi, TN peut être diagonalement simplifiée par SN :

TN = SNΛNS
T
N
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.3 Appendice C

Exemple de couples d’espaces incompatibles

L’exemple le plus connu d’espaces incompatibles en méthode des éléments finis est
celui où les composantes de la vitesse sont approchées par des polynômes de Q1 (éléments
linéaires par morceaux sur chaque élément quadrilatéral) et la pression est approchée par
des éléments P0 (constantes par élément).

Considérons le domaine carré Ω = [0, 1]2 et définissons un maillage cartésien uniforme.
Soit N un entier plus grand que 2. Posons h = 1/N et pour 0 ≤ i, j ≤ N , notons aij le
point de coordonnées (ih, jh) et Kij la maille carrée dont le nœud en bas à gauche est aij

(voir le tableau (.3)). Notons Th = ⋃
ij Kij le maillage ainsi constitué.

Nous définissons maintenant les espaces d’approximation suivants :

Xh =
{
uh ∈ [C0(Ω)]2 ; ∀Kij ∈ Th;uh ◦ TKij ∈ Q2

1, uh|Γ = 0
}
,

l’espace des vitesses discrètes où chaque composante de la vitesse est linéaire par morceaux
sur chaque élément Kij.

Mh =
{
ph ∈ L2

0(Ω) ; ∀Kij ∈ Th ; ph ◦ TKij ∈ P0
}
,

l’espace des pressions discrètes, constantes par élément Kij.
Pour simplifier, nous notons pi+ 1

2 ,j+ 1
2

la valeur de ph sur Kij et (uij, vij) les valeurs des
composantes cartésiennes de uh au nœud aij.

−1 +1 −1 +1 −1
−1 +1 −1 +1 −1
−1 +1 −1 +1 −1
−1 +1 −1 +1 −1

Mij

Pour montrer que la condition "inf-sup" (ou LBB) n’est pas satisfaite, il suffit de
montrer qu’il existe un champ de pression ph ∈ Mh tel que

∫
Ω(∇ · uh)ph dx = 0, pour

tout uh ∈ Xh. Par définition de Mh, ph est constant sur chaque maille. Par conséquent,
l’intégrale se simplifie :∫

Kij

(∇ · uh)ph dx = pi+ 1
2 ,j+ 1

2

∫
∂Kij

(uh · n) ds

∫
∂Kij

(uh · n) ds = h(ui+1,j + ui+1,j+1

2 + vi+1,j+1 + vi,j+1

2 − ui,j + ui,j+1

2 − vi,j + vi,j+1

2 )
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Ω
(∇ · uh)ph dx =

∑
Kij∈Th

pi+ 1
2 ,j+ 1

2

∫
Kij

(∇ · uh) dx.

En faisant d’abord la somme sur toutes les mailles, puis en réarrangeant les termes
pour faire la somme sur tous les nœuds internes (c’est-à-dire en utilisant une sommation
par parties), nous obtenons :∫

Ω
(∇ · uh)ph dx = −h2 ∑

0<i,j<N

(ui,j(∂1p)ij + vi,j(∂2p)ij)

ou nous avons posé :

(∂1p)ij = 1
h

[pi+1/2,j+1/2 + pi+1/2,j−1/2 − pi−1/2,j+1/2 − pi−1/2,j−1/2

2 ]

(∂2p)ij = 1
h

[pi+1/2,j+1/2 + pi−1/2,j+1/2 − pi+1/2,j−1/2 − pi−1/2,j−1/2

2 ]

∑
Kij∈Th

pi+ 1
2 ,j+ 1

2

∫
Kij

(∇ · uh) dx = 0.

Ainsi
∫

Ω(∇·uh)ph dx = 0 pour tout uh ∈ Xh si et seulement si : pi+1/2,j+1/2 = pi−1/2,j−1/2
et pi−1/2,j+1/2 = pi+1/2,j−1/2∀1 <= i, j <= N − 1.

Ce système décrit a priori un espace de dimension 2 dont l’une des deux directions de
base est le champ constant. Cependant, la droite vectorielle engendrée par les constantes
est exclue de l’espace d’approximation Mh, puisque le champ de pression est de moyenne
nulle. En revanche, l’autre direction de base est engendrée par une fonction qui prend
alternativement les valeurs +1 et −1 sur deux mailles adjacentes (voir le tableau (.3)).

Nous concluons donc que la condition "inf-sup" n’est pas satisfaite. En d’autres termes,
les espaces Xh et Mh sont incompatibles pour résoudre notre problème, car ils ne garan-
tissent pas l’unicité et la stabilité de la solution.
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Algorithme du gradient conjugué

Algorithm 2: Algorithme du gradient conjugué
1 Choisir x0 (souvent x0 = 0;
2 Calculer r0 = b− Ax0 et poser p0 = r0;
3 k = 0;
4 while ∥rk∥ n’est pas suffisamment petit do
5 αk = rT

k rk

pT
k

Apk
;

6 xk+1 = xk + αkpk;
7 rk+1 = rk − αkApk;
8 if ∥rk+1∥ est suffisamment petit then
9 stop;

10 βk = rT
k+1rk+1

rT
k

rk
;

11 pk+1 = rk+1 + βkpk;
12 k = k + 1;
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