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Résumé

Nous avons développé une méthode domaine fictif avec multiplicateurs de Lagrange
distribués pour simuler le mouvement de particules circulaires rigides en suspension dans
un fluide newtonien. Cette approche est une généralisation de la méthode de Patankar. [1],
adaptée aux mémes problemes d’écoulements.

Dans notre mise en ceuvre MDF/MLD le systeme fluide-particules est traité explici-
tement : chaque particule est prise en compte a ’aide d’une formulation faible combinée,
garantissant que les forces et moments entre les particules et le fluide se compensent de
maniere adéquate. Les équations régissant le fluide sont résolues dans I’ensemble du do-
maine d’écoulement, y compris a 'intérieur des particules ou le fluide est modélisé comme
rigide grace a une distribution appropriée de multiplicateurs de Lagrange.

Pour traiter les difficultés liées a la contrainte d’incompressibilité et a la convection,
nous avons utilisé la technique de séparation d’opérateurs de Patankar. [1]. Nous avons
modifié ce schéma a trois étapes pour résoudre le probléme en deux étapes en utilisant la
méthode des caractéristiques, ce qui nous permet d’éviter la résolution d’un sous-probleme
non linéaire. Pour la résolution des sous-problemes linéaires mixtes apparaissant a chaque
étape, nous avons employé la méthode du gradient conjugué sur le complément de Schrur
et la transformation de Fourier Ceci est notamment rendu possible par une reformulation
permettant d’éliminer la pondération par la masse volumique (qui est variable en espace)
dans la matrice de masse..

La validation du code a été effectuée par une étude de cas sur la sédimentation d’une
particule dans le fluide. Nous avons ensuite étendu l'analyse au cas de la sédimentation
de deux particules dans un canal en variant le nombre de Reynolds et le nombre de
Froude. Les résultats ont été comparés a ceux obtenus par Patankar. [1] pour vérifier leur
cohérence.

Keywords : Multiplicateur de Lagrange Distribué, Domaine Fictif, Eléments Finis, Sé-
dimention, DKT, Simulation et Analyse Numérique.
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1 Introduction

L’Université Gustave Eiffel est une université nationale multi-site créée
en 2020 sur un modele innovant rassemblant pour la premiere fois en France
le triptyque université/écoles/organisme de recherche, et dont ’ambition
est de transformer la vie et les villes, ainsi que de répondre aux défis envi-
ronnementaux et climatiques. Le campus de Nantes de cette université, ini-
tialement Laboratoire Central des Ponts et Chaussées, est caractérisé par
ses grands équipements permettant des expérimentations a échelle réelle
dans les domaines du génie civil et, plus récemment, du développement
durable.

Ce campus rassemble des chercheurs aux compétences variées au sein
de son laboratoire GPEM (Granulats et Procédés d’Elaboration des Ma-
tériaux), reconnu pour son interdisciplinarité, allant de la recherche fon-
damentale aux applications concretes. Les domaines couverts incluent les
mathématiques appliquées, la physique, le génie civil, le génie des procédés
et la chimie. Par exemple, la mécanique des fluides et des solides fait ap-
pel aux équations aux dérivées partielles pour modéliser 1'écoulement des
fluides dans les matériaux poreux. La simulation des transferts thermiques,
via I’équation de la chaleur, optimise les procédés de séchage des matériaux.
La méthode des éléments finis est utilisée pour analyser la résistance des
structures, tandis que la cinétique chimique modélise les réactions au sein
des matériaux en cours de fabrication. Enfin, la mécanique des milieux
granulaires s’appuie sur des simulations pour étudier le comportement des
granulats sous contrainte. Ces approches permettent d’améliorer la com-
préhension et 'optimisation des processus en génie civil.


https://gpem.univ-gustave-eiffel.fr
https://gpem.univ-gustave-eiffel.fr

2 CHAPITRE 1. INTRODUCTION
1.1 Emnoncé du probleme

La simulation numérique directe du mouvement de corps rigides dans un fluide peut
étre appliquée dans de nombreux contextes liées a la ville durable, par exemple, les sus-
pensions en sédimentation et fluidisées, le transport lubrifié, la fracturation hydraulique
des réservoirs, blocage d’écoulement dans les procédés industriels, etc. La capacité de si-
muler le mouvement d’un grand nombre de particules dans un fluide est importante pour
prédire les propriétés effectives du mélange particulaire dans de telles applications.

1.2 Objectifs

Dans notre travail, nous allons Simuler numériquement 'interaction entre deux grains
solides séparés par une couche de fluide d’épaisseur variable « drafting-kissing-tumbling
(DKT) »,dont l'objectif est de calculer la trajectoire des grains ainsi que les champs de
vitesses et de pression dans le fluide. La principale difficulté réside dans le calcul des forces
d’interaction fluide/grain et grain/grain. D’un point de vue méthodologique, deux code
de calcul développés au laboratoire GPEM : un code mettant en ceuvre la méthode des
domaines fictifs avec multiplicateurs de Lagrange distribués [1].

1.3 Syntheése du travail

Dans ce rapport, nous présentons une méthode de domaine fictif basée sur des multi-
plicateurs de Lagrange distribués (DLM) pour simuler le mouvement de particules rigides
dans un fluide newtonien. Cette approche utilise une grille structurée fixe, supprimant
la nécessité de remailler le domaine, tout en permettant ’emploi de solveurs rapides et
économes en meémoire.

Les multiplicateurs de Lagrange contraignent le tenseur de taux de déformation a
I'intérieur des particules, garantissant leur rigidité. Cette méthode simplifie la modélisa-
tion des interactions fluide-particule, rendant possible I’étude de phénomeénes tels que la
sédimentation et 'agglomération dans diverses applications.

La discrétisation temporelle est réalisée avec la méthode de Marchuk modifiée, tandis
que la discrétisation spatiale repose sur un maillage rectangulaire global, facilitant le cal-
cul avec des méthodes comme la Transformée de Fourier rapide (FST pour Fast Fourier
Transform dans la litérature) et les éléments finis classiques. En somme, cette méthode op-
timise le colit numérique des simulations tout en assurant des interactions fluide-particule
réalistes dans des systemes complexes.
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1.4 Organisation du rapport

Ce rapport est structuré pour offrir une compréhension claire et approfondie des travaux
réalisés durant le stage. Chaque section est con¢u pour aborder des aspects spécifiques du
projet, depuis les bases théoriques jusqu’aux résultats finaux. Voici la structure détaillée
du rapport :

La section 2 est dédiée aux modeles mathématiques utilisés pour analyser les phéno-
menes étudiés. Elle présente la formulation des équations régissant le mouvement du fluide
et des particules, ainsi que leur mise adimensionnelle. Elle aborde également la formula-
tion variationnelle mixte du probléeme, fournissant ainsi les bases théoriques nécessaires
pour les méthodes numériques employées par la suite.

La section 3 détaille les méthodes numériques employées pour résoudre les modeles
mathématiques. Elle débute par une présentation du schéma en trois étapes de Patankar,
puis décrit les modifications apportées via la méthode des caractéristiques. Cette section
explique également les aspects relatifs a I'existence et a I'unicité des solutions pour les
sous-problémes, ainsi que les techniques d’approximation numérique utilisées. Les consi-
dérations sur les systemes linéaires, notamment le complément de Schur et les solveurs
algébriques, y sont également abordées en détail.

Enfin, la section 4 présente et analyse les résultats des simulations numériques. Elle
commence par la validation du code utilisé, suivie de I'analyse de la sédimentation d’une
particule et de la technique DKT. Les résultats sont comparés aux prévisions théoriques
pour évaluer la performance des méthodes numériques appliquées et valider les approches
employées.

Divers détails sont renvoyés en annexe pour facilité la fluidité de la lecture du rap-
port. En particulier le théoreme de Stokes en 2D, le théoreme d’existence et d’unicité du
probléme continu, le théoréeme de l'inf-sup (ou LBB), le produit tensoriel et ses propriétés
importantes, un exemple de couples d’espaces incompatibles, ainsi que ’algorithme du
gradient conjugué.
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1.5 Liste des symboles

Re = 2YL st le nombre de Reynolds,

At est 1e pas de temps,

F,. = m est le nombre de Froude,

g est le champ de gravité,

py est la densité du fluide,

ps est la densité de la particule,

t est le temps7 x= (z,y) est l'espace,

Dlu] = L{(Vu + (Vu)7?) est le tenseur des taux de déformation,
(u- V)u- ZN1U13 € R?

divu=N 9% ¢ ]R,

=1 ox;

Ou;  Odug
vu= (& )

oy 1o]
U une vitesse caractéristique,
L une longueur caractéristique,
P pression caractéristique,
7 viscosité dynamique,
T=4% - temps caractéristique,

*

u* = ¢+ Vitesse adimensionnelle,
p* = I% Pression adimensionnelle,
r* = £ Position adimensionnelle,
mps adimensionnel,

At*

2! Intervalle de temps adimensionnel.

: zP
TT



2 Modele mathématique

2.1 Modele formel

Nous considérons deux particules en chute libre, P, et P, dans un réservoir €2 fermé et
rempli de fluide, placées I'une derriere ’autre. Nous nous limitons ici a une présentation en
2D, ou P; et P, sont des particules circulaires de méme masse volumique, p,. Le fluide est
supposé étre newtonien, c’est-a-dire qu’il ne présente pas de propriétés complexes telles
que la viscoélasticité ou la viscoplasticité. L’accent est mis principalement sur 1’étude
d’'un schéma numérique, laissant de c6té les cas de géométries complexes de grains et du
domaine.

Soit ) le domaine de calcul, un rectangle délimité par les cotés I'y, I'y, I's et I'y,
contenant a la fois le fluide et les particules, et P(t) = U7, P;(t) représentant le domaine

des particules a l'instant ¢, ou chaque P;(t) désigne l'intérieur de la i particule avec
i =1,2 (voir figure 2.1).

Nous supposons, pour simplifier, que la vitesse du fluide satisfait une condition aux
limites de Dirichlet homogene sur la frontiere extérieure I' = ?:1 [';, et que ps (masse
volumique des particules) et ps (masse volumique du fluide) sont constantes et non néces-
sairement égales. De plus, nous supposons qu’aucune autre force volumique n’intervient
dans I’écoulement.

o -

F1GURE 2.1 — Systeme :Fluide +particle
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2.1.1 Equations du mouvement du fluide

Les équations qui régissent le mouvement du fluide sur Q\ P(¢) sont alors données par :

o (G va) = Veatpm  aPO )
V-u=0, O\P@E), (2
u=u OP;(t),i=1,2 (3) (2.1)
u=0 I, (4)
ocon=t OP(t),i=1,2,  (5)
ufi_o = ug(x) O\P(0).  (6).

avec :

— u(x,t) est le vecteur vitesse du fluide et p(x;t) est la pression,

— V-u=0sur Q/P(t), car la masse du fluide reste constante au cours du mouvement
pour un fluide incompressible, (la densité du fluide est considérée comme constante).

— o représente le tenseur des contraintes, 0 = —pl 4+ 7, ou p est la pression thermo-
dynamique du fluide, I est le tenseur identité, 7 est le tenseur des contraintes. Dans
notre étude, le fluide sélectionné est de nature newtonienne, pour lequel la relation

T = 2nDJu] est vérifiée.

2.1.2 Equations du mouvement de la particule

Les mouvements des particules peuvent étre représentés en termes de vitesses de trans-
lation et angulaires en utilisant la deuxieme loi de Newton Gloviwnski et al.[2].

Dans la formulation actuelle, nous traitons la particule comme un fluide soumis a
une contrainte de rigidité supplémentaire comme dans l'article de Patankar et al.[1]. Les
équations gouvernant le mouvement des particules sont alors données par :

Ps (?;—i-ILVu) =V -0+psg, dans P(t), (1)
V-u=0, dans P(t), (2)
Dlu] =0, dans P(t), (3) (2.2)
u = uy, sur OP(t), (4)
o-n=t, sur OP(t), (5)
u = up(x), dans P(0). (6)

avec :

e u(x,t) est le vecteur vitesse du fluide dans la zone rigide,

e V.u=0sur P(t), car la densité du fluide est considérée comme constante.

e Dju] = 0 sur P(t), la contrainte de rigidité et qu il faut que la vitesse initiale ug
doit satisfaire cette équation.
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e g représente laccélération de la pesanteur, c’est un vecteur constant de R2.

e o représente le tenseur des contraintes, 0 = —pl + L + 7, ou p est la pression du
fluide, T est le tenseur identité, L est la contrainte de rigidité (multiplicateur de
Lagrange) donne lieu & un champ A tel que L = D[)].

Stratégie de collision Gloviwnski et al.[3]

Pour empécher les particules de se pénétrer les unes les autres ou de pénétrer les quatre
parois I'y, I's, '3 et T'y, nous adoptons la stratégie de collision suivante. Notez bien que
les particules sont circulaires donc la technique peut facilement étre étudier.

Considérons ici N particules P;, P, ...Py,la stratégie consiste a ajouter une force ré-
pulsive exercée sur la ™ particule par les autres particules et par les parois. Pour la
force répulsive entre particules, nous prenons

F " sidij > R+ Rj +r;
N é(%) (X; —X;), sidi; <R+ Rj+r;
ot d;; = ||X; — X;|| est la distance entre les centres des particules i®™ et j°™° R; est

le rayon de la 7™
“raideur” positive.

Pour la force répulsive entre une particule et une paroi, nous prenons

particule, r est la portée de la force, et E), est un petit parametre de

0, sid; >2R; +;
Fy, = 2 ’
wi; 1 2R;+r—d; . )
j i~ ( 2Ri+r]> (X; — Xf,j)? si d;,j <2R; +r;
oud; ;= ;— X! || est la distance entre le centre de la ¢ articule et la particule ima-
‘d;d X Xz”] t la dist tre | tre de la 1™ particule et la particul

ginaire P/ ; située de autre coté de I'; (voir Fig. 2.2), et E, est un autre petit parametre
de “raideur” positive.

FIGURE 2.2 — Particule-Frontiere
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2.1.3 Transformation adimensionnelle

L’adimensionnement des équations est une technique fondamentale en physique et en
ingénierie qui présente de nombreux avantages. Adimensionner des équations consiste a
utiliser des variables adimensionnelles au lieu de variables physiques.

L’adimensionnement des équations du mouvement est une étape importante car il
permet de remplacer les inconnues du probleme, telles que la vitesse et la pression, par
des inconnues ayant le méme ordre de grandeur. Cela est particulierement utile d’un point
de vue numérique.

Cette technique permet de simplifier les équations et de réduire la complexité des
problemes, tout en mettant en évidence les parametres clés et les relations de similitude.

Forme adimensionnelle de I’équation (2.1)

Nous avons :

e py%u+u-Vu prTQ(%ZIU* +u* - V*u*)
e Vp %Vp

e 29V -Dlu] : 2n5%V - Du’]

® pOrg : Prgo€z

En remplagant ces termes dans I’équation (1) du systeme (2.1) :

U? ou* P U
pr(at*+u V*u®) LVp+ 77L2V [u*] + prgoe.
En multipliant par , Nous otbtenons :
UL  ou* BL UL goL
— +ut V)= ——=Vp*+2V-D g 2.3
i Gt V) = =V 28 Dl 4y e (23
Nous remplacons Re est le nombre de Reynolds par 2~ L et F, est le nombre de Froude
par \Uﬁ dans ’équation (2.3), nous obtenons :
ou* PyL Re
e(at*+u V*u*) nUv +2V - D[u ]+Fr29

N.B. : Nous allons supprimer l'astérisque (*) dans la forme adimensionnée pour rendre
I’équation plus lisible.

ou Po Re
Re(—=+ Vu) = —-—7—=Vp+2V. —
o(Gy +u- V) = =22Vp+ 2V Dlul + o
Nous choississons la pression caractéristique d'une facon Py = % nous obtenons alors :



2.1. MODELE FORMEL 9

o Re -

Re (a—i—u Vu)——Vp+2V~D[u]+Fr2g, Vo € Q/P(t) (1)
V-u=0, Q/P(t) (2)
u=20 ) (4)
oc-n=t OP;(t),1=1,2 (5)
Ult—o = up(x) Q/P(0) (6).
Forme adimensionnelle du systéme (2.2) Nous avons :
° psatu—l—u Vu @ psp (g;‘*u +u* - V*u*)
e Vp : LVp
e 2V -Dlu] : 2n5%V-Dlu]
® psg  : psdog”
e 2V-D[\ : %V-D[N]
En remplagant ces termes dans 1’équation (1) du systeme (2.2) :
U? ou* P, U A
ps( 57;* +ut e Vi) = —fovp* + 25V - D[] + Ov DN + psgoe-
En multipliant par , Nous otbtenons :
ps psUL Ou* . PL Ao w . Ps prUL goL
+u*-Vu*) = ——=Vp*"+2V-D[u*|+—V D[N+ — . (2.5
pfn(ﬁt* ) ntu HnU prnUQ()

psUL
n

En remplacant le nombre de Reynolds Re par et le nombre de Froude F, par

ﬁ dans I’équation (2.5), nous obtenons :

ou* PO )\ Re
V) = - 2V - D 2y D+ B
o T V) nUv +2V - Dlu ]+UUV [ ]+pFr29

&Re(

N.B. : Pour des raisons de lisibilité, nous allons supprimer l'astérisque (*) dans la
forme adimensionnée de I’équation. Nous choisissons la caractéristique de longueur A\ de
la maniere suivante : A\g = nU et la pression caractéristique Py telle que Py = % Nous
obtenons alors :
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z;Re(gl;—ku-Vu) = —Vp—|—2V~D[u]+V-D[/\]—|—Z‘;§;g Vo e P(t), (1)
V-u=0, dans P(t), (2)
D[u] =0, dans P(t), (3)
u=uw, surdP(t), (4)
o-n=t, sur OP(t), (5)
u = up(x), pourt =0 dans P(0) (6).
(2.6)

2.2 Formulation variationnelle mixte du probleme

En dérivant la forme faible en espace les équations (1) des systeémes (2.4) et (2.6),
les forces et les moments hydrodynamiques sur les particules peuvent étre complétement
éliminés en combinant les équations de mouvement du fluide et des particules en une seule
équation faible de mouvement pour le systeme fluide-particule combiné. Cette équation,
appelée ’équation combinée de mouvement, a été introduite pour la premiere fois par
Hesla (1991), qui l'a utilisée comme base pour un schéma par éléments finis pour la
simulation directe du mouvement des particules dans un fluide newtonien. Comme nous
le verrons, I’équation combinée de mouvement est complétement générale, elle s’applique
a tout systeme fluide-particule, méme si le fluide est viscoélastique.

Soit Hy(Q\P(t)) l'espace des fonctions test pour le champ de vitesse u, muni de la
norme

[all @ peeyy = ID[ul]] 2.

Soit également L2(Q\P(t)) 'espace des fonctions pour la pression p, défini par

LyQ\P(1)) = {g € L2(Q\P(1)) |

qdx = 0}.
Q\P(2)

Nous multiplions I’équation (1) du systéme (2.4) par une fonction test v € H] et nous
intégrons sur Q\ P(t). Nous obtenons alors :

ou

1
R ou -V——-d/ Vp-vdr — 2 V-Dlu))-vdr =0
¢ O\P(1) <8t tusvu Fr2g> vt O\P(1) prvar Q\P(t)( []) - vde

En utilisant la formule de Green sur les termes de la contrainte et de la pression, nous
obtenons :



2.2. FORMULATION VARIATIONNELLE MIXTE DU PROBLEME 11

ou 1
R M w-Vu- —g| -vd / ‘n)de — / V-v)d
¢ Q\P(t) (81& tu-vu Fr2g> var+ B(Q\P(t))p(v n) dv Q\P(t) p(V - v)de

—2/ (V-D[u]) - vdz +2 D[u] : D[v] dz = 0.
A(Q\P(t)) Q\P()

=)

FiGURE 2.3 — Normale de domaine

Or, fo\pay P(V-n)dz = [pp(v-ni1)dz + [yp4 p(V-n2) dz et comme v =0 sur I car
v € H}(Q\P(t)), alors

/ p(v-n)dr = / p(v - no)dx.
O(N\P(t)) O(NP(t))

Or ny = —N (voir figure 2.3), donc

/ p(v~n)d:c:—/ p(v-N)dx.
A(Q\P (1)) A(Q\P(1))

De méme,

/(3(Q\P(t)(v -D[u] -n)-vdx = /F(V -D[u]-ny ) -vde + ap(t)(v - D[u] - ny) - vdu,
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et donc,

/a(Q\P(t)(V -Dlu]-n)-vdr = /BP(t)(v -Du] - ny) - vdu,

ce qui implique que

A(Q\P(t))(v -D[u]-n)-vdr = — /BP(t)(v .D[u]- N) - vdz.

D’ou I'équation :

Ju 1
/Q\P(t)[Re (81& +u-Vu-— Fr2g> v—p(V-v)|de

+2 o DJ[u] : D]v]dx + - 2(V-D[u]-N)-v—p(v-N)]dz=0.

(2.7)
Pour la contrainte d’incompressibilité, nous multiplions par une fonction test scalaire
q € L*(Q\P(t)) et intégrons sur Q\P(¢) :

/Q\P(t)(v w)gde =0 (2.8)

En ajoutant les équations (2.7) et (2.8), nous obtenons :

ou 1
R/ M wVu— -d—/ -Nd—/ Vov)d
¢ O\P(1) <8t tu-Vu Fr2g> var 8P(t)p(v ) d Q\P(t)p( v) de

+2 DJu] : D]v]dx + 2 (V-D[u]-N)-vdx+/ (V-u)gdx =0
O\P(t) oP(t) O\P(t)

(2.9)

D’ou la formulation faible du systeme (2.4) :

Trouver u € H}(Q\P(t)) et p € L(Q\P(t)) tels que :

Jorp[Re (%8 +u- Vu — dag) - v+ 2D[u] : D[v]] dz
—fap(t)p(v - N) dat—l—ZfaP(t)(V -Dlu] - N)-vdzx

+ Jopy(V - Wqde — o pp p(V V) dz =0, Q\P(t), (1) (2.10)
u=uw surdF(t),i=12, (2)

uli—o = up(x) Q\P(0). (3)

Vv € Hy(Q\P(t)), Vg € L*(Q\P(t))
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Soit H'(Q\P(t))? 'espace des solutions pour le champ de vitesse dans le domaine
rigide P(t). Nous multiplions 1’équation (1) du systéme (2.6) par une fonction test v et
intégrons sur P(t). Nous obtenons alors :

ps (Ou 1
rs . — — o -vd
Re/P(t) p <6t +u-Vu Fr2g> vdz+

+/P(t)Vp-vd$—2/P(t)(V.D[u]).de_/ (V- DIN) vz = 0

P(t)
En utilisant la formule de Green sur le terme de contrainte et de la pression, nous obte-
nons :

Re [p & (%‘t‘ +u-Vu-— %g) vdr + [ p(v - N)dr—
Jowy p(V - v)dz + 2 [, D[u] : D[v]dz — 2 [5,,(V -D[u] - N) - vdx (2.11)
+ Jpy DA - Dvldz — [py (V- D[A]) - N) - vdz =0

Pour la contrainte d’incompressibilité, nous multiplions par une fonction test scalaire
q € L*(P(t)) et intégrons sur 2\ P(t), nous obtenons alors :

/P(t)(v w)gdr =0 (2.12)

La contrainte de rigidité (3) du systeéme (2.6) peut également étre mise en ceuvre en
imposant :

{V -D[u] =0 p(t), (1) (2.13)

Dlu]-n=0 sur OP(t). (2)

Les deux équations (1) et (2) du systéme (2.13) peuvent se combiner pour s’écrire sous
la contrainte suivante :

/,, o Dl Dlujdr =0 ue H'(P(1)" (2.14)

En effet :
Comme les conditions pour appliquer le théoreme de Green sont bien remplies, en
I'appliquant D[y : D[u], nous obtenons :

/P(t) Vi :Dlu|de = /aP(t) g (Du] -n)ds — /P(t) - (V-Dlu])dz.

Nous avons :
® Jop@ i (D[u]-n)ds =0 car D[u]-n =0 sur 9P(t)
® [piynr- (V-Dlu])dz =0 car V-Dlu] =0 sur P(t)
Nous déduisons que [p D[] : D[uldz =0 Vue H'(P(t))>
En ajoutant les trois équations (2.11), (2.12) et (2.14) , nous obtenons :
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) 1
Re Ps —u+u-Vu——g -vdr
Fr2

+ 6,P(t)p(v-N)ciac—/P(t p(V-v)dz +2 ()D[u] D[v] dz — 2 (V-Dlu] - N)-vdz

aP(t)

—l—/P(t) D[\-D[v] dz— 8P@)((V DI vdx—l—/ q(V-u d:c—f—/ ] : D[u]dz = 0.

Vu e H' (P(t))* Yv € H'(P(t))* et Vg € L*(P(t))

Dot la formulation faible du probleme (2.6)
Trouver u € HX(Q\P(t))? et A € H(P(t))” tels que :

1
R/ (—|—u-Vu—F2g>-de—/(t)p(v-v)da:

+/ q(V - udx+/ p(v - Ndx~|—2/ u| : D[v]dz
) 8p(t)(V D[ Vd:c+/ dx (2.15)

—/aP(t)((v D) - de—i-/ Jdz =0, (1)

u=u;, surdP(t), (2)

o-n=t, sur OP(t), (3)

u=1up(x), dans P(0). (4

~—

Vv € H}(Q),Yq € L3(Q) et Yu € HY(P(t))?

En additionnant les équations (1) de chacun des systemes (2.10) et (2.15), nous obte-
nons :

ou 1 Ps ou 1
- . — o] = . o]
Re/ ( " +u-Vu Fr2g> vdx—i—Re/p(t)( p )< " +u-Vu Fr2g> vdx

_/p(V-v)da:+/Qq(V-u)dx—l—2/QD[u]:D[v]dx

Q
+/P(t) DI\ : Dv]dz + /p@) Dly] : Dlu]dz =0

Vv e H}(Q),Vq € L2() et Vu € HY(P(t))?.
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Trouver u € H(Q),p € L2(Q) et A € HY(P(t))? tels que :

Ju 1 Ps ou 1
- Vu— —g| - Bs_ (== — :
Re/g(&t +u-Vu Fr2g> de+Re/13(t)<pf )<8t +u-Vu Fr2g> vdx
—/Qp(V-v d:v+/ (V-u) dm—|—2/Du]:D[v]dx

—i—/ D) dx+/ ulde =0, (1)
P(t) P(t)

(
=up(x), dans €, (2)
(2.16)

Vv € H}(Q),Yq € L*(Q) et Yu € H'(P(t))?
&, Vo € P(t)
P L
1, VeeO\P{)
Ainsi, le systéme (2.16) devient :

Soit la fonction p(x) =

Re/ﬂ(égt—l—u Vu — Flrgg>~vdx—|—Re/Q(p(x)—1) (gt—l—u Vu — F1r2g>~vdx
—/ (V-v) dx+/q(V-u)dx+2/QD[u]:D[v]dx
+/ D : Dlv]de + [ Dly]: Dlu]dr =0,

u=ug(x) dans$. (2

2

En simplifiant I’équation (1) du systéme (2.17), nous obtenons :
Trouver u € HX(Q),p € L2(Q) et A € HY(P(t))? tels que :

Re/ﬂp(x) (u—i—u-Vu—;rzg) -de—/p(V-v)dx+/q(V-u)dx

2 [ Dlu]: Dv]dz+ [ DA dx—ir/ wdr—0. (1) (218

u=up(x), dansQ, (2)

Vv € Hy(Q),Vq € L*(Q) et Vu € H'(P(t))?

Dans la section suivante, nous présentons la méthode numérique utilisée dans I'article
de Patankar et al. [4] pour résoudre le systéme d’équations, afin de mieux comprendre les
modifications et le schéma employés dans notre travail.



3 Méthode numérique

Dans ce chapitre, nous présentons la méthode numérique utilisée dans l'article de
Patankar et al.[4], pour résoudre le systeme d’équations (2.18). Nous proposons une mo-
dification originale qui simplifie ce schéma et sa mise en oeuvre.

La nouvelle formulation est mise en ceuvre pour les écoulements particulaires bidimen-
sionnels, comme développé par Singh et al. [2]. Afin de mettre en évidence les modifications
apportées par Patankar et al. [4] considérent que le fluide en suspension est newtonien et
que les particules sont circulaires,ce qui entraine a negliger le mouvement angulaire des
particules et simplifie le probleme. Dans notre travail, nous avons respecté ces conditions
afin de pouvoir comparer nos résultats a ceux de l'article de Patankar et al. [4].

Singh et al. [2] utilisent le schéma de séparation des opérateurs de Marchuk-Yanenko
[5] pour la discrétisation temporelle, comme décrit également par Patankar et al. [4]. Cette
méthode permet de gérer efficacement la discrétisation temporelle dans le contexte de la
formulation modifiée.

Le systéeme d’équations (2.18) constitue un probléme entierement couplé difficile a
résoudre directement en raison de plusieurs sources de difficulté [6] :

1. La condition d’incompressibilité et la pression inconnue p associée ;

2. Les termes d’advection et de diffusion ;

3. La contrainte du mouvement de corps rigide dans P(t) et le multiplicateur de La-

grange distribué \ associé.

4. la détection et le calcul des forces de contact F; et des couples T; pour les deux

particules.

Chacune de ces difficultés correspond a un opérateur spécifique (les premier et dernier
étant essentiellement des opérateurs de projection).

Patankar et al. ont utilisé une approche de fractionnement d’opérateur de premier
ordre [3] pour diviser le probleme couplé en plusieurs sous-problémes pour résoudre sé-
quentiellement. Cette approche a été introduite pour la premiere fois par Glowinski et al.
[7] dans le contexte des calculs d’écoulement chargé de particules et a ensuite été large-
ment utilisée dans de nombreux articles. Les équations couplées peuvent étre considérées
comme un probléme de valeur initiale de la forme générale suivante :

dad -
m + ;Az‘(@) =f

ou les opérateurs A;, ¢ = 1,...,m varient selon les différentes stratégies de fraction-
nement Patankar et al.[1], et ® est un vecteur de champs inconnus. Dans le travail de
Patankar et al. [4] ® = (u,p, A) et une stratégie de fractionnement en trois étapes :

(I)n+1/3 — o
T +A1(q)n7¢n+1/3) — fln-‘rl
Cbn+2/3 _ (I)n+1/3
At + A2(®n,¢n+2/3) — gL-‘rl

16
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P+l _ (I)n+2/3

At
T i 5 = f((n+ 1)AY)

+ A3(<I>n’q)n+1) — fgz-‘rl

ou At est 'amplitude du pas de temps.

Nous avons utilisé deux étapes dans notre schéma ce qui rend le temps de calcul plus
rapide et efficace.Dans les sections suivantes, nous présentons le schéma de Patankar et
al. de discrétisation temporelle de chaque sous-probleme,ainsi le schéma de notre travail.

3.1 Le schéma a trois étapes de Patankar et al.

Dans cette sous-section, nous allons détailler le schéma utilisé par Patankar et al.[1]
afin de mieux comprendre son approche pour la discrétisation en temps.

— Etape 1 : Probléme Stokes généralisé
Trouver u™*/3 € H}(t"+!) et p"*'/3 € L2(Q) satisfaisant :

u —u” 1
- - - . _ n+1/3 . _4yn+1/3
/QRe< A7 Fr2g> vdx /Qp (V v)dx—i—/ﬂq(v u )dx
0.5 x / 2D D(v)dx = 0. Vv e W, et g€ L}Q)
Q

Forme simplifiée :
Trouver u"/% € HY (") et p" /3 € L2(Q) satisfaisant :

n+1/3 .
e (S5 e [ 9 s [ (5 ) e i
Q Q @ .

At

n

u 1 1 9
/QRe<At+Fr2g>-vdx Vv e Hy et ¢ € L*(Q2).

ol v appartient & H}(Q/p(t)) et q appartient a L*(Q).
— Etape 2 : Les termes d’advection et de diffusion
Trouver u™*?/3 € H}(t"*!) satisfaisant :

un+2/3 _ un+1/3
Q At Q

pour tout v € H(t) et ¢ € L*(Q).
Forme simplifiée :
Trouver u"*%/3 € H}(t"*!) satisfaisant :

0,
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un+2/3
/ Re( + (un+2/3 : v) u"+2/3> cvdx + / D[u™"*?] : D[v] dx
Q Q

At
un+1/3
pr— . d
/g)Re( Al ) vdx,

pour tout v € Hj et ¢ € L*(Q).
— Etape 3 : Particules + rigidités
Trouver u"*! € H et X"t € HY(P(t"1))? satisfaisant :

a3
/ Re| ———— ~de—/ ATt yvdx
P(tnt1) At P(tn+1)

+ / DIA"™'] : D[v] dx
P(tnt1)

D[p] : D[u"™]d
+ [,y Pl D dx

un+1 —u®

' _ u - —u n+2/3 nt2/3 L
+ /P(th) Re(po — 1) < A7 + (u V) u

pour tout v € H} et p € HY(P(t"*1))%
Forme simplifiée :
Trouver u" € H}(t"*!) et A" € H'(P(1"*"))? satisfaisant :

un+1

vd / DA™ : Dv]d

/P(tn+1)pf< At) vars P(tn+1) [ ] [Vl de

+ / D[] : D[u™' dz

P(tn+1)
un+1
-1 )

—i—/P(th)Re(po )( A7 ) vdx

un+2/3
= R -vd
/P(t"“) ¢ ( At ) var

+ / p AT vda
P(tn+1)

TV A ATy nt2/3 L > ‘
+/P(tn+l)Re(po 1) (At (u V)u + 28 vdz,

pour toutv € Hy et u € H'(P(t"*))2.
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3.2 Modification du Schéma numérique avec la mé-

thode de caractéristiques

Le but principal de ce stage est de modifié le schéma proposé par Patankar en ’adap-
tant a une approche en deux étapes, intégrant 1'utilisation de la méthode des caractéris-
tiques. Cette adaptation vise a simplifier et, potentiellement, accélérer les calculs.

Dans la sous-section suivante, nous décrirons brievement la démarche utilisée pour
réaliser ces modifications. Nous aborderons les détails techniques de 'implémentation du
schéma en deux étapes et la maniere dont la méthode des caractéristiques est intégrée
pour améliorer les résultats obtenus.

3.2.1 Meéthode des caractéristiques

La méthode des caractéristiques permet de découpler la partie purement convective de
Péquation (1) du systéme (2.17). En effet, opérateur 5; +u-V peut étre interprété comme
une dérivée particulaire, transformant ainsi les coordonnées eulériennes en coordonnées
lagrangiennes. Grace a cette reformulation, il devient théoriquement possible de suivre
I’évolution des particules dans le temps le long de leur trajectoire, en résolvant pour
chacune d’elles une équation différentielle, dite équation de caractéristiques :

dX(x,s;t)

DD~ u(X (@, s51)

ou X(z; s,t) définit la position d'une particule a 'instant ¢ qui se trouvait en x a 'instant
s, avec X (z;s,s) = .

Le traitement du terme convectif non linéaire se réduit ainsi a un probléme de recherche
du pied de caractéristiques, c’est-a-dire la position de la particule a 'instant précédent.
Cette approche permet théoriquement d’éviter la contrainte liée a une condition CFL
pour la discrétisation temporelle.

En effet, il a été démontré que si la trajectoire caractéristique est calculée avec pré-
cision, le schéma résultant est inconditionnellement stable. En somme, ['utilisation de la
méthode des caractéristiques pour la discrétisation de I’équation (1) du systéme permet
d’éliminer le terme non linéaire de cette équation.

Principe de cette méthode

1. Dérivée particulaire : On calcule la dérivée temporelle d'une fonction dépendant de
la trajectoire temporelle. Si ¢ — X (t) est une trajectoire, alors on dérive ¢ — u(t, X (t)),
ce qui donne :

?;Z +u-Vu au point (¢, X(t)).

Nous avons

du
ot 1(&.X(#))

_du

+u- vu‘(t,X(t)) - E‘(t,X(t))
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2. Différences finies : Pour approcher cette dérivée particulaire via un schéma en diffé-
rences finies, on utilise :

i (X () — (e, X (1)
St X (1)) = 5 -

La position X (") est estimée par la méthode des caractéristiques, qui consiste a suivre
la trajectoire des particules dans le champ de vitesse u.

3. Vitesse : La vitesse u est la dérivée temporelle de la trajectoire X, donnée par :
u(t, X (1)) = 2X (1. X (1))

Xn+1 X"
N — u(t”“, X<tn+1>)

Xn+1 — XZ]

ol X" et X" représentent les positions de la particule aux temps t" et t"*! .

4. Estimation de X" : On réarrange cette équation pour obtenir :
X" = X" — At -u(t"T, X (").

Ici, X (t") est un point connu de la grille, mais u(t"**, X (t"*1)) est une quantité incon-
nue.
5. Approximation de u(t"™!, X (t"*1)) : Pour contourner ce probléme, on fait 'approxi-

mation suivante :
u(t™h X () & u(t”, X (7).

Cette approximation consiste a utiliser la vitesse au temps précédent ", mais évaluée au
point X (t"*1). Cela est généralement acceptable lorsque u ne varie pas fortement entre
deux pas de temps.

Evaluation de u

Pour évaluer u (ou son approximation discréte uy,) au point X (¢") (ou plutét X™), il
est nécessaire d’interpoler car X" ne correspond généralement pas a un point de la grille.
— Interpolation : Dans un maillage cartésien, cette interpolation est facilitée car il
est aisé de localiser X" dans la grille en temps constant. On utilise les valeurs des
points voisins pour interpoler la valeur de u a X".
— Dérivée particulaire : Approximée par une différence finie.
— Caractéristique : Utilisée pour estimer les positions antérieures des particules.
— Interpolation : Nécessaire pour évaluer u en des points non-grillés.

En résumé, cette méthode combine dérivation temporelle et spatiale en utilisant les
caractéristiques et les différences finies, avec une interpolation pour estimer les valeurs en
des points non-grillés, permettant ainsi de résoudre des problémes dynamiques en suivant
les trajectoires des particules dans un champ de vitesse.
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3.2.2 Schéma numérique en deux étapes : Prediction - Correc-
tion

Nous avons utilisé la décomposition de Patankar et al. [1], que nous avons modifiée
pour décomposer notre schéma en deux étapes distinctes. L’objectif de cette modification
est de réduire le temps de calcul tout en conservant la méme précision. Afin d’éviter de
résoudre directement 1’équation avec le terme non linéaire u - Vu, nous avons adopté la
méthode des caractéristiques. Cette approche permet de découpler la partie convective du
probléeme en remplacant (é +u-V)u par ‘fl—qt’“

Soit la décomposition en temps suivante :

Etape 1 [n; n—l—%] : Résoudre un probleme Stokes generalisé avec
advection

Re [qu2  vdy — [op" V2 (V- v) da + 2 [ D[u™/?) : D[v] da

B Jog-vdr + %8 Jqu" o X™ - vdu. (3.1)
qu(V-u”+1/2) da::()

Etape 2 [n—l—%; n+1 | : Imposer la rigidité

& fQ Un+1 . 'de + pilo fP(nJrl) D[An-i_l} . D[U]d:{; = R,e fp(nJrl){F%gA?—’—l—i‘

uog™—ynt1/2 Re n
((1— o) (g + )] vda + 5 Joutt? - vda (3.2)

L Jp@ery Du"*'] : Dlvlde = 0

PO

Vérification :
Nous réécrivons ’équation (1) des systemes (3.1) et (3.2) sous la forme suivante afin
de faciliter sa simplification :

Refg(w — Figg) cvdr — [op"tY2(V -v) dr + 2 [y Du™/?] . D[v] dx = 0.
Joq (V : u”+1/2) de =0
mhﬁtﬁﬂvm+ L fpnery DA™Y« Dlv] da

uMog" —ut1/
= ng S Jpiy At vdz + Re(( — pio)[Fﬂg + RQTM]) vdr

pio fP(n+1 [ ] [ ] rz =0 Vr € P(thrl).

untl_ynt1/2 n
R6T+ 0 Vr € Q\P(t +1>.
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Ensuite, nous écrivons sous la forme suivante :

Re oy (2 = (o = D)) ot [y DY < Dl do
=2 fP n+1)A -vdz + Re(py — 1)[729 + Re - vdx

o Ip@+1y divD[u™*'] : Dlv]dz =0 Vo e P(t").

u™ l_un 1/2 n
R % =0 vz € Q/P(t"1).

Re [pgni) g v de + [pwery DI 2 Dlv] da
u™ 1—u"0 n

+Re fP(tn+1)(,00 - 1)(% — F29) - vdrt

- %:; fp(n+1) poA?_H -vdr

= [pg+y divD[u"] : D[v]da = 0 Vo € P(t").
R uHur T ) Vo € Q/P(t"H).

Puis, en ajoutant les équations (1) des systemes (3.1) et (3.2), nous obtenons :

u™tt — o X 1 41
- o] — n+1/2(y7
Re/gp(x)( ; Fr2g> vdzx /Qp (V-v)dz

Re
n+1/27 . n+17 . o n+1
—1—2/QD[11 | : D[v] da:+/P(n+1)D[)\ | : D[v]dx = 72 /(Ml)poAc vdx

(3.3)

Donc nous avons obtenons la méme équation (2.18).

3.2.3 Existence et unicité pour les sous problemes.

Dans cette sous-section, nous montrons l'unicité et I'existence de la solution du pro-

bleme (3.1).

B fqu™™/? vdr — [op"TY2(V -v) da + 2 [ D[u"V?] . Dlv]de = fm/2
Jad (V : u”+1/2) dr =0

avec fr1/2 = Re/ g-vdr+ o s vde
F? Jo

Pour des raisons de lisibilité, nous omettons les indices n+ dans les notations. Les termes
variationnels de notre probléme sont :

e u: ) — R? est le champ de vitesse (inconnu).
p: Q — R est la pression (inconnue).
v € H}(Q2)? est une fonction test.
q € L*(Q) est une fonction test.
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Les termes de I'équation ont un sens car u,v € H}(2)? et p € L*(). On constate en
outre que : f € L*(Q2)2. Ainsi, le probléme est bien posé.
Espaces Fonctionnels
Nous cherchons p € LE(Q), ou L3(Q) = {q € L*(Q) | [oqdx = 0}, cette condition
assurant 'unicité de la solution.
Nous allons introduire les formes bilinéaires suivantes :

a: Hy(Q)?* x Hy(Q)> = R
(u,v) = a(u,v) = A/u vdx+2/D

b:H&(Q)2><L2(Q)—>]R
(v,p) = b(v,p) = /va

R R
flv) = F;/Qg-vdx%—;/g(uoX)-vdx.
Avec les notations précédentes, la formulation mixte du probleme (3.1) s’écrit :

Trouver (u,p) € H}(2)? x L3() tels que
a(u,v) +b(v,p) = (f,v), Yo e HJ(Q)? (3.4a) (3.4)
b(v,q) =0, Vqe€ L3(Q) (3.4D)

Pour prouver 'existence et I'unicité de la solution (u,p), nous devons nous appuyer
sur 'analyse fonctionnelle et des résultats classiques tels que le théoreme de Lax-Milgram
et le lemme de Ladyzhenskaya-Babuska-Brezzi (LBB).

Le théoreme de Lax-Milgram assure que pour une forme bilinéaire coercive et continue,
il existe une solution unique au probléme associé.

Le lemme de Ladyzhenskaya-Babuska-Brezzi (LBB), également connu sous le nom de
condition de stabilité inf-sup, est crucial pour assurer 'existence et 'unicité des solutions
dans les problemes de fluides incompressibles. Cette condition stipule que pour les espaces
fonctionnels appropriés, il doit exister une constante 5 > 0 telle que pour tous les v € V/
et ¢ € Q (ou V et @ sont les espaces de fonctions pour les vitesses et les pressions,
respectivement), on ait :

sup b(v,q)

> Bllally Vgey.
veXuo [|vllx

En vérifiant ces conditions dans le cadre de notre probléme, nous pouvons garantir
'existence et I'unicité de la solution (u,p) du probleme (3.4).

Linéarité de a(u,v) et b(u,q)

D’apres la linéarité de l'intégrale et du produit scalaire, nous pouvons déduire que la
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forme a(u,v) et b(v, q) sont bilinéaire.

Continuité de a(u,v)

Nous devons montrer qu’il existe une constante C' > 0 telle que pour tout u,v €

Hy(Q)?,
la(u,v)] < CH“HH&(Q)?H“HH&(Q)

En effet, soient u et v [€ H}(2)]?, nous avons :

a(u,v) A/uvdac+2/D
aul 81)1 8U1 8U2 81}1 82}2 a’UQ 81)2
9 A Yt BTt A W Tt it ]
Z/ul vidr o+ / Ox Oz 8y+8x)(8y+8x) Oy Oy

Par l'inégalité de Holder, il vient :

Jde (3.5)

Re
afu,v) < ZMEZWHHQM%Mmz+2ZNDUHHQMDMWH

=1
Re

< el llvllzz@ + 21Dl 2@ [ D] 2 ()2
At

Re
< Cllullmellvllm@e  Yu,v € [Hy(Q)]et  C = max{2, Kt}

ce qui établit la continuité de a sur H'(Q)* x H*(Q)%
Par ailleurs, I'inégalité de Korn :
HVUHLQ(Q) S C”D[u]HLz(Q) Vu € Hl(Q)n,
Coercivité de a(u,v)
On doit montrer qu’il existe une constante o > 0 telle que pour tout u € V,
a(u, u) > oflully.
En effet, pour toutv dans [H}(2)]?, En utilisant I'inégalité de Poincaré, nous avons :

Re Re
a(u,u) = KtHu”%Z(Q) + 2||D[U]||%2(Q) > Kt”u”%Q(Q)
_ fie 2||Du > mi 2556' 7 Yu € [Hy (Q)]?
a(u,u) = “—|[ullF2@pe + 2 Dull172 (@2 > min{2, <= }Cllulltnqpe  Vu € [Hy(Q)]
At At

Continuité de b
La forme b est continue sur [H}(Q)]*> x L*(Q) :
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b(v,q) = — /Q(div v)gdr < ”UHHl(Q)ZHQHLQ(Q) Yov € [Hl(Q)]Z,Vq = LZ(Q)
Pour établir que b du probléme (3.1) vérifie la condition ’inf-sup’, nous avons utlisé

[Brezzi-Fortin| Mized and Hybrid Finite Element Methods page 58.

Conclusion
Le probléme (3.1) continu admet une unique solution (u, p) € [H3(Q)]? x L3(2).

Dans cette partie, nous montrons ’existence et 'unicité de la solution du probléeme
(3.2).

% Jou™™ - vdr — %fp(tn+1) DA™ : D[v]dx = fm*! (3.6)
Jp(r+ry D[u**] - Dlp]de = 0 Vu e HY(P ("))
R 1 R R 1
ntl _ “te 1—= An-‘rl . 76/ n+1/2 d e(1—= / '
avec f P2 /f>(tn+1)(( p)g+ . )vd:zH—At U v x+At( p) P(tn+1)u o X" dx

Pour des raisons de lisibilité, nous omettons les indices n+1 dans les notations. Les termes
variationnels de notre probleme sont :

e u: ) — R? est le champ de vitesse (inconnu).

e L est la contrainte de rigidite (inconnue).

e v € V est une fonction test.

Les termes de I’équation ont un sens car u,v € H{(£2)?. On constate en outre que
f € L*(Q)% Ainsi, le probleme est bien posé.
Nous réécrivons le systeme (3.6) sous la forme suivante :

1
Re/u-vdx—/ D[\] : D[v]dz =
At Jo p Jpntl)
R

e Re
F?/(t +1)(g—l—A?“)-vdm—i—At/Qu”“/Q-vdx
r /"

R 1
A (. / "o X" vy d
+At< p) p(tnﬂ)u o Vi ax,

1
[ .. —-Dlu]:Dludr =0 Vue H'(p(t"))?
p(t" ) p

Nous allons maintenant introduire les formes bilinéaires suivantes :
a: Hy(Q)?* x Hy(Q)> = R

R,
(u,v) — d'(u,v) = E/ﬂu-vdm



26 CHAPITRE 3. METHODE NUMERIQUE
V:HYQ)? x H (p(t™™)? = R

(0, A) 1 B (0, \) = _/1) /p(tn+1> DI\ : D[v] da

- H(Q)? -5 R

@) 1) = 5 [ (g A vda
p(tmtt)

r

Re un+1/2 .

— d
+At o v

R 1

41—7/ "o X" upd
+At( p) p(tnﬂ)u o vy, dx

Avec les notations précédentes, la formulation mixte du probleme (3.2) s’écrit :

Trouver (u, \) € H}(Q2)? x H'(p(t"™))? tels que
a (u,v) +0'(v,\) = (f,v), Yve Hj(Q)? (3.8a) (3.8)
b'(u,p) =0, Ve H(p(t"))* (3.80)

Linéarité de da'(u,v) et V' (u,q)

D’apres la linéarité de l'intégrale et du produit scalaire, nous pouvons déduire que la
forme a'(u,v) et V/(u,q) sont bilinéaire.

Continuité de la forme V'

La forme b’ est continue sur H}(2)2 x H'(p(t"))? :

1
—f/ D[\ : D[] dz
P JIp(tntl)

S C(p(])HUHHI(Q)ZH)\||H1(p(tn+l))2 VU € [Hl(Q)]z,V)\ c Hl(p(tn+1))2

' (v, A)| =

Pour la continuité et la coercivité de la forme a’, nous supposons qu’elle est continue
et coercive, car cela semble rester une question ouverte dans la littérature.

Conclusion Nous supposons ici que la condition inf-sup est vérifiée. C’est un pro-
bleme qui semble rester une question ouverte dans la littérature. En particulier, 'analyse
numérique théorique de méthodes de type MDFE/MLD a été réalisée dans [3] pour jus-
tifier notamment les simulations de Patankar, mais l'analyse a été faite avec un opé-
rateur de projection différent. Le probleme (3.2) continu admet une unique solution
(u)) € [HUQ)? x H (p(t™1))?.
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3.3 Approximation spatiale par éléments finis

Nous reprenons d’abord les résultats théoriques de la section 3.1 en les appliquant a
notre probleme. En particulier, nous dégageons la condition de compatibilité que doivent
satisfaire les espaces d’approximation en vitesse et en pression pour que le probleme
approché soit bien posé. Enfin,nous présentons un lemme utile permettant de vérifier
cette condition de compatibilité.

Etape 1

Soit X, C [H{(Q)]? , My, C LE(Q) et Y}, C [HJ(P(1))]?, les sous-espaces de dimension
finie. La formulation mixte approchée s’écrit de fagon suivante :

Trouver uy, € Xy, pn € M), tels que
a(uh, Uh) + b(Uh,ph) = (fh; Uh), V’Uh € Xh (36@)
b(un,qn) =0, Vg, € M), (3.6b)

Pour le probleme discrete mixte (3.6) est bien posé si et seulement si les espaces X,
et M, satisfont I’hypothese de compatibilité, ou X), est un sous-espace discret pour la
variable de vitesse u et M), est un sous-espace discret pour la pression p.

A ce stade, nous devons montrer que la forme b vérifie la condition ’inf-sup’ discrete
suivante sur X, x M.

Nous supposons que b vérifie la condition 'inf-sup’ discrete et qu’il existe une solution
unique (up, pp) du probleme (3.3a) discret dans X, x M.

Etape 2

Trouver uy, € Xy, Ay € Y}, tels que
a'(up,vp) + 0 (v, An) = (fryvn), Vo, € Xp (3.7a)
b’(uh, uh) =0, Vuh ey, (37b)

Le probléeme mixte discret (3.7) est bien posé si et seulement si les espaces X}, et Y},
satisfont I'hypothese de compatibilité, ou Xj est un sous-espace discret pour la variable
de vitesse u et Y}, est un sous-espace discret pour le multiplicateur de Lagrange .

A ce stade, il est nécessaire de démontrer que la forme bilinéaire b satisfait la condition
discrete 'inf-sup’ sur X}, x Yj. Pour plus de détails sur cette démonstration, vous pouvez
consulter de [Brezzi et Fortin] Mized and Hybrid Finite Element Methods page 163 - 165.

La satisfaction de la condition 'inf-sup’ discrete est essentielle afin d’éviter des pro-
blemes tels que l'instabilité de la solution ou une mauvaise convergence de la méthode
numérique. Lors de la construction de méthodes numériques pour résoudre des problemes
mixtes, il est donc crucial de choisir les espaces d’approximation de u et A de maniére a
respecter cette condition.
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3.3.1 Choix des espaces d’approximation

Dans notre travail, nous utilisons les éléments finis Q1iso — Q)2 pour la vitesse et Q0
pour la pression. Il est crucial de bien choisir les espaces d’approximation Xj et Mj pour
la vitesse et la pression afin de satisfaire la condition discrete d’incompatibilité inf-sup.
Nous illustrerons un exemple de couples d’éléments finis pour la vitesse et la pression qui
ne respectent pas cette condition (voir 'appendice C), puis nous présenterons le couple
choisi qui garantit sa satisfaction.

Avantages du choix 4Q)1 et Q0

Le couple d’éléments finis 4Q1 pour la vitesse et (O pour la pression présente plusieurs
avantages dans la résolution des équations de Navier-Stokes.

— Compatibilité des espaces et condition inf-sup (LBB) : Ce choix satisfait
la condition inf-sup, garantissant la stabilité numérique et évitant les oscillations
spurielles de la pression.

— Simplicité de mise en ceuvre : L’utilisation de Q0 pour la pression, constante
sur chaque élément, réduit la complexité des calculs, facilitant ainsi la résolution
des équations de Navier-Stokes.

— Equilibre entre précision et cofit computationnel : Le choix de 4Q1 permet
de mieux capturer les variations de la vitesse en subdivisant chaque élément, tout
en maintenant un cotit computationnel raisonnable.

3.3.2 Discrétisation de probleme

Pour discrétiser le domaine, nous introduisons une grille d’éléments finis uniforme et
fixe, indépendamment de la frontiere réelle des particules mobiles, qui sera discrétisée
par une triangulation Ty de maniere a ce que H > h pour garantir que les triangles ne
soient pas inclus dans un rectangle. Cela évite la construction de maillages adaptés aux
frontieres pour chaque position différente des particules mobiles et permet 1'utilisation de
solveurs rapides et efficaces.

Définir le domaine et le maillage :

Boite 2D (maillage cartésien rectilinéaire).

Soient Xo = (0;0) € R?, Ly, Ly € R, Q = Xo+]0, L1 [x]0, Lo[ avec Ly = 2 et Ly = 8.0.
Soient de plus Ny, No € N* et dz;,0y; € R, pour¢=1,...,Nyet j =1,..., Ny, on définit
Xij = (zi,y;) €R?:

X1 =Xo, Xip1; =X, +0ver, X1 =Xij+0yes, Xignaen, = Xo+ (L1, Lo)
Kij =2, viga [}y, yjl,

ﬁ(Q):{szﬁZ:l,,Nl etjzl,...,Ng}

Avantages
— construction simple, rapide, (sans stockage)
— localisation d'un point en O(1) opérations
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Dans notre simulation, nous avons
utilisé les parametres suivants :

e Xo=(0,0),

o L, =20,

o L, =380,

o Ny =128 ¢t Ny =int($2) x 128

® 0y; =0x; = H.

.p - Qp u .leoinqu-l
FIGURE 3.1 — Maillage : fluide 4 particules

Nous désignons les fonctions de base par :
— {gpz}fgh fonctions de base de X;, C Hj(Q)? .
— {¢i}g{h fonctions de base de Mj, C L*(Q).
— {0} fonctions de base de Y;, C H' (p(t™))%.
On considére un élément de reférence K; Q1-IsoQ2 pour le champ vitesse u en 2D .

Voir figure (3.2) , K, QO pour la pression P en 2D Voir figure (3.3) et K5 P1 pour A en
2D Voir figure (3.4).

(-1,1)e (031) o(1,1)
(—=1,0)® (0,0)' ®(1,0)
(—1,-1)e (070_” o(l,—1)

FIGURE 3.2 — Elément de reférence Q1-IsoQ2 pour le champ vitesse

Nous allons d’abord déterminer les fonctions de base sur ’élément de référence. En-
suite, nous définirons la transformation affine F; : T' — T; permettant de passer de
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(-1,1)e o(1,1) 0,1)

(—1,—-1)e o(1,—1) 0,0/@ 1,0)

FIGURE 3.3 — Elément de référence Qo FIGURE 3.4 — Elément triangulaire de
pour la pression P référence P, pour A

I'élément de référence T' & un élément général 7; ;, pour un indice ¢ fixé dans I’ensemble
{1,..., Neéments }. Enfin, nous déduirons la base de chaque élément 7T;; en utilisant la
relation qﬁ; = ¢;o0 F; !, ot j dépend des éléments recherchés.

Détermination de la base de ’espace X, (éléments isoQ2)

Pour un maillage quadrangulaire, les fonctions de base pour 'espace X}, peuvent étre
représentées comme suit. Les fonctions de base sont des polyndémes de degré inférieur ou
égal a 1 par rapport a chaque variable sur chaque maille du sous-maillage T}, /2, obtenu en
divisant par 2 le pas du maillage T}, de Q. Une fonction de base associée au nceud (i, j)
vaut 1 en ce nceud et zéro aux autres noeuds. Son support est donc restreint a quatre
mailles de T}, ;.

Détermination de la base de 1’espace M, (éléments QO)

Pour chaque élément du maillage (chaque quadrilatere), les fonctions de base pour
I’espace M), sont des constantes. La fonction de base typique ¢, pour un élément k est
définie comme suit :

1 si(z,y) est dans 1’élément k,

0 sinon.

wk(a}?y) = {

Ainsi, pour un maillage quadrangulaire, vous aurez une fonction de base constante par
élément, souvent notée 1y, ou ¥y est 1 sur 'élément k et 0 ailleurs.

Détermination de la base de I’espace Y},

La particule est modélisée a ’aide d'un maillage triangulaire. Dans ce cadre, I'espace
Y}, utilisé est un espace d’éléments finis de type P;. Cela signifie que les fonctions de base
de cet espace sont des polyndmes linéaires (de degré 1) définis sur chaque triangle du
maillage.
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Remplacement du tenseur de déformation D[\ par une matrice
symétrique L

Dans notre approche numérique, nous remplagons le tenseur de déformation D[] par
une matrice symétrique L afin de simplifier la détermination des fonctions de base dans
I’espace Y.

Pour un maillage triangulaire, ’espace Y}, est de type P, ¢’est-a-dire que les fonctions
de base sont des polynomes de degré 1 sur chaque triangle du maillage. Toutefois, la
manipulation des fonctions P, peut étre complexe et requiert des calculs plus élaborés.

Afin de simplifier ces calculs, nous avons choisi d’approximer D[A| par une matrice
symétrique L, dont les composantes sont constantes Py sur chaque élément du maillage.
Ainsi, chaque maille contribue une valeur constante a ’approximation, réduisant ainsi le
degré des fonctions de base et la complexité des calculs associés.

Avantages de la Simplification

Le passage de D[] (avec des fonctions de base P;) a L (avec des fonctions de base
P,) présente plusieurs avantages :

— Réduction de la Complexité : Les fonctions constantes F, sont plus simples a
gérer que les fonctions linéaires P;. La détermination et 'intégration des fonctions
Py sont plus directes et moins coftiteuses.

— Facilitation des Calculs : Lutilisation de la matrice symétrique L permet d’expri-
mer les équations du probleme de maniere plus simple, facilitant ainsi les opérations
algébriques et les intégrations nécessaires pour la résolution du probleme.

— Optimisation des Algorithmes : Les algorithmes de résolution sont plus efficaces
avec les matrices symétriques et les fonctions constantes, ce qui réduit le temps de
calcul et les ressources nécessaires.

Ainsi, le remplacement de D[] par L et 'utilisation de fonctions P, permettent d’ob-
tenir des résultats avec une complexité moindre tout en simplifiant les processus de calcul.
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3.3.3 Sous-systémes linéaires a résoudre

Etape 1

Nous substituons dans la formulation mixte approchee (3.6a), (3.6b), les développe-
N
ments suivants : up(z) = 3,00 wipi(x) et pp(x) = M’” pitvi(x). Nous considérons le
probleme discret approché

Trouver ul, Uz, - UNy, s D1 P2y - - - s PNy, tels que

e JZJ I Jo wi(@) - j(x) dz + 2 Jo D[pi(2)] : D]g;(x)] dx
2 Aih pj Jo (@) dive(z) de = [q f(x)pi(x) do

zjil uj fo div pi(w) () da = 0,

Assembler les matrices du systeme linéaire

Poson%: 5

Fi:FE/Qg-qbidx+Re/Qu ox <At>dx
FeRY™n, F = (f )

Ay =" [ @ilw) - pi(e)do+2 [ Dlgi(w)] : Dlgy(w)] d

A€ MNXhXNXh,Aij = a(ypi, ¢5)
Bi; = _/Q% divp;de, BeM™ N0 By = b(p;, 1)

Alors nous avons :

Nx, Ny,

ZAUu]—k Z Bij =F, Vi=1,...,Nx, (3.9)
Nxp,
Z Bl'jlbj =0 Vi= 1,...,Nyh (310)
j=1

Nous avons ainsi obtenu un systeme linéaire de Nx, + Ny, équations a Nx, + Ny,
inconnues, qui peut s’écrire sous la forme matricielle suivante :

(5 %) ()= 0) o)

ou les inconnues sont U = (uy, . .. ) UNy, e RMn et P = (py,... ,pNMh)T e RNmy,
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Etape 2

Nous substituons dans la formulation mixte approchée (3.7a), (3.7b), les développe-
N
ments suivants : uy(x) = 201" wips(z) et Ap(x) = 3,2 Mh Aini(x).
Nous considérons le probleme discret approché sulvant :

Trouver uy, uo, ... S UNy, A, Ao, )\Nyh tels que

oy 3 fo i(%) - pj(x) dx — - S0 A oy DIA) < Dlgi] dx
—[pr(tnﬂ) f( )pi(x) dx,
Zj:xlh u; [pniny Dlps] : D]pi] dx = 0.

Assembler les matrices du systeme linéaire
Posons :

F = J;;/Qg-qﬁidx+Re/Qu”ox”- (Z) dx
FeRY™n, Fi=(f¢)
Al = /gpl r)dx
Ae MNXhXNXh,Aij = a(gol-, ©;)
Bl = [ vydiveidr, B e MMM Bl = (e 1)
Alors nous avons : E A+ Mh Blfpj=F; Vi=1,...,Nx

1] J h
NXh ,
Jj=1

Nous avons ainsi obtenu un systeme linéaire de Ny, + Ny, équations a Nx, + Ny,
inconnues, qui peut s’écrire sous la forme matricielle suivante :

)00

ot les inconnues sont U = (uy, ..., uny, )" € RM% et A= (Ay,..., Ay, )" € RVn.

Les matrices A et A’ des systémes linéaires (3.11) et (3.12) sont de grande taille et
posseédent une structure treés particuliere (creuse et tridiagonale par blocs). Il est donc
important de connaitre une technique de résolution de ces systémes, qui soit moins coti-
teuse en temps tout en préservant la précision. Dans la section suivante, nous présentons
la méthode de résolution de notre probléme.
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Discrétisation de [py)(D(uy) : D(pg))dx =0

Pour discrétiser le probleme
[ (Dtun) : Digur)) dw = 0
P(t)

ou P(t) est un disque de rayon r, avec uy sont des champs vitesse approchées définie
sur (HY(Q))? et Vu € (H'(p(t"*)))2. Nous allons utiliser la méthode des éléments finis,
up, = > up;, avec 1; sont les fonctions de base de type Q1 definie sur le maillage 4Q1
de €2 et nous considerons p comme fonction de base de type P1 definie sur le maille
triangulaire de p(t).

Etapes de l’algorithme

e Maillage :
— Utiliser un maillage triangulaire pour discrétiser le disque P(t).
— Utiliser une grille quadrilatérale pour discrétiser la grille de fond GY,.
e Calcul des dérivées des fonctions de base :
— Calculer les dérivées des fonctions de base P1 sur chaque triangle.
— Calculer les dérivées des fonctions de base 4Q1 sur chaque quadrilatere.
— Les fonctions de base P1 ont des dérivées constantes sur chaque triangle.
— Les fonctions 4Q1 ont des dérivées qui varient linéairement sur chaque quadri-
latere.
e Calculer la géometrie P1/4Q1 :
— Algorithme Surtherlond - Hodgman.

e Intégration sur les éléments :
— Utiliser la quadrature de Gauss pour intégrer le produit des dérivées sur chaque
¢élément.
— L’intégration est effectuée en utilisant des points de quadrature de Gauss. Pour
un triangle, une quadrature de Gauss a 3 points peut étre utilisée.
e Assemblage de la matrice :
— Assembler les contributions des éléments pour former la matrice de raideur
globale K.
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3.4 Considérations sur les systémes linéaires

Dans cette section, nous rappelons des concepts clés de la théorie des matrices et de
I'analyse de Fourier (FST) utilisés pour résoudre les systeémes linéaires (3.11) et (3.12).
Nous introduisons d’abord la notion de complément de Schur, un outil fondamental pour
la résolution de systémes linéaires de grande dimension.

Nous présentons ensuite certaines propriétés importantes du systeme linéaire approché,
essentielles pour comprendre son comportement et appliquer efficacement les méthodes
de résolution.

Nous décrivons 'utilisation d’'un solveur linéaire basé sur la transformée de Fourier
rapide (FST) a chaque itération du gradient conjugué pour résoudre les systemes (3.11)
et (3.12). La FST optimise les calculs en exploitant la structure des matrices, réduisant
ainsi le cotlit computationnel.

Enfin, nous examinons la méthode du gradient conjugué, une approche itérative effi-
cace pour les grands systeémes linéaires avec des matrices symétriques définies positives.
Elle permet une convergence rapide et une gestion optimale de la mémoire. Nous expli-
quons son application dans notre cas et les avantages qu’elle offre par rapport a d’autres
techniques.

3.4.1 Complément de Schur

Soient les matrices A € RP*P. B € RP*Y C € RY”*P et D € R?*?, avec D inversible.
Considérons également la matrice M € RP+0*®+a) définie par :

M:lA B].

C D

Le complément de Schur du bloc D de la matrice M est la matrice RP*? donnée par :

A—BD™'C.

Pour plus d’informations sur le complément de Schur, vous pouvez consulter la page
Wikipédia suivante : Complément de Schur.
Nous avons obtenu les systemes linéaires (3.11) et (3.12) sous la forme générale sui-

(5 %) ()= (6)

ol les blocs de matrices A, B, U, et I dépendent de chaque étape. Le complément de
Schur du bloc A de la matrice M est alors la matrice R?*? donnée par :

vante :

S =BA'BT.


https://fr.wikipedia.org/wiki/Compl%C3%A9ment_de_Schur
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Démonstration :
A partir de Péquation du systéme :

AU+ BTP =F,

isolons U :

U=AYF-B"'P).

Substituons cette expression de U dans ’équation :

BU = 0.

Cela donne :

BA™YF - B'P)=0.
En développant et simplifiant, nous obtenons :
BA'F - BA'BTP =0.
Ainsi :
—~BA'B"P=-BA'F.

Finalement, nous avons :

SP = BA'F,
ot S = BA™'BT,

Propriétés de la Matrice S

Symétrie de S
La matrice S est symétrique. Pour le démontrer, considérons la transposée de S :
S =BA'B"
Calculons la transposée de S :
ST = (BA'BT)T = (BT)T(A"\)TBT = BA'BT

Ainsi, S est égale a sa transposée, ce qui montre qu’elle est symétrique.
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Définie Positive de S

La matrice S est définie positive. Pour le démontrer, considérons un vecteur non nul
P. Nous souhaitons montrer que :

PTSP >0

Calculons cette expression :

PTSP = PT(BA™'BT)P = (B*P)" A~Y(B"P)

Comme les espaces X}, et M} sont compatibles, la condition LBB est satisfaite, alors
B est surjective . De plus, comme A est définie positive, A~! est également définie positive.

Soit P # 0. Alors, BTP # 0. Cela est di au fait que B est surjective, ce qui im-
plique que B est également injective (c’est-a-dire que son noyau est réduit a zéro). Par
conséquent, BT P est également non nul.

Résolution des systéeme linéaires

Nous ecrivons le systeéme linéaire (3.11) sous la forme :
AU+BP=F  [AU=F-B"P _ [U=A"\F-B"P)
BU =0 BU =0 BU =0

{AU — F—BTP

3.13
SP=BA'F avec S = BA'BT ( )

Pour résoudre 1'équation (2) du systéme (3.13), nous avons utilisé la méthode du
gradient conjugué, car S est symétrique et définie positive.

Etant donné que A posséde une structure particuliere (tridiagonale par blocs), les
calculs peuvent utiliser la transformée de Fourier rapide (FST). Dans la sous-section
suivante, nous décrivons brievement ce solveur et expliquons son intérét dans notre travail.
Nous avons ainsi adopté une approche basée sur le solveur rapide de Poisson (FSP), que
nous détaillerons dans la méme sous-section.

En substituant P dans I’équation (1) du systeme (3.13), nous obtenons un systeme de
la forme

AU =W, on W =F - B'P (3.14)

Comme A est symétrique et définie positive, 'équation (1) de (3.13) par la méthode
du gradient conjugué. Cependant, la taille importante de la matrice A dans les systemes
(3.11) et (3.12) rend les calculs cofiteux en temps, notamment lors de la phase de produit
matrice-vecteur Apy a chaque itération du gradient conjugué. Pour atténuer ce cofit, nous
avons appliqué la méthode FSP, qui sera détaillée dans la sous-section suivante.
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3.4.2 Solveur algébrique FPS

Difficultés rencontrées et méthodes utilisées

Dans cette sous-section, nous aborderons les difficultés rencontrées lors de I'utilisation
de la méthode du gradient conjugué pour résoudre le systéme SP = BA~'F, ainsi que la
méthode employée pour résoudre I’équation AU = F — BT P.

Les méthodes directes classiques, telles que I'élimination de Gauss ou la factorisation
LU, sont souvent inefficaces pour des matrices de grande dimension en raison de leur
consommation élevée de mémoire et de temps de calcul. En particulier, la résolution
des systemes (3.11) et (3.12) par la méthode du gradient conjugué est particulierement
coliteuse en temps a cause du produit matrice-vecteur a chaque itération (voir I’algorithme
a I’Appendice D).

Pour surmonter cette difficulté, nous avons utilisé le solveur rapide de Poisson (FSP),
qui se révele extrémement efficace, notamment avec un maillage régulier.

La matrice A est adaptée a 'utilisation de la Transformée de Fourier Rapide (FST)
car :

e A est une matrice tridiagonale par blocs.

e A la condition des sommes croisées .

La Transformée de Fourier Rapide (FST) convertit les opérations de multiplication
matricielle en un produit point a point dans 'espace de Fourier. Cela réduit le colit de
calcul de O((Ny x N3)?) & O(Ny x Nolog(Ny)) et le stockage de O((Ny x Ny)3/2) a O(Ny).
C’est une méthode quasi optimale, ce qui est particulierement avantageux pour les grands
systemes.

Ainsi, le solveur FST peut diagonaliser les blocs de la matrice A, transformant le
systeme linéaire en un ensemble de systéemes beaucoup plus simples a résoudre.

Nous définirons la Transformée de Fourier Rapide (FST) pour le calcul de A™'F, ou A
est une matrice de grande taille et tridiagonale par blocs, et F' est un vecteur connu. Nous
présenterons ensuite le solveur rapide de Poisson pour résoudre le probleme SP = BA™'F,
avec S = BA™'BT ou A, B, et F sont des éléments connus.

Définition de la Transformée de Fourier Rapide et du solveur
rapide de Poisson

Considérons une matrice A de grande taille, ainsi qu'une matrice tridiagonale par blocs
qui satisfait la méme structure que A dans le systeme (3.11) et A’ dans le systeme (3.12).
Soit F' un vecteur connu et w un vecteur inconnu dont 1’objectif est de trouver w tel que :

w=A"'F

Cela peut étre réécrit comme :

Aw =F
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Etant donné que A est une matrice tridiagonale par blocs symétrique, nous pouvons

Iexprimer sous la forme :
AITN2®IN3+[N2®TN3 (315)

Les matrices tridiagonales symétriques telles que To et Tg peuvent souvent étre
simplifiées en utilisant la Transformation de Fourier discréete (FST). Plus précisément, il
existe une matrice S symétrique telle que :

Ty = SnAnSE

ou Ay est une matrice diagonale contenant les valeurs propres de Ty, et S est la
matrice associée a la FST, définie par :

(] 2 . gk
- sin
MEZV N +1 N +1
pour tout j,k € {1,..., No},
et

AN = diag()\l, ce /\N>

avec

ke
—a+2 M
)\k a bCOS (N 1>

Nous appliquons Sys ® In3 a 'équation Aw = F', ce qui donne :

(Sne ® Ing)Aw = (Sy2 @ Ins)F

Posons G' = (Sn2 ® In3)F et substituons (3.15) dans I'équation Aw = F. Nous obte-
nons :

(Sne ® In3)(Tve @ Ins + Ina @ Tivz)w = G (3.16)

En développant cette équation, nous avons :

(Sne @ Insg)(Tne @ Ins)w + (Sn2 @ Ing)(Ine @ Tvs)w = G

Posons V' = (Syo ® Ins)w. Alors, w = (Sy2 @ In3)~ 'V, et comme (Syo ® In3)™ "t =
(Sn2 ® In3), nous avons :

w = (SN2 X [Ng)V (317)

En développant (3.16), nous obtenons :
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(Sn2 @ Ing)(Tve ® Ing)(Sne @ Ins) + (Sn2 @ Insg)(Ine @ Tivg) (Sne @ In3)V = G (3.18)

En utilisant la propriété de produit matriciel (A ® B)(C ® D) = (AC) ® (BD), nous
obtenons :

(SnNa®@IN3) (Tna®1Ins) (Sne®INng)+(Sne®In3) (Ine@T N3 ) (Sno®1Ing) = Ana®@Ins+INa®@T g

En effet :

(Sne ® Ing)(Tve ® Ing)(Sne @ Ins) = (SNQTNQSE) ® (Ins)

Comme SNQTNQS]T[% = Ano, 0n a :

(Sn2 @ In3)(Tve ® In3)(Sne @ Ing) = Ane ® Ing

D’ou I'équation (3.16) se simplifie en :

Ce qui équivaut a résoudre N3 systemes de la forme :

(A]‘]Ng + TN3)‘/J‘ = Gj \V/] S {1, ey Ng}

avec T' étant une matrice tridiagonale. Pour résoudre ce probléme, nous pouvons uti-
liser une méthode directe d’ordre O(N; x Nj). Ensuite, nous déterminons U en utilisant
w = (Sy2 ® Iy3)V. En conclusion, nous avons :

G = (SNQ ® [N3)F (FST)
(AjIns+Tn3)V; =G5 Vje{l,...,N3} (Méthode directe)
w = (Sne ® In3)V  (FST inverse)

Pour résoudre le probléme SP = BA™'F avec S = BA™'BT, nous procédons comme
suit :

1. Nous calculons d’abord W, = A~'F en utilisant la méthode FSP.

2. Ensuite, nous calculons W, = BW;. Ce produit n’est pas cofliteux en temps puisque

la matrice est creuse.

3. Nous obtenons alors SP = W, avec S = BA™'BT.

Pour résoudre le nouveau probleme, étant donné que S est une matrice définie positive
et de tres grande dimension, nous utilisons la méthode du gradient conjugué. Cependant,
une contrainte dans la résolution de ce systeme SP = W, est que le produit de la matrice
S par Pk est tres coliteux en temps et en stockage a chaque itération du gradient conjugué.
Pour plus de détails, voir I’algorithme du gradient conjugué a I’appendice D.
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Pour résoudre notre probleme, nous appliquons a l'itération k-ieme du gradient conju-
gué l'algorithme suivant :

1. Nous cherchons W5 = BT PX,

2. Puis, nous calculons W, = AW, en utilisant la méthode FSP.

3. Ensuite, nous obtenons W5 = BWj. Ainsi, nous calculons a chaque itération du

gradient conjugué le vecteur W de maniére rapide.

Enfin, pour trouver U, nous remplacons P dans I'équation AU = F — BT P et résolvons

ce systeme par la méthode FSP.

3.5 Méthode de résolution des systemes
Pour résoudre le probleme

SP =BA'F avec S=BA'BT,

nous procédons de la maniere suivante :

1. **Calcul de W, ** : Tout d’abord, nous calculons W; = A~'F en utilisant la méthode
FPS (Méthode de Factorisation de Pivot de Schur).

2. **Calcul de Wy** : Ensuite, nous calculons Wy = BW;. Ce produit est peu cotiteux
en temps de calcul car la matrice est creuse.

3. **Obtention de SP** : Nous obtenons alors SP = W,, avec S = BA™!BT.

Pour résoudre le nouveau probleme, étant donné que S est une matrice définie positive
et de grande dimension, nous utilisons la méthode du gradient conjugué. Cependant, le
produit SPg est trés coliteux en termes de temps et de stockage a chaque itération
du gradient conjugué. Pour plus de détails, voir 'algorithme du gradient conjugué a
I’appendice D.

Pour résoudre notre probleme, nous appliquons a l'itération k-iéme du gradient conju-
gué l'algorithme suivant :

1. **Calcul de W3** : Cherchez W3 = BT PX.

2. **Calcul de W** : Puis calculez W, = A~'W, en utilisant la méthode FPS.

3. **Calcul de W5** : Ensuite, calculez W5 = BW,. Ainsi, nous calculons a chaque
itération du gradient conjugué le vecteur W de maniere rapide.

Enfin, pour déterminer U, nous remplacons P dans I’équation AU = F'— BT P et nous
résolvons ce systeme par la méthode FPS.

Pour résoudre les systemes (3.11) et (3.12), nous appliquons la méme méthode en
ajustant la matrice de masse A € M™2*™ pour chaque systeme.

Pour le systeme (3.11), nous avons :

R
Ay = (0 65) = 2(V61, V)

donc A = tridn, (A, T), ou A; et T; sont des matrices tridiagonales symétriques par
blocs, avec des lignes de chaque bloc identiques (maillage régulier et pas Ax constant).
La matrice A vérifie la condition des sommes croisées avec C' € M"™*™(R) :
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01;17]‘4‘02410‘: i,j71+ci,j+1 W:2,...,n—1etj:2,...,m—1

Ainsi, nous pouvons utiliser la méthode FPS pour la résolution des systémes (3.11) et
(3.12).
Pour le systeme (3.12), nous avons :

Re
Ajj = E(@,%)

et nous remarquons 'importance de la division par py pour obtenir une matrice de
masse A tridiagonale symétrique par blocs avec des lignes de chaque bloc identiques
(maillage régulier et pas Ax constant). La matrice A vérifie également la condition des
sommes croisées avec C' € M"*™(R) :

C’i_17j+Ci+17j:C’Z-,j_l—IrC’i,jH Vi=2,....n—1letj=2,....m—1

Par conséquent, nous utilisons la méthode FPS pour la résolution des systemes (3.11)
et (3.12).

Dans notre travail, nous avons codé deux routines, cg_div et cg_D, pour bien distin-
guer la matrice de masse dans les deux systemes différents (3.11) et (3.12).

Le but est de calculer la vitesse et la pression aux étapes intermédiaires et finales de
chaque pas de temps. Voici les principales étapes de la résolution impliquées entre n et
n+1/2 , puisentren+1/2et n+1:
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t=0
Initialisation : ﬂ.o, UO, x0

n
u UM X p(t"), K

EF T
F$T

+
EF
FST
n X?’H—l Aﬂ-f—l .
, c AL
~
n+1
t.= Ndt

FIGURE 3.5 — Schéma en temps
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Algorithm 1: Schéma de calcul pour la mise a jour des positions et des vitesses
Input: ugy, Uy, Xo, M, r, At, K
Output: U™, X" Art!

Initialisation :

=

2 u® =gy, U° = Uy, X° = Xy;
3 for n =1 to Ndt do
4 1. Calcul de la vitesse de translation U™ :
o — / ng
= — u" dx
M Jpan P
5 2. Initialisation de la position intermédiaire : X"10 = X7:
for k=1 to K do
7 3. Calcul de la position prédite X*"+1*
Ur+ U At
X*n+1,k — XTH—I,k—l =
+ 2 K
4. Correction de la position X"+
Xn+1,k — X*n+1,k + Mle(Xn+17k71) + F(X*n+17k) (At)z
2 2K?
8 5. Mise a jour de la position de la particule :

Xn+1 _ Xn—i—l,]K
6. Mise a jour de ’accélération :

Xt X AU
At2/2

An+1 —
7. Calcul de u”*é, p"*é par Gradient Conjugué + FPS
A BT\ [yrt3 B F
B 0 )\prtz) \ 0
8. Calcul de u"*! et \"*! par Gradient Conjugué + FPS
A/ B/T un—i—l F/
() () = (5)

Notes : F' force de collision agissant sur les particules pour les empécher de se pénétrer
mutuellement ou de pénétrer les parois du domaine.




4 Résultats numériques

4.1 Validation du code

4.1.1 Sédimentation d’une particule

Dans cette section, nous allons valider notre code de domaine fictif MDL sur une
boite rectangulaire en le comparant aux résultats existants pour la sédimentation d’une
particule circulaire dans un fluide newtonien. La sédimentation d’une particule circulaire
dans une boite rectangulaire est utilisée comme premier test.

Une grille uniforme de N, x N,, xint%’ est utilisée pour la simulation. Pour comparaison,
d’autres résultats publiés [7] pour le méme probléeme sont également présentés dans la
figure (4.3). On peut clairement observer une bonne concordance entre ces résultats. La
petite différence observée sur la figure (4.1.1) apres que la particule touche le fond est
attribuée a la différence dans les méthodes numériques et les traitements des interactions
particule-paroi dans les calculs.
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La composante y de G

(c) La composante x de G en fonction de T

La composante x de G

La composante x de VG

CHAPITRE 4. RESULTATS NUMERIQUES

F1GURE 4.1 — Graphes des solutions approchées de G

(a) Trajectoire de G sur (0.9995;1.00025)

(b) Trajectoire de G sur (0;2)
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(d) La composante y de G en fonction de T
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1.5 T T T

T T
Trajectoire de Vy en fonction de T ——

0.5 1

La composante y de VG

-5 B

0 0.5 1 1.5 2 2.5 3
Temps T

Analyse de la Sédimentation d’une Particule dans un
Fluide Newtonien

La simulation se déroule dans un domaine rectangulaire de largeur L; = 2 et de
hauteur L, = 8. Une particule circulaire rigide, de diametre D = 0,25 cm et de densité
ps = 10, est initialement placée a la position (1;6) dans un fluide de densité p; = 1,0. Le
nombre de Reynolds est Re = 1,0, et le nombre de Froude est F'r = 0,1. Le pas de temps
utilisé est dt = 3 x 107, et le nombre total de pas de temps est Ndt = 2 x 10*. Au temps
initial ¢ = 0, la particule ainsi que le fluide sont au repos.

Sous l'influence de la gravité avec une accélération g, la particule commence a se
déplacer vers le bas. Le processus de sédimentation peut étre résumé en plusieurs phases :

1. Phase initiale (mise en mouvement) : La particule, soumise a la force gravita-
tionnelle, surmonte la résistance du fluide et commence a accélérer vers le bas.

2. Phase de stabilisation : La particule atteint une vitesse stable lorsque les forces
de gravité sont compensées par la résistance du fluide (force de trainée).

3. Interaction avec les parois : Lorsque la particule approche du fond du domaine,
des interactions hydrodynamiques avec les parois peuvent se manifester, affectant
son mouvement.

4. Phase finale (arrét) : La particule finit par atteindre le fond du domaine, ou
elle s'immobilise. A ce stade, la vitesse de la particule devient nulle en raison de
I’absence de mouvement possible et des forces équilibrées entre le fluide et la paroi.
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FI1GURE 4.2 — Graphes des Courbes de G en fonction de dt

(a) Solutions approchées v, (b) Solutions approchées v,
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Les composantes y de la vitesse en fonction du temps pour un maillage N, = 64 avec
des pas de temps de 0,002 ,0,003 et 0,004. Les courbes obtenues pour les quatre simu-
lations (7'1, T2 et T'3) montrent que les courbes de la vitesse verticale v, en fonction du
pas de temps dt sont pratiquement identiques. La particule accélere vers le bas jusqu’a
atteindre sa vitesse terminale autour de t &~ 0,2. Apres avoir atteint cette vitesse termi-
nale, elle continue a tomber avec une vitesse presque constante. Le nombre de Reynolds
pour la particule est Re = 1 et le nombre de Froude est 0, 1.

Pour évaluer la stabilité numérique de notre méthode, nous avons effectué des simu-
lations avec quatre cas de test différents en variant le pas de temps (At) et le nombre
d’itérations (Ng;). Les détails des parametres utilisés sont les suivants :

— Ty : At =2 x 1073, Ng, = 3000
— Ty : At =3 x 1073, Ny, = 2000
— Ty : At =4 x 1073, Ny, = 1500

Les simulations ont été effectuées sur I'intervalle de temps 7" € [0;6]. La figure 4.1.1
montre les courbes obtenues pour ces différents cas de test.

Comme le montre la figure 4.1.1, les courbes de vitesse correspondant aux différents
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0 ' ' ' ' ' dt=2e3 —
dt = 3e3
dt = 4e’3
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FIGURE 4.3 — v, de G en fonction de dt

pas de temps sont trés proches les unes des autres. Cette similitude est particulierement
évidente tout au long de l'intervalle de temps étudié, 7' € [0; 6].

Les courbes presque identiques pour les différentes valeurs de At indiquent que la
méthode numérique est stable. La stabilité est confirmée par ’absence de variations si-
gnificatives dans les résultats, méme lorsque le pas de temps varie considérablement.

La proximité des courbes, indépendamment des variations de At, démontre que les
solutions numériques sont convergentes. Cela signifie que la méthode converge vers une
solution stable lorsque le pas de temps est réduit, ce qui assure la fiabilité des résultats
obtenus avec différents parametres de simulation.

La validation est renforcée par le fait que les différences entre les courbes sont minimes,
ce qui confirme que notre méthode numérique est bien congue et que les résultats ne dé-
pendent pas de maniere significative du choix du pas de temps. Cette constatation permet
de choisir un pas de temps plus grand, ce qui peut améliorer 'efficacité computationnelle
sans compromettre la précision des résultats.

En conclusion, les résultats des simulations montrent une bonne stabilité numérique
et une convergence des solutions. La similarité des courbes pour différents pas de temps
valide la robustesse de notre méthode numérique et permet d’optimiser les simulations en
utilisant des pas de temps plus grands lorsque cela est approprié.
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FIGURE 4.4 — Graphes des Courbes de v, et v, de G en fonction de p

(a) Solution approchée v, (b) Solution approchée v,
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Analyse de la variation de la densité des particules

Dans cette section, nous étudions l'influence de la densité des particules p sur leur
vitesse de sédimentation dans un fluide newtonien, en maintenant les autres parametres
constants.

Analyse numérique

Nous avons observé que I'augmentation de la densité p entraine une accélération de la
vitesse verticale v, :
— Pour p =5, la vitesse v, est modérée.
— A p=10, v, augmente de maniere significative.
— Enfin, pour p = 15, la vitesse continue d’augmenter.
Cette tendance montre une relation positive entre la densité des particules et leur vitesse
verticale.

Interprétation physique

L’augmentation de la densité p modifie I’équilibre des forces agissant sur la particule :

— Force de gravité : Elle augmente proportionnellement a p, car F, = pVg, ou V
est le volume de la particule.

— Force de flottabilité : Elle reste constante, dépendant uniquement de la densité
du fluide et du volume de la particule.

— Force de trainée : La trainée augmente avec la vitesse v,, mais une particule
plus dense atteint une vitesse plus élevée avant que cette force n’équilibre les forces
gravitationnelles.

Ainsi, une particule plus dense subit une accélération verticale plus rapide, d’ou I'aug-
mentation de v,.
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Analyse de la composante horizontale v,

La composante horizontale v, reste pratiquement inchangée malgré la variation de p.
Ceci s’explique par I'absence de forces horizontales significatives :
— Inertie horizontale : En I'absence de perturbations latérales, la particule conserve
sa vitesse initiale.
— Absence de force motrice horizontale : Contrairement a la direction verticale,
il n’y a pas de force notable qui affecte la direction horizontale.
Ainsi, la densité des particules n’a pratiquement aucun impact sur la composante hori-
zontale v,, qui reste stable.
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4.1.2 Phénomene DKT

Le phénomeéne DKT (Drafting, Kissing, Tumbling) décrit 'interaction dynamique
entre deux particules en suspension dans un fluide, et se déroule en trois phases dis-
tinctes :

FIGURE 4.5 — Séquence de Drafting-Kissing-Tumbling (DKT)
(a) (b)
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1. Drafting (Aspiration ou sillage)

Description : Les particules se déplacent 1'une vers l'autre sous l'effet des forces hy-
drodynamiques et gravitationnelles. Elles interagissent par les forces de pression et de
viscosité du fluide sans contact direct.

Comportement : Les particules se rapprochent progressivement, influencées par le
sillage créé par la particule en amont, mais restent séparées.

2. Kissing (Collision ou rapprochement)

Description : Les particules se rapprochent suffisamment pour que leurs surfaces se

touchent légerement, sans fusionner.

Comportement : Les forces de contact, telles que la répulsion ou l'attraction, de-
viennent significatives. Les particules interagissent plus fortement mais ne se collent pas
encore.

3. Tumbling (Séparation ou basculement)

Description : Les particules peuvent entrer en contact substantiel et commencer a
fusionner ou se coller I'une a 'autre.
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Comportement : Les particules modifient leur trajectoire en raison de I’agrégation ou
de la collision, avec des changements possibles dans la dynamique du fluide autour des
particules.

Probléme de test de sédimentation

Nous validons le code en simulant la sédimentation de deux particules circulaires dans
un fluide newtonien, en utilisant des conditions similaires & celles de Jafari et al. [8]. Les
parametres de la simulation sont les suivants :

— Dimensions de la boite : L; x Ly =2 x 8

— Densité du fluide : p;y = 1.0

— Densité des particules : p; = 1.01

— Diametre des particules : D = 0.125

— Positions initiales : Les particules sont placées sur la ligne centrale de la boite, a
des hauteurs de 7.2 et 6.8, respectivement.

Les simulations débutent avec les particules au repos a t = 0 et sont soumises a la
gravité. La dérivée normale de la vitesse est supposée nulle a la frontiere de sortie, et des
conditions de non-glissement sont appliquées aux parois gauche et droite. Les tests sont
réalisés avec deux pas de temps différents et deux tailles de maillage, conformément aux
conditions décrites par Singh et al. [2].
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FIGURE 4.6 — Trajectoires transversales des particules.

Trajectoires transversales des deux particules dans le phénomeéne
DKT

1. Drafting (Aspiration ou sillage)

Au début de la sédimentation, la particule G1 crée un sillage derriere elle, réduisant
la résistance pour la particule G2, qui modifie sa trajectoire transversale.
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Position x(t) :
— Pour la particule G1 : La position transverse zg1(t) reste quasiment constante.
— Pour la particule G2 : La position transverse xgs(t) peut légerement varier en
raison du sillage de G1.

En résumé :

xa1(t) ~ constante,

xge(t)peut légerement varier.

2. Kissing (Collision ou rapprochement)

Lors de la phase de "kissing", G2 rattrape G1. Les deux particules se rapprochent,
modifiant 1égerement leurs trajectoires transversales.

Position z(t) :
— Pour la particule G1 : La position transverse zg;(t) peut rester constante ou
légerement dévier.
— Pour la particule G2 : La position transverse zgs(t) continue a converger vers
celle de G1, avec une possible réduction de la vitesse transverse.

En résumé :

za1(t)peut rester constant ou légerement dévier,

xgo(t)se rapproche de xgy(t).

3. Tumbling (Séparation ou basculement)

Apres le rapprochement, les particules se séparent en raison des forces hydrodyna-
miques accrues, entralnant un basculement des trajectoires.

Position z(t) :
— Pour la particule G1 : Sa position transverse zqi(t) peut montrer une légere
augmentation ou diminution en raison des perturbations.
— Pour la particule G2 : La position transverse zg2(f) montre un écart plus impor-
tant en raison de la séparation.

En résumé :

za1(t)commence a s’écarter légerement,

zao(t)montre un écart plus important.
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FIGURE 4.7 — Trajectoires verticales des particules.

Trajectoires verticales des deux particules dans le phénomeéne
DKT

Les trajectoires verticales des particules sont également affectées par le phénomene
DKT, en raison des interactions hydrodynamiques.

1. Drafting (Aspiration ou sillage)

Dans cette phase, la particule G2, bénéficiant du sillage créé par G1, accélere plus
rapidement.

Trajectoire verticale y(t) :
— Pour la particule G1 : La trajectoire verticale yg1(t) est relativement constante.
— Pour la particule G2 : La trajectoire verticale yga(t) est accélérée, grace a la
réduction de la trainée fluide.
En résumé :

Y1 (t)descend régulierement,

Yaga(t)descend plus rapidement.

2. Kissing (Collision ou rapprochement)

Lorsque G2 rattrape G1, les deux particules ont des vitesses verticales proches.

Trajectoire verticale y(t) :
— Pour la particule G1 : La trajectoire verticale yg (f) reste relativement constante,
avec des perturbations possibles.
— Pour la particule G2 : La trajectoire verticale ygs(t) ralentit légérement & mesure
qu’elle entre dans une zone de perturbation accrue.
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En résumé :

Y1 (t)reste constante ou légerement perturbée,

yae(t)ralentit et converge vers ygy(t).

3. Tumbling (Séparation ou basculement)

Apres le rapprochement, les particules se séparent, modifiant leurs trajectoires verti-
cales.

Trajectoire verticale y(¢) :

— Pour la particule G1 : La trajectoire verticale yg;(t) peut légérement augmenter
en vitesse.
— Pour la particule G2 : La trajectoire verticale yg(t) ralentit a cause de la trainée
accrue apres la séparation.
En résumé :

ya1(t)peut légerement augmenter en vitesse,

yao(t)ralentit progressivement.
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FIGURE 4.8 — Solution approchée v,

Comportement de V, des deux particules dans le phénomeéne
DKT

La vitesse transverse V,(t) des particules dans le phénomene DKT est influencée par
les interactions hydrodynamiques a chaque étape du phénomene.
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1. Drafting (Aspiration ou sillage)

Pendant la phase de drafting, la particule G1 crée un sillage qui réduit la résistance
pour la particule G2, modifiant leurs vitesses transversales.

Comportement de V, (1) :

— Pour la particule G1 : La vitesse transverse V, ¢1(t) reste relativement constante
au début, car G1 se déplace principalement verticalement avec peu d’interaction
latérale.

— Pour la particule G2 : La particule G2 bénéficie du sillage, ce qui peut entrainer
une légere augmentation de sa vitesse transverse V, go(t) en raison de la réduction
de la résistance fluide et de I'attraction vers le sillage de G1.

En résumé :

Ve.c1(t) & constante,

Vi.c2(t)peut légerement augmenter.

2. Kissing (Collision ou rapprochement)

Lors de la phase de kissing, la particule G2 rattrape G1, et leurs vitesses transversales
s’ajustent en fonction de leur proximité.

Comportement de V,(¢) :

— Pour la particule G1 : La vitesse transverse V, q1(f) peut rester constante ou
subir une légere perturbation due a la présence accrue de la particule G2 et aux
modifications de ’écoulement autour de G1.

— Pour la particule G2 : La vitesse transverse V, g2(t) peut diminuer légerement
ou devenir plus stable a mesure que G2 se rapproche de G1, avec une courbe plus
plate pendant le rapprochement.

En résumé :

Vi.c1(t)peut rester constant ou légerement perturbé,

Vi.a2(t)tend & se stabiliser ou diminuer.

3. Tumbling (Séparation ou basculement)

Apres le rapprochement, les particules se séparent, ce qui modifie leur vitesse trans-
verse.

Comportement de V,(?) :
— Pour la particule G1 : La vitesse transverse V, ¢1(t) peut montrer une légere
variation en raison des perturbations causées par la séparation des particules.
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FIGURE 4.9 — Solution approchée v,

— Pour la particule G2 : La vitesse transverse V,, q2(f) peut augmenter ou montrer
une variation plus marquée en raison du basculement des trajectoires et des forces
hydrodynamiques accrues.

En résumé :

Vi.c1(t)peut varier légerement,

Vi.c2(t)peut augmenter ou montrer une variation plus marquée.

Comportement de V, des deux particules dans le phénomeéne
DKT

La vitesse verticale V,(t) des particules dans le phénomene DKT est influencée par les
interactions hydrodynamiques et la gravité a chaque étape du phénomene.

1. Drafting (Aspiration ou sillage)

Pendant la phase de drafting, la particule G1 génere un sillage qui réduit la trainée
pour la particule G2, affectant ainsi leurs vitesses verticales.

Comportement de V,(¢) :
— Pour la particule G1 : La vitesse verticale V,, ¢1(t) reste relativement constante,
car G1 est principalement influencée par la gravité avec une trainée fluide stable.
— Pour la particule G2 : En raison du sillage créé par G1, la particule G2 subit moins
de résistance, ce qui conduit a une augmentation de sa vitesse verticale V;, ¢a(t). Sa
vitesse verticale est donc plus élevée comparée a celle de G1.
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En résumé :

Vy.c1(t) = constante,

V,.c2(t)augmente en raison de la réduction de la trainée.

2. Kissing (Collision ou rapprochement)

Lors de la phase de kissing, la particule G2 rattrape G1, et leurs vitesses verticales se
rapprochent.

Comportement de V,(¢) :

— Pour la particule G1 : La vitesse verticale Vj, g1(t) reste relativement constante,
bien que de légeres perturbations puissent se produire en raison des interactions
avec la particule G2.

— Pour la particule G2 : La vitesse verticale V, ¢o(t) peut montrer une légere
diminution & mesure que G2 se rapproche de G1 et que les forces hydrodynamiques
deviennent plus complexes.

En résumé :

V,.c1(t)reste constante ou légerement perturbée,

V,.c2(t)peut légerement diminuer.

3. Tumbling (Séparation ou basculement)

Apres le rapprochement, les particules se séparent, entrainant des modifications dans
leurs vitesses verticales.

Comportement de V,(¢) :
— Pour la particule G1 : La vitesse verticale V,, ¢ () peut légerement augmenter en
raison des modifications dans 1’écoulement fluide apres la séparation des particules.
— Pour la particule G2 : La vitesse verticale V, g2(t) peut montrer une diminution
progressive en raison de I'augmentation de la tralnée apres la séparation, ce qui
ralentit la particule.
En résumé :

V,c1(t)peut légerement augmenter,

Ve (t)diminue progressivement.



5 Conclusion

Dans cet article, nous avons présenté une nouvelle formulation de la méthode des
domaines fictifs basée sur les multiplicateurs de Lagrange pour les écoulements particu-
laires. Dans cette approche, le mouvement rigide est imposé en exigeant que le tenseur de
taux de déformation soit nul aux points occupés par des solides rigides. Cette formulation
conduit a un champ de multiplicateurs de Lagrange pour le mouvement rigide, de maniere
analogue a la facon dont la pression apparait comme un multiplicateur de Lagrange pour
I'incompressibilité. La nouvelle formulation est mise en ceuvre en modifiant le code DLM
pour les écoulements particulaires bidimensionnels développé par Singh et al.[2]. Le code
fournit des résultats qui concordent avec I’'approche DLM originale lorsque les densités ne
correspondent pas et avec les expériences.

L’algorithme actuel ne nécessite aucune condition supplémentaire sur l'espace des
multiplicateurs de Lagrange lorsque les densités du fluide et des particules correspondent.
Dans cette approche, les vitesses de translation des particules ne sont pas présentes dans
les équations de mouvement combinées.
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6 Annexe

.1 Appendice A

Théoréme de Stokes en 2D

Soit V' une fonction vectorielle, tel que v = (v, v9) s’exprime comme suit :

/V-vdx:/ v-nds
K 8K

ou K est le domaine, 0K est sa frontiere (contour), n est le vecteur normal sortant de
0K, et ds est ’élément de longueur sur 0K.
Pour géneraliser :

/ D(Uz> dr = / (Uli,UQZ‘) -nds
K 0K

avec le tenseur des déformations D(v;) pour un vecteur v; = (vy;, v9;) est défini par :
D(s) = = (Vui + (Vor)")
1 2 (] K
Pour chaque composante vy; et vy, le tenseur D(v;) est :

=y o) 1)
2

vy, Qv v,
y + ox ) oy
Formule de Green

/ (V-o)-de:—/ U:D[V]dQ—i—/ (¢-m)-vdS
Q/p(t) Q/p(t) (2/p(t))

o-n)-vdS = o-n)-vdS — o-n)-vdS
/<9(Q/P(t))( ) /F( ) 3P(t)< )

Théoreme de I’Existence et unicité du probleme continu

On fait les hypotheses suivantes :

1. La forme a est coercive sur X x X :
Il existe a > 0 tel que a(v,v) > a||v]|% Vv e X.

2. Lemme de Ladyzhenskaya-Babuska-Brezzi (LBB)La forme b satisfait la
condition ’inf-sup’ :
Il existe B > 0 tel que

b(v, q)
sup
vEX,v#0 ||U||X

> Bllally Vgey.
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Théoréme de l’inf-sup (ou LBB)

Considérons un probleme de type Stokes ou un probléeme de diffusion-élévation dans
un domaine 2 C R?%. On suppose que :
— V est un espace de fonctions pour les vitesses (par exemple, des fonctions vectorielles
dans H'(Q2)9).
— (@) est un espace de fonctions pour les pressions (par exemple, des fonctions scalaires
dans L*(Q)).
Le théoreme de I'inf-sup affirme qu’il existe une constante g > 0 telle que :

inf sup M >
€Quev [[v]lvllglle
ou a(v,q) est une forme bilinéaire associée au probleme, et || - ||y et || - || sont les
normes respectives dans les espaces V' et (). En d’autres termes :
inf sup M >0
<Quev [[v]lvlialle
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.2 Appendice B

Produit tensoriel

Le produit tensoriel entre deux matrices A et B est noté A ® B. Si A est une matrice
de taille m x n et B est une matrice de taille p x ¢, alors le produit A ® B est une matrice
de taille (m x p) x (n x q).

Formellement, si :

aj;p a2 Ain
g1 Qg2 -+ A2
A= | (e e
: : . : bo1 Do
Am1 Am2 *°° Qmn
Alors le produit tensoriel A ® B est défini comme :
CLHB algB e alnB
ang GQQB RN /7)) B
AoB=| " . A
amlB amQB e amnB

Chaque élément a;; de la matrice A est multiplié par la matrice entiere B.

Propriétés importantes du produit tensoriel

Le produit tensoriel de Kronecker possede plusieurs propriétés intéressantes :
— Associativité :
(AB)(C=A® (B C)

— Distributivité (sur ’addition) :
A (B+C)=A®B+A®C
— Interaction avec le produit matriciel classique :
(A® B)(C ® D) = (AC) ® (BD)

Cette propriété est particulierement utile pour factoriser des produits de matrices
de grande dimension.
— Transposition :
(A B)Y' = AT @ BT

— Multiplication par un scalaire : Si a est un scalaire, alors :

a(A® B) = (aA) ® B = A® (aB)
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— Inverse (s’il existe) : Si A et B sont des matrices inversibles, alors :

(A B '=A"'®@ B!

Recherche de Ay et Sy

Pour une matrice tridiagonale symétrique de Toeplitz Ty, nous pouvons calculer ses
valeurs propres Ay et sa matrice de diagonalisation Sy.

1. Trouver les valeurs propres Ay

Les matrices tridiagonales symétriques de Toeplitz ont des valeurs propres qui peuvent
étre calculées analytiquement. Pour une matrice T de taille N x N, de la forme :

a b 0
b a b
Tv=|0 b

QT O OO

000 b

les valeurs propres A, sont données par la formule suivante :

k
A = 2b —_ k=1,2,... N
k a+ COS<N+1>7 ) 4y 9

ol a est I’élément diagonal de Ty, et b est I’élément hors-diagonal. La matrice diagonale
des valeurs propres sera donc :

An = diag(Ai, A2, ..., An)

2. Trouver la matrice de diagonalisation Sy

La matrice de diagonalisation Sy, qui diagonalise Ty, est formée a partir des vecteurs
propres de Ty. Les éléments de Sy sont donnés par :

2 Jkm .
Snlik = i k=1,2,...,N
[ N}]k N+1SID<N—|—1>’ ]7 )< )

Les colonnes de Sy représentent les vecteurs propres associés a chaque Ag.

Résumé des étapes :

1. Calcul des valeurs propres Ay : Utiliser la formule

A = a+ 2bcos <Nk+7T1>
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pour trouver les valeurs propres.
2. Construction de la matrice Sy : Utiliser la relation

Slip = 2 i Jjkm
Mk =\ N1\ N1

pour construire la matrice de diagonalisation.
Ainsi, Ty peut étre diagonalement simplifiée par Sy :

Ty = SyAnS%
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.3 Appendice C

Exemple de couples d’espaces incompatibles

L’exemple le plus connu d’espaces incompatibles en méthode des éléments finis est
celui ot les composantes de la vitesse sont approchées par des polynémes de @)1 (éléments
linéaires par morceaux sur chaque élément quadrilatéral) et la pression est approchée par
des éléments Py (constantes par élément).

Considérons le domaine carré 2 = [0, 1]? et définissons un maillage cartésien uniforme.
Soit N un entier plus grand que 2. Posons h = 1/N et pour 0 < 4,j < N, notons a;; le
point de coordonnées (ih, jh) et K;; la maille carrée dont le nceud en bas a gauche est a;
(voir le tableau (.3)). Notons T}, = U;; K;; le maillage ainsi constitué.

Nous définissons maintenant les espaces d’approximation suivants :

Xh = {uh c [CO(Q)]2 ,VK” c Th;uh e} TKZ] € Q%,'Lbh‘r = 0} y

I’espace des vitesses discretes ou chaque composante de la vitesse est linéaire par morceaux
sur chaque élément K;.

My, = {pn € LY(Q) VK € Ty, ipr o TKy € R},
I'espace des pressions discretes, constantes par élément Kj;.

Pour simplifier, nous notons p, 1l la valeur de pj, sur K;; et (u;j,v;;) les valeurs des
composantes cartésiennes de uj, au nceud a;;.

—1 +1 -1 +1 -1

—1 +1 -1 +1 -1

—1 +1 -1 +1 -1

-1 +1 -1 +1 -1
Mj;

Pour montrer que la condition "inf-sup" (ou LBB) n’est pas satisfaite, il suffit de
montrer qu’il existe un champ de pression p, € M, tel que [(V - up)pndx = 0, pour
tout u, € Xj,. Par définition de M), py est constant sur chaque maille. Par conséquent,
I'intégrale se simplifie :

/__(V'Uh)ph dﬂf:pi+%,j+%/ (up, -n)ds

Kij OK,j

/ (up - n) ds = h(uiJrl,j + Uig1,5+1 | Vil T Vi1 Wit Uij41 Vit Ui,jJrl)
- — _ —
oK, 2 2 2 2
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/Q(V‘Uh)ph dr = Z pH%,jJr%/ (V'uh) dzx.

Ki; €T Kij
En faisant d’abord la somme sur toutes les mailles, puis en réarrangeant les termes

pour faire la somme sur tous les nceuds internes (c’est-a-dire en utilisant une sommation
par parties), nous obtenons :

/Q(V cup)pndr = —h* Y (u;j(01p)ij + vi;(02p)ij)

0<i,j<N

Oou nous avons pOSé .

1 p; 1/2,j+1/2 t Dit1/2,j—1/2 — Pi—1/2,j+1/2 — Pi—1/2,j—1/2
(alp)ij:7[+/1+/ +1/2,5-1/ /2,5+1/ /2. /]

h 2
1 yZi JJ + pi— R — D; e — Pic1/2.4—
(agp)zj = 7[ +1/2,j+1/2 1/2,j+1/2 +1/2,j—1/2 1/2, 1/2]
h 2
> pz’+%,j+%/ (V- up)dr =0.
KijETh Kij

Ainsi [o(V-up)pn dz = 0 pour tout uy, € X, si et seulement si: p;i1/2j41/2 = Di—1/2,j—1/2
et pi1/2,j41/2 = Piv1/2,j-12V1 <=1,j <= N — 1.

Ce systeme décrit a priori un espace de dimension 2 dont 1'une des deux directions de
base est le champ constant. Cependant, la droite vectorielle engendrée par les constantes
est exclue de 'espace d’approximation M}, puisque le champ de pression est de moyenne
nulle. En revanche, 'autre direction de base est engendrée par une fonction qui prend
alternativement les valeurs +1 et —1 sur deux mailles adjacentes (voir le tableau (.3)).

Nous concluons donc que la condition "inf-sup" n’est pas satisfaite. En d’autres termes,
les espaces X}, et M}, sont incompatibles pour résoudre notre probleme, car ils ne garan-
tissent pas 'unicité et la stabilité de la solution.
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.4 Appendice D

Algorithme du gradient conjugué

Algorithm 2: Algorithme du gradient conjugué

1 Choisir zq (souvent zy = 0;
2 Calculer ro = b — Axq et poser py = ro;
3 k=0;
4 while ||| n’est pas suffisamment petit do
T
5 X = p%cAT;k7
6 Tpy1 = Tk + QgPg;
T | Thir = Tk — R ADE;
8 if ||rke1|| est suffisamment petit then
9 L stop;
T
10 | fp= T’“jk%#;
11| Prt1 = Trt1 + Bkl
12 k=Fk+1,;
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