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Introduction

Je présente dans ce rapport les différents travaux de recherche réalisés durant
mon stage de fin d’étude au laboratoire BIOEPAR, unité mixte de recherche Oniris
VetAgroBio Nantes - INRAE. Ce stage était financé par la coopérative de service en
élevages Innoval qui gère notamment le programme de maîtrise de l’infection par le
virus de la diarrhée virale bovine (BVD) en Bretagne.

La BVD est une maladie virale très contagieuse des bovins ayant fait son apparition
au milieu du XXième siècle. Elle est rapidement devenue l’une des maladies les plus
problématiques au sein des élevages, tant sur le plan économique (Houe, 1999) que sur
le plan médical.

Ce stage avait pour objectif la poursuite d’un travail de recherche réalisé au sein du
laboratoire BIOEPAR dans le cadre du projet européen STOC free (https://stocfree.eu/).
Le projet STOC free (Surveillance Tool for Outcome-based Comparison of FREEdom
from infection) est né en 2017 de la volonté de rendre comparable les résultats des
différents programmes de surveillance et contrôle des maladies infectieuses chez les
bovins. C’est donc naturellement que la BVD a été incluse dans le projet en tant que
cas d’étude principal des maladies considérées.

Aujourd’hui les approches dans la gestion de l’infection par le virus de la BVD
diffèrent grandement selon les pays. Les plans de lutte sont divisés en deux catégories,
les plans de luttes systématiques et les plans de lutte non-systématiques. Les premiers
portent l’objectif d’une diminution généralisée de la prévalence de la maladie sur le
territoire. Les seconds reposent sur une gestion au cas par cas et la vaccination des
individus. On s’intéresse ici aux plans systématiques qui requièrent la mise en place
d’une phase de surveillance. Cette phase permet la détection précoce des nouvelles
infections et l’évaluation des mesures mises en places. On trouve alors deux grandes
approches qui sont les plans d’éradication et les plans de contrôle (Metcalfe, 2019). Ces
approches, principalement empiriques, reposent sur des étapes décrites par Lindberg
et Houe en 2005 (Lindberg et Houe, 2005). Les 3 étapes importantes sont la mise en
place de mesures de biosécurité, l’élimination du virus, et la surveillance des troupeaux
afin de détecter et prévenir les nouvelles infections. Les différents modèles construits à

1
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l’aide de ce schéma font intervenir des tests sérologiques si l’objectif est la détection
d’anticorps, ou des tests virologiques si c’est le virus qui est recherché.

L’existence de nombreux tests différents, le choix pouvant varier selon l’approche et
l’échelle considérée, entraîne des difficultés dans la comparaison des statuts d’animaux
de différents pays. De plus, il est commun de voir les mesures continues de ces tests être
discrétisées pour faciliter la prise de décision. La variation des seuils appliqués, avec
parfois une absence de seuil réglementaire, peut rendre non identifiable le processus de
classification des animaux.

En recherche épidémiologique et vétérinaire on parle de test gold standard pour
qualifier le meilleur test existant à un moment donné et faisant office de référence. En
l’absence d’un tel test, les modèles bayésiens en classe latente (BLCM) se sont imposés
comme des méthodes fiables et efficaces pour l’estimation des seuils optimaux (Olsen
et al., 2022), des prévalences de maladies, ainsi que des sensibilités et spécificités des tests
utilisés (Hui et Walter, 1980 ; C. I. McAloon et al., 2024 ; C. G. McAloon et al., 2016).
Cependant, la grande majorité des études sont encore réalisées à l’aide de résultats de
tests dichotomisés malgré l’absence fréquente de gold standard. Ces dernières années
des articles illustrant l’utilisation des données de mesures continues voient le jour avec
des résultats en faveur de leur conservation (Wang et al., 2024 ; Yang et al., 2022). De
nouvelles possibilités complétant les BLCM, comme l’utilisation des modèles de Markov
cachés (HMM), sont régulièrement proposées. Les HMM sont des modèles en classes
latentes permettant la prise en compte des évolutions d’un système dans le temps.
Ceux-ci ont fait preuve de leur efficacité et pertinence mais restent encore peu utilisés
en recherche épidémiologique malgré une modélisation adaptée à la surveillance des
maladies (Le Strat et Carrat, 1999 ; Watkins et al., 2009).

L’équipe de l’UMR Bioepar participant au projet STOC free a fait le choix de la
mise en place d’un HMM pour la surveillance épidémiologique de la BVD (Madouasse
et al., 2022). Le modèle initial ayant été construit à l’aide d’observations discrètes
(séropositif/séronégatif) l’objectif premier du stage était de répondre à la question
suivante :
La conservation des données de mesures continues améliore-t-elle les performances du
modèle?

Parmi les raisons justifiant l’abandon de la dichotomisation nous pouvons citer
la perte importante d’information lors de la discrétisation des données, notamment
lorsque le résultat du test se trouve proche du seuil utilisé. De plus, l’utilisation de
données continues est supposée plus appropriée du fait du caractère dynamique du
HMM, le passage entre un état infecté et non infecté étant alors moins abrupte que dans
le cas discret. Enfin, la conservation des données continues permettrait la détermination
des distributions des mesures de test selon l’état infectieux de l’élevage.

M2 IS - Trotreau Matthieu Nantes Université Rapport de Stage
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Ce mémoire est structuré en 3 grandes parties. Dans un premier temps nous dé-
taillons le contexte du sujet de stage en étayant la description de la BVD et les objectifs
poursuivis. Dans une seconde partie nous présentons les données dont nous disposons
ainsi que les détails des modèles et algorithmes mis en œuvre. Enfin, une dernière partie
mettra en exergue les performances des modèles sur données simulées et les résultats
obtenus sur données réelles.

M2 IS - Trotreau Matthieu Nantes Université Rapport de Stage



Chapitre 1

Contexte et objectifs

L’impact de la BVD sur la santé des bovins et l’économie des exploitations étant
considérable un arrêté ministérielle, du 31 juillet 2019, impose la détection et l’assainis-
sement des troupeaux infectés dans toute la France. De nombreux pays ont eux aussi
mis en place des programmes de détection de la maladie avec des objectifs allant jusqu’à
l’éradication du virus.

1.1 L’unité mixte de recherche BIOEPAR

Le stage s’est déroulé au sein de l’unité mixte de recherche (UMR) BIOEPAR
(https://bioepar.angers-nantes.hub.inrae.fr/). Celle-ci est placée sous la tutelle de l’IN-
RAE et l’école Oniris VetAgroBio. L’école forme des ingénieurs dans les domaines de
l’agroalimentaire et des biotechnologies ainsi que des vétérinaires. L’unité BIOEPAR se
situe sur le site de la Chantrerie s’occupant de la formation vétérinaire.

Les missions de l’UMR, dirigée par Nathalie BAREILLE, s’organisent en 3 axes :

• Réduction de la consommation de médicaments anti-infectieux par les animaux

• Prévention sanitaire dans les élevages, territoires et filières

• Adaptation aux évolutions des systèmes d’élevage pour la gestion de la santé
animale

Les objectifs du stage s’insèrent en particulier dans la seconde mission de prévention
sanitaire au sein des troupeaux.

4
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CHAPITRE 1. CONTEXTE ET OBJECTIFS 5

1.2 Épidémiologie de l’infection par le virus de la BVD

1.2.1 Modes de transmission du virus

La BVD est une maladie virale des bovins observée pour la première fois en 1946 par
le canadien Childs. Elle sera décrite la même année aux États-Unis par Peter Olafson
(Olafson et al., 1946). Dans un premier temps le virus se multiplie dans les voies
respiratoires, puis il s’introduit dans les voies sanguines et se propage à tous les organes.
Cette propagation entraîne une grande variété des voies d’excrétion.

La transmission de la maladie est dite horizontale lorsqu’elle intervient lors d’un
contact direct entre un individu infecté et un individu sensible. Elle est dite verticale
lorsqu’elle est transmise par la mère à sa progéniture. Dans le cas de la BVD ces
différents modes de transmissions entraînent la présence de deux catégories d’individus
infectés, les infectés persistants immunotolérants (IPI) et les infectés transitoires (IT).
Les premiers sont des veaux ayant survécu à l’infection de leur mère lors de la gestation,
en particulier lors d’une période où le virus est reconnu comme part intégrante de
l’individu ne déclenchant pas de réponse immunitaire. Les seconds sont les individus
infectés par transmission horizontale.

La transmission verticale joue un rôle majeur dans la dynamique d’infection de
cette maladie. En effet, les IPI sont les principaux vecteurs de la maladie au sein des
troupeaux. Ils excrètent en permanence le virus, que ce soit dans l’urine, les matière
fécales ou encore le lait. La majorité des infections a lieu lors du contact d’un IPI avec
un animal sensible.

1.2.2 Conséquences des infections transitoires et persistantes

La plupart des infections transitoires donnent des cas de faible gravité, mais des
symptômes plus importants voire létaux peuvent apparaître. Parmi eux on trouve des
diarrhées sanguinolentes, de la fièvre ou encore des ulcères sur les muqueuses. Il peut
aussi apparaître des troubles digestifs généralement bénins chez l’adulte mais pouvant
être mortels chez le nouveau-né. Cette maladie provoquant une immunodépression on
la retrouve fréquemment chez des animaux atteints de troubles respiratoires causés par
d’autres pathologies. Des troubles reproductifs peuvent apparaître chez le mâle comme
la femelle avec, respectivement, une baisse de la qualité du sperme dans les premiers
jours de l’infection et des perturbations du fonctionnement ovarien.

Les conséquences d’une infection par le virus de la BVD sont plus problématiques
lorsqu’une vache gestante est contaminée. En effet, il est très fréquent qu’une vache
malade avorte précocement si l’infection survient lors des 3 premiers mois de gesta-
tion. Les avortements peuvent cependant continuer à se produire jusqu’au terme de la
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période des 9 mois. Ces avortements ont un impact considérable sur l’économie d’un
élevage ainsi que le bien-être des animaux. De plus, si la vache tombe malade entre le
premier et le cinquième mois de gestation, en particulier lors du premier mois, cela peut
entraîner la naissance d’un animal IPI, caractérisation que nous avons évoquée dans la
partie 1.2.1. Le reste des différents effets d’une infection chez une vache enceinte peut
être résumé dans la figure 1.1 suivante (Grooms, 2004) :

Figure 1.1 – Conséquences d’une infection par le virus de la BVD chez une vache gestante

1.2.3 Protocole de détection de la BVD en Bretagne.

Les approches pour la détection de l’infection peuvent varier selon les pays ou les
régions (van Roon et al., 2020). En Bretagne il a été choisi de réaliser ce que l’on appelle
des tests ELISA (enzyme-linked immunosorbent assay). Rechercher le virus au sein des
troupeaux en testant le statut virologique de chaque animal est coûteux et ne présente
que peu d’intérêt. En effet, peu de vaches excrètent le virus à un moment donné ce
qui augmente le risque de détecter des faux négatifs. Il a été décidé d’appliquer ces
tests ELISA, qui sont des tests sérologiques, sur des mélanges de lait de tank. Cette
méthode permet de disposer d’un mélange recensant l’ensemble des laits du troupeau
dans lequel on recherche la présence d’anticorps indiquant si au moins l’une des vaches
a déjà rencontré le virus. Le principal défaut de cette méthode étant que la présence
d’anticorps peut signifier qu’une vache est actuellement infectée ou déjà immunisée
du fait d’une infection antérieure. Pour des raisons de moyens disponibles les données
dont nous disposons proviennent de deux tests différents seulement réalisés tous les 3 à
6 mois (à l’origine tous les 6 mois puis tous les 3 mois après apparition du second test).
De plus, nos résultats (x) sont standardisés à partir des mesures de témoins positifs (x+)
et négatifs (x−) à partir de la formule :
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x− x−

x+ − x− × 100

Cette standardisation permet généralement l’obtention de mesures entre 0 et 100, mais
celles-ci peuvent être négatives ou supérieures à 100 selon les mesures des témoins
présents sur la plaque de test. Ces résultats sont appelés odr, pour Optical Density Ratio,
et sont utilisés pour l’apprentissage de nos modèles.

1.3 Objectifs

Le modèle de Markov caché initial a été élaboré afin d’estimer la dynamique de
la BVD à partir de résultats binarisés. L’objectif premier du stage était de modifier le
modèle pour qu’il intègre les mesures de tests continues, les estimations obtenues par
ces deux modèles seront comparées sur données simulées puis données réelles.

Une des éventualités après application du modèle était de retrouver les sensibilités
et spécificités des tests à partir des distributions estimées, avec notamment la possibilité
de proposer un seuil de discrétisation optimal. Cela peut paraître contradictoire avec
l’objectif initial d’utilisation de données continues. Cependant, la présence d’un seuil
de référence optimal pourrait uniformiser et faciliter l’utilisation des tests sur le terrain.

Enfin, l’objectif final du stage est de mettre à disposition un outil opérationnel pour
la surveillance de l’infection notamment sous la forme d’un package R.
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Chapitre 2

Matériels et méthodes

Nous débutons cette partie avec la présentation des données réelles dont nous dis-
posons. Cela nous permettra notamment de justifier certaines modélisations présentées
dans la seconde moitié de cette partie, avec au préalable une description détaillée des
concepts généraux des modèles de Markov cachés.

2.1 Description et manipulation des données réelles

Il convient donc de commencer cette partie avec la présentation et l’analyse descrip-
tive du matériel sans lequel la création de méthodes d’apprentissage perdrait un grand
intérêt. Nous avons donc un jeu de données original de dimensions 798593× 5, la sup-
pression d’un certains nombre de données manquantes nous donne un jeu exploitable
de 793296 observations. Nous pouvons expliciter nos 5 variables :

• ede [Chaîne de caractères] : L’identifiant unique du troupeau. Les 2 premiers
chiffres indiquent le département et les 3 suivants la commune associée. Ces 5
premiers chiffres forment ainsi le numéro INSEE de la commune.

• test_date [Date] : La date de la mesure du test sur les laits de tank. La plage de
dates s’étend de 2000 à 2021.

• test_id [Chaîne de caractères] : L’identifiant du test utilisé. C’est un facteur à deux
modalités, LGMCAT et LGMVEA.

• odr [Réel] : La variable répertorie les résultats continus des mesures de test.

• t_res [Entier] : Résultats binaires des tests, obtenus par seuillage de la variable
odr. Facteur à deux modalités 0 et 1.

8
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• herd_dep [Entier] : Département du troupeau, obtenu à partir de l’identifiant ede.
Facteur à 4 modalités 22 (Côtes-d’Armor), 29 (Finistère), 35 (Ille-et-Vilaine) et 56
(Morbihan).

Il est important d’indiquer qu’il n’y a pas une unique mesure odr par troupeaux mais
plusieurs mesures réalisées à intervalles réguliers, on parle alors de données longitudi-
nales. Le graphique en figure 2.1 permet d’illustrer le fait que les tests sont réalisés tous
les 6 mois puis tous les 3 mois après apparition du test LGMVEA.

Figure 2.1 – Histogramme des tests réalisés sur un troupeau issu du département 22, entre
2010 et 2021.

C’est notamment cette caractéristique longitudinale qui justifie l’utilisation d’un HMM,
et plus généralement d’un processus de Markov, comme nous pouvons le voir en partie
2.2.1.

Pour continuer la description des données nous réalisons un graphique des données
continues, pour chaque test, mettant en avant les résultats binaires.
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Figure 2.2 – Distribution des résultats des deux tests (LGMCAT à gauche et LGMVEA à droite)
en fonction du statut des troupeaux (non infecté en bleu et infecté en rouge).

La figure 2.2 fournit la distribution des résultats de tests en fonction du statut retenu
après discrétisation. Elle est obtenue après suppression de quelques donnéesmanquantes
et aberrantes. On remarque une saturation des données en 0 et 100 ainsi qu’autour de
40 et 60. Un mélange gaussien à deux composantes paraît envisageable pour les deux
tests, avec l’idée d’une troisième composante pour la censure en 0.

Après une analyse plus détaillée des données on trouve que les 4 valeurs de saturation
sont exactement 0, 35, 60 et 100. On relève notamment que le seuil de discrétisation des
données continues est justement fixé à une valeur d’odr de 35. Une possible explication
serait la recatégorisation de certains résultats autour de ces 4 seuils, possiblement à
certaines dates ou par certains départements. Il apparaît en réalité que les données
provenant du département 35 sont grandement responsables des différents excès de
valeurs. Si on décide de supprimer ce département de notre jeu on obtient finalement
les distributions du graphique 2.3.

Figure 2.3 – Distribution des mesures de test après traitement des données.
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Nous allons maintenant extraire des données plus propres de notre jeu afin d’appli-
quer les modèles explicités en parties 2.2.4 et 2.2.5 et dont nous présentons les résultats
sur données réelles en 3.2.

L’échantillon retenu permettra la mise en œuvre de plusieurs cas d’application assez
simples pour l’illustration des modèles sur données réelles. Le jeu de données complet
a été séquencé en des périodes de 3 ans, les graphiques correspondants sont disponibles
en annexe A.1. Il a été décidé de conserver la dernière période s’étendant de 2018 à 2021,
dont nous avons ensuite extrait uniquement les 300 premiers troupeaux du département
29 avec le plus de mesures disponibles et ce pour le test LGMVEA. L’idée était de de
choisir des données avec une distribution relativement propre en évitant une saturation
de 0. Le jeu final est donc composé de 6 variables pour 2100 observations et est illustré
par le graphique en figure 2.4.

Figure 2.4 – Distribution de l’échantillon de données réelles sélectionné.

Enfin, nous présentons en partie 3.2 les résultats d’une dernière expérience. Celle-ci
consiste à entraîner le modèle mis au point lors de ce stage sur une plage de temps
scindée en 28 périodes, avec une prédiction de la probabilité d’infection à la fin de
chacune de ces périodes. La table de ces 28 intervalles de temps est donnée en annexe
D.1. Nous disposons d’une période complète de 10 ans s’étendant de début 2011 à fin
2020. On prédit la probabilité d’infection 4 fois par ans à partir de janvier 2014, la
prédiction étant réalisée à partir de 3 ans d’historique des données.

Nous avons détaillé notre jeu de données réelles ainsi que les différentes parties de
celui-ci qui serviront à l’entraînement de nos modèles. Ces modèles sont exposés à la
suite de cette partie avec les considérations générales et théoriques en préliminaires.
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2.2 Modèle de Markov caché

L’un des éléments clés de ce stage était l’utilisation d’un modèle de Markov caché
afin de représenter la dynamique d’infection des troupeaux par le virus de la BVD. Il est
donc nécessaire d’en présenter les fondements afin de correctement saisir, les raisons
qui rendent cette modélisation pertinente dans le cas d’une maladie infectieuse, ainsi
que la construction des modèles appliqués à notre problématique.

2.2.1 Concept général

Un modèle de Markov caché, ou hiden Markov model (HMM) est un processus
stochastique qui repose sur le principe de Markov qui suppose que l’état futur de la
chaîne dépend uniquement de son état présent et est indépendant des états précédents.
Dans le cas classique nous disposons d’un espace d’états discretE auquel sont associées
des probabilités de transition entre états. Une chaîne de Markov peut être à temps
discret comme continu mais nous nous intéressons ici seulement au temps discret avec
T ⊂ N l’espace de temps. La chaîne de Markov est alors une séquence de n variables
aléatoires à valeur dans l’espace d’état X1, X2, ..., Xn avec la propriété suivante :

∀t ≤ n,∀(i1, ..., it, j) ∈ Et+1,

P(Xt+1 = j | Xt = it, Xt−1 = it−1, ..., X1 = i1) = P(Xt+1 = j | Xt = it).

On parle de chaîne homogène lorsque la probabilité de transition est indépendante
du temps t :

P(Xt+1 = j | Xt = it) = P(Xt = j | Xt−1 = it).

On représente sur la figure 2.5 un exemple de dynamique pour une chaîne de Markov
homogène à deux états.

A B

PAB = P(Xt+1 = B | Xt = A)

PBA = P(Xt+1 = A | Xt = B)

1− PAB 1− PBA

Figure 2.5 – Graphe d’une chaîne de Markov à deux états
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Dans le cas d’une chaîne de Markov classique nous connaissons l’état au temps t et
pouvons déterminer sa probabilité d’atteindre chacun des autres états au temps t+ 1 à
l’aide des probabilités de transitions. Le modèle de Markov caché intervient lorsque la
position de la chaîne à l’instant t n’est pas connue explicitement. Le seul élément dont
nous disposons est une observation, ou émission, qui peut être observée dans n’importe
quel état avec une certaine probabilité. Nous disposons ainsi de l’espace d’états E mais
aussi d’un espace d’observations O. Nous pouvons reprendre la chaîne de la figure 2.5
en la représentant dans le cas d’un HMM simple.

A B

0 1 10

PAB

PBA

1− PAB 1− PBA

PA0 = P(Ot = 0 | Xt = A) 1− PA0
1− PB1 PB1 = P(Ot = 1 | Xt = B)

Figure 2.6 – Graphe d’un modèle de Markov caché à deux états et deux émissions.

L’exemple de la chaîne de Markov classique en figure 2.5 peut produire la chaîne
(X1 = A,X2 = B,X3 = B) de manière unique. Tandis que dans l’exemple de HMM
en figure 2.6 cette même suite d’états peut produire les suites d’observations (O1 =
1, O2 = 0, O3 = 1) et (O1 = 0, O2 = 1, O3 = 1) avec des probabilités différentes. De la
même manière, ces séquences d’observations auraient pu provenir de séquences d’états
différentes. En réalité une séquence d’états cachés de longueur T peut générer |O|T
séquences d’observations différentes. Si on ajoute à ça le nombre d’états possibles on
obtient un maximum de |E|T × |O|T associations possibles entre séquences d’états
et séquences d’observations. On comprend ainsi aisément que les statuts réels de nos
variables aléatoires Xi=1,...,T deviennent rapidement non identifiables. De ce fait, il
existe différents algorithmes permettant l’estimation des paramètres d’un HMM. Nous
allons maintenant présenter l’algorithme forward qui est l’un des plus utilisé.

2.2.2 Algorithme Forward - Backward

Lorsque nous travaillons avec un modèle de Markov caché nous pouvons souhaiter
répondre à différentes questions. En réalité 3 problèmes majeurs s’offrent à nous :

• Evaluation problem : Quelle est la probabilité qu’une séquence d’observations
(Oi)i=1,...,T ait été produite par notre modèle.
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• Uncovering problem : Quelle est la séquence d’états (Xi)i=1,...,T la plus probable
de produire la séquence d’observations (Oi)i=1,...,T .

• Learning problem : Comment ajuster les paramètres du modèle pour obtenir une
probabilité maximale d’obtenir la séquence (Oi)i=1,...,T .

Nous ne cherchons pas tout à fait à répondre à l’une de ces 3 questions. Cependant la
méthode de résolution du premier problème va nous permettre d’atteindre nos objectifs.
Une manière naïve d’envisager ce problème serait de lister toutes les séquences d’états
de longueur T possibles. Cependant, cette solution n’est pas envisageable du fait de
coûts informatiques bien trop importants la rendant impossible à mettre en œuvre.
Le problème d’évaluation peut être résolu à l’aide d’une procédure que l’on nomme
Procédure Forward - Backward (Rabiner, 1989) et que nous présentons dans cette sous-
partie.

On considère un espace d’états X discret avec X = {s1, ..., sn} et on écrira xt(i)
pour xt = si. Dans un premier temps on pose la variable forward αt+1(i) correspondant
à la probabilité jointe p(xt+1(i), o1:t+1) d’être dans l’état si au temps 1 ≤ t+ 1 ≤ T et
d’avoir observé une chaîne o1, ..., ot+1. Nous avons donc,

αt+1 (i) = p (xt+1(i), o1:t+1)

=
n∑

j=1

p (xt+1(i), xt(j), o1:t+1) .

On rappelle la chain rule en probabilité qui nous dit :

Theorème (Chain rule). Soit (Ω,A,P) un espace de probabilité, A1, ..., Ak ∈ A alors :

P(A1, ..., Ak) = P(A1)
k∏

j=2

P(Aj | Aj−1, ..., A1).

On peut donc écrire :

p(xt+1(i), xt(j), o1:t+1) = p(xt(j), o1:t)p(xt+1(i) | xt(j), o1:t)p(ot+1 | xt+1(i), xt(j), o1:t).

or, ot+1 est conditionnellement indépendant de tout sauf xt+1 et xt+1 dépend uni-
quement de xt donc :
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αt+1 (i) = p (ot+1 | xt+1(i))
n∑

j=1

p (xt+1(i) | xt(j))p(xt(j), o1:t)

= p(ot+1 | xt+1(i))
n∑

j=1

p (xt+1(i) | xt(j))αt (j) .

Dans le cas d’un HMM dont les observations sont discrètes p (ot+1 | xt+1(i)) corres-
pond à la probabilité P (Ot+1 = ot+1 | xt+1(i)), tandis que dans le cas d’observations
continues c’est l’évaluation de la densité de probabilité au point ot+1 connaissant l’état
xt+1 (Damiano et al., 2017). La grandeur p (xt+1(i) | xt(j)) est donnée par les para-
mètres de la dynamique du modèle. On peut donc entièrement calculer αt+1 (i) à partir
des αt (j).

L’initialisation de l’algorithme α1 (i) = p (o1|x1(i)) p (x1(i)) est donnée par les
distributions a priori sur les paramètres du modèle. Ensuite, à l’aide de la distribution
jointe αt+1 (i) on obtient facilement αt+1 = p(o1:t+1) :

αt+1 = p(o1:t+1) =
n∑

i=1

p (xt+1(i), o1:t+1) =
n∑

i=1

αt+1 (i) .

À terme on obtient p (xt+1(i) | o1:t+1) =
αt+1(i)
αt+1

et l’estimation de l’état au temps
t+ 1 avec ˆxt+1 = argmax

i
(p (xt+1(i) | o1:t+1)).

Nous venons de détailler l’algorithme forward qui nous permet d’obtenir les gran-
deurs p (xt+1(i) | o1:t+1), ˆxt+1 etαt+1, cette dernière répondant au problème d’évaluation
lorsque t+ 1 = T . La seconde possibilité est d’implémenter la procédure backward qui
repose sur la variable backward βt(i) qui correspond aux probabilités conditionnelles
des chaînes d’observations partielles {ot+1, ..., oT} connaissant l’état xt :

βt(i) = p (ot+1:T | xt(i))

=
n∑

j=1

p (xt+1(j) | xt(i)) p (ot+1 | xt+1(j)) βt+1(j).

L’initialisation est généralement arbitraire avec βT (i) = 1 pour tout i. On peut alors
déterminer la quantité d’intérêt p(o1:T ) en fonction de la variable backward :
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p(o1:T ) =
n∑

i=1

p (o1:T , x1(i))

=
n∑

i=1

p (o1:T | x1(i)) p (x1(i))

=
n∑

i=1

p (o1 | x1(i)) p (o2:T | x1(i)) p (x1(i))

=
n∑

i=1

p(o1 | x1(i))β1(i)p (x1(i)) .

L’association des deux procédures nous permet de déterminer la probabilité de
chacun des états au temps t connaissant la séquence complète des observations :

p (xt(i) | o1:T ) =
p (o1:T , xt(i))

p(o1:T )
.

À l’aide de la chain rule et de l’indépendance conditionnelle des ot+1, ..., oT avec les
o1, ..., ot on peut écrire :

p (xt(i) | o1:T ) =
p (o1:t, xt(i)) p (ot+1:T | xt(i))

p(o1:T )

=
αt(i)βt(i)

p(o1:T )

=
αt(i)βt(i)∑n
i=1 αt(i)βt(i)

.

Nous venons de détailler les deux procédures permettant de répondre au premier
problème. Il est important de relever que la procédure forward répond à elle-seule
au problème d’évaluation. De plus, nous nous intéressons plus particulièrement aux
probabilités (p (xT (i) | o1:T ))i=1,..n pour lesquelles l’algorithme forward est nécessaire
et suffisant. De ce fait, seul celui-ci a été implémenté dans les modèles bayésiens que
nous allons maintenant présenter.

2.2.3 Une dynamique commune aux deux modèles

Avant toute chose nous présentons la dynamique du modèle de Markov caché,
celle-ci ne dépendant pas de l’utilisation d’observations discrètes ou continues. La
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représentation de l’infection des troupeaux par le virus de la BVD provient de l’idée
de considérer l’état réel des troupeaux, séronégatif (0) ou séropositif (1), comme étant
inconnu et donc latent. Cela implique un espace d’états latents discret de cardinal 2 qui
ne varie pas selon le type d’observation considéré. On peut représenter la dynamique
du modèle à l’aide de la figure suivante (Madouasse et al., 2022).

0 0 0 1 1 0 1

1 2 3 4 5 6 7

1− π1 1− τ1 τ2 τ1

États latents

Temps (mois)

Figure 2.7 – Représentation de la dynamique du modèle de Markov caché

Notre espace d’états latents étant discret on peut représenter les probabilités de
transition dans la matrice P, avec Pij la probabilité de passer de l’état i à l’état j :

P =

[
1− τ1 τ1
1− τ2 τ2

]
.

À noter que nous sommes bien dans une chaîne de Markov homogène, les probabilités
de transition étant indépendantes du temps.

Le vecteur des probabilités initiales est donné par Π = (1− π1, π1). Dans notre cas
π1 correspond à la probabilité qu’un troupeau soit considéré infecté et représente donc
la prévalence de troupeaux infectés par la BVD. Pour une prévalence à l’équilibre on
dispose de l’équation suivante :

π1(1− τ2) = (1− π1)τ1. (2.1)

L’équation ( 2.1) peut être réécrite de la manière suivante :

π1(1− τ2) = τ1 − π1τ1

⇐⇒ π1(1 + τ1 − τ2) = τ1

⇐⇒ π1 =
τ1

(1 + τ1 − τ2)
.

(2.2)

On peut montrer que l’on retrouve bien ce résultat en déterminant le vecteur de
mesure invariante pour notre chaîne de Markov. Il existe le théorème suivant :
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Theorème. Soit P une matrice stochastique irréductible. Alors, P admet une unique
probabilité invariante π et on a π > 0.

Pour déterminer cette probabilité invariante il nous suffit de déterminer un vecteur
propre associé à la valeur propre 1 de la matrice tP et de le normaliser par la somme de
ses composantes.
Soit λ ∈ R et I2 la matrice identité d’ordre 2,

| tP− λI2 | = (1− τ1 − λ)(τ2 − λ)− (1− τ2)τ1

= λ2 + λ(τ1 − τ2 − 1) + τ2 − τ1

= (λ− 1) (λ− (τ2 − τ1)) .

On a bien 1 comme valeur propre de la matrice tP. On trouve l’espace propre associé
de la manière suivante :

( tP− I2
)(x

y

)
=

(
0

0

)
⇐⇒

{
−τ1x+ (1− τ2) y=0
τ1x+ (τ2 − 1) y =0

⇐⇒ {τ1x+ (τ2 − 1) y = 0

⇐⇒
{
y =

τ1
1− τ2

x .

On obtient donc le vecteur propre
(
1, τ1

1−τ2

)
associé à la valeur propre 1. On le normalise

pour obtenir le vecteur de probabilité invariante :

Π =

(
1− τ2

1− τ2 + τ1
,

τ1
1− τ2 + τ1

)
.

On retrouve bien l’expression précédente de la prévalence à l’équilibre obtenue en (2.2).
Nous passons maintenant à la présentation des spécificités du premier modèle avec
observations discrètes.

2.2.4 Modèle initial - Observations discrètes

Nous avons présenté en partie 1.2.3 la détection du virus à l’aide d’analyse de lait
de tank. Les mesures de test obtenues sont ensuite discrétisées à l’aide d’un seuil h
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pour établir un statut séronégatif (0) ou séropositif (1). Ce dernier est alors considéré
"observé" et non "réel" car ces tests ne sont pas des gold standards et ne permettent donc
pas d’assurer l’exactitude du statut déterminé. On note Y la variable aléatoire pour les
mesures de test, S et O les variables aléatoires respectives des états réel et observé.

O =

{
0 si Y < h,

1 sinon.
(2.3)

Cette discrétisation s’accompagne des notions de sensibilité (Se) et spécificité (Sp). La
première correspond à la probabilité de détecter des vrais positifs, la seconde correspond
à la probabilité de détecter des vrais négatifs.{

Se = P(O = 1 | S = 1)

Sp = P(O = 0 | S = 0).

Ces quantités feront office de probabilités d’émission dans le cadre de ce premier HMM
à observations discrètes.

Nous pouvons illustrer le lien entre état latent et état observé avec la figure 2.8.

0 0 0 1 1 0 1

0 0 1 1 0 0 1

État latent (S)

Observation (O)

Sp 1-Sp 1-Se Se

Figure 2.8 – Représentation de la relation entre états latents et résultats de tests

Le mélange posé pour ce premier HMM est alors caractérisé par les probabilités sui-
vantes : {

P(O = 0) = (1− π1)× Sp+ π1 × (1− Se)

P(O = 1) = (1− π1)× (1− Sp) + π1 × Se.
(2.4)

Nous pouvons résumer le HMM avec observations discrètes à l’aide du graphe de la
figure 2.9.
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0 1

0 1

τ1

1− τ2

1− τ1 τ2

États cachés

Résultats de tests

Sp 1 - Sp 1 - Se Se

Figure 2.9 – Graphe de notre HMM avec espace d’observations discret

Le modèle étant implémenté dans un cadre bayésien nous présentons maintenant
les différentes possibilités de lois a priori pour les paramètres à estimer.
Les paramètres Se et Sp étant des probabilités une bonne manière de poser leurs lois a
priori est d’utiliser des lois Beta.{

Se ∼ Beta(αSe, βSe)

Sp ∼ Beta(αSp, βSp).

Ensuite une première possibilité implémentée dans le package STOC free est de pour-
suivre avec des lois Beta sur le reste des paramètres.

π1 ∼ Beta(απ1 , βπ1)

τ1 ∼ Beta(ατ1 , βτ1)

τ2 ∼ Beta(ατ2 , βτ2).

Une seconde possibilité est d’utiliser des gaussiennes échelonnées entre 0 et 1 à l’aide
d’une transformation logit.

θπ1 ∼ N (µπ1 , σ
2
π1
)

θτ1 ∼ N (µτ1 , σ
2
τ1
)

θτ2 ∼ N (µτ2 , σ
2
τ2
),


π1 = logit(θπ1)

τ1 = logit(θτ1)

τ2 = logit(θτ2).
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Pour terminer cette présentation du premier modèle nous explicitons en table 2.1
les expressions des (αt=1,...,T (i))i=1,2 qui interviendront dans l’algorithme forward.

ot+1

0 1

s t
+
1

0 Sp ((1− τ1)αt(1) + (1− τ2)αt(2)) (1− Sp) ((1− τ1)αt(1) + (1− τ2)αt(2))

1 (1− Se) (τ1αt(1) + τ2αt(2)) Se (τ1αt(1) + τ2αt(2))

Table 2.1 – Tableau des (αt+1(i))i=1,2 lorsque 2 ≤ t+ 1 ≤ T , pour l’algorithme forward du
HMM avec observations discrètes

On dresse le tableau 2.2, similaire au précédent, pour l’initialisation des (α1(i))i=1,2.

o1

0 1

s 1

0 Sp× (1− π1) (1− Sp)× (1− π1)

1 (1− Se)× π1 Se× π1

Table 2.2 – Tableau des (α1(i))i=1,2 pour l’algorithme forward du HMM avec observations
discrètes

Les différentes variables aléatoires sont initialisées manuellement en fixant une
constante ou en échantillonnant une réalisation de leur loi a priori. Maintenant que le
modèle original a été correctement explicité nous pouvons passer à la présentation du
nouveau modèle qui intègre des densités d’émissions continues.

2.2.5 Nouveau modèle - Observations continues

L’objectif initial de ce stage était d’implémenter la possibilité de conserver les
mesures continues dans le modèle de Markov caché. Pour ce faire il a été envisagé de
modéliser les distributions des mesures de tests à l’aide d’un mélange gaussien. Ce type
de mélange associé à une dynamique de type markovienne est aussi appelé Markov
Switching Models (Hamilton, 1989). Le mélange présenté en (2.4) est alors entièrement
défini par la fonction de densité suivante :
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f(y) = (1− π1)f0(y) + π1f1(y) (2.5)

Nous avons f0 la densité gaussienne de paramètres (µ0, σ0) représentant les troupeaux
sains et f1 la densité gaussienne de paramètres (µ1, σ1) représentant les troupeaux
infectés. Dans le cas d’un HMM avec observations continues les probabilités d’émissions
sont remplacées par l’évaluation ponctuelle des densités en l’observation, le graphe de
la figure 2.9 devient alors :

0 1

y ∈ R

τ1

1− τ2

1− τ1 τ2

États cachés

Résultats de tests

f0(y) = p(y|S = 0) f1(y) = p(y|S = 1)

Figure 2.10 – Graphe de notre HMM avec espace d’observations continu

Sur la figure 2.10 les émissions discrètes ont été remplacé par une infinité d’émissions
continues. Les probabilités d’émissions sont quant à elles remplacées par l’évaluation
en l’observation des densités des deux composantes du mélange.

Pour ce nouveau modèle la possibilité de poser des lois a priori à l’aide de la
transformation logit n’a pour le moment pas été implémentée. De ce fait, seules des
lois Beta sont actuellement possibles pour les paramètres de la dynamique, on retrouve
donc : 

π1 ∼ Beta(απ1 , βπ1)

τ1 ∼ Beta(ατ1 , βτ1)

τ2 ∼ Beta(ατ2 , βτ2).

Cependant, les grandeurs Se et Sp ayant disparues au profit des paramètres des gaus-
siennes il nous faut maintenant poser 2 lois a priori supplémentaires. Nous avons choisi
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d’utiliser des lois normales pour µ0 et µ1. Concernant σ0 et σ1 nous souhaitions utiliser
des inverses gamma afin de disposer d’un support sur [0,+∞] en imitant une uniforme
sur celui-ci. Cependant, du fait de soucis rencontrés dans l’implémentation, nous avons
décidé de ne pas préciser de lois a priori pour ces deux paramètres. Dans cette situation
Stan pose de lui même une loi de Laplace sur le support de la variable.{

µi ∼ N (µµi
, σµi

)

σi ∼ U (0,+∞)
, i = 0, 1.

L’une des possibilités envisagées pour les lois a priori des (µi)i=0,1 est d’utiliser les
données réelles pour diriger la position des gaussiennes. En effet, nos données étant
des mesures de test à l’origine dichotomisées à l’aide du seuil h nous avons jugé bon de
proposer, pour un jeu de données avec N mesures de Y , la paramétrisation suivante :


µµ0 =

minn(yn) + h

2

µµ1 =
maxn(yn) + h

2

,


σµ0 =

(
h−minn(yn)

8

)2

σµ1 =

(
maxn(yn)− h

8

)2

.

(2.6)

Il est important d’être vigilant lorsque l’on utilise de l’information provenant des
données d’apprentissage. Cependant de telles lois a priori sur les moyennes des distri-
butions permettent seulement d’indiquer que les troupeaux non-infectés se situent à
gauche du seuil et les infectés à droite. Il est toutefois obligatoire ici de connaître ou
d’indiquer une valeur pour h qui ne peut pas être fixée par défaut.

Enfin, h nous permet d’évoquer la manière avec laquelle nous mettons en parallèle
les modèles avec émissions continues et discrètes. En effet, ce nouveau modèle nous
permet lui aussi de déterminer des valeurs de Se et Sp. On pose F0 et F1 les fonctions
de répartition associées à f0 et f1.{

Sp = P(O = 0 | S = 0) = P(y < h | S = 0) = F0(h)

Se = P(O = 1 | S = 1) = P(y > h | S = 1) = 1− F1(h).
(2.7)

Lorsque nous aurons à évaluer les performances des deux modèles nous pourrons alors
comparer les estimations de tous les paramètres présents dans le modèle original.

Nous avons présenté dans cette sous-partie les généralités du modèle avec ob-
servations continues. Cependant, nous avons vu en partie 2.1 que nos données sont
considérablement saturées en 0. La suppression de ces données en 0 représentant une
perte d’information conséquente nous avons décidé d’inclure une nouvelle composante
dans le mélange.
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f(y) = (1− π1) (wfw(y) + (1− w)f0(y)) + π1f1(y). (2.8)

Cette nouvelle composante, définit par la fonction de densité fw, nous permet de
considérer ces observations comme des mesures provenant de troupeaux sains tout en
débruitant la réelle distribution de ces troupeaux qui pourrait se retrouver biaisée du
fait d’un trop grand nombre de mesures égales à 0. Cependant, seul le paramètre w
vient s’ajouter au modèle bayésien, la fonction fw étant la densité d’une loi normale
N (0, (0.01)2). De la même manière que pour π1 nous utilisons une loi beta comme loi
a priori sur w.

{w ∼ Beta(αw, βw) .

Comme pour le modèle discret nous concluons la présentation du modèle avec le
résumé des (αt+1(i))i=1,2 dans le tableau 2.3.

y1 yt+1

s 1
,s t

+
1

0 (1− π1)× f0(y1) f0(yt+1) ((1− τ1)αt(1) + (1− τ2)αt(2))

1 π1 × f1(y1) f1(yt+1) (τ1αt(1) + τ2αt(2))

Table 2.3 – Tableau complet (initialisation en première colonne) des (αt+1(i))i=1,2 pour
l’algorithme forward du HMM avec observations continues

2.2.6 Implémentation des modèles

Dans cette partie nous présentons très brièvement l’implémentation des deux mo-
dèles à l’aide du langage Stan (Carpenter et al., 2017). Les deux programmations étant
très similaires nous en évoquons uniquement les grandes lignes, elles sont inspirées du
papier de Damiano et al., 2017.

Stan fait office d’interface en permettant le lien entre R et un algorithme d’échan-
tillonage de Monte Carlo Markov Chain (MCMC). En l’occurence la méthode proposée
par Stan est une variation de l’algorithme de Monte Carlo Hamiltonien (HMC).

Les probabilités calculées dans l’algorithme forward décroissants de manière expo-
nentielle, afin d’éviter des soucis d’underflow ce sont les (log (αt+1(i)))i=1,2 qui sont
codés. Ceux-ci sont calculés en deux parties à l’aide d’une matrice 1× 2 qui stocke les
valeurs et qui passe ensuite dans la fonction log_sum_exp définie par l’égalité suivante :
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LogSumExp(x1, ..., xk) = log

(
k∑

i=1

exi

)
.

Cette fonction permet de correctement effectuer la somme des deux éléments afin
d’obtenir les (αt+1(i))i=1,2 tout en restant à l’échelle logarithmique.

C’est le bon moment pour préciser une spécificité des (αt+1(i))i=1,2 de nos deux
HMM. En effet, nous ne disposons pas de données à chaque pas de temps mais unique-
ment de mesures de tests tous les 3 à 6 mois. De ce fait une majorité des p(st+1, o1:t+1)
sont en réalité égales à p(st+1, o1:t). Il nous faut donc trouver une manière correcte
d’écrire ces probabilités tout en conservant la cohérence de l’algorithme forward. Nous
pouvons montrer qu’il suffit simplement de reprendre les expressions des tableaux 2.1 et
2.3 en supprimant les probabilités d’émissions conditionnelles, c’est à dire l’évaluation
des densités conditionnelles en l’observation. Dans le cas d’une absence d’observation
au temps t+ 1 on peut écrire :

αt+1 (i) = p (st+1(i), o1:t+1)

= p
(
st+1(i), o1:t

)
=

n∑
j=1

p
(
st+1(i), st(j), o1:t

)
=

n∑
j=1

p
(
st+1(i) | st(j), o1:t

)
p (st(j), o1:t)

=
n∑

j=1

p
(
st+1(i) | st(j)

)
αt(j).

Ces quelques lignes terminent de justifier l’écriture des (αt+1(i))i=1,2 dans nos deux
modèles de Markov cachés avec la présence d’une différenciation entre présence et
absence d’émissions.

Pour finir, l’ensemble des grandeurs de l’algorithme forward étant déterminées
à l’échelle logarithmique c’est la transformation softmax qui permet d’obtenir les(
p(st+1(i) | o1:t+1)

)
i=1,2

dont l’expression est donnée en partie 2.2.2.

p(st+1(i) | o1:t+1) =
eαt+1(i)∑2
j=1 e

αt+1(j)
.
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Les différents modèles et leurs implémentations ayant été présentés nous passons
maintenant à la description des possibilités pour la prédiction des probabilités d’infec-
tion.

2.3 Prédiction de la probabilité d’infection

2.3.1 Dans le cadre bayésien

Les deux modèles permettent de donner une estimation de la probabilité d’infection
du troupeau au dernier pas de temps. En effet, nous avons vu en partie 2.2.2 que
l’algorithme forward nous permet de déterminer la probabilité d’être dans chacune
des classes à chacun des pas de temps t et ce connaissant la chaîne des observations
jusqu’au temps t. Ainsi, nous conservons la probabilité d’être dans la classe séropositif
lors de chacune des itérations de l’algorithme MCMC mais uniquement pour la dernière
observation. Nous obtenons ainsi une distribution a posteriori pour P(ST = 1 | y1:T ) et
pouvons approcher cette probabilité par l’estimateur de Bayes E [P(ST = 1 | y1:T )]

Nous pouvons illustrer ces distributions a posteriori à l’aide d’un graphique obtenu
dans le cas d’une application aux données réelles que nous présentons en partie 3.2.
Nous segmentons une plage de temps en 28 périodes et appliquons le modèle bayésien
afin qu’il prédise la probabilité d’infection pour la dernière date de chaque période.
Pour un premier troupeau sur la 24ième période nous obtenons par exemple :

Figure 2.11 – Distribution a posteriori de la probabilité d’infection estimée à la 24ième période,
pour un troupeau des Côtes-d’Armor (22).

Nous pouvons compléter ce graphique de densité avec un intervalle de crédibilité
de niveau 95% pour la probabilité estimée et ce sur chacune des 28 périodes.
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Figure 2.12 – Intervalles de crédibilité pour la probabilité d’infection d’un troupeau des Côtes-
d’Armor (22) pour les 28 périodes

Nous détaillons et commentons les résultats de cette application dans la partie 3.2
dédiée.

Le coût de calcul du modèle bayésien étant relativement conséquent nous présentons
maintenant une manière complémentaire de prédire les probabilités d’infection des
troupeaux.

2.3.2 Dans le cadre déterministe

Il apparaît peu pertinent de relancer le modèle sur l’ensemble des données dès l’ap-
parition de nouvelles observations notamment à cause d’un temps de calcul important
dans le cas de jeux de données conséquents.

Une première possibilité après estimation des paramètres par le modèle bayésien
est de conserver les estimateurs de Bayes des probabilités prédites et les utiliser pour
l’initialisation d’une simple chaîne de Markov. En effet, nous pouvons récupérer τ̂1 et
τ̂2 qui permettent de déterminer la matrice de transition de la chaîne et appliquer cette
dynamique aux vecteurs de probabilités de manière à obtenir une prévision rapide ne
nécessitant aucune observation sur les quelques mois à venir.

Ensuite, lorsque nous disposons d’une unique nouvelle mesure de test et souhaitons
déterminer le statut probable du troupeau nous pouvons déterminer la classe et les
probabilités à la manière d’un algorithme EM. Pour ce faire nous utilisons la propriété
répondant au nom de optimal Bayes rule. La probabilité conditionnelle d’appartenance
à une classe est notamment définie par :

P(S = s | y) ∝ ρ̂f̂s(y) , ρ̂ =

{
1− π̂1 si s = 0,

π̂1 si s = 1.

M2 IS - Trotreau Matthieu Nantes Université Rapport de Stage



CHAPITRE 2. MATÉRIELS ET MÉTHODES 28

L’optimal Bayes rule intervient alors pour nous donner la classe la plus probable que
l’on nomme alors le maximum a posteriori :

S∗ = argmax
s∈{0,1}

(P(S = s | y)) .

De cette façon nous obtenons une estimation de la classe la plus probable. Cependant,
pour une observation y0, si nous souhaitons déterminer la probabilité "ponctuelle" une
manière correcte de le faire est la suivante (Nguyen, 2016) :

P(S = s | y0 − ϵ < y < y0 + ϵ) =
P(S = s, y0 − ϵ < y < y0 + ϵ)

P(y0 − ϵ < y < y0 + ϵ)

=
P(S = s)

∫ y0+ϵ

y0−ϵ
f̂s(y)∫ y0+ϵ

y0−ϵ
f̂(y)

=
ω̂
∫ y0+ϵ

y0−ϵ
f̂s(y)∫ y0+ϵ

y0−ϵ
f̂(y)

=
ρ̂
(
F̂s(y0 + ϵ)− F̂s(y0 − ϵ)

)
F̂ (y0 + ϵ)− F̂ (y0 − ϵ)

.

Avec f̂ la densité du mélange complet déterminée à partir des différents paramètres
estimés par le modèle et F̂ la fonction de répartition associée. La constante ϵ est
généralement fixée à 0.1. Enfin, cette méthode nous permet de déterminer U que l’on
peut nommer incertitude.

U(y0) = 1− max
s∈{1,...,n}

P(S = s | y0 − ϵ < y < y0 + ϵ) ∈
[
0,

1

n

]
.

On considère alors la classification incertaine si U(y0) > Hu où Hu est un seuil
légèrement inférieur à 1

n
. Cette seconde méthode peut être illustrée avec le graphique

en figure 2.13.
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Figure 2.13 – Graphique de distribution illustrant la méthode de prédiction à l’aide de l’optimal
Bayes rule.

Les paramètres des distributions de la figure 2.13 sont µ0 = 10, µ1 = 40, σ0 = 15,
σ1 = 20, w = 0 ,π1 = 0.4. La classe 3 correspond aux points dont l’incertitude est
supérieure à Hu = 0.4.

Enfin, une dernière possibilité, plus complète, permet la prédiction des probabili-
tés pour un lot de nouvelles observations. Elle consiste simplement en l’application
des procédures Forward et Backward dans un cadre déterministe. Il suffit de disposer
d’un vecteur de nouvelles observations pour un ou plusieurs troupeaux, ainsi que de
l’ensemble des estimations obtenues à l’aide du modèle bayésien, afin d’obtenir les
estimations des probabilités et donc des statuts infectieux pour chaque mois. Si plu-
sieurs troupeaux sont utilisés il est alors possible d’avoir un aperçu de la prévalence
pour chaque mois en appliquant un seuil sur les probabilités et en déterminant le ratio
Nombre de troupeaux infectés
Nombre total de troupeaux .
Afin de tester cette méthode de prédiction nous avons simulé 100 jeux de données

de 20 troupeaux avec 100 observations chacun. Les paramètres du mélange gaussien
utilisés sont les mêmes que ceux de la figure 2.13, nous ajoutons à ceux-là les paramètres
de la dynamique π1 = 0.4, τ1 = 0.1 et τ2 = 0.85. À la différence du modèle bayésien
les probabilités déterminées à partir de la variable backward ont été implémentées car
le coût de calcul est ici largement inférieur et elles étaient supposées améliorer les
performances de la prédiction.
Nous représentons en figure 2.14 l’évolution des sensibilités et spécificités selon le seuil
considéré. Il est important de comprendre que ces sensibilités et spécificités diffèrent
des précédentes car elles proviennent d’un seuillage sur les probabilités prédites et non
d’un seuillage sur les mesures d’un test sérologique. Ici elles permettent d’évaluer la
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prédiction tandis que précédemment elles définissaient les caractéristiques des tests
utilisés.

Figure 2.14 – Sensibilités et spécificités des procédures en fonction du seuil s.

Le tracé gauche de la figure 2.14 correspond à celui de la procédure Forward, le second
celui de la procédure Backward.

Il existe différents critères d’optimisation de ces grandeurs, nous pouvons par
exemple chercher le seuil H= qui donne Se = Sp, une autre alternative est l’opti-
misation du JY de Youden qui se définit par JY = Se+ Sp− 1.

Procédure
Forward Backward

Cr
itè

re H= 0.41 0.39

JY 0.41 0.41

Table 2.4 – Tableau des seuils optimaux pour la prédiction des statuts infectieux par l’algo-
rithme Forward-Backward déterministe.

Les seuils optimaux répertoriés dans la table 2.4 sont représentés sur la figure 2.14 à
l’aide des lignes pointillées. Ces lignes sont confondues pour la procédure forward.

Nous pouvons accompagner cette analyse d’une courbe ROC résumant les perfor-
mances des deux procédures.
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Figure 2.15 – Courbe ROC pour les procédures Forward et Backward déterministes

La figure 2.15 illustre bien la meilleure prédiction de l’état du troupeau à partir des pro-
babilités définies par la variable backward. Quel que soit le critère d’optimisation choisit
nous obtenons la combinaison (Se = 0.9, Sp = 0.9) dans le cas de la procédure forward
et (Se = 0.93, Sp = 0.93) pour la seconde. Enfin, la distribution des prévalences des
deux algorithmes est donnée figure 2.16.

Figure 2.16 – Boxplot des prévalences pour les procédures forward et backward déterministes.

Concernant les prévalences nous obtenons des résultats identiques pour les deux procé-
dures. Chacune d’elles fait preuve de très bonnes performances, du moins dans le cas
de paramètres de distribution et dynamique relativement favorables. Nous observons
un léger avantage pour la méthode backward, un résultat espéré du fait de probabilités
déterminées à chacun des pas de temps en connaissant l’ensemble des observations.

Pour conclure cette partie sur la prédiction des probabilités d’infection nous pou-
vons évoquer le fait que malgré une utilisation en pratique pertinente des prédictions
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dans le cadre déterministe il convient de rester prudent sur leur utilisation. En effet, les
distributions considérées connues proviennent en réalité d’estimateur de bayes déter-
miné à partir des lois a posteriori du modèle. Il est difficile de confirmer la validité de
l’utilisation des lois a posteriori de cette manière. Enfin, le cadre déterministe nous fait
perdre la capacité des statistiques bayésiennes à évaluer l’erreur commise notamment à
l’aide des intervalles de crédibilité.

Nous avons, dans l’ensemble de cette partie, évoqué des données simulées nous
permettant de juger nos capacités prédictives. Il convient maintenant de présenter notre
méthode de simulation ainsi que le plan d’expérience mis en œuvre afin de justifier de
l’avantage des observations continues sur les observations discrètes.

2.4 Simulation des données

Afin de juger des qualités et limites d’un modèle il est important de l’appliquer sur
données simulées dans un premier temps. De cette manière nous contrôlons l’ensemble
des paramètres que nous souhaitons estimer. Dans un premier temps nous détaillons
certains éléments de la fonction de simulation. Une seconde partie permettra de poser
le plan d’expérience dont nous présentons les résultats en partie 3.

2.4.1 Méthode de simulation

Afin de simuler nos données il a été créé puis perfectionné une fonction sim_mast_BVD.
Nous commençons en exhibant les arguments importants en entrée de cette fonction.

La possibilité est donnée de choisir le nombre de troupeaux qui correspond alors
au nombre d’individus de l’expérience. Ensuite il est nécessaire d’indiquer le nombre
de mesures souhaité, qui va correspondre au nombre de pas de temps pour chacun
des troupeaux. L’écart entre chaque résultat de test est d’un mois par défaut mais
il est donné la possibilité de le modifier pour coller aux données réelles. De plus, la
fonction prend en entrée la matrice de transition permettant notamment de préciser les
valeurs de τ1 et τ2. Elle est accompagnée des matrices des moyennes et écarts-types
des composantes du mélange ainsi que de la valeur du w introduit en fin de partie
2.2.5. Si l’on désire simuler des observations discrètes il faut remplacer les matrices
des paramètres (µi)i=0,1 et (σi)i=0,1 par une matrice spécifiant les sensibilités (Se) et
spécificité (Sp) des tests.

La fonction de simulation démarre avec la récupération des valeurs de τ1 et τ2 afin de
déterminer π1 à l’aide de la formule (2.2) donnée en partie 2.2.3. Nous simulons ainsi des
chaînes dans un état déjà stationnaire. La séquence des dates permettant simplement de
mimer les données réelles elle débute à la date du jour. Ensuite, il nous faut l’état initial
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qui est généré à l’aide d’une multinomiale à deux classesM(1; 1−π1, π1) afin d’obtenir
l’état sous forme de one hot encoding. Afin de générer les états suivants on utilise
le vecteur des états précédents pour déterminer la ligne de la matrice de transition à
conserver et on génère une nouvelle fois à l’aide d’une multinomiale employant cette
fois-ci les probabilités de transitions sélectionnées.

Après obtention de l’ensemble des états il nous faut créer la variable des observations
qui servira pour l’apprentissage du modèle de Markov caché. Dans le cas discret nous
utilisons simplement une B(1, Sp), soit une Bernoulli de probabilité Sp, si nous sommes
dans l’état 0 et une B(1, Se) pour l’état 1. Cette méthode de simulation nous permet de
générer des données discrètes sans discrétiser à partir de résultats initialement continus.
Concernant ces derniers, dans le cas des individus sains (0) nous réalisons une B(1, w)
qui induit une mesure égale à 0 (saturation en 0) si c’est un succès et une réalisation
d’une N (µ0, σ0) dans le cas contraire. Pour le second état nous tirons simplement une
réalisation d’une N (µ1, σ1). En pratique nous nous contentons simplement de générer
des données continues qui sont ensuite discrétisées si l’on souhaite générer des données
discrètes. La fonction se termine sur le remplacement des observations par des données
manquantes s’il a été demandé un intervalle de temps supérieur à 1 mois entre plusieurs
émissions.

L’ensemble de cette fonction nous permet d’obtenir des jeux de données artificiels
mimant les données réelles en maîtrisant l’ensemble des paramètres estimés par le
modèle bayésien. Elles joueront un rôle important pour la mise en exécution du plan
d’expérience proposé dans la partie qui suit.

2.4.2 Plan d’expérience

Nous avons débuté les tests en vérifiant si les paramètres des distributions étaient
correctement estimés dans le cas d’un modèle simple sans dynamique et donc sans
algorithme forward. Les résultats avaient l’avantage d’être obtenus rapidement et ont
été concluants. Nous nous contentons de cela pour l’évocation de cette phase, celle-ci
étant seulement présente pour justifier la poursuite de notre approche.

Ensuite, nous avons soumis le HMM avec observations continues à différents
contrôles. L’objectif était de vérifier que l’ajout de la dynamique, et notamment de
paramètres supplémentaires à estimer, ne dégradait pas les résultats. De plus, nous
souhaitions détecter les limites du modèle, en particulier lorsque les composantes du
mélange commencent à se confondre. Nous l’avons donc testé sur des jeux de données
simulées dont la variation des paramètres est résumée dans le tableau 2.5.
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Combinaisons π1 σ1 σ2

1 0.2 0.05 0.05
2 0.2 0.05 0.2
3 0.2 0.2 0.05
4 0.2 0.2 0.2
5 0.4 0.05 0.05
6 0.4 0.05 0.2
7 0.4 0.2 0.05
8 0.4 0.2 0.2

[1] Pour chacunes des combinaisons w = 0.6, µ0 = 1, µ1 = 2, τ1 = 0.1, τ2 = 1− τ1(1−π1)
π1

.

Table 2.5 – Plan d’expérience pour les paramètres π1, σ1, σ2.

L’écart entre les différentes valeurs d’un même paramètre étant relativement faible
nous nous permettons d’utiliser les mêmes paramétrages pour les lois a priori des 8
combinaisons. Celles-ci sont données dans le tableau 2.6.

Paramètre Prior

w Beta(4, 8)
π1 Beta(4, 8)
τ1 Beta(2, 10)
τ2 Beta(9, 3)

[1] Pour µ0 et µ1 nous utilisons le paramétrage présenté en (2.6) en partie 2.2.5.

Table 2.6 – Table des lois a priori posées sur les paramètres pour la première phase du plan
d’expérience.

Pour chacune des combinaisons nous générons 1000 tableaux de 400 observations pour
un seul troupeau.

Suite à cela nous avons souhaité observer le comportement du modèle sur des jeux
de données plus proches du réel, tout en évaluant les performances du nouveau modèle
par rapport à celles de son prédécesseur. Pour ce faire nous avons essayé 6 combinaisons
de paramètres avec 1500 jeux de 500 observations pour un seul troupeau. Cependant, ici
nous supprimons le paramètre w qui permet essentiellement de débruiter les données
et qui n’est pas tout à fait conventionnel. De cette manière nous testons le premier
mélange présenté en partie 2.2.5 sur des données propres sans pic de densité en 0. Les
résultats binaires nécessaires au modèle original sont créés en discrétisant la variable
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continue à l’aide d’un seuil h. Cette discrétisation nous donne des valeurs de Se et Sp
déterminées à partir des égalités (2.7). Nous fixons π1 = 0.4, σ1 = 15, σ2 = 20 tandis
que le reste des paramètres est résumé dans le tableau 2.7.

Combinaisons τ1 τ2 µ1 µ2 Seuil (h) Se Sp
1 0.1 0.85 25 75 50 0.95 0.95
2 0.1 0.85 25 50 37.5 0.79 0.79
3 0.1 0.85 30 50 37.5 0.79 0.69
4 0.1 0.85 25 45 37.5 0.69 0.79
5 0.2 0.7 25 75 50 0.95 0.95
6 0.4 0.4 25 75 50 0.95 0.95

[1] Les combinaisons 5 et 6 sont identiques à la première excepté sur les valeurs de τ1 et τ2 afin de faire
varier la dynamique du HMM.

Table 2.7 – Résumé des paramètres pour la simulation des données utilisées pour comparer
les deux modèles bayésiens.

Ce tableau a été déterminé avec l’objectif de comparer les deux modèles sur des compo-
santes du mélange gaussien bien différenciées dans un premier temps. Ensuite nous
avons diminué les sensibilités et spécificités en augmentant la superposition de ces
composantes. La spécificité a alors été de nouveau diminuée puis nous avons interverti
les valeurs de Se et Sp. Enfin, les deux dernières combinaisons permettaient d’étudier
l’influence possible des paramètres de la dynamique sur les estimations.

Nous précisons qu’une première étape a consisté en la réalisation de 3 inférences
pour la première combinaison en faisant décroître la quantité d’information fournie
par les lois a priori. Les résultats obtenus étant positifs nous nous sommes fixés sur le
tableau 2.7 avec les lois a priori qui suivent.

Pour µ1 et µ2 nous réutilisons le paramétrage précédent introduit en partie 2.2.5.
Ensuite, nous avons 3 variations pour Se et Sp, on rappelle que ces valeurs étant des
probabilités nous utilisons des lois Beta.

Se,Sp Prior

0.69 Beta(22.8, 19.3)
0.79 Beta(19.7, 10.7)
0.95 Beta(13.26, 3.27)

Table 2.8 – Table des lois a priori posées sur les paramètres Se et Sp pour la deuxième phase
du plan d’expérience.
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Le tableau 2.8 répertorie les lois a priori utilisées pour cette seconde phase du plan
d’expérience pour Se et Sp. Les valeurs des α et β sont fixées de telles sortes que
l’espérance des trois lois Beta est égale à Se − 0.15 (respectivement Sp − 0.15). De
cette manière nous évitons de biaiser nos comparaisons en apportant des informations
plus importantes pour certaines combinaisons.

Figure 2.17 – Distribution des lois a priori des paramètres Se et Sp

La loi a priori sur π1 est une Beta(4,8). Comme pour Se et Sp nous répertorions les lois
a priori sur τ1 et τ2 en table 2.9.

τ1 Prior

0.1 Beta(2, 10)
0.2 Beta(3, 9)
0.4 Beta(4, 8)

τ2 Prior

0.4 Beta(4, 8)
0.7 Beta(8, 4)
0.85 Beta(9, 3)

Table 2.9 – Lois a priori des paramètres τ1 et τ2 pour la seconde phase du plan d’expérience.

L’ensemble du plan que nous appliquons sur données simulées étant maintenant établi
il est temps de passer à la présentation des résultats.
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Chapitre 3

Résultats

3.1 Application des modèles sur données simulées

3.1.1 Évaluation du modèle avec observations continues

La première phase du plan d’expérience consiste à vérifier que le nouveau modèle
fonctionne correctement et d’en déterminer les limites. Nous allons uniquement nous
intéresser aux estimations des moyennes et de la prévalence ainsi que du paramètre w,
ce dernier étant une spécificité de notre modèle avec observations continues. Le reste
des boxplots est à retrouver en annexe (B.1).

Figure 3.1 – Boxplot du biais des estimations pour les moyennes µ0 et µ1 du mélange.

On rappelle que la figure 3.1 a été obtenue en réalisant 1000 simulations différentes. On
remarque un biais en moyenne proche de 0, avec cependant la présence de quelques

37



CHAPITRE 3. RÉSULTATS 38

estimations aberrantes sur les combinaisons 3,4,7 et 8. C’est sur ces mêmes combinaisons
que l’on devine un biais un peu plus important.

Figure 3.2 – Boxplot du biais des estimations pour le paramètre w.

Ensuite, on pouvait craindre une estimation difficile pourwmais finalement on découvre
un biais très proche de 0 et tout à fait acceptable pour une valeur réelle du paramètre
de 0.6. Cela semble justifier que cette composante a toute sa place dans le mélange et
peut correctement aider à débruiter les données.

On termine cette partie en effectuant un zoom sur l’estimation de π1.

Figure 3.3 – Biais des estimations pour les paramètres π1 et π1noEstim .

Sur cette figure 3.3 apparaît en vert le biais de π̂1, il se trouve que dans les 4 premières
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combinaisons le paramètre est sans arrêt sur-estimé et est ensuite sous-estimé dans
les 4 suivantes. Il est possible que π1 intervenant uniquement dans l’initialisation de
l’algorithme forward la loi a priori utilisée jouent un rôle prédominant dans l’estimation
finale. En effet, on rappelle que la loi a priori utilisée ici est une Beta(4, 8) et est donc de
moyenne 0.33 avec π1 qui vaut 0.2 dans les 4 premières combinaisons et 0.4 dans les 4
dernières. Nous avons alors envisagé la possibilité de déterminer la prévalence à l’aide
des chaînes de τ1 et τ2. On rappelle que les données sont simulées à l’aide d’une chaîne
de Markov qui se trouve déjà dans un état stationnaire, de ce fait nous disposons de
l’égalité (2.2). Le graphique illustre que l’on obtient une meilleure estimation de π1 avec
π̂1noEstim

. Ceci était attendu du fait des bonnes estimations de τ1 et τ2 (Annexe B.1).
On peut résumer l’ensemble de ces observations en utilisant les pourcentages de

couverture des intervalles de crédibilité, on donne ces pourcentages pour les intervalles
de niveau 95% mais on trouve aussi les niveaux 90% et 99% en annexe B.2.

Scénarios
Variable 1 2 3 4 5 6 7 8

µ0 0.92 0.94 0.34 0.78 0.89 0.96 0.27 0.75
µ1 0.94 0.88 0.95 0.90 0.95 0.91 0.95 0.92

π̂1noEstim
0.96 0.96 0.97 0.96 0.93 0.94 0.94 0.94

σ0 0.96 0.95 0.92 0.94 0.95 0.95 0.93 0.94
σ1 0.95 0.94 0.96 0.96 0.94 0.96 0.95 0.95
τ1 0.95 0.96 0.95 0.96 0.96 0.95 0.94 0.95
τ2 0.94 0.94 0.95 0.95 0.94 0.95 0.95 0.95
w 0.95 0.93 0.94 0.94 0.93 0.93 0.92 0.92

Table 3.1 – Pourcentages de couverture pour l’ensemble des paramètres du modèle continu //
niveau 95%

Ce tableau confirme une faiblesse du modèle sur le paramètre µ0 pour les combinai-
sons 3,4,7 et 8. Ce résultat était envisageable puisque ce sont les combinaisons pour
lesquelles les distributions sont moins différenciées. Afin de justifier ces mauvais taux
de couverture on peut ajouter les écarts-types des estimations µ̂0 et µ̂1.
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Figure 3.4 – Écarts-types des estimations pour les paramètres µ0 et µ1.

La figure 3.4 indique que les écarts-types, malgré des valeurs extrêmes sur certaines
combinaisons, sont extrêmement faibles et entraîne donc une valeur réelle exclue des
intervalles de crédibilité dès qu’un léger biais est présent (figure 3.1).
Cependant, il est notable que les pourcentages sont particulièrement moins bons pour
les combinaisons 3 et 7 alors que les distributions sont plus différenciées que pour les
scénarios 4 et 8. On peut faire une dernière remarque, le même comportement se répète
dans les deux groupes de 4 combinaisons, le seul élément différenciant ces deux groupes
étant la valeur de π1. Il semble donc que la valeur du paramètre n’ait pas une grande
influence sur les estimations données par le modèle. En réalité, son influence se restreint
essentiellement à la quantité de données dans chacun des groupes (sains/malades) et
donc influence directement le nombre de données disponibles pour l’apprentissage du
modèle.

Le reste des graphiques disponibles en annexe B.1 permet de valider les bonnes
performances du HMM dans le cas d’observations continues. Nous pouvons donc
poursuivre avec la comparaison de ce nouveau modèle à son prédécesseur.

3.1.2 Comparaison des deux modèles

Dans cette sous-partie nous nous intéressons aux résultats de la seconde phase du
plan d’expérience. Tous les graphiques ne seront pas donnés ici non plus, ils serviront
simplement à illustrer et commenter les performances des deux modèles.

Puisque nous souhaitons mettre en parallèle les deux modèles il convient de trouver
un point de comparaison. Celui-ci se situe dans les paramètres Se et Sp. En effet, ils
constituent la spécificité du modèle avec observation discrètes mais peuvent aussi être
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déterminés de manière déterministe dans le cas du modèle avec observations continues.
On donne uniquement les boxplots biais de Ŝp mais les observations pour Ŝe sont
identiques.

Figure 3.5 – Boxplots des biais des estimations du paramètreSp par les deuxmodèles bayésiens.

Pour le modèle continu les sensibilités et spécificités ont encore été établies à partir des
expressions (2.7), en utilisant les chaînes de Markov de µ0 et µ1 estimées par le HMC.
On remarque rapidement en figure 3.5 un biais non négligeable pour le modèle discret
dans le cas de la sixième combinaison. Pour le reste des scénarios les deux modèles
présentent un biais proche de 0, avec un léger avantage pour le modèle à émissions
continues. Un autre avantage est que les estimations sont plus précises comme le montre
la figure 3.6.

Figure 3.6 – Boxplots des écarts-types des estimations du paramètre Sp par les deux modèles
bayésiens.
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L’ensemble des graphiques en annexe C viennent confirmer nos observations avec une
estimation biaisée du modèle discret sur la dernière combinaison et le modèle continu
qui semble globalement plus pertinent. De plus, cette fois-ci aussi π̂1noEstim permet
d’améliorer les estimations, et ce pour les deux modèles (Annexe C pour le biais de π̂1).
L’avantage pour le nouveau modèle persiste sur l’estimation de π1 comme illustré sur
la figure 3.7.

Figure 3.7 – Boxplots des biais des estimations du paramètre π1 à partir des chaînes de τ1 et
τ2.

Enfin, les taux de couverture des intervalles de crédibilité permettent de résumer
efficacement les résultats des modèles pour l’ensemble des paramètres.

Combinaisons

Variable Type de modèle 1 2 3 4 5 6

Continu 0.94 0.91 0.87 0.94 0.93 0.93
Se Discret 0.96 0.96 0.98 0.95 0.89 0.70

Continu 0.94 0.94 0.96 0.92 0.96 0.93
Sp Discret 0.97 0.98 0.97 0.99 0.91 0.00

Continu 1.00 1.00 1.00 1.00 1.00 1.00
π1noEstim Discret 0.95 0.99 1.00 0.99 0.99 1.00

Continu 0.94 0.97 0.98 0.98 0.94 0.95
τ1 Discret 0.95 0.97 0.99 0.99 0.87 0.99

Continu 0.95 0.96 0.96 0.98 0.94 0.96
τ2 Discret 0.96 0.97 0.99 0.98 0.82 1.00

Table 3.2 – Pourcentages de couverture des intervalles de crédibilité de niveau 95% pour les
paramètres communs aux deux modèles, obtenus sur B = 1500 simulations.
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Dans l’ensemble les taux de couverture de la table 3.2 sont très bons et approchent,
voire dépassent, les 95%. Excepté pour le modèle original dans quelques situations
visiblement défavorables.

Cette partie était consacrée à la démonstration des bonnes performances desmodèles
sur données simulées, et en particulier aux bénéfices du nouveau modèle sur l’original.
Ceci étant fait nous terminons avec l’examen des résultats du modèle continu sur notre
jeu de données présenté en 2.1.

3.2 Application aux données réelles

3.2.1 Échantillon de données entre 2018 et 2021

La première étape sur données réelles avait pour objectif de débuter tranquillement
avec une application sur un fragment de nos données favorable à l’utilisation du modèle.
On peut commencer par montrer que l’échantillonnage par l’algorithme MCMC se fait
convenablement. Pour le modèle continu sans w nous avons par exemple les graphiques
en figure 3.8 pour les moyennes et écarts-types des distributions.

Figure 3.8 –Mélange des chaînes de Markov par l’algorithme MCMC du modèle continu (sans
w) pour les paramètres des distributions.

Les résultats sont similaires pour le modèle avec le poids w, cependant le modèle discret
peut présenter des soucis dans le mélange. En effet, il arrive que certaines chaînes
mélangent en des valeurs différentes des autres chaînes.
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Figure 3.9 – Mélange des chaînes de Markov par l’algorithme MCMC du modèle discret pour
Se et Sp.

On voit sur la figure 3.9 que la quatrième chaîne mélange systématiquement en des
valeurs qui semblent erronées. Il est possible que ce modèle soit plus sensible au
faible nombre de données disponibles dans le groupe des troupeaux infectés puisque la
discrétisation entraîne une perte d’information certaine.

Les 3 modèles ayant été appliqué à notre échantillon de données nous pouvons
comparer les résultats à l’aide des intervalles de crédibilité sur les estimations. Par
exemple pour τ2 nous avons le graphique suivant.

Figure 3.10 – Intervalles de crédibilité à 95% de l’estimation de τ2, par les 3 modèles sur notre
échantillon de données réelles.
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D’après la figure 3.10 les deux modèles continus donnent des estimations identiques
tandis que le modèle discret indique une probabilité de rester malade plus élevée. Peu
observable ici le phénomène de mauvais mélange chez le modèle discret peut cependant
venir fausser les intervalles de crédibilité quand les deux modèles continus seront eux
certains de leurs estimations respectives. Il est intéressant de regarder les estimations
de µ0 par ces deux modèles continus.

Figure 3.11 – Intervalles de crédibilité à 95% de l’estimation de µ0, par les 2 modèles avec
observations continues sur notre échantillon de données réelles.

Nous supposions qu’une saturation des données en 0 pouvait entraîner une sous-
estimation de µ0. Comme espéré la figure 3.11 indique que l’estimation de la moyenne
du groupe sain est un peu plus élevée dans le cas du second modèle. La différence
est légère car nous avons fait en sorte de sélectionner un échantillon peu saturé en
0. L’ajout de la composante en 0 paraît donc judicieuse pour aider à détecter la réelle
distribution des mesures de tests pour les troupeaux sains.

Nous pouvons maintenant superposer les graphiques de densité des lois normales
estimées aux distributions réelles, dans un premier temps sur la distribution complète.
Nous choisissons d’utiliser les estimations du modèle incluant la composante w mais
en représentant un mélange à seulement deux composantes. En effet nous considérons
le paramètre w comme un élément nous permettant de détecter les distributions non-
bruitées et non comme un poids réellement présent dans le mélange.
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Figure 3.12 – Distributions réelles et estimées pour l’échantillon de données sélectionné.

Pour accompagner la figure 3.12 nous pouvons ajouter le graphique des distributions
des groupes sains et infectés.

Figure 3.13 – Distributions réelles et estimées, groupes sains et infectés, pour l’échantillon de
données sélectionné.

Que ce soit sur la figure 3.12 ou la 3.13 les estimations paraissent assez fidèles aux
données réelles. On rappelle que la variable tres indiquant les 0 et 1 des données réelles
ne correspond pas aux statuts exacts. Elle est déterminée à partir du seuil odr = 35.
Les distributions estimées étant superposées entre, environ, 0 et 25 cela indique une
probabilité non négligeable de détecter des faux négatifs et ce quel que soit le seuil
utilisé.

Pour terminer cette sous-partie il peut être intéressant de regarder les prédictions
de la probabilité d’infection que rendent les 3 modèles pour quelques troupeaux au
dernier pas de temps.
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Figure 3.14 – Intervalles de crédibilité de niveau 95% pour les prédictions des probabilités de
séropositivité de 4 troupeaux.

Les deux modèles utilisant les mesures continues produisent bien des résultats similaires
en terme de prédiction de la probabilité de séropositivité. Cependant, on remarque bien
sur la figure 3.14 que le souci de convergence du modèle discret impacte grandement
cette prédiction. Il est fort probable que ce problème apparaisse du fait d’un faible
nombre de mesures pouvant être attribuées à des troupeaux infectés et d’un déséquilibre
entre les deux groupes. Nous l’observons notamment dans la suite de cette partie sur le
modèle continu. Le modèle discret paraît toutefois bien plus sensible à ce phénomène.

3.2.2 Découpage des données en 28 périodes

Nous avons déjà évoqué à deux reprises le séquençage de nos données en 28 périodes.
Le modèle continu incluant la composante en 0 a permis de déterminer l’ensemble
des estimations souhaitées. Pour le paramètre w il est suffisant de dresser un tableau
répertoriant les différentes espérances des lois a posteriori (Annexe D.2). On relève
essentiellement une bien plus forte présence de saturation en 0 dans le cas du test
LGMCAT. Les distributions des différentes lois a posteriori ont été obtenues pour
chacune des variables du modèle et sont présentées sur la figure 3.15.
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Figure 3.15 – Distributions a posteriori de µ0 pour le test LGMCAT sur les 28 périodes.

On pourrait espérer des distributions centrées en des valeurs similaires pour les 3 dé-
partements avec une constance dans le temps. Cependant, on observe une décroissance
de la moyenne tout au long des 28 périodes avec une différence entre les départements
en particulier avec le Morbihan (56). Toutefois, on relève que ces distributions restent
concentrées entre environ 2.5 et 7.5. On peut toutefois évoquer la présence de plusieurs
modes sur les distributions des dernières périodes.

Si on s’intéresse aux paramètres de la dynamique on peut faire quelques remarques
intéressantes. On donne cette fois-ci les graphiques des intervalles de crédibilité.
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Figure 3.16 – Intervalles de crédibilité pour l’estimation de π1 sur les 28 périodes.

Les intervalles de la figure 3.16 illustrent une décroissance de π1 au fil du temps, soit
une prévalence de la maladie qui semble diminuer quel que soit le département. On
peut aussi comparer π̂1 à π̂1noEstim pour se rendre compte que les graphiques sont
tout à fait similaires (Annexe D.4). Cette seconde prévalence étant déterminée à l’aide
de l’expression à l’équilibre cela semble signifier que la BVD se trouve dans un état
stationnaire à chaque pas de temps. On accompagne π1 de la probabilité τ1 de passer
d’un état sain à infecté.

Figure 3.17 – Intervalles de crédibilité pour l’estimation de τ1 sur les 24 premières périodes.

Pour la figure 3.17 nous avons supprimé les dernières périodes qui dégradaient la
visualisation de l’évolution des estimations. Ainsi, on peut voir que la probabilité
d’infection semble constante voire décroissante au fil du temps. L’important étant
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surtout qu’elle ne soit pas croissante. Cette diminution vient supporter l’observation
précédente concernant une baisse de la prévalence dans le temps. Les graphiques pour
τ2 (Annexe D.4) semblent aussi abonder dans la direction d’une baisse de la prévalence
avec une probabilité de rester infecté qui paraît diminuer. Tout cela soutient le fait que
les mesures mises en place pour la surveillance et l’éradication du virus sont efficaces.
Il nous faut cependant mentionner les soucis sur les dernières périodes. En effet, la
présence de plusieurs modes sur les distributions a posteriori pose problème dans
l’utilisation de la moyenne a posteriori en tant qu’estimateur de Bayes. De plus, les
intervalles de crédibilités sont complètement faussés. Il est, encore une fois, probable que
ce défaut provienne d’un nombre d’observations trop faibles de troupeaux possiblement
infectés (Annexe D.3).

Enfin, nous avons donné des exemples de graphiques pour la prédiction des proba-
bilités en partie 2.3.1 et pouvons maintenant ajouter quelques remarques importantes.
Nous illustrons ici les probabilités prédites dans le cas d’un troupeau du département
22.

[1] Les intervalles de crédibilité ne sont pas optimaux mais déterminés à partir des quantiles à 2.5% et
97.5%.
[2] La distribution a posteriori est donnée uniquement pour la période 24.

Figure 3.18 – Intervalles de crédibilité à 95% et distribution a posteriori de l’estimation de la
probabilité d’être infecté pour un troupeau des Côtes-d’Armor (22).

Le premier graphique de la figure 3.18 nous permet de relever quelques éléments.
Premièrement le troupeau semble être infecté sur les premières périodes puis devient
sain tout à coup. Il semble ensuite y avoir une probabilité que le troupeau soit de
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nouveau infecté qui augmente graduellement dans le temps. La volonté d’utiliser les
données continues provient notamment de l’idée que la transition entre l’état sain et
l’état infecté serait plus facilement observable, avec une augmentation progressive de
l’odr et donc de même pour la probabilité P(ST = 1 | y1,...,T ). L’augmentation entre
les périodes 7 et 28 que l’on observe en figure 3.18 semble aller dans le sens de notre
hypothèse. Cependant, la transition entre les périodes 5 et 7 est relativement abrupte à
la manière d’une discrétisation binaire. Une possible explication serait le fait que nous
ne disposons pas de mesures de tests à chaque pas de temps mais uniquement tous les 3
à 6 mois. De ce fait, le troupeau a tout a fait le temps de passer d’un état infecté à sain,
et inversement, sans que l’on ait pu détecter ce basculement.

Nous venons de détailler les résultats sur données simulées puis sur données réelles.
Nous passons maintenant à leur discussion afin de conclure ce rapport.
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Discussion et conclusion

Premièrement la partie 3.1.1 a permis de confirmer que l’estimation bayésienne
fonctionne pour l’estimation des paramètres d’un HMM. S’ajoutent à cela des résultats
qui semblent répondre par la positive à notre problématique de départ qui consistait à
déterminer si la conservation des données continues améliorait les estimations. L’amé-
lioration n’est pas drastique car le modèle original fonctionnait déjà correctement
malgré quelques imperfections, cependant la marge d’amélioration reste importante
avec par exemple des lois a priori sur les écarts-types du mélange qui sont actuellement
très peu informatives.

Les résultats sur données réelles, en plus d’illustrer l’avantage du modèle continu
sur le modèle discret, permettent d’émettre quelques observations. La composante du
mélange caractérisant le groupe des troupeaux séropositifs semble un peu plus difficile
à estimer. C’est probablement une conséquence directe de la valeur de prévalence qui
réduit le nombre des mesures constitutives de ce groupe. De plus, le résultat obtenu pour
la première application sur données réelles indique des distributions qui ne sont pas
parfaitement différenciées. Cela signifierait un taux de faux négatifs significativement
supérieur à 0 au moins pour le test LGMVEA. L’expérience sur les 28 périodes semble
quant à elle témoigner de l’efficacité des mesures de surveillances mises en place avec
une baisse de la prévalence dans le temps et de la probabilité d’infection, en particulier
dans le département du Morbihan (56).

Un élément intéressant à ajouter serait la mise en perspective des probabilités
prédites avec la détection d’individus IPI dans les troupeaux. En effet, les sauts dans
la prédiction des probabilités entre différentes périodes peuvent provenir d’états qui
ne sont pas observés entre les 3 mois séparant deux tests, mais ils peuvent aussi être
la conséquence de l’apparition d’individus IPI dans le troupeau et la mise en place de
mesures afin d’éliminer toute présence de la maladie.

Nous pouvons discuter des pistes d’amélioration du modèle bayésien. À l’origine il
était souhaité l’ajout de facteurs de risque au modèle. Ceux-ci sont inclus dans le modèle
d’origine par le biais d’une régression logistique sur le paramètre τ1 (probabilité pour
le troupeau de passer d’un état séronégatif à séropositif). Par manque de temps cela n’a
pas pu être accompli pour le nouveau modèle. Les principaux facteurs envisagés sont
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l’introduction de nouveaux individus dans le troupeau ainsi que la taille de ce dernier.
On pourrait aussi y ajouter une dimension géographique avec la proximité d’autres
troupeaux. Par ailleurs, un travail de recherche sur les lois a priori utilisées pourrait être
réalisé. On peut notamment penser à l’ajout de lois normales avec une transformation
logit et des lois plus informatives pour σ0 et σ1. Enfin, une idée évoquée au cours du
stage était l’utilisation dans le mélange d’une loi de Pareto pour la composante de
gauche afin de représenter la censure des données en 0.

Pour terminer, on peut rapidement parler des données disponibles pour une telle
modélisation. La présence de saturation en différents endroits dans les données oblige
la mise en place d’un modèle plus complexe et rend plus fastidieuse l’estimation des
paramètres étudiés. Les performances du modèle sont aussi directement impactées par
des mesures de test réalisées au minimum tous les 3 mois. L’implémentation du modèle
continu semblant faire ses preuves il pourrait être intéressant de disposer de mesures
plus fréquentes afin de faciliter les estimations et améliorer leur précision.
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ANNEXE A. RECHERCHE D’UN ÉCHANTILLON PROPRE DANS LES DONNÉES
RÉELLES 59

Figure A.1 – Distributions des données réelles sur des périodes de 3 ans, de 2000 à 2018
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Annexe B

Plan d’expérience - première phase

B.1 Boxplots

Figure B.1 – Boxplots des biais des estimations pour la première phase de plan d’expérience,
pour σ0 et σ1 puis τ1, τ2.
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Figure B.2 – Boxplots des écarts-types des estimations pour la première phase du plan d’expé-
rience.
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B.2 Taux de couverture

Scénarios

Variable 1 2 3 4 5 6 7 8

µ0 0.84 0.89 0.23 0.70 0.83 0.91 0.17 0.63

µ1 0.89 0.79 0.89 0.82 0.89 0.84 0.89 0.85

π̂1noEstim 0.92 0.91 0.92 0.94 0.87 0.89 0.88 0.87

σ0 0.90 0.89 0.87 0.89 0.90 0.90 0.87 0.89

σ1 0.90 0.89 0.91 0.91 0.90 0.92 0.90 0.90

τ1 0.91 0.91 0.90 0.92 0.90 0.91 0.88 0.91

τ2 0.88 0.88 0.91 0.90 0.89 0.92 0.90 0.90

w 0.88 0.90 0.90 0.88 0.88 0.85 0.87 0.87

Table B.1 – Pourcentages de couverture pour l’ensemble des paramètres du modèle continu //
niveau 90%

Scénarios

Variable 1 2 3 4 5 6 7 8

µ0 0.98 0.99 0.57 0.92 0.96 0.99 0.50 0.90

µ1 0.99 0.96 0.99 0.97 0.99 0.98 0.99 0.98

π̂1noEstim 0.99 0.99 0.99 1.00 0.98 0.99 0.99 0.98

σ0 0.99 0.99 0.98 0.99 0.99 0.99 0.97 0.99

σ1 0.99 0.99 0.99 1.00 0.98 0.99 0.99 0.99

τ1 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

τ2 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99

w 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.98

Table B.2 – Pourcentages de couverture pour l’ensemble des paramètres du modèle continu //
niveau 99%
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Annexe C

Plan d’expérience - seconde phase

Figure C.1 – Boxplots des biais et écarts-types des estimations pour la seconde phase du plan
d’expérience, pour µ0, µ1, σ0, σ1.
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Figure C.2 – Boxplots des biais des estimations pour la comparaison des modèles // seconde
phase du plan d’expérience.
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Figure C.3 – Boxplots des écarts-types des estimations pour la comparaison des modèles //
seconde phase du plan d’expérience.
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D.1 Table des périodes

Période Date de début Date de fin

1 2011-01-01 2014-04-01
2 2011-01-01 2014-07-01
3 2011-01-01 2014-10-01
4 2011-01-01 2014-12-31

5 2012-01-01 2015-04-01
6 2012-01-01 2015-07-01
7 2012-01-01 2015-10-01
8 2012-01-01 2015-12-31

9 2013-01-01 2016-04-01
10 2013-01-01 2016-07-01
11 2013-01-01 2016-10-01
12 2013-01-01 2016-12-31

13 2014-01-01 2017-04-01
14 2014-01-01 2017-07-01
15 2014-01-01 2017-10-01
16 2014-01-01 2017-12-31

17 2015-01-01 2018-04-01
18 2015-01-01 2018-07-01
19 2015-01-01 2018-10-01
20 2015-01-01 2018-12-31

21 2016-01-01 2019-04-01
22 2016-01-01 2019-07-01
23 2016-01-01 2019-10-01
24 2016-01-01 2019-12-31

25 2017-01-01 2020-04-01
26 2017-01-01 2020-07-01
27 2017-01-01 2020-10-01
28 2017-01-01 2020-12-31

Table D.1 – Table des 28 périodes utilisées pour la seconde application sur données réelles.
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D.2 Table des estimations de w

Numéro du département Période W moyen

LGMCAT

1 22 1 0.50
2 2 0.49
3 3 0.49
4 4 0.48
5 5 0.46
6 6 0.46
7 7 0.46
8 8 0.46
9 9 0.47
10 10 0.47
11 11 0.45
12 12 0.45
13 13 0.36
14 14 0.36
15 15 0.36
16 16 0.37
17 17 0.37
18 18 0.38
19 19 0.36
20 20 0.37
21 21 0.34
22 22 0.34
23 23 0.34
24 24 0.34
25 25 0.38
26 26 0.37
27 27 0.32
28 28 0.35
29 29 1 0.53
30 2 0.53
31 3 0.52
32 4 0.52
33 5 0.49
34 6 0.49
35 7 0.49
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36 8 0.49
37 9 0.51
38 10 0.52
39 11 0.49
40 12 0.49
41 13 0.39
42 14 0.40
43 15 0.42
44 16 0.42
45 17 0.41
46 18 0.41
47 19 0.41
48 20 0.41
49 21 0.38
50 22 0.39
51 23 0.37
52 24 0.37
53 25 0.40
54 26 0.40
55 27 0.58
56 28 0.58
57 56 1 0.48
58 2 0.47
59 3 0.45
60 4 0.44
61 5 0.40
62 6 0.40
63 7 0.39
64 8 0.38
65 9 0.37
66 10 0.36
67 11 0.35
68 12 0.34
69 13 0.22
70 14 0.22
71 15 0.23
72 16 0.23
73 17 0.22
74 18 0.22
75 19 0.22
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76 20 0.22
77 21 0.20
78 22 0.20
79 23 0.19
80 24 0.19
81 25 0.26
82 26 0.21
83 27 0.20
84 28 0.25

LGMVEA

85 22 1 0.19
86 2 0.20
87 3 0.20
88 4 0.21
89 5 0.20
90 6 0.20
91 7 0.20
92 8 0.16
93 9 0.16
94 10 0.15
95 11 0.15
96 12 0.14
97 13 0.13
98 14 0.11
99 15 0.11
100 16 0.10
101 17 0.06
102 18 0.05
103 19 0.05
104 20 0.05
105 21 0.04
106 22 0.03
107 23 0.03
108 24 0.03
109 25 0.02
110 26 0.01
111 27 0.01
112 28 0.01
113 29 1 0.16
114 2 0.22
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115 3 0.21
116 4 0.23
117 5 0.22
118 6 0.22
119 7 0.22
120 8 0.18
121 9 0.19
122 10 0.18
123 11 0.18
124 12 0.16
125 13 0.16
126 14 0.14
127 15 0.14
128 16 0.13
129 17 0.07
130 18 0.06
131 19 0.06
132 20 0.06
133 21 0.04
134 22 0.04
135 23 0.04
136 24 0.04
137 25 0.02
138 26 0.02
139 27 0.02
140 28 0.02
141 56 1 0.20
142 2 0.17
143 3 0.17
144 4 0.15
145 5 0.15
146 6 0.15
147 7 0.15
148 8 0.13
149 9 0.12
150 10 0.11
151 11 0.12
152 12 0.11
153 13 0.08
154 14 0.07
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155 15 0.07
156 16 0.06
157 17 0.04
158 18 0.04
159 19 0.04
160 20 0.03
161 21 0.02
162 22 0.02
163 23 0.02
164 24 0.02
165 25 0.01
166 26 0.01
167 27 0.01
168 28 0.01

TableD.2 –Tableaux des estimations du paramètrew pour les 28 périodes selon le département.

D.3 Table répartition des données

LGMCAT LGMVEA

Résultats de test 22 29 56 22 29 56

0 9,075 7,860 7,296 8,494 7,270 6,722
1 950 296 407 2,530 894 1,113

Table D.3 – Répartition des mesures de tests en fonction de la discrétisation des mesures d’odr,
de mai 2019 à mai 2021.
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D.4 Intervalles de crédibilité pour l’estimation de pa-

ramètres supplémentaires.

Figure D.1 – Intervalles de crédibilité pour l’estimation de π1 sur les 23 premières périodes à
partir des chaînes de τ1 et τ2

Figure D.2 – Intervalles de crédibilité pour l’estimation de τ2 sur les 23 premières périodes
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