
LABORATOIRE J.A. DIEUDONNÉ - NANTES UNIVERSITÉ

MÉTHODE DE COLLOCATION EN ENVIRONNEMENT PARALLÈLE
POUR LA SIMULATION INTENSIVE D’ÉCOULEMENTS.

Rapport de stage

Etudiant
MARIOT Clément

Tuteur
Pr Abide Stéphane

19 septembre 2024

Table des matières

1 Introduction 3
1.1 Les équations de Navier-Stokes . 3

1.1.1 Descriptions eulérienne et lagrangienne 3
1.1.2 Conservation de la masse . 4
1.1.3 Conservation du moment cinétique . 5

1.2 Présentation des algorithmes de projection 7
1.2.1 Algorithme de projection . 7
1.2.2 Algorithme de projection à pression incrémentale 9
1.2.3 Algorithme de projection amélioré . 11

2 La méthode numérique 12
2.1 Discrétisation par polynômes de Tchebyshev 12
2.2 Discrétisation par série de Fourier . 15
2.3 Problème de Helmholtz . 17

2.3.1 Problème en 1D . 17
2.3.2 Problème en 3D . 20
2.3.3 Intégration des conditions limites . 22

3 Implémentation 25
3.1 Langage objet . 25

3.1.1 Les types dérivés . 25
3.1.2 Classe et héritage . 26

3.2 Parallélisation . 28
3.2.1 Résolution sur les noeuds intérieurs 28
3.2.2 Intégration points de collocation sur Γ 29
3.2.3 Transformée de Fourier rapide . 30

3.3 Perspectives . 32

4 Les forces de Coriolis 33
4.1 Formulation du problème . 33
4.2 Terme de Coriolis explicite . 34
4.3 Terme de Coriolis implicite . 35

5 Validation 39
5.1 Précision spectrale . 39
5.2 Exemple de bug . 40
5.3 Comparaison des algorithmes de projection 42
5.4 Comparaison des algorithmes de projection avec les forces de Coriolis . . . 44
5.5 Exemple d’écoulement . 45

6 Conclusion 49

1

Mes remerciements vont à mon tuteur Stéphane Abide pour ce projet. Tout au long de ce

travail, il a su m’apporter un soutien constant, une disponibilité, une écoute, une confiance et

des conseils précieux et avisés à la hauteur de ses compétences et de ses réelles qualités

humaines.

Ils s’adressent de même à Florence Marcotte. Pour son aide sur les aspects les plus

physiques de ce projet. Sa considération vont me permettre de poursuivre ce projet.

Mes remerciements s’adressent également à Gilles Scarella pour son aide sur le choix et

l’utilisation des outils informatiques pour le développement du code de calcul.

Ils s’adressent aussi à Jean-Marc Lacroix pour ses conseils de développement et ses

lumières sur les considérations sur le génie logiciel. Je le remercie d’avoir partagé ses

connaissances s’étendant du developpement de code de calcul jusqu’aux questions de plus

bas niveau tel que le matériel.

1 Introduction

Dans ce chapitre, le système d’équations régissant l’écoulement de fluides incompres-

sibles sera présenté. Ce système apporte un couplage entre le champ de vitesse et le

champ de pression. Pour surmonter cette contrainte, on va détailler l’algorithme de projection

originalement présenté par Chorin en 1967 [2], puis l’amélioration de l’ordre de convergence

apportée par l’algorithme de projection à pression incrémentale. Enfin, pour corriger les er-

reurs commises sur les parois pour le champ de pression, un dernier algorithme de projection

sera détaillé : l’algorithme de projection amélioré.

1.1 Les équations de Navier-Stokes

1.1.1 Descriptions eulérienne et lagrangienne

Le premier obstacle à la mise en équation du phénomène d’écoulement de fluide incom-

pressible est la transcription des lois physiques décrites avec la technique lagrangienne en

description eulérienne.

La description lagrangienne est l’une des deux techniques qui permettent de caractériser

un écoulement. Elle consiste à suivre dans le temps les particules fluides le long de leur

trajectoire. Néanmoins la description eulérienne qui repose sur le champ des vitesses est

préférée car celle-ci permet de décrire l’écoulement dans une région donnée par opposition

à la technique lagrangienne où ce sont les volumes élémentaires qui sont décrits.

On fixe les notations suivantes pour une grandeur représentée par la fonction f :

fpx, tq pour la description eulérienne

F pX, tq “ fpxpXq, tq pour la description lagrangienne

Pour t P R` le temps écoulé depuis un temps de référence choisi, x P R3 une position

dans l’espace et X un volume élémentaire que l’on appelle aussi particule fluide.

Ainsi on définit deux dérivées temporelles distinctes, la dérivée relativement à une position

x constante notée
B

Bt
et la dérivée relativement à une unique particule fluide X notée

D

Dt
. On

rappelle la règle de dérivation composite pour une fonction dérivable f :

3

D

Dt
fpx, tq “

D

Dt
ptq

B

Bt
f `

D

Dt
pxq

B

Bx
f (1)

Par exemple l’accélération d’une particule fluide en description eulérienne s’exprime de la

manière suivante, pour U P R3 le vecteur vitesse d’une particule fluide, d’après (1) :

DU

Dt
“

BU

Bt
`

3
ÿ

i“1

Ui
BU

Bxi

(2)

“
BU

Bt
` U ¨ ∇U

Ainsi on remarque que, même à l’état stationnaire (i.e.
BU

Bt
“ 0), l’accélération de la

particule fluide peut être non nulle en conséquence du terme d’advection.

Pour un volume V de fluide dont la surface S se déplace à une vitesse Us on obtient,

grâce au théorème de Newton-Leibniz, pour une fonction F intégrable :

D

Dt

ż

V

Fdv “

ż

V

BF

Bt
dv `

ż

S

FUs ¨ ds “

ż

V

BF

Bt
` ∇ ¨ pUF q dv (3)

1.1.2 Conservation de la masse

Ainsi on considère un volume de masse m “

ż

V

ρdv. En appliquant le principe de

conservation de la masse, on obtient sur un volume V quelconque :

0 “
Dm

Dt
“

D

Dt

ż

V

ρdv “

ż

V

„

Bρ

Bt
` ∇ ¨ pUρq

ȷ

dv (4)

Cette équation de conservation locale de masse doit être vérifiée pour tout volume de

fluide V . Ainsi (4) et l’hypothèse d’incompressibilité du fluide (i.e. la densité ρ est constante)

donnent :

4

Bρ

Bt
` ∇ ¨ pρUq “ 0

ô
Bρ

Bt
` U ¨ ∇ρ ` ρ∇ ¨ U “ 0

ô
Bρ

Bt
` ρ∇ ¨ U “ 0

ô ∇ ¨ U “ 0

On obtient ainsi la première équation décrivant l’écoulement d’un fluide incompressible,

i.e. la condition d’incompressibilité :

∇ ¨ U “ 0 sur V (5)

1.1.3 Conservation du moment cinétique

Pour l’application de la conservation du moment cinétique, on introduit le calcul suivant

pour F P R3 :

D

Dt

ż

V

ρF “

ż

V

BρF

Bt
` ∇ ¨ pρFUq dv

“

ż

V

F
Bρ

Bt
` ρ

BF

Bt
` F p∇ ¨ pρUqq ` ρ pU ¨ ∇qFdv

“

ż

V

ρ
BF

Bt
` ρ pU ¨ ∇qFdv par hypothèse d’incompressibilité

“

ż

V

ρ
DF

Dt
dv

L’hypothèse d’incompressibilité implique que F

ˆ

Bρ

Bt
` ∇ ¨ pρUq

˙

“ 0 .

Avant d’appliquer la conservation du moment, un bilan des forces est nécessaire. Pour

les forces volumiques, on inclut uniquement la gravité, notée :

Fg “

ż

V

ρgdv (6)

Les forces surfaciques sont données par le tenseur de contraintes σ, ainsi pour une surface

S d’un volume matériel V , on note les forces surfaciques comme :

5

Fs “

ż

BV

σ ¨ dS “

ż

V

∇ ¨ σdv (7)

Ainsi la conservation du moment cinétique donne :

D

Dt

ż

V

ρUdv “

ż

V

ρgdv `

ż

V

∇ ¨ σdv

ô

ż

V

„

ρ
BU

Bt
` ρU ¨ ∇U ´ ρg ´ ∇ ¨ σ

ȷ

dv “ 0

Avec le même argument qu’utilisé plus haut, comme le volume V est quelconque, on

obtient l’équation locale de conservation du moment, qui est l’équation de Cauchy pour le

mouvement d’un milieu continu :

ρ
BU

Bt
` ρU ¨ ∇U “ ρg ` ∇ ¨ σ (8)

Plus spécifiquement, pour un fluide, le tenseur de contrainte s’écrit :

σi,j “ ´pδi,j ` τi,j (9)

Pour p la pression du fluide, δ est le symbole de Kronecker et τ est le tenseur de contrainte

de cisaillement. Ce tenseur est défini par la loi de comportement suivante, avec µ la viscosité

dynamique du fluide :

τi,j “ µ

ˆ

BUi

Bxj

`
BUj

Bxi

˙

(10)

Ainsi en reprenant l’expression des forces surfaciques (7) :

∇ ¨ σ “ ∇ ¨
`

´pI ` µ
`

∇U ` ∇U t
˘˘

(11)

La condition d’incompressibilité donne l’identité ∇ ¨ p∇U tq “ ∇ p∇ ¨ Uq “ 0. Ainsi (11)

mène à :

∇ ¨ σ “ ´∇p ` µ p∇ ¨ p∇Uqq “ µ∇2
´ ∇p (12)

6

On remplace dans l’équation de Cauchy, pour le mouvement d’un milieu continu (8) :

ρ

ˆ

BU

Bt
` pU ¨ ∇qU

˙

“ ´∇p ` ρg ` µ∇2U (13)

Or µ “ ρν avec ν la viscosité cinématique, ainsi (13) se réécrit :

BU

Bt
` pU ¨ ∇qU “ ´

1

ρ
∇p ` g ` ν∇2U (14)

Si ρ est constante alors le système est fermé, sinon il faut ajouter une équation d’état de

la thermodynamique, par exemple pour lier les variables p, ρ, T, ...

Ainsi, pour ρ constante, on obtient le système d’équations de Navier-Stokes décrivant

l’écoulement d’un fluide incompressible.

$

’

&

’

%

BU

Bt
` pU ¨ ∇qU ´ ν∇2U“ ´

1

ρ
∇p ` g

∇ ¨ U “ 0

(15)

Pour fermer le problème, il est nécessaire d’ajouter des conditions aux limites compatibles.

1.2 Présentation des algorithmes de projection

Le système d’équations de Navier-Stokes (15) pour les fluides incompressibles montre

deux difficultés : la condition d’incompressibilité (i.e.∇ ¨U “ 0) et la gestion du couplage entre

le champ de vitesse U et de pression p. Pour surmonter ces obstacles, divers algorithmes ont

été proposés. Nous allons nous concentrer de manière non-exhaustive sur les algorithmes

de projection.

1.2.1 Algorithme de projection

Le premier algorithme de cette famille est proposé en 1967 par Chorin dans [2]. Le

principe général de l’algorithme est d’estimer provisoirement le champ de vitesse Ũ , puis de

projeter ce champ de vitesse pour imposer la contrainte d’incompressibilité, pour enfin en

déduire le champ de pression.

On donne l’algorithme détaillé dans la suite, découplant le système d’équations de Navier-

Stokes pour les fluides incompressibles en plusieurs problèmes de Helmholtz. Ainsi on réécrit

7

le problème adimensionné sur Ω, un ouvert de R3, avec Γ la frontière de Ω dans R3, pour

T P R` un temps final, pour U le champ de vitesse, p le champ de pression.

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

BU

Bt
` NLpUq ´ ν∇2U ` ∇p “ f sur Ω ˆ r0, T s

∇ ¨ U “ 0 sur Ω ˆ r0, T s

U |t“0 “ U0 sur Ω

U “ W sur Γ

(16)

Avec NLpUq “ pU ¨ ∇qU qui contient le terme non-linéaire du problème. De plus, on pose

une discrétisation temporelle uniforme telle que le k-ème instant tk est défini par tk “ k∆t à

partir d’un instant de référence.

Pour commencer Chorin, propose d’estimer un champ de vitesse provisoire Ũ du prochain

itéré temporel Ũk`1, à partir du champ de vitesse précédent Uk, par le problème de Helmholtz

suivant :

1

∆t

´

Ũk`1
´ Uk

¯

´ ν∇2Ũk`1
“ fptk`1

q ´ NLpUk
q (17)

Avec la condition aux limites suivante :

Ũk`1
“ W k`1 (18)

Puis l’algorithme de Chorin donne le système suivant :

$

’

’

’

’

&

’

’

’

’

%

1

∆t

´

Uk`1 ´ Ũk`1
¯

` ∇pk`1 “ 0

∇ ¨ Uk`1 “ 0

Uk`1 ¨ n “ W k`1 ¨ n sur Γ

(19)

Ainsi en appliquant la condition d’incompressibilité sur Uk`1, on en déduit le champ de

pression pk`1 :

∇2pk`1
“

1

∆t

´

∇ ¨ Ũk`1
¯

(20)

Cela permet ainsi, grâce à (19), de calculer le nouveau champ de vitesse Uk`1 :

8

Uk`1
“ Ũk`1

´
1

∆t
∇pk`1 (21)

L’estimation d’erreur suivante est donnée par [6] :

||U ex
∆t ´ U∆t||l8prL2pΩqs3q ` ||U ex

∆t ´ Ũ∆t||l8prL2pΩqs3q ď C∆t

||pex∆t ´ p∆t||l8pL2pΩqq ` ||U ex
∆t ´ Ũ∆t||l8prH1pΩqs3q ď C∆t

1
2

Rannacher montre dans [12] que cet algorithme commet une erreur sur le champ de

pression en imposant ∇pk`1 ¨n|Γ “ 0. La principale faiblesse de cet algorithme est l’estimation

du champ de pression. Cela conduit à une modification de l’algorithme de projection de

Chorin.

1.2.2 Algorithme de projection à pression incrémentale

L’algorithme de projection à pression incrémentale, consiste à prendre en compte le

champ de pression de l’instant précédent pk, dans l’estimation de la vitesse provisoire Ũk`1.

On utilise la Backward Differentiation Formula proposée par Curtiss et Hirschfelder en 1952

[3]. Ainsi l’estimation de la vitesse provisoire est donnée par :

1

2∆t

´

3Ũk`1
´ 4Uk

` Uk´1
¯

´ ν∇2Ũk`1
“ fptk`1

q ´ 2NLpUk
q ` NLpUk´1

q ´ ∇pk (22)

Avec la condition aux limites est :

Ũk`1
“ W k`1 (23)

Puis, pour obtenir les champs de pression et de vitesse actuels pk`1 et Uk`1, le système

suivant doit être résolu :

9

$

’

’

’

’

&

’

’

’

’

%

1

2∆t

´

3Uk`1 ´ 3Ũk`1
¯

` ∇
`

pk`1 ´ pk
˘

“ 0

∇ ¨ Uk`1 “ 0

Uk`1 ¨ n “ W k`1 ¨ n sur Γ

(24)

De même manière que précédemment, le champ de pression pk`1 est donné en appliquant

la contrainte d’incompressibilité sur la première équation, aboutissant :

∇2pk`1
“

3

2∆t
∇ ¨ Ũk`1

` ∇2pk (25)

Cela permet ainsi de déterminer le nouveau champ de vitesse Uk`1.

Voici les résultats sur l’erreur commise démontrés par J.-L. Guermond dans [7] :

||U ex
∆t ´ U∆t||l8prL2pΩqs3q ` ||U ex

∆t ´ Ũ∆t||l8prL2pΩqs3q ď C∆t2

||pex∆t ´ p∆t||l8pL2pΩqq ` ||U ex
∆t ´ Ũ∆t||l8prH1pΩqs3q ď C∆t

Ceux-ci sont valides dans le cas où la première itération utilise un schéma temporel d’ordre

1, avant de passer sur un schéma BDF2 d’ordre 2. Ainsi il est nécessaire de commencer par

estimer la pression initiale p0, grâce à la relation :

∇2p0 “ ∇ ¨ fpt0q avec
B

Bn
p0|Γ “

`

fpt0q ` ν∇2U0
˘

¨ |Γ (26)

Ainsi, là où l’erreur du premier algorithme est d’imposer ∇pk`1 ¨ n|Γ “ 0, l’algorithme de

projection à pression incrémentale impose ∇
`

pk`1 ´ pk
˘

¨ n|Γ “ 0. Cela revient à imposer la

contrainte suivante :

∇pk`1
¨ n|Γ “ ∇pk ¨ n|Γ “ ∇p0 ¨ n|Γ

Cette condition n’étant pas physique, elle introduit des erreurs numériques sur les bords

qui limitent la précision de l’algorithme.

10

1.2.3 Algorithme de projection amélioré

L’algorithme de projection amélioré, présenté par S. Hugues et A. Randriamampianina [8],

repose sur le calcul d’un champ de pression provisoire, pour éviter la contrainte imposée par

les précédents algorithmes. Ainsi, pour un instant tk`1, on note p̃k`1 le champ de pression

provisoire. L’algorithme de projection amélioré commence par la détermination de ce champ

de pression provisoire :

$

’

&

’

%

∇2p̃k`1 “ ∇ ¨
“

´2NLpUkq ` NLpUk´1q ` fptk`1q
‰

sur Ω
B

Bn
p̃k`1 “ ϕ ¨ n sur Γ

(27)

ϕ “
´3W k`1 ` 4Uk ´ Uk´1

2∆t
´ 2NLpUk

q ` NLpUk´1
q ` ν∇2

`

2Uk
´ Uk´1

˘

` fptk`1
q (28)

Puis, comme dans les précédents algorithmes de projection, le champ de vitesse provisoire

est déterminé par l’équation suivante :

1

2∆t

´

3Ũk`1
´ 4Uk

` Uk´1
¯

´ ν∇2Ũk`1
“ ´2NLpUk

q ` NLpUk´1
q ´ ∇p̃k`1

` fptk`1
q (29)

Où la condition suivante est imposée sur le bord Γ :

Ũk`1
“ W k`1 (30)

Enfin, les champ de pression et de vitesse sont déterminés de manière identique aux

précédents algorithmes de projection, à partir du système suivant :

$

’

’

’

’

&

’

’

’

’

%

1

2∆t

´

3Uk`1 ´ 3Ũk`1
¯

` ∇
`

pk`1 ´ p̃k`1
˘

“ 0

∇ ¨ Uk`1 “ 0

Uk`1 ¨ n “ W k`1 ¨ n sur Γ

(31)

Tel que le champ de pression pk`1 soit résolu par un problème de Helmholtz obtenu en

appliquant la condition d’incompressibilité, pour enfin en déduire le champ de vitesse Uk`1.

11

2 La méthode numérique

Cette section détaille les deux discrétisations qui seront utilisées. La première se construit

sur la base des polynômes de Tchebyshev, pour pouvoir insérer des conditions aux limites

non-périodiques de type Dirichlet, Neumann ou Robin. La seconde discrétisation se base

sur une approximation par série de Fourier pour traiter un cas périodique. Pour chaque

direction, une discrétisation doit être choisie, cela permet de choisir des géométries mixtes

pour la nature des conditions aux limites. Ensuite, la résolution d’un problème de Helmholtz

en 1D sera montrée puis son extension naturelle au cas 3D. Enfin, pour les directions

non-périodiques, une attention particulière sera portée sur l’intégration des conditions aux

limites.

2.1 Discrétisation par polynômes de Tchebyshev

Cette discrétisation est moins répandue que son équivalent spectral mais celle-ci permet

de traiter des problèmes avec des conditions aux limites non-périodiques de nature variée.

Ainsi, on note Tn le polynôme de Tchebyshev d’ordre n, défini par récurrence :

$

’

’

’

’

&

’

’

’

’

%

T0 “ 1

T1 “ x

Tn`1“ 2xTn ´ Tn´1

Ces polynômes sont définis de manière équivalente par :

Tkpxq “ cos
`

k cos´1
pxq

˘

(32)

La famille des pTiq0ďiďN forment une base de RN rXs et sont orthogonaux deux à deux pour

le produit scalaire p¨, ¨qω tel que, pour u, v P L2pΩq :

pu, vqω “

ż 1

´1

uvωdx (33)

Où ω est un poids tel que :

ωpxq “ p1 ´ x2
q

´
1

2 (34)

12

Soit N P N, on discrétise Ω, un intervalle fermé connexe de R, par les N`1 points de

Gauss-Lobatto, notés xi, pour i “ 0, . . . , N :

xi “ cosp
iπ

N
q (35)

Or, le polynôme de Tchebyshev TN atteint ses extrema ˘1 aux points de Gauss-Lobatto.

On notera que ce sont aussi les zéros du polynôme p1 ´ x2qT 1
Npxq. Ainsi, en considérant

l’approximation par série de polynômes de Tchebyshev suivante de la fonction réelle u :

uNpxq “

N
ÿ

j“0

ûjTjpxq (36)

Où pûjqj“0,...,N sont les coefficients de Tchebyshev de l’approximation. Ils sont déterminés

en imposant que @i P v0 ; Nw

uNpxiq “ upxiq (37)

Ce qui signifie que l’approximation est exacte en chaque point de Gauss-Lobatto, ils sont

nommés les points de collocation. Ainsi le polynôme défini par (36) est le polynôme d’interpo-

lation de Lagrange de degré N sur les points de Gauss-Lobatto, donc l’approximation peut

se réécrire :

uNpxq “

N
ÿ

j“0

hjpxqupxjq (38)

Où hjpxq est le polynôme de degré N défini par :

hjpxq “
p´1qj`1p1 ´ x2qT 1

Npxq

c̄jN2px ´ xjq
(39)

c̄j “

$

’

’

’

’

&

’

’

’

’

%

2 si j “ 0

1 si 1 ě j ě N ´ 1

2 si j “ N

(40)

(39) se démontre par le fait que les points de collocation xj sont les zéros de p1´x2qT 1
Npxq

13

et en remarquant que :

lim
xÑxj

p1 ´ x2qT 1
Npxq

x ´ xj

“ p´1q
j`1c̄jN

2 (41)

Cela permet de choisir comme inconnues la valeur en chaque point de collocation upxiq à la

place des coefficients ûk.

Pour la résolution d’EDO, il est nécessaire d’introduire un moyen de différencier ce type

de série de manière exacte aux points de collocation. En réécrivant (38) sur les points de

collocation, on obtient :

uNpxiq “

N
ÿ

j“0

hjpxiqupxjq i “ 0,, N (42)

Comme hjpxq est de classe C8 et en notant hppq

j pxiq “ d
ppq

i,j avec p P N on a :

u
ppq

N pxiq “

N
ÿ

j“0

d
ppq

i,j upxiq i “ 0,, N (43)

Les coefficients d
ppq

i,j se déterminent en évaluant la p-ième dérivée de hj sur le point de

collocation xi. Ces coefficients sont donnés dans [11] pour la différenciation d’ordre 1 et 2

que l’on rappelle ici :

d
p1q

i,j “
c̄i
c̄j

p´1qi`j

pxi ´ xjq
pour 0 ď i, j ď N, i ‰ j

d
p1q

i,i “ ´
xi

2p1 ´ x2
i q

pour 1 ď i ď N ´ 1

d
p1q

0,0 “ ´d
p1q

N,N “
2N2 ` 1

6

14

d
p2q

i,j “
p´1qi`j

c̄j

x2
i ` xixj ´ 2

p1 ´ x2
i qpxi ´ xjq

2
pour 1 ď i ď N ´ 1, 0 ď j ď N, i ‰ j

d
p2q

i,i “ ´
pN2 ´ 1qp1 ´ x2

i q ` 3

3p1 ´ x2
i q

2
pour 1 ď i ď N ´ 1

d
p2q

0,j “
2

3

p´1qj

c̄j

p2N2 ` 1qp1 ´ xjq ´ 6

p1 ´ xjq
2

pour 1 ď j ď N

d
p2q

N,j “
2

3

p´1qj`N

c̄j

p2N2 ` 1qp1 ´ xjq ´ 6

p1 ` xjq
2

pour 0 ď j ď N ´ 1

d
p2q

0,0 “ ´d
p2q

N,N “
N4 ´ 1

15

Ces coefficients peuvent être écrits sous forme matricielle notée D2. Ainsi sur les points

de collocation (i.e. les points de Gauss-Lobatto) pxiq0ďiďN , le vecteur U “ pupx0q, . . . upxNqq
t

peut être différencié sur ces points tel que :

¨

˚

˚

˚

˚

˝

u2px0q

...

u2pxNq

˛

‹

‹

‹

‹

‚

“ D2U (44)

2.2 Discrétisation par série de Fourier

Pour résoudre le problème de Helmholtz (62) avec des conditions aux limites périodiques,

on utilise des approximations par série de Fourier, dites spectrales, en notant pour u une

solution à un problème de Helmholtz 1D :

uexpxq “

8
ÿ

m“´8

pume
imx (45)

Où ppumqmPZ sont les coefficients spectraux de l’expansion en série de Fourier de la solution

uex. Ainsi, en tronquant la série avec N “ 2K`1 permet d’approcher la solution uex avec

une discrétisation uniforme, contrairement à la discrétisation nécessaire à la méthode de

collocation de Tchebyshev, tel que :

upxq “

K
ÿ

m“´K

pume
imx (46)

Grâce à diverses stratégies basées sur les transformées de Fourier notées FFT (Fast Fou-

15

rier Transform) les coefficients ppumqmPZ sont calculés efficacement. Ainsi, on peut différencier

u, tel que pour p P N :

uppq
“

K
ÿ

m“´K

pimq
p

pueimx (47)

Cela permet de baser la résolution du problème de Helmholtz 1D sur le même principe

que pour la discrétisation de Tchebyshev. On note D la FFT donnant les coefficients spectraux

et D´1 la transformée inverse pour revenir dans l’espace physique. Ainsi, pour le problème

de Helmholtz avec conditions aux limites périodiques, on répète l’algorithme utilisé dans

l’approximation par polynômes de Tchebyshev. De ce fait, à la place de la diagonalisation

de l’opérateur D̃ “ PΛP´1, la matrice de passage P est remplacée par une FFT et une FFT

inverse pour P´1. La matrice diagonale Λ est remplacée par la multiplication du coefficient

pum par ´m2.

Cette résolution est utilisée dans de nombreux codes de calcul car son efficacité repose,

par construction, sur l’implémentation de l’algorithme de FFT. Or, celui-ci est au centre de la

recherche informatique depuis de longues années, par exemple, le benchmark du Top500

des machines contient une mesure de l’efficacité des calculateurs sur l’application de FFT.

De ce fait, l’amélioration de la performance du code de calcul repose sur celle des

algorithmes et de l’implémentation de FFT. L’idée de reposer la résolution du problème sur le

même schéma, que ce soit pour une discrétisation par polynômes de Tchebyshev ou par

série tronquée de Fourier, permet de construire un code de calcul qui rend possible un choix

entre les directions périodiques et non-périodiques sans contraintes particulières.

Ainsi, un des principaux avantages de cet algorithme est cette agilité à résoudre différents

problèmes de Helmholtz avec des conditions aux limites de nature variée. Mais cela se fait au

prix d’une efficacité réduite dans la configuration périodique pour les trois directions, face à

des algorithmes spécialement construits sur les FFT bénéficiant de leur faible coût mémoire

et grande vitesse de calcul.

Donc, on remarque ici un choix dans le développement du code de calcul, où la recherche

de l’efficacité ne se fait pas au prix de la généralité de celui-ci.

16

2.3 Problème de Helmholtz

La résolution de ce type de problème est cruciale pour les algorithmes de projection.

Dans cette section seront construits les solveurs pour les problèmes de cette nature. Pour

des raisons de généralisation, le solveur présenté est associé à un problème non-périodique.

Cependant, pour un problème périodique, les quelques corrections à mettre en place, sont

la définition de l’opérateur D̃ donnée dans la section précédente et la suppression de

l’intégration des conditions aux limites.

2.3.1 Problème en 1D

On pose le problème de Helmholtz suivant sur Ω “ r´1, 1s avec σ, ν, αL,R, βL,R P R

$

’

’

’

’

&

’

’

’

’

%

σu ` νu2 “ S sur Ω

αLup´1q ` βLu
1p´1q“ fL

αRup`1q ` βRu
1p`1q“ fR

De plus le terme source S est dépendant du temps et de l’espace, de même que les

valeurs aux bords fL et fR.

On discrétise Ω par les N`1 points de Gauss-Lobatto pxiq0ďiďN . On pose comme incon-

nues la valeur de la solution aux points de collocation notée ui “ upxiq. Ainsi lorsque que l’on

écrit le problème sur les points de collocations :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

σui ` ν
N
ÿ

j“0

d
p2q

i,j uj “ Si 1 ď i ď N ´ 1

αRu0 ` βR

N
ÿ

p“0

d
p1q

0,pup “ fR

αLuN ` βL

N
ÿ

p“0

d
p1q

N,pup “ fL

Les deux dernières lignes vont nous servir à exprimer u0 et uN en fonction des points de

17

collocations intérieurs, ainsi :

$

’

’

’

’

&

’

’

’

’

%

αRu0 ` βRpd
p1q

0,0u0 ` d
p1q

0,NuNq “ fR ´ βR

N´1
ÿ

p“1

d
p1q

0,pup

αLuN ` βLpd
p1q

N,0u0 ` d
p1q

N,NuNq “ fL ´ βL

N´1
ÿ

p“1

d
p1q

N,pup

Ce système linéaire se réécrit :

¨

˚

˝

αR ` βRd
p1q

0,0 βRd
p1q

0,N

βLd
p1q

N,0 αL ` βLd
p1q

N,N

˛

‹

‚

¨

˚

˝

u0

uN

˛

‹

‚

“

¨

˚

˚

˚

˚

˝

fR ´ βR

N´1
ÿ

p“1

d
p1q

0,pup

fL ´ βL

N´1
ÿ

p“1

d
p1q

N,pup

˛

‹

‹

‹

‹

‚

(48)

On note :

CL “

¨

˚

˝

αR ` βRd
p1q

0,0 βRd
p1q

0,N

βLd
p1q

N,0 αL ` βLd
p1q

N,N

˛

‹

‚

(49)

CL est inversible lorsque des conditions limites de type Dirichlet, Neumann ou Robin sont

choisies. Ainsi, on a :
¨

˚

˝

u0

uN

˛

‹

‚

“ CL´1

¨

˚

˚

˚

˚

˝

fR ´ βR

N´1
ÿ

p“1

d
p1q

0,pup

fL ´ βL

N´1
ÿ

p“1

d
p1q

N,pup

˛

‹

‹

‹

‹

‚

(50)

Donc le système sur les points intérieurs de collocations s’écrit :

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

σui ` ν
N
ÿ

j“0

d
p2q

i,j uj “ Si 1 ď i ď N ´ 1

¨

˚

˝

u0

uN

˛

‹

‚

“ CL´1

¨

˚

˚

˚

˚

˝

fR ´ βR

N´1
ÿ

p“1

d
p1q

0,pup

fL ´ βL

N´1
ÿ

p“1

d
p1q

N,pup

˛

‹

‹

‹

‹

‚

18

Or on peut réécrire la première ligne de ce système pour i P v1, N ´ 1w :

σui ` ν
N´1
ÿ

j“1

d
p2q

i,j uj “ Si ´ d
p2q

i,0u0 ´ d
p2q

i,NuN

“ Si

´ d
p2q

i,0

«

CL´1
1,1

˜

fR ´ βR

N´1
ÿ

p“1

d
p1q

0,pup

¸

` CL´1
1,2

˜

fL ´ βL

N´1
ÿ

p“1

d
p1q

N,pup

¸ff

´ d
p2q

i,N

«

CL´1
2,1

˜

fR ´ βR

N´1
ÿ

p“1

d
p1q

0,pup

¸

` CL´1
2,2

˜

fL ´ βL

N´1
ÿ

p“1

d
p1q

N,pup

¸ff

D’où, en séparant les points intérieurs au domaine, des points sur les frontières de Ω

notées Γ :

Si ´ d
p2q

i,0

`

CL´1
1,1fR ` CL´1

1,2fL
˘

´ d
p2q

i,N

`

CL´1
2,1fR ` CL´1

2,2fL
˘

“ σui ` ν
N´1
ÿ

j“1

”

d
p2q

i,j ´ d
p2q

i,0

´

CL´1
1,1βRd

p1q

0,j ´ CL´1
1,2βLd

p1q

N,j

¯

´d
p2q

i,N

´

CL´1
2,1βRd

p1q

0,j ´ CL´1
2,2βLd

p1q

N,j

¯ı

uj

Ces N ´ 1 relations déterminent la valeur de la solution u sur les points intérieurs du

domaine Ω. Cela s’écrit sous forme du système linéaire suivant :

D̃Ũ “ S̃ (51)

Tel que :

D̃ “ σI ` νD2 (52)

D2
i,j “ d

p2q

i,j ´ d
p2q

i,0

´

CL´1
1,1βRd

p1q

0,j ´ CL´1
1,2βLd

p1q

N,j

¯

´ d
p2q

i,N

´

CL´1
2,1βRd

p1q

0,j ´ CL´1
2,2βLd

p1q

N,j

¯

19

Ũ “

¨

˚

˚

˚

˚

˝

u1

...

uN´1

˛

‹

‹

‹

‹

‚

(53)

S̃ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

S1 ´ d
p2q

1,0

`

CL´1
1,1fR ` CL´1

1,2fL
˘

´ d
p2q

1,N

`

CL´1
2,1fR ` CL´1

2,2fL
˘

...

Si ´ d
p2q

i,0

`

CL´1
1,1fR ` CL´1

1,2fL
˘

´ d
p2q

i,N

`

CL´1
2,1fR ` CL´1

2,2fL
˘

...

SN´1 ´ d
p2q

N´1,0

`

CL´1
1,1fR ` CL´1

1,2fL
˘

´ d
p2q

N´1,N

`

CL´1
2,1fR ` CL´1

2,2fL
˘

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(54)

D’après [11] la matrice D2 possède N ´ 1 valeurs propres distinctes (non-nulle si on

ne pose pas de conditions de Neumann à droite et à gauche) donc D2 est diagonalisable.

On note P et P´1 les matrices de passage, ainsi que Λ la matrice diagonale contenant les

valeurs propres. D’où (51) donne :

`

σI ` νPΛP´1
˘

Ũ “ S̃ (55)

pσI ` νΛqP´1Ũ “ P´1S̃ (56)

Ainsi la solution du système linéaire (51) s’écrit comme Ũ “ PV , tel que pour i P v1, N ´ 1w :

Vi “
pP´1S̃qi

σ ` νλi

(57)

2.3.2 Problème en 3D

On considère ici l’extension en trois dimensions du précédent problème de Helmholtz sur

Ω “ r´1, 1s3 :

σu ` ∇2u “ S (58)

Le conditions limites sont similaires à celles posées pour le cas en 1D i.e. soit αx,y,z
L,R , βx,y,z

L,R P

R tels que :

20

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

αx
Lu ` βx

Lu
1“fx

L sur Γ´
x

αx
Ru ` βx

Ru
1“fx

R sur Γ`
x

αy
Lu ` βy

Lu
1“f y

L sur Γ´
y

αy
Ru ` βy

Ru
1“f y

R sur Γ`
y

αz
Lu ` βz

Lu
1“f z

L sur Γ´
z

αz
Ru ` βz

Ru
1“f z

R sur Γ`
z

(59)

Le problème est séparable, ainsi on approxime chaque direction par une série tronquée

de polynômes de Tchebyshev dans chaque direction, de degré maximal Nx, Ny et Nz res-

pectivement pour la direction x, y et z. De plus, on introduit l’opérateur de produit tensoriel

suivant pour A,B,C des tenseurs d’ordre 2 représentant des opérateurs linéaires dans les

direction x, y ou z et ϕ un tenseur d’ordre 3 qui est le champ de données :

pA b B b Cqϕ “ Ai,pBj,qCk,rϕp,q,r “ R (60)

Avec R un tenseur d’ordre 3, de taille Nx ˆ Ny ˆ Nz, tel que :

rRsi,j,k “ rpA b B b Cqϕsi,j,k “

Nx
ÿ

p“1

Ny
ÿ

q“1

Nz
ÿ

r“1

Ai,pBj,qCk,rϕp,q,r (61)

Ainsi, en reprenant les notations précédentes, on a sur les points de collocation intérieurs de

Ω :

pD̃x b D̃y b D̃zqŨ “ S̃ (62)

Où D̃x,y,z représente l’opérateur réduit de dérivation d’ordre 2 dans la direction x, y ou z,

S̃ est le terme source réduit pour résoudre les points de collocation intérieur. Ainsi, après

diagonalisation de chacun des opérateurs direction par direction on obtient :

S̃ “
`“

σIx ` νPxΛxP
´1
x

‰

b Iy b Iz
˘

Ũ (63)

`
`

Ix b
“

σIy ` νPyΛyP
´1
y

‰

b Iz
˘

Ũ (64)

`
`

Ix b Iy b
“

σIz ` νPzΛzP
´1
z

‰˘

Ũ (65)

21

Ce qui donne le système linéaire suivant :

pP´1
x b P´1

y b P´1
z qS̃ “

`

rσIx ` νΛxsP´1
x b Iy b Iz

˘

Ũ (66)

`
`

Ix b rσIy ` νΛysP´1
y b Iz

˘

Ũ (67)

`
`

Ix b Iy b rσIz ` νΛzsP´1
z

˘

Ũ (68)

Notons pΛx,y,z “ pσIx ` νΛx b Iy b Izq ` pIx b σIy ` νΛy b Izq ` pIx b Iy b σIz ` νλzq, ainsi :

pP´1
x b P´1

y b P´1
z q S̃ “ pΛx,y,zpP´1

x b P´1
y b P´1

z qŨ (69)

Ainsi, on note V le tenseur suivant :

pV “ pP´1
x b P´1

y b P´1
z qŨ (70)

De même :

pS “ pP´1
x b P´1

y b P´1
z qS̃ (71)

Cela permet d’appliquer pΛ´1
x,y,z sur pS, donnant en indiciel :

pVi,j,k “
pSi,j,k

ν pλx,i ` λy,j ` λz,kq ` σ
(72)

Avec i P v1, Nx ´ 1w, j P v1, Ny ´ 1w et k P v1, Nz ´ 1w

Pour obtenir Ũ , on remonte dans l’espace physique :

Ũ “ pPx b Py b Pzq pV (73)

2.3.3 Intégration des conditions limites

La reconstruction se fait de la même manière que pour le problème 1D, à ceci près que

l’on doit effectuer la reconstruction valeurs aux bords dans le bon espace propre de chaque

direction.

Pour les matrices CLx, CLy et CLz, leur direction respective est donnée par l’indice mais

22

leur construction est identique direction par direction au cas 1D.

Ainsi, pour reconstruire les valeurs aux bords, on obtient le système suivant avec un

raisonnement identique au cas en 1D.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

¨

˚

˝

u0,j,k

uNx,j,k

˛

‹

‚

“ CL´1
x

¨

˚

˚

˚

˚

˝

fx
R ´ βx

R

Nx´1
ÿ

i“1

d
p1q

0,iui,j,k

fx
L ´ βx

L

Nx´1
ÿ

i“1

d
p1q

Nx,i
ui,j,k

˛

‹

‹

‹

‹

‚

avec j P v1, Ny ´ 1w et k P v1, Nz ´ 1w

¨

˚

˝

ui,0,k

ui,Ny ,k

˛

‹

‚

“ CL´1
y

¨

˚

˚

˚

˚

˝

f y
R ´ βy

R

Ny´1
ÿ

j“1

d
p1q

0,jui,j,k

f y
L ´ βy

L

Ny´1
ÿ

j“1

d
p1q

Ny ,j
ui,j,k

˛

‹

‹

‹

‹

‚

avec i P v1, Nx ´ 1w et k P v1, Nz ´ 1w

¨

˚

˝

ui,j,0

ui,j,Nz

˛

‹

‚

“ CL´1
z

¨

˚

˚

˚

˚

˝

f z
R ´ βz

R

Nz´1
ÿ

k“1

d
p1q

0,kui,j,k

f z
L ´ βz

L

Nz´1
ÿ

k“1

d
p1q

Nz ,k
ui,j,k

˛

‹

‹

‹

‹

‚

avec i P v1, Nx ´ 1w et j P v1, Ny ´ 1w

(74)

Cela permet de remplacer pour i P v1, Nx ´ 1w, j P v1, Ny ´ 1w et k P v1, Nz ´ 1w, les points

u0,j,k, uNx,j,k, ui,0,k, ui,Ny ,k, ui,j,0 et ui,j,Nz que l’on nommera par la suite les points de collocation

sur les bords. Ainsi, pour (62) on a :

Ũi,j,k “ ui,j,k pour i P v1, Nx ´ 1w, j P v1, Ny ´ 1w et k P v1, Nz ´ 1w (75)

D̃x “ σINx´1 ` νD2
x (76)

D̃y “ σINy´1 ` νD2
y (77)

D̃z “ σINz´1 ` νD2
z (78)

23

Tels que pour i, l P v1, Nx ´ 1w, j,m P v1, Ny ´ 1w et k, n P v1, Nz ´ 1w :

`

D2
x

˘

i,l
“ d

p2q

i,l ´ d
p2q

i,0

´

CL´1
x,1,1β

x
Rd

p1q

0,l ´ CL´1
x,1,2β

x
Ld

p1q

Nx,l

¯

´ d
p2q

i,Nx

´

CL´1
x,2,1β

x
Rd

p1q

0,l ´ CL´1
x,2,2β

x
Ld

p1q

Nx,l

¯

`

D2
y

˘

j,m
“ d

p2q

j,m ´ d
p2q

j,0

´

CL´1
y,1,1β

y
Rd

p1q

0,m ´ CL´1
y,1,2β

y
Ld

p1q

Ny ,m

¯

´ d
p2q

j,Ny

´

CL´1
y,2,1β

y
Rd

p1q

0,m ´ CL´1
y,2,2β

y
Ld

p1q

Ny ,m

¯

`

D2
z

˘

k,n
“ d

p2q

k,n ´ d
p2q

k,0

´

CL´1
z,1,1β

z
Rd

p1q

0,n ´ CL´1
z,1,2β

z
Ld

p1q

Nz ,n

¯

´ d
p2q

k,Nz

´

CL´1
z,2,1β

z
Rd

p1q

0,n ´ CL´1
z,2,2β

z
Ld

p1q

Nz ,n

¯

Enfin, pour le terme source réduit S̃ :

S̃i,j,k “ Si,j,k ` R̃i,j,k (79)

Où S contient les valeurs du terme source aux points de collocation. R̃ est un tenseur d’ordre

3, de taille pNx ´ 1q ˆ pNy ´ 1q ˆ pNx ´ 1q, qui contient les contributions supplémentaires

provenant de la réduction du problème aux points de collocation intérieurs, comme dans

l’expression de (54) pour le cas en 1D.

R̃i,j,k “ ´ d
p2q

i,0

`

CL´1
x,1,1f

x
R ` CL´1

x,1,2f
x
L

˘

´ d
p2q

i,Nx

`

CL´1
x,2,1f

x
R ` CL´1

x,2,2f
x
L

˘

´ d
p2q

j,0

`

CL´1
y,1,1f

y
R ` CL´1

y,1,2f
y
L

˘

´ d
p2q

j,Ny

`

CL´1
y,2,1f

y
R ` CL´1

y,2,2f
y
L

˘

´ d
p2q

k,0

`

CL´1
z,1,1f

z
R ` CL´1

z,1,2f
z
L

˘

´ d
p2q

k,Nz

`

CL´1
z,2,1f

z
R ` CL´1

z,2,2f
z
L

˘

Cela permet de prendre en compte la nature et valeur des conditions imposées aux limites

du problème. En résumé, cet algorithme résout le problème sur les noeuds intérieurs en

prenant en compte les conditions limites, pour ensuite reconstruire les noeuds frontières,

grâce au système (74).

24

3 Implémentation

Le code construit, nommé Tchebycube, est écrit en Fortran90 avec l’utilisation des

dernières normes pour construire sa couche supérieure. On utilise des objets pour rendre

Tchebycube le plus facilement manipulable et le plus accessible possible. Néanmoins, les

routines de calcul principales , i.e. les différents solveurs des problèmes de Helmholtz, sont

écrites avec comme priorité l’efficacité, de telle sorte que celles-ci soient seulement maniées

par l’utilisateur à l’aide des objets des couches supérieures. De plus, les considérations sur

la parallélisation de Tchebycube, ainsi que les futures perspectives de son amélioration, sont

discutées dans cette section.

3.1 Langage objet

La motivation de construire des objets pour ce code de calcul est de faciliter son utilisation.

On prendra, comme exemple, la construction de deux types dérivées mères : MESH et

OPERATOR. Ceux-ci permettent de manier les classes filles de ces objets pour utiliser la

discrétisation des polynômes de Tchebyshev ou celle d’une décomposition par série tronquée

de Fourier. Cela s’appuie sur le concept de type dérivé et d’héritage.

3.1.1 Les types dérivés

Les types dérivés extensibles sont apportés par la norme 2003, ainsi cela permet, par

exemple, de déclarer un type MESH pour le maillage du domaine Ω. Ce processus conduit

à un tableau nommé MAILLAGE de taille 3 dont chaque entrée est de type MESH. Chaque

composante de MAILLAGE contient donc les données nécessaires pour mailler le problème

dans une direction.

De plus, pour chaque type dérivé, des procédures internes peuvent y être définies. Elles

s’appuient sur les données contenues dans ces objets. Par exemple, le type OPERATOR a

plusieurs procédures internes permettant de différencier un champ, dans la direction spéci-

fique de cet opérateur. Cette procédure nommée D1 s’appelle pour op de type OPERATOR

s’appelle de la manière suivante : op%D1([arg])

Le code de calcul Tchebycube est écrit de manière à construire des types dérivés de

25

plus en plus complexes sur les types les plus simples. Le but ici est d’expliciter la chaîne de

construction de chaque type dérivé.

Solveur

LaplacienConditions limites

Operateurs

Maillage

Discrétisation

FIGURE 1 – Schéma de la hierarchie des types dérivés de Tchebycube.

En orange sont les types décrivant une unique direction et en rouge le solveur utilisant les

trois directions simultanément. On remarque que le choix de la discrétisation est crucial. En

effet, celui-ci se répercute sur la construction de tous les types suivants.

3.1.2 Classe et héritage

Le choix de la programmation orientée objet prend son importance avec la figure (1).

En effet, l’idéal serait que pour un choix de discrétisation donné pour chaque direction (i.e.

périodique ou non-périodique) le choix de type dérivé correspondant soit implicite, pour que

le solveur correspondant à la géométrie désirée soit utilisé. L’utilisation de la notion d’héritage

s’impose pour permettre cela. Ainsi, la notion d’héritage utilisée dans Tchebycube est assez

simple, dans les faits l’idée est de créer une classe abstraire mère pour chaque type dérivé,

puis une classe fille pour le cas périodique et une autre pour le cas non-périodique. Pour

illustrer cela, on prend l’exemple de la classe de type dérivé OPERATOR, définie comme

suivant :

TYPE , ABSTRACT :: T_OPERATOR_BASE

26

INTEGER :: AXIS

INTEGER :: N

CONTAINS

! fonctionnalité pour l’utilisateur

PROCEDURE(EVAL_OPERATOR), DEFERRED, PASS(THIS) :: D1

PROCEDURE(EVAL_OPERATOR), DEFERRED, PASS(THIS) :: D2

PROCEDURE(EVAL_OPERATOR), DEFERRED, PASS(THIS) :: ID

END TYPE T_OPERATOR_BASE

L’attribut ABSTRACT permet de définir une classe mère qui n’est pas utilisable hors du

processus d’héritage. Ainsi, chaque classe fille de ce type dérivé est dotée d’un champ de

donnée N et AXIS. De plus, l’attribut DEFERRED indique que chaque classe héritée de celle-ci

doit avoir définie cette procédure interne avec l’interface spécifique EVAL_OPERATOR.

Cela mène à la classe fille, pour une discrétisation d’une direction non-périodique, nom-

mée T_OPERATOR_TCHEBY définie par :

TYPE , EXTENDS(T_OPERATOR_BASE) :: T_OPERATOR_TCHEBY

TYPE(T_DISCR_TCHEBY) :: DISCR_D1

TYPE(T_DISCR_TCHEBY) :: DISCR_D2

TYPE(T_DISCR_TCHEBY) :: DISCR_ID

CONTAINS

PROCEDURE :: INIT_OPERATOR_TCHEBY => INIT_OPERATOR_TCHEBY

PROCEDURE :: D1 => T_OPERATOR_TCHEBY_D1

PROCEDURE :: D2 => T_OPERATOR_TCHEBY_D2

PROCEDURE :: ID => T_OPERATOR_TCHEBY_ID

PROCEDURE :: GET_D1, GET_D2, GET_ID

END TYPE T_OPERATOR_TCHEBY

L’attribut EXTENDS permet d’indiquer l’héritage depuis le type dérivé T_OPERATOR_BASE.

De plus, ce type ajoute comme champ de donnée trois T_DISCR_TCHEBY. On utilise des

pointeurs pour définir les procédures héritées D1, D2 et ID, pour nommer de manière explicite

ces routines.

27

Ainsi, en construisant de manière similaire le type dérivé T_OPERATOR_FOURIER, l’utili-

sation du polymorphisme permet de faire appel à la routine D1, par exemple, sans se poser la

question du type de discrétisation choisi sur chaque direction. D’où, pour une variable OP_X

définie comme un type dérive OPERATOR, cela permet de faire appel à la routine OP_X%D1

sans avoir besoin de savoir si une discrétisation de Tchebyshev ou de Fourier est considérée.

3.2 Parallélisation

La parallélisation du code de calcul pour le protocole MPI se repose sur la librairie

2DecompFFT [9]. Elle consiste à décomposer les données selon une grille C ˆR, où C est le

nombre de processeur par colonne et R celui dénombrant le nombre de processus par ligne.

Ainsi, tous les processeurs ont accès aux données dans une direction et ont la charge d’une

fraction du domaine total. Par exemple, lors de l’initialisation de 2DecompFFT les données

sont alignées selon la direction x i.e. on se place dans le pencil x :

FIGURE 2 – Distribution des données dans le pencil x pour C “ 4 et R “ 3

3.2.1 Résolution sur les noeuds intérieurs

Comme montré précédemment dans (71), on commence par aligner dans le pencil x les

données, afin d’y appliquer P´1
x b Iy b Iz. Cela est réalisable par chaque processeur car

comme montré sur la figure (2), pour chaque point de collocation intérieur, le processus

correspondant a accès à toutes les données dans la direction x nécessaire à ce produit

tensoriel. Puis, grâce à la routine TRANSPOSE_X_TO_Y les données sont alignées dans le

pencil y (voir figure(3)) pour y appliquer sur les données Ix b P´1
y b Iz.

Ensuite on passe dans le pencil z avec la routine TRANSPOSE_Y_TO_Z alignant les

données comme sur la figure (4) pour y appliquer Ix b Iy b P´1
z

28

FIGURE 3 – Distribution des données dans le pencil y pour C “ 4 et R “ 3

FIGURE 4 – Distribution des données dans le pencil z pour C “ 4 et R “ 3

Dans cette configuration, on calcule pV comme décrit par l’équation (72). Enfin, pour obtenir

Ũ , il suffit d’utiliser la relation (73). Cela revient à appliquer Ix b Iy b Pz, puis de transposer

les données dans le pencil y pour y appliquer Ix b Py b Iz. Pour ensuite, finir par transposer

les données dans le pencil x et appliquer Px b Iy b Iz .

3.2.2 Intégration points de collocation sur Γ

Outre le temps de calcul des six produits tensoriels, on remarque que la résolution

d’un problème de Helmholtz est constituée de quatre transpositions des données. Celles-ci

sont construites sur la base du protocole MPI MPI_ALLTOALLV. Ainsi, ces transpositions

engendrent de lourdes communications pour un nombre élevé de processeurs. Donc pour

reconstruire la solution à partir des points de collocation intérieurs, par la relation (74), il

faut réaliser quatre transpositions supplémentaires, pour aligner les données et reconstruire

les valeurs sur les bords. Pour éviter cela, la résolution sur Γ se fait en même temps que

celle sur les points intérieurs, permettant de faire quatre transpositions d’un tenseur de taille

Nx `1ˆNy `1ˆNz `1 au lieu de de quatre transpositions d’un tenseur de taille Nx ´1ˆNy ´

1 ˆ Nz ´ 1 puis de quatre autres transpositions de taille 2 pNy ˆ Nz ` Nx ˆ Nz ` Nx ˆ Nyq.

29

Notons pour i P v1, Nx ´ 1w, j P v0, Nyw et k P v0, Nzw :

pSqi “

¨

˚

˚

˚

˚

˝

f y
R f y

R f y
R

f z
L

pS f z
R

f y
L f y

L f y
L

˛

‹

‹

‹

‹

‚

(80)

S0,j,k “ fx
L

SNx,j,k “ fx
R

Ainsi, en appliquant le produit tensoriel dans chaque direction avec la matrice de passage

associée au tenseur S, on obtient le tenseur S̃. Cela permet de multiplier terme à terme S̃

avec le tenseur contenant les valeurs propres Λx, Λy et Λz. Puis, de revenir dans l’espace

physique en appliquant les produits tensoriels entre ce tenseur et respectivement direction

par direction avec la matrice de passage Pz, Py et Px.

3.2.3 Transformée de Fourier rapide

Pour le moment, les transformées de Fourier rapides (FFT) sont utilisées par l’intermé-

diaire de la bibliothèque FFTW3 [4]. Cette bibliothèque est écrite en C mais celle-ci comporte

un wrapper permettant de faire appel à ses routines en Fortran.

Cette bibliothèque repose sur le concept de définir des plans, où la taille et le type de

l’objet sont donnés, de même que le sens de la transformée de Fourier.

La routine la plus directe utilisée est DFFTW_EXECUTE_DFT_R2C, qui s’initialise avec la

création de plan DFFTW_PLAN_DFT_R2C_1D, pour une transformée d’un vecteur réel aux

coefficients spectraux complexes. Cet algorithme de FFT s’utilise dans une unique direction,

ainsi celui-ci est utilisé lors des routines de différenciation contenu dans le type dérivé

hérité de la classe OPERATOR. Pour appliquer la FFT inverse, donc revenir dans l’espace

physique, un plan doit être construit avec DFFTW_PLAN_DFT_C2R_1D, puis exécuter par

DFFTW_EXECUTE_DFT_C2R.

Néanmoins, cette routine implique plusieurs boucles pour parcourir le tenseur de données

pour y appliquer, dans la direction choisie, vecteur par vecteur, la routine de FFT. Par exemple,

30

pour un volume de données de taille Nx ˆ Ny ˆ Nz à transformer par FFT dans la première

direction requiert Ny ˆ Nz itérations de cette procédure.

Pour éviter ces boucles et tirer le maximum de performance de l’optimisation des al-

gorithmes de FFT, une autre routine est à disposition dans la bibliothèque FFTW3. Cette

procédure permet d’appliquer une FFT sur plusieurs variables à la fois, si celles-ci sont écrites

en mémoires par intervalles constants sans être forcement contiguës. Ainsi, l’exécution se fait

grâce à la routine DFFTW_EXECUTE_DFT mais la construction des plans utilise une procédure

plus complexe : DFFTW_PLAN_MANY_DFT.

En plus des arguments identiques à DFFTW_PLAN_DFT_R2C_1D donnant la taille de la

FFT à appliquer et le sens de celle-ci, les arguments tels que istride et idist, pour les

données en entrée, et ostride et odist, pour celles en sortie, concernent la répartition

des données en mémoire. L’argument istride donne l’écart mémoire entre deux éléments

d’une FFT, tandis que idist indique l’écart entre les premières données de deux FFT. Pour

illustrer cela on utilise le tenseur T de dimension 3 ˆ 3 ˆ 3 dont l’arrangement des données

est décrit par la figure (5).

1
2

34
5

67
8

9

3
12

21

6
15

24

9
18

27

1
2

3

10
11

12

19
20

21

FIGURE 5 – Numérotation mémoire de chaque donnée de T

Supposons que les données soient alignées d’abord selon la direction x, puis y et enfin z.

Ainsi, pour produire un plan pour exécuter une FFT dans la direction x, istride vaut 1

soit la distance entre deux données et idist est égale à 3 pour la distance entre deux FFT.

De même, pour produire une FFT dans la direction z on donne istride“ 9 et idist“ 1.

Cependant pour construire une FFT dans la direction y une boucle est malgré tout nécessaire.

En effet, dans cet exemple pour exécuter les neuf FFT dans cette direction, istride“ 3

31

mais idist est variable. Celui-ci vaut 3 pour les trois premières FFT, puis doit valoir ´5 pour

appliquer la quatrième FFT. Ainsi, une boucle sur la direction x est nécessaire pour utiliser

cette routine. Malgré cela, cette procédure reste plus performante que de réaliser chaque

FFT individuellement avec la routine DFFTW_EXECUTE_DFT_R2C.

3.3 Perspectives

Lors de ce stage, un processus de vérification sur la capacité du code de calcul Tche-

bycube à mener des opérations sur des champs de données et à résoudre un problème de

Helmholtz a été construit. Mais des mesures de performance et de scalabilité doivent être

encore faites pour situer ce code, notamment, par rapport à DEDALUS [1]. Prochainement,

l’ajout de nouvelles géométries telle qu’un domaine en coordonnées cylindriques et possible-

ment de géométries quelconques permettrait d’étendre les phénomènes reproductibles par

Tchebycube. De plus, une mesure sur l’intérêt de calculer par des transformées de Fourier

rapides à partir d’une certaine taille du problème est encore à qualifier quantitativement.

Ainsi, l’état actuel du code de calcul permet de manière robuste de résoudre un problème

de Helmholtz avec diverses conditions aux limites en parallèle. Celui-ci propose une grande

ergonomie, permise par une programmation orientée objet, autorisant un utilisateur de ma-

nier Tchebycube sans rentrer dans le code source du solveur. De plus, la parallélisation est

explicite grâce à la bibliothèque 2DecompFFT [9].

32

4 Les forces de Coriolis

De nombreux phénomènes physiques, particulièrement en astronomie, sont décrit comme

des systèmes soumis aux effets de leur propre rotation. Les forces de Coriolis prennent en

importance proportionnellement à la vitesse de cette rotation.

Dans ce chapitre ces forces seront intégrées au système d’équation de Navier-Stokes pour

les fluides incompressibles. Cet ajout, historiquement traité de manière explicite, sera ensuite

modifié, sous certaine hypothèse, pour être calculé de manière implicite. Ce processus

semble permettre d’explorer des configurations physiques dont les effets de la rotation sont

plus important. Cela sera vérifié sur un cas analytique pour le cas explicite et implicite.

4.1 Formulation du problème

Pour intégrer les forces de Coriolis, on part du système d’équations de Navier-Stokes

pour les fluides incompressibles sur Ω :

$

’

&

’

%

BV

Bt
` pV ¨ ∇qV ´ ν∇2V ` ∇q “ f

∇ ¨ V “ 0
(81)

On change de référentiel pour le référentiel non-inertiel en rotation avec le système étudié,

ainsi, (81) se réécrit :

$

’

&

’

%

BU

Bt
` pU ¨ ∇qU ´ ν∇2U ` ∇q ` 2ω ˆ U ` ω ˆ pω ˆ rq “ f

∇ ¨ U “ 0
(82)

Avec ω le vecteur de vitesse angulaire et r le vecteur depuis le centre de coordonnées.

Les forces de Coriolis sont décrites par le terme 2ω ˆ U et les forces centrifuges le sont par

ω ˆ pω ˆ rq. Ainsi, en utilisant l’identité suivante :

ω ˆ pω ˆ rq “ ´∇1

2
pω ˆ rq

2 (83)

Et en posant q “ p ´
1

2
pω ˆ rq

2, le système (82) se réécrit :

33

$

’

&

’

%

BU

Bt
` pU ¨ ∇qU ´ ν∇2U ` ∇p ` 2ω ˆ U “ f

∇ ¨ U “ 0
(84)

Le code de calcul a été construit de manière à simuler un système fluide en rotation

autour de l’axe z, donc ω a la forme suivante.

ω “

¨

˚

˚

˚

˚

˝

0

0

ω

˛

‹

‹

‹

‹

‚

(85)

Ainsi, le terme de Coriolis se réécrit :

2ω ˆ U “

¨

˚

˚

˚

˚

˝

´ωUy

ωUx

0

˛

‹

‹

‹

‹

‚

(86)

Cela apporte une nouvelle difficulté, le couplage entre la composante Ux et Uy du champ

de vitesse.

4.2 Terme de Coriolis explicite

Pour répondre à cette nouvelle contrainte, la voie la plus rapide consiste à expliciter ce

terme et l’intégrer dans le calcul des termes non-linéaires. Ainsi, pour les trois précédents

algorithmes de projection, on modifie le terme NLpUkq comme suit :

NLpUk
q “

`

Uk
¨ ∇

˘

Uk
` 2ω ˆ Uk (87)

Mais l’inconvénient de cette explicitation apparaît car ω «
1

Ek

où Ek est le nombre

d’Ekman représentant le rapport entre les forces de viscosité et la force de Coriolis. Ainsi,

lorsque que le nombre d’Ekman diminue (i.e. la vitesse de rotation augmente) l’importance

de ce terme augmente. Donc l’explicitation de celui-ci détériore grandement l’approximation

pour un nombre d’Ekman très faible.

34

4.3 Terme de Coriolis implicite

Pour permettre d’explorer des nombres d’Ekman de plus en plus faibles, une autre solution

consiste à impliciter le terme de Coriolis. Ainsi, pour les algorithmes de projection, l’étape

d’estimation de vitesse provisoire, pour un schéma temporel du premier ordre, se réécrit telle

que :

1

∆t

´

Ũk`1
´ Uk

¯

´ ν∇2Ũk`1
` 2ω ˆ Ũk`1

“ fptk`1
q ´ NLpUk

q (88)

En projetant (88) sur chacun des axes, on obtient le système suivant :

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1

∆t

´

Ũk`1
x ´ Uk

x

¯

´ ν
BŨk`1

x

Bx2
´ 2ωUk

y “ fxptk`1q ´ NLxpUkq

1

∆t

´

Ũk`1
y ´ Uk

y

¯

´ ν
BŨk`1

y

By2
` 2ωUk

x “ fyptk`1q ´ NLypUkq

1

∆t

´

Ũk`1
z ´ Uk

z

¯

´ ν
BŨk`1

z

Bz2
“ fzptk`1q ´ NLzpUkq

(89)

Mon tuteur S. Abide propose, pour tenir compte du couplage des composantes Ux et

Uy, de poser une variable complexe ϕ̃k`1 “ Ũk`1
x ` iŨk`1

y . Par la suite, on nomme pL1q le

première ligne du système (89) et pL2q la seconde ligne. Ainsi, en multipliant par le nombre

complexe i pL2q puis en y additionnant pL1q, on a, avec la notation :

fxptk`1
q ` ifyptk`1

q ´
`

NLxpUk
q ` iNLypUk

q
˘

“ fϕptk`1
q ´ NLϕpUk

q (90)

fϕptk`1
q ´ NLϕpUk

q “
1

∆t

´

Ũk`1
x ` iŨk`1

y ´ Uk
x ´ iUk

y

¯

´ ν

˜

BŨk`1
x

Bx2
` i

BŨk`1
y

By2

¸

´ 2ωUk
y ` 2iωUk

x

“
1

∆t

´

ϕ̃k`1
´ ϕk

¯

´ ν∇2ϕ̃k`1
´ 2iωϕk

Ainsi, un solveur complexe permet de résoudre ce couplage et donc d’impliciter le terme

de Coriolis, pour ce cas précis.

Mais il faut ensuite calculer le champ de pression, à partir du système suivant :

35

$

’

’

’

’

&

’

’

’

’

%

1

∆t

´

Uk`1 ´ Ũk`1
¯

` ω ˆ

´

Uk`1 ´ Ũk`1
¯

` ∇pk`1 “ 0

∇ ¨ Uk`1 “ 0

Uk`1 ¨ n|Γ “ W k`1 ¨ n|Γ

(91)

En réécrivant la première ligne de ce système, avec les notations de [10] pour la matrice

3 ˆ 3 de l’opérateur M, M “ rI ` ∆tωˆs, cela donne :

∆t∇pk`1
“ ´

`

Uk`1
` ∆tω ˆ Uk`1

˘

` Ũk`1
` ∆tω ˆ Ũk`1 (92)

∇pk`1
“

1

∆t
M

´

Ũk`1
´ Uk`1

¯

(93)

Or, d’après l’article d’Olshanskii [10], on a, en notant ω̃ “ ∆tω :

M´1
“

1

1 ` |ω̃|2
rI ` ω̃ b ω̃ ´ ω̃ˆs (94)

Dont l’opération b représente le produit terme à terme des vecteurs, ainsi pω̃ b ω̃qi,j “

ω̃iω̃j.

Vérifions cette identité, pour cela on note :

ω̃ “

¨

˚

˚

˚

˚

˝

ωx

ωy

ωz

˛

‹

‹

‹

‹

‚

(95)

Ainsi, pour X “ px, y, zq
t

ω̃ ˆ X “

¨

˚

˚

˚

˚

˝

ω̃yz ´ ω̃zy

ω̃zx ´ ω̃xz

ω̃xy ´ ω̃yx

˛

‹

‹

‹

‹

‚

(96)

Cela permet donc d’écrire, composante par composante, l’opérateur suivant :

rω̃ˆs “

¨

˚

˚

˚

˚

˝

0 ´ωz ωy

ωz 0 ´ωx

´ωy ωx 0

˛

‹

‹

‹

‹

‚

(97)

36

M “

¨

˚

˚

˚

˚

˝

1 ´ωz ωy

ωz 1 ´ωx

´ωy ωx 1

˛

‹

‹

‹

‹

‚

(98)

Cela permet aussi d’expliciter M´1 :

M´1
“

1

1 ` |ω̃|2

¨

˚

˚

˚

˚

˝

1 ` ω2
x ωxωy ` ωz ωxωz ´ ωy

ωxωy ´ ωz 1 ` ω2
y ωyωz ` ωx

ωxωz ` ωy ωyωz ´ ωx 1 ` ω2
z

˛

‹

‹

‹

‹

‚

(99)

Ce qui permet de confirmer que MM´1 “ M´1M “ I

Ainsi, en appliquant l’hypothèse d’incompressibilité sur (93), on obtient :

M´1∇pk`1
“

1

∆t

´

Ũk`1
´ Uk`1

¯

(100)

∇ ¨ M´1∇pk`1
“

1

∆t
∇ ¨ Ũk`1 (101)

Or, en rappelant que ω est un vecteur constant, donc ω ˆ ∇pk`1 “ ∇ ˆ
`

pk`1ω
˘

, d’où

l’identité suivante :

∇ ¨
`

ω ˆ ∇pk`1
˘

“ 0 (102)

Ainsi, (101) se réécrit avec M “
1

1 ` |ω̃|2
rI ` ω̃ b ω̃s

∇ ¨ M∇pk`1
“

1

∆t
∇ ¨ Ũk`1 (103)

Or, d’après les hypothèses précédentes, la rotation est seulement autour de l’axe z, ainsi :

ω̃ “

¨

˚

˚

˚

˚

˝

0

0

∆tω

˛

‹

‹

‹

‹

‚

(104)

Ce qui simplifie l’expression de M pour en faire une matrice diagonale.

37

M “

¨

˚

˚

˚

˚

˚

˝

1

1 ` |ω̃|2
0 0

0
1

1 ` |ω̃|2
0

0 0 1

˛

‹

‹

‹

‹

‹

‚

(105)

Ainsi, (101) devient un problème de Helmholtz avec une pondération sur l’application de

l’opérateur de divergence entre la différenciation des deux premières directions et la dernière.

38

5 Validation

Une des tâches les plus chronophages lors de la construction du code de calcul est

la vérification de celui-ci. Pour cela, chaque propriétés doit être vérifiées et un maximum

de symétries doit être brisées„ pour aller confronter la moindre ligne de Tchebycube. Pour

réaliser cela, la précision spéctrale sera recherchée, permettant d’expliciter le processus de

développement en détaillant une erreur dans le programme. Puis, une comparaison entre

l’algorithme de projection originellement proposé par Chorin, l’algorithme de projection à

pression incrémentale et l’algorithme de projection amélioré sur un cas analytique sera

proposé. Ensuite, cette comparaison sera renouvelée en intégrant au problème les forces de

Coriolis. Enfin, le cas académique de convection de Rayleigh-Bénard sera présenté sans

effet des forces de Coriolis.

5.1 Précision spectrale

La propriété clef de la méthode numérique est la précision spectrale de la solution, celle-ci

est donc parmi les premiers aspects de l’algorithme qui sont vérifiés. En effet, Gottlieb et

Orszag [5], pour un intervalle connexe et borné I et pour 1 ď p ď 8 , donnent l’estimation de

convergence suivante :

||u ´ uN ||LppIq ď CN´m
||upmq

||LppIq (106)

Pour u la solution exacte, uN l’approximation et C une constante indépendante de N .

Ainsi, pour une solution infiniment différenciable, l’erreur d’approximation est inférieur à toutes

puissances de
1

N
, la convergence est donc exponentielle et la précision est dite spectrale.

Pour vérifier cela, on pose comme solution exacte au système d’équation de Navier-Stokes :

Uex “

¨

˚

˚

˚

˚

˝

´2sin2 pπxq sin p2πyq sin p2πzq p1 ` cos2p4πtqq

sin p2πxq sin2 pπyq sin p2πzq p1 ` cos2p4πtqq

sin p2πxq sin p2πyq sin2 pπzq p1 ` cos2p4πtqq

˛

‹

‹

‹

‹

‚

(107)

pex “
1

π
sin2

pπxqsin2
pπyqsin2

pπzq (108)

39

Les erreurs sur le champ de pression et le champ de vitesse de la figure (6) sont mesurées

sur le système d’équations de Navier-Stokes pour les fluides incompressibles, pour Pr “ 1,

Ra “ 108, ∆t “ 7.8125 ˆ 10´5 et Tfinal “ 0.5. Un algorithme de projection à pression

incrémentale est utilisé avec des conditions aux limites de Dirichlet pour le champ de vitesse

et de Neumann pour le champ de pression.

FIGURE 6 – Erreur sur le système de Navier-Stokes en fonction de la résolution N

Sur la figure (6), la décroissance exponentielle de l’erreur en fonction de N la finesse de

la discrétisation est visible pour N allant de 4 à 24. Cependant, l’erreur stagne après cette

finesse en raison du schéma temporel. Pour voir la convergence dite spectrale il faudrait

aussi diminuer le pas de temps ∆t, car la précision spectrale est valide qu’en espace et pas

en temps.

5.2 Exemple de bug

Je souhaite présenter dans les détails une erreur trouvée lors de la vérification de la

résolution du problème de Helmholtz : σu`ν∇2u “ S, dans une configuration non-périodique

dans les trois directions.

Pour commencer, on construit une solution Uex sur le domaine Ω “ r´1, 1s3. Ainsi, comme

une approximation par série tronquée de polynômes de Tchebyshev est exacte sur les

combinaisons linéaires de polynôme de Tchebyshev, on choisit comme forme de solution

exacte :

40

Uex “

Nx
ÿ

i“0

Ny
ÿ

j“0

Nz
ÿ

k“0

αi,j,kTipxqTjpyqTkpzq (109)

Avec Nx, Ny et Nz la résolution dans chaque direction, αi,j,k les coefficients des polynômes

de Tchebyshev Tk de degré k.

Pour briser les symétries, les coefficients αi,j,k sont tirés de manière aléatoire, de même

que les résolutions Nx, Ny et Nz. Les six conditions aux limites du domaine Ω sont aussi

randomisées entre une condition de type Dirichlet, Neumann ou Robin. Enfin, les paramètres

du problème ν et σ sont aussi tirés aléatoirement.

Ainsi, on s’attend à ce que la solution de ce problème soit approchée à l’ordre du

zéro machine, soit en utilisant la double précision, de l’ordre de 10´16. Lors des premières

vérifications, l’ordre de l’erreur commise atteint 10´6. Cela a permis de trouver une des erreurs

de programmation les plus subtiles de ce code de calcul.

En regardant l’erreur commise sur chaque point de collocation, on remarque que l’erreur

commise atteint le zéro machine sur les points intérieurs de collocation et cela permet de

situer le problème sur les bords du domaine.

En effet, comme expliquer dans la parallélisation de l’algorithme, les valeurs aux bords

sont écrites sur les six "faces" du tenseur de calcul S. Mais cela pose un problème sur les

douze arêtes et huit sommets du tenseur S. Sur la jonction de deux conditions limites un choix

doit être fait entre les deux valeurs à imposer. Pour illustrer cela, on utilise une discrétisation

de Ω en 3 ˆ 3 ˆ 3 :

FIGURE 7 – Valeurs aux limites dans la direction x

Ainsi, cela crée un ordre de priorité sur le remplissage des valeurs aux bords. Mais cette

hiérarchie est à prendre en compte lors du retour dans l’espace physique, c’est-à-dire lors de

l’application par produits tensoriels des matrices de passages Pz, Py et Px respectivement

41

FIGURE 8 – Valeurs aux limites dans la direction y

FIGURE 9 – Valeurs aux limites dans la direction z

dans les directions z, y et x. Pour résumer le processus, les points de collocation de la figure

(7) contiennent les valeurs aux limites dans la direction x puis les points sur la figure (8) pour

les valeurs dans la direction y. Avant de commencer les produits tensoriels pour passer dans

l’espace propre les points de la figure (9) sont initiés avec les valeurs aux bords dans la

direction z.

Puis, après avoir appliquer Λ pour reconstruire les valeurs aux bords et le produit avec

Pz, on applique les relations (74) sur les points (9), puis, après application de la matrice de

passage Py, on utilise ce système sur les points de la figure (8) et enfin après le produit

tensoriel avec Px.

Ainsi, cette vérification a permis de mettre en lumière que l’ordre de remplissage des

sommets et des arêtes est important, pour imposer les conditions aux limites avec les valeurs

correspondantes.

5.3 Comparaison des algorithmes de projection

On construit une solution exacte au problème (16) sur Ω “ r´1, 1s3 avec des conditions

aux limites Dirichlet homogènes.

42

Uex “
`

1 ` cos2p4πtq
˘

¨

˚

˚

˚

˚

˝

´2sin2 pπxq sin p2πyq sin p2πzq

sin p2πxq sin2 pπyq sin p2πzq

sin p2πxq sin p2πyq sin2 pπzq

˛

‹

‹

‹

‹

‚

(110)

pex “
1

π
sin2

pπxqsin2
pπyqsin2

pπzq (111)

Comme le problème est posé sur le gradient du champ de pression, avec des conditions

de Neumann, l’erreur est mesurée entre le gradient calculé et exact de ce champ car celui-ci

est défini à une constante près.

Ainsi, on prend un maillage 32 ˆ 32 ˆ 32 sur Ω pour comparer l’erreur commise sur le

champ de vitesse et le gradient du champ de pression à Tfinal “ 0.5 et ν “
Pr

Ra
avec Pr “ 1

le nombre adimensionnel de Prandtl et Ra “ 108 le nombre de Rayleigh.

FIGURE 10 – Comparaison de divers algorithmes de projection

PC est l’algorithme de projection proposé par Chorin, quant à PN, il représente l’algorithme

de projection à pression incrémentale. Enfin, PE est le diminutif de l’algorithme de projection

amélioré.

Ainsi, d’après la figure ci-dessus (10), l’algorithme de projection amélioré semble nécessi-

ter une condition sur le pas de temps ∆t plus forte par rapport aux deux autres algorithmes.

De plus, les trois algorithmes sont mesurés empiriquement comme étant d’ordre 2 en temps,

43

sans distinction entre ceux-ci pour l’approximation du champ de vitesse. Donc dans ce cas

de figure le résultat donné par Guermond [7] n’est pas optimal sur ce champ. La différence la

plus flagrante entre ces algorithmes se situe sur le gradient du champ de pression. En effet,

l’algorithme de Chorin est empiriquement d’ordre 1 en temps, tandis que les algorithmes de

projection à pression incrémentale et de projection amélioré sont empiriquement d’ordre 2

en temps. Au vu de cela, lors de l’ajout des forces de Coriolis dans le modèle de la section

suivante, seulement les algorithmes de projection à pression incrémentale et amélioré seront

utilisés car ils apportent, pour ce cas analytique, une meilleure approximation du gradient du

champ de pression.

5.4 Comparaison des algorithmes de projection avec les forces de Coriolis

On reprend la solution exacte utilisée pour la comparaison entre l’algorithme de projection

à pression incrémentale et l’algorithme de projection amélioré.

Uex “

¨

˚

˚

˚

˚

˝

´2sin2 pπxq sin p2πyq sin p2πzq p1 ` cos2p4πtqq

sin p2πxq sin2 pπyq sin p2πzq p1 ` cos2p4πtqq

sin p2πxq sin p2πyq sin2 pπzq p1 ` cos2p4πtqq

˛

‹

‹

‹

‹

‚

(112)

pex “
1

π
sin2

pπxqsin2
pπyqsin2

pπzq (113)

L’algorithme de projection à pression incrémentale est noté PN, pour le terme de Coriolis

traité explicitement, et PNI, lorsque celui-ci est implicite. De même, l’algorithme de projection

amélioré est noté PE et sa version implicitant le terme de Coriolis est abrégée en PEI. La

première chose que l’on remarque est que la diminution du nombre d’Ekman induit une perte

de stabilité de l’algorithme. Mais celle-ci est moins prononcée lorsque la force de Coriolis est

implicite (un critère de stabilité sur ∆t reste à déterminer).

De plus, à nombre d’Ekman équivalent, pour les deux algorithmes l’erreur commise est

supérieure pour chacune des versions explicites des algorithmes de projections relativement

à leur version implicite. Enfin, une étude plus approfondie est à mener mais un nombre

d’Ekman plus faible (i.e. avec des effets de rotations plus prépondérants) l’algorithme de

projection amélioré avec implicitation du terme de Coriolis est empiriquement d’ordre 3 en

44

FIGURE 11 – Comparaison pour différents Ek, Tfinal “ 0.5, P r “ 1 et Ra “ 108

temps en comparaison avec les autres algorithmes qui montrent un ordre 2 en temps.

5.5 Exemple d’écoulement

La convection de Rayleigh-Bénard repose sur une instabilité entre un gradient de tem-

pérature sur le domaine Ω et deux conditions aux limites de Dirichlet non-homogènes. La

figure (12) le résume, une mise en mouvement globale du fluide est attendue. De plus, pour

un temps de calcul assez long, une phénomène de retournement peut être observable.

FIGURE 12 – Schéma de convection

45

Le système à résoudre est le système d’écoulement de fluides incompressibles de Navier-

Stokes auquel une équation sur le champ de température T est ajoutée, dont le nombre

adimensionnel est λ pour la conduction thermique.

$

’

’

’

’

&

’

’

’

’

%

BU

Bt
` pU ¨ ∇qU ´ ν∇2U “ ´

1

ρ
∇p ` g

BT

Bt
` pU ¨ ∇qT ´ λ∇2T “ 0

∇ ¨ U “ 0

(114)

La simulation se porte sur le domaine Ω “ r´1, 1s3. Pour le champ de pression, les

conditions aux limites sont toutes de type Neumann homogènes. Quant au champ de vitesse,

on impose du Dirichlet homogène pour garantir la propriété d’étanchéité des surfaces. Enfin

le champ de température est doté de conditions aux limites de Neumann homogène dans les

deux premières directions et de condition de Dirichlet non-homogène dans la direction z.

Les paramètres de l’écoulement sont ν “

c

Pr

Ra

“

c

0.7

107
et λ “

1

Ra

“
1

107
. La discrétisa-

tion temporelle est donnée par ∆t “ 10´2 pour un temps final à Tfinal “ 60. Pour des raisons

de ressources informatiques la simulation suivante est réalisée sur une résolution 64ˆ64ˆ64

parallélisée sur 16 processeurs du calculateur AMU de Aix-Marseille, sur une période d’une

heure.

Les figures suivantes sont une coupe normale à l’axe y située au centre du domaine Ω.

FIGURE 13 – Coupe de Ω à t “ 1

La figure (13) illustre les conditions limites Dirichlet non-homogènes que l’on remarque

sur le haut et le bas de la coupe. De plus, le gradient de température est encore visible 1

seconde après le temps initial.

Sur la figure (14) les premières instabilités apparaissent malgré que le gradient de tempé-

rature se maintienne globalement.

46

FIGURE 14 – Coupe de Ω à t “ 10

FIGURE 15 – Coupe de Ω à t “ 17.5

FIGURE 16 – Coupe de Ω à t “ 20

FIGURE 17 – Coupe de Ω à t “ 22.5

Les figures (15), (16), (17) et (18) permettent d’observer plusieurs phénomènes de convec-

tion. Ce cas académique d’écoulement ne fait pas ressortir de soucis de programmation du

code de calcul Tchebycube.

47

FIGURE 18 – Coupe de Ω à t “ 25

Néanmoins, la simulation est sous résolue. Cela est visible sur les franges ascendantes

dans les phénomènes de convection, particulièrement sur la figure (16). De ce fait, cette

simulation est à but purement illustrative, une si faible résolution ne permet pas d’étude de

cet écoulement. Pour aller chercher une simulation de production, des temps d’intégration

bien plus long sont nécessaires et une résolution d’au minimum 512 ˆ 512 ˆ 512 pour une

configuration non-périodique dans chaque direction. Pour l’ajout d’une ou plusieurs directions

périodiques une résolution plus grande dans ces directions doit être envisagée. En effet,

la résolution de l’écoulement dans les directions périodiques se reposant sur l’usage des

transformées de Fourier rapides, elle sera plus rapide que dans le cas non-périodique. Ainsi,

la résolution de la simulation peut être augmentée, au moins dans ces directions.

48

6 Conclusion

Le code de calcul développé lors de ce stage utilise des méthodes numériques au

moins aussi précises que les méthodes d’ordre élevé. Cependant, cela se fait au prix d’une

dépendance entre chaque point de collocation du domaine. Celle-ci impose une attention

particulière lors de la parallélisation de l’algorithme, pour des applications dans le calcul haute

performance. Ces difficultés sont en partie surmontées grâce à plusieurs outils tels que les

bibliothèques 2DecompFFT [9] et FFTW3 [4]. Malgré ces travaux, un faisceau de présomption

pèse sur la scalabilité de cette implémentation souffrant de lourdes communications. Ce

défaut est observable sur les mesures faites sur les algorithmes de FFT, qui reposent sur le

même principe de parallélisation : le découpage en pencils.

De plus, le travail produit sur les effets des forces de Coriolis ouvre une voie à explorer.

En effet, cette méthode implicitant les termes de ces forces pourrait enrichir l’étude de ces

écoulements spécifiques, notamment à faible nombre d’Ekman. Mais cela est encore à

l’étape de prospection et des études plus approfondies doivent être conduites pour réfuter ou

renforcer ces premiers résultats.

Enfin, d’un point de vue plus personnel, ce stage m’a donné un aperçu du monde

de la recherche, de ses enjeux et de ses moyens. En plus de l’enrichissement de mes

connaissances sur la mécanique des fluides, la construction de Tchebycube m’a donné

une vision d’ensemble sur le développement d’un code de calcul. Particulièrement les

aspects matériel et logiciel ont été nouveaux pour moi. Ainsi, ces six mois ont approfondi

ma compréhension dans le domaine informatique autant d’un point de vue software que

hardware, dans le domaine physique avec une approche approfondie de la mécanique des

fluides et dans le domaine des méthodes numérique avec les méthodes spéctrales.

49

Références

[1] Keaton J. BURNS et al. “Dedalus : A flexible framework for numerical simulations with

spectral methods”. In : Physical Review Research 2.2, 023068 (avr. 2020), p. 023068.

DOI : 10.1103/PhysRevResearch.2.023068. arXiv : 1905.10388 [astro-ph.IM].

[2] Alexandre Joel CHORIN. “The numerical solution of the Navier-Stokes equations for an

incompressible fluid”. In : Bulletin of the American Mathematical Society 73.6 (1967),

p. 928-931.

[3] CF CURTISS et JO HIRSCHFELDER. “Integration of Stiff Equations”. In : Proceedings

of the National Academy of Sciences of the United States of America 38.3 (mars

1952), p. 235-243. ISSN : 0027-8424. DOI : 10.1073/pnas.38.3.235. URL :

https://europepmc.org/articles/PMC1063538.

[4] M. FRIGO et S.G. JOHNSON. “The Design and Implementation of FFTW3”. In : Pro-

ceedings of the IEEE 93.2 (fév. 2005), p. 216-231. ISSN : 0018-9219. DOI : 10.1109/

JPROC.2004.840301.

[5] David GOTTLIEB et Steven A ORSZAG. Numerical analysis of spectral methods : theory

and applications. SIAM, 1977.

[6] J.L. GUERMOND, P. MINEV et Jie SHEN. “An overview of projection methods for incom-

pressible flows”. In : Computer Methods in Applied Mechanics and Engineering 195.44

(2006), p. 6011-6045. ISSN : 0045-7825. DOI : https://doi.org/10.1016/j.cma.

2005.10.010. URL : https://www.sciencedirect.com/science/article/

pii/S0045782505004640.

[7] Jean-Luc GUERMOND. “Un résultat de convergence d’ordre deux en temps pour l’ap-

proximation des équations de Navier-Stokes par une technique de projection incré-

mentale”. fre. In : ESAIM : Mathematical Modelling and Numerical Analysis - Modé-

lisation Mathématique et Analyse Numérique 33.1 (1999), p. 169-189. URL : http:

//eudml.org/doc/193909.

[8] Sandrine HUGUES et Anthony RANDRIAMAMPIANINA. “An improved projection scheme

applied to pseudospectral methods for the incompressible Navier-Stokes equations”.

50

https://doi.org/10.1103/PhysRevResearch.2.023068
https://arxiv.org/abs/1905.10388
https://doi.org/10.1073/pnas.38.3.235
https://europepmc.org/articles/PMC1063538
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/10.1109/JPROC.2004.840301
https://doi.org/https://doi.org/10.1016/j.cma.2005.10.010
https://doi.org/https://doi.org/10.1016/j.cma.2005.10.010
https://www.sciencedirect.com/science/article/pii/S0045782505004640
https://www.sciencedirect.com/science/article/pii/S0045782505004640
http://eudml.org/doc/193909
http://eudml.org/doc/193909

In : International Journal for Numerical Methods in Fluids 28 (1998), p. 501-521. URL :

https://api.semanticscholar.org/CorpusID:122964813.

[9] Ning. LI et Sylvain LAIZET. “2DECOMP&FFT - A Highly Scalable 2D Decomposition

Library and FFT Interface”. In : 2010. URL : https://api.semanticscholar.org/

CorpusID:62453043.

[10] Maxim A. OLSHANSKII, Andriy SOKOLOV et Stefan TUREK. “Error Analysis of a Pro-

jection Method for the Navier–Stokes Equations With Coriolis Force”. In : Journal

of Mathematical Fluid Mechanics 12 (2010), p. 485-502. URL : https : / / api .

semanticscholar.org/CorpusID:5931832.

[11] Roger PEYRET. Spectral methods for incompressible viscous flow. T. 148. Springer,

2002.

[12] Rolf RANNACHER. “On Chorin’s projection method for the incompressible Navier-Stokes

equations”. In : The Navier-Stokes Equations II—Theory and Numerical Methods :

Proceedings of a Conference held in Oberwolfach, Germany, August 18–24, 1991.

Springer. 2006, p. 167-183.

51

https://api.semanticscholar.org/CorpusID:122964813
https://api.semanticscholar.org/CorpusID:62453043
https://api.semanticscholar.org/CorpusID:62453043
https://api.semanticscholar.org/CorpusID:5931832
https://api.semanticscholar.org/CorpusID:5931832

	Introduction
	Les équations de Navier-Stokes
	Descriptions eulérienne et lagrangienne
	Conservation de la masse
	Conservation du moment cinétique

	Présentation des algorithmes de projection
	Algorithme de projection
	Algorithme de projection à pression incrémentale
	Algorithme de projection amélioré

	La méthode numérique
	Discrétisation par polynômes de Tchebyshev
	Discrétisation par série de Fourier
	Problème de Helmholtz
	Problème en 1D
	Problème en 3D
	Intégration des conditions limites

	Implémentation
	Langage objet
	Les types dérivés
	Classe et héritage

	Parallélisation
	Résolution sur les noeuds intérieurs
	Intégration points de collocation sur
	Transformée de Fourier rapide

	Perspectives

	Les forces de Coriolis
	Formulation du problème
	Terme de Coriolis explicite
	Terme de Coriolis implicite

	Validation
	Précision spectrale
	Exemple de bug
	Comparaison des algorithmes de projection
	Comparaison des algorithmes de projection avec les forces de Coriolis
	Exemple d'écoulement

	Conclusion

