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1 Introduction

Dans ce chapitre, le systeme d’équations régissant I'écoulement de fluides incompres-
sibles sera présenté. Ce systeme apporte un couplage entre le champ de vitesse et le
champ de pression. Pour surmonter cette contrainte, on va détailler I'algorithme de projection
originalement présenté par Chorin en 1967 [2], puis 'amélioration de I'ordre de convergence
apportée par I'algorithme de projection a pression incrémentale. Enfin, pour corriger les er-
reurs commises sur les parois pour le champ de pression, un dernier algorithme de projection

sera détaillé : I'algorithme de projection amélioré.

1.1 Les équations de Navier-Stokes
1.1.1 Descriptions eulérienne et lagrangienne

Le premier obstacle a la mise en équation du phénoméne d’écoulement de fluide incom-
pressible est la transcription des lois physiques décrites avec la technique lagrangienne en
description eulérienne.

La description lagrangienne est I'une des deux techniques qui permettent de caractériser
un écoulement. Elle consiste a suivre dans le temps les particules fluides le long de leur
trajectoire. Néanmoins la description eulérienne qui repose sur le champ des vitesses est
préeférée car celle-ci permet de décrire I'écoulement dans une région donnée par opposition
a la technique lagrangienne ou ce sont les volumes élémentaires qui sont décrits.

On fixe les notations suivantes pour une grandeur représentée par la fonction f :

f(z,t) pour la description eulérienne

F(X,t) = f(z(X),t) pour la description lagrangienne

Pour t € R* le temps écoulé depuis un temps de référence choisi, € R? une position
dans I'espace et X un volume élémentaire que I'on appelle aussi particule fluide.

Ainsi on définit deux dérivées temporelles distinctes, la dérivée relativement a une position
x constante notée < et la dérivée relativement a une unique particule fluide X notée 2 On

ot Dt
rappelle la regle de dérivation composite pour une fonction dérivable f :



D 0 D

D 0
Ef(x,t) = E(t> gf-FE(a?) %f (D)

Par exemple I'accélération d’'une particule fluide en description eulérienne s’exprime de la

maniére suivante, pour U € R? le vecteur vitesse d’une particule fluide, d’aprés (7)) :

DU oU & oU
E:E—*—;Uia_l_i (2)
zé—U—i—U-VU
ot

Ainsi on remarque que, méme a |'état stationnaire (z.e.ﬁ = 0), 'accélération de la
particule fluide peut étre non nulle en conséquence du terme d’advection.
Pour un volume V' de fluide dont la surface S se déplace a une vitesse U, on obtient,

grace au théoréme de Newton-Leibniz, pour une fonction F' intégrable :

D oF OF
T Vde—JVEdU+J‘SFUS~dS—JVE—i—V-(UF)dU (3)

1.1.2 Conservation de la masse

Ainsi on considéere un volume de masse m = J pdv. En appliquant le principe de
Vv

conservation de la masse, on obtient sur un volume V' quelconque :

Dm D op
— odvy = Lo (Un)ld 4
0 Dt Dt )y, ! J;z [(% ( >] ! )

Cette équation de conservation locale de masse doit étre vérifiée pour tout volume de
fluide V. Ainsi (@) et I'hypothese d’incompressibilité du fluide (i.e. la densité p est constante)

donnent :



op

F
©§—§+U'Vp+pV~U=0
dp
o U=0
@at—kpv

=V-U=0

On obtient ainsi la premiere équation décrivant I'écoulement d’un fluide incompressible,

i.e. la condition d’incompressibilité :

V-U=0surV (5)

1.1.3 Conservation du moment cinétique

Pour I'application de la conservation du moment cinétique, on introduit le calcul suivant

pour F € R3 :
D [ OpF
— | pF=| L= 4V (pFU)d
r 3 F
— | FL 4 ) 4 F(V-(pU)) + p(U - V) Fdo

i F . e
= p% +p(U-V)Fdv par hypothése d’incompressibilité
v o

[ DFd
JV Dt

0
Avant d’appliquer la conservation du moment, un bilan des forces est nécessaire. Pour

Lhypothése d'incompressibilité implique que F' (a—f +V- (pU)) =0.

les forces volumiques, on inclut uniquement la gravité, notée :

F,= J pgdv (6)
1%

Les forces surfaciques sont données par le tenseur de contraintes o, ainsi pour une surface

S d’'un volume matériel V', on note les forces surfaciques comme :



Fszf a-dSsz-adv (7)
v 1%

Ainsi la conservation du moment cinétique donne :

D J pUdv—J pgdv+j V- odv
@f{ ]dv—()

Avec le méme argument qu’utilisé plus haut, comme le volume V' est quelconque, on

obtient 'équation locale de conservation du moment, qui est I'équation de Cauchy pour le

mouvement d’'un milieu continu :

oUu
p_

o +pU-VU =pg+V -0 (8)
%

Plus spécifiquement, pour un fluide, le tenseur de contrainte s’écrit :

0ij = —pdij+ Tij 9)

Pour p la pression du fluide, § est le symbole de Kronecker et 7 est le tenseur de contrainte
de cisaillement. Ce tenseur est défini par la loi de comportement suivante, avec . la viscosité

dynamique du fluide :

oU;, U,
o 10
Tid a <a$] * (91'1) ( )

Ainsi en reprenant I'expression des forces surfaciques :

V-o=V-(=pl+p(VU+VU") (11)

La condition d’incompressibilité donne l'identité V - (VU') = V (V- U) = 0. Ainsi (T1)

méene a :

V-o=-Vp+u(V-(VU)) =uV?—Vp (12)



On remplace dans I'équation de Cauchy, pour le mouvement d’'un milieu continu () :

ou
p(ﬁ + (U-V)U) = —Vp+ pg + uV2U (13)

Or 1 = pv avec v la viscosité cinématique, ainsi (13) se réecrit :

ou 1
ﬁ+(U-V)U:—;Vp+g+VV2U (14)

Si p est constante alors le systeme est fermé, sinon il faut ajouter une équation d’état de
la thermodynamique, par exemple pour lier les variables p, p, T, ...
Ainsi, pour p constante, on obtient le systéeme d’équations de Navier-Stokes décrivant

I'écoulement d’un fluide incompressible.

1
a—UJr(U-V)U—uV?Uz ——Vp+yg
ot p (15)
V.U -0

Pour fermer le probleme, il est nécessaire d’ajouter des conditions aux limites compatibles.

1.2 Présentation des algorithmes de projection

Le systéme d’équations de Navier-Stokes (13) pour les fluides incompressibles montre
deux difficultés : la condition d’incompressibilité (i.e.V - U = 0) et la gestion du couplage entre
le champ de vitesse U et de pression p. Pour surmonter ces obstacles, divers algorithmes ont
été proposés. Nous allons nous concentrer de maniére non-exhaustive sur les algorithmes

de projection.

1.2.1 Algorithme de projection

Le premier algorithme de cette famille est proposé en 1967 par Chorin dans [2]. Le
principe général de I'algorithme est d’estimer provisoirement le champ de vitesse U, puis de
projeter ce champ de vitesse pour imposer la contrainte d’incompressibilité, pour enfin en
déduire le champ de pression.

On donne l'algorithme détaillé dans la suite, découplant le systéme d’équations de Navier-

Stokes pour les fluides incompressibles en plusieurs problemes de Helmholtz. Ainsi on réécrit



le probléme adimensionné sur 2, un ouvert de R?, avec I' la frontiere de 2 dans R?, pour
T € R* un temps final, pour U le champ de vitesse, p le champ de pression.

(oU

o + NL(U) —vV2U + Vp = f sur Q x [0, 7]

V-U=0surQx[0,T]
4 (16)

U|t:0 = U, sur )

U=Wsurll

Avec NL(U) = (U - V) U qui contient le terme non-linéaire du probléme. De plus, on pose
une discrétisation temporelle uniforme telle que le k-éme instant ¢, est défini par t, = kAt a
partir d’'un instant de référence.

Pour commencer Chorin, propose d’estimer un champ de vitesse provisoire U du prochain
itéré temporel U**1, & partir du champ de vitesse précédent U*, par le probléme de Helmholtz

suivant :

1

N <0k~+1 _ Uk) A v2T St f(tkH) _ NL(Uk) (17)

Avec la condition aux limites suivante :
Uk-‘rl _ Wk?-‘rl (18)

Puis I'algorithme de Chorin donne le systéme suivant :

1

~ (Uk+1 . Uk+1) + Vpk+1 -0

V. UMt =0 (19)
Uktlon = Wkl nsur T
Ainsi en appliquant la condition d’incompressibilité sur U**!, on en déduit le champ de

pression pF+! :

1 ~
2 k+1 _ Nl
Vi - o (v 0 ) (20)

Cela permet ainsi, grace a (19), de calculer le nouveau champ de vitesse U**! :



. 1
k+1 — k+1 _ k+1 21
U U Ath (21)

Lestimation d’erreur suivante est donnée par [6] :

|URE = Unelli=(r2pe) + IURE — Unelli=rr2ops) < CAL

ex & 1
||peAxt _pAtHlOO(L?(Q)) + HUAt — UAtHlOO([Hl(Q)]S) < CAtQ

Rannacher montre dans [12] que cet algorithme commet une erreur sur le champ de
pression en imposant Vp**!.n|r = 0. La principale faiblesse de cet algorithme est I'estimation
du champ de pression. Cela conduit a une modification de I'algorithme de projection de

Chorin.

1.2.2 Algorithme de projection a pression incrémentale

Lalgorithme de projection a pression incrémentale, consiste a prendre en compte le
champ de pression de l'instant précédent p*, dans I'estimation de la vitesse provisoire U**1.
On utilise la Backward Differentiation Formula proposée par Curtiss et Hirschfelder en 1952

[3]. Ainsi I'estimation de la vitesse provisoire est donnée par :

1 - ~
A (3Uk+1 —AU* + U‘H) — VAU = (Y —2NL(U*) + NL{U 1Y) - Vp* (22

Avec la condition aux limites est :

Uk+1 — Wk+1 (23)

Puis, pour obtenir les champs de pression et de vitesse actuels p**! et U**!, e systéme

suivant doit étre résolu :



QLAt <3Uk+1 _ 3Uk+1> v (pk+1 _ pk) _0
V. -Ut =0 (24)

Uktl.p = Wkt . psur T

De méme maniére que précédemment, le champ de pression p*+! est donné en appliquant

la contrainte d’incompressibilité sur la premiére équation, aboutissant :

3 ~
v2pk:+1 _ 2_Atv . Uk+1 + v2pk (25)

Cela permet ainsi de déterminer le nouveau champ de vitesse U**1.

Voici les résultats sur I'erreur commise démontrés par J.-L. Guermond dans [7] :

||UZ€ — UAt||l30([L2(Q)]3) + HUth — UAtHlOO([L?(Q)]?’) < CAt2

PR, — paclli= 2@ + |IURG — UAtHlOC([Hl(Q)]S) < CAt

Ceux-ci sont valides dans le cas ou la premiére itération utilise un schéma temporel d’ordre
1, avant de passer sur un schéma BDF2 d’ordre 2. Ainsi il est nécessaire de commencer par
estimer la pression initiale p°, grace a la relation :
2,0 0 a 0 0 2770
Vi = V- f(t7) avec 'l = (F(t°) + vV?U) - Ir (26)

Ainsi, la ol I'erreur du premier algorithme est d'imposer Vp*+! . n|r = 0, I'algorithme de
projection a pression incrémentale impose V (p**! — p*) - n|r = 0. Cela revient a imposer la

contrainte suivante :
VP nlp = V¥ nlr = Vp? onp

Cette condition n’étant pas physique, elle introduit des erreurs numériques sur les bords

qui limitent la précision de 'algorithme.
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1.2.3 Algorithme de projection amélioré

Lalgorithme de projection amélioré, présenté par S. Hugues et A. Randriamampianina [8],
repose sur le calcul d’'un champ de pression provisoire, pour éviter la contrainte imposée par
les précédents algorithmes. Ainsi, pour un instant ***, on note p**! le champ de pression
provisoire. Lalgorithme de projection amélioré commence par la détermination de ce champ

de pression provisoire :

V2t = V- [<2NL(U*) + NL{U*Y) + f(t*1)] sur Q on

| 3WRH 44Uk - U

¢ 2At

—2NL(U") + NL(U*) + vV? (2UF — U Y) + f(#7Y) (28)

Puis, comme dans les précédents algorithmes de projection, le champ de vitesse provisoire

est déterminé par I'équation suivante :

i (30’”1 AUt U’H> _UVEDR = CONL(UR) + NL(URY) — VFFL 4 f(#1) (29

Ou la condition suivante est imposée sur le bord I" :

Uk-‘rl — Wk+1 (30)

Enfin, les champ de pression et de vitesse sont déterminés de maniére identique aux

précédents algorithmes de projection, a partir du systéme suivant :

QLAt <3Uk+1 _ 3Uk+1> v (karl _ ﬁkJrl) —0
V- UM =0 (3D

Uktl.p = WEH . psur T

Tel que le champ de pression p**! soit résolu par un probléme de Helmholtz obtenu en

appliquant la condition d’incompressibilité, pour enfin en déduire le champ de vitesse U*+!.

11



2 La méthode numérique

Cette section détaille les deux discrétisations qui seront utilisées. La premiére se construit
sur la base des polynédmes de Tchebyshev, pour pouvoir insérer des conditions aux limites
non-périodiques de type Dirichlet, Neumann ou Robin. La seconde discrétisation se base
sur une approximation par série de Fourier pour traiter un cas périodique. Pour chaque
direction, une discrétisation doit étre choisie, cela permet de choisir des géométries mixtes
pour la nature des conditions aux limites. Ensuite, la résolution d’'un probléeme de Helmholtz
en 1D sera montrée puis son extension naturelle au cas 3D. Enfin, pour les directions
non-périodiques, une attention particuliere sera portée sur l'intégration des conditions aux

limites.

2.1 Discrétisation par polynémes de Tchebyshev

Cette discrétisation est moins répandue que son équivalent spectral mais celle-ci permet
de traiter des problémes avec des conditions aux limites non-périodiques de nature variée.

Ainsi, on note T,, le polynéme de Tchebyshev d’ordre n, défini par récurrence :

Ty = 1
Tl = T
Tn+1: QxTn - Tn—l

Ces polynémes sont définis de maniere équivalente par :

Ty (z) = cos (kcos ' (x)) (32)

La famille des (7;)o<i<ny forment une base de Ry[X] et sont orthogonaux deux a deux pour

le produit scalaire (-, -),, tel que, pour u,v € L?(Q) :
1
(u,v)y = f wowdx (33)
-1

Ou w est un poids tel que :

1
wz) = (1-127) 2 (34)

12



Soit N € N, on discrétise (2, un intervalle fermé connexe de R, par les N+1 points de
Gauss-Lobatto, notés z;, pouri =0,..., N :
i

T; = cos(ﬁ) (35)

Or, le polyndbme de Tchebyshev Ty atteint ses extrema +1 aux points de Gauss-Lobatto.
On notera que ce sont aussi les zéros du polynéme (1 — 2?)T% (). Ainsi, en considérant

I'approximation par série de polynémes de Tchebyshev suivante de la fonction réelle u :

N
un(z) = ) i;Tj(x) (36)
j=0

.....

en imposant que Vi € [0 ; N]

un(z;) = u(x;) (37)

Ce qui signifie que I'approximation est exacte en chaque point de Gauss-Lobatto, ils sont
nommes les points de collocation. Ainsi le polynéme défini par est le polynébme d’interpo-
lation de Lagrange de degré N sur les points de Gauss-Lobatto, donc I'approximation peut

se réécrire :

uy () = > hj(x)u(z;) (38)

J=0

Ou h;(z) est le polyndbme de degré N défini par :

(=1 (1 — 2T (x)

hi(z) = — (39)
! ¢ N2 (x — )
2 sij=0
GG=4 1 sil=j=N-1 (40)
2 sij=N

se démontre par le fait que les points de collocation x; sont les zéros de (1 — z2)T} (z)

13



et en remarquant que :
L (=) ()

T €r — T

= (=1)"*'gN? 41)

Cela permet de choisir comme inconnues la valeur en chaque point de collocation u(x;) a la

place des coefficients .

Pour la résolution d’EDQ, il est nécessaire d’introduire un moyen de différencier ce type
de série de maniere exacte aux points de collocation. En réécrivant (38) sur les points de

collocation, on obtient :
N
uy (i) = > bz )u(z;)  i=0,..,N (42)
7=0
Comme h,(z) est de classe C* et en notant hg.p) (7;) = dz(f}) avecpeNona:

N
uf(z) =Y dPu(z;)  i=0,..,N (43)

Les coefficients dl(f}) se déterminent en évaluant la p-iéme dérivée de h; sur le point de
collocation z;. Ces coefficients sont donnés dans [11] pour la différenciation d’ordre 1 et 2

que I'on rappelle ici :

_z -1 i+J
dg};zc (=1 pour 0 <i,j < N,i # j
¢ (v — ;)
dly —2<1xi 7 pour1 <i< N —1
b xz
1 1 2N?% +1

14



d(2) _ (—1)i+j LCZQ + T;Tj — 2

pourl <i<N—1,0<j<N,i#j

Mg (L-a) (e — )’
dE?=<N2;(11)(_1;55)+3 pourl<i< N -1
dy), = g(_gw (N Jr(ll)fx;fj> —6 pour0 <j <N —1
= =

Ces coefficients peuvent étre écrits sous forme matricielle notée D?. Ainsi sur les points
de collocation (i.e. les points de Gauss-Lobatto) (z;)o<i<n, l€ vecteur U = (u(xo), ... u(zy))"

peut étre différencié sur ces points tel que :

U”(xg)

= D?U (44)

u//(xN)

2.2 Discrétisation par série de Fourier

Pour résoudre le probléme de Helmholtz (62) avec des conditions aux limites périodiques,
on utilise des approximations par série de Fourier, dites spectrales, en notant pour u une

solution a un probléme de Helmholtz 1D :

0
Uep() = D Tpe™ (45)

m=—a0
Ou (u.,)mez sont les coefficients spectraux de 'expansion en série de Fourier de la solution
uez. AiNsi, en tronquant la série avec N = 2K +1 permet d’approcher la solution ., avec
une discrétisation uniforme, contrairement a la discrétisation nécessaire a la méthode de

collocation de Tchebyshey, tel que :

K
u(x) = Z U™ (40)
m=—K
Grace a diverses stratégies basées sur les transformées de Fourier notées FFT (Fast Fou-

15



rier Transform) les coefficients (4., )..ez sont calculés efficacement. Ainsi, on peut différencier
u, tel que pour pe N :
K
uP = Z (im)p Geime 47)
m=—K

Cela permet de baser la résolution du probleme de Helmholtz 1D sur le méme principe
que pour la discrétisation de Tchebyshev. On note D la FFT donnant les coefficients spectraux
et D! la transformée inverse pour revenir dans I'espace physique. Ainsi, pour le probléme
de Helmholtz avec conditions aux limites périodiques, on répéte I'algorithme utilisé dans
I'approximation par polynémes de Tchebyshev. De ce fait, a la place de la diagonalisation
de l'opérateur D = PAP~', la matrice de passage P est remplacée par une FFT et une FFT
inverse pour P~!. La matrice diagonale A est remplacée par la multiplication du coefficient
U, par —m?.

Cette résolution est utilisée dans de nombreux codes de calcul car son efficacité repose,
par construction, sur 'implémentation de I'algorithme de FFT. Or, celui-ci est au centre de la
recherche informatique depuis de longues années, par exemple, le benchmark du Top500
des machines contient une mesure de I'efficacité des calculateurs sur I'application de FFT.

De ce fait, I'amélioration de la performance du code de calcul repose sur celle des
algorithmes et de I'implémentation de FFT. Lidée de reposer la résolution du probleme sur le
méme schéma, que ce soit pour une discrétisation par polynémes de Tchebyshev ou par
série tronquée de Fourier, permet de construire un code de calcul qui rend possible un choix
entre les directions périodiques et non-périodiques sans contraintes particuliéres.

Ainsi, un des principaux avantages de cet algorithme est cette agilité a résoudre différents
problemes de Helmholtz avec des conditions aux limites de nature variée. Mais cela se fait au
prix d’'une efficacité réduite dans la configuration périodique pour les trois directions, face a
des algorithmes spécialement construits sur les FFT bénéficiant de leur faible colt mémoire
et grande vitesse de calcul.

Donc, on remarque ici un choix dans le développement du code de calcul, ou la recherche

de l'efficacité ne se fait pas au prix de la généralité de celui-ci.
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2.3 Probleme de Helmholtz

La résolution de ce type de probleme est cruciale pour les algorithmes de projection.
Dans cette section seront construits les solveurs pour les probléemes de cette nature. Pour
des raisons de généralisation, le solveur présenté est associé a un probleme non-périodique.
Cependant, pour un probléme périodique, les quelques corrections a mettre en place, sont
la définition de I'opérateur D donnée dans la section précédente et la suppression de

I'intégration des conditions aux limites.

2.3.1 Probléme en 1D

On pose le probléme de Helmholtz suivant sur @ = [—1, 1] avec o, v, ar g, Br.r € R

ou + vu' =5 sur
apu(—1) + fru'(-1)= [
agu(+1) + Bru/(+1)=  fr

De plus le terme source S est dépendant du temps et de I'espace, de méme que les
valeurs aux bords f;, et fx.

On discrétise Q2 par les N+1 points de Gauss-Lobatto (z;)o<;<y. On pose comme incon-
nues la valeur de la solution aux points de collocation notée u; = u(z;). Ainsi lorsque que I'on

écrit le probleme sur les points de collocations :

-

N
oui+vy diju; =S 1<i<N-1
j=0
N
1
{ anug+ Br Y. diu, = fr
p=0
N
arun + Bt Z dg\lf,)pup = Ir
\ p=0

Les deux derniéres lignes vont nous servir a exprimer u, et uy en fonction des points de
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collocations intérieurs, ainsi :

N-1
aply + BR(d&%uo + dé{])VUN) = frR—Br Z d&;%
=1
N-1
QLun + 5L(d§\1f,)0u0 + dg\lf,)NuN) = fo—Bu dg\lf,)pup
p=1
Ce systeme linéaire se réécrit :
N-—1 )
Jr—=Br ), dyu
ot bl ey ) [w) 2, sty
JO 4 - &
Br N0 ar + BL N,N un fr— B Z dN,pup
p=1

On note :
QR + 5Rd8()) ﬁRd&)\,

BLdE\?O ar + BLdS\lf?N

CL =

(48)

(49)

C'L est inversible lorsque des conditions limites de type Dirichlet, Neumann ou Robin sont

choisies. Ainsi,on a :
N—-1
fR - BR 2 d(()iz);up
L =
un fL - BL Z dg?pup

p=1

U

Donc le systéme sur les points intérieurs de collocations s’écrit :

r N
j=0
N-1
1
3 y fr=Br Y] dyu,
0 _ —1
=CL™! 1\1;—1
Un Jr—BL Z dg\}',)pup
\ p=1

(50)

18



Or on peut réécrire la premiere ligne de ce systéme pour i € [1

N-—-1]:

N-1
ou; +v 2 dfj)uj =5 — dz%)uo —d?

i, NUN
j=1
Si
N—
42 0L11< 2 >+CL12<fL_5LZdeuP>]
p=1 p=l
N N-1
B dﬁ)v OLE& (fR _ Z ) + C’L;é <fL — B Z dg\lf?pup)]

D’ou, en séparant les points intérieurs au domaine, des points sur les frontieres de (2
notées I :

S; —diy (CLIifR + CLisf) = d (CLyifr + CLy) fi)
= ou; + v Z |d2) — d) (CLi1Brdl) — CLi3BLAY))

_dZ(QIif ( 2 15Rd0g CLiéﬂLd%,)j)] uj

Ces N — 1 relations déterminent la valeur de la solution « sur les points intérieurs du

domaine (. Cela s’écrit sous forme du systeme linéaire suivant :

(51
Tel que :

(52)

D%, = d) — ) (CLiiBndl)) — CLBLAY) ) — a2 (CLy1BrdS) — CL33BLAR))
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Uy

- (53)
UN-1
Si—d (CLi fr+ CLAfL) — dPN (CLy fr + CLy S f1)
3

Si — dz(?()) (CLi fr+ CLI3fL) — dﬁ)v (CLy1fr+ CLy3f1) (54)

Syt —dN 1o (CLT fr + CLT 1) — Ay n (CLy3 fr + CL3Af1)

D’aprés [11] la matrice D? posséde N — 1 valeurs propres distinctes (non-nulle si on
ne pose pas de conditions de Neumann a droite et a gauche) donc D? est diagonalisable.
On note P et P~! les matrices de passage, ainsi que A la matrice diagonale contenant les

valeurs propres. D’ou (51)) donne :

(oI + vPAP YU =S (55)

(oI + vA)P~'U = P7'S (56)

Ainsi la solution du systéme linéaire (51) s’écrit comme U = PV, tel que pourie [1,N —1] :

Vv, = : (57)

2.3.2 Probléme en 3D

On considere ici I'extension en trois dimensions du précédent probleme de Helmholtz sur

Q=[-1,1]3:

ou+Viu=S (58)

w’y?’z x?sz

Le conditions limites sont similaires a celles posées pour le cas en 1D i.e. soit %, 8,5 €

R tels que :
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aju+ Piu'=ff surly
afu+ Bru'=ff  surlf
Yy Y, Yy -
3 Y (59)
agu + fpu'=fp  surly)

aju+ piu'=f; surl;

ahu+ Bau'=f;  surl'}

Le probléme est séparable, ainsi on approxime chaque direction par une série tronquée
de polynébmes de Tchebyshev dans chaque direction, de degré maximal N,, N, et N, res-
pectivement pour la direction z, y et z. De plus, on introduit 'opérateur de produit tensoriel
suivant pour A, B, C des tenseurs d’ordre 2 représentant des opérateurs linéaires dans les

direction z,y ou z et ¢ un tenseur d’ordre 3 qui est le champ de données :

(A BRC)$ = A; B, Crrbpqr = R (60)
Avec R un tenseur d'ordre 3, de taille N, x N, x NV, tel que :

Nac Ny Nz

[R]Z}j,k = [(A ®B® C)Qb]i,j,k = Z Z Z Ai,ij,qu,r¢p,q,r (61)

p=1g=1r=1

Ainsi, en reprenant les notations précédentes, on a sur les points de collocation intérieurs de
Q-
(D,®D,® D,)U =S (62)

Ou D, représente I'opérateur réduit de dérivation d’ordre 2 dans la direction ,y ou z,
S est le terme source réduit pour résoudre les points de collocation intérieur. Ainsi, aprés

diagonalisation de chacun des opérateurs direction par direction on obtient :

S=([oL +vPAP | ®I,®L)U (63)
+ (L ® [0, + vP,A P | QL) U (64)
+(I,®1,®[cl, + vP.AP]']) U (65)
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Ce qui donne le systéme linéaire suivant :

(Pl P @ PYS = ([of, +vA) P © L, @ L) U
+ (Ix®[‘7]y+’/Ay]Py_l®Iz)U

+(L®L®[ol +vA P U

(66)
(67)

(68)

Notons A, . = (01, + VA, @ [, ® L) + (I, ® 01, + VA, @ L) + (I, @ I, ® ¢ L. + v/A.), ainsi :

(PP I®PY) S=RA, (PP @ PTYHT

Ainsi, on note V' le tenseur suivant :
V=(P'®P'@P U

De méme :

S=(P'eP eP")s

Cela permet d’appliquer A-1 . sur S, donnant en indiciel :

x7y7z

A~

Sijk

=

7j7k =

Avecic [1,N, —1],j e [1,N, — 1] etk e [1, N, — 1]

Pour obtenir U/, on remonte dans I'espace physique :
U=(P,QP,®P,)V

2.3.3 Intégration des conditions limites

v(Api+ A+ Aok) +0

(69)

(70)

(71)

(72)

(73)

La reconstruction se fait de la méme maniere que pour le probleme 1D, a ceci prés que

I'on doit effectuer la reconstruction valeurs aux bords dans le bon espace propre de chaque

direction.

Pour les matrices CL,,CL, et CL,, leur direction respective est donnée par l'indice mais
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leur construction est identique direction par direction au cas 1D.

Ainsi, pour reconstruire les valeurs aux bords, on obtient le systéme suivant avec un

raisonnement identique au cas en 1D.

.
Uo,j,k

1Jy _ _1

=CL;

/U/N];,j,k
Us.0,k

{ = CLy—1
Ui, Ny ke
Wi, 5,0

=CL;!
Uj,5,N.

N,—1
(1)
[ =85 D) douisin
i=1
N,—1
(1)
fE =81 ) dy) uign
i=1
Ny—1
Y Y (1)
fr— Br Z do ;Wi gk
j=1
Ny—1
y Yy (1)
fr =61 Z dNy,jUi,j,k
j=1
N.—1
(1)
fi—Ba Y dosuign
k=1
N.—1
z 2 (1)
JL—bL Z Ay, kUijk
k=1

avecje|[l,N,—1]etke[l,N, —1]
avecie [1,N, —1]etke[l,N,—1]

(74)

avecie[1,N, — 1] etje[1,N,—1]

Cela permet de remplacer pour i € [1, N, — 1],j € [1,N, — 1] et k € [1, N, — 1], les points

U, .k UN,,j ks Wi 0,k Ui, N, ks Ui 0 €L u; 5 v, que I'on nommera par la suite les points de collocation

sur les bords. Ainsi, pour ona:

U jx = uijrpourie [1,N, —1],j€ [1,N, — 1] etk e [1,N, — 1] (75)
D, =oly, 1 +vD? (76)
D, =oly, 1 +vD; (77)
D.=oly.  +vD? (78)
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Tels que pour i,l € [1, N, — 1], jyme [I,N,— 1] etk,ne[I,N, — 1] :

2 2 — z (1 - T (2) z 1)
(Di)i,l = d'g,l) - dE,O) <0La:,11,15Rdé,l) - CLz,‘le,Q Ldg\}'i,l> - d Nz (OLxél RdOI CLﬁ]éQ Ldg\/ l>

)

(D2),,, = i = d3 (CLyL By, — CL1 80 ) — A, (CLydBhdsl), — CLy3,80dN) )

(D2),,, = didh = dif (CL21,Brdlly — CLL 878 ) = d2y (CLZ3, Bl — CL;,;gﬁzd%Z,n)

Enfin, pour le terme source réduit S :

Sijk = Sijk+ Ri,j,k (79)

Ou S contient les valeurs du terme source aux points de collocation. R est un tenseur d’ordre
3, de taille (v, — 1) x (V, — 1) x (IV, — 1), qui contient les contributions supplémentaires
provenant de la réduction du probléeme aux points de collocation intérieurs, comme dans

I'expression de (54) pour le cas en 1D.

Ri,j,k’ = - dz('?O (CL_I R+ CL—1 2fL) - d 2 N, (CLzz R+ CL—2 2fL)
d§2 (CL_1 fr+ CL—1 QfL) d(2 (CLy§1fR + CL—Q QfL)

J,Ny

dff (CLz%l R+OLZ12 f) _df (OLzél R+CLz22 Z)

z

Cela permet de prendre en compte la nature et valeur des conditions imposées aux limites
du probléme. En résumé, cet algorithme résout le probléme sur les noeuds intérieurs en
prenant en compte les conditions limites, pour ensuite reconstruire les noeuds frontieres,

grace au systéeme (74).
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3 Implémentation

Le code construit, nommé Tchebycube, est écrit en Fortran90 avec l'utilisation des
derniéres normes pour construire sa couche supérieure. On utilise des objets pour rendre
Tchebycube le plus facilement manipulable et le plus accessible possible. Néanmoins, les
routines de calcul principales , i.e. les différents solveurs des problemes de Helmholtz, sont
écrites avec comme priorité I'efficacité, de telle sorte que celles-ci soient seulement maniées
par l'utilisateur a I'aide des objets des couches supérieures. De plus, les considérations sur
la parallélisation de Tchebycube, ainsi que les futures perspectives de son amélioration, sont

discutées dans cette section.

3.1 Langage objet

La motivation de construire des objets pour ce code de calcul est de faciliter son utilisation.
On prendra, comme exemple, la construction de deux types dérivées meres : MESH et
OPERATOR. Ceux-ci permettent de manier les classes filles de ces objets pour utiliser la
discrétisation des polynémes de Tchebyshev ou celle d’'une décomposition par série tronquée

de Fourier. Cela s’appuie sur le concept de type dérivé et d’héritage.

3.1.1 Les types dérivés

Les types dérivés extensibles sont apportés par la norme 2003, ainsi cela permet, par
exemple, de déclarer un type MESH pour le maillage du domaine (2. Ce processus conduit
a un tableau nommé MAILLAGE de taille 3 dont chaque entrée est de type MESH. Chaque
composante de MATLLAGE contient donc les données nécessaires pour mailler le probleme
dans une direction.

De plus, pour chaque type dérivé, des procédures internes peuvent y étre définies. Elles
s’appuient sur les données contenues dans ces objets. Par exemple, le type OPERATOR a
plusieurs procédures internes permettant de différencier un champ, dans la direction spéci-
figue de cet opérateur. Cette procédure nommeée D1 s’appelle pour op de type OPERATOR
s’appelle de la maniere suivante : op%D1 ([arg])

Le code de calcul Tchebycube est écrit de maniére a construire des types dérivés de
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plus en plus complexes sur les types les plus simples. Le but ici est d’expliciter la chaine de

construction de chaque type dérive.

*>{ Solveur
[Conditions limites}fﬂ[ Laplacien }

[ Operateurs }

—[ Maillage }

[ Discrétisation }

FIGURE 1 — Schéma de la hierarchie des types dérivés de Tchebycube.

En orange sont les types décrivant une unique direction et en rouge le solveur utilisant les
trois directions simultanément. On remarque que le choix de la discrétisation est crucial. En

effet, celui-ci se répercute sur la construction de tous les types suivants.

3.1.2 Classe et héritage

Le choix de la programmation orientée objet prend son importance avec la figure ().
En effet, I'idéal serait que pour un choix de discrétisation donné pour chaque direction (i.e.
périodique ou non-périodique) le choix de type dérivé correspondant soit implicite, pour que
le solveur correspondant a la géométrie désirée soit utilisé. Lutilisation de la notion d’héritage
s'impose pour permettre cela. Ainsi, la notion d’héritage utilisée dans Tchebycube est assez
simple, dans les faits I'idée est de créer une classe abstraire mére pour chaque type dérivé,
puis une classe fille pour le cas périodique et une autre pour le cas non-périodique. Pour
illustrer cela, on prend I'exemple de la classe de type dérivé OPERATOR, définie comme

suivant :
TYPE , ABSTRACT :: T _OPERATOR_BASE
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INTEGER :: AXIS
INTEGER :: N
CONTAINS

! fonctionnalité pour 1l’utilisateur

PROCEDURE (EVAL_OPERATOR), DEFERRED, PASS(THIS) :: D1
PROCEDURE (EVAL_OPERATOR), DEFERRED, PASS(THIS) :: D2
PROCEDURE (EVAL_OPERATOR), DEFERRED, PASS(THIS) :: ID

END TYPE T_OPERATOR_BASE

Lattribut ABSTRACT permet de définir une classe mére qui n’est pas utilisable hors du
processus d’héritage. Ainsi, chaque classe fille de ce type dérivé est dotée d’'un champ de
donnée N et Ax1s. De plus, I'attribut DEFERRED indique que chaque classe héritée de celle-ci
doit avoir définie cette procédure interne avec l'interface spécifigue EVAL_OPERATOR.

Cela mene a la classe fille, pour une discrétisation d’'une direction non-périodique, nom-

meée T_OPERATOR_TCHEBY définie par :

TYPE , EXTENDS (T_OPERATOR_BASE) :: T_OPERATOR_TCHEBY
TYPE (T_DISCR_TCHEBY) :: DISCR_D1
TYPE (T_DISCR_TCHEBY) :: DISCR_D2
TYPE (T_DISCR_TCHEBY) :: DISCR_ID
CONTAINS
PROCEDURE :: INIT_OPERATOR_TCHEBY => INIT_OPERATOR_TCHEBY
PROCEDURE :: D1 => T_OPERATOR_TCHEBY_D1
PROCEDURE :: D2 => T_OPERATOR_TCHEBY D2
PROCEDURE :: ID => T_OPERATOR_TCHEBY_ID
PROCEDURE :: GET_D1, GET_D2, GET_ID

END TYPE T_OPERATOR_TCHEBY

Lattribut EXTENDS permet d’indiquer I'héritage depuis le type dérivé T_OPERATOR_BASE.
De plus, ce type ajoute comme champ de donnée trois T_DISCR_TCHEBY. On utilise des
pointeurs pour définir les procédures héritées D1, D2 et 1D, pour nommer de maniére explicite

ces routines.
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Ainsi, en construisant de maniére similaire le type dérivé T_OPERATOR_FOURIER, I'utili-
sation du polymorphisme permet de faire appel a la routine D1, par exemple, sans se poser la
question du type de discrétisation choisi sur chaque direction. D’ou, pour une variable op_Xx
définie comme un type dérive OPERATOR, cela permet de faire appel a la routine op_x%D1

sans avoir besoin de savoir si une discrétisation de Tchebyshev ou de Fourier est considérée.

3.2 Parallélisation

La parallélisation du code de calcul pour le protocole MPI se repose sur la librairie
2DecompFFT [9]. Elle consiste a décomposer les données selon une grille C' x R, ou C est le
nombre de processeur par colonne et R celui dénombrant le nombre de processus par ligne.
Ainsi, tous les processeurs ont accés aux données dans une direction et ont la charge d’'une
fraction du domaine total. Par exemple, lors de l'initialisation de 2DecompFFT les données

sont alignées selon la direction x i.e. on se place dans le pencil z :

FIGURE 2 — Distribution des données dans le pencil = pour C' =4et R = 3

3.2.1 Résolution sur les noeuds intérieurs

Comme montré précédemment dans (71)), on commence par aligner dans le pencil = les
données, afin d’'y appliquer P, ' ® I, ® I.. Cela est réalisable par chaque processeur car
comme montré sur la figure (@), pour chaque point de collocation intérieur, le processus
correspondant a acces a toutes les données dans la direction = nécessaire a ce produit
tensoriel. Puis, grace a la routine TRANSPOSE_X_TO_Y les données sont alignées dans le
pencil y (voir figure(3)) pour y appliquer sur les données I, ® P! ® I..

Ensuite on passe dans le pencil z avec la routine TRANSPOSE_Y_TO_7Z alignant les

données comme sur la figure (@) pour y appliquer I, ® I, ® P!
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FIGURE 4 — Distribution des données dans le pencil z pour C' =4 et R = 3

Dans cette configuration, on calcule V comme décrit par I'équation (72). Enfin, pour obtenir
U, il suffit d’utiliser la relation (73). Cela revient & appliquer I, ® I, ® P., puis de transposer
les données dans le pencil y pour y appliquer I, ® P, ® I,. Pour ensuite, finir par transposer

les données dans le pencil = et appliquer P, ® I, ® I, .

3.2.2 Intégration points de collocation sur I"

Outre le temps de calcul des six produits tensoriels, on remarque que la résolution
d’'un probleme de Helmholtz est constituée de quatre transpositions des données. Celles-ci
sont construites sur la base du protocole MPI MPI_ALLTOALLV. Ainsi, ces transpositions
engendrent de lourdes communications pour un nombre élevé de processeurs. Donc pour
reconstruire la solution a partir des points de collocation intérieurs, par la relation (74), il
faut réaliser quatre transpositions supplémentaires, pour aligner les données et reconstruire
les valeurs sur les bords. Pour éviter cela, la résolution sur I' se fait en méme temps que
celle sur les points intérieurs, permettant de faire quatre transpositions d’'un tenseur de taille
N,+1xN,+1x N,+1 au lieu de de quatre transpositions d’un tenseur de taille N, —1 x N, —

1 x N, — 1 puis de quatre autres transpositions de taille 2 (N, x N, + N, x N, + N, x N,).
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Notons pour i € [1,N, —1],j € [0, N,] et k € [0, N.] :

fa | Tr| fr

(Shi=| fi| 5| /2 (80)
AR AN;
SO,j,k:flgf
SNk = IR

Ainsi, en appliquant le produit tensoriel dans chaque direction avec la matrice de passage
associée au tenseur S, on obtient le tenseur S. Cela permet de multiplier terme & terme S
avec le tenseur contenant les valeurs propres A,, A, et A,. Puis, de revenir dans 'espace
physique en appliquant les produits tensoriels entre ce tenseur et respectivement direction

par direction avec la matrice de passage P,, P, et P,.

3.2.3 Transformée de Fourier rapide

Pour le moment, les transformées de Fourier rapides (FFT) sont utilisées par l'intermé-
diaire de la bibliotheque FFTW3 [4]. Cette bibliotheque est écrite en C mais celle-ci comporte
un wrapper permettant de faire appel a ses routines en Fortran.

Cette bibliothéque repose sur le concept de définir des plans, ou la taille et le type de
I'objet sont donnés, de méme que le sens de la transformée de Fourier.

La routine la plus directe utilisée est DFFTW_EXECUTE_DFT_R2C, qui S'initialise avec la
création de plan DFFTW_PLAN_DFT_R2C_1D, pour une transformée d’'un vecteur réel aux
coefficients spectraux complexes. Cet algorithme de FFT s’utilise dans une unique direction,
ainsi celui-ci est utilisé lors des routines de différenciation contenu dans le type dérivé
hérité de la classe OPERATOR. Pour appliquer la FFT inverse, donc revenir dans I'espace
physique, un plan doit étre construit avec DFFTW_PLAN_DFT_C2R_1D, puis exécuter par
DFFTW_EXECUTE_DFT_C2R.

Néanmoins, cette routine implique plusieurs boucles pour parcourir le tenseur de données

pour y appliquer, dans la direction choisie, vecteur par vecteur, la routine de FFT. Par exemple,
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pour un volume de données de taille N, x N, x N, a transformer par FFT dans la premiére
direction requiert N, x N, itérations de cette procédure.

Pour éviter ces boucles et tirer le maximum de performance de 'optimisation des al-
gorithmes de FFT, une autre routine est a disposition dans la bibliotheque FFTW3. Cette
procédure permet d’appliquer une FFT sur plusieurs variables a la fois, si celles-ci sont écrites
en mémoires par intervalles constants sans étre forcement contigués. Ainsi, I'exécution se fait
grace alaroutine DFFTW_EXECUTE_DF T mais la construction des plans utilise une procédure
plus complexe : DFFTW_PLAN_MANY_DFT.

En plus des arguments identiques a DFFTW_PLAN_DFT_R2C_1D donnant la taille de la
FFT a appliquer et le sens de celle-ci, les arguments tels que istride et idist, pourles
données en entrée, et ostride et odist, pour celles en sortie, concernent la répartition
des données en mémoire. Largument i stride donne I'écart mémoire entre deux éléments
d’'une FFT, tandis que idist indique I'écart entre les premiéres données de deux FFT. Pour
illustrer cela on utilise le tenseur T' de dimension 3 x 3 x 3 dont 'arrangement des données

est décrit par la figure ().

FIGURE 5 — Numérotation mémoire de chaque donnée de T’

Supposons que les données soient alignées d’abord selon la direction x, puis y et enfin z.
Ainsi, pour produire un plan pour exécuter une FFT dans la direction x, istride vaut 1
soit la distance entre deux données et idist est égale a 3 pour la distance entre deux FFT.
De méme, pour produire une FFT dans la direction z on donne istride=9 et idist= 1.
Cependant pour construire une FFT dans la direction y une boucle est malgré tout nécessaire.

En effet, dans cet exemple pour exécuter les neuf FFT dans cette direction, istride= 3
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mais idist est variable. Celui-ci vaut 3 pour les trois premiéres FFT, puis doit valoir —5 pour
appliquer la quatrieme FFT. Ainsi, une boucle sur la direction x est nécessaire pour utiliser
cette routine. Malgré cela, cette procédure reste plus performante que de réaliser chaque

FFT individuellement avec la routine DEFTW_EXECUTE_DFT_R2C.

3.3 Perspectives

Lors de ce stage, un processus de vérification sur la capacité du code de calcul Tche-
bycube a mener des opérations sur des champs de données et a résoudre un probléme de
Helmholtz a été construit. Mais des mesures de performance et de scalabilité doivent étre
encore faites pour situer ce code, notamment, par rapport a DEDALUS [1]. Prochainement,
I'ajout de nouvelles géométries telle qu’'un domaine en coordonnées cylindriques et possible-
ment de géométries quelconques permettrait d’étendre les phénomenes reproductibles par
Tchebycube. De plus, une mesure sur l'intérét de calculer par des transformées de Fourier
rapides a partir d’'une certaine taille du probleme est encore a qualifier quantitativement.
Ainsi, I'état actuel du code de calcul permet de maniére robuste de résoudre un probléme
de Helmholtz avec diverses conditions aux limites en parallele. Celui-ci propose une grande
ergonomie, permise par une programmation orientée objet, autorisant un utilisateur de ma-
nier Tchebycube sans rentrer dans le code source du solveur. De plus, la parallélisation est

explicite grace a la bibliotheque 2DecompFFT [9].
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4 Les forces de Coriolis

De nombreux phénomenes physiques, particulierement en astronomie, sont décrit comme
des systemes soumis aux effets de leur propre rotation. Les forces de Coriolis prennent en
importance proportionnellement a la vitesse de cette rotation.

Dans ce chapitre ces forces seront intégrées au systeme d’équation de Navier-Stokes pour
les fluides incompressibles. Cet ajout, historiguement traité de maniére explicite, sera ensuite
modifié, sous certaine hypothése, pour étre calculé de maniére implicite. Ce processus
semble permettre d’explorer des configurations physiques dont les effets de la rotation sont

plus important. Cela sera vérifié sur un cas analytique pour le cas explicite et implicite.

4.1 Formulation du probleme

Pour intégrer les forces de Coriolis, on part du systéeme d’équations de Navier-Stokes

pour les fluides incompressibles sur € :

oV
L VVV VRV 4 Vg = f
ot (81)

V- V=0

On change de référentiel pour le référentiel non-inertiel en rotation avec le systeme étudie,

ainsi, se réécrit :

U
LU VU -V +Vg+2wx U+wx (wxr)=f

A

ot (82)
V.-U=0

Avec w le vecteur de vitesse angulaire et r le vecteur depuis le centre de coordonnées.
Les forces de Coriolis sont décrites par le terme 2w x U et les forces centrifuges le sont par

w x (w x r). Ainsi, en utilisant I'identité suivante :

wx (wxr)= —v% (w x 7)? (83)

1 5 .
Et en posant g = p — 3 (w x 7)°, le systéme (82) se réécrit :
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U
C LU VU -V + Vp+2wx U = f
ot (34)

V.-U=0

Le code de calcul a été construit de maniére a simuler un systeme fluide en rotation

autour de l'axe z, donc w a la forme suivante.

0
w=10 (85)
w
Ainsi, le terme de Coriolis se réécrit :
~wU,
2wx U= wU, (86)
0

Cela apporte une nouvelle difficulté, le couplage entre la composante U, et U, du champ

de vitesse.

4.2 Terme de Coriolis explicite

Pour répondre a cette nouvelle contrainte, la voie la plus rapide consiste a expliciter ce
terme et I'intégrer dans le calcul des termes non-linéaires. Ainsi, pour les trois précédents

algorithmes de projection, on modifie le terme N L(U*) comme suit :

NL(U*) = (U*- V) U* + 2w x U* (87)

Mais I'inconvénient de cette explicitation apparait car w ~ Eik ou Fj est le nombre
d’Ekman représentant le rapport entre les forces de viscosité et la force de Coriolis. Ainsi,
lorsque que le nombre d’Ekman diminue (i.e. la vitesse de rotation augmente) I'importance
de ce terme augmente. Donc I'explicitation de celui-ci détériore grandement I'approximation

pour un nombre d’Ekman trés faible.
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4.3 Terme de Coriolis implicite

Pour permettre d’explorer des nombres d’Ekman de plus en plus faibles, une autre solution
consiste a impliciter le terme de Coriolis. Ainsi, pour les algorithmes de projection, I'étape
d’estimation de vitesse provisoire, pour un schéma temporel du premier ordre, se réécrit telle

que :

1 /- - ~
- (Uk—i-l o Uk) . VvQUk-i-l + 2& « Uk-l—l _ f(tk-l-l) o NL(Uk) (88)

En projetant (88) sur chacun des axes, on obtient le systéme suivant :

-

1 rTk4+1 k 6[75“ k _ k+1 k
N (Ux U$> vt = 20U = L) = NL(U")
1 rTk+1 k 8U;+1 k k+1 k (89)
\ & (Uy - Uy> vt U = fy ()~ NL(UY)
5 rTh+1
é (O k) - u—agg — £.(t"1) = NLL(U¥)
\ z

Mon tuteur S. Abide propose, pour tenir compte du couplage des composantes U, et
U,, de poser une variable complexe ¢**! = UF+! + z’U;“ . Par la suite, on nomme (L1) le
premiére ligne du systeme (89) et (L2) la seconde ligne. Ainsi, en multipliant par le nombre

complexe ¢ (L2) puis en y additionnant (1), on a, avec la notation :

oY) +if, () — (NL,(U") + iNL,(U*)) = fo(t""") — NL4,(U") (90)
1 ~ ~ N Tk4+1 aﬁk—&-l
fo(t*FY) — NL,(U) = (Ujgu il - Uk - z'Uj) —v <0;f;2 +i 022 ) — 20U} + 2iwU}

2l- &l

(Q;kﬂ B gbk;) — V2GR — 24t

Ainsi, un solveur complexe permet de résoudre ce couplage et donc d’impliciter le terme
de Coriolis, pour ce cas précis.

Mais il faut ensuite calculer le champ de pression, a partir du systeme suivant :
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1

A (Uk+1 . Ukﬂ) + w X <Uk+1 _ Uk+1> + Vpkﬂ =0

V.UMt =0 91
Uk+1 _,n|F _ Wk+1 . n|1‘
En réécrivant la premiére ligne de ce systeme, avec les notations de [10] pour la matrice

3 x 3 de l'opérateur M, M = [I + Atwx], cela donne :

AtV = — (UM 4 Atw x UR) 4+ O+ Atw x U5 (92)
1 ~
E+1 _ E+1  prk+1
Vpht = oM (04 - Uk 93)

Or, d’apres l'article d’Olshanskii [10], on a, en notant © = Atw :

1
—1 ~ ~ ~
~ Ty el teee e (94)
Dont I'opération ® représente le produit terme a terme des vecteurs, ainsi (0 ®w), ; =

wiWj.

Vérifions cette identité, pour cela on note :

Wy

(95)

&
I
&
<

Wy
Ainsi, pour X = (z,y, 2)"
Wyz — WY
wx X =|0,x— 0,z (96)
Wyl — WyT

Cela permet donc d’écrire, composante par composante, 'opérateur suivant :

[Ox] = | w, 0 —w, 7)
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M= o, 1 —w, (98)

Cela permet aussi d’expliciter M~ :

1+ wz WeWy T W, Wrw, — Wy

1 1

= TW Waly — Wy 1+ wg Wy, + Wy 99)

Wewy + Wy wWyw, —wy 1+ w?

Ce qui permet de confirmer que MM ! = MM = |

Ainsi, en appliquant I'nypothése d'incompressibilité sur (93), on obtient :

1 /-~
Ikl _ (kL prhtl
Mo = <U U ) (100)
1 -
V- -Mlvphtt = Ktv Nk (101)

Or, en rappelant que w est un vecteur constant, donc w x Vp*™ = V x (p*"'w), d'ou

I'identité suivante :

Ve (wx VpHt) =0 (102)
1
Ainsi . _ Iy
insi, (TOT)) se réécrit avec M 17 10E !@\2[ + 0RO
1 -
V- MVpFtt = ~V- Ukt (103)

Or, d’apres les hypotheses précédentes, la rotation est seulement autour de I'axe z, ainsi :

W= 0 (104)
Atw

Ce qui simplifie I'expression de M pour en faire une matrice diagonale.
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1

_— 0
1+ |@f?
M= o L _ (105)
1+ w2
0 0 1

Ainsi, (I0I) devient un probléme de Helmholtz avec une pondération sur I'application de

I'opérateur de divergence entre la différenciation des deux premiéres directions et la derniére.
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5 Validation

Une des taches les plus chronophages lors de la construction du code de calcul est
la vérification de celui-ci. Pour cela, chaque propriétés doit étre vérifiées et un maximum
de symétries doit étre brisées, pour aller confronter la moindre ligne de Tchebycube. Pour
réaliser cela, la précision spéctrale sera recherchée, permettant d’expliciter le processus de
développement en détaillant une erreur dans le programme. Puis, une comparaison entre
I'algorithme de projection originellement proposé par Chorin, I'algorithme de projection a
pression incrémentale et l'algorithme de projection amélioré sur un cas analytique sera
proposé. Ensuite, cette comparaison sera renouvelée en intégrant au probleme les forces de
Coriolis. Enfin, le cas académique de convection de Rayleigh-Bénard sera présenté sans

effet des forces de Coriolis.

5.1 Précision spectrale

La propriété clef de la méthode numérique est la précision spectrale de la solution, celle-ci
est donc parmi les premiers aspects de l'algorithme qui sont vérifiés. En effet, Gottlieb et
Orszag [5], pour un intervalle connexe et borné I et pour 1 < p < o« , donnent I'estimation de

convergence suivante :

[[u = unlleay < CNT™|[u™ |10y (106)

Pour u la solution exacte, uy I'approximation et C' une constante indépendante de N.
Ainsi, pour une solution infiniment différenciable, I'erreur d’approximation est inférieur a toutes
: 1 . _ :
puissances de N’ la convergence est donc exponentielle et la précision est dite spectrale.

Pour vérifier cela, on pose comme solution exacte au systéme d’équation de Navier-Stokes :

—2s1n? (mx) sin (2my) sin (272) (1 + cos®(4xt))
Uew = | sin (27x) sin® (1y) sin (272) (1 + cos*(4nt)) (107)

sin (2nx) sin (2my) sin® (72) (1 + cos®(4xt))

1
Dex = —sin®(mx)sin®(my)sin®(r2) (108)
™

39



Les erreurs sur le champ de pression et le champ de vitesse de la figure (6) sont mesurées
sur le systéme d’équations de Navier-Stokes pour les fluides incompressibles, pour P, = 1,
R, = 10%, At = 7.8125 x 107° et Tyina = 0.5. Un algorithme de projection a pression
incrémentale est utilisé avec des conditions aux limites de Dirichlet pour le champ de vitesse

et de Neumann pour le champ de pression.

Erreur sur le champs de vitesse et le champ de pression

107 § —o— Vitesse

—&— Pression

107 4

1074

1076 4

10t 102
FIGURE 6 — Erreur sur le systeme de Navier-Stokes en fonction de la résolution NV

Sur la figure (6)), la décroissance exponentielle de I'erreur en fonction de N la finesse de
la discrétisation est visible pour N allant de 4 a 24. Cependant, I'erreur stagne aprés cette
finesse en raison du schéma temporel. Pour voir la convergence dite spectrale il faudrait
aussi diminuer le pas de temps At, car la précision spectrale est valide qu’en espace et pas

en temps.

5.2 Exemple de bug

Je souhaite présenter dans les détails une erreur trouvée lors de la vérification de la
résolution du probléme de Helmholtz : ou + vV?u = S, dans une configuration non-périodique
dans les trois directions.

Pour commencer, on construit une solution U, sur le domaine Q = [—1, 1]3. Ainsi, comme
une approximation par série tronquée de polynémes de Tchebyshev est exacte sur les
combinaisons linéaires de polynédme de Tchebyshev, on choisit comme forme de solution

exacte :
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Nz Ny Nz

Ueo = 2 25 2, i Ti(@) T (y)Ti(2) (109)

i=0j=0 k=0

Avec N,, N, et N, la résolution dans chaque direction, «; ; ; les coefficients des polynémes
de Tchebyshev T, de degré k.

Pour briser les symétries, les coefficients «; ; , sont tirés de maniére aléatoire, de méme
que les résolutions N,, N, et N.. Les six conditions aux limites du domaine (2 sont aussi
randomisées entre une condition de type Dirichlet, Neumann ou Robin. Enfin, les parametres
du probléme v et o sont aussi tirés aléatoirement.

Ainsi, on s’attend a ce que la solution de ce probléme soit approchée a I'ordre du
zéro machine, soit en utilisant la double précision, de I'ordre de 1076, Lors des premiéres
vérifications, I'ordre de I'erreur commise atteint 10-5. Cela a permis de trouver une des erreurs
de programmation les plus subtiles de ce code de calcul.

En regardant I'erreur commise sur chaque point de collocation, on remarque que I'erreur
commise atteint le zéro machine sur les points intérieurs de collocation et cela permet de
situer le probléme sur les bords du domaine.

En effet, comme expliquer dans la parallélisation de 'algorithme, les valeurs aux bords
sont écrites sur les six "faces" du tenseur de calcul S. Mais cela pose un probléme sur les
douze arétes et huit sommets du tenseur S. Sur la jonction de deux conditions limites un choix
doit étre fait entre les deux valeurs a imposer. Pour illustrer cela, on utilise une discrétisation

deQen3 x3x3:

FIGURE 7 — Valeurs aux limites dans la direction x

Ainsi, cela crée un ordre de priorité sur le remplissage des valeurs aux bords. Mais cette
hiérarchie est a prendre en compte lors du retour dans I'espace physique, c’est-a-dire lors de

I'application par produits tensoriels des matrices de passages F., P, et P, respectivement
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FIGURE 9 — Valeurs aux limites dans la direction z

dans les directions z, y et z. Pour résumer le processus, les points de collocation de la figure
contiennent les valeurs aux limites dans la direction x puis les points sur la figure (8) pour
les valeurs dans la direction y. Avant de commencer les produits tensoriels pour passer dans
I'espace propre les points de la figure (9) sont initiés avec les valeurs aux bords dans la
direction z.

Puis, apres avoir appliquer A pour reconstruire les valeurs aux bords et le produit avec
P., on applique les relations (74) sur les points (9)), puis, aprés application de la matrice de
passage P,, on utilise ce systéme sur les points de la figure et enfin aprés le produit
tensoriel avec P,.

Ainsi, cette vérification a permis de mettre en lumiére que 'ordre de remplissage des
sommets et des arétes est important, pour imposer les conditions aux limites avec les valeurs

correspondantes.

5.3 Comparaison des algorithmes de projection

On construit une solution exacte au probléme (T6) sur 2 = [—1,1]* avec des conditions

aux limites Dirichlet homogénes.
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—2s1n? () sin (27y) sin (272)
(110)

sin (2rx) sin? (7y) sin (272)

Ueo = (1 + cos®(4mt))
sin (2rx) sin (27y) sin? (12)

™

1
Dex = —sin®(mx)sin®(my)sin®(r2)

(111)

Comme le probléme est posé sur le gradient du champ de pression, avec des conditions

de Neumann, I'erreur est mesurée entre le gradient calculé et exact de ce champ car celui-ci

est défini a une constante pres.

Ainsi, on prend un maillage 32 x 32 x 32 sur €2 pour comparer I'erreur commise sur le
P
Ra

champ de vitesse et le gradient du champ de pression a T, = 0.5 et v = “" avec Pr=1

=

o

le nombre adimensionnel de Prandtl et Ra = 10® le nombre de Rayleigh.
Erreur sur le gradient du champ de pression

—— PC

1
I

1071 4

Erreur sur le champ de vitesse
—a— PC e
@ PN 10 3 --@- PN
10° 4
-e@- PE 1 -e- PE :
..... slope 2 ! 103 4+ — slope 1 :‘
10! 4 R - ia slope 2 :
{ 2 4 i
7 10 I
1072 4 ;
I 107 3
I
1
I [
7 £ 107
I =
¥ w

1072 4

10-3 4

1072

10—6 4
102

10—7 4
1074
de

FIGURE 10 — Comparaison de divers algorithmes de projection

PC est I'algorithme de projection proposé par Chorin, quant a PN, il représente I'algorithme

de projection a pression incrémentale. Enfin, PE est le diminutif de 'algorithme de projection

amélioré.

Ainsi, d’apres la figure ci-dessus (10), I'algorithme de projection amélioré semble nécessi-
ter une condition sur le pas de temps At plus forte par rapport aux deux autres algorithmes.

De plus, les trois algorithmes sont mesurés empiriquement comme étant d’ordre 2 en temps,
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sans distinction entre ceux-ci pour I'approximation du champ de vitesse. Donc dans ce cas
de figure le résultat donné par Guermond [7] n’est pas optimal sur ce champ. La différence la
plus flagrante entre ces algorithmes se situe sur le gradient du champ de pression. En effet,
I'algorithme de Chorin est empiriquement d’ordre 1 en temps, tandis que les algorithmes de
projection a pression incrémentale et de projection amélioré sont empiriquement d’ordre 2
en temps. Au vu de cela, lors de I'ajout des forces de Coriolis dans le modele de la section
suivante, seulement les algorithmes de projection a pression incrémentale et amélioré seront
utilisés car ils apportent, pour ce cas analytique, une meilleure approximation du gradient du

champ de pression.

5.4 Comparaison des algorithmes de projection avec les forces de Coriolis

On reprend la solution exacte utilisée pour la comparaison entre I'algorithme de projection

a pression incrémentale et I'algorithme de projection amélioré.

—2s1n? (mx) sin (2my) sin (272) (1 + cos®(4t))
Uew = | sin (27z) sin® (1y) sin (272) (1 + cos®(4nt)) (112)

sin (2rx) sin (27y) sin? (72) (1 + cos?(4xt))

1
Pew = —sin?(mx)sin®(my)sin®(72) (113)
T

Lalgorithme de projection a pression incrémentale est noté PN, pour le terme de Coriolis
traité explicitement, et PNI, lorsque celui-ci est implicite. De méme, I'algorithme de projection
amélioré est noté PE et sa version implicitant le terme de Coriolis est abrégée en PEI. La
premiere chose que I'on remarque est que la diminution du nombre d’Ekman induit une perte
de stabilité de I'algorithme. Mais celle-ci est moins prononcée lorsque la force de Coriolis est
implicite (un critere de stabilité sur At reste a déterminer).

De plus, a nombre d’Ekman équivalent, pour les deux algorithmes I'erreur commise est
supérieure pour chacune des versions explicites des algorithmes de projections relativement
a leur version implicite. Enfin, une étude plus approfondie est a mener mais un nombre
d’Ekman plus faible (i.e. avec des effets de rotations plus prépondérants) I'algorithme de

projection amélioré avec implicitation du terme de Coriolis est empiriquement d’ordre 3 en
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Erreur sur le champ de vitesse

Erreur sur le gradient du champ de pression

102 4
| & PN.EK=1e2 —e— PN, Ek = le-2
10" 1 —o— PN EK = 1e-2 —e— PNI, Ek = le-2
- PN, Ek = le3 -4 PN, Ek=1le3
- PNI, Ek = le-3 o | % PNIEk=1le-3
—e— PE, Ek = 1e-2 10° % _o pE Ek=1e-2
10-! § —e— PEl, Ek = le-2 —e— PEl, Ek = 1e-2
--%- PE, Ek = 1e-3 --%- PE, Ek = 1le-3
- PEl, Ek = le-3 2 % PEl Ek = 1le-3
----- slope 3 101 3 ... siope3
10-2 4 —=- slope 2 —=- slope 2
1073 4
.
2
£
i
1074 4
10—5 4
1076 4
1077 4
T
107% 1072 1072 107* 1073 1072
dt dt

FIGURE 11 — Comparaison pour différents Ek, T, = 0.5, Pr = 1 et Ra = 108

temps en comparaison avec les autres algorithmes qui montrent un ordre 2 en temps.

5.5 Exemple d’écoulement

La convection de Rayleigh-Bénard repose sur une instabilité entre un gradient de tem-
pérature sur le domaine () et deux conditions aux limites de Dirichlet non-homogeénes. La
figure (12)) le résume, une mise en mouvement globale du fluide est attendue. De plus, pour

un temps de calcul assez long, une phénomeéne de retournement peut étre observable.

T=T0

o=
RefroidisSement .
[

Gradient de
Température

. Réchauffement

T=T1>TO

FIGURE 12 — Schéma de convection
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Le systéme a résoudre est le systéme d’écoulement de fluides incompressibles de Navier-
Stokes auquel une équation sur le champ de température T' est ajoutée, dont le nombre

adimensionnel est A pour la conduction thermique.

U 1
Oa—t+(U-V)U—uv2U_—;vp+g
W wT-avr =0 (114)

V-U=0

La simulation se porte sur le domaine 2 = [—1,1]%. Pour le champ de pression, les
conditions aux limites sont toutes de type Neumann homogénes. Quant au champ de vitesse,
on impose du Dirichlet homogéne pour garantir la propriété d’étanchéité des surfaces. Enfin
le champ de température est doté de conditions aux limites de Neumann homogene dans les
deux premiéres directions et de condition de Dirichlet non-homogéne dans la direction z.

Les parametres de I'écoulement sont v = ]% = ?—077 et \ = Ria = %07 La discrétisa-
tion temporelle est donnée par At = 10~2 pour un temps final & T};,. = 60. Pour des raisons
de ressources informatiques la simulation suivante est réalisée sur une résolution 64 x 64 x 64
parallélisée sur 16 processeurs du calculateur AMU de Aix-Marseille, sur une période d’'une
heure.

Les figures suivantes sont une coupe normale a I'axe y située au centre du domaine 2.

00ei0 02 04 06 08 108400
TR S
- w—

FIGURE 13 —Coupede 2at =1

La figure (13) illustre les conditions limites Dirichlet non-homogénes que 'on remarque
sur le haut et le bas de la coupe. De plus, le gradient de température est encore visible 1
seconde aprés le temps initial.

Sur la figure (14) les premiéres instabilités apparaissent malgré que le gradient de tempé-

rature se maintienne globalement.
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FIGURE 14 —Coupe de 2 at = 10

05 100100

oos 02 04 e oy
- [

FIGURE 15 —Coupede 2at = 17.5

FIGURE 16 — Coupe de (2 at = 20

v
T o

FIGURE 17 — Coupe de 2at = 22.5

Les figures (13), (16), (17) et (18) permettent d’observer plusieurs phénoménes de convec-
tion. Ce cas académique d’écoulement ne fait pas ressortir de soucis de programmation du

code de calcul Tchebycube.
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FIGURE 18 —Coupe de 2at = 25

Néanmoins, la simulation est sous résolue. Cela est visible sur les franges ascendantes
dans les phénoménes de convection, particulierement sur la figure (16). De ce fait, cette
simulation est a but purement illustrative, une si faible résolution ne permet pas d’étude de
cet écoulement. Pour aller chercher une simulation de production, des temps d’intégration
bien plus long sont nécessaires et une résolution d’au minimum 512 x 512 x 512 pour une
configuration non-périodique dans chaque direction. Pour I'ajout d’une ou plusieurs directions
périodiques une résolution plus grande dans ces directions doit étre envisagée. En effet,
la résolution de I'écoulement dans les directions périodiques se reposant sur 'usage des
transformées de Fourier rapides, elle sera plus rapide que dans le cas non-périodique. Ainsi,

la résolution de la simulation peut étre augmentée, au moins dans ces directions.
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6 Conclusion

Le code de calcul développé lors de ce stage utilise des méthodes numériques au
moins aussi précises que les méthodes d’ordre élevé. Cependant, cela se fait au prix d’une
dépendance entre chaque point de collocation du domaine. Celle-ci impose une attention
particuliere lors de la parallélisation de I'algorithme, pour des applications dans le calcul haute
performance. Ces difficultés sont en partie surmontées grace a plusieurs outils tels que les
bibliotheques 2DecompFFT [9] et FFTWS3 [4]. Malgré ces travaux, un faisceau de présomption
pése sur la scalabilité de cette implémentation souffrant de lourdes communications. Ce
défaut est observable sur les mesures faites sur les algorithmes de FFT, qui reposent sur le
méme principe de parallélisation : le découpage en pencils.

De plus, le travail produit sur les effets des forces de Coriolis ouvre une voie a explorer.
En effet, cette méthode implicitant les termes de ces forces pourrait enrichir 'étude de ces
écoulements spécifiques, notamment a faible nombre d’Ekman. Mais cela est encore a
I'étape de prospection et des études plus approfondies doivent étre conduites pour réfuter ou
renforcer ces premiers résultats.

Enfin, d’'un point de vue plus personnel, ce stage m’a donné un apercu du monde
de la recherche, de ses enjeux et de ses moyens. En plus de I'enrichissement de mes
connaissances sur la mécanique des fluides, la construction de Tchebycube m’a donné
une vision d’ensemble sur le développement d’'un code de calcul. Particulierement les
aspects matériel et logiciel ont été nouveaux pour moi. Ainsi, ces six mois ont approfondi
ma compréhension dans le domaine informatique autant d’'un point de vue software que
hardware, dans le domaine physique avec une approche approfondie de la mécanique des

fluides et dans le domaine des méthodes numérique avec les méthodes spéctrales.
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