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1 Introduction
1.1 Un peu d’histoire

À partir du Ier siècle av. J.-C., les Romains firent grand usage du béton ’opus caementicium’, qui était
une maçonnerie de blocage constituée d’un mélange de mortier (chaux grasse) et de pierres [1]. Ce nouveau
matériau a permis la réalisation d’architectures remarquables comme le Panthéon de Rome, des structures
qui sont restées intactes durant deux millénaires sous des climats variés, dans des zones sismiques, et même
en contact direct avec l’eau. Au 19e siècle, pour renforcer les constructions, le béton a été associé à des
barres d’acier, créant ainsi le béton armé, une alliance qui combine les propriétés des deux matériaux. Le
béton est l’un des matériaux les plus utilisés pour la construction : la production de ciment a d’ailleurs été
multipliée par 4 depuis le début des années 1990 et elle était évaluée en 2019 par le CEMBUREAU (fédération
européenne des industries cimentières) à 4,1 milliards de tonnes [2]. Malheureusement, l’acier étant oxydable
et le béton poreux, l’air et l’eau de l’environnement peuvent pénétrer dans ses couches inférieures et, in
fine, causer des dégâts importants. Par exemple la corrosion des armatures peuvent être provoquées par
une réaction de carbonatation alimenté par le CO2 de l’atmosphère ou encore des ions chlorure provenant
d’un environnement maritime. Il existe également d’autres types de dégâts qui démarrent à coeur du béton.
Par exemple, la réaction alcali-silice, une interaction entre le ciment et certains granulats, forme un gel
qui peut provoquer des fissures et des gonflements. Les dégâts thermiques, comme dans le cas d’incendies,
peuvent aussi entraîner une perte de résistance et des fissurations. Les ponts et les centrales nucléaires,
souvent construits en béton armé, nécessitent une étude de leur solidité qui ne peut pas toujours se faire par
prélèvement d’échantillons, ce qui rend les études non destructives de plus en plus importantes.

1.2 Le laboratoire GéoEND de l’Université Gustave Eiffel
Le laboratoire de recherche GeoEND (Laboratoire de Géophysique et Évaluation Non Destructive) est

spécialisé dans le développement de méthodes d’auscultation géophysique de subsurface et de méthodes
d’évaluation non destructives appliquées aux infrastructures de génie civil. Parmi les méthodes de contrôle
non destructif disponibles pour le béton, l’utilisation des ondes ultrasonores est particulièrement intéressante
pour évaluer les propriétés mécaniques. La vitesse et l’atténuation de ces ondes peuvent être utilisées pour
déterminer les propriétés viscoélastiques ainsi que pour caractériser les propriétés microstructurales des
matériaux. Cependant, les mesures précises et leurs interprétations sont difficiles en raison de la nature
fortement hétérogène du béton. De nouvelles techniques d’auscultations commencent à voir le jour en utilisant
des ondes de surface, comme les ondes Love et les ondes de Rayleigh ultrasonores. La particularité de l’onde
de Rayleigh est d’avoir une composante verticale qui est généralement plus facile à mesurer, ce qui est très
utile dans la recherche et l’évaluation d’imperfections et de dégradations des premières couches de peau d’un
matériau. Une illustration des différents types d’ondes apparaît sur la figure 1.

Figure 1 – Illustration des ondes de volume et ondes de surface (source : Wikipédia)

1.3 Le sujet
Le sujet de la thèse de Massina Fengal est la caractérisation de gradients de propriétés mécaniques non

linéaires par ondes de surface.

Adèle Rawas–Denigot Page 3/44



M2 - MACS - Nantes Université Stage 2024 - Université Gustave Eiffel

Commençons tout d’abord par préciser les termes utilisés ci-dessus.

Gradients : Un système à gradients de propriétés mécaniques est un matériau non homogène présentant
des propriétés mécaniques différentes selon les directions de ce système. Le gradient de propriétés désigne
alors une variation continue d’une propriété suivant au moins une direction (dans notre cas : la profondeur).
Les expériences portent ici sur deux types d’échantillons différents : le mortier (ciment + sable + eau) et le
béton (mortier + granulats). Les échantillons ont subi des vieillissements artificiels et contrôlés, tels que des
dégradations thermiques permettant de fournir un gradient de température maîtrisé.

Onde de surface : Une méthode pour caractériser le béton ou le mortier consiste à utiliser des ondes
de surface (illustrées sur la figure 1). Les ondes de Rayleigh sont bien adaptées à la caractérisation de la
détérioration de la surface du béton, car leur profondeur de pénétration est proche de la longueur d’onde.
Ainsi, elles sont appropriées pour fournir des informations sur les premiers centimètres du béton. Un autre
avantage des ondes de surface est qu’elles sont plus pratiques pour les mesures sur site que les mesures en
transmission, car la plupart des structures en béton ne sont accessibles que d’un côté.

Propriétés mécaniques non linéaires : Les propriétés mécaniques d’un matériau sont les caractéris-
tiques qui définissent son comportement lorsqu’il est soumis à des forces. Elles incluent, par exemple, le
module d’élasticité, la résistance à la traction et la masse volumique. Ces propriétés déterminent la relation
entre la contrainte appliquée et la déformation qui en résulte. Le tenseur de contraintes est une représentation
matricielle décrivant l’état de contrainte d’un matériau, qui peut être linéaire ou non linéaire. Dans le cas
linéaire, la contrainte est proportionnelle à la déformation, tandis que dans le cas non linéaire, la contrainte
est une fonction non linéaire de la déformation. Cette non-linéarité se traduit par une réponse non linéaire de
la dalle lorsqu’elle est soumise à une onde de surface, telle qu’une onde de Rayleigh, entraînant par exemple,
la génération de nouveaux harmoniques (ou la dépendance de la vitesse de l’onde à la contrainte appliquée).
Ces effets peuvent être décrits par le modèle de Murnaghan, qui est considéré ici. D’autres effets non-linéaires
peuvent être observés dans le béton (hystérésis, dépendance à l’historique des déformations, ...) mais seront
ignorés ici.

Les propriétés non linéaires sont plus sensibles que les observables linéaires, comme la vitesse ou l’at-
ténuation, aux qualités des contacts, aux changements de microstructure et aux précontraintes. En effet,
il est établi que l’acoustique non linéaire est particulièrement sensible aux changements microstructuraux
induits par une réaction (ici, un endommagement thermique). Cependant, à ce jour, l’état de l’art ne permet
pas encore de déterminer une distribution des propriétés non linéaires en fonction de la profondeur. C’est
pourquoi nous nous intéressons à la non-linéarité du tenseur de contrainte σ s’écrivant comme une fonction
du tenseur de déformation ε de la façon suivante :

σ = Eε(1 + βε), (1)

où E est la constante du module de Young et β représente le coefficient de non-linéarité du matériau,
coefficient que l’on cherche déterminer.

1.4 L’objectif
Afin d’évaluer le coefficient β, deux modèles d’étude on été mis en place. L’objectif du stage est de définir

un modèle numérique représentant les modèles expérimentaux et de résoudre par éléments finis les équa-
tions de propagation des ondes de Rayleigh dans le mortier et le béton de peau grâce à la librairie FEniCSx [3].

Le premier est un modèle d’acoustoélasticité (figure 2). On considère le modèle suivant :

ε = ε0 + εω

= A0 + Aω sin(ωt − kx),

avec A0, Aω les amplitudes respectives des deux termes de déformations, respectant |Aω| << |A0|. On a
ainsi :

σ = σ0 + σω + O(A2
ω), (2)

avec σ0 = Eε0(1 + βε0) et σω = E′εω si on définit E′ = E(1 + 2βε0). Du point de vue expérimental, on
peut considérer ε0 comme une onde pompe, une onde ultrasonore de forte amplitude et de basse fréquence,
servant à moduler le milieu. Par ailleurs, on considère une onde sonde, une onde ultrasonore de haute
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fréquence et faible amplitude, pour εω. L’enjeu de ce modèle est de réussir à produire un champ de pompe
le plus homogène possible. On cherchera à savoir si cette modulation sur le matériau, causée par le champ
de pompes, est suffisamment homogène pour éclairer un gradient de propriété non-linéaire ou si au contraire
elle pourrait affecter les résultats de l’onde sonde.

Le premier objectif est de résoudre, dans le domaine fréquentiel, l’équation de Helmholtz en considérant
une loi de comportement linéaire, en deux dimensions (vue de côté de la dalle : x=50 cm, y=12 cm). Cette
première modélisation permettra d’analyser la déformation de la dalle de mortier lorsqu’elle est soumise à
une pompe ayant une fréquence de 30 kHz, dans le but d’étudier l’homogénéité du champ de pompe (pour
le balayage fréquentiel, les fréquences choisies varient de 20 kHz à 80 kHz).

Figure 2 – Modèle pompe/sonde pour exciter et observer les fissures fermées

Pour le second modèle (figure 3) on considère ε = A sin(ωt − kx). Dans ce cas le tenseur de contrainte
devient :

σ = EA sin(ωt − kx) + 1
2βEA − 1

2βEA cos(2ωt − 2kx). (3)

Cela permet de voir le signal comme la somme d’une composante harmonique fondamentale (fréquence ω),
d’une réponse statique (fréquence nulle) et d’une seconde harmonique (fréquence 2ω).

Le modèle de génération d’harmonique sert à connaître le comportement de l’onde de surface sur le
matériau. L’objectif est de savoir si la contribution de la non-linéarité matériau est polluée par d’autres
harmoniques. Le second objectif est de résoudre l’équation de dispersion des ondes en 2D et en considérant
une loi de comportement non linéaire, cette fois-ci avec une vue de dessus de la dalle ( x=50 cm, z=25 cm),
en modélisant la géométrie d’un sabot (représenté par un rectangle en vue de dessus) utilisé dans l’expérience
pour convertir une onde de volume en onde de surface, et ainsi diriger correctement l’onde de Rayleigh dans
une direction à la surface de la dalle (figure 3). En jouant sur la loi de comportement non linéaire dans
l’équation des ondes, nous nous retrouverons à résoudre un système quasi-linéaire, ce qui simplifie une partie
de l’étude.

Figure 3 – Modèle du sabot sur la dalle, convertissant les ondes de volumes en ondes de surfaces

Dans un troisième temps, afin d’obtenir des résultats se rapprochant des études sur le béton, nous pro-
céderons à la modélisation de granulats (représentés par des ellipses en 2D) à l’intérieur de la dalle, en
respectant la courbe granulométrique utilisée pour le moulage des dalles employées lors des expérimenta-
tions. Cela nous permettra alors de résoudre les équations des expériences précédentes sur des dalles de béton.

Dans la première partie, nous introduirons brièvement l’outil FEniCSx pour la résolution d’Equations
aux Dérivées Partielles (EDP) par éléments finis sur un exemple de problème de Poisson en 2D.

Les théorèmes, propriétés et définitions pour l’étude théorique des équations sont placés dans la partie
7 : Annexes.
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2 L’outil FEniCSx pour la résolution d’EDP par éléments finis
FEniCS, désormais évolué sous le nom de FEniCSx (version 8.0) [3] est une plateforme de calcul open-

source permettant de résoudre des EDP avec la méthode des éléments finis. Construite sur une base de C++ et
de Python, elle est composée d’un langage spécifique permettant de définir des formes variationnelles (UFL),
un compilateur de formes d’éléments finis pour générer un code d’éléments finis de bas niveau (FEniCS
Form Compiler (FFC)) et un environnement de résolution de problèmes d’éléments finis automatisé ainsi
qu’une bibliothèque (DOLFIN). Cette plateforme permet également un interfaçage avec des bibliothèques de
hautes performances comme PETSc (Portable, Extensible Toolkit for Scientific Computation) qui permet la
résolution de systèmes d’équations linéaires et non linéaires complexes. L’utilisation de FEniCSx se fait par
une interface Python dans Jupyter à travers une image Docker.

The FEniCS Book, Automated Solution of Differential Equations by the Finite Element Method, publié en
2012 et accessible gratuitement en ligne, décrit en détail les composants logiciels de FEniCS (version 1.3) et
présente un certain nombre d’applications de FEniCS à des problèmes en mécanique des fluides, mécanique
des solides, électromagnétisme et géophysique.

La plateforme FEniCSx offre aussi un tutoriel interfactif [5] de prise en main très efficace, dont le but
est de démontrer, par des exemples simples, comment résoudre des Equation aux Dérivées Partielles par
éléments finis en utilisant FEniCSx.

Une documentation [6] est également fournie sur l’ensemble des codes de développement en C++ et en
Python, qu’il s’agisse des codes de surface ou des couches plus profondes, indispensables au développement
de la plateforme FEniCSx.

Je me suis également beaucoup servie du logiciel comet-fenicsx [7] développé par Jeremy Bleyer, notam-
ment pour l’import de maillages plus complexes et la définition des conditions de bords sur ces maillages. Il y
introduit plusieurs exemples destinés à compléter les tutoriels existants de FEniCSx dans la documentation
officielle, en se concentrant sur des applications spécifiques dans le domaine de la mécanique numérique des
solides et des structures.

DolfinX [8] : Dynamic Object-oriented Library for FINite element computation Présentation
de quelques librairies très utiles :
.io (input/output) c’est une bibliothèque Dolfin qui facilite la gestion des données numériques en fournis-

sant des fonctionnalités d’entrée et de sortie.
.fem (finite element method) contient les outils pour assembler et manipuler les formes d’éléments finis.

Cela implique la construction de matrices de masse, de matrices de rigidité, de vecteurs de charge, etc.,
à partir des expressions mathématiques qui définissent les intégrales sur le domaine de calcul. Cela
peut inclure des opérations telles que l’intégration numérique, l’évaluation de fonctions de base, et la
manipulation des termes de source et de conditions aux limites.

.mesh Contient la création, le marquage et le raffinement du maillage.

DolfinX est donc responsable de la gestion du maillage, de l’assemblage des systèmes d’équations et de
l’interfacage avec les solveurs PETSc.

UFL : Unified Form Language [9] : UFL sert à définir des formulations faibles (varationnelles) des
EDP de manière expressive et concise. UFL est un outil puissant et flexible qui facilite la définition et
la manipulation des formulations faibles des EDP dans FEniCSx. UFL utilise une notation proche de la
notation mathématique standard, ce qui rend la description des problèmes plus intuitive et plus facile à lire.

Son intégration avec d’autres composants de FEniCSx et sa syntaxe mathématique intuitive sont très
utiles pour travailler avec les éléments finis.

Ce que FeniCSx ne fait pas : FEniCSx admet certaines limites dans son développement. Par exemple
la lecture des maillages mixtes n’est pas possible. Dans un des cas étudiés Gmsh n’arrive pas à produire
un maillage uniquement en quadrangles, l’étude à donc été menée en mailles triangulaires pour contourner
ce problème. Une autre limite, qui n’a pas eu d’impact sur le stage, est que l’espace fonctionnel doit obli-
gatoirement être unique. Cela empêche l’étude d’équations scalaires couplées à des équations vectorielles.
Contrairement à d’autres logiciel "tout-en-un" comme Abaqus, FEniCSx ne gère pas le post-processing, ni
les interfaces comme Pyvista ou Paraview. L’installation de FEniCSx n’est d’ailleurs pas évidente, c’est
pourquoi nous sommes passés par une image Docker pour l’utiliser.
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Maintenant, pour mieux comprendre ces concepts, nous allons présenter un exemple que nous avons traité
en master 2, permettant de comparer et d’illustrer les avantages de FEniCSx dans la résolution d’un problème
classique d’équation aux dérivées partielles. Cet exemple portera sur la résolution de l’équation de Poisson,
que nous avons étudiée dans le cadre du projet de méthodes numériques pour les fluides incompressibles. Il
met en évidence la simplicité d’utilisation et l’efficacité de FEniCSx pour formuler et résoudre un problème
variationnel, tout en bénéficiant de l’interfaçage avec PETSc pour la résolution des systèmes d’équations.

2.1 Un exemple d’utilisation de FeniCSx pour la résolution de l’équation de
Poisson

Afin d’introduire l’outil de résolution par éléments finis FenicsX, nous illustrerons une partie de ses
possibilités sur un exemple étudié pendant cette année de master, et comparerons les résultats obtenus avec
FenicsX et ceux obtenus dans le projet du module de Méthodes numériques pour les fluides incompressibles
[13] obtenus en Fortran 90.

Soit Ω un ouvert borné de RN , N ∈ [1, 2, 3]. L’équation de Poisson s’écrit comme le problème aux limites
suivant :

−∆u(x, y) = f(x, y), x, y ∈ Ω, f ∈ L2(Ω), (4)
u(x, y) = 0, x, y ∈ ∂Ω. (5)

Soit V ⊂ H1(Ω) un espace de fonctions tests. Pour tout v ∈ V , on effectue le produit scalaire de L2 entre le
problème aux limites et v sur le domaine Ω. On obtient :

−
∫

Ω
∆uv dx =

∫
Ω

fv dx.

D’après la formule de Green appliquée sur la première intégrale, en définissant · comme le produit scalaire
euclidien standard et n le vecteur normal extérieur à la frontière du domaine Ω, on obtient :∫

Ω
∇u · ∇v dx −

∫
∂Ω

(∇u · n)v dσ =
∫

Ω
fv dx.

Ainsi les intégrales sont bien définies et on prend V = H1
0 (Ω) pour que u et v appartiennent au même espace.

Cette dernière hypothèse nous permet alors de vérifier toutes les hypothèses du théorème de Lax-Milgram
et par conséquent de l’utiliser sur le problème variationnel suivant : Trouver u ∈ H1

0 (Ω) tel que

a(u, v) = L(v), ∀v ∈ H1
0 (Ω), (6)

avec a(u, v) =
∫

Ω ∇u · ∇v dx et L(v) =
∫

Ω fv dx. Ainsi, l’équation (6) admet une unique solution et nous
pouvons résoudre cette équation numériquement par éléments finis.

2.1.1 Génération et import d’un maillage modélisant le domaine Ω

Comme mentionné précédemment, la librairie DolfinX contient la librairie .mesh qui permet de générer
des maillages, triangulaires ou rectangulaires, 2D ou 3D, directement dans le programme de résolution de
l’équation. Dans cet exemple, on choisit d’importer un domaine à deux dimensions carré (L=1.0 m), avec
des mailles triangulaires réalisé au préalable dans un programme module_create_model que l’on importe
dans le programme principal et que l’on convertit en un maillage Dolfinx grâce à la librairie gmshio. Cette
librairie permet de récupérer le domaine sur lequel nous allons résoudre l’équation ainsi que les tags des
cellules et de leurs arêtes.

from module_create_model import create_model

longueur = 1.0

largeur = 1.0

taille_mailles = 1e-1

dimension_domaine = 2

model = create_model(plate_lenght=longueur,
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plate_height=hauteur, plate_cell_sz=taille_mailles, cell_type='triangle'

)

domain, cell_tag, facet_tag = gmshio.model_to_mesh(model,

MPI.COMM_WORLD, rang, gdim=dimension_domaine

)

Il est également possible de visualiser le maillage grâce à pyvista (figure 4) :

import pyvista

from dolfinx import plot

pyvista.start_xvfb()

tdim = domain.topology.dim

fdim = tdim - 1

domain.topology.create_connectivity(tdim, tdim)

topology, cell_types, geometry = plot.vtk_mesh(domain, tdim)

grid = pyvista.UnstructuredGrid(topology, cell_types, geometry)

plotter = pyvista.Plotter()

plotter.add_mesh(grid, show_edges=True)

plotter.view_xy()

plotter.show()

Figure 4 – Visualisation d’un maillage carré, aux mailles triangulaires, grâce à pyvista

2.1.2 Définition et écriture du problème variationnel

La bibliothèque DolfinX contient le module ‘.fem‘ qui permet de lier l’espace géométrique créé par ‘gmsh‘
aux espaces fonctionnels et de définir l’espace des fonctions tests, en précisant la dimension de la solution
(scalaire ou vectorielle), ainsi que la méthode et le degré d’éléments finis utilisés pour la résolution. Dans
notre cas, nous définissons V sur notre domaine carré, et nous utilisons des éléments finis triangulaires de
Lagrange de degré 1 pour la résolution, tel que :

from dolfinx.fem import functionspace

# Définition de l'espace des éléments finis de Lagrange de degré 1 pour une solution scalaire

V = fem.functionspace(domain, ("Lagrange", 1, (1,)))

À partir de cet espace, il est alors possible de créer n’importe quelle fonction :

solution_ex = fem.Function(V)

solution_ex.interpolate(lambda x: np.sin(2*np.pi*x[0])*np.sin(2*np.pi*x[1]))

f = fem.Function(V)

f.interpolate(lambda x: 8*np.pi**2*np.sin(2*np.pi*x[0])*np.sin(2*np.pi*x[1]))
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qui définissent la solution exacte de l’équation, ainsi que sa fonction source f(x, y) = 8π2 sin(2πx) sin(2πy).
Nous définissons également les conditions de bords, ici Dirichlet homogènes, grâce aux fonctions ’fem.dirichletbc’

et ’mesh.exterior_facet_indices’ qui récupèrent les tags correspondant aux arêtes sur le bord du domaine.

from dolfinx import fem, mesh

# Localisation des facettes extérieures

boundary_facets = mesh.exterior_facet_indices(domain.topology)

# Localisation des degrés de liberté sur ces facettes

boundary_dofs = fem.locate_dofs_topological(V, fdim, boundary_facets)

# Définition de la fonction de Dirichlet u_D

uD = fem.Function(V)

uD.interpolate(lambda x: 0*x[0] + 0*x[1]) # u_D = 0

# Application de la condition de Dirichlet

bc = fem.dirichletbc(uD, boundary_dofs)

Maintenant que l’espace mathématique est créé et les conditions de bords sont définies, nous définissons
la variable u qui sera notre solution, ainsi que la fonction test v, en utilisant le module ’ufl’ de DolfinX :

import ufl

u = ufl.TrialFunction(V)

v = ufl.TestFunction(V)

Cette bibliothèque ’ufl’ nous permet d’écrire la forme bilinéaire et la forme linéaire qui formeront le problème
variationnel en question.

a = ufl.dot(ufl.grad(u), ufl.grad(v)) * ufl.dx

L = f * v * ufl.dx

FEniCSx interprète ’ufl.dx’ comme étant les cellules définies dans le maillage, on peut également définir à la
main un dx ou ds de la façon suivante :

dx = ufl.Measure("dx", domain=domain, subdomain_data=cell_tag)

ds = ufl.Measure("ds", domain=domain, subdomain_data=facet_tag)

# les tags sont définis directement dans le programme gmsh

# si le domaine est divisé en deux parties avec des paramètres matériaux différents

a = parametre_1 * ufl.dot(ufl.grad(u), ufl.grad(v)) * dx(1)

+ parametre_2 * ufl.dot(ufl.grad(u), ufl.grad(v)) * dx(2)

# si la fonction source ne s'applique que sur une partie de la surface du domaine

L = f * v * ds(3)

2.1.3 Résolution de problème variationnel avec PETSc

La bibliothèque ‘dolfinx.fem.petsc‘ propose une classe permettant d’utiliser PETSc, un backend d’algèbre
linéaire pour résoudre des systèmes linéaires ou non-linéaires. PETSc est une dépendance obligatoire de
DolfinX, il est donc nécessaire d’importer explicitement l’enveloppe DolfinX pour interagir avec PETSc.
L’exemple suivant montre comment définir et résoudre un problème linéaire en utilisant un solveur par
Gradient Conjugué, avec un préconditionneur basé sur une décomposition LU :
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from dolfinx.fem.petsc import LinearProblem

problem = LinearProblem(a_, L_, bcs=[bc], petsc_options={"ksp_type": "cg", "pc_type": "lu"})

uh = problem.solve()

Les figures 5 et 6 illustrent les solutions obtenus avec les deux logiciels. La table 1 illustre l’efficacité du
logiciel FEniCSx. En effet, pour des tailles de mailles similaires, l’erreur entre la solution exacte et la solution
approchée par FenicsX est plus faible que celle trouvée avec le code Fortran pendant l’année de master. La
comparaison est à prendre avec des pincettes, le code en Fortran n’est peut être pas très optimisé, mais le
but est simplement de présenter l’outil FenicsX comme étant très pratique pour ces résolutions d’équations
de type "fluides incompressibles".

(a) Problème résolu avec une erreur L2 de 5e-
1 avec un programme Fortran pendant l’année
de master

(b) Problème résolu avec une erreur L2 de 9e-2 avec un
programme FenicsX

Figure 5 – Visualisation des solutions résolues (a) en Fortran et (b) en FenicsX pour des mailles de taille
3e-1 cm

(a) Problème résolu avec une erreur L2 de 2e-
1 avec un programme Fortran pendant l’année
de master

(b) Problème résolu avec une erreur L2 de 2e-2 avec un
programme FenicsX

Figure 6 – Visualisation des solutions résolues (a) en Fortran et (b) en FenicsX pour des mailles de taille
1e-1 cm

Logiciel Err mailles triangles 10−1 Err mailles triangles 10−2 Err mailles quadrangles 10−2

Fortran 90 5.10−1 2.10−1 -
FEniCSx 9.10−2 2.10−2 10−5

Table 1 – Erreurs L2 pour des maillages triangulaires et quadrangulaires avec des éléments finis de degré 1

Adèle Rawas–Denigot Page 10/44



M2 - MACS - Nantes Université Stage 2024 - Université Gustave Eiffel

3 Étude de l’onde pompe pour le modèle Pompes/Sondes dans le
mortier

Motivations Les pompes sont des ondes ultrasonores de "basses" fréquences (ici entre 20 et 80 kHz)
et de grandes amplitudes, elles permettent d’ouvrir par excitation les fissures fermées dans le béton. Le
premier objectif de ce stage est de modéliser une onde pompe et de calculer le déplacement particulaire de
la dalle engendré par la propagation de l’onde. Pour commencer sur une géométrie simple, nous étudierons
ce déplacement dans la dalle de mortier ; le béton sera l’objet d’étude de la partie 5.

Les sondes sont des ultrasons de fréquences plus élevées afin de ne pas être confondues avec les pompes
et ont une amplitude plus petite, ce sont leur signaux qui sont étudiés et qui permettent de remonter aux
caractéristiques du matériau.

Le but de cette première modélisation est l’étude de la distribution d’amplitude de l’onde en tout point
en réponse à une sollicitation sinusoïdale entretenue. On fera, par la suite, un balayage en fréquence de 20
à 80 kHz, dans le but de modéliser le champ de pompe envoyé sur la dalle (figure 7). Cette méthode est
fréquemment utilisée au laboratoire GéoEND, dans des contextes différents. La stratégie est de balayer un
spectre assez large dans le but d’obtenir, en moyenne, une sollicitation uniforme. Dans le cadre de la thèse, la
question se pose de savoir si les configurations habituellement utilisées sont efficaces pour révéler un gradient
sous la surface.

On essaiera de répondre aux deux questions suivantes : Le champ de déformation généré par les ondes
pompes est-il homogène ? Quels paramètres peuvent être modifiés afin d’optimiser cette homogénéité ?

Figure 7 – Schéma 3D du premier modèle d’étude représentant la dalle et les deux ondes pompes

Objectifs La première étape est de vérifier la fiabilité du code et, pour cela, nous testerons plusieurs pa-
ramètres de résolution intégrés à la librairie PETSc de FEniCSX en regard d’études de convergence et de
comparaison des temps de calcul CPU.

Dans un second temps, l’objectif est de modéliser le champ de pompe dans la dalle et d’analyser la
répartition moyenne de ce champ. C’est pourquoi, après avoir résolu l’équation avec un terme source constant,
nous nous intéressons au balayage fréquentiel afin d’étudier l’homogénéité du champ de pompe. Cette étude
permettra de regarder si les sollicitations de la pompe sont homogènes sur toute la dalle. Le contraire pourrait
poser problème car cela mélangerait les mesures experimentales entre les effets dus à l’endommagement et
ceux causés par les pompes.

Paramètres La dalle a les dimensions suivantes : L=50 cm de longueur, l=25 cm de largeur et h=12 cm
de hauteur, et de 2265 kg/m3 et E = 28.8 GPa pour le mortier, ainsi qu’un coefficient de poisson ν = 0.2.
Cette première étude consiste alors à résoudre l’équation de Helmholtz en 2 dimensions (x ∈ [0, L], y ∈ [0, h])
en domaine fréquentiel avec un terme source d’amplitude constante sur une partie du bord (ici à gauche) de
la dalle. Le diamètre de la source est de 4 cm.

Les paramètres que nous pourrons faire varier seront notamment l’alignement des pompes, à gauche et à
droite, par rapport à la droite (D) visible sur la figure 8, ainsi que le pas fréquentiel utilisé pour le balayage
du champ et la plage de fréquences que nous prendrons ici assez large (allant de 20 à 80 kHz).
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Figure 8 – Visualisation du maillage ainsi que l’emplacement des pompes sources sur une tranche de la
dalle en deux dimensions. Les flèches rougent indiquent la direction du déplacement imposé par les sources.
Les flèches grises indiquent que la position des sources peut être ajustée verticalement.

3.1 Formulation faible de l’équation de Helmholtz 2D en domaine fréquentiel
avec un terme source onde de surface

Soit Ω = [0, L] × [0, h], un domaine représentant une tranche de la dalle vue de côté.
On introduit les coefficients de Lamé : le module de compression Λ et le module de cisaillement µ tels

que :

Λ = Eν

(1 + ν)(1 − 2ν) ,

µ = E

2(1 + ν) ,

et on note les tenseurs de déformation et de contraintes respectivement :

ε(u) = sym(∇(u)),
σ(ε(u)) = ΛTr(ε(u))I2 + 2µε(u).

On notera que le tenseur de contraintes est linéaire dans cette partie.

Soit S ⊆ ∂Ωgauche où ∂Ωgauche est le bord gauche du rectangle Ω. On se place dans le domaine fréquenciel
et on pose ρ = µ

c2 , c est la célérité de l’onde et ω = 2πf la fréquence angulaire. L’équation de Helmholtz est
la suivante [12] : 

Trouver u = (ux, uy) ∈ H2(Ω), tel que
−ρω2u(x) − div(σ(u(x)) = 0, x ∈ Ω,

σ · n = q(x), x ∈ ∂Ω,

(7)

avec q =
(

1
0

)
sur S et nulle partout ailleurs et n le vecteur normal extérieur à la surface du domaine. On a

q ∈ L2(Ω)2.
Pour la suite, on notera ( · ) le produit scalaire dans R2. On définit le produit tensoriel ( : ) entre deux

matrices carrées A et B de taille n de la façon suivante (A : B) = Tr(A∗B) = Tr(AB∗) où Tr est la trace
d’une matrice et A∗ désigne la matrice adjointe de A.

Soit V un espace de fonctions tests tel que V ⊂ H1. Pour toute fonction v ∈ V , le produit scalaire dans
L2 avec (7), qui est bien défini d’après la propriété de régularité, nous donne :

⟨−ρω2u − div(σ(u)), v⟩L2(Ω) = 0. (8)

La formule de Green vectorielle dans le plan complexe, nous donne :

⟨−div(σ(u)), v⟩L2(Ω) =
∫

Ω
σ(u) : ε(v) dx −

∫
∂Ω

σ(u) · nv ds,

ou encore :
⟨−div(σ(u)), v⟩L2(Ω) =

∫
Ω

σ(u) : ε(v) dx −
∫

S

(q · v) ds.
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Cette égalité couplée à (8) nous permettent d’écrire la suivante :∫
Ω

σ(u) : ε(v) dx − ρω2
∫

Ω
u · v dx =

∫
S

(q · v) ds.

Le problème variationnel peut alors être écrit et il est de la forme suivante :
Trouver u ∈ V = H1(Ω) tel que

a(u, v) = L(v) pour tout v ∈ H1(Ω) (9)
avec

a(u, v) =
∫

Ω
(σ(u) : ε(v))dx − ρω2

∫
Ω

(u · v)dx,

L(v) =
∫

S

(q · v)ds.

3.2 Étude numérique
L’équation n’a pas de solution analytique simple liée à cette étude, donc pour comparer les différentes

méthodes de résolution, on choisit de résoudre l’équation sur un maillage de taille λS/200 (correspondant à
un pas de 0.5 mm), où λS est la longueur d’onde de l’onde de cisaillement dépendant de la fréquence de la
source de la façon suivante : c = λsf avec c la vitesse de propagation de l’onde. On considère un maillage
avec des mailles formées par des quadrangles et des éléments finis de Lagrange de degré 2 (définition 9). On
obtient alors ce premier résultat (figure 9) de déplacement particulaire de la section du bloc de mortier que
l’on utilisera comme solution de référence par la suite.

Figure 9 – Solution de référence du déplacement particulaire sur la dalle de mortier en 2 dimensions pour
une fréquence de 30 KHz

Une fois calculée, on peut exporter puis importer la solution de référence grâce à la librairire adios4dolfinx,
comme dans le code ci-dessous :

from pathlib import Path

import adios4dolfinx

# nom du fichier qui contiendra la fonction solution

filename = Path("save_function_cglu.bp")

function = uh_ref

# (export) écriture du maillage associé à la solution

adios4dolfinx.write_mesh(filename, function.function_space.mesh, engine='BP4')

# écriture de la solution

adios4dolfinx.write_function(filename, function, engine='BP4', time=1.0)
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# dans un autre programme

from dolfinx.cpp.mesh import GhostMode

u_ref = function

# (import) lecture du maillage dans un autre programme

in_mesh = adios4dolfinx.read_mesh(

filename, MPI.COMM_WORLD, engine='BP4', ghost_mode=GhostMode.shared_facet)

# attention : le maillage lu n'est pas forcément celui de départ (ordre des noeuds!=)

# on redéfinit l'espace en fonction

V_in = functionspace(in_mesh, u_ref.ufl_element())

u_in = Function(V_in)

# lecture de la solution dans un autre programme

adios4dolfinx.read_function(filename, u_in, engine='BP4', time=1.0)

Après un calcul d’interpolation des solutions approchées par différentes méthodes : le gradient conjugué
(CG) et le résidu minimal généralisé (GMres), couplés aux préconditionneurs LU ou LU Incomplet (ILU)
dans une boucle sur le pas d’espace, on peut observer les courbes d’erreurs (sur la figure 10) entre les solutions
calculées dans la boucle et la solution de référence, en norme L2 sur le graphique de la figure 10a. Après avoir
comparé ces deux solveurs et préconditionneurs (7.4), l’étude de convergence montre que le solveur (CG,
LU) est le meilleur. La figure 10b nous donne l’erreur en échelle logarithmique pour la méthode de résolution
du couple Gradient Conjugué, préconditionnement LU et on observe un ordre de convergence égal à 1.

En fait, on remarque que la réelle différence entre les méthodes de résolution du système est le précon-
ditionnement (7.4). On constate que le préconditionnement ILU n’est pas adapté à notre problème.

On observe également la courbe de temps de calcul CPU en fonction du nombre de mailles par longueur
d’onde de cisaillement λS (figure 11).

L’erreur entre la solution faible et la solution de la formulation du problème aux limites est représentée
sur la figure 12. Elle est presque nulle, sauf sur la surface où se situe la source.

Adèle Rawas–Denigot Page 14/44



M2 - MACS - Nantes Université Stage 2024 - Université Gustave Eiffel

(a) Erreurs en norme L2 en fonction du pas du maillage (les courbes bleue (CG, LU) et rouge
(GMRES, LU) sont confondues)

(b) Étude de convergence en échelle logarithmique de la méthode de résolution en Gradient
Conjugué avec un préconditionnement LU

Figure 10 – Etude numérique des principales méthodes de résolution fournies par PetsC

Figure 11 – Temps de résolution CPU en fonction du pas du maillage (les courbes bleue (CG, LU) et rouge
(GMRES, LU) sont confondues)
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Figure 12 – Erreur de la solution calculée sur maillage grossier (pas de maille = λS/20 = 5mm)

3.3 Etude du champ de pompes dans l’intervalle de fréquences 20 à 80 kHz
Afin de modéliser le champ de pompe de l’expérience, on se place de nouveau sur la même face de la

dalle de mortier et on envoie cette fois-ci deux sources des deux cotés de la plaque. En incluant ensuite le
programme de résolution par éléments finis dans une boucle fréquencielle allant de 20 kHz à 80 kHz avec un
pas de 100 Hz, afin de simuler le champ de pompe et pour éviter les singularités, nous ajoutons une petite
partie imaginaire (5.10−4i) à la fréquence angulaire. On obtient la solution de déplacement uh(f), sur la
figure 13, évaluée sur le point milieu de la dalle (x=25 cm, y=6 cm), sur le point de coordonnées (x=29 cm,
y=9 cm) et sur le point presque au bord de la dalle de coordonnées (x=31 cm, y=11.8 cm). On observe de
nombreux modes d’excitations (chaque pic correspond à un mode).

Figure 13 – Déplacements particulaires de trois points (p1, p2, p3) de la dalle de mortier pour des fréquences
allant de 20 à 80 kHz avec un pas de 100 Hz

Le but de cette étude est de comparer les résultats numériques avec ceux expérimentaux. En effet, durant
l’expérience et afin de mesurer l’énergie du champ de pompes sur les échantillons de béton, un grand nombre
de mesures sont relevées puis moyennées. Suivant la position des pompes, l’énergie du champ de pompes
ainsi que la vitesse observées sont plus ou moins homogènes.
Numériquement, afin de visualiser l’énergie du champ de pompes, on intègre sur un domaine de fréquences,
allant de 20 kHz à 80 kHz avec un pas de 100 Hz, les solutions du déplacement particulaires obtenues après
une résolution de l’équation de Helmholtz (7) par éléments finis de Lagrange de degré 1 (définition 9).
La formule utilisée pour définir la moyenne du déplacement, de la vitesse ou encore de la déformation sur
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les fréquences est la suivante :

ū = 1
∆f

√∫
f

|u(f)|2df, où u est la solution de l’équation de Helmholtz. (10)

3.3.1 Pompes symétriques

La modulation des propriétés induite par l’onde pompe est proportionnelle à la déformation (ε = ε0)
ainsi, pour vérifier l’homogénéité de l’onde pompe appliquée sur la dalle on s’interresse à la déformation que
l’on calcule de la façon suivante :

Tr(ε(u)) = Tr(sym(∇(u))),

et à la vitesse :
v = iωu.

On calcule ensuite l’énergie de ces deux fonctions, déjà moyennées sur la longueur, en appliquant la formule
(10) dans le but de calculer leur gradient ensuite.

Dans le cas de deux pompes mises face à face (même ordonnée y), on peut observer la vitesse particulaire
et sa moyenne (figure 14) ainsi que la déformation définie par la trace du tenseur de déformation (ε défini
dans la partie 3.2) et sa moyenne sur l’axe des x (figure 15).

(a) (b)

Figure 14 – Vitesse : (a) Moyenne de la vitesse particulaire (mm/µs) moyennée sur la longueur et exprimée
en fonction de la largeur (axe y) pour des pompes symétriques et (b) Champ moyen de la Vitesse particulaire
(mm/µs) pour un balayage fréquentiel de 20 à 80 kHz avec un pas de 100 Hz et des pompes symétriques

(a) (b)

Figure 15 – Déformation : (a) Moyenne de la déformation Tr(ε) moyennée sur l’axe des x et tracée en
fonction de y pour des pompes symétriques et (b) Champ moyen de la déformation Tr(ε) pour un balayage
fréquentiel de 20 à 80 kHz avec un pas de 100 Hz et des pompes symétriques
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Dans ce premier cas où les pompes sont symétriques, pour la déformation, la moyenne de la variance en
fonction de la profondeur est de 9.2 % et pour la vitesse la moyenne de la variance est de 7.1 %.

On introduit ci-dessous une partie du code qui résoud l’équation de Helmholtz, gère le moyennage des
fonctions sur la longueur de la dalle et qui récupère la moyenne L2 du déplacement, de la vitesse et de la
déformation. Il est lui même inclu dans une boucle For balayant les fréquences avec un pas de 100 kHz.
L’outil ParallelEvaluator est utilisé pour évaluer les fonctions sur tous les points x du maillage et permet
ainsi un moyennage des fonctions sur la longueur de la dalle, il a été développé avant le début du stage par
Pierric Mora.

ds(6) et ds(7) correspondent aux parties gauche et droite de la surface de la dalle, distinguées et tagées
dans le module de création du maillage, lieux d’emplacement des deux sources de l’onde pompe.

a_1 = inner(sigma(u1), epsilon(v1)) * dx - rho * omega_f**2 * inner(u1, v1) * dx

L_1 = inner(f_1, v1) * ds(6) - inner(f_1, v1) * ds(7)

problem_cg = LinearProblem(a_1, L_1, bcs=[], \

petsc_options={"ksp_type": "cg", "pc_type": "lu"})

uh_f = problem_cg.solve()

eps = tr(sym(grad(uh_f)))

eps_exp = fem.Expression(eps, V0.element.interpolation_points())

eps_fonction = fem.Function(V0)

eps_fonction.interpolate(eps_exp)

vh_moy_x = []

eps_moy_x = []

for x_list in x_out:

points_out = np.array([x_list,

y_out,

z_out])

# Déclarer un ParallelEvaluator sur le maillage

paraEval = ParallelEvaluator(domain1, points_out)

# Points d'évaluation

uh_f_local = uh_f.eval(paraEval.points_local, paraEval.cells_local)

eps_local = eps_fonction.eval(paraEval.points_local, paraEval.cells_local)

# Rassembler les données vers le processus maître

uh_f_global = paraEval.gather(uh_f_local, root=0)

eps_global = paraEval.gather(eps_local, root=0)

if domain1.comm.rank == 0:

u_.append(uh_f_global)

eps_moy_x.append(eps_global)

vh_moy_x.append(1j*omega_f*uh_f_global)

eps_moy_x = np.sqrt(np.mean(np.abs(eps_moy_x)**2, axis=0))

vh_moy_x = np.sqrt(np.mean(np.linalg.norm(vh_moy_x, axis=-1)**2, axis=0))

eps_moyenne.append(eps_moy_x)

vitesse_moyenne.append(vh_moy_x)
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Nous pouvons également observer les résultats obtenus lors de l’experimentation. Le dispositif expérimental
mesurant la moyenne des cahmps de vitesse sur la dalle est représenté sur la figure 16. On y voit le vibromètre
laser permettant d’établir une moyenne de la vitesse sortante des particules en fonction de la profondeur.
Néanmoins, comme on peut le voir, cette moyenne est faite en trois dimensions avec des transducteurs espacés
d’une distance fixe (quelques centimètres) alors que le moyennage effectué numériquement est un moyennage
sur deux dimensions, avec un pas plus petit que celui des expériences. En 3D, on mesure une vitesse qui
est alors une composante hors plan qui n’est pas modélisée ici mais qui ressemble à l’effet Poisson qui est
proportionnel à la déformation. Les valeurs expériementales sont tracées en fonction de la profondeur de la
dalle sur la figure 17a et mises en parallèle avec l’énergie de la déformation moyenne sur la figure 17b.

Figure 16 – Expérience menée par Massina Fengal dans le cadre de sa thèse (en cours) mesurant la vitesse
normale à la dalle modulée par un champ d’ondes pompes

(a) Vitesse particulaire (mm/s) moyennée experimentale-
ment pour des pompes symétriques

(b) Moyenne de la déformation Tr(ε) moyennée
sur l’axe des x et tracée en fonction de y pour
des pompes symétriques

Dans la prochaine sous partie, afin de se rapprocher d’un gradient de déformation plus homogène, nous
allons jouer sur le paramètre de position des sources des ondes pompes et les décaler chacune dans un sens
différent par rapport à l’axe de symétrie (D) de la figure 8.
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3.3.2 Pompes décalées de 20 mm sur l’axe y

Dans le programme, nous pouvons demander à la fonction générant le domaine de décaler les sources des
ondes pompes d’une certaine distance (ici 2 cm entre chaque pompes ou de 1 cm par rapport à l’axe de la
droite (D)) (voir figure 8). Ainsi, après une résolution de l’équation par éléments finis de Lagrange de degré 1,
on peut tracer les fonctions découlant de la solution. Sur la figure 18, on observe le déplacement particulaire
évalué en 3 points de la dalle, tracé en fonction du champ de fréquences allant de 20 à 80 kHz avec un pas
de 100 Hz. On remarque plus de modes d’excitations, ce qui est dû à la géométrie moins symétrique qui
entraîne alors un excitation des modes anti-symétriques en plus des modes symétriques.

Figure 18 – Déplacements particulaires de trois points (p1, p2, p3) de la dalle de mortier pour des fréquences
allant de 20 à 80 kHz avec un pas de 100 Hz pour des pompes ayant leurs sources décalées de 20 mm

On observe également les fonctions suivantes : la vitesse ainsi que sa moyenne (figure 19) et la déformation
ainsi que sa moyenne (figure 20) mais cette fois-ci dans le cas où les pompes sont décalées de 20 mm par
rapport à la droite (D), passant au milieu de l’axe y.

(a) (b)

Figure 19 – Vitesse avec pompes décalées de 2 cm : (a) Moyenne de la Vitesse particulaire (mm/µs)
moyennée sur l’axe des x et tracée en fonction de y et (b) Champ moyen de la vitesse particulaire (mm/µs)
pour un balayage fréquentiel de 20 kHz à 80 kHz avec un pas de 100 Hz
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(a) (b)

Figure 20 – Déformation avec pompes décalées de 2 cm : (a) Moyenne de la déformation Tr(ε) moyennée
sur l’axe des x et tracée en fonction de y et (b) Champ moyen de la déformation pour un balayage fréquentiel
de 20 kHz à 80 kHz avec un pas de 100 Hz

Cette fois, lorsque les pompes sont décalées de 2 cm, pour la déformation, la moyenne de la variance en
fonction de la profondeur est de 4.8 % et pour la vitesse la variance est de 5.8 %.

On remarque que le champ moyen de déformation résultant d’un balayage en fréquence d’ondes pompes
est plus homogène dans la configuration des pompes décalées que dans celle des pompes symétriques.

On aurait également pu choisir un pas inférieur à 100 kHz pour effectuer le balayage en fréquence, mais
il aurait alors fallu paralléliser le code, car cela aurait augmenté le temps de calcul.

3.4 Conclusions de fin de section
Dans cette partie du rapport, nous avons commencé par une étude numérique approfondie afin de tester

la performance des méthodes de résolution disponibles dans FEniCSx, en particulier celles intégrées à la
librairie PETSc. Les résultats ont permis d’identifier la méthode par éléments finis de Lagrange de degré
1 comme ayant un ordre de convergence de degré 1, offrant une précision suffisante pour nos besoins tout
en étant relativement peu coûteuse en termes de calcul. Après comparaison des temps de calcul et des
performances des différentes combinaisons, le couple solveur CG et préconditionneur LU, fournis par PetsC,
s’est avéré être le plus efficace pour résoudre l’équation de Helmholtz dans le domaine fréquentiel.

De plus, l’objectif était de modéliser la propagation du champ de pompe sur une dalle de mortier, et
d’analyser l’homogénéité de la déformation engendrée par ce champ. Les simulations ont montré que le
tenseur de déformation dans la dalle avait un champ de déformation plus homogène lorsque la modulation
est effectuée avec des pompes décalées plutôt que dans la configuration de pompes symétriques. Ces resultats
répondent à la première problématique du stage.
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4 Étude de la contribution non linéaire du mortier en réponse à
la propagation des ondes de Rayleigh

Motivations L’expérience consiste à envoyer une onde relativement monochromatique, à forte amplitude,
sur la surface d’un échantillon de béton, afin d’étudier le phénomène de génération d’harmoniques. Ce
phénomène est important car il permet de renseigner sur la non-linéarité du milieu inspecté. Une méthode
pour générer une onde de Rayleigh à forte amplitude est d’utiliser un sabot, un dispositif qui convertit une
onde de volume en onde de surface (figure 3). Cependant, l’interprétation du signal de seconde harmonique
mesuré n’est pas aisée, ce qui motive l’utilisation de la modélisation.

Le sabot a une composition connue : fabriquée en teflon, et, pour un angle précisément déterminé aupa-
ravant (35°), il permet de convertir une onde de volume, envoyée sur le côté du sabot, en onde de surface
(ici de Rayleigh). L’angle est déterminé notamment grâce à la loi de Snell-Descartes (figure 21) :

n1sin(θ1) = n2sin(θ2),

où n1 et n2 sont les indices de réfraction des milieux dépendant respectivement de la composition du sabot
et de la composition de la dalle en mortier.

Figure 21 – Illustration de la loi de Snell-Descartes

Les difficultés rencontrées incluent la séparation entre la contribution de la non-linéarité du matériau
et celle de la pollution harmonique (causée par des artefacts ou des non-linéarités de l’appareillage). De
plus, la variabilité des résultats expérimentaux et l’amplitude réduite de la seconde harmonique compliquent
l’analyse.

Les travaux de Torello et al. [10] proposent une méthodologie pour mesurer et interpréter correctement
un signal de seconde harmonique. Elle consiste à prendre des mesures à la fréquence fondamentale (f) et à la
seconde harmonique (2f) en plusieurs points. Un modèle réaliste de l’évolution des signaux à f et 2f est utilisé
pour ajuster les données et séparer les contributions dues à la pollution et celles dues à la non-linéarité du
matériau.

La prochaine étape du stage est d’étudier ce modèle pour connaître la contribution non linéaire du mortier
en réponse à la propagation d’une onde de Rayleigh.

Objectifs Le but est, dans un premier temps, de connaître le champ de déplacement généré par l’onde de
Rayleigh convertie et diffusée par le sabot. On étudiera le champ généré par l’onde à la fréquence fondamentale
mais aussi celui généré par sa seconde harmonique qui pourrait "polluer" les résultats. Pour se faire on étudie
l’équation scalaire des ondes avec un terme source ayant pour fréquence f1 = 50 kHz (la fondamentale)
et on comparera l’amplitude du déplacement particulaire causé par cette onde lorsqu’elle se propage dans
l’échantillon avec le déplacement particulaire causé par l’onde ayant pour source une onde de fréquence
2f1 = 100 kHz (la seconde harmonique).

Dans un second temps, on cherche à connaître la contribution non-linéaire du matériau en réponse à l’onde
de Rayleigh. Pour se faire on étudiera l’équation de Helmhotlz modélisée avec un tenseur de contrainte non-
linéaire. Cette étude nous permet de passer sur un système dit "quasi-linéaire" et c’est la résolution de ce
système qui nous donnera la contribution du matériau en réponse à l’onde de surface émise par le sabot.
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Paramètres L’étude se fait toujours sur la même dalle avec les mêmes dimensions, mais cette fois ci nous
prenons une vue de dessus dans le plan (x=50 cm, Z=25 cm). Le sabot est éloigné de 3 cm du bord de la
dalle et il a les dimensions suivantes : Longueur = 10 cm, largeur = 9 cm (cf figure 22).

4.1 Étude de l’équation scalaire linéaire
Soient Ω = [0, L1 = 50]×[0, l1 = 25] représentant la dalle en 2D vue du dessus et I = [0, L2 = 10]×[0, l2 =

9] représentant le sabot posé sur la dalle lors de l’expérience tel que I ⊂ Ω (figure 22). On cherche à résoudre
l’équation scalaire de propagation dans le domaine harmonique telle que :

−∇2u − ω2

c2 u =
{

0 dans Ω \ I (maillage vert)
ei ω

c x dans I (maillage orange)

qui est équivalent à

−ρc2∇2u − ρω2u =
{

0 dans Ω \ I (maillage vert)
ρc2ei ω

c x dans I (maillage orange)

On aimerait ajouter à cela la condition de bords transparents et pour se faire on utilisera la notion d’impé-
dance Z = ρc, c’est à dire :

∂u

∂n
= iωZu = iωρcu sur ∂Ω

Cette condition est approchée et n’est bonne que si l’onde arrivant sur le bord ressemble à une onde plane
en incidence normale.

4.1.1 Formulation faible

On pose q(x) =
{

0 dans Ω \ I

ρc2ei ω
c x dans I

. Soit v ∈ H1(Ω) une fonction test que nous multiplions à l’équation

définie ci-dessus et que nous intégrons sur le domaine Ω :

−ρc2
∫

Ω
∇2uv dx − ρ

∫
Ω

ω2uv dx =
∫

Ω
qv dx.

En appliquant la formule de Green sur le premier terme, on obtient :

ρc2
∫

Ω
∇u · ∇v dx − ρc2

∫
∂Ω

v
∂u

∂n
ds − ρ

∫
Ω

ω2uv dx =
∫

Ω
qv dx.

En considérant la condition de bords transparents, et comme µ = ρc2, l’égalité se réécrit de la façon suivante :

µ(
∫

Ω
∇u · ∇v dx − iρωc

∫
∂Ω

vu ds) − ρω2
∫

Ω
uv dx =

∫
Ω

qv dx.

Le problème variationnel s’écrit alors : Trouver u ∈ H1(Ω) tel que

a(u, v) = L(v) pour tout v ∈ H1(Ω) (11)

avec

a(u, v) = µ(
∫

Ω
∇u · ∇v dx − iρωc

∫
∂Ω

vu ds) − ρω2
∫

Ω
uv dx,

L(v) =
∫

Ω
qv dx.

4.1.2 Premiers résultats numériques

Afin de modéliser et de résoudre cette équation, on commence par générer un domaine correspondant à
la géomètrie de la dalle en vue de dessus (figure 22) et on y inclut l’empreinte du sabot qui sera la source de
l’onde de Rayleigh. On lui donne un tag particulier (ici 201) pour pouvoir écrire la fonction L du problème
variationnel.
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Figure 22 – Maillage de la dalle vue de dessus avec l’empreinte du sabot

Voici une partie du code permettant de résoudre l’équation pour une fréquence F = 50 kHz et l’équation
pour la seconde harmonique c’est-à-dire F2 = 2F = 100 kHz.

# Définition de l'espace géométrique, des éléments finis et leur degré de liberté

V1 = fem.functionspace(domain2,("Lagrange", 1, (gdim, )))

# Définition des fonctions sources

def f_1(x):

return rho*cR**2 * np.exp(1j * (k) * x[0])

def f_2(x):

return rho*cR**2 * np.exp(1j * (2*k) * x[0])

f1 = fem.Function(V1)

f1.interpolate(f_1)

f2_input = fem.Function(V1)

f2_input.interpolate(f_2)

# Définition des espaces de fonctions mathématiques

u1 = ufl.TrialFunction(V1)

v1 = ufl.TestFunction(V1)

dx = ufl.Measure("dx", domain=domain2, subdomain_data=cell_tags2)

ds = ufl.Measure("ds", domain=domain2, subdomain_data=facet_tags2)

# Définition des formes bilinéaires et linéaires

a_1 = (

mu * inner(grad(u1), grad(v1)) * dx

- mu * rho * 1j * omega * cR * inner(u1, v1) * ufl.ds

- rho* omega**2 * inner(u1, v1) * dx

)

L_1 = inner(f1, v1) * dx(201)

a_2_input = (

mu * inner(grad(u1), grad(v1)) * dx

- mu * 1j * 2*omega * cR * rho * inner(u1, v1) * ds

- rho * 4* omega**2 * inner(u1, v1) * dx

)

L_2_input = inner(f2_input, v1) * dx(201)
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# Définition des options du solveur

petsc_options = {

"ksp_type": "cg", # Utilisation du solveur GMRES

"pc_type": "lu" # Type de matrice par défaut

}

# Création du problème linéaire

problem1 = LinearProblem(a_1, L_1, bcs=[], petsc_options=petsc_options)

problem2 = LinearProblem(a_2_input, L_2_input, bcs=[], petsc_options=petsc_options)

# Résolution du problème

uh_1 = problem1.solve()

uh_2_input = problem2.solve()

On résout le problème variationnel par éléments finis de Lagrange de degré 1 et on observe sur la figure 23
la solution à l’équation pour une source ayant une fréquence de 50 kHz. On observe également sur la figure
24 le déplacement particulaire dû à la seconde harmonique de l’onde de Rayleigh (source ayant une fréquence
de 100 kHz) qui nous intéresse particulièrement car c’est une éventuelle contribution polluant l’étude des
paramètres non linéaires du matériau.

Figure 23 – Visualisation pyvista du déplacement particulaire (mm), solution de l’équation pour une source
ayant une fréquence de 50 kHz

Figure 24 – Visualisation pyvista du déplacement particulaire (mm), solution de l’équation pour une source
ayant une fréquence de 100 kHz
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Afin de mieux connaître le comportement de l’onde de surface sur le matériau, on trace sur la figure 25
les solutions de l’équation pour des sources ayant des fréquences de 50 et 100 kHz, évaluées en y=12 cm
(correspondant à la moitié de la largeur du domaine) et tracées en fonction de x.

Figure 25 – Amplitude des déplacements particulaires normalisé résultant des première et seconde harmo-
niques de l’onde de Rayleigh, évaluée en Z = l/2 = 12.5 cm

4.2 Système d’équations quasi-linéaire pour l’étude de la contribution non li-
néaire du matériau

4.2.1 Étude du système quasi-linéaire

Maintenant que l’on connait la forme du champ de propagation des première et seconde harmoniques
de l’onde en surface de la dalle, on peut s’intéresser à la contribution non linéaire du mortier en réponse
à cette onde. Pour se faire nous étudions le système quasi-linéaire modélisant la non-linéarité d’une onde
longitudinale dans le sabot, étudiée dans l’article de E. A. Zabolotskaya et al. publié dans Acoustical Society
of America en 1993 [15]. En posant le nombre d’onde k = ω

c et Ai, i ∈ [1, 2] le coefficient d’attenuation de
l’onde de Rayleigh à la fréquence iω, le système quasi-linéaire est le suivant :

(∇2 + k2 + ikA1)v1 = q(x)/ρc2, (12)
(∇2 + 4k2 + 2ikA2)v2 = Eβv2

1 , (13)

avec q(x) =
{

0 dans Ω \ I

ρc2ei ω
c x dans I

et β est le coefficient de non-linéarité du matériau définit dans (1).

Une explication de l’obtention du système quasi-linéaire est placée en annexe 7.5 On veut retrouver une
équation ressemblant à celle du problème variationnel 11, on va donc multiplier par ρc2 = µ de chaque côtés
et simplifier le terme de droite de l’égalité (13) en posant Eβ = 1 pour la modélisation. On associe à ce
système la condition de bords transparents ∂u

∂n = iωZu = iωρcu sur ∂Ω et on en déduit la formulation faible
suivante : Trouver v1, v2 ∈ V tels que ;

ρc2
∫

Ω
∇v1∇ϕ dx − iρµωc

∫
∂Ω

v1ϕ ds − ρ(iωcA1 + ω2)
∫

Ω
v1ϕ dx =

∫
Ω

qϕ dx, ∀ϕ ∈ V, (14)

ρc2
∫

Ω
∇v2∇ϕ dx − iρµωc

∫
∂Ω

v2ϕ ds − ρ(2iωcA2 + 4ω2)
∫

Ω
v2ϕ dx = µ

∫
Ω

v2
1ϕ dx, ∀ϕ ∈ V. (15)

Les coefficients d’attenuations suivent une courbe que l’on peut voir sur la figure 26. Nous choisissons de les
prendre nuls pour la suite de l’étude. Le travail sur ces coefficients est une idée d’étude pour la suite mais
ne fera pas l’objet d’étude dans ce rapport.
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Figure 26 – Courbe d’attenuation en fonction de la fréquence de l’onde source dans une dalle de béton

4.2.2 Résultats numériques

On résout les deux équations linéaires par éléments finis de Lagrange quadrangulaires de degré 1. On
observe la contribution non linéaire du mortier en réponse à l’onde de Rayleigh sur la figure 27. La figure 28
nous permet d’observer l’atténuation de la fréquence fondamentale et de la seconde harmonique de l’onde
de Rayleigh en fonction de la distance, ainsi que la contribution du matériau correspondant à la réponse en
seconde harmonique de l’onde de Rayleigh.

Figure 27 – Déplacement particulaire (mm) résultant de la contribution non linéaire du matériau en réponse
à l’onde de Rayleigh pour une fréquence de 100 kHz
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Figure 28 – Amplitude du déplacement particulaire émis par l’onde de Rayleigh (rouge pour la fondamentale
et verte pour la seconde harmonique) et du déplacement particulaire émis par la contribution non linéaire
du matériau (bleue)

4.3 Conclusions de fin de section
Dans cette partie du travail, nous avons étudié la propagation de ces ondes dans une dalle de mortier

à l’aide du modèle sabot/dalle, utilisé dans les expériences de Massina. Le sabot, dont la composition est
connue, permet de convertir une onde de volume (émise par un transducteur piézoélectrique) en onde de
surface grâce à un angle spécifique défini par la loi de Snell-Descartes (figure 29).

L’objectif principal était d’analyser à la fois la contribution linéaire et non linéaire du matériau en réponse
à la propagation des ondes de Rayleigh. Une première étude a porté sur la modélisation du champ de l’onde
fondamentale de fréquence 50 kHz émise par le sabot, ainsi que sur la génération du second harmonique
à 100 kHz. La comparaison des amplitudes du déplacement particulaire des ondes fondamentales et de
leur harmonique a permis d’évaluer la possibilité de "pollution" des résultats par des effets harmoniques
indésirables.

Ensuite, l’étude a porté sur la contribution non linéaire du matériau en modélisant l’équation de Helmholtz
avec un tenseur de contrainte non-linéaire. Cette modélisation nous a permis de passer à un système quasi-
linéaire dont la résolution a fourni une première estimation de la réponse non linéaire du mortier sous l’effet
des ondes de surface. Ces résultats ouvrent la voie à une meilleure compréhension des phénomènes non
linéaires dans la propagation des ondes de Rayleigh, essentiels pour caractériser la réponse des matériaux
soumis à des dégradations ou fissures.

Afin d’observer des résultats se rapprochant des études sur le béton, nous allons maintenant procéder à
la modélisation des granulats à l’intérieur de la dalle.

Figure 29 – Photo du dispositif expérimental de génération d’ondes de surface
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5 Modélisation du squelette granulaire du béton et résolution du
système quasi-linéaire sur la dalle de béton

Afin de modéliser au mieux les expériences réalisées par Massina, l’objectif principal de cette section est
de générer un maillage de la dalle en y ajoutant des granulats, chacun représenté par une ellipse. Le second
objectif sera de résoudre les équations étudiées précédemment, cette fois sur une dalle de béton, en assignant
des paramètres matériau différents aux ellipses.

Un code sera utilisé exclusivement pour générer une liste d’ellipses (petit rayon, grand rayon, coordonnées
du centre, angle), qui servira ensuite dans Gmsh pour créer un maillage. Ce maillage sera ensuite importé
dans le code principal pour la résolution des équations.

5.1 Étude granulométrique et génération d’ellipses
Les ellipses générées doivent respecter une distribution granulométrique en termes de taille, ainsi qu’un

certain ratio de surface par rapport à la surface totale.
Nous devons d’abord effectuer une étude granulométrique afin de respecter les dimensions des granulats

et leur répartition sur la dalle en deux dimensions. Dans le programme, la distribution des granulats est
modélisée à partir de données réelles issues des fiches techniques des échantillons de béton fabriqués pour les
expériences : figures 30 et 31.

Figure 30 – Proportion du diamètre des graviers dans le béton fournie par le fournisseur des échantillons
de béton étudiés

Figure 31 – Courbe granulométrique théorique fournie par le fournisseur des échantillons de béton étudiés

Une interpolation par spline cubique de type "clamped", provenant de la bibliothèque scipy, est utilisée
pour obtenir une courbe lisse représentant cette distribution. Cela permet de générer des courbes granulo-
métriques correspondant aux spécifications des échantillons de béton que l’on peut observer sur la figure
32.
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Figure 32 – Courbes des cumulées de masse (cum. of masses) et de densité granulométrique (cum. density
function) et courbe de masse granulométrique que l’on veut approcher (cum. of masses (wanted))

L’objectif est de remplir une surface donnée (une dalle de béton en 2D) avec des ellipses représentant des
granulats, jusqu’à ce que la somme des surfaces de ces ellipses atteigne un ratio prédéfini par rapport à la
surface totale de la dalle (ici 50%). Les ellipses sont générées aléatoirement en respectant une distribution
granulométrique, avec des tailles, formes et orientations variables.

Fonctionnement de l’algorithme :
— Initialisation :

— Fixer un rapport surfacique cible pour les ellipses par rapport à la dalle (ici, 50%).
— Définir une courbe granulométrique qui spécifie la taille et la forme des ellipses à générer.

— Génération d’une ellipse :
— Générer aléatoirement une ellipse en suivant la courbe granulométrique. Les paramètres générés

incluent le grand et le petit diamètre, ainsi que l’angle d’inclinaison.
— Tirer aléatoirement une position (x, y) pour son centre dans la surface de la dalle.

— Vérification de chevauchement :
— Vérifier si la nouvelle ellipse chevauche celles déjà placées :

— Test rapide : Vérifier avec les ellipses ayant des grands rayons proches.
— Test détaillé : Si la nouvelle ellipse est proche d’une autre, effectuer un test de chevauchement

plus précis en vérifiant les premiers voisins.
— Si chevauchement :

— Si le nombre d’échecs dépasse une limite prédéfinie, l’algorithme abandonne la génération de
l’ellipse et passe à la suivante.

— Sinon, générer une nouvelle position aléatoire et réessayer.
— Itération :

— Répéter l’opération jusqu’à atteindre le rapport surfacique cible ou jusqu’à ce que le nombre
maximal de tentatives soit atteint.
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Pseudocode de l’algorithme :

Initialiser le ratio surfacique cible

Tant que (surface totale des ellipses < ratio cible) :
Générer une nouvelle ellipse (taille, forme, orientation)
Tirer une position (x, y) pour son centre
Tant que (tentatives < limite d'échecs) :

Si chevauchement avec une ellipse existante :
Effectuer un test rapide de non-chevauchement (grands rayons)
Si nécessaire, effectuer un test plus précis (voisins proches)
Si chevauchement confirmé :

Retirer une nouvelle position
Incrémenter le compteur de tentatives

Sinon :
Ajouter l'ellipse à la liste des ellipses
Break

Fin Tant que

Enfin, une analyse du nombre d’itérations nécessaires, observable sur la figure 33, pour atteindre un
certain ratio de surface montre qu’au-delà d’un ratio de 0.5, le nombre d’itérations augmente de manière
exponentielle. Il n’est donc pas nécessaire de dépasser ce ratio pour modéliser la dalle de béton de manière
réaliste.

Figure 33 – Nombre d’itérations nécessaires pour couvrir un ratio surfacique par les ellipses

Le maillage final obtenu présente un ratio de 50 % de surface recouverte par les ellipses. Ce résultat est
ensuite exporté sous forme de fichier CSV, prêt à être utilisé pour la génération du maillage final.

Une illustration du maillage obtenu à la fin est observable sur la figure 34.
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Figure 34 – Maillage de la dalle de béton avec un ratio surfacique recouvert par les ellipses de 50%

5.2 Étude de la contribution non linéaire du béton en réponse à la propagation
des ondes de Rayleigh

Après avoir généré 50 listes de répartitions d’ellipses différentes pour la géométrie 25x50 pour modéli-
ser 50 répartitions d’ellipses différentes, nous générons 50 maillages à l’aide de Gmsh et Fenicsx, puis nous
résolvons le système quasi-linéaire sur chacun des domaines. Dans un premier temps, nous considérons une
atténuation nulle et un équilibre homogène entre les granulats et le ciment, afin de vérifier les résultats en
les comparant à ceux obtenus dans la section 4.2.2.

Pour modéliser les nouveaux paramètres matériau correspondant aux granulats, nous attribuons un poids
(le ratio surfacique ici) aux paramètres de la matrice de ciment et aux granulats, afin de les différencier dans
la suite des calculs. Pour cela, nous fixons α1 = 0.5 et α2 = 0.5, qui correspondent aux poids attribués
respectivement au ciment et aux granulats. Les paramètres matériau choisis sont les suivants :

ρ1 = ρ(1 − pα2),
ρ2 = ρ(1 + pα1),
µ1 = µ(1 − pα2),
µ2 = µ(1 + pα1),

où ρ = ρ = 2395 kg/m3 est la masse volumique du béton et µ = c2ρ, avec c la vitesse de l’onde de Rayleigh
dans le béton. On note également que le module de Young du béton à une valeur de E = 38 GPa. Ces
valeurs sont prises dans le but de représenter au mieux le milieux homogénéisé, on veut les garder fixes tout
en faisant varier le paramètre de contraste p entre les milieux.

Le paramètre de contraste p permet de gérer les paramètres matériaux ; on veut p < 1
α2

et µ1 = µ2, si p =
0, cela correspond à un modèle de dalle homogène. Le premier milieu (mortier) sera moins dense et plus
souple tandis que le second (granulats) sera plus dense et plus rigide. On choisit des coefficients d’attenua-
tions nuls.

Soient Ω(101,301), Ω(201,401), Ω(301,401) définissant respectivement les parties du domaine comprenant
l’empreinte du sabot (tag 301) et la dalle entière sans les granulats (tag 101), les granulats dans la dalle
(tag 201) et dans l’empreinte du sabot (tag 401) (figure 34). On peut alors réécrire le sytème quasi-linéaire,
prenant en compte ces nouveaux paramètres pour chaque matériau et en posant la fonction

q(x) =
{

0 dans Ω \ SABOT,
ρc2ei ω

c x dans SABOT,
(similaire à celle de l’équation 14). On a :
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ρ1c2
∫

Ω(101,301)

∇v1 · ∇ϕ dx + ρ2c2
∫

Ω(201,401)

∇v1 · ∇ϕ dx

− iρ1µ1ωc

∫
∂Ω

v1ϕ ds

− ρ1(iωcA1 + ω2)
∫

Ω(101,301)

v1ϕ dx

− ρ2(iωcA1 + ω2)
∫

Ω(201,401)

v1ϕ dx =
∫

Ω
qϕ dx, ∀ϕ ∈ V, (13)

ρ1c2
∫

Ω(101,301)

∇v2 · ∇ϕ dx + ρ2c2
∫

Ω(201,401)

∇v2 · ∇ϕ dx

− iρ1µ1ωc

∫
∂Ω

v2ϕ ds

− ρ1(2iωcA2 + 4ω2)
∫

Ω(101,301)

v2ϕ dx

− ρ2(2iωcA2 + 4ω2)
∫

Ω(201,401)

v2ϕ dx = ρc2
∫

Ω
v2

1ϕ dx, ∀ϕ ∈ V. (14)

On observe sur la figure 35 les amplitudes des solutions du système variationnel (13) et (14) résolu en
éléments finis de Lagrange de degré 1, sur 50 domaines modélisés avec des répartitions d’ellipses différentes,
avec des paramètres matériaux homogènes (p = 0).

Figure 35 – Superpositions des solutions normalisées des équations résolues sur tous les domaines pour une
onde de Rayleigh propagée à une fréquence de 50 kHz et une dalle totalement homogène (p = 0)

Les formes des courbes obtenues sont similaires à celles issues de l’étude sur une dalle homogène, ce
qui nous permet désormais d’ajuster les paramètres du matériau en modélisant des dalles présentant des
phénomènes de dispersion plus ou moins marqués, en fonction de la valeur de la variable p. Ainsi, une valeur
de p = 0.14 correspondra à une forte dispersion, tandis que p = 0.07 représentera une dispersion modérée.

La figure 36 illustre la dispersion de l’onde liée à la contribution non linéaire du matériau pour une valeur
de p = 0.14, avec une fréquence de réponse de 100 kHz. Une dispersion similaire est observée pour une
fréquence de 160 kHz sur la figure 37.
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Figure 36 – Contribution du matériau non-linéaire lorsque la variable p = 0.14 entraîne une dispersion de
l’onde de Rayleigh sur la dalle à 100 kHz

Figure 37 – Contribution du matériau non-linéaire lorsque la variable p = 0.14 entraîne une dispersion de
l’onde de Rayleigh sur la dalle à 160 kHz

Nous pouvons maintenant observer, sur les figures des tables 2, 3 et 4, le comportement des valeurs
absolues des solutions normalisées, pour les trois valeurs attribuées au paramètre de contraste p et rendant
plus ou moins visible les granulats dans l’équation, ce pour 3 valeurs de fréquences différentes : 30, 50 et 80
kHz.
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(a) p = 0.0 (homogène) (b) p = 0.07 (peu hétérogène) (c) p = 0.14 (très hétérogène)

Table 2 – Solutions à 30 kHz pour différentes valeurs de p.

(a) p = 0.0 (homogène) (b) p = 0.07 (peu hétérogène) (c) p = 0.14 (très hétérogène)

Table 3 – Solutions à 50 kHz pour différentes valeurs de p.

(a) p = 0.0 (homogène) (b) p = 0.07 (peu hétérogène) (c) p = 0.14 (très hétérogène)

Table 4 – Solutions à 80 kHz pour différentes valeurs de p.
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5.3 Conclusions de fin de section
Cette étude a permis de développer un modèle numérique capable d’intégrer la présence de granulats

dans une dalle de béton à travers l’utilisation d’ellipses, représentant leur répartition réelle. La génération
d’un maillage adapté en intégrant les granulats représentés par des ellipses a permis de modéliser avec plus de
vraisemblance la dalle de béton utilisée dans les expériences de Massina. Le maillage, associé à une résolution
des équations quasi-linéaires sur plusieurs configurations, a permis de valider la capacité du modèle à capturer
la propagation des ondes de Rayleigh dans des milieux hétérogènes.

Les résultats obtenus avec des paramètres homogènes, sans ellipses/granulats (p = 0), ont montré une
bonne cohérence avec ceux issus du modèle homogène, confirmant ainsi la fiabilité du code développé et des
maillages utilisés.

De manière générale, cette étude permet aussi de constater les limites de la méthodologie habituelle
lorsqu’il s’agit de mesurer un paramètre matériau à partir du signal à la fréquence harmonique 2fmateriau

dans un milieu diffusant. À partir d’un certain contraste ou d’une fréquence donnée, la variabilité devient
considérable, et effectuer la mesure uniquement sur un profil en x ne suffit plus pour séparer les contributions
de la pollution 2finput et de 2fmateriau par ajustement. On pourrait améliorer cette approche en réalisant
plusieurs mesures indépendantes et en moyennant les variations dues au désordre. Toutefois, la modélisation
montre que cette convergence a ses propres limites, notamment dans des configurations avec des contrastes
forts, où un nombre important de moyennes serait nécessaire.

Pour aller plus loin, les simulations futures pourront intégrer des coefficients d’atténuation non nuls afin
de mieux représenter les phénomènes physiques réels dans la dalle de béton. Ces simulations permettront
d’affiner la compréhension des interactions entre les ondes et les hétérogénéités du matériau, tout en tenant
compte de l’impact des pertes d’énergie dues à l’atténuation.
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6 Conclusions et perspectives
En conclusion, nous avons développé des modèles numériques avec la plateforme de calcul open-source

FEniCSx. Ces modèles permettent de résoudre les équations de propagation des ondes de Rayleigh dans le
béton et le mortier. Nous avons ainsi répondu à certaines problématiques physiques soulevées par les mesures
expérimentales.

Nous avons d’abord abordé la résolution de l’équation de Helmholtz dans le domaine fréquentiel, avec
une fonction source à 30 kHz, en modélisant une dalle de mortier en deux dimensions. Cette approche visait
à évaluer la capacité du modèle numérique à représenter le comportement des ondes. Nous pouvions alors
analyser la réponse de la dalle soumise à un champ de pompe, vérifiant ainsi si le champ moyen de pompe
était homogène. Les résultats ont montré que le gradient de déformation était plus homogène lorsque les
ondes pompes n’étaient pas symétriques. Ils ont également permis d’écarter la première idée d’expérience de
modulation acoustoélastique avec les ondes pompes et de la remplacer par une modulation thermique.

La suite du travail a consisté à examiner les effets de la non-linéarité du matériau à l’aide d’un modèle
quasi-linéaire et de granulats modélisés par des ellipses, ce qui a permis de rapprocher les résultats de la
modélisation des conditions expérimentales réelles.

Les perspectives de travail se concentrent sur trois axes principaux. Premièrement, la résolution du modèle
pompes/sondes dans le béton avec la modélisation des granulats. Ce qui offrirait un calcul de la déformation
plus précis.

Deuxièmement, le passage à une modélisation en trois dimensions permettant de mieux représenter les
conditions expérimentales réelles et d’étudier plus en détail les effets des hétérogénéités comme les fissures
et les granulats. Cette extension nécessitera une réévaluation des paramètres de maillage et l’utilisation de
la parallélisation via MPI pour gérer efficacement le volume de données et les calculs.

Enfin, la résolution en domaine temporel permettant de modéliser des lois non linéaires plus complexes,
comme celles à seuil, qui sont difficiles à traiter en quasi-linéaire.
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7 Annexes
7.1 Définitions, propriétés et théorèmes vers la résolution de l’équation de Hel-

mohltz [11]
7.1.1 Rappels sur les espaces Lp, W 1,p et espaces duaux

Définition 1 (Espace L1). L’espace L1(Ω) est l’espace des fonctions définies sur Ω à valeurs réelles dont la
valeur absolue est intégrable au sens de Lebesgue.

Définition 2 (Espaces Lp). Soit p ∈ R tel que 1 < p < ∞ ; on définit

Lp(Ω) =
{

f : Ω → R; f est mesurable et |f |p ∈ L1(Ω)
}

avec pour norme
∥f∥Lp = (

∫
Ω

|f(x)|pdµ)
1
p .

Définition 3 (Espaces de Sobolev W 1,p). L’espace de Sobolev W 1,p(Ω) est défini par

W 1,p(Ω) = {u ∈ Lp(Ω) | ∇u ∈ Lp(Ω)}

où ∇u est le gradient au sens faible et avec

∥f∥W 1,p = (∥f∥p
Lp + ∥∇f∥p

Lp)
1
p .

De plus, on définit H1 = W 1,2 ainsi que W 1,p
0 =

{
u ∈ W 1,p(Ω)

∣∣ u = 0 sur ∂Ω
}

.

Définition 4 (Espace dual). L’espace dual E’ de E est l’espace vectoriel formé des formes linéaires continues
sur E.
Par exemple W −1,p′(Ω) = (W 1,p

0 )′ avec 1 = 1
p + 1

p′ .

Propriété 1. Pour tout σ ∈ Lp′(Ω), on a div(σ) ∈ W −1,p′(Ω).

Démonstration.

Soit v ∈ W 1,p
0 , on a ⟨div(σ), v⟩ = −⟨σ, ∇v⟩, d’après la formule des dérivées distributionnelles

= −
∫

Ω
(σ : ∇v) dx

≤ ∥σ∥Lp′ ∥∇v∥Lp par l’inégalité de Hölder
< ∞ car σ ∈ Lp′

et ∇v ∈ Lp

ainsi div(σ) ∈ W −1,p′
.

Propriété 2 (Formule de Green). Soient w, v des fonctions C1(Ω) à valeurs vectorielles, on a :∫
Ω

div(w)v dx =
∫

∂Ω
(w · n) v dµ −

∫
Ω

w · ∇v dx,

où n est le vecteur normal extérieur à ∂Ω.
De plus, pour des champs tensoriels σ de classe C1(Ω) à valeurs dans les tenseurs d’ordre 2, on a :∫

Ω
∇ · (σv) dx =

∫
∂Ω

(σv) · n dµ −
∫

Ω
σ : ∇v dx,

où σ : ∇v désigne le produit contracté entre le tenseur σ et le gradient de v, et n est toujours le vecteur
normal à ∂Ω.
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7.1.2 Existence et unicité d’une solution faible [14]

Soit V un espace de Hilbert réel ou complexe.

Théorème 1 (Théorème de représentation de Riesz-Fréchet). Soit V un espace de Hilbert réel ou complexe
muni de son produit scalaire ⟨·, ·⟩ et soit l ∈ V ′ une forme linéaire continue sur V . Alors il existe un unique
y dans V tel que pour tout x de V on ait : l(x) = ⟨y, x⟩.
C’est-à-dire :

∃!y ∈ V, ∀x ∈ V, l(x) = ⟨y, x⟩.

Remarque : Ce théorème s’étend aux formes bilinéaires en considérent une unique application A de
V dans V et telle que, si a est une forme bilinéaire continue sur un espace de Hilbert V , et que pour tout
(u, v) ∈ V × V on ait a(u, v) = ⟨Au, v⟩. L’application A est linéaire et continue, de norme égale à celle de a.
Ainsi :

∃!A ∈ L(V ), ∀(u, v) ∈ V × V, a(u, v) = ⟨Au, v⟩.

Définition 5. Continuité d’une forme bilinéaire. Une forme bilinéaire a est dite continue si elle vérifie :

∃c > 0, ∀(u, v) ∈ V 2, |a(u, v)| ≤ c∥u∥V ∥v∥V .

Définition 6. Coercivité d’une forme bilinéaire. Une forme bilinéaire a est dite coercive si elle vérifie :

∃α > 0, ∀u ∈ V, a(u, u) ≥ α∥u∥2
V .

Théorème 2 (Théorème de Lax-Milgram). Soit V un espace de Hilbert muni d’un produit scalaire et d’une
norme associée. Soit a(·, ·) une forme bilinéaire, continue et coercive sur V × V et soit l(·) une application
linéaire et continue sur V .
Alors le problème variationnel de la forme :
trouver u ∈ V , tel que a(u, v) = l(v), ∀v ∈ V , admet une unique solution.

Démonstration. La continuité et la coercivité de a, la forme bilinéaire, permettent de dire que a définit un
produit scalaire (·, ·)a dont la norme associée ∥ · ∥a est équivalente à la norme sur l’espace de Hilbert V . Le
problème devient alors : Trouver u tel que ∀v ∈ V, (u, v)a = l(v).

Or l(v) = ⟨l, v⟩ le produit de dualité entre V et V ′. Le problème devient ainsi : trouver u tel que
∀v ∈ V, (u, v)a = ⟨l, v⟩.

Le théorème de représentation de Riesz-Fréchet permet ensuite de donner l’existence et l’unicité.

7.2 Rappels sur les éléments finis
La méthode des éléments finis se restreint à des approximations continues polynomiales par morceaux.

On choisit une famille de parties compactes connexes pour recouvrir le domaine d’étude ouvert borné Ω.
On peut choisir par exemple des triangles ou des quadrangles en dimension 2 (création d’un maillage). On
comparera les deux par la suite.

Soit K ⊂ Rn une partie compacte, connexe et d’interieur non vide. Soit P un espace vectoriel de fonctions
polynomiales de K dans R. Soit ΣK = {σi : P → R, 1 ≤ i ≤ M} une famille de M formes linéaires sur P,
souvent appelées : degrés de liberté.

Définition 7. Unisolvance. Soit A = {a1, ..., aN } un ensemble de N points distincts de Rn, soit P un
espace vectoriel de dimension finie de fonctions de Rn à valeurs dans R. On dit que A est P-unisolvant si et
seulement si pour tous les réels α1, ..., αN , il existe un unique élément p de P tel que ∀i = 1, ..., N, p(ai) = αi.
Cela veut dire que la fonction de P dans RN qui à p fait correspondre (p(a1), ..., p(aN )) = (α1, ..., αN ) est
bijective.

Définition 8. On dit qu’un triplet (K,P, ΣK) est un élement fini si ΣK est P-unisolvante.

Propriété 3. Tout élément fini (K,P, ΣK) admet une base canonique. De plus, si dim(P) = card(ΣK) et
que le triplet (K,P, ΣK) admet une base canonique, alors c’est un élément fini.

Démonstration. Commençons par prouver que tout élément fini (K,P, ΣK) admet une base canonique. Soit
{ϕi}dim(P)

i=1 une base de P. Pour chaque degré de liberté σi ∈ ΣK , on définit une fonction λi ∈ P telle que :

σi(λj) = δij , pour tout i, j,

Adèle Rawas–Denigot Page 39/44



M2 - MACS - Nantes Université Stage 2024 - Université Gustave Eiffel

où δij est le symbole de Kronecker. Cela signifie que chaque λi satisfait uniquement la condition σi tout en
annulant les autres degrés de liberté. Ainsi, l’ensemble des fonctions {λi}dim(P)

i=1 forme une base canonique de
P.

Ensuite, montrons que si dim(P) = card(ΣK) et que le triplet admet une base canonique, alors (K,P, ΣK)
est un élément fini.

Étant donné que dim(P) = card(ΣK), les degrés de liberté dans ΣK définissent un système de contraintes
linéaires indépendantes sur les fonctions de P. Ainsi, chaque fonction de P est entièrement déterminée par
les valeurs prises sur les degrés de liberté définis par ΣK .

Par conséquent, les conditions imposées par ΣK forment un système complet qui caractérise de manière
unique chaque élément de P. Cela correspond à la définition de l’unisolvance, c’est-à-dire que (K,P, ΣK) est
un élément fini.

Définition 9. Un élément fini (K,P, ΣK) est dit de Lagrange si tous les degrés de liberté (σi) sont de la
forme σi(p) = p(si), si ∈ K, ∀i. On notera Qk l’espace vectoriel des polynômes de degré inferieur ou égal à
k par rapport à chaque variable. Un élément fini de Lagrange est dit de degré k pour P = Qk

La méthode des éléments finis découle de la méthode de Galerkin. L’idée est de partir du problème
variationnel et d’utiliser le fait que V est un espace de Hilbert séparable. Il admet alors une base hilbertienne
que l’on peut tronquer de sorte à créer une base de dimension M engendrée par les M premières fonctions
de base de l’espace V. On définit alors VM l’espace engendré par cette base : VM = Vect(v1, ..., vM ).
Ainsi le problème variationnel (3) peut être approché par : Trouver uh ∈ VM ,

a(uh, vh) = L(vh), ∀vh ∈ VM , (16)

ce qui peut s’écrire sous la forme d’un système linéaire de M équations AU=L avec :

A =


a(v1, v1) a(v2, v1) · · · a(vM , v1)
a(v1, v2) a(v2, v2) · · · a(vM , v2)

...
... . . . ...

a(v1, vM ) a(v2, vM ) · · · a(vM , vM )

 , L =


l(v1)
l(v2)

...
l(vM )


et notre inconnue

U =

 uh,1
...

uh,M

 .

On résout ensuite le système linéaire grâce aux solveurs disponibles dans la bibliothèque PetsC. Ils sont
basés sur des méthodes de sous-espaces de Krylov (KSP) telles que la méthode du Gradient Conjugué et la
méthode du Résidu minimal généralisé. Chaque solveur KSP est configuré avec des options spécifiques qui
contrôlent son comportement et sa performance, comme le nombre maximum d’itérations, la tolérance de
convergence, le préconditionneur à utiliser, etc.
Nous expliquons dans la section 7.3 les 2 solveurs que nous comparons dans le programme et dans la section
7.4 nous expliquons quels préconditionneurs sont utilisés.

7.3 Résolution numérique du système linéaire AU=L
1. La méthode du gradient conjugué

Cette méthode est basée sur la méthode du gradient à pas optimal et permet de résoudre les systèmes
linéaires de la forme Au = b dont la matrice A est symétrique définie positive. La méthode à pas
optimal consiste à partir d’un vecteur donné u0 et à déterminer à chaque étape un vecteur de descente
pk et un pas de descente rk, qui sera optimal, permettant de calculer uk+1 à partir de uk par l’égalité :

uk+1 = uk + rkpk

où rk est optimal, c’est-à-dire qu’il change à chaque itération k et pk = ∇J(uk) avec J(u) = 1
2 (Au, u)−

(b, u) la fonctionnelle de minimisation. Le choix de pk est dû au fait que ∇J(u) = Au−b et donc résoudre
le système est équivalent à trouver la solution au problème J(v) = minu∈V J(u).

Théorème 3. Si A ∈ Mn(R) est symétrique définie positive, alors la méthode du gradient à pas
optimal converge. C’est-à-dire, que la suite générée par l’algorithme converge, pour tout choix de u0,
vers l’unique solution du système linéaire.
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La particularité de la méthode du gradient conjugué est de prendre comme première direction de
descente la direction p0 = ∇J(u0) et de choisir à l’étape k+1 une direction pk+1 telle que (pk+1, Apk) =
0 et un pas optimal rk défini par

∀t ∈ R, J(uk + rkpk) ≤ J(uk + tpk).

Les directions de descente sont donc A-conjuguées ou orthogonales au sens du produit scalaire défini
par la matrice symétrique définie positive A, ce qui donne le nom à la méthode.

Propriété 4. Pour uk donné et pour tout choix de pk ̸= 0, le paramètre optimal rk a pour expression :

rk = − (gk, pk)
(Apk, pk)

où gk = Auk − b est le résidu à l’itération k et on a les deux relations suivantes :

∀k ∈ N, gk+1 = gk + rkApk,

∀k ∈ N, (pk, gk+1) = 0.

Démonstration. L’expression de rk découle de l’algorithme de la méthode à pas optimal. De plus :

gk+1 = Auk+1 − b = A(uk + rkpk) − b = gk + rkApk,

et
(pk, gk+1) = (pk, gk) + rk(Apk, pk) = (pk, gk) − (pk, gk)

(Apk, pk) (Apk, pk) = 0.

Ainsi, l’algorithme du gradient conjugué est initialisé en choisissant un vecteur u0. Si g0 ̸= 0 on effectue :
g0 = p0,

r0 = − (g0,g0)
(Ag0,g0) ,

u1 = u0 + r0g0,

(17)

et pour k ≥ 1, on a : 

gk = Auk − b,

αk = − (Agk,pk−1)
(Apk−1,pk−1) ,

pk = gk + αkpk−1,

rk = − (gk,pk)
(Apk,pk) ,

uk+1 = uk + rkpk.

(18)

Si gk = 0, on arrête les calculs.
Dans la pratique, le critère d’arrêt tient compte de la précision de l’ordinateur et l’arrêt se fait si :

∥gk∥
∥b∥

< ε

pour un ε choisi. Quand cette relation est vérifiée, on a :

∥uk − A−1b∥
∥u∥

< εCond(A)

où u est la solution et Cond(A) = ∥A∥∥A−1∥ le conditionnement de la matrice A.
Dans notre étude numérique on utilise la factorisation LU en guise de préconditionnement.

2. La méthode GMRES Cette méthode permet de résoudre les systèmes linéaires où A n’est pas
necessairement symétrique. La base de cette méthode est la minimisation des résidus acquis de façon
successive. Elle est basée sur l’algorithme d’Arnoldi qui utilise la méthode de Gram-Schmidt pour
calculer une base orthonormée (v1, v2, ..., vk) du sous-espace de Krylov Kk = V ect(u1, Au1, ..., Ak−1u1).
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Alors on obtient la matrice de Hessenberg H̃k = (uk)T Auk, en lui ajoutant une ligne supplémentaire
dont le seul élément non nul est hk+1,k à la position (k+1,k). On obtient alors le système suivant :

Auk = uk+1Hk.

L’algorithme est le suivant :
après avoir choisi la donée initiale u0 et calculé le premier résidu r0 = b − Au0 ainsi que v1 = r0

∥r0∥ , on
calcule :
pour j = 1, ..., M 

hi,j = (Avj , vi), i = 1, ..., j

ṽj+1 = Avj −
∑j

i=1 hi,jvi

hj+1,j = ∥ṽj+1∥2

vj+1 = ṽj+1
hj+1,j

On établit ensuite la solution approchée de l’équation

uM = u0 + V M yM

où yM minimise ∥(b − Au0)e1 − HM y∥2 avec e1 le premier vecteur de la base canonique et le terme
V M représente une matrice dont les colonnes sont les vecteurs (v1, v2, ..., vM ).
On calcule ensuite rM = b − AuM et si le résidu est assez petit on arrête, sinon on réinitialise x0 =
xM , r0 = rM et on recommence.
L’option de solveur PetsC par défaut utilise cette méthode accompagnée d’un préconditionnement
utilisant la factorisation LU Incomplète.

7.4 Méthodes de Préconditionnement : LU et LU Incomplet
La méthode de préconditionnement LU est une technique utilisée pour améliorer la convergence des

méthodes itératives pour la résolution de systèmes linéaires de grande taille. Le préconditionnement vise à
transformer le système linéaire original en un système équivalent mais plus facile à résoudre par des méthodes
itératives.

Soit le système linéaire

Ax = b,

où A est une matrice carrée n × n, x est le vecteur des inconnues et b est le vecteur des termes constants.
La décomposition LU de A permet d’écrire A comme le produit de deux matrices :

A = LU,

où L est une matrice triangulaire inférieure et U est une matrice triangulaire supérieure. En utilisant cette
décomposition, nous pouvons reformuler le système initial comme suit :

LUx = b.

Nous pouvons résoudre ce système en deux étapes : résoudre Ly = b pour y, puis résoudre Ux = y pour x.
Cette méthode est efficace lorsque la décomposition LU peut être obtenue rapidement et que la résolution
des systèmes triangulaires est peu coûteuse.

Le préconditionnement LU incomplet (ou ILU pour Incomplete LU) est une variante de la méthode LU
qui cherche à conserver la structure de la matrice tout en simplifiant la décomposition LU. Au lieu de calculer
la décomposition LU exacte, ILU approximative la décomposition en conservant une partie de la structure
des matrices L et U . Cette méthode est particulièrement utile pour les grandes matrices creuses, où une
décomposition complète LU serait trop coûteuse en termes de mémoire et de temps. La décomposition ILU
peut être exprimée comme :

A ≈ LILU UILU ,

où LILU et UILU sont des approximations creuses de L et U , respectivement. La décomposition ILU est
obtenue en introduisant des seuils ou en supprimant certains éléments de L et U , ce qui réduit la densité des
matrices tout en essayant de conserver une approximation utile de la décomposition LU.
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Le préconditionnement ILU est généralement réalisé en suivant ces étapes :
1. Initialiser LILU et UILU comme des matrices creuses, souvent en prenant LILU comme une matrice
triangulaire inférieure avec des éléments unitaires sur la diagonale et UILU comme une matrice triangulaire
supérieure.
2. Effectuer une décomposition LU partielle sur A tout en imposant des conditions de structure creuse.
3. Répéter les étapes jusqu’à ce que la décomposition converge à une approximation satisfaisante.

Les préconditionneurs ILU sont utilisés pour accélérer la convergence des méthodes itératives telles que le
gradient conjugué ou GMRES. La clé est de choisir une approximation suffisamment précise pour améliorer
la condition du système tout en restant computationalement efficace.

Ainsi, la méthode de préconditionnement ILU offre une approximation plus rapide et plus économique
en termes de mémoire pour les grandes matrices creuses, mais avec une perte de précision par rapport à la
décomposition LU exacte.

7.5 Système quasi-linéaire
Equation de propagation des ondes :

ρ∂2
t u − div σ = f (19)

avec σ donnée par l’équation (1) et f un terme source donné. En réalité, on travaille ici avec le premier
tenseur de Piola-Kirchhoff (coordonnées lagrangiennes), qu’il conviendrait de noter P ; mais on ne va pas
multiplier les notations.
On suppose l’égalité suivante : u = u1 + u2, avec u1 "grand, mais pas trop", et u2 "petit devant u1". On
développe σ :

σ = E(ε1 + ε2 + 2βε1ε2 + βε2
1 + βε2

2). (20)

Début de l’approximation quasi-linéaire : On écrit d’abord l’équation (20) en ne gardant que les
termes dominants u ≈ u1 et σ ≈ σlin(ε1) = Eε1 :

ρ∂2
t u1 − div σlin(u1) = f. (21)

L’équation (21) permet de définir u1 : on suppose à présent que l’on connaît sa solution. Puis, on revient
à l’équation (20) en ne gardant que les termes dominants pour σ ≈ σlin(u1 + u2) + Eβε2

1. En substituant
l’équation (21), on obtient :

ρ∂2
t u2 − div σlin(u2) = f2(u1) (22)

avec f2 = Eβdiv ε2
1. Dans le régime quasi-linéaire, le champ fondamental u1 vérifie l’équation d’onde linéaire,

et le champ u2 vérifie l’équation d’onde linéaire avec un terme source dépendant de u1.
Les équations sont linéaires : on peut passer en fréquentiel (équation de Helmholtz).
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