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Chapitre 1

Introduction

1.1 Contexte

La diffusion induite par le cisaillement est un mécanisme clé pour le transfert de

masse dans les écoulements granulaires. Dans de tels écoulements, les collisions

entre particules induisent des fluctuations de vitesse des grains qui entraînent le

mouvement des particules d’une manière analogue à la diffusion thermique dans les

gaz denses, ou encore à la dispersion induite par les tourbillons dans les écoule-

ments turbulents. Une telle diffusion induite par cisaillement est importante pour

les applications dans les écoulements granulaires industriels et naturels impliquant

le mélange et la ségrégation. Une étude a été menée sur l’influence de la pression de

confinement sur la diffusion et la ségrégation des particules dans les flux granulaires

sous cisaillement. A l’aide de simulations par DEM, les chercheurs ont constaté que

la diffusion est indépendante de la pression de surcharge tandis que la ségrégation

dépend fortement de cette dernière. Ils ont développé un modèle continu qui intègre

ces observations et ont montré que ce modèle prédit avec précision les comporte-

ments observés dans les simulations DEM.

Notre problématique se concentre sur la compréhension des mécanismes de mélange

des grains dans un milieu granulaire monodisperse, où tous les grains ont la même

taille (en contraste avec les milieux polydisperses où les grains ont des tailles va-
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riées). Nous focalisons particulièrement notre attention sur le processus de diffusion.

Avant d’examiner en détail l’équation de diffusion étudiée, nous avons réalisé une

manipulation expérimentale pour approfondir notre compréhension du phénomène.

Pour cela, nous avons placé deux couches de 50 millimètres de billes de polipropy-

lène de la même taille (6 millimètres) de couleurs différentes (rouge et vert) dans

une cellule de cisaillement, créant ainsi un milieu granulaire monodisperse. Les li-

mites verticales de la cellule sont constituées de deux cylindres coaxiaux ayant des

diamètres extérieurs respectifs de 90 mm et 200 mm. La paroi supérieure peut se

déplacer librement verticalement mais ne peut pas tourner. On pose sur cette paroi

un certain nombre de masses d’acier, pour appliquer une charge variable sur le ma-

tériau granulaire. La paroi inférieure se déplace à une vitesse constante pour créer

un cisaillement. Les parois latérales sont lisses et les parois inférieure et supérieure

sont rugueuses. [1]

(a) (b)

Figure 1.1 – Détails sur la cellule de cisaillement
(a) Photo de la manipulation
(b) Schéma de la cellule. La plaque supérieure libre se déplace verticalement, mais
est soumise à une force Mg⃗ et la plaque de fond tourne à une vitesse angulaire V⃗ [1]

.
Voici des images illustrant l’évolution des particules à différents moments :
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(a) 0 min (b) 5 min (c) 10 min (d) 15 min (e) 20 min

(f) 25 min (g) 30 min (h) 35 min (i) 40 min (j) 45 min

(k) 50 min (l) 55 min (m) 1 h (n) 1 h 5 min (o) 1 h 10 min

Figure 1.2 – Évolution du processus au cours du temps

Ces images montrent que le mélange des particules n’est pas uniforme sur toute la

hauteur. Pour analyser ce phénomène de diffusion dans un cadre plus général, nous

nous intéressons à l’équation de diffusion non stationnaire suivante :
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∂c

∂t
=

∂

∂z

(
D(z)

∂c

∂z

)
avec :

— c la concentration de grains

— D le coefficient de diffusion, non uniforme

Des conditions aux limites de Neumann sont imposées. Physiquement, les conditions

de Neumann représentent une condition de "flux imposé". Cela est particulièrement

adapté à notre cas, où nous ne connaissons pas la proportion de billes d’un certain

type en contact avec la paroi, mais savons que les grains ne peuvent pas sortir du

système. Ainsi, le flux aux frontières est nul.

Remarquons que si D est une constante, nous retrouvons l’équation de la chaleur

non stationnaire classique.

L’objectif de ce stage est d’estimer le coefficient de diffusion non uni-

forme D par inversion du problème, à partir de données obtenues par

simulation numérique discrète. Dans un premier temps, il s’agira d’esti-

mer la concentration de grains c en supposant que D est connu. Ensuite,

dans un cadre de problème inverse, les valeurs de concentration obte-

nues seront utilisées pour tester une méthode d’estimation de D. Si la

méthode fonctionne, il sera alors possible d’estimer D pour n’importe

quelles données de c déjà obtenues.

1.2 Vocabulaire

Milieu granulaire : Un milieu granulaire est un ensemble de particules solides,

appelées grains, qui interagissent entre elles par des forces de contact. Ces particules

peuvent avoir différentes tailles et formes, allant de quelques micromètres à plusieurs

centimètres. Les exemples typiques de milieux granulaires incluent le sable, le gra-

vier, les grains de café, ou même des poudres comme la farine.
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Les milieux granulaires présentent des propriétés à la fois solides et fluides, selon

les conditions. Par exemple, un tas de sable se comporte comme un solide lorsque

vous marchez dessus, mais il peut s’écouler comme un liquide si vous le versez d’un

récipient. Ces systèmes sont complexes et ne peuvent pas être décrits simplement

par les lois de la mécanique des fluides ou des solides traditionnels.

Les milieux granulaires sont d’intérêt dans de nombreux domaines, tels que l’ingé-

nierie civile, la géophysique, l’agriculture, et l’industrie pharmaceutique, en raison

de leurs propriétés uniques et des défis qu’ils posent en termes de manipulation et

de modélisation.

Diffusion : Le processus par lequel les particules se déplacent d’une région de

concentration plus élevée à une région de concentration plus faible, résultant en une

répartition plus uniforme des particules. En général, la diffusion est le résultat d’un

mouvement aléatoire de particules.

Cisaillement : Un type de déformation dans lequel les différentes couches d’un ma-

tériau se déplacent les unes par rapport aux autres dans des directions parallèlement

opposées à une surface ou à une interface. En contexte granulaire, le cisaillement se

produit lorsque des particules adjacentes glissent ou roulent les unes sur les autres

sous l’effet d’une force appliquée.

Ségrégation : La séparation est la répartition inégale de différents composants

d’un matériau. En contexte granulaire, cela se produit lorsque des particules de

tailles ou de densités différentes se regroupent ou se séparent les unes des autres

sous l’effet de forces internes ou externes.

Flux granulaire : La quantité de matériau granulaire qui traverse une surface

donnée par unité de temps. Il peut être exprimé en masse, volume ou nombre de

particules.
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Pression de confinement : La pression exercée sur un matériau dans une direction

donnée en raison de la présence d’autres matériaux environnants ou de contraintes

externes. En contexte granulaire, il s’agit de la pression appliquée sur les particules

d’un matériau granulaire résultant de la superposition des couches de particules et

de toute pression externe appliquée sur le système.

Pression de surcharge : Il s’agit d’une pression supplémentaire exercée sur les

particules d’un matériau granulaire due à une charge externe appliquée.
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Chapitre 2

Etude du problème

Soit Ω un domaine borné de R. Soit T > 0 un temps final. On considère le problème

suivant : 

∂c
∂t

− ∂
∂z

(
D(z) ∂c

∂z

)
= 0 ∀z ∈ Ω, ∀t ∈]0, T ]

c(z, 0) = c0(z) ∀z ∈ Ω

∂c
∂n

= 0

On suppose que D ∈ C0(Ω) est bornée telle que

0 < D0 ≤ D(z) ≤ D∞ < +∞

et que c0 ∈ L2(Ω).

2.1 Existence et unicité de la solution du problème

Ici nous montrons que le problème possède une unique solution sur un espace bien

défini. Pour cela, posons V un espace de fonctions tests à déterminer.

∀v ∈ V on effectue le produit scalaire dans L2(Ω) afin d’obtenir :

∫
Ω

∂c

∂t
vdz −

∫
Ω

∂

∂z

(
D(z)

∂c

∂z

)
vdz = 0
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En appliquant la formule de Green sur la deuxième intégrale nous obtenons :

∫
Ω

∂c

∂t
vdz +

∫
Ω

D(z)
∂c

∂z

∂v

∂z
dz −

∫
∂Ω

D(z)
∂c

∂z
· nvdσ = 0

Comme ∂c
∂n

= 0 et que Ω et v(z) ne varient pas avec t alors :

d

dt

∫
Ω

c(z, t)v(z)dz +

∫
Ω

D(z)
∂c

∂z

∂v

∂z
dz = 0 (2.1)

Exploitant le fait que z et t jouent des rôles très différents, nous séparons ces variables

en considérant désormais la solution c(z, t) comme une fonction de t à valeurs dans

un espace de fonctions définies sur Ω.

Plus précisément, si l’on se donne un temps final T > 0 (éventuellement +∞) on

considère que c est définie par

c :]0, T [→ V, t 7→ c(t, ·)

et nous continuerons à noter c(z, t) la valeur c(t)(z).

En choisissant V = H1,∗(Ω) = {v ∈ H1(Ω),
∫
Ω
vdz = 0}, on peut alors mettre (2.1)

sous la forme d’une sorte d’équation différentielle ordinaire en t. On obtient ainsi la

formulation variationnelle suivante :

(PV) : Trouver c fonction de ]0, T [ à valeurs dans H1,∗(Ω) telle que


d
dt
(c(t), v)L2(Ω) + a(c(t), v) = 0 ∀v ∈ H1,∗(Ω), 0 < t < T

c(t = 0) = c0

Remarque 2.1.1. Le choix de H1,∗ est puissant pour sa norme ∥v∥H1,∗(Ω) = ∥∇v∥L2(Ω)

qui est la même que celle de H1
0 . Cette norme est nécessaire pour démontrer la

coercivité.

Définition 2.1.1. Soit X un espace de Hilbert, ou plus généralement, un espace

de Banach défini sur Ω (typiquement, X = L2(Ω), H1
0 (Ω), H

1(Ω), ou C(Ω̄)). Soit un
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temps final 0 < T ≤ +∞. Pour un entier k ≥ 0, on note Ck([0, T ];X) l’espace des

fonctions k fois continûment différentiables de [0, T ] dans X. Si on note ∥v∥X la

norme dans X, il est classique que Ck([0, T ];X) est un espace de Banach pour la

norme

∥v∥Ck([0,T ];X) =
k∑

m=0

sup
0≤t≤T

∥d
mv

dtm
(t)∥X

On note L2(]0, T [;X) l’espace des fonctions de ]0, T [ dans X telles que la fonction

t 7→ ∥v(t)∥X soit mesurable et de carré intégrable, i.e. que

∥v∥L2(]0,T [;X) =

(∫ T

0

∥v(t)∥2Xdt
) 1

2

< +∞

Muni de cette norme, L2(]0, T [;X) est aussi un espace de Banach. De plus, si X est

un espace de Hilbert, alors L2(]0, T [;X) est un espace de Hilbert pour le produit

scalaire

(u, v)L2(]0,T [;X) =

∫ T

0

(u(t), v(t))Xdt

Théorème 2.1.1. Soient V et H deux espaces de Hilbert tels que V ⊂ H avec injec-

tion compacte et V dense dans H. Soit a une forme bilinéaire symétrique continue

et coercive dans V × V . Soit un temps final T > 0, une donnée initiale u0 ∈ H et

un terme source f ∈ L2(]0, T [;H). Alors le problème


d
dt
(u(t), v)H + a(u(t), v) = (f(t), v)H ∀v ∈ V, 0 < t < T

u(t = 0) = u0

(où l’équation a lieu au sens faible dans ]0, T [) possède une unique solution u ∈

L2(]0, T [;V ) ∩ C([0, T ];H). De plus, il existe une constante C(Ω) > 0 telle que

∥u∥L2(]0,T [;V ) + ∥u∥C([0,T ];H) ≤ C(Ω)
(
∥u0∥H + ∥f∥L2(]0,T [;H)

)
Ici, H = L2(Ω), V = H1,∗(Ω) et du fait que H1,∗(Ω) est un sous-espace fermé de

H1(Ω) on en déduit que H1,∗(Ω) est dense dans L2(Ω) et par le théorème de Rellich
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que l’injection de H1,∗(Ω) dans L2(Ω) est compacte. On a

a(c(t), v) =

∫
Ω

D(z)
∂c

∂z

∂v

∂z
dz

a est clairement symétrique, et bilinéaire par linéarité de l’intégrale et de ∂z·.

Montrons qu’elle est continue et coercive dans H1,∗(Ω). On a

|a(c(t), v)| ≤
∫
Ω

|D(z)||∂c
∂z

||∂v
∂z

| dz par inégalité triangulaire

≤ D∞∥∂c
∂z

∥L2(Ω)∥
∂v

∂z
∥L2(Ω) par Cauchy-Schwarz et D est continue

= D∞∥c∥H1,∗(Ω)∥v∥H1,∗(Ω) par définition de la norme H1,∗

Donc a est continue. De plus on a

a(v, v) =

∫
Ω

D(z)|∂v
∂z

|2dz ≥ D0∥
∂v

∂z
∥2L2(Ω) = D0∥v∥2H1,∗(Ω)

Donc a est coercive.

Ainsi par le théorème 1.1.1, on en déduit qu’il existe une unique solution c ∈

L2(]0, T [;H1,∗(Ω)) ∩ C([0, T ];L2(Ω)) au problème (PV).

2.2 Schémas aux différences finies pour le problème

Soit T > 0 le temps final. Nous considérons le domaine Ω = [0, 1]× [0, T ].

Transformons l’expression de l’équation de départ comme suit :

∂c

∂t
− ∂

∂z

(
D(z)

∂c

∂z

)
= 0 ⇔ ∂c

∂t
−D′(z)

∂c

∂z
−D(z)

∂2z

∂z2
= 0 (2.2)

Pour approcher la solution de notre problème, nous utilisons la méthode des diffé-

rences finies. Nous effectuons un maillage de l’espace et du temps dans le domaine Ω,

en définissant les pas de discrétisation en espace et en temps respectivement comme

suit :
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
h = ∆z = 1

N+1
, zi = ih, i = 0, ..., N + 1

∆t = T
M+1

, tj = j∆t, j = 0, ...M + 1

z

t

0

t1

t2

tM

T = tM+1

0 = x0 x1 xi 1 = xN+1

∆t

h

(zi, tj) sont les noeuds du maillage où l’on cherche une approximation de la solution

en ces noeuds, i.e. cji ≈ c(zi, tj). On notera aussi Di ≈ D(zi).

Soit

C(j) =



cj0

cj1
...

cjN+1


le vecteur des inconnues à l’instant tj et

C(0) =



c00

c01
...

c0N+1


le vecteur de la donnée initiale (à t = 0).

On considère l’approximation des dérivées aux noeuds (zi, tj) :

— ∂2c
∂z2

(zi, tj) ≈
cji−1−2cji+cji+1

h2
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— ∂c
∂z
(zi, tj) ≈

cji+1−cji−1

2h

— ∂c
∂t
(zi, tj) ≈


cji−cj−1

i

∆t
(pour le schéma implicite)

cj+1
i −cji
∆t

(pour le schéma explicite)

2.2.1 Le schéma explicite

Dans ce paragraphe, nous allons présenter le schéma explicite et examiner sa consis-

tance, sa stabilité et sa convergence.

On considère l’approximation ∂c
∂t
(zi, tj) ≈ cj+1

i −cji
∆t

.

Ainsi nous pouvons réécrire l’équation (2.2) avec les approximations successives aux

noeuds du maillage :

cj+1
i − cji
∆t

−D′
i

cji+1 − cji−1

2h
−Di

cji−1 − 2cji + cji+1

h2
= 0 (2.3)

d’où le schéma itératif : Pour i = 0, ..., N + 1 et j = 1, ...,M + 1

cj+1
i = cji −

∆t

2h
D′

i(c
j
i−1 − cji+1)−

∆t

h2
Di(−cji−1 + 2cji − cji+1) (2.4)

ou sous forme matricielle :

C(j+1) = C(j) −∆tBh,iC
(j) −∆tAh,iC

(j) (2.5)

avec

Ah,i =
Di

h2



2 −1 0 · · · 0 0

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 2 −1

0 0 0 · · · −1 2


etBh,i =

D′
i

2h



0 −1 0 · · · 0 0

1 0 −1 · · · 0 0

0 1 0 · · · 0 0

...
...

... . . . ...
...

0 0 0 · · · 0 −1

0 0 0 · · · 1 0


15



C’est un schéma explicite car on calcule C(j+1) directement à partir de C(j).

Proposition 2.2.1. Sous la condition ∆t ≤ min
(

h2

2D∞
, h
D′

∞

)
, le schéma est stable

en ∥ · ∥∞ : ∀j tel que j∆t ≤ T , ∥C(j)∥∞ ≤ ∥C(0)∥∞

Démonstration. Reprenons le schéma (1.3).

cj+1
i = cji −

∆t

2h
D′

i(c
j
i−1 − cji+1)−

∆t

h2
Di(−cji−1 + 2cji − cji+1)

⇔ cj+1
i =

(
∆t

h2
Di −

∆t

2h
D′

i

)
cji−1 +

(
1− 2

∆t

h2
Di

)
cji +

(
∆t

h2
Di +

∆t

2h
D′

i

)
cji+1

Par passage à |·| :

|cj+1
i | ≤ |∆t

h2
Di −

∆t

2h
D′

i||c
j
i−1|+ |1− 2

∆t

h2
Di||cji |+ |∆t

h2
Di +

∆t

2h
D′

i||c
j
i+1|

Sous la condition ∆t ≤ min
(

h2

2D∞
, h
D′

∞

)
:

|cj+1
i | ≤

(
∆t

h2
Di −

∆t

2h
D′

i

)
∥C(j)∥∞ +

(
1− 2

∆t

h2
Di

)
∥C(j)∥∞ +

(
∆t

h2
Di +

∆t

2h
D′

i

)
∥C(j)∥∞

≤ ∥C(j)∥∞

Donc

∥C(j+1)∥∞ ≤ ∥C(j)∥∞

. Par récurrence sur j = 1, ...,M + 1 on en déduit que

∥C(j)∥∞ ≤ ∥C(0)∥∞

d’où la stabilité du schéma en ∥ · ∥∞.

Définition 2.2.1. On définit Πhc(t) le vecteur de la solution exacte aux points zi

à l’instant t :
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Πhc(t) =



c(z0, t)

c(z1, t)

...

c(zN+1, t)


et ϵh(c)

(j) l’erreur de consistance à l’itération j :

ϵh(c)
(j) =

Πhc(tj+1)− Πhc(tj)

∆t
+Bh,iΠhc(tj) + Ah,iΠhc(tj)

Proposition 2.2.2. Si c solution du problème est de classe C4 relativement à z et

de classe C2 relativement à t, alors le schéma est consistant en ∥ · ∥∞, d’ordre 3 en

espace et d’ordre 1 en temps.

Démonstration. Pour i = 0, ..., N + 1 on a

ϵh(c)
(j)
i =

1

∆t
(c(zi, tj+1)− c(zi, tj)) +Bh,iΠhc

(j)
i + Ah,iΠhc

(j)
i

=
1

∆t
(c(zi, tj +∆t)− c(zi, tj)) +

D′(zi)

2h
(c(zi−1, tj)− c(zi+1, tj))+

D(zi)

h2
(−c(zi−1, tj) + 2c(zi, tj)− c(zi+1, tj))

c étant assez régulière, on peut effectuer des développements limités de c au voisinage

de 0. Ainsi :

c(zi, tj +∆t) = c(zi, tj) + ∆t
∂c

∂t
(zi, tj) +

(∆t)2

2

∂2c

∂t2
(zi, γj), γj ∈ [tj, tj +∆t]

=⇒ 1

∆t
(c(zi, tj +∆t)− c(zi, tj)) =

∂c

∂t
(zi, tj) +

∆t

2

∂2c

∂t2
(zi, γj), γj ∈ [tj, tj +∆t]

De même on a

c(zi−1, tj) = c(zi−h, tj) = c(zi, tj)−h
∂c

∂z
(zi, tj)+

h2

2

∂2c

∂z2
(zi, tj)−

h3

6

∂3c

∂z3
(zi, tj)+

h4

24

∂4c

∂z4
(αi, tj)

où αi ∈ [zi − h, zi]
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Et

c(zi+1, tj) = c(zi+h, tj) = c(zi, tj)+h
∂c

∂z
(zi, tj)+

h2

2

∂2c

∂z2
(zi, tj)+

h3

6

∂3c

∂z3
(zi, tj)+

h4

24

∂4c

∂z4
(βi, tj)

où βi ∈ [zi, zi + h]

Donc

D′(zi)

2h
(c(zi−1, tj)− c(zi+1, tj)) =

D′(zi)

2h

(
−2h

∂c

∂z
(zi, tj)−

h3

3

∂3c

∂z3
(zi, tj)

+
h4

24

∂4c

∂z4
(αi, tj)−

h4

24

∂4c

∂z4
(βi, tj)

)

Et

D(zi)

h2
(−c(zi−1, tj) + 2c(zi, tj)− c(zi+1, tj)) = D(zi)

(
−∂2c

∂z2
(zi, tj)−

h2

12

∂4c

∂z4
(ϕi, tj)

)

où ϕi ∈ [zi − h, zi + h]

En remplaçant les expressions précédentes dans ϵh(c)
(j)
i on obtient :

ϵh(c)
(j)
i =

∂c

∂t
(zi, tj) +

∆t

2

∂2c

∂t2
(zi, γj)−D′(zi)

∂c

∂z
(zi, tj)

−D′(zi)
h2

6

∂3c

∂z3
(zi, tj) +D′(zi)

h3

48

∂4c

∂z4
(αi, tj)−D′(zi)

h3

48

∂4c

∂z4
(βi, tj)

−D(zi)
∂2c

∂z2
(zi, tj)−D(zi)

h2

12

∂4c

∂z4
(ϕi, tj)

En utilisant le fait que c(zi, tj) est solution de ∂c
∂t

− D′(z) ∂c
∂z

− D(z)∂
2z

∂z2
= 0 et en

regroupant les termes en D′(zi) on obtient :

ϵh(c)
(j)
i =

∆t

2

∂2c

∂t2
(zi, γj)−D′(zi)

(
h2

6

∂3c

∂z3
(zi, tj)−

h3

48

∂4c

∂z4
(αi, tj) +

h3

48

∂4c

∂z4
(βi, tj)

)
−D(zi)

h2

12

∂4c

∂z4
(ϕi, tj)
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Donc

|ϵh(c)(j)i | ≤ ∆t

2

∣∣∣∣∂2c

∂t2
(zi, γj)

∣∣∣∣+D′
∞

(
h2

6

∣∣∣∣∂3c

∂z3
(zi, tj)

∣∣∣∣+ h3

48

∣∣∣∣∂4c

∂z4
(αi, tj)

∣∣∣∣+ h3

48

∣∣∣∣∂4c

∂z4
(βi, tj)

∣∣∣∣)
+D∞

h2

12

∣∣∣∣∂4c

∂z4
(ϕi, tj)

∣∣∣∣
≤ ∆t

2
sup

x∈[0,1]
t∈[0,T ]

∣∣∣∣∂2c

∂t2
(z, t)

∣∣∣∣+D′
∞

h2

6
sup

x∈[0,1]
t∈[0,T ]

∣∣∣∣∂3c

∂z3
(z, t)

∣∣∣∣+ h3

48
sup

x∈[0,1]
t∈[0,T ]

∣∣∣∣∂4c

∂z4
(z, t)

∣∣∣∣+
h3

48
sup

x∈[0,1]
t∈[0,T ]

∣∣∣∣∂4c

∂z4
(z, t)

∣∣∣∣
+D∞

h2

12
sup

x∈[0,1]
t∈[0,T ]

∣∣∣∣∂4c

∂z4
(z, t)

∣∣∣∣
≤

(
∆t

2
+D′

∞
h2

6
+D′

∞
h3

24
+D∞

h2

12

)
max

 sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂2c

∂t2

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂3c

∂z3

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂4c

∂z4

∣∣∣∣


Donc

|ϵh(c)(j)i | ≤ 1

2

(
∆t+D′

∞
h2

3
+D′

∞
h3

12
+D∞

h2

6

)
max

 sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂2c

∂t2

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂3c

∂z3

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂4c

∂z4

∣∣∣∣


Par passage au max sur j = 0, ...,M + 1 et sur i = 0, ..., N + 1 :

max
0≤j≤M+1

∥ϵh(c)(j)∥∞ ≤ 1

2

(
∆t+D′

∞
h2

3
+D′

∞
h3

12
+D∞

h2

6

)
max

 sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂2c

∂t2

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂3c

∂z3

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂4c

∂z4

∣∣∣∣


d’où la consistance du schéma d’ordre 3 en espace et 1 en temps.

Proposition 2.2.3. Si la solution c du problème est de classe C4 en espace et C2

en temps alors sous la condition ∆t ≤ min
(

h2

2D∞
, h
D′

∞

)
le schéma est convergent en

∥ · ∥∞, d’ordre 3 en espace et d’ordre 1 en temps.

Démonstration. Pour étudier la convergence du schéma, on considère l’erreur e(j) à

19



l’instant tj :

e(j) = C(j) − Πhc(tj)

On a 
C(j+1) = C(j) −∆tBh,iC

(j) −∆tAh,iC
(j)

Πhc(tj+1) = Πhc(tj)−∆tBhi
Πhc(tj)−∆tAhi

Πhc(tj) + ∆tϵh(c)
(j)

Donc par différence :

e(j+1) = e(j) −∆tBh,ie
(j) −∆tAh,ie

(j) −∆tϵh(c)
(j)

Pour i = 0, ..., N + 1,

e
(j+1)
i = e

(j)
i −∆tBh,ie

(j)
i −∆tAh,ie

(j)
i −∆tϵh(c)

(j)
i

= e
(j)
i − ∆t

2h
D′

i(e
(j)
i−1 − e

(j)
i+1)−

∆t

h2
Di(−e

(j)
i−1 + 2e

(j)
i − e

(j)
i+1)−∆tϵh(c)

(j)
i

=

(
∆t

h2
Di −

∆t

2h
D′

i

)
e
(j)
i−1 +

(
1− 2

∆t

h2
Di

)
e
(j)
i +

(
∆t

h2
Di +

∆t

2h
D′

i

)
e
(j)
i+1 −∆tϵh(c)

(j)
i

Par passage à |·| et sous la condition de stabilité on en déduit que :

|e(j+1)
i | ≤

(
∆t

h2
Di −

∆t

2h
D′

i

)
|e(j)i−1|+

(
1− 2

∆t

h2
Di

)
|e(j)i |+

(
∆t

h2
Di +

∆t

2h
D′

i

)
|e(j)i+1|+∆t|ϵh(c)(j)i |

Donc

∥e(j+1)∥∞ ≤
(
∆t

h2
Di −

∆t

2h
D′

i

)
∥e(j)∥∞ +

(
1− 2

∆t

h2
Di

)
∥e(j)∥∞ +

(
∆t

h2
Di +

∆t

2h
D′

i

)
∥e(j)∥∞

+∆t∥ϵh(c)(j)∥∞

≤ ∥e(j)∥∞ +∆t∥ϵh(c)(j)∥∞

Pour j = 0 : ∥e(1)∥∞ ≤ ∥e(0)∥∞ +∆t∥ϵh(c)(0)∥∞ ≤ ∆t∥ϵh(c)(0)∥∞
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Pour j = 1 :

∥e(2)∥∞ ≤ ∥e(1)∥∞ +∆t∥ϵh(c)(1)∥∞

≤ ∆t
(
∥ϵh(c)(1)∥∞ + ∥ϵh(c)(0)∥∞

)
Par récurrence sur j = 0, ...,M + 1 on en déduit que ∀j tel que j∆t ≤ T :

∥e(j)∥∞ ≤ ∆t
(
∥ϵh(c)(j−1)∥∞ + ...+ ∥ϵh(c)(1)∥∞ + ∥ϵh(c)(0)∥∞

)
≤ ∆tj max

0≤j≤M+1
∥ϵh(c)(j)∥∞

≤ T max
0≤j≤M+1

∥ϵh(c)(j)∥∞

≤ T

2

(
∆t+D′

∞
h2

3
+D′

∞
h3

12
+D∞

h2

6

)
max

 sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂2c

∂t2

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂3c

∂z3

∣∣∣∣ , sup
x∈[0,1]
t∈[0,T ]

∣∣∣∣∂4c

∂z4

∣∣∣∣


≤ Const(z, T )(h3 +∆t)

d’où la convergence du schéma en ∥ · ∥∞, d’ordre 3 en espace et 1 en temps.

2.2.2 Le schéma implicite

Cette fois-ci, nous approchons ∂c
∂t
(zi, tj) par cji−cj−1

i

∆t
afin d’obtenir le schéma suivant :

C(j) = C(j−1) −∆tBh,iC
(j) −∆tAh,iC

(j) (2.6)

⇔ (I +∆tBh,i +∆tAh,i)C
(j) = C(j−1) (2.7)

Ce schéma est implicite car on doit résoudre un système pour calculer C(j).

Posons Yh,i = I +∆tBh,i +∆tAh,i et montrons qu’elle est inversible.

∀v ̸= 0, ⟨Yh,iv, v⟩ = ⟨v, v⟩+∆t⟨Bh,iv, v⟩+∆t⟨Ah,iv, v⟩ > 0
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car v ̸= 0, et Ah,i et Bh,i sont définies positives.

Donc Yh,i est définie positive, donc inversible, donc le schéma est bien défini.

Proposition 2.2.4. Soit ϵh(c)(j) l’erreur de consistance :

ϵh(c)
(j) =

Πhc(tj)− Πhc(tj−1)

∆t
+Bh,iΠhc(tj) + Ah,iΠhc(tj)

Si c est de classe C4 en espace et C2 en temps, alors le schéma est consistant en

∥ · ∥∞, d’ordre 3 en espace et 1 en temps.

Démonstration. C’est comme pour le schéma explicite.

Proposition 2.2.5. Le schéma est stable et convergent en ∥ · ∥∞ avec même ordre

de convergence que la consistance, sans condition sur h et ∆t.

2.2.3 Résultats numériques obtenus

Nous commençons par tester nos schémas en utilisant un nombre de points intérieurs

N = 98 et un temps final T = 0.01. Pour la méthode explicite, le pas de temps est

fixé à ∆t = h2

2D∞
afin de satisfaire la condition de stabilité. Pour la méthode implicite,

nous fixons ∆t = 0.001.

La condition initiale choisie est

c0(z) =


1 si z > 0.5,

0 sinon.

Nous appellerons cette condition la condition initiale de référence.

Nous choisissons une diffusion linéaire

D(z) = D0 + (D∞ −D0)z,

avec D0 = 2 et D∞ = 5.

Nous nous attendons à ce que la solution converge vers un état stationnaire une
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fois que le mélange des grains soit terminé. Un contour est tracé pour visualiser le

mélange, ce qui permet d’observer les valeurs de concentration en fonction du temps

et de la position dans l’espace.

(a) Contour (b) Estimation de c au temps final

Figure 2.1 – Résultats pour le schéma explicite

(a) Contour (b) Estimation de c au temps final

Figure 2.2 – Résultats pour le schéma implicite

Le résultat obtenu n’est pas celui attendu, car la solution au temps final n’est pas

encore stationnaire. Cela est dû au fait que le temps final T initialement choisi est

trop court. Pour remédier à ce problème, nous avons désormais fixé T = 1 et N = 48,

ce qui devrait être suffisant pour obtenir une solution stationnaire. Nous obtenons

alors :
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(a) Contour (b) Estimation de c au temps final

Figure 2.3 – Résultats pour le schéma explicite

(a) Contour (b) Estimation de c au temps final

Figure 2.4 – Résultats pour le schéma implicite

Cette fois-ci, nous obtenons le résultat attendu. Nous observons que, dans le cas im-

plicite, le mélange commence à se produire autour du temps T = 10−2 pour z = 0.8,

tandis qu’il est immédiat pour z = 0.45 et z = 0.55. Les mêmes observations s’ap-

pliquent au cas explicite. Dans les deux méthodes, la solution se stabilise au même

temps T , juste en dessous du seuil 10−1.

Pour la suite, nous nous limitons au schéma explicite. Nous donnons d’autres résul-

tats en prenant d’autres profils de conditions initiales c0 :
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(a) c0(z) =


1 si z > 1

2

0 sinon

(b) c0(z) = z (c) c0(z) = z2

(d) c0(z) =
√
z (e) dizaine de couches de 0 et 1 (f) c0(z) =

1
2 + 1

2 sin(10πz)

Figure 2.5 – Profils de concentration

Ainsi, la solution finit par se stabiliser quel que soit le choix de c0. Ce choix n’af-

fecte donc pas le résultat final. Cependant, il influence le processus de mélange, en

particulier les deux derniers graphes montrent clairement que le mélange est plus

prononcé en tout point de l’espace.

Enfin, nous considérons un profil exponentiel pour D(z) défini par

D(z) = D∞ exp

(
− z

z0

)

avec D∞ = 10 et z0 = 0, 25. Ce choix permet d’obtenir un profil de diffusion qui

est beaucoup plus hétérogène. Nous examinons ensuite les résultats obtenus pour

différents profils initiaux c0(z) illustrés dans les figures ci-dessous :
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(a) c0(z) =


1 si z > 1

2

0 sinon

(b) c0(z) = z (c) c0(z) = z2

(d) c0(z) =
√
z (e) Profil en plusieurs couches de 0

et 1

(f) c0(z) =
1
2 + 1

2 sin(10πz)

Figure 2.6 – Profils de concentration

Nous observons que la solution se stabilise plus tardivement que dans le cas linéaire,

en raison de la nature exponentielle du profil de diffusion D(z). Ce retard dans la

stabilisation peut être attribué à une diffusion plus lente dans certaines régions de

l’espace, notamment celles où z est élevé, puisque la diffusion est exponentiellement

atténuée en fonction de z.

En examinant les différents profils, nous constatons que le mélange des grains est

fortement influencé par la forme initiale de c0. Par exemple, pour les profils où c0(z)

présente une transition abrupte (comme dans le cas du profil en plusieurs couches

ou du profil sinusoïdal), le processus de diffusion est moins uniforme.

À l’inverse, pour les profils où c0(z) est lisse (comme les cas où c0(z) = z ou c0(z) =

√
z), le mélange est plus progressif. Cependant, même dans ces cas, la diffusion

exponentielle entraîne une stabilisation plus lente par rapport aux situations où la

diffusion suit un profil linéaire.
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Ces résultats soulignent l’importance de la nature de la diffusion D(z) et de la

condition initiale c0(z) dans la dynamique de mélange des grains, en influençant à

la fois la rapidité du mélange et la distribution finale des concentrations.
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Chapitre 3

Un problème d’optimisation pour

estimer D

Après avoir étudié différents schémas pour l’approximation de la concentration, nous

nous tournons maintenant sur l’estimation de la diffusion D à partir de données

de concentration obtenues. L’estimation précise de D est essentielle pour mieux

comprendre et prédire les phénomènes de diffusion dans les milieux granulaires.

Pour ce faire, nous adoptons une approche d’optimisation basée sur le principe du

maximum de vraisemblance.

3.1 Le principe du maximum de vraisemblance

3.1.1 Contexte

Soit un modèle M . La vraisemblance du modèle est définit comme la probabilité

que ce modèle ait donné lieu à des données observées.

Exemple 3.1.1. Une pièce de monnaie que l’on jette n fois. On cherche à déterminer

la probabilité que la pièce tombe sur pile, se basant sur le nombre de fois où elle est

tombée sur pile ou face.

Le maximum de vraisemblance est une méthode statistique largement utilisée pour

estimer les paramètres d’un modèle (probabiliste). L’idée est de choisir les valeurs
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des paramètres qui maximisent la probabilité des données observées étant donné le

modèle. Plus formellement, si θ représente le vecteur des paramètres du modèle et

x l’ensemble des données observées, alors le maximum de vraisemblance cherche à

trouver θ̂ qui maximise la fonction de vraisemblance L(x|θ) :

θ̂ = argmax
θ

L(x|θ)

Définition 3.1.1. La fonction de vraisemblance L(x|θ) est une fonction de densité

de probabilité conditionnelle qui mesure la probabilité de l’échantillon observé x

étant donné les paramètres du modèle θ. Pour un ensemble de données indépendantes

et identiquement distribuées, la fonction de vraisemblance pour n observations est

le produit des densités de probabilité :

L(x|θ) =
n∏

i=1

f(xi|θ) =
n∏

i=1

fθ(xi)

A x = (x1, ..., xn) fixé, on cherche à trouver le maximum de cette vraisemblance pour

que les probabilités des réalisations observées soient aussi maximum que possible.

Ceci est un problème d’optimisation.

3.1.2 Calcul d’un estimateur du maximum de vraisemblance

On utilise généralement le fait que L est dérivable (ce qui n’est pas toujours le cas).

Si L admet un maximum global en une valeur θ = θ̂, alors la dérivée première

s’annule en θ = θ̂ et la dérivée seconde est négative. Réciproquement, si la dérivée

première s’annule en θ = θ̂ et que la dérivée seconde est strictement négative en

θ = θ̂ alors θ = θ̂ est un maximum local de L(x|θ). Il est nécessaire de vérifier qu’il

s’agit bien d’un maximum global. La vraisemblance étant positive et le log népérien

une fonction croissante, il est équivalent et souvent plus simple de maximiser le log

népérien de la vraisemblance (le produit se transforme en somme, plus simple à

dériver).

• Paramètres du modèle :
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θ = (D0, D∞, z0, Dvalues)

• Données observées :

x : les mesures de la concentration de grains à différents points dans le temps et

l’espace.

• Estimation des paramètres optimaux :

θ̂ = (D̂0, D̂∞, ẑ0, ˆDvalues)

3.1.3 La vraisemblance pour notre problème

Étant donné que nous travaillons avec des données continues, la densité de probabi-

lité fθ(xi) peut-être représentée par une densité de probabilité continue, par exemple

une loi normale.

Ainsi

L(x|θ) =
n∏

i=1

1

σ
√
2π

exp

(
−(xi − µ)2

2σ2

)

3.1.4 Pourquoi supposer une distribution normale ?

(i) [Théorème Central Limite] Pour de nombreux processus aléatoires, la somme (ou

la moyenne) de nombreuses petites perturbations indépendantes tend vers une loi

normale centrée réduite N (0, 1) en vertu du TCL. Cela justifie souvent l’hypothèse

de normalité pour les erreurs de mesure ou les résidus dans les modèles scientifiques.

(ii) [Simplicité mathématique] La loi normale a des propriétés mathématiques qui

facilitent l’estimation et l’inférence statistique. En particulier, la forme de la fonc-

tion de vraisemblance est bien connue et tractable.

3.1.5 Lien avec le code Python (voir annexe [4] partie opti-

misation

Pour le code, nous avons fait les hypothèses suivantes :

(i) Les résidus (différence entre les valeurs simulées à temps consécutifs) suivent une

30



distribution normale. Ces résidus sont supposés être normalement distribués avec

une moyenne de 0 et variance σ2. Ici σ2 est arbitrairement fixé à 1. Cela simplifie les

calculs et permet de maximiser la log-vraisemblance sans estimer σ2 séparément.

(ii) La vraisemblance est donnée par :

L(x|θ) =
n∏

i=1

1

σ
√
2π

exp

(
−(xi − µ)2

2σ2

)

=

(
1

2πσ2

)n
2

exp

(
−
∑n

i=1(xi − µ)2

2σ2

)

Donc la log-vraisemblance est donnée par :

logL(x|θ) = − 1

2σ2

n∑
i=1

(yi − µi(θ))
2 − n

2
log(2πσ2)

où yi sont les données observées et µi(θ) les valeurs prédites par le modèle de diffusion

pour les paramètres θ (dans le code, yi = Ctime sim et µi(θ) = Ctime exp).

En fixant σ2 à 1,

logL(x|θ) = −1

2

∑
(residuals2)− n

2
log(2π)

En maximisant cette log-vraisemblance, nous estimons les paramètres θ qui rendent

les observations les plus probables sous le modèle donné.

(iii) Dans le code, la fonction de vraisemblance est basée sur la différence entre les

concentrations simulées à des temps consécutifs. Si les concentrations simulées sont

proches des valeurs observées, cela signifie que les paramètres utilisés pour générer

ces concentrations sont probablement proches des valeurs réelles des paramètres de

diffusion.
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3.1.6 Algorithme : Estimation de la Fonction de Diffusion

Algorithm 1 Estimation de la Fonction de Diffusion
1: Initialisation

2: Demander à l’utilisateur de choisir une fonction de diffusion.

3: Initialiser les paramètres en fonction du choix de l’utilisateur.

4: Définition des Paramètres

5: Définir le pas en espace h et le pas de temps dt.

6: Définir la condition initiale de concentration c0(z).

7: Construire les matrices Ah et Bh.

8: Définir la Fonction de Diffusion

9: Définir la fonction de diffusion D(z) et sa dérivée en fonction des paramètres.

10: Implémenter une fonction de vraisemblance pour optimiser les paramètres de

D(z).

11: Optimisation

12: Définir les paramètres initiaux et les bornes pour l’optimisation.

13: Mesurer le temps de début et de fin de l’optimisation.

14: Afficher le temps d’exécution et sauvegarder les valeurs optimales de D(z).

15: Afficher les résultats de la fonction de diffusion estimée.

16: Recalcul et affichage

17: Recalculer le vecteur inconnu Cj à l’instant tj avec les paramètres optimaux.

18: Afficher les résultats recalculés avec les nouveaux paramètres.

19: Calcul de la somme des résidus.

20: Tracer une carte des résidus.

21: Calcul de l’erreur entre D expérimentale et D optimale.

3.2 Fonction minimize de scipy.optimize

Pour effectuer l’optimisation, nous avons utilisé a fonction minimize de la bi-

bliothèque scipy.optimize. Elle cherche à minimiser une fonction objectif donnée
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en ajustant les valeurs des paramètres. Dans notre cas, cette fonction est utilisée

pour trouver les paramètres optimaux de la diffusion en ajustant un modèle à des

données expérimentales en minimisant une fonction de log-vraisemblance.

3.2.1 Fonction objectif : likelihood_function

La fonction minimize tente de minimiser une fonction objectif, ici définie comme

likelihood_function. Cette fonction calcule l’erreur entre les données simulées

(calculées à partir des paramètres de diffusion) et les données expérimentales (Ctime_exp).

La fonction de log-vraisemblance est utilisée pour mesurer cette erreur, en supposant

que les résidus suivent une distribution normale. Plus cette erreur est faible, plus les

paramètres du modèle ajustent bien les données.

3.2.2 Paramètres initiaux : x0

Les paramètres à estimer (comme D0, D∞, ou les valeurs segmentées dans le cas de

la diffusion par morceaux) sont passés à la fonction minimize via l’argument x0. Ces

paramètres représentent une estimation initiale du modèle. Le choix des paramètres

initiaux dépend du type de diffusion sélectionné par l’utilisateur (choix_D_opt).

3.2.3 Méthode d’optimisation : L-BFGS-B

La méthode L-BFGS-B est une méthode de descente de gradient, adaptée pour les

problèmes de grande taille, et permet d’imposer des bornes sur les paramètres. Dans

notre cas, nous imposons des bornes sur les valeurs des paramètres avec l’argument

bounds, par exemple :

— Pour une diffusion linéaire : bounds = [(0.05, 10), (0.05, 10)] contraint

les valeurs des paramètres entre 0.05 et 10.

— Pour une diffusion exponentielle ou par morceaux, des bornes spécifiques sont

également appliquées.
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3.2.4 Boucle de simulation dans likelihood_function

Pour chaque jeu de paramètres, une simulation est effectuée pour calculer la diffusion

à chaque pas de temps. Cette simulation calcule l’évolution de la concentration au

fil du temps en fonction de la diffusion choisie, en résolvant numériquement les équa-

tions différentielles discrétisées. La simulation produit un tableau de concentrations

simulées que l’on compare aux données expérimentales.

3.2.5 Résidus et fonction de log-vraisemblance

Une fois la simulation terminée pour un jeu de paramètres donné, la différence entre

les concentrations simulées (Ctime_sim) et expérimentales (Ctime_exp) est calculée.

Ces différences, appelées résidus, sont normalisées pour produire une fonction de log-

vraisemblance :

residuals =
Ctime_sim− Ctime_exp

Ctime_exp
+ ϵ

log_likelihood =
∑(

residuals2
)

La division des résidus par Ctime_exp + ϵ (où ϵ est une petite valeur, ici 10−6) est

utilisée pour normaliser les résidus. Voici les raisons principales de cette approche :

1. **Normalisation des résidus** : En divisant par Ctime_exp, on exprime les résidus

en termes relatifs plutôt qu’absolus. Cela permet de mieux gérer les situations où les

valeurs de Ctime_exp peuvent varier considérablement. Les erreurs relatives donnent

un meilleur aperçu de la qualité de l’ajustement lorsque les valeurs de Ctime_exp

sont petites ou grandes. Sans cette normalisation, les grandes valeurs de Ctime_exp

pourraient dominer la fonction de vraisemblance, tandis que les petites valeurs se-

raient sous-estimées.

2. **Prévention des divisions par zéro** : Le terme ϵ = 10−6 est ajouté pour éviter

la division par zéro lorsque Ctime_exp est proche ou égale à zéro. Cela garantit que

la fonction de vraisemblance reste stable, même si certaines valeurs de Ctime_exp

sont très petites ou nulles.
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La fonction minimize ajuste alors les paramètres de manière à minimiser cette

somme des carrés des résidus, ce qui revient à maximiser la vraisemblance de l’ajus-

tement du modèle aux données.

3.2.6 Résultats de l’optimisation

Une fois l’optimisation terminée, minimize renvoie un objet contenant les para-

mètres optimaux dans result_simulation.x. Ces paramètres sont ceux qui mini-

misent la fonction de log-vraisemblance et ajustent donc au mieux la diffusion aux

données expérimentales. Le code affiche ces paramètres et les sauvegarde dans un

fichier texte.

3.2.7 Résumé

— Objectif : Minimiser une fonction de log-vraisemblance qui mesure l’ajuste-

ment entre des données simulées et des données expérimentales.

— Méthode : minimize ajuste les paramètres en utilisant une méthode de

descente de gradient tout en respectant des contraintes de bornes pour trouver

les paramètres qui minimisent l’erreur entre simulation et données réelles.

— Paramètres initiaux et contraintes : Ils sont fournis selon la fonction de

diffusion choisie.

— Résultat : Un jeu de paramètres optimaux est trouvé, enregistré, et utilisé

pour prédire la diffusion.

3.3 Résultats numériques

3.3.1 La méthode fonctionne-t-elle ?

Dans cette partie, nous allons tester la méthode sur des solutions de concentra-

tion générées avec une diffusion D prédéfini. Par exemple, nous pouvons générer
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une solution en choisissant une forme fonctionnelle pour D (linéaire, exponentielle,

etc.), puis, à partir des données de concentration obtenues, estimer les paramètres

de D pour voir dans quelle mesure nous nous rapprochons des valeurs initiales. Bien

que nous ne nous attendions pas à retrouver exactement ces valeurs, une bonne

approximation indiquerait que la méthode est prometteuse. Pour les profils linéaire

et exponentiel, l’estimation nécessite à chaque fois la détermination de deux para-

mètres : D0 et D∞ pour le profil linéaire, et z0 et D∞ pour le profil exponentiel.

Nous commençons par générer une solution en utilisant un profil linéaire de D

avec les paramètres D0 = 2 et D∞ = 5, tout en appliquant la condition initiale

de référence. Cette approche permettra d’évaluer la précision de l’estimation des pa-

ramètres en comparant les résultats obtenus avec les valeurs initiales utilisées. Voici

les résultats obtenus :

Figure 3.1 – Comparaison entre D expérimentale et D optimale
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(a) (b)

Figure 3.2 – Résultat de l’optimisation : (a) Profil de concentration recalculée ; (b)
Carte des résidus

Nous observons que la diffusion estimée se rapproche fortement de la diffusion ex-

périmentale, avec des paramètres optimaux qui valent respectivement 1.99999874

et 4.9999987. L’erreur entre les deux fonctions est de l’ordre de 10−6, ce qui est

très satisfaisant. En utilisant ces nouveaux paramètres estimés pour D, nous avons

tracé un contour de la concentration, et celui-ci se révèle semblable à celui présenté

dans la Section 2.2.3, Figure 2.3 avec les paramètres initiaux. La carte des résidus

révèle que les différences entre les valeurs de concentration expérimentales et celles

estimées sont très faibles. Ainsi la méthode semble être efficace.

3.3.2 Résultats avec d’autres profils de c0

Nous considérons des solutions de concentration obtenues à partir des conditions

initiales décrites dans la partie précédente, illustrées dans la légende de la figure 2.5,

et en utilisant le profil de diffusion exponentielle

D(z) = D∞ exp

(
− z

z0

)

avec D∞ = 10 et z0 = 0.25. Nous cherchons à savoir si la condition initiale affecte

l’estimation des paramètres de la diffusion, afin de pouvoir considérer à l’avenir

des données de concentrations plus pertinentes. La diffusion sera estimée par une

diffusion optimale régulière par morceaux. Pour établir un lien avec les paramètres
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estimés mentionnés dans la partie 3.1, nous faisons référence aux paramètres ˆDvalues

(ce sont donc les Di qu’on estime). Nous générons des valeurs aléatoires réparties

sur un nombre de segments prédéfinis : par exemple, si nous générons deux valeurs,

la diffusion aura la forme d’un segment. Il s’agit donc de faire varier le nombre de

paramètres Di pour voir aussi son impact sur l’estimation.

Les résultats obtenus avec la condition initiale définie par un sinus, ainsi qu’avec

celle valant 0 ou 1 en certains points, suggèrent que l’augmentation du nombre de

paramètres Di améliore la précision de la méthode, comme nous pouvons le voir

ci-dessous :

Figure 3.3 – Comparaison de D expérimentale avec différentes estimations en
utilisant c0(z) avec une dizaine de couches de 0 et 1 (en légende, Nx signifie x
points)
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(a) somme des résidus (b) erreur entre Dsim et Dexp

Figure 3.4 – Suite des résultats de l’optimisation

Figure 3.5 – Comparaison de D expérimentale avec différentes estimations en
utilisant c0(z) =

1
2
+ 1

2
sin(10πz) (en légende, Nx signifie x points)
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(a) somme des résidus (b) erreur entre Dsim et Dexp

Figure 3.6 – Suite des résultats de l’optimisation

Ces résultats montrent que l’approximation de D s’améliore avec l’augmentation

du nombre de paramètres estimés. Cependant, ce n’est pas toujours le cas. En ef-

fet, si nous prenons en compte la condition initiale de référence, nous observons

une augmentation significative de l’erreur lorsque nous passons à l’estimation de 32

paramètres, bien que la somme des résidus reste faible :

Figure 3.7 – Comparaison de D expérimentale avec différentes estimations en

utilisant c0(z) =

{
1 si z > 1

2

0 sinon
(en légende, Nx signifie x points)
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(a) somme des résidus (b) erreur entre Dsim et Dexp

Figure 3.8 – Suite des résultats de l’optimisation

Ces résultats montrent que le nombre de points influence clairement l’estimation

des paramètres (mais pas toujours comme on pourrait s’y attendre), tout comme le

choix de la condition initiale.

Nous traçons un graphe des temps d’exécution pour illustrer que l’augmentation du

nombre de points entraîne une augmentation correspondante du temps d’exécution.

Étant donné que nous disposons de 50 points zi en espace, estimer 50 valeurs Di pour

maximiser la précision et vérifier la diminution de l’erreur serait trop contraignant.
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En effet, ce processus prend déjà environ 3 heures pour 32 valeurs.

3.3.3 Résultats avec des données de concentration plus pertinentes

La dernière tâche de ce stage consistait à estimer un profil de diffusion à partir de

données de concentration obtenues via des simulations numériques. Cette analyse se

base sur la configuration illustrée sur la figure suivante [2] :

Figure 3.9 – Configuration d’écoulement concave étudiée avec son profil de vitesse.
La concavité du profil dépend de la fraction volumique des solides (nommée ϕ pour
la suite) et de l’accélération g. Le jaune plus clair correspond à la plus grande vitesse
à droite, tandis que le bleu plus foncé indique une plus grande vitesse à gauche

.
Les données de concentration ci pour i = 1, ..., 20 sont enregistrées dans un fichier

texte. Cependant, nous ne disposons ni d’information sur la condition initiale, ni sur

le comportement expérimental de la diffusion. Seules les données ci sont connues.

L’objectif est de trouver la meilleure estimation des paramètres de diffusion pour

quatre expériences nommées respectivement ϕ053-g3, ϕ055-g01, ϕ057-g1 et ϕ057-

g10, en approchant le profil de diffusion par une fonction continue par morceaux,

et d’examiner si cette estimation dépend du profil de vitesse dans chaque cas. ϕ re-

présente la fraction du volume de l’échantillon occupé par les billes en moyenne. En

pratique il est lié au nombre des grains du système. Dans les titres des expériences

nous avons les valeurs de ϕ et g. Pour le même g, en baissant ϕ nous pouvons passer

d’un profil de vitesse linéaire à un non-linéaire. Voici les différents profils de vitesse

des expériences :
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(a) ϕ053-g3 (b) ϕ055-g01

(c) ϕ057-g1 (d) ϕ057-g10

Figure 3.10 – Profils de vitesse pour chacune des expériences

3.3.3.1 Première expérience ϕ053-g3

Pour cette première expérience, la meilleure approximation de D a été obtenue avec

18 valeurs Di générées, avec une somme des résidus relevée à 0,07. Le graphique

ci-dessous illustre que l’augmentation du nombre de valeurs Di générées n’entraîne

pas nécessairement une diminution de la somme des résidus. En effet, on observe

une augmentation notable de cette somme lorsque l’on passe à 19 valeurs. Cette

variation est également visible sur le profil estimé de D, qui s’éloigne sensiblement

du profil obtenu avec 18 valeurs. Ce constat est en adéquation avec notre analyse

de la partie 3.3.2. Le profil estimé de D suggère par ailleurs une forme gaussienne.
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Figure 3.11 – Somme des résidus en fonction du nombre de Di généré

Figure 3.12 – Profils d’estimation de D

Nous avons également illustré différents profils de concentration, incluant celui cor-

respondant à la concentration expérimentale (les ci issus du fichier texte), ainsi que

celui obtenu pour la concentration estimée avec la meilleure estimation de D, afin

de permettre une comparaison.
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(a) (b)

Figure 3.13 – Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N18

Les deux profils sont similaires, ce qui confirme que le profil de D estimé avec 18

valeurs générées est celui qui se rapproche le plus du profil de diffusion expérimental.

3.3.3.2 Deuxième expérience ϕ055-g01

Ici, la meilleure estimation a été obtenue avec 17 valeurs Di, pour une somme des

résidus valant 0,07. Avec 19 valeurs, nous obtenons également une bonne approxima-

tion avec une somme des résidus valant 0,08. Contrairement à la première expérience,

l’estimation avec 18 valeurs est moins concluante puisque la somme des résidus est

relevée à 0,72.

Figure 3.14 – Somme des résidus en fonction du nombre de Di généré

45



Figure 3.15 – Profils d’estimation de D

Nous observons que la partie centrale du profil N17 présente un comportement

uniforme, ce qui est directement lié au profil de vitesse linéaire illustré dans la figure

3.10. Cela suggère que le profil de vitesse influence fortement la forme du profil de

D.

Comme pour la première expérience, nous comparons les profils de concentration

expérimentale et estimée afin de montrer leur similarité.
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(a) (b)

Figure 3.16 – Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N17

3.3.3.3 Troisième expérience ϕ057-g1

La meilleure estimation a été obtenue pour 16 valeurs de Di, avec une somme des ré-

sidus égale à 0,09. Encore une fois, nous constatons qu’une augmentation du nombre

de Di générés n’améliore pas nécessairement les résultats, car la somme des résidus

augmente au-delà de cette valeur.

Figure 3.17 – Somme des résidus en fonction du nombre de Di généré
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Figure 3.18 – Profils d’estimation de D

Comme pour la deuxième expérience, nous retrouvons ce comportement stationnaire

au centre du profil N16, lié au profil de vitesse.

Les comparaisons des profils de concentration sont encore très semblables :

(a) (b)

Figure 3.19 – Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N16
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3.3.3.4 Quatrième expérience ϕ057-g10

Pour cette dernière expérience, la meilleure estimation a été obtenue avec 17 va-

leurs Di, pour une somme des résidus de 0,07. Il s’agit donc d’un cas similaire à la

deuxième expérience.

Figure 3.20 – Somme des résidus en fonction du nombre de Di généré

Figure 3.21 – Profils d’estimation de D
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La courbure constatée sur le profil N17 est liée au profil de vitesse concave, comme

observé lors de la première expérience.

(a) (b)

Figure 3.22 – Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N17

En résumé, l’analyse des résultats montre que l’augmentation du nombre de va-

leurs Di générées n’améliore pas systématiquement la précision de l’estimation. En

effet, pour certaines expériences, nous avons observé que la somme des résidus ne

diminue pas nécessairement avec l’augmentation du nombre de Di. Par exemple,

dans la première expérience, la meilleure estimation a été obtenue avec 18 valeurs

Di, et une augmentation à 19 valeurs a entraîné une augmentation significative de la

somme des résidus. Et cela pour chacune des expériences. Ces observations suggèrent

que, au-delà d’un certain nombre de valeurs générées, le processus d’estimation peut

devenir moins efficace. Il est donc crucial de trouver un équilibre optimal entre le

nombre de valeurs générées et la qualité de l’estimation. En pratique, un nombre trop

élevé de valeurs peut compliquer le modèle sans nécessairement améliorer la préci-

sion, tandis qu’un nombre insuffisant peut conduire à une estimation approximative.

La sélection du nombre optimal de Di doit donc être soigneusement considérée en

fonction des caractéristiques spécifiques de chaque problème.

En ce qui concerne le profil de vitesse, il a un impact significatif sur le profil

de diffusion estimé. Lorsqu’un profil de vitesse linéaire est utilisé, comme observé

dans la deuxième et troisième expérience, une grande partie du profil de diffusion
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estimé montre un comportement uniforme. Cela indique que le profil de vitesse

linéaire influence directement le profil de diffusion. De même, pour les profils de

vitesse concaves, comme dans la première et quatrième expérience, une courbure est

observée dans le profil de diffusion estimé liée à la concavité du profil de vitesse.

Cette observation confirme que le profil de vitesse concave affecte directement le

profil de D, entraînant une forme courbée dans le profil de diffusion.

En conclusion, les profils de vitesse jouent un rôle déterminant dans la forme

des profils de diffusion estimés. Les variations dans le profil de vitesse se reflètent

directement dans les estimations de D, soulignant l’importance d’intégrer le profil

de vitesse dans les modèles de diffusion pour obtenir des estimations précises. La

prise en compte du profil de vitesse est donc essentielle pour une estimation fidèle

du profil de diffusion.
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Chapitre 4

Conclusion

Ce stage a permis de se plonger dans l’étude de la diffusion dans des écoulements

granulaires polydisperses, un domaine complexe et en pleine expansion. Grâce à des

simulations numériques discrètes, nous avons pu approfondir notre compréhension

des mécanismes de diffusion dans les milieux granulaires soumis à des contraintes de

cisaillement. Les schémas numériques développés, qu’ils soient explicites ou impli-

cites, ont montré des résultats prometteurs en termes de convergence et de stabilité,

avec des temps de calcul raisonnables pour une précision acceptable.

De plus, l’approche par optimisation, basée sur le principe du maximum de vrai-

semblance, a permis d’estimer les paramètres du tenseur de diffusion avec une préci-

sion remarquable. Les tests réalisés sur différents profils de conditions initiales et de

fonctions de diffusion ont mis en lumière l’impact significatif des choix initiaux sur le

comportement de la solution finale. En particulier, nous avons observé que la nature

de la diffusion (linéaire ou exponentielle) et le profil initial influencent fortement la

dynamique de mélange des particules.

Les résultats obtenus confirment la validité des méthodes employées, tout en

ouvrant la voie à des investigations plus poussées, notamment dans des contextes

plus complexes avec des données expérimentales plus variées. Il serait pertinent

d’élargir cette étude à des cas tridimensionnels ou de considérer d’autres types de

schémas numériques pour améliorer encore la précision et la rapidité des calculs.

En conclusion, ce travail a permis non seulement de valider certaines méthodes
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numériques pour l’estimation de la diffusion dans des écoulements granulaires, mais

aussi de poser des bases solides pour des études futures dans ce domaine en constante

évolution.
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Annexes

Code Python : Différences finies pour l’équation de

diffusion non stationnaire

1 ##### differences finies pour l’equation de diffusion non

stationnaire avec diffusion non constant sur [0,1]x[0,T]

2 # D continue et 0 < D_0 <= D(z) <= D_inf < +inf

3 # conditions de Neumann imposees aux bords

4 # conditions initiales c_0 connue

5

6 import numpy as np

7 import math

8 from matplotlib.pylab import *

9 import matplotlib.pyplot as plt

10 import matplotlib.mlab as mlab

11 import numpy.random as rnd

12 from numpy.linalg import *

13 %matplotlib inline

14 from scipy.optimize import minimize

15

16 # Definir les parametres pour la compilation

17 choix = input("Veuillez choisir une methode (1 pour explicite , 2

pour implicite) : ")

18

19 # Verifier le choix de l’utilisateur

20 while choix not in [’1’, ’2’]:
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21 print("Choix non valide. Veuillez entrer 1 pour explicite ou 2

pour implicite.")

22 choix = input("Veuillez choisir une methode (1 pour explicite ,

2 pour implicite) : ")

23

24 # Convertir le choix en methode

25 methode = "explicite" if choix == ’1’ else "implicite"

26

27 # Afficher la methode choisie par l’utilisateur

28 print("La methode choisie est :", methode)

29

30 # Demande a l’utilisateur d’entrer le nombre de points en espace du

maillage

31 N = int(input("Veuillez entrer le nombre de points en espace du

maillage : "))

32

33 # Construire le maillage

34 h = 1/(N+1)

35 X = linspace(0, 1, N+2)

36

37 # Demander a l’utilisateur de choisir une condition initiale

38 choix_c0 = input("Veuillez choisir une condition initiale (1 pour

c0 constante , 2 pour lineaire , 3 pour z^2, 4 pour sqrt(z), 5

avec une dizaine de couches , 6 pour un sinus) : ")

39

40 # Definition de la condition initiale

41 def c0(z) :

42 if choix_c0 == ’1’ :

43 return where(z > 0.5, 1, 0)

44 elif choix_c0 == ’2’ :

45 return z

46 elif choix_c0 == ’3’ :

47 return z**2

48 elif choix_c0 == ’4’ :

49 return np.sqrt(z)
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50 elif choix_c0 == ’5’ :

51 num_couches = 10

52 long = 1 / num_couches

53 return np.array ([1 if int(pos / long) % 2 == 1 else 0 for

pos in z])

54 elif choix_c0 == ’6’:

55 return 0.5 + 0.5* sin (10*pi*z)

56

57 # Demander a l’utilisateur de choisir la fonction de diffusion

58 choix_D = input("Veuillez choisir une fonction de diffusion (1 pour

D(z) lineaire , 2 pour D(z) exponentielle , 3 pour D(z) reguliere

par morceaux) : ")

59

60 # Definir D selon le choix

61 if choix_D == ’1’:

62 D_0 = float(input("Veuillez entrer la valeur de D_0 : "))

63 D_inf = float(input("Veuillez entrer la valeur de D_inf : "))

64 def D(z):

65 return D_0 + (D_inf - D_0) * z

66 def derivate_D(z):

67 return (D_inf - D_0) * np.ones(len(z))

68

69 elif choix_D == ’2’:

70 D_inf = float(input("Veuillez entrer la valeur de D_inf : "))

71 z_0 = float(input("Veuillez entrer la valeur de z_0 : "))

72 def D(z):

73 return D_inf * np.exp(-z / z_0)

74 def derivate_D(z):

75 return -(D_inf / z_0) * np.exp(-z / z_0)

76

77 # Definir le pas de temps selon la methode

78 if methode == "explicite":

79 dt = h**2 / (2 * D_inf)

80 else :

81 dt = float(input("Rentrez le pas de temps : "))
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82

83 T = float(input("Rentrez le temps final T : "))

84 M = int((T/dt) - 1)

85 print(’M = ’, M)

86

87 Ti = np.linspace(0,T,M+1)

88

89 # Construction de la matrice A_h

90 u = ones(N+2)

91 x = 2*u

92 v = ones(N+1)

93 y = -1*v

94 Ah = (1/h**2)*(diag(x) + diag(y,-1) + diag(y,1))

95 Ah[0,0] /=2

96 Ah[-1,-1]/=2

97

98 # Construction de la matrice B_h

99 a = ones(N+1)

100 b = -1*a

101 Bh = (1/(2*h))*(diag(a,1) + diag(b,-1))

102 Bh[0 ,1]=0.

103 Bh[-1,-2]=0.

104

105 # Initialisation des C^j selon le schema choisi

106 C = c0(X)

107 Ch = C[0 : N+2]

108 Cjh = zeros(N+2)

109 Ctime=zeros((M+1,N+2))

110 Ctime [0,:]=c0(X)

111

112 # Boucle pour chaque pas de temps

113 for j in range(1, M+1):

114 if methode == "explicite" :

115 Cjh = Ch + dt*( derivate_D(X)*dot(Bh ,Ch)) - dt*(D(X)*dot(Ah,

Ch))

57



116 else :

117 I = eye(N+2)

118 P = I - dt*( derivate_D(X)*Bh.T).T + dt*(D(X)*Ah.T).T

119 Cjh = solve(P, Ch)

120 Cjh [0]= Cjh [1]

121 Cjh[-1]=Cjh[-2]

122 Ch = Cjh

123 Ctime[j,:]=Ch

124

125 # Sauvegarde des donnees dans un fichier texte

126 np.savetxt(’Ctime_values_c06.txt’,Ctime)

127 print("Les valeurs de Ctime sont sauvegardees dans le fichier ’

Ctime_values.txt ’.")

128

129 # Affichage des resultats

130 plt.contourf(Ti,X,Ctime.T,np.linspace (0,1,20),cmap =’seismic ’)

131 plt.xscale(’log’),plt.xlim((dt,T))

132 plt.xlabel(’temps’)

133 plt.ylabel(’z’)

134 plt.grid(True)

135 plt.colorbar ()

136 plt.show()

137

138 Tg , Xg = np.meshgrid(Ti ,X)

139 plt.pcolormesh(Tg,Xg ,Ctime.T,cmap = ’seismic ’)

140 plt.xscale(’log’),plt.xlim((dt,T))

141 plt.xlabel(’temps’)

142 plt.ylabel(’z’)

143 plt.grid(True)

144 plt.colorbar ()

145 plt.savefig(’concentration_c03_Dexp.png’)

146 plt.show()

147

148 # Profil de Ch

149 plt.figure(figsize =(10, 6))
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150 plt.plot(Ch)

151 plt.xlabel(’Index’)

152 plt.ylabel(’Ch’)

153 plt.title(’Profil de Ch’)

154 plt.ticklabel_format(style=’plain ’, axis=’y’)

155 plt.ylim (0.0, 1.0)

156 plt.savefig(’concentration_dos.png’)

157 plt.show()

Code Python : optimisation

1 ##### methode d’optimisation pour estimer D

2

3 import numpy as np

4 import math

5 from matplotlib.pylab import *

6 import matplotlib.pyplot as plt

7 import matplotlib.mlab as mlab

8 import numpy.random as rnd

9 from numpy.linalg import *

10 %matplotlib inline

11 from scipy.optimize import minimize

12 from scipy.optimize import least_squares

13 from scipy.optimize import differential_evolution

14 import time

15

16 # Lire le fichier texte

17 nom_fichier = ’Ctime_values_c06.txt’

18 data = np.loadtxt(nom_fichier)

19

20 # Dimensions des donnees

21 M, N_plus_2 = data.shape

22 print("Dimensions des donnees (MxN):", M, N_plus_2)

23
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24 # Extraire les donnees de concentration

25 Ctime_exp = data

26 print(data)

27

28 # Definir les valeurs de z (espace) et de t (temps)

29 X = np.linspace(0, 1, N_plus_2)

30 t = np.linspace(0, 1, M)

31 Tg , Xg = np.meshgrid(t,X)

32 plt.contourf(Tg,Xg ,Ctime_exp.T)

33 plt.xscale(’log’),plt.xlim((t[1] ,1))

34

35 # Demander e l’utilisateur de choisir la fonction de diffusion

36 choix_D_opt = input("Veuillez choisir une fonction de diffusion (1

pour D(z) lineaire , 2 pour D(z) exponentielle , 3 pour D(z)

reguliere par morceaux) : ")

37

38 while choix_D_opt not in [’1’, ’2’, ’3’]:

39 print("Choix non valide. Veuillez entrer 1 pour D(z) lineaire ,

2 pour D(z) exponentielle ou 3 pour reguliere par morceaux."

)

40 choix_D_opt = input("Veuillez choisir une fonction de

diffusion (1 pour D(z) lineaire , 2 pour D(z) exponentielle ,

3 pour D(z) reguliere par morceaux) : ")

41

42 # Pas en espace

43 h = 1/( N_plus_2 - 1)

44 dt = 1/M

45

46 # Definition de la condition initiale

47 def c0(z) :

48 return Ctime_exp [0,:]

49

50 # Construction de la matrice A_h

51 u = ones(N_plus_2)

52 x = 2*u
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53 v = ones(N_plus_2 - 1)

54 y = -1*v

55

56 Ah = (1/h**2)*(diag(x) + diag(y,-1) + diag(y,1))

57 Ah[0,0] /=2

58 Ah[-1,-1]/=2

59

60 # Construction de la matrice B_h

61 a = ones(N_plus_2 - 1)

62 b = -1*a

63

64 Bh = (1/(2*h))*(diag(a,1) + diag(b,-1))

65 Bh[0 ,1]=0.

66 Bh[-1,-2]=0.

67

68 # Definir la fonction de diffusion et sa derivee

69 def D(params , z):

70 if choix_D_opt == ’1’:

71 D_0 , D_inf = params

72 return D_0 + (D_inf - D_0) * z

73 elif choix_D_opt == ’2’:

74 z_0 , D_inf = params

75 return D_inf * np.exp(-z / z_0)

76 elif choix_D_opt == ’3’:

77 num_segments = len(params)

78 dx = 1. / 50.

79 xp = np.linspace (0 + dx, 1 - dx, num_segments)

80 return np.interp(z, xp, params)

81

82 def derivate_D(params , z):

83 if choix_D_opt == ’1’:

84 D_0 , D_inf = params

85 return (D_inf - D_0) * np.ones(len(z))

86 elif choix_D_opt == ’2’:

87 z_0 , D_inf = params
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88 return -(D_inf / z_0) * np.exp(-z / z_0)

89 elif choix_D_opt == ’3’:

90 D_piecewise = D(params , z)

91 return np.gradient(D_piecewise) / np.gradient(z)

92

93 # Fonction de vraisemblance

94 def likelihood_function(params):

95 D_func = D(params , X)

96 derivate_D_func = derivate_D(params , X)

97

98 D_inf = max(D_func)

99

100 # Initialisation de la concentration

101 C = c0(X)

102 Ch = C[0: N_plus_2]

103 Ctime_sim = np.zeros((M, N_plus_2))

104 Ctime_sim[0, :] = c0(X)

105

106 dt_stab = h**2 / (2 * D_inf)

107 Q = int(ceil(dt /dt_stab))

108 dt_loc = dt/Q

109

110 for j in range(1, M):

111 for j2 in range(Q):

112 Cjh = Ch + dt_loc * (derivate_D_func * np.dot(Bh , Ch))

- dt_loc * (D_func * np.dot(Ah , Ch))

113 Cjh [0] = Cjh[1]

114 Cjh[-1] = Cjh[-2]

115 Ch = Cjh

116 Ctime_sim[j, :] = Ch

117

118 residuals = (Ctime_sim - Ctime_exp)/( Ctime_exp +1e-6)

119 log_likelihood = np.sum(( residuals **2))

120 return log_likelihood

121
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122 # Initialisation des parametres selon le choix

123 if choix_D_opt == ’1’:

124 initial_params = [.05, .05]

125 bounds = [(0.05 , 10), (0.05 , 10)]

126 elif choix_D_opt == ’2’:

127 initial_params = [1, 1]

128 bounds = [(0.1, 10), (0.01 , 10)]

129 elif choix_D_opt == ’3’:

130 N_values = int(input("Saisissez un nombre : "))

131 initial_params = [1 for i in range(N_values)]

132 bounds = [(0.1 ,20) for i in range(N_values)]

133

134 # Mesurer le temps de debut

135 start_time = time.time()

136

137 # Effectuer l’optimisation

138 result_simulation = minimize(likelihood_function , x0=initial_params

, bounds=bounds , method=’L-BFGS -B’)

139

140 # Mesurer le temps de fin

141 end_time = time.time()

142

143 # Calculer la duree d’execution

144 execution_time = end_time - start_time

145

146 # Afficher le temps d’execution

147 print(f"Temps d’execution : {execution_time :.2f} secondes")

148

149 # Afficher les parametres optimaux

150 print("Parametres optimaux :")

151 print(result_simulation.x)

152

153 D_opt_sim = D(result_simulation.x,X)

154 derivate_D_opt_sim = derivate_D(result_simulation.x,X)

155
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156 # Sauvegarder les donnees dans un fichier texte

157 np.savetxt(’D_sim_N16_c06.txt’,D_opt_sim)

158 print("Les valeurs de D_opt_sim ont ete sauvegardees dans le

fichier.")

159

160 # Calcul de l’erreur

161 if choix_D_opt == ’1’:

162 err = max(abs(D_opt_sim - (2.0+(5.0 -2.0)*X)))

163 print(’erreur = :’, err)

164 elif choix_D_opt == ’2’ or choix_D_opt == ’3’:

165 err = max(abs(D_opt_sim - 10 * np.exp(-X / 0.25)))

166 print(’erreur = :’, err)

167

168 # Recalcul des resultats avec les parametres optimaux

169 C = c0(X)

170 Ch = C[0: N_plus_2]

171 Ctime_sim = np.zeros((M, N_plus_2))

172 Ctime_sim[0, :] = c0(X)

173

174 dt_stab = h**2 / (2 * max(D_opt_sim))

175 Q = int(ceil(dt / dt_stab))

176 dt_loc = dt / Q

177

178 for j in range(1, M):

179 for j2 in range(Q):

180 Cjh = Ch + dt_loc * (derivate_D_opt_sim * np.dot(Bh , Ch)) -

dt_loc * (D_opt_sim * np.dot(Ah , Ch))

181 Cjh [0] = Cjh[1]

182 Cjh[-1] = Cjh[-2]

183 Ch = Cjh

184 Ctime_sim[j, :] = Ch

185

186 # Afficher le vecteur inconnu C^j

187 print("Vecteur inconnu C^j a l’instant t_j :", Ch)

188
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189 # Calcul de la somme des residus

190 somme=np.sum(( Ctime_sim.T-Ctime_exp.T)**2.)

191 print(’somme_residus = :’, somme)

192

193 # Tracer les resultats recalcules

194 plt.contourf(Ti, X, Ctime_sim.T, np.linspace(0, 1, 20), cmap=’

seismic ’)

195 plt.xscale(’log’)

196 plt.xlim((dt, T))

197 plt.xlabel(’temps’)

198 plt.ylabel(’z’)

199 plt.grid(True)

200 plt.colorbar ()

201 plt.show()

202

203 # Carte des residus

204 plt.contourf(Ti, X, np.log(( Ctime_sim.T-Ctime_exp.T)**2.), 20, cmap

=’seismic ’)

205 plt.xscale(’log’)

206 plt.xlim((dt, T))

207 plt.xlabel(’temps’)

208 plt.ylabel(’z’)

209 plt.grid(True)

210 plt.colorbar ()

211 plt.savefig(’carte_residus.png’)

212 plt.show()
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