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Chapitre 1

Introduction

1.1 Contexte

La diffusion induite par le cisaillement est un mécanisme clé pour le transfert de
masse dans les écoulements granulaires. Dans de tels écoulements, les collisions
entre particules induisent des fluctuations de vitesse des grains qui entrainent le
mouvement des particules d’'une maniére analogue a la diffusion thermique dans les
gaz denses, ou encore a la dispersion induite par les tourbillons dans les écoule-
ments turbulents. Une telle diffusion induite par cisaillement est importante pour
les applications dans les écoulements granulaires industriels et naturels impliquant
le mélange et la ségrégation. Une étude a été menée sur 'influence de la pression de
confinement sur la diffusion et la ségrégation des particules dans les flux granulaires
sous cisaillement. A 'aide de simulations par DEM, les chercheurs ont constaté que
la diffusion est indépendante de la pression de surcharge tandis que la ségrégation
dépend fortement de cette derniére. Ils ont développé un modéle continu qui intégre
ces observations et ont montré que ce modeéle prédit avec précision les comporte-

ments observés dans les simulations DEM.

Notre problématique se concentre sur la compréhension des mécanismes de mélange
des grains dans un milieu granulaire monodisperse, ol tous les grains ont la méme

taille (en contraste avec les milieux polydisperses ou les grains ont des tailles va-
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riées). Nous focalisons particuliérement notre attention sur le processus de diffusion.
Avant d’examiner en détail I’équation de diffusion étudiée, nous avons réalisé une
manipulation expérimentale pour approfondir notre compréhension du phénomeéne.
Pour cela, nous avons placé deux couches de 50 millimétres de billes de polipropy-
lene de la méme taille (6 millimétres) de couleurs différentes (rouge et vert) dans
une cellule de cisaillement, créant ainsi un milieu granulaire monodisperse. Les li-
mites verticales de la cellule sont constituées de deux cylindres coaxiaux ayant des
diameétres extérieurs respectifs de 90 mm et 200 mm. La paroi supérieure peut se
déplacer librement verticalement mais ne peut pas tourner. On pose sur cette paroi
un certain nombre de masses d’acier, pour appliquer une charge variable sur le ma-
tériau granulaire. La paroi inférieure se déplace a une vitesse constante pour créer
un cisaillement. Les parois latérales sont lisses et les parois inférieure et supérieure

sont rugueuses. [I]

(a) (b)

FIGURE 1.1 — Détails sur la cellule de cisaillement

(a) Photo de la manipulation

(b) Schéma de la cellule. La plaque supérieure libre se déplace verticalement, mais
est soumise & une force M g et la plaque de fond tourne & une vitesse angulaire 1% [

Voici des images illustrant I’évolution des particules a différents moments :



) 0 min ) 5 min (¢) 10 min (d) 15 min (e) 20 min
) 25 min ) 30 min (h) 35 min (i) 40 min (j) 45 min
) 50 min ) 55 min )1 h 5 min ) 1 h 10 min

FIGURE 1.2 - Evolution du processus au cours du temps

Ces images montrent que le mélange des particules n’est pas uniforme sur toute la
hauteur. Pour analyser ce phénoméne de diffusion dans un cadre plus général, nous

nous intéressons a 1’équation de diffusion non stationnaire suivante :



avec :
— ¢ la concentration de grains
— D le coefficient de diffusion, non uniforme
Des conditions aux limites de Neumann sont imposées. Physiquement, les conditions
de Neumann représentent une condition de "flux imposé". Cela est particuliérement
adapté a notre cas, oll nous ne connaissons pas la proportion de billes d'un certain
type en contact avec la paroi, mais savons que les grains ne peuvent pas sortir du
systéme. Ainsi, le flux aux frontiéres est nul.
Remarquons que si D est une constante, nous retrouvons 1’équation de la chaleur

non stationnaire classique.

L’objectif de ce stage est d’estimer le coefficient de diffusion non uni-
forme D par inversion du probléme, a partir de données obtenues par
simulation numérique discréte. Dans un premier temps, il s’agira d’esti-
mer la concentration de grains ¢ en supposant que D est connu. Ensuite,
dans un cadre de probléme inverse, les valeurs de concentration obte-
nues seront utilisées pour tester une méthode d’estimation de D. Si la
méthode fonctionne, il sera alors possible d’estimer D pour n’importe

quelles données de ¢ déja obtenues.

1.2 Vocabulaire

Milieu granulaire : Un milieu granulaire est un ensemble de particules solides,
appelées grains, qui interagissent entre elles par des forces de contact. Ces particules
peuvent avoir différentes tailles et formes, allant de quelques micromeétres & plusieurs
centimétres. Les exemples typiques de milieux granulaires incluent le sable, le gra-

vier, les grains de café, ou méme des poudres comme la farine.



Les milieux granulaires présentent des propriétés a la fois solides et fluides, selon
les conditions. Par exemple, un tas de sable se comporte comme un solide lorsque
vous marchez dessus, mais il peut s’écouler comme un liquide si vous le versez d’un
récipient. Ces systémes sont complexes et ne peuvent pas étre décrits simplement
par les lois de la mécanique des fluides ou des solides traditionnels.

Les milieux granulaires sont d’intérét dans de nombreux domaines, tels que 1'ingé-
nierie civile, la géophysique, ’agriculture, et 'industrie pharmaceutique, en raison
de leurs propriétés uniques et des défis qu’ils posent en termes de manipulation et

de modélisation.

Diffusion : Le processus par lequel les particules se déplacent d’une région de
concentration plus élevée a une région de concentration plus faible, résultant en une
répartition plus uniforme des particules. En général, la diffusion est le résultat d’'un

mouvement aléatoire de particules.

Cisaillement : Un type de déformation dans lequel les différentes couches d’un ma-
tériau se déplacent les unes par rapport aux autres dans des directions parallélement
opposées a une surface ou & une interface. En contexte granulaire, le cisaillement se
produit lorsque des particules adjacentes glissent ou roulent les unes sur les autres

sous 'effet d’'une force appliquée.

Ségrégation : La séparation est la répartition inégale de différents composants
d’un matériau. En contexte granulaire, cela se produit lorsque des particules de
tailles ou de densités différentes se regroupent ou se séparent les unes des autres

sous l'effet de forces internes ou externes.

Flux granulaire : La quantité de matériau granulaire qui traverse une surface
donnée par unité de temps. Il peut étre exprimé en masse, volume ou nombre de

particules.



Pression de confinement : La pression exercée sur un matériau dans une direction
donnée en raison de la présence d’autres matériaux environnants ou de contraintes
externes. En contexte granulaire, il s’agit de la pression appliquée sur les particules
d’un matériau granulaire résultant de la superposition des couches de particules et

de toute pression externe appliquée sur le systéme.

Pression de surcharge : Il s’agit d'une pression supplémentaire exercée sur les

particules d’'un matériau granulaire due & une charge externe appliquée.



Chapitre 2

Etude du probléme

Soit €2 un domaine borné de R. Soit 7" > 0 un temps final. On considére le probléme
suivant :
- L (D)%) =0 VzeQ, Vteo,T]

c(z,0) =co(2) VzeEQ

Jc __
(9n_0

\

On suppose que D € C°(2) est bornée telle que
0 < Dy < D(2) < Doy < +00
et que ¢ € L*(9).

2.1 Existence et unicité de la solution du probléme

Ici nous montrons que le probléme posséde une unique solution sur un espace bien
défini. Pour cela, posons V' un espace de fonctions tests a déterminer.

Vv € V on effectue le produit scalaire dans L?(Q2) afin d’obtenir :

Oc 0 Oc
g avdz - /Q p (D(z)&) vdz =0
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En appliquant la formule de Green sur la deuxiéme intégrale nous obtenons :

Oc Jc Ov Jc
—ud D(z)——dz— [ D(z)— -nvdo =0
/Q('?tv z+/Q (2) 9, 9. - (Z)&z nvdo
Comme 2¢ = 0 et que et v(2) ne varient pas avec t alors :
d 80 81}

Exploitant le fait que z et ¢ jouent des roles trés différents, nous séparons ces variables
en considérant désormais la solution ¢(z,t) comme une fonction de ¢ & valeurs dans
un espace de fonctions définies sur 2.

Plus précisément, si 'on se donne un temps final 7' > 0 (éventuellement +o00) on

considére que ¢ est définie par

c:]0,T[—=V, twclt,-)

et nous continuerons a noter ¢(z,t) la valeur ¢(t)(z).
En choisissant V = H"*(Q) = {v € H'(Q), [, vdz = 0}, on peut alors mettre (2.1)
sous la forme d’une sorte d’équation différentielle ordinaire en ¢. On obtient ainsi la

formulation variationnelle suivante :

(PV) : Trouver ¢ fonction de ]0, T[ a valeurs dans H'*(Q) telle que

4 e(t),v)r2) +alc(t),v) =0 Yvoe HY(Q), 0<t<T
c(t=0)=co

Remarque 2.1.1. Le choix de H"* est puissant pour sa norme ||v|| g1y = [|Vv| 120
qui est la méme que celle de H}. Cette norme est nécessaire pour démontrer la

coercivité.

Définition 2.1.1. Soit X un espace de Hilbert, ou plus généralement, un espace

de Banach défini sur Q (typiquement, X = L2(2), H}(Q), H*(Q), ou C(Q2)). Soit un
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temps final 0 < T" < +o00. Pour un entier & > 0, on note C*([0, T]; X) I'espace des
fonctions k fois continiment différentiables de [0,7] dans X. Si on note |jv||x la
norme dans X, il est classique que C*([0,7T]; X) est un espace de Banach pour la

norme
k

[vller(o.m1:) = Z sup. H dtm< ) x
m=0

On note L*(]0,T[; X) Pespace des fonctions de |0, T dans X telles que la fonction

t — ||v(t)]|x soit mesurable et de carré intégrable, i.e. que

1
T 3
vl 2qo,rx) = (/0 ||v(t)||§(dt) < 400

Muni de cette norme, L2(]0, T'[; X) est aussi un espace de Banach. De plus, si X est
un espace de Hilbert, alors L*(]0,T[; X) est un espace de Hilbert pour le produit

scalaire

() esgnrin = | (u(®)0(0) e

Théoréme 2.1.1. Soient V et H deux espaces de Hilbert tels que V- C H avec injec-
tion compacte et V dense dans H. Soit a une forme bilinéaire symétrique continue
et coercive dans V' x V. Soit un temps final T > 0, une donnée initiale ug € H et

un terme source f € L*(]0,T[; H). Alors le probleme

au®), V) +alut),v) = (f(t),v)g YoeV, 0<t<T
(ot ’équation a lieu au sens faible dans |0,T[) posséde une unique solution u €
L*(]0,T[;V)NC([0,T); H). De plus, il existe une constante C'(2) > 0 telle que

lull2gorivy + llulleqorya < CQ) (luollar + 11l z2gozim)

Ici, H = L*(Q), V = H"(Q) et du fait que H"*(Q) est un sous-espace fermé de

H'(Q) on en déduit que H>*(Q) est dense dans L?(Q2) et par le théoréme de Rellich
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que l'injection de H'*(Q) dans L?(Q) est compacte. On a

a est clairement symétrique, et bilinéaire par linéarité de 'intégrale et de 0,-.

Montrons qu’elle est continue et coercive dans H'*(Q2). On a

dc, 0
la(c(t),v)] < /|D(z)||8—c||a—v| dz par inégalité triangulaire
Q z z
Oc ov ,
< DOOH%HLz(Q)H&HLz(Q) par Cauchy-Schwarz et D est continue
= Dosllel g o]l e par définition de la norme H**

Donc a est continue. De plus on a

v v
alo.0) = | DEIG2Edz 2 Dol 3 ey = Dollln-o

Donc a est coercive.
Ainsi par le théoréme 1.1.1, on en déduit qu’il existe une unique solution ¢ &€

L*(]0,T[; H*(Q)) N C([0,T]; L*(2)) au probléeme (PV).

2.2 Schémas aux différences finies pour le probléme

Soit T' > 0 le temps final. Nous considérons le domaine 2 = [0, 1] x [0, 7.

Transformons 'expression de I’équation de départ comme suit :

de 0 dc dc dc 0?2

——— (D)= )=0& ——-D'(2)— —D(2)=— =0 2.2

ot 82( ( >82) ot ( )82 ( >822 (22)
Pour approcher la solution de notre probléme, nous utilisons la méthode des diffé-
rences finies. Nous effectuons un maillage de I'espace et du temps dans le domaine €2,
en définissant les pas de discrétisation en espace et en temps respectivement comme

suit :
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t1@ ® ) ) ) ) ) ®

jo—
0=mz¢ Z1 T l=zn41 7

(zi,t;) sont les noeuds du maillage ott 'on cherche une approximation de la solution

en ces noeuds, i.e. ¢/ & ¢(z;,t;). On notera aussi D; ~ D(z;).

Soit
c
cj
oW — 1
CJN-H
le vecteur des inconnues a 'instant t; et
<o
0
co_ [ 4
C9V+1

le vecteur de la donnée initiale (& ¢ = 0).

On consideére I'approximation des dérivées aux noeuds (z;,t;) :

0371*24+CZ+1
h2

— g—zg(zi,tj) ~

14



0z 2h
ER T
5 N (pour le schéma implicite)
C
— (2, t5) =
8t( vy J) g,

j
“——— (pour le schéma explicite)

2.2.1 Le schéma explicite

Dans ce paragraphe, nous allons présenter le schéma explicite et examiner sa consis-

tance, sa stabilité et sa convergence.

J+1_J
. < 9 . . 80 ~ c —C
On considére I'approximation 37(z;, ;) ~ .

Ainsi nous pouvons réécrire I’équation (2.2) avec les approximations successives aux

noeuds du maillage :

e .= d =2+
7 (. D/ i+1 i—1 . Dz i—1 7 i+1 _ 23
At ' 2h h? 0 (2.3)
d’ou le schéma itératif : Pour i =0,.... N+1let j=1,... M +1
. At . . At . . .
At =d = SDd ) - D tad ) (24
ou sous forme matricielle :
CUtY = 0U) — AtB,,,CY — AtA,,CV) (2.5)
avec
2 -1 0 0 0 0 -1 0 0 O
-1 2 -1 0 0 1 0 -1 0 O
D, o0 -1 2 ... 0 0 D10 1 O --- 0 O
" h? : : S : : S5k, 2h
0 0 0 2 -1 0 0 0 0 -1
0 0 0 -1 2 0 0 0 1 0
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C’est un schéma explicite car on calcule CU+Y directement & partir de C'0)

Proposition 2.2.1. Sous la condition At < min (2;;2 ) DI ) le schéma est stable
en || - lloo 2 V7 tel que jAL < T, [|CY ]| < [|COs
Démonstration. Reprenons le schéma (1.3).
A At At , o
1
CZ+ = CZ - ﬁDz(CZ Cz7+1) - ﬁDi(_Czjel + QCZ - CZ+1)

; At At At ; At At
+1 _ — —_— D
<=)>C’Z _(ﬁDi—QhD)CJ +<1_2 Dz)cj+( D+ — Z)CZ+1

Par passage a || :

A OAE At At A
| < |75 Di = 5y Dillelal + 1= 255 Dillell + |53 Di + =Dl

L. . h2 h X
Sous la condition At < min (m, m) :

; At At At , At At
7 < (D= 50 IC e+ (1= 255 D) IC N+ (5D 5200 1CO
< NC9s

Donc

OV e < 19

. Par récurrence sur j = 1,..., M + 1 on en déduit que

109 |oe < 1C|oc

d’ot la stabilité du schéma en || - |-

]

Définition 2.2.1. On définit II,c(t) le vecteur de la solution exacte aux points z;

3 Dinstant ¢ :
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c(zny1,t)

et e,(c)Y) Terreur de consistance a l'itération j :

, Iye(t;ng) — Hpe(t;
Eh(C)(J) - h ( ]+1)At h ( j) + Bhﬂ'HhC(tj) —+ Ah’iﬂhc(t]‘)

Proposition 2.2.2. Si ¢ solution du probleme est de classe C* relativement a z et
de classe C? relativement a t, alors le schéma est consistant en || - ||oo, d’ordre 3 en

espace et d’ordre 1 en temps.

Démonstration. Pour ¢ =0,..., N +1 on a

€h<c)gj) = E (C(Zi, f}j+1) — C(Zi, tj)) + BhJHhCZ(J) + Ah,iHhCZ(J)
1 D/(Zi) .
= Kt (C(Zi, t]’ + At) — C(Zi, t])) + 9% (C(Zifl, tj) — C(qurl, t])) +
D(Zz)

(—c(zi-1, tj) + 2¢(2;, tj) — c(ziy1, tj))

¢ étant assez réguliére, on peut effectuer des développements limités de ¢ au voisinage

de 0. Ainsi :

(At)? 9%c

dc o%c
2 Ot?

ot

c(ziyty+ At) = ez, ty) + At— (2, t;) + (2i,75):75 € [tj,t; + At

1 oc At 0?c
= X (c(zi, t; + At) — c(zi,t5)) = E(Zivtj) + 7@(%%‘)% € [t),t; + At]

De méme on a

O ) IR e ot

c(zi—1,tj) = c(zi—h,t;) = C(thj)—h&(ziatj”——

ol a; € [z — h, z]

17



Et

oc h? 9%c h? &3¢ h* 9
C<Zi+17tj) - C(Zi+h7 t]) - C(Zla )+ha (Zu )+ 2 92 2<Zl>t )+€%(Zlat]) 24(9 4

ol ﬂl € [Zi,Zi -+ h]

Donc
D'(z) D'(z) dc h? &*c
o (Clzimnty) = elzivn, ) = —5 = | —2hg-(20,ty) — 5 55 (2, 1)
h* 9t h* 9*c
+ﬂﬁ( g, tj) — ﬂ@(ﬁu%))
Et
D(2)

- d%c h? 9*c
12 (—c(zic1,t)) + 2¢(zi, t;) — c(zig1,t5)) = D(z) <—@(%t]’) - E@(%t;’))

ol ¢Z € [zl—h,zl—l—h]
(4)

En remplagant les expressions précédentes dans €,(c);”’ on obtient :
N Oc At 9?c dc
en(@)) = 5 (i t) + 5 55 (%) = D' (2)5 (e ty)
h? &3¢ h3 9*c h3 &*c
_D/( ) 6 Oz 3(Z’L7 )+D(Zz>48a 4(06“75]) D/(zl)@@(ﬁut])
92 h2 9c

- D(%)@(Zi, tj) — D(Zi)ﬁﬁ(gbi;tj)

En utilisant le fait que c(2;,t;) est solution de % — D'(2)% — D(z)% =0 et en

regroupant les termes en D’(z;) on obtient :

N At 9% , h* 93¢ h3 dtc h3 9'c
en(e)? = 6752( zi,7;) — D'(zi) (g@(%tj) BT A R ree 4(@7 ]))
h? 0
- D@z’)ﬁ@(%t;’)

18
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Donc

2 2 | 93 4 394
() At |0%c ’ h® |0°c 0%c h 8
len(c);’| < —- 5 atg(%%) + D, (g @(zi,tj) s @(%ta’) T (ﬁu tj)
84
+ Doors | 55200 1)
At 2 ‘ h? Pc h3 de
< — sup |=—(z,0)|+ D | —= sup |=—=(2,0)| +—= sup |=—(z,¢t)|+
2 seo] 8752( ) 6 zeo 823( ) 48 o] 824( )
te[0,7) te[0,T te[0,7
h3 e 2 e
—_— —_ t DOO_ 7t
B2 o >\ TP b e >\
t€[0,T] t€[0,T]
At h? h3 h? 0%c Pc e
<|—+D_—+D_—+ Dy )max sup | == , sup —‘
(2 6 24 12 z€[0,1] 81& wG[O 1] 82 xE[U,I] 824
te[0,7) te[0,T te[0,7)
Donc
2 3 2 2 3 4
() 1 ( ’ h ’ h h 0“c 0°c 0*c
en(c); | < - |At+ D —+ D —+ D max | sup |=—=|, sup |=—=|, sup |—
lene):” 2 3 12 6 ve0.1] | Ot? | zepa] | 023 | zeo) | 02
te[0,7) te[0,7] te[0,7)
Par passage au max sur j =0,.... M +1etsurv=0,.... N +1:
- h? h3 h? 0%c e e
) At+ D\ — + D\ — + Dy — —
o<t 160() o < ( P+ Doy Doy + Do Jmax | b (5| S0 (555 | S0 (50t
t€[0,T] t€[0,T] t€[0,T]
d’otut la consistance du schéma d’ordre 3 en espace et 1 en temps.
m
Proposition 2.2.3. Si la solution ¢ du probléeme est de classe C* en espace et C*
en temps alors sous la condition At < min (222 ) B ) le schéma est convergent en

| - [|oo; d’ordre 3 en espace et d’ordre 1 en temps.

Démonstration. Pour étudier la convergence du schéma, on considére erreur e¥) a
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I'instant ¢; :

On a

CcUth) = cU) — AtB,, ,CYD — AtA, ,CY9)

Hhc(tj+1) = Hhc(tj) — AtBhiHhC(tj) — AtAhiHhC(tj) + Ateh(c)(j)

Donc par différence :
Ut = — AtBy, el — AtAy e () — Atep(c) ()
Pour s =0,...,N + 1,

e = o) — AtBy et — AtAy el — Aten(e))

; At , ; At
= e = g Dilelth = ef) = 5 Dil=els + 267 - M>mu>>

At AN\ At o, (At At 3)
- (ﬁD QhD) e + (1 _zﬁDi) e+ ( Gz Dit gDt ) eih — Aten(e)?

Par passage a || et sous la condition de stabilité on en déduit que :

; At At At ; At At
|€§]+1)| S (hQD - Qh ) |6 |+ (1 _QED) |ez('J)| + (hQD + %D/) | z+1| +At|6h( ) |

Donc

, At At : At : At At ,
(60 < (D= S0 16+ (1= 255 D) 16+ (5D 5000 e

+ Atflen(c) V|

< e + Atfler(0)

Pour j =0 ¢ @l < [le@]]oc + Atflen () e < Atflen(c)]loc

20



Pour j =1:

le® oo < lleMloo + Atllen(c) ™Vl

< At (flen(e)Vloo + llen(e)@llc)
Par récurrence sur 7 = 0,..., M + 1 on en déduit que Vj tel que jAt < T :

€Dl < At (en(©5 Ve + -+ llen (@) Vo + 1en(©) 1)

< ; ()
<At (0

<T max Heh(c)(j)Hoo

0<j<M+1
T h? h3 h? 0%c dc e
< — At+Dgo—+DéO—+DOO—> max | sup |==|, sup |=—=|, sup |=—
2 ( 3 12 6 vef0] | Ot | ze) | 023 | w0 | 024
te(0,7 tel0,7 te(0,7
< Const(z,T)(h* + At)
d’ou la convergence du schéma en || - ||oo, d’ordre 3 en espace et 1 en temps.
]
2.2.2 Le schéma implicite
o
Cette fois-ci, nous approchons %(zi, t;) par o XZ afin d’obtenir le schéma suivant :
CVU) = CU=D — AtB,,,CY — AtA,,;CY (2.6)
& (14 AtBy; + AtA,,;) C9 = U~ (2.7)

Ce schéma est implicite car on doit résoudre un systéme pour calculer C'9).

Posons Y} ; = I + AtBy,; + AtAy,; et montrons qu’elle est inversible.

Vo #0, (Yaw,v) = (v,0) + AUByv, v) + At(Apv,v) > 0
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car v # 0, et Ay, et By, sont définies positives.

Donc Y}, ; est définie positive, donc inversible, donc le schéma est bien défini.

Proposition 2.2.4. Soit ¢,(c)Y9) lerreur de consistance :

_ Mpe(ty) — Mne(t;—1)

6h(c)(j) ~

+ By Ipe(t;) + Apillne(t;)

Si ¢ est de classe C* en espace et C? en temps, alors le schéma est consistant en

| lloo, d’ordre 3 en espace et 1 en temps.

Démonstration. C’est comme pour le schéma explicite.

]

Proposition 2.2.5. Le schéma est stable et convergent en || - || avec méme ordre

de convergence que la consistance, sans condition sur h et At.

2.2.3 Reésultats numériques obtenus

Nous commencons par tester nos schémas en utilisant un nombre de points intérieurs
N = 98 et un temps final 7" = 0.01. Pour la méthode explicite, le pas de temps est
fixé a At = % afin de satisfaire la condition de stabilité. Pour la méthode implicite,
nous fixons At = 0.001.

La condition initiale choisie est

1 si z>0.5,
co(z) =
0 sinon.

Nous appellerons cette condition la condition initiale de référence.

Nous choisissons une diffusion linéaire
D(Z) = DQ + (Doo — DQ)Z,

avec Dg=2et D = 5.

Nous nous attendons a ce que la solution converge vers un état stationnaire une
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fois que le mélange des grains soit terminé. Un contour est tracé pour visualiser le
) . ) . .
mélange, ce qui permet d’observer les valeurs de concentration en fonction du temps

et de la position dans l’espace.

| 1)

- .

1.4 BT 191

r

i I_I 14 4

i (¥ a71

W ] L 7
g

(a) Contour (b) Estimation de ¢ au temps final

a

&

FIGURE 2.1 — Résultats pour le schéma explicite
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- ; an 4
T § s il
e N . T
' - B |
: ¥
1 ol FmbEdm Y gl
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(a) Contour (b) Estimation de ¢ au temps final

FIGURE 2.2 — Résultats pour le schéma implicite

Le résultat obtenu n’est pas celui attendu, car la solution au temps final n’est pas
encore stationnaire. Cela est di au fait que le temps final T initialement choisi est
trop court. Pour remédier a ce probléme, nous avons désormais fixé ' = 1 et N = 48,
ce qui devrait étre suffisant pour obtenir une solution stationnaire. Nous obtenons

alors :
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(a) Contour (b) Estimation de ¢ au temps final

FIGURE 2.3 — Résultats pour le schéma explicite

(a) Contour (b) Estimation de ¢ au temps final

FIGURE 2.4 — Résultats pour le schéma implicite

Cette fois-ci, nous obtenons le résultat attendu. Nous observons que, dans le cas im-
plicite, le mélange commence & se produire autour du temps 7" = 1072 pour z = 0.8,
tandis qu’il est immédiat pour z = 0.45 et z = 0.55. Les mémes observations s’ap-
pliquent au cas explicite. Dans les deux méthodes, la solution se stabilise au méme

temps 7T, juste en dessous du seuil 1071,

Pour la suite, nous nous limitons au schéma explicite. Nous donnons d’autres résul-

tats en prenant d’autres profils de conditions initiales ¢y :
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1 si z> %
(a) co(2) =
0 sinon

(d) co(2) = /2 (e) dizaine de couches de 0 et 1

—~

f) co(z) = 1 + L sin(1072)

FIGURE 2.5 — Profils de concentration

Ainsi, la solution finit par se stabiliser quel que soit le choix de ¢y. Ce choix n’af-
fecte donc pas le résultat final. Cependant, il influence le processus de mélange, en
particulier les deux derniers graphes montrent clairement que le mélange est plus

prononcé en tout point de I'espace.

Enfin, nous considérons un profil exponentiel pour D(z) défini par

avec Do, = 10 et 2y = 0,25. Ce choix permet d’obtenir un profil de diffusion qui
est beaucoup plus hétérogéne. Nous examinons ensuite les résultats obtenus pour

différents profils initiaux c¢y(z) illustrés dans les figures ci-dessous :
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(e) Profil en plusieurs couches de 0 (f) ¢o(z) = 3 + 5 sin(107z)

et 1

FIGURE 2.6 — Profils de concentration

Nous observons que la solution se stabilise plus tardivement que dans le cas linéaire,
en raison de la nature exponentielle du profil de diffusion D(z). Ce retard dans la
stabilisation peut étre attribué a une diffusion plus lente dans certaines régions de
I’espace, notamment celles ou z est élevé, puisque la diffusion est exponentiellement
atténuée en fonction de z.

En examinant les différents profils, nous constatons que le mélange des grains est
fortement influencé par la forme initiale de cy. Par exemple, pour les profils o ¢y(2)
présente une transition abrupte (comme dans le cas du profil en plusieurs couches
ou du profil sinusoidal), le processus de diffusion est moins uniforme.

A T'inverse, pour les profils olt cy(z) est lisse (comme les cas oil co(2) = z ou ¢o(2) =
V2), le mélange est plus progressif. Cependant, méme dans ces cas, la diffusion
exponentielle entraine une stabilisation plus lente par rapport aux situations ou la

diffusion suit un profil linéaire.
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Ces résultats soulignent I'importance de la nature de la diffusion D(z) et de la
condition initiale ¢y(z) dans la dynamique de mélange des grains, en influengant a

la fois la rapidité du mélange et la distribution finale des concentrations.
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Chapitre 3

Un probléme d’optimisation pour

estimer D

Apreés avoir étudié différents schémas pour 'approximation de la concentration, nous
nous tournons maintenant sur l'estimation de la diffusion D & partir de données
de concentration obtenues. L’estimation précise de D est essentielle pour mieux
comprendre et prédire les phénomeénes de diffusion dans les milieux granulaires.
Pour ce faire, nous adoptons une approche d’optimisation basée sur le principe du

maximum de vraisemblance.

3.1 Le principe du maximum de vraisemblance

3.1.1 Contexte

Soit un modele M. La vraisemblance du modéle est définit comme la probabilité

que ce modéle ait donné lieu a des données observées.

Exemple 3.1.1. Une piéce de monnaie que 1'on jette n fois. On cherche & déterminer
la probabilité que la piéce tombe sur pile, se basant sur le nombre de fois ou elle est

tombée sur pile ou face.

Le maximum de vraisemblance est une méthode statistique largement utilisée pour

estimer les paramétres d'un modéle (probabiliste). L’idée est de choisir les valeurs
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des paramétres qui maximisent la probabilité des données observées étant donné le
modéle. Plus formellement, si 6 représente le vecteur des paramétres du modeéle et
x ’ensemble des données observées, alors le maximum de vraisemblance cherche a

trouver # qui maximise la fonction de vraisemblance L(z|6) :
0 = arg max L(x|6)

Définition 3.1.1. La fonction de vraisemblance L(z|f) est une fonction de densité
de probabilité conditionnelle qui mesure la probabilité de 1’échantillon observé x
étant donné les paramétres du modéle 6. Pour un ensemble de données indépendantes
et identiquement distribuées, la fonction de vraisemblance pour n observations est

le produit des densités de probabilité :

n

L(x|0) = [ [ f(x:l0) = H Jo(w:)

i=1

A x = (x4, ..., z,) fixé, on cherche & trouver le maximum de cette vraisemblance pour
que les probabilités des réalisations observées soient aussi maximum que possible.

Ceci est un probléme d’optimisation.

3.1.2 Calcul d’un estimateur du maximum de vraisemblance

On utilise généralement le fait que L est dérivable (ce qui n’est pas toujours le cas).
Si L admet un maximum global en une valeur 6 = é, alors la dérivée premiére
s'annule en 6 = 0 et la dérivée seconde est négative. Réciproquement, si la dérivée
premiére s’annule en 6 = 6 et que la dérivée seconde est strictement négative en
0 = 6 alors O = 0 est un maximum local de L(z|). Il est nécessaire de vérifier qu'il
s’agit bien d'un maximum global. La vraisemblance étant positive et le log népérien
une fonction croissante, il est équivalent et souvent plus simple de maximiser le log
népérien de la vraisemblance (le produit se transforme en somme, plus simple a
dériver).

e Parameétres du modéle :
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0= (D07 DOO7 20, Dvalues)

e Données observées :

x : les mesures de la concentration de grains a différents points dans le temps et
I’espace.

e Estimation des parameétres optimaux :

é = (D07 5007 ZAO» DU;lues)

3.1.3 La vraisemblance pour notre probléme

Etant donné que nous travaillons avec des données continues, la densité de probabi-
lité fy(x;) peut-étre représentée par une densité de probabilité continue, par exemple
une loi normale.

Ainsi
n

=1

3.1.4 Pourquoi supposer une distribution normale ?

(i) [Théoréme Central Limite] Pour de nombreux processus aléatoires, la somme (ou
la moyenne) de nombreuses petites perturbations indépendantes tend vers une loi
normale centrée réduite N'(0,1) en vertu du TCL. Cela justifie souvent I’hypothése
de normalité pour les erreurs de mesure ou les résidus dans les modéles scientifiques.
(i) [Simplicité mathématique| La loi normale a des propriétés mathématiques qui
facilitent I'estimation et l'inférence statistique. En particulier, la forme de la fonc-

tion de vraisemblance est bien connue et tractable.

3.1.5 Lien avec le code Python (voir annexe |\ partie opti-

misation

Pour le code, nous avons fait les hypothéses suivantes :

(1) Les résidus (différence entre les valeurs simulées & temps consécutifs) suivent une

30



distribution normale. Ces résidus sont supposés étre normalement distribués avec
une moyenne de 0 et variance 2. Ici 02 est arbitrairement fixé a 1. Cela simplifie les
calculs et permet de maximiser la log-vraisemblance sans estimer o? séparément.

(ii) La vraisemblance est donnée par :

Donc la log-vraisemblance est donnée par :

n

1
i=1

(4: = 1i(0))? = 5 log(2r0%)

ol y; sont les données observées et p;(#) les valeurs prédites par le modéle de diffusion
pour les paramétres 6 (dans le code, y; = Ctime sim et p;(#) = Ctime exp).

En fixant o2 a 1,
log L(z|0) = 1 Z(TesidualSQ) o (2m)
g -3 5 g

En maximisant cette log-vraisemblance, nous estimons les parameétres 6 qui rendent
les observations les plus probables sous le modéle donné.

(iii) Dans le code, la fonction de vraisemblance est basée sur la différence entre les
concentrations simulées a des temps consécutifs. Si les concentrations simulées sont
proches des valeurs observées, cela signifie que les paramétres utilisés pour générer
ces concentrations sont probablement proches des valeurs réelles des paramétres de

diffusion.
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3.1.6 Algorithme : Estimation de la Fonction de Diffusion

Algorithm 1 Estimation de la Fonction de Diffusion

1: Initialisation

2: Demander a 'utilisateur de choisir une fonction de diffusion.
3: Initialiser les paramétres en fonction du choix de 'utilisateur.
4: Définition des Paramétres

5. Définir le pas en espace h et le pas de temps dt.

6: Définir la condition initiale de concentration cy(z).

7: Construire les matrices Aj, et By,

8: Définir la Fonction de Diffusion

9: Définir la fonction de diffusion D(z) et sa dérivée en fonction des paramétres.

10: Implémenter une fonction de vraisemblance pour optimiser les paramétres de

D(z).
11: Optimisation
12: Définir les paramétres initiaux et les bornes pour 'optimisation.
13: Mesurer le temps de début et de fin de 'optimisation.
14: Afficher le temps d’exécution et sauvegarder les valeurs optimales de D(z).
15: Afficher les résultats de la fonction de diffusion estimée.
16: Recalcul et affichage
17: Recalculer le vecteur inconnu CV & linstant ¢; avec les parameétres optimaux.
18: Afficher les résultats recalculés avec les nouveaux paramétres.
19: Calcul de la somme des résidus.
20: Tracer une carte des résidus.

21: Calcul de I'erreur entre D expérimentale et D optimale.

3.2 Fonction minimize de scipy.optimize

Pour effectuer I'optimisation, nous avons utilisé a fonction minimize de la bi-

bliothéque scipy.optimize. Elle cherche & minimiser une fonction objectif donnée
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en ajustant les valeurs des paramétres. Dans notre cas, cette fonction est utilisée
pour trouver les parameétres optimaux de la diffusion en ajustant un modéle a des

données expérimentales en minimisant une fonction de log-vraisemblance.

3.2.1 Fonction objectif : 1ikelihood_function

La fonction minimize tente de minimiser une fonction objectif, ici définie comme
likelihood_function. Cette fonction calcule 'erreur entre les données simulées
(calculées a partir des paramétres de diffusion) et les données expérimentales (Ctime_exp).
La fonction de log-vraisemblance est utilisée pour mesurer cette erreur, en supposant
que les résidus suivent une distribution normale. Plus cette erreur est faible, plus les

parameétres du modele ajustent bien les données.

3.2.2 Paramétres initiaux : x0

Les paramétres a estimer (comme Dy, Do, ou les valeurs segmentées dans le cas de
la diffusion par morceaux) sont passés a la fonction minimize via ’argument x0. Ces
parameétres représentent une estimation initiale du modele. Le choix des paramétres

initiaux dépend du type de diffusion sélectionné par 1'utilisateur (choix_D_opt).

3.2.3 Meéthode d’optimisation : L-BFGS-B

La méthode L-BFGS-B est une méthode de descente de gradient, adaptée pour les
problémes de grande taille, et permet d’imposer des bornes sur les parameétres. Dans
notre cas, nous imposons des bornes sur les valeurs des paramétres avec I'argument
bounds, par exemple :
— Pour une diffusion linéaire : bounds = [(0.05, 10), (0.05, 10)] contraint
les valeurs des paramétres entre 0.05 et 10.
— Pour une diffusion exponentielle ou par morceaux, des bornes spécifiques sont

également appliquées.
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3.2.4 Boucle de simulation dans likelihood_function

Pour chaque jeu de paramétres, une simulation est effectuée pour calculer la diffusion
a chaque pas de temps. Cette simulation calcule I’évolution de la concentration au
fil du temps en fonction de la diffusion choisie, en résolvant numériquement les équa-
tions différentielles discrétisées. La simulation produit un tableau de concentrations

simulées que 1’on compare aux données expérimentales.

3.2.5 Reésidus et fonction de log-vraisemblance

Une fois la simulation terminée pour un jeu de paramétres donné, la différence entre
les concentrations simulées (Ctime_sim) et expérimentales (Ctime_exp) est calculée.
Ces différences, appelées résidus, sont normalisées pour produire une fonction de log-
vraisemblance :

Ctime_sim — Ctime_exp

residuals = - +e€
Ctime_exp

log_likelihood = Z (residualsQ)

La division des résidus par Ctime_exp + ¢ (ou € est une petite valeur, ici 107°) est
utilisée pour normaliser les résidus. Voici les raisons principales de cette approche :
1. **Normalisation des résidus™* : En divisant par Ctime_exp, on exprime les résidus
en termes relatifs plutdt qu’absolus. Cela permet de mieux gérer les situations ot les
valeurs de Ctime_exp peuvent varier considérablement. Les erreurs relatives donnent
un meilleur apercu de la qualité de 'ajustement lorsque les valeurs de Ctime_exp
sont petites ou grandes. Sans cette normalisation, les grandes valeurs de Ctime_exp
pourraient dominer la fonction de vraisemblance, tandis que les petites valeurs se-
raient sous-estimeées.

2. **Prévention des divisions par zéro** : Le terme € = 107% est ajouté pour éviter
la division par zéro lorsque Ctime_exp est proche ou égale a zéro. Cela garantit que
la fonction de vraisemblance reste stable, méme si certaines valeurs de Ctime_exp

sont trés petites ou nulles.
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La fonction minimize ajuste alors les paramétres de maniére & minimiser cette
somme des carrés des résidus, ce qui revient a maximiser la vraisemblance de I’ajus-

tement du modéle aux données.

3.2.6 Reésultats de optimisation

Une fois l'optimisation terminée, minimize renvoie un objet contenant les para-
meétres optimaux dans result_simulation.x. Ces paramétres sont ceux qui mini-
misent la fonction de log-vraisemblance et ajustent donc au mieux la diffusion aux
données expérimentales. Le code affiche ces paramétres et les sauvegarde dans un

fichier texte.

3.2.7 Résumé

— Objectif : Minimiser une fonction de log-vraisemblance qui mesure 1’ajuste-
ment entre des données simulées et des données expérimentales.

— Meéthode : minimize ajuste les paramétres en utilisant une méthode de
descente de gradient tout en respectant des contraintes de bornes pour trouver
les parameétres qui minimisent ’erreur entre simulation et données réelles.

— Paramétres initiaux et contraintes : Ils sont fournis selon la fonction de
diffusion choisie.

— Reésultat : Un jeu de paramétres optimaux est trouvé, enregistré, et utilisé

pour prédire la diffusion.

3.3 Résultats numériques

3.3.1 La méthode fonctionne-t-elle ?

Dans cette partie, nous allons tester la méthode sur des solutions de concentra-

tion générées avec une diffusion D prédéfini. Par exemple, nous pouvons générer
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une solution en choisissant une forme fonctionnelle pour D (linéaire, exponentielle,
etc.), puis, a partir des données de concentration obtenues, estimer les paramétres
de D pour voir dans quelle mesure nous nous rapprochons des valeurs initiales. Bien
que nous ne nous attendions pas a retrouver exactement ces valeurs, une bonne
approximation indiquerait que la méthode est prometteuse. Pour les profils linéaire
et exponentiel, 'estimation nécessite a chaque fois la détermination de deux para-

meétres : Dy et Do, pour le profil linéaire, et zy et Do, pour le profil exponentiel.

Nous commencons par générer une solution en utilisant un profil linéaire de D
avec les paramétres Dy = 2 et Dy, = 5, tout en appliquant la condition initiale
de référence. Cette approche permettra d’évaluer la précision de ’estimation des pa-
rametres en comparant les résultats obtenus avec les valeurs initiales utilisées. Voici

les résultats obtenus :

Cfrar peen aiiie O Gid &t O anp

T e b (bl arsl v

Ml opf = 1.90FHETY
and el ok = 4. eI

FIGURE 3.1 — Comparaison entre D expérimentale et D optimale
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(a) (b)

FIGURE 3.2 — Résultat de 'optimisation : (a) Profil de concentration recalculée ; (b)
Carte des résidus

Nous observons que la diffusion estimée se rapproche fortement de la diffusion ex-
périmentale, avec des parameétres optimaux qui valent respectivement 1.99999874
et 4.9999987. L’erreur entre les deux fonctions est de 'ordre de 107%, ce qui est
trés satisfaisant. En utilisant ces nouveaux paramétres estimés pour D, nous avons
tracé un contour de la concentration, et celui-ci se révéle semblable & celui présenté
dans la Section [2.2.3 Figure avec les parametres initiaux. La carte des résidus
révele que les différences entre les valeurs de concentration expérimentales et celles

estimées sont trés faibles. Ainsi la méthode semble étre efficace.

3.3.2 Reésultats avec d’autres profils de ¢

Nous considérons des solutions de concentration obtenues & partir des conditions
initiales décrites dans la partie précédente, illustrées dans la légende de la figure [2.5]

et en utilisant le profil de diffusion exponentielle

z

D(2) = Duesp (-2 )

20

avec Do, = 10 et 2y = 0.25. Nous cherchons a savoir si la condition initiale affecte
Iestimation des paramétres de la diffusion, afin de pouvoir considérer & ’avenir
des données de concentrations plus pertinentes. La diffusion sera estimée par une

diffusion optimale réguliére par morceaux. Pour établir un lien avec les paramétres
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estimés mentionnés dans la partie , nous faisons référence aux parameétres Dv;lues
(ce sont donc les D; qu’'on estime). Nous générons des valeurs aléatoires réparties
sur un nombre de segments prédéfinis : par exemple, si nous générons deux valeurs,
la diffusion aura la forme d’un segment. Il s’agit donc de faire varier le nombre de
parameétres D; pour voir aussi son impact sur ’estimation.

Les résultats obtenus avec la condition initiale définie par un sinus, ainsi qu’avec
celle valant 0 ou 1 en certains points, suggerent que ’augmentation du nombre de
parameétres D; améliore la précision de la méthode, comme nous pouvons le voir

ci-dessous :

Dz}

FIGURE 3.3 — Comparaison de D expérimentale avec différentes estimations en
utilisant c¢o(z) avec une dizaine de couches de 0 et 1 (en légende, Nx signifie x
points)
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(a) somme des résidus (b) erreur entre Dsim et Dexp

M

FIGURE 3.4 — Suite des résultats de 'optimisation
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F1GURE 3.5 — Comparaison de D expérimentale avec différentes estimations en
1

utilisant co(z) = 3 + sin(107z) (en légende, Nx signifie x points)
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B M b o Mx
(a) somme des résidus (b) erreur entre Dsim et Dexp

FIGURE 3.6 — Suite des résultats de 'optimisation

Ces résultats montrent que l'approximation de D s’améliore avec 1'augmentation
du nombre de parameétres estimés. Cependant, ce n’est pas toujours le cas. En ef-
fet, si nous prenons en compte la condition initiale de référence, nous observons
une augmentation significative de ’erreur lorsque nous passons a l'estimation de 32

parameétres, bien que la somme des résidus reste faible :

Dz}

F1GURE 3.7 — Comparaison de D expérimentale avec différentes estimations en

1 osi z2>1%
utilisant ¢o(z) = 2 (en légende, Nx signifie x points)

0 sinon

40



Lorireed D% résithas
fi
Erreur

(a) somme des résidus (b) erreur entre Dsim et Dexp

FIGURE 3.8 — Suite des résultats de 'optimisation

Ces résultats montrent que le nombre de points influence clairement ’estimation
des parameétres (mais pas toujours comme on pourrait s’y attendre), tout comme le
choix de la condition initiale.

Nous tracons un graphe des temps d’exécution pour illustrer que 'augmentation du

nombre de points entraine une augmentation correspondante du temps d’exécution.

Temps d'exécution en fonction de N_values
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Etant donné que nous disposons de 50 points z; en espace, estimer 50 valeurs D; pour

maximiser la précision et vérifier la diminution de 'erreur serait trop contraignant.
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En effet, ce processus prend déja environ 3 heures pour 32 valeurs.

3.3.3 Reésultats avec des données de concentration plus pertinentes

La derniére tache de ce stage consistait a estimer un profil de diffusion a partir de
données de concentration obtenues via des simulations numériques. Cette analyse se

base sur la configuration illustrée sur la figure suivante [2] :

F1GURE 3.9 — Configuration d’écoulement concave étudiée avec son profil de vitesse.
La concavité du profil dépend de la fraction volumique des solides (nommée ¢ pour
la suite) et de 'accélération g. Le jaune plus clair correspond a la plus grande vitesse
a droite, tandis que le bleu plus foncé indique une plus grande vitesse & gauche

Les données de concentration ¢; pour ¢ : 1,...,20 sont enregistrées dans un fichier
texte. Cependant, nous ne disposons ni d’information sur la condition initiale, ni sur
le comportement expérimental de la diffusion. Seules les données ¢; sont connues.
L’objectif est de trouver la meilleure estimation des paramétres de diffusion pour
quatre expériences nommeées respectivement ¢053-g3, ¢055-g01, ¢057-gl et ¢057-
g10, en approchant le profil de diffusion par une fonction continue par morceaux,
et d’examiner si cette estimation dépend du profil de vitesse dans chaque cas. ¢ re-
présente la fraction du volume de I’échantillon occupé par les billes en moyenne. En
pratique il est lié au nombre des grains du systéme. Dans les titres des expériences
nous avons les valeurs de ¢ et g. Pour le méme g, en baissant ¢ nous pouvons passer
d’un profil de vitesse linéaire a un non-linéaire. Voici les différents profils de vitesse

des expériences :
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(a) ¢053-g3 (b) $055-g01
e . e
(c) ¢057-gl (d) ¢057-g10

FIGURE 3.10 — Profils de vitesse pour chacune des expériences

3.3.3.1 Premiére expérience ¢053-g3

Pour cette premiére expérience, la meilleure approximation de D a été obtenue avec
18 valeurs D; générées, avec une somme des résidus relevée a 0,07. Le graphique
ci-dessous illustre que I'augmentation du nombre de valeurs D; générées n’entraine
pas nécessairement une diminution de la somme des résidus. En effet, on observe
une augmentation notable de cette somme lorsque 1'on passe a 19 valeurs. Cette
variation est également visible sur le profil estimé de D, qui s’éloigne sensiblement
du profil obtenu avec 18 valeurs. Ce constat est en adéquation avec notre analyse

de la partie [3.3.2l Le profil estimé de D suggeére par ailleurs une forme gaussienne.

43



l. "

& F PP
H_wluﬁ

FIGURE 3.11 — Somme des résidus en fonction du nombre de D; généré

T I
1 i
! |
F .-ﬁ.“ O A g N U g R A N S T [T N O W N g N N W M W e
1 em {
R | - TR
Y .'" %, %]
¥ A /!'l e o "y
Tgas o
.I e
— :_:.- s ]
E. A et Eem e St -l-—'-f.:".-. -:- :_:
ot e o e, _w- IR
5 o LE L - W
1. ‘___.i" .‘,._,“- -._.:'«,‘k 'l-“_ .
1 - - L f
s W [N
§ b R R | e !
|II ‘_a :I' '\-‘I"rlll_ NI:...-" '|: 'l\., :'
7 f i '..l Y uf
A | X A
W Wl [
foNF L R
TR A
e [ opp—— [l — Y
[ ] u L) L) an
S

FIGURE 3.12 — Profils d’estimation de D

Nous avons également illustré différents profils de concentration, incluant celui cor-
respondant a la concentration expérimentale (les ¢; issus du fichier texte), ainsi que

celui obtenu pour la concentration estimée avec la meilleure estimation de D, afin
de permettre une comparaison
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(a) (b)

FIGURE 3.13 — Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N18

Les deux profils sont similaires, ce qui confirme que le profil de D estimé avec 18

valeurs générées est celui qui se rapproche le plus du profil de diffusion expérimental.

3.3.3.2 Deuxiéme expérience ¢055-g01

Ici, la meilleure estimation a été obtenue avec 17 valeurs D;, pour une somme des
résidus valant 0,07. Avec 19 valeurs, nous obtenons également une bonne approxima-
tion avec une somme des résidus valant 0,08. Contrairement a la premiére expérience,
I’estimation avec 18 valeurs est moins concluante puisque la somme des résidus est

relevée & 0,72.

Sofeme des résidus

& & & - &l 0 G e e e
N_wvalisas

FIGURE 3.14 — Somme des résidus en fonction du nombre de D; généré

45



Diz)

FIGURE 3.15 — Profils d’estimation de D

Nous observons que la partie centrale du profil N17 présente un comportement
uniforme, ce qui est directement lié¢ au profil de vitesse linéaire illustré dans la figure
B.10] Cela suggére que le profil de vitesse influence fortement la forme du profil de
D.

Comme pour la premiére expérience, nous comparons les profils de concentration

expérimentale et estimée afin de montrer leur similarité.

46



(a) (b)

FIGURE 3.16 — Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N17

3.3.3.3 Troisiéme expérience ¢057-gl

La meilleure estimation a été obtenue pour 16 valeurs de D;, avec une somme des ré-
sidus égale a 0,09. Encore une fois, nous constatons qu’une augmentation du nombre
de D; générés n’améliore pas nécessairement les résultats, car la somme des résidus

augmente au-dela de cette valeur.

Sofme des résidus

N_wvalisas

FIGURE 3.17 — Somme des résidus en fonction du nombre de D; généré
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FIGURE 3.18 — Profils d’estimation de D

Comme pour la deuxiéme expérience, nous retrouvons ce comportement stationnaire
au centre du profil N16, lié au profil de vitesse.

Les comparaisons des profils de concentration sont encore trés semblables :

(a) (b)

FIGURE 3.19 — Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N16
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3.3.3.4 Quatriéme expérience ¢p057-g10

Pour cette derniére expérience, la meilleure estimation a été obtenue avec 17 va-

leurs D;, pour une somme des résidus de 0,07. Il s’agit donc d’un cas similaire a la

deuxiéme expérience.
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FIGURE 3.20 — Somme des résidus en fonction du nombre de D; généré
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FIGURE 3.21 — Profils d’estimation de D
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La courbure constatée sur le profil N17 est liée au profil de vitesse concave, comme

observé lors de la premiére expérience.

(a) (b)

FIGURE 3.22 — Profils de concentration
(a) concentration expérimentale
(b) concentration estimée avec N17

En résumé, I'analyse des résultats montre que 'augmentation du nombre de va-
leurs D; générées n’améliore pas systématiquement la précision de ’estimation. En
effet, pour certaines expériences, nous avons observé que la somme des résidus ne
diminue pas nécessairement avec ’augmentation du nombre de D;. Par exemple,
dans la premiére expérience, la meilleure estimation a été obtenue avec 18 valeurs
D;, et une augmentation a 19 valeurs a entrainé une augmentation significative de la
somme des résidus. Et cela pour chacune des expériences. Ces observations suggérent
que, au-dela d’un certain nombre de valeurs générées, le processus d’estimation peut
devenir moins efficace. Il est donc crucial de trouver un équilibre optimal entre le
nombre de valeurs générées et la qualité de I’estimation. En pratique, un nombre trop
élevé de valeurs peut compliquer le modéle sans nécessairement améliorer la préci-
sion, tandis qu'un nombre insuffisant peut conduire a une estimation approximative.
La sélection du nombre optimal de D; doit donc étre soigneusement considérée en
fonction des caractéristiques spécifiques de chaque probléeme.

En ce qui concerne le profil de vitesse, il a un impact significatif sur le profil
de diffusion estimé. Lorsqu’un profil de vitesse linéaire est utilisé, comme observé

dans la deuxiéme et troisiéme expérience, une grande partie du profil de diffusion
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estimé montre un comportement uniforme. Cela indique que le profil de vitesse
linéaire influence directement le profil de diffusion. De méme, pour les profils de
vitesse concaves, comme dans la premiére et quatriéme expérience, une courbure est
observée dans le profil de diffusion estimé liée & la concavité du profil de vitesse.
Cette observation confirme que le profil de vitesse concave affecte directement le
profil de D, entrainant une forme courbée dans le profil de diffusion.

En conclusion, les profils de vitesse jouent un role déterminant dans la forme
des profils de diffusion estimés. Les variations dans le profil de vitesse se reflétent
directement dans les estimations de D, soulignant I'importance d’intégrer le profil
de vitesse dans les modeéles de diffusion pour obtenir des estimations précises. La
prise en compte du profil de vitesse est donc essentielle pour une estimation fidéle

du profil de diffusion.
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Chapitre 4

Conclusion

Ce stage a permis de se plonger dans I’étude de la diffusion dans des écoulements
granulaires polydisperses, un domaine complexe et en pleine expansion. Grace a des
simulations numériques discrétes, nous avons pu approfondir notre compréhension
des mécanismes de diffusion dans les milieux granulaires soumis & des contraintes de
cisaillement. Les schémas numériques développés, qu’ils soient explicites ou impli-
cites, ont montré des résultats prometteurs en termes de convergence et de stabilité,
avec des temps de calcul raisonnables pour une précision acceptable.

De plus, I'approche par optimisation, basée sur le principe du maximum de vrai-
semblance, a permis d’estimer les parameétres du tenseur de diffusion avec une préci-
sion remarquable. Les tests réalisés sur différents profils de conditions initiales et de
fonctions de diffusion ont mis en lumiére I'impact significatif des choix initiaux sur le
comportement de la solution finale. En particulier, nous avons observé que la nature
de la diffusion (linéaire ou exponentielle) et le profil initial influencent fortement la
dynamique de mélange des particules.

Les résultats obtenus confirment la validité des méthodes employées, tout en
ouvrant la voie a des investigations plus poussées, notamment dans des contextes
plus complexes avec des données expérimentales plus variées. Il serait pertinent
d’élargir cette étude a des cas tridimensionnels ou de considérer d’autres types de
schémas numériques pour améliorer encore la précision et la rapidité des calculs.

En conclusion, ce travail a permis non seulement de valider certaines méthodes

52



numériques pour 'estimation de la diffusion dans des écoulements granulaires, mais
aussi de poser des bases solides pour des études futures dans ce domaine en constante

évolution.
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Annexes

Code Python : Différences finies pour ’équation de

diffusion non stationnaire

##### differences finies pour 1l’equation de diffusion non
stationnaire avec diffusion non constant sur [0,1]1x[0,T]

# D continue et 0 < D_O <= D(z) <= D_inf < +inf

# conditions de Neumann imposees aux bords

# conditions initiales c¢c_0O connue

import numpy as np

import math

from matplotlib.pylab import *
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import numpy.random as rnd

from numpy.linalg import *
%matplotlib inline

from scipy.optimize import minimize
# Definir les parametres pour la compilation
choix = input("Veuillez choisir une methode (1 pour explicite,

pour implicite) : ")

# Verifier le choix de 1l’utilisateur

while choix not in [’1°, 22°]:
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print ("Choix non valide. Veuillez entrer 1 pour explicite ou 2
pour implicite.")
choix = input("Veuillez choisir une methode (1 pour explicite,

2 pour implicite) : ")

# Convertir le choix en methode

methode = "explicite" 1if choix == ’1’ else "implicite"

# Afficher la methode choisie par 1l’utilisateur

print ("La methode choisie est :", methode)

# Demande a l’utilisateur d’entrer le nombre de points en espace du
maillage
N = int(input("Veuillez entrer le nombre de points en espace du

maillage : "))

# Construire le maillage

=
I

1/(N+1)

>
Il

linspace (0, 1, N+2)

# Demander a l’utilisateur de choisir une condition initiale
choix_cO = input("Veuillez choisir une condition initiale (1 pour
cO0 constante, 2 pour lineaire, 3 pour z~2, 4 pour sqrt(z), 5

avec une dizaine de couches, 6 pour un sinus) : ")

# Definition de la condition initiale
def c0(z)
if choix_c0 == ’1°
return where(z > 0.5, 1, 0)
elif choix_cO == ’2°
return z
elif choix_cO == ’3°
return z*xx2
elif choix_cO == ’4°

return np.sqrt(z)
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elif choix_c0O == ’5?

num_couches = 10

long = 1 / num_couches

return np.array ([1 if int(pos
pos in z])

elif choix_cO ’67:

return 0.5 + 0.5*xsin(10*pi*z)

# Demander a l’utilisateur de choisir

choix_D = input("Veuillez choisir une

1 else 0 for

la fonction de diffusion

fonction de diffusion (1 pour

D(z) lineaire,

2 pour D(z) exponentielle,

3 pour D(z) reguliere

II)

par morceaux)

# Definir D selon le choix

if choix_D == ’17:
D_O = float(input("Veuillez entrer la valeur de D_O "))
D_inf = float(input("Veuillez entrer la valeur de D_inf "))
def D(z):
return D_O + (D_inf - D_0) * =z
def derivate_D(z):
return (D_inf - D_0) * np.ones(len(z))
elif choix_D == ’2’:
D_inf = float(input("Veuillez entrer la valeur de D_inf "))
z_0 = float(input("Veuillez entrer la valeur de z_0 "))
def D(z):

return D_inf * np.exp(-z / z_0)
def derivate_D(z):

return -(D_inf / z_0) * np.exp(-z / z_0)

# Definir le pas de temps selon la methode

if methode "explicite":

dt

h*xx2 / (2 % D_inf)

else

I

dt float (input ("Rentrez le pas de temps "))
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T

float (input ("Rentrez le temps final T : "))

M int ((T/dt) - 1)

print(°M = °, M)

Ti = np.linspace(0,T,M+1)

# Construction de la matrice A_h

u = ones (N+2)
X = 2%u

v = ones (N+1)
y = -1xv

Ah = (1/h*x2)x*(diag(x) + diag(y,-1) + diag(y,1))
Ah[0,0] /=2

Ah([-1,-1]1/=2

# Construction de la matrice B_h

ones (N+1)

)
1]

b -1%xa

Bh = (1/(2*h))*(diag(a,1) + diag(b,-1))
Bh[0,1]=0.

Bh[-1,-2]=0.

# Initialisation des C~j selon le schema choisi
C = c0(X)

Ch = C[0O : N+2]

Cjh = zeros(N+2)

Ctime=zeros ((M+1,N+2))

Ctime [0, :]=c0(X)

# Boucle pour chaque pas de temps
for j in range(l, M+1):
if methode == "explicite"
Cjh = Ch + dtx*(derivate_D(X)*dot(Bh,Ch))

Ch))

o7

dt*(D(X)*dot (Ah,
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else

I

eye (N+2)
P =1 - dt*x(derivate_D(X)*Bh.T).T + dt*(D(X)*Ah.T).T
Cjh = solve(P, Ch)

Cjh[0]1=Cjh [1]

Cjh[-11=Cjh[-2]

Ch = Cjh

Ctime [j,:]=Ch

# Sauvegarde des donnees dans un fichier texte
np.savetxt(’Ctime_values_c06.txt’,Ctime)
print("Les valeurs de Ctime sont sauvegardees dans le fichier

Ctime_values.txt?’.")

# Affichage des resultats

plt.contourf (Ti,X,Ctime.T,np.linspace(0,1,20) ,cmap =’seismic’)
plt.xscale(’log’),plt.x1im((dt,T))

plt.xlabel (’temps’)

plt.ylabel(’z?)

plt.grid(True)

plt.colorbar ()

plt.show ()

Tg, Xg = np.meshgrid(Ti,X)
plt.pcolormesh(Tg,Xg,Ctime.T,cmap = ’seismic’)
plt.xscale(’log’),plt.x1im((dt,T))

plt.xlabel (’temps’)

plt.ylabel(’z?)

plt.grid(True)

plt.colorbar ()
plt.savefig(’concentration_c03_Dexp.png’)

plt.show ()

# Profil de Ch

plt.figure(figsize=(10, 6))
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plt.plot (Ch)

plt.xlabel (’Index’)

plt.ylabel (’Ch’)

plt.title(’Profil de Ch’)
plt.ticklabel_format(style=’plain’, axis=’y’)
plt.ylim (0.0, 1.0)
plt.savefig(’concentration_dos.png’)

plt.show ()

Code Python : optimisation

##### methode d’optimisation pour estimer D

import numpy as np

import math

from matplotlib.pylab import *

import matplotlib.pyplot as plt

import matplotlib.mlab as mlab

import numpy.random as rnd

from numpy.linalg import *

%matplotlib inline

from scipy.optimize import minimize

from scipy.optimize import least_squares
from scipy.optimize import differential_evolution

import time

# Lire le fichier texte
nom_fichier = ’Ctime_values_c06.txt’

data = np.loadtxt(nom_fichier)

# Dimensions des donnees

M, N_plus_2 = data.shape

print ("Dimensions des donnees (MxN):", M, N_plus_2)
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# Extraire les donnees de concentration
Ctime_exp = data

print (data)

# Definir les valeurs de z (espace) et de t (temps)
X = np.linspace(0, 1, N_plus_2)

t = np.linspace(0, 1, M)

Tg, Xg = np.meshgrid(t,X)

plt.contourf (Tg,Xg,Ctime_exp.T)

plt.xscale(’log’) ,plt.x1lim((t[1],1))

# Demander e l’utilisateur de choisir la fonction de diffusion
choix_D_opt = input("Veuillez choisir une fonction de diffusion (1
pour D(z) lineaire, 2 pour D(z) exponentielle, 3 pour D(z)

reguliere par morceaux) : ")

while choix_D_opt not in [’1°, 227, 23°]:
print ("Choix non valide. Veuillez entrer 1 pour D(z) lineaire,
2 pour D(z) exponentielle ou 3 pour reguliere par morceaux."
)
choix_D_opt = input("Veuillez choisir une fonction de
diffusion (1 pour D(z) lineaire, 2 pour D(z) exponentielle,

3 pour D(z) reguliere par morceaux) : ")

# Pas en espace
h = 1/(N_plus_2 - 1)

dt = 1/M

# Definition de la condition initiale
def c0(z)

return Ctime_exp [0, :]

# Construction de la matrice A_h

u = ones(N_plus_2)

X = 2%u
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v = ones(N_plus_2 - 1)

-1xv

<
I

Ah = (1/h**2)*x(diag(x) + diag(y,-1) + diag(y,1))
Ah[0,0] /=2

Ah[-1,-1]1/=2

# Construction de la matrice B_h
a = ones(N_plus_2 - 1)

b = -1%a

Bh = (1/(2%h))*(diag(a,1) + diag(b,-1))
Bh[0,1]1=0.

Bh[-1,-2]=0.

# Definir la fonction de diffusion et sa derivee
def D(params, z):
if choix_D_opt == ’17:

D_O0, D_inf

params
return D_O + (D_inf - D_0) * z
elif choix_D_opt == ’27:
z_0, D_inf = params
return D_inf * np.exp(-z / z_0)
elif choix_D_opt == ’3’:
num_segments = len(params)
dx = 1. / 50.
Xxp = np.linspace(0 + dx, 1 - dx, num_segments)

return np.interp(z, xp, params)

def derivate_D(params, z):
if choix_D_opt == ’21°:
D_0, D_inf = params
return (D_inf - D_0) * np.ones(len(z))
elif choix_D_opt == ’27:

z_0, D_inf = params
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return -(D_inf / z_0) * np.exp(-z / z_0)
elif choix_D_opt == ’37:
D_piecewise = D(params, z)

return np.gradient (D_piecewise) / np.gradient(z)

# Fonction de vraisemblance
def likelihood_function (params):
D_func = D(params, X)

derivate_D_func = derivate_D(params, X)

D_inf = max(D_func)

# Initialisation de la concentration
C = c0(X)

Ch = C[0: N_plus_2]

Ctime_sim = np.zeros ((M, N_plus_2))

Ctime_sim [0, :] = cO0(X)

dt_stab = h**x2 / (2 * D_inf)
Q = int(ceil(dt /dt_stab))

dt_loc = dt/Q

for j in range(l, M):

for j2 in range(Q):

Cjh = Ch + dt_loc * (derivate_D_func * np.dot (Bh,

- dt_loc * (D_func * np.dot(Ah, Ch))
Cjh[0] = Cjh[1]
Cjh[-1]1 = Cjh[-2]
Ch = Cjh

Ctime_sim[j, :] = Ch

residuals = (Ctime_sim - Ctime_exp)/(Ctime_exp+le-6)

log_likelihood = np.sum((residualsx**2))

return log_likelihood
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# Initialisation des parametres selon le choix
if choix_D_opt == ’1°:

initial_params = [.05, .05]

bounds = [(0.05, 10), (0.05, 10)]
elif choix_D_opt == ’27:

initial_params = [1, 1]

bounds = [(0.1, 10), (0.01, 10)]

elif choix_D_opt == ’3’:
N_values = int(input("Saisissez un nombre : "))
initial_params = [1 for i in range(N_values)]

bounds = [(0.1,20) for i in range(N_values)]

# Mesurer le temps de debut

start_time = time.time ()

# Effectuer 1l’optimisation
result_simulation = minimize(likelihood_function, x0O=initial_params

, bounds=bounds, method=’L-BFGS-B’)

# Mesurer le temps de fin

end_time = time.time ()

# Calculer la duree d’execution

execution_time = end_time - start_time

# Afficher le temps d’execution

print (f"Temps d’execution : {execution_time:.2f} secondes")
# Afficher les parametres optimaux
print ("Parametres optimaux :")

print(result_simulation.x)

D_opt_sim = D(result_simulation.x,X)

derivate_D_opt_sim = derivate_D(result_simulation.x,X)
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# Sauvegarder les donnees dans un fichier texte

np.savetxt (’D_sim_N16_c06.txt’,D_opt_sim)

print("Les valeurs de D_opt_sim ont ete sauvegardees dans le

fichier.")

# Calcul de 1l’erreur

if choix_D_opt == ’17:

err = max (abs(D_opt_sim - (2.0+(5.0-2.0)*X)))

print(’erreur = :’, err)

elif choix_D_opt == ’2’ or choix_D_opt == ’3

) .

err = max(abs(D_opt_sim - 10 * np.exp(-X / 0.25)))

print (’erreur = :’, err)

# Recalcul des resultats avec les parametres
C = c0(X)

Ch = C[0: N_plus_2]

Ctime_sim = np.zeros((M, N_plus_2))

Ctime_sim[0, :] = c0(X)

dt_stab = h**2 / (2 * max(D_opt_sim))
Q = int(ceil(dt / dt_stab))

dt_loc = dt / Q

for j in range(1l, M):

for j2 in range(Q):

optimaux

Cjh = Ch + dt_loc * (derivate_D_opt_sim * np.dot(Bh,

dt_loc * (D_opt_sim * np.dot (Ah,
Cjh[0] = Cjh[1]
Cjh[-1] = Cjh[-2]

Ch = Cjh

Ctime_sim[j, :] Ch

# Afficher le vecteur inconnu C7j

print ("Vecteur inconnu C~j a 1l’instant t_j
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# Calcul de la somme des residus
somme=np.sum((Ctime_sim.T-Ctime_exp.T) **2.)

print (’somme_residus = :’, somme)

# Tracer les resultats recalcules

plt.contourf (Ti, X, Ctime_sim.T, np.linspace(0, 1, 20), cmap=’

seismic?)
plt.xscale(’log’)
plt.xlim((dt, T))
plt.xlabel (’temps’)
plt.ylabel (’z’)
plt.grid (True)
plt.colorbar ()

plt.show ()

# Carte des residus

plt.contourf(Ti, X, np.log((Ctime_sim.T-Ctime_exp.T)**2.),
=’seismic’)

plt.xscale(’log?)

plt.x1lim((dt, T))

plt.xlabel(’temps’)

plt.ylabel(’z’)

plt.grid(True)

plt.colorbar ()

plt.savefig(’carte_residus.png’)

plt.show ()

20,

cmap
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