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1. INTRODUCTION

We consider the non linear Schrédinger equation on the torus
(1.1) 104U + Opeu = |utu, (t,7) € R x T,

This system is Hamiltonian on the phase space (u, @) € L?(T) endowed with the symplectic

form —idu A du. The Hamiltonian of the equation is given by

h = / || + llu\de.
T 3
Let us expand u and % in Fourier basis:
u(z) = Z a;e?”,  iu(r) = ijeijx.

JEL JEL
In this variables, the symplectic structure becomes —i > jez daj A dbj, and the Hamiltonian
h of the system reads

h=N+P = Z]'?ajbj + % Z @j, G, @iy by, be, by,
JEZ JLEZ3 M (5,1)=0

where M(j,1) = ji+jo+j3—F{1—{>— {3 denotes the momentum of the multi-index (j, ¢) € Z°
or equivalently the momentum of the monomial a;, a;,a;,bs, be,by,.

In this article, we are studying the persistence of two and three dimensional linear invari-
ant tori. Precisely, given p,q € Z and a,,a, € C, we are interesting in the persistence of
torus T = {|a,|? = ¢1, |ag|* = co} under the flow of h for ¢ € R%. By KAM theorem [2.3|
we prove that for p in a Cantor set of full measure in [1,2]* and for v small enough, the

torus Tffg is linearly stable.

Theorem 1.1. Fix p, q € Z, and s > % There exists vy > 0, and for 0 < v < vy, there
exists D, C [1,2]* asymptotically of full measure (i.e. meas([1,2]*\ D,) — 0 when v — 0)
such that for p € D,, equation (L.1)) admits a solution of the form
u(z) = Z a;(tw)e’”
jez
where {a;}; is analytic function form T? to (2 satisfying uniformly in 6 € T?
lap = Vopi” + lag — opal* + D (14 77)|asP = OFP).
J#Pa

Here w is a nonresonant vector in R? that satisfies
w=(p*¢") + 0.

Furthermore, this solution is linearly stable.



For there dimensional tori, the dynamic structure is complicated. It depends on three
internal modes (p, g, m) of that torus and starting energy on each mode. In this paper, with
KAM theorem [2.3] we just focus on the case there is no ¢ solving equation

19 271+72 =Js+t

( : ) -2 2 52 g?

250+ =5+

where {j1,j2,j3} = {p,q,m}. We prove that for p = (py, p2, p3) € D1 = [1,2]3, the torus
T = {lap]> = vp1, lag]® = vps, |am|* = vps} is linearly stable for all p, ¢, m € Z, while for
p=(p1,p2.p3) EDs=[1—e14+¢ x[2—e1+ex[2—¢+ ¢ with e sufficiently small,
that torus is linearly unstable if there exist s, ¢ solving the following equation system

{Zp +q =m+s+t

1.3
(13) 20 +¢* =m?+ 2+ 12

Theorem 1.2. Fixp, q, m € Z, and s > %, assume that we are not in the case (1.2). There
exists vy > 0, and for 0 < v < vy, there exists D, C D asymptotically of full measure (i.e.
meas(D \ D,) — 0 when v — 0) such that for p € D,, equation (1.1)) admits a solution of
the form
(1.4) u(z) = Z a;(tw)e”

JEL
where {a;}; is analytic function form T3 to (2 satisfying uniformly in 6 € T3
(1.5)  Jap —vool® + lag = vopal* + |am = s+ Y (14 5°)%]a,* = OG).

J#pam

Here w is a non resonant vector in R® that satisfies
w = (p*, ¢, m?) + 0.

Furthermore, this solution is linearly stable if D = Dy, linearly unstable if D = Dy and there

are s,t # p,q, m solving (1.3)).

The main theorem used in this article is KAM theorem [2.3] which is stated without proof
in [5] to study a system of coupled nonlinear Schrédinger equations on the torus. We will
recall the theorem in section 2 and some of results needed to prove it in section 3. The

proof is presented in section 4.



2. KAM THEOREM

In this section, I recall the KAM theorem stated in [5] , which is proved in section 4.
We consider a Hamiltonian H = hg+ f, where hyq is a quadratic Hamiltonian in normal form
(21) ho = Q(p) 'T+ZAa(p)|Ca’2'

acZ

Here

e p is a parameter in D, which is a compact in the space R";

e r € R™ are the actions corresponding to the internal modes (r,0) € (R™ x T™, dr A df);

e L and F are respectively infinite and finite sets, Z is the disjoint uninon £ U F;

o ( = (Cu)yez € C# are the external modes endowed with the standard complex
symplectic structure —id¢ A dn. The external modes decomposes in a infinite part
Cc = (Ca),er s corresponding to elliptic directions, which means A, € R for a € L,
and a finite part (r = ((4),c 7, corresponding to hyperbolic directions, which means
SA, # 0 for a € F;

e L has a clustering structure £ = UjenL;, where £; are finite sets of cardinality
dj <d < oo.lf a € L;, we denote [a] = L; and w, = j, for a € F we set w, = 1;

e the mappings

(2.2) Q:D—R",
(2.3) AN:D—C, acZ,
are smooth;
o f = f(r,0,(;p) is a perturbation, small compare to the integrable part hy.

Linear space Let s > 0, we consider the complex weighted ¢,— space
Zs ={C=(C€C, ae 2]} <oo,

where

Illy = D 1alPw?.

acZ
Similarly we difine

Yo={C=(CeC ac)]llcell,} < oo,

with the same norm. We endow Z; and Y, with the symplectic structure —id( A dn, with
n=C.

A class of Hamiltonian functions. Denote w = (¢, 7). On the space

C" x C" x (Zs x Zy)
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we define the norm
[(r, 0, ), = max (|r[, 6], [[C]],) -

For o > 0 we denote
T ={0ecC":|S0| <o}/2rZ".
For o, € (0,1] and s > 0 we set
O (o) ={r € C": |r| < p*} x Ty x {w € Zy x Z, + ||C]l, < p}-
We will denote points in O%(o, u) as x = (r,0,w). Let f : O%o, u) xD — C be a C'-function,
real holomorphic in the first variable x, such that for all p € D, x € O%(o, ) :
Vof(z,p) € Zs X Zs

and
V2 ek (,p) € LY, YY)

are real holomorphic functions. We denote by T°(o, u, D) this set of functions. For f €
T*(o,p, D), we define

0 flowp = sup  max(|03f|, u ||V f(x, p)|, . 17 |VE,0 00 f (2 0) ),

z€0%(o,u); p€D

and
71y = 2510 1o

where 7 =0, 1.

Jet functions For any f € T*(o,u, D), we define its jet f7(x) as the following Taylor
polynomial of f at r =0 and w =0

f(@) = £(0,0,0) + d.f(0,0,0) -7+ du f(0,0,0)[w] + 1/2d2 £(0, 0, 0) [, w].
We say that f € T2 (o, u, D) if there exists a constant M such that for all £ # 0 and all
a,b € L with [a] = [b] then
e* 0 € fT = a=bor |w,| < M|k|

Infinite matrices For the elliptic variables, we denote by M the set of infinite matrices

A L x L — C such that A maps linearly Y, into Y,. We provide M, with the operator

norm

|Als = ||A||£(YS,YS) :

We say that a matrix A € M, is in normal form if it is block diagonal and Hermitian, i.e.
AP =0 for[a] #[f] and A% = Ay foro; 5 € L.

In particular, if A € M is in normal form, its eigenvalues are real.



Normal form A quadratic Hamiltonian function is on normal form if it reads

h=Q(p) -r+{(,Qne) + 1/2{wr, Kwr)

for some vector function (p) € R™, some matrix functions Q(p) € M, on normal form

and K(p) is a matrix F x F — C symmetric in the following sense: K/ = "K7§.

Hypothesis A0. There exists a constant C' > 0 such that

’Aa - |wa|2| S 07 Va € L.

Hypothesis Al.
Ay >0, VYaeL;
ISA,| > 6, Vae F;
Ay — Ap| >0, Va,be Z, [a] # [b]:
Ay +Ay| >0, Va,be L.
Hypothesis A2. There exists § > 0 such that for all Q §—close to €y in C'* norm and for
all k € Z"\{0} :
(1) either
90) 20 VpeD,
or there exists a unit vector z = z(k) € R" such that
(V,2)(QAp) - k) 8 VpeD:
(2) for all a € L either
Qp)-k+A >0 VpeD,
or there exists a unit vector z = z(k) € R" such that
(V,-2)(Qp)-k+A,) >0 VpeD;
(3) for all a, B € L and a € [a], b € [§] either
p) - k+Ag A >6 VpeD,
or there exists a unit vector z = z(k) € R" such that
(V2 (Qp) h+ A% M) > 5 VpeD,

(4) for all a,b € F
1Qp) -k + Ay £ Ay| > 0.
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Remark 2.1. Hypotheses A1, A2 are used to control the following monomials of the pertur-
bation f

et Vk # 0;
eik'e(a, eik'ena Yae Z, keZ"
eik.GCaCba eik.enanb \V/CL, be Z) k 7£ Oa

CaCba TaTly a, be E;
eik.eganb a, be Za k % 07
Calls a,b € Z, [a] # [b].

Remark 2.2. Even Hypothesis A2 is required for all k£ # 0, we will see that in KAM procedure
we just need to control a small divisor in case the corresponding monomial appears in the
jet of the perturbation terms. In Appendix, we use the preservation of mass and momentum

in order to reduce the number of divisors we have to control.

Theorem 2.3 (KAM theorem). Assume that hypothesis A0, A1, A2 are satisfied and that
feT:(o,u,D) with s > 1/2. Let v > 0, there exists a constant Cy such that if
(24) [f]z,u,l) S 0057 €= [fTLST,u,D S Cﬂél—i_wu

then there exists a Cantor set D' C D asymptotically of full measure (i.e. meas(D\D') — 0
when € — 0) and there exists a symplectic change of variables ® : O%(a /2, 1u/2) — O%(o, 1)
such that for all p € D'

(ho+ flo®=h+g

with h = Q(p)-r+(Cc, Q(p)ne)+1/2{wx, K(p)wx) on normal form, and g € T,2,(c/2,1u/2,D")
with g7 = 0. Furthermore there exists C > 0 such that for all p € D’

Q=0 <Ce, |Q—diag(Ns,a€ L)]| <Ce, |JK —diag(Ay,a € F)| < Ce.

As a dynamic consequence ® ({0} x T™ x {0}) is an invariant torus for ho+ fand this torus
is linearly stable if and only if F = @ (see [5])

(1)

where [ is identity matrix of size #F'. .

Here, the matrix J is of the form,



3. PREPARATION

In order to prove theorem [2.3] we need to recall some results which are proved in [4]

(Lemma [3.3 and [3.6), [5] (Lemma [3.4] and Proposition [3.5), [2] (Lemma [3.7] and [3.11]).
Definition 3.1. The Poisson brackets of two Hamiltonian functions is defined by
{fag} = V@f ' vrg - vrf ' V@.g - Z<wa> vag>

Lemma 3.2. Let f : T) — C be a periodic, analytic function on T and continuous on

T? for 0 < o’ < o, then we have
(3.1) 1FG)I < CelH| f ()]
Here |j| = |ji] + [zl + . + lnls 5 = (1, J2s oo ) and | f(@)|o = supery | f(2)]

Proof. We have

2n+io’ B
e dx —/ f(x)e’ dx
0

+io’

IN

\\

z)|e” lil-o" g

§2 I F () o

for 0 < ¢’ < 0. Since this is true for all ¢’ < o, f is continuous on T% and f (7) is independent
of o, we have (3.1)).
O

Lemma 3.3. Let s > 1/2. Let f,g € T° (0,1, D) be two jet functions then for any 0 <
o < o we have f,g € T° (¢, u, D) and

{f. 9} o < Clo—a) " [f]5 p 905p

Furthermore fo g Sk res (O',IM,D) then fag Sk res (gb 22 )

See [4], Lemma 4.3.
Lemma 3.4. Let I be an open interval and let f : I — R be a C*-function satisfying
[f'(z)] = 6, Vz € I

Then
meas{z € I : |f(z)] <e} < C%.

See [0], Lemma 2.9.
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Proposition 3.5. Let M, N > 1 and 0 < k < §. Assume Hypothesis A0, Al , A2. Then
there exists a closed subset D' = D'(k, N) C D satisfying

measD\ D' < CS 'kM?N™ 2
such that for all p € D', for all |k| < N and for all a,b € Z

(3.2) |Qp) - k| > Kk exceptif k =0,
(3.3) Up) -k + Aulp)| > K,
(3.4) 1900) i+ Aulp) + Molp)] > 5,

and for all p € D', for all |k| < N and for all a,b € L such that either [a] # [b] or [a] = [b]
and w, < M|k|
2Up) -k +Xa(p) — X (p) | = 5.

See [5], Proposition 2.8. Notice that this proposition is true for all Q d—close in C' norm

from €.
Lemma 3.6. Let f € T¢(o,u, D) then f1 € T¢ (0,1, D), and
(3-5) [fT} (SW,D <C [f]tswﬂ?
3
(36) = <€ () Mo
where C' is an absolute constant and 0 < p' < p.
See [4], Proposition 4.2.

Lemma 3.7. Let s > 1/2. Let f,g € T° (0,1, D) then for any0 <o <o,0<p/ <p<1
we have f,g € T* (o', 1/, D) and

-0 = C (G + ) W 6l

See [2], Proposition 2.9 which is not exactly stated for 7 (o, u, D), but the proof can be

applied directly for this lemma.
Let

(3.7) h=Q-r+1/2(w,Aw) = Q-7+ ((,Qn) + 1/2 (wr, KwF)
is on normal form, when hg is of that form with

Qo = diag{Aa(p) : a € L},

JKo = diag{A.(p) : a € F}.
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Denote by Qg restriction of the matrix @ to [a] x [a] and let Qg = 0. Let also Hy = 0.
For any a,b € LU @ and A € R, denote
L(p,k,a,b)x : X — (k,Qp)) + Qu(p)X £ XQp,
L(p,k,a, F) : X — (k,Q(p)) + QX + X JK(p),
Lp,k, F)e : X — (k,Q(p)) + K(p)JX £ XJK(p).
For simplicity, we write L(p, k, §2) instead of L(p, k, @, @), and L(p, k) in the case we want
to mention all these functions. We also denote L%(p, k,a,b)x, L°(p,k,a, F), L°p, k, F)+
respectively for L(p, k,a,b)x, L(p,k,a,F), L(p,k,F)+ in case 2 d—close in C' norm from
Q and A = A,.
Then, we can rewrite the conditions A1, A2 into the following way:
Hypothesis Al
Since |SA,| > 0 for all @ € F and since A, € R:

|L%(p, kb, F)|| =6 Wbe L.
Since |A4| > 9, Va € L:
HLO(p,Qa, @)H > 0.
Since |A, + Ay| > 9, Va, b € L:
HLO(P707Gub)+H >0,
and for a,b € L, [a] # [b] since |A, — Ap| >
HLO(p,O,a,b)_H > 4.
Hypothesis A2
For all k£ € Z"{0}:

a) for a,b € LU @ either
“L()(pvkaa?b):l:H > 5a

or there exists a unit vector z = z(k) € R" such that
19, - 2)L(p, k. a, )| = 6;

b)
|L%(p, k, F)<|| = 6.
Hence, Proposition [3.5] becomes:

Proposition 3.8. Let M;N > 1 and 0 < k < 6. Assume Hypothesis A0, A1, A2. Then
there exists a closed subset D' = D'(k, N) C D satisfying

meas(D \ D) < C%MQN””,
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such that for all p € D, for all |k| < N and for all a,b € LU {2}

(3.8) L% (p, k,Q)|| = & exceptifk =0,
(39 125, kya,0)+ | = 5,
(3.10) |L%(p, k. a, F)<|| > &,
) 29,k 7)) 2 %,

and for all p € D', for all k| < N and for all a,b € L such that either [a] # [b] or [a] = [b]
and w, < M|k

(3.12) ||L0(p,k,&, b),|| > K.

Although this proposition is crucial in our proof, we do not work exactly with hy but with

other normal forms hy sufficiently close to hg. So we need to change it a little bit.

Proposition 3.9. Let M,N > 1 and 0 < k < §/2. Assume that the Hamiltonian normal

form h satisfies
(3.13) |82(A —Ay)ls <

>~

;03— Q)] <6

for j =0,1 and p € D. Then there exists a closed subset D' = D'(k, N) C D satisfying

meas(D \ D) < C%MQN””,
such that for all p € D', for all |k| < N and for all a,b € LU {D}

(3.14) | L(p, k, Q)| > & except ifk = 0,
(3.15) 1L(p, ks a,b) ]| > %,
(3.16) 1L(p, by 0, F)all = .
(3.17) Lo, k, F)I| = 5,

and for all p € D', for all |k| < N and for all a,b € L such that either [a] # [b] or [a] = [b]
and w, < M|k|

(3.18) 1L, k,a,b)_|| > k.
To prove this, we recall a result proved in the appendix of [I]

Lemma 3.10. Let A(t) be a real diagonal N x N-matriz with diagonal components a; which
are C* on I =] — 1,1, satisfying for all j =1,...,N and for allt € I

d(j) 2 6.
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Let B(t) be a Hermitian N x N—matriz of class C* on I such that
1B ()l < 6/2,
for allt € I. Then

K
tel: i M) < < CN-,
meas{ A(t)EU{Q%tI)1+B(t))| W) <r} < )

where C' is a constant independent of N.

Proof of Proposition[3.9 The estimate ([3.14) is true by Proposition [3.5] For (3.16) and
(3.17), by Hypothesis A1, A2, we already have

L%, k0, F)e|| = 6, ||L°p, k, F)|| > 6.

By assumption ,
|L°(p, kya, F)x = L(p, k0, F)=|| <6/2, || L%(p,k, F) — Lip, k, F)|| < 6/2.

Hence
|L(p ks, F)all = 6/2, I|L(p,k, F)I| = 6/2.

For (3.15) (similar as (3.18))), for a,b € L we have L(p, k, a,b) is Hermitian matrix operator
for all k € R". Eigenvalues of L°(p, k,a,b), are of form

v(p) = (k, Q) + Ao + Ao

By Hypothesis A2, we have either |v(p)| > § or there exists a unit vector z = z(k) € R”
such that (9, - z)v(p) > 4. To apply Lemma we consider Hermitian matrix operator
e?*L(p, k,a,b). Then we have
(0, 2)(e"v) = 75,
and
Hep.z([’(p> k? a, b)+ - L0<p, ka a, b)+) H < ep'zé/z
for all a,b € £ U {@}. Hence by Lemma [3.10]

meas{t € [ : min min A1) <k} < CNZ
ab A(t)ea(L(p,k,ab)y) )

for |[k| < N fixed, i.e. there exists a subset Dy(k, N) C D such that for all |k|] < N and
a,be LU{D}:
meas(D \ Di(k,N)) < CN%
and on D (k, N),
\L(p, ya,)4 ] > 5.



14

Now sum up all together, we get

meas(D \ U Dy) < CN””%.

lk|<N

Lemma 3.11. Let S € T*(o,u, D), and let o' < o and p/ < p < 1. If

1
[S]Z,M,D < Emm (U - 0-/7 w— :u/)
then
e the Hamiltonian flow map ® = &%, for [t| < 1 is a C*-map
O*(o', 1) x D — O%(o, )
which is real holomorphic and symplectic for any fixed p € D. Moreover,
195 (2"(z, p) = @) || < CLS;
and
|85 (d®' (z, p) = T)|| < C[S5,
for any x € O%(o’, 1) and j =0, 1;
o fod € T%(o,u,D) for|t| <1 and
(3.19) [f o @ o < Clf5ps
See [2], Proposition 2.11 for the proof.

Scheme of the proof of KAM theorem. We would like to construct sequences of Hamil-
tonian normal forms hy, perturbations f;, defined on domains O%(oy, jux) X Dy, and symplectic
changes of variables ®; : O%(oy, p) — O°(0k_1, ftx—1) such that

e the normal form Ay = Q- r + (w, Ayw) stays closed to hg when k — oo, i.e.
|6Z(Qk - Qo)| S 051+a ’a;](Ak - A0)| S C(SH_O[ j = 0, 1;

e the perturbation f is in good class, i.e. fr € 7; , p, and

[fkT]ik,uk.,Dk <ep~ey
with 8 > 1;
e for all p € Dy
(hr—1 + fe—1) 0 Pp = Iy + fi;
e the symplectic change of variable ®;, stays closed to identity map and ®% = &, o

... ®y close to identity map too, for N > 5 > 0.
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e 0 > 0/2, > p1/2 and Dy, stays closed to D;
® hp, fr, Pk, ok, p and Dy, converge respectively to desired h, g, ®, /2, /2 and D'.

At each step of this procedure, we need to solve equation

(h+ flod=n+f".
Normally, we will try to find a jet function S, such that ® = &} and
(3.20) {h,S}+f"=n"+R

where h' is a normal form and R is a very small error term. However, by this way, the

perturbation f’ will be of form
1
e £ = S TS+ [ 00T+ R)+ £, ) o @de + R
0

Its jet function (f’)7 is of order O(g) not O(¢?) with 3 > 1 as we want. The problem here

is {f — fT,S}. To deal with this, we shall solve non linear homological equation

{n,S}+ fT+{f=f". S} =h*+ R
This equation may look difficult because of its non-linearity, but luckily, it can be solved
easily after solving [3.20, In both equations, we need to estimate S, h*, R, f’ and ®% up
to t = 1. The estimation of A" and R are directly verified by the estimation of f. The
Proposition |3.9| allows us to control S, and hence combine with Lemma control ®%. As

we will se that

(T ={s" S+ (/0 {A=t)(h"+R) +tfT, S}o cbgdt) + RT.

By Lemma |3.3| we can control the first term, and by Lemma [3.11| we can control the second
term. Finally, we need to study the limit when k rises to infinity.
In next section, we understand all functions as functions of p and we omit p in their

presentations unless necessary.
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4. HOMOLOGICAL EQUATION

Let h is a Hamiltonian normal form satisfying assumptions (3.13)), i.e. Vp € D

. ) )
(A~ A <G, iR - ) <5

for j =0,1. Let f € 7,2,(0, 1, D), we will construct a jet function S that solves the non-linear
homological equation
(4.1) [ SY+{f— [T, S}+ [T =h" +R,

where h, is normal form and R plays as an error term.

In order to do this, we shall start by analysing the homological equation

(4.2) {h,S}+ f"=h"+R.

Let us write

fTw?T:w) = fr(r,0) + (fu,w) + %(fwww w),

where

fr(r,0) = fo(0) + f:(6) - 1,
(furw) = (fe(0), Co) + (fa(0),m2) + (fur (0), wr),
%<fwwwaw> = %(fnma (@)ne,ne) + %<fncm: ()ne,me) + <fnma (@)nz,ne)
+3{Fcwr O, wr) + 3 {Fcwr O)ne, wr) + 3 {forur(O)wr, wr).
Let .
S0, r,w) =ST(0,r,w) = S,(r,0) + (S,,w) + §(Sww(9)w,w>,
then the Poisson bracket equals
—Q-0pS,(0,7) — Q- (S, w) — 32+ Fp(Suw(O)w, w) + i(ATS,,, w)+
+i5 (AT S (O)w, w) — 12 (S (0) J Aw, w).

Accordingly, the homological equation decomposes into three linear equations

(4.3) Q- 0pS.(0,7) = f.(0,r) + R (r,0) — R,,

(4.4) Q- 0pS,(0) —iATSL(0,) = f,(0) +hi(0) — Ru(0),

(4.5) Q- 0pS0(0) +iATS,0(0) — 1S (0)JA = fou(0) + hT () — Ruw(0)
Denote

X ‘= |(9PQO| + supa€£|8pAa| -+ supbey:|(9pAb|.

Assume that y < 9, where C' is an independent constant.
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The first equation. Write it in the Fourier form so that we get
for 0 < |k| < N, and h,(0) = f,(0). The error term
R,= Y fulk)e*?.
k|>N
By Lemma [3.2] we get

67(070")N

PR < > e MM, <

|k|>N (o —a)r

103+ lo

where 7 = 0,1. All the error terms in other equations are treated in the same way, so we

do not care about them again.

By Proposition [3.9] for any p € D'(k, N):

IL(k, Q)| = &,
thus A
: (k)]
S.(k)| < .
8. (k)| < P
By Lemma we get
~ e_‘k‘o'
|15, (k)| < C sup | f,.
K geTn
Since
ST = Z gT(k)eik.e
[k|<N
we get

Sl <cC (oo Lfrlo
Sl <C > e 7 <

1
= =yl

Take the derivative of the equation 4.6
L(k,Q) - 0,5, (k) = —id, f,(k) — 9,L(k, Q) - S, (k).

Since

10,L(k, Q)|| < [|0,L°(k, )| + ||0,(L°(k, ) — L(k, Q))|| £ Nx +|k[6 < N(x + ) < CNS,

then

0,

0,5, (W) < 10, 7,(B)| + <3 1 ().

Hence, using Lemma (3.2 we get
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i , o (1 SN
050 < 3 001 <0 S e (L pl+ AL )

k| <N |k|<N

1 1 ON
<C— (= — .
<o (Houfl+ 1A

(o -

The second equation. The equation decomposes into

(4'7) Q- 898(5 + iQSCL = fCL + hz; - RCU
(4'8) Q- aGSCL + iQSﬂE = fCL + h&: — Re,,
(4.9) Q- 0ySr+iKJSr = fr+h%— Rr.

Let consider the equation (the others are similar). Write it in Fourier fomular, we get

(h, Q) S (k) + QS (k) = =i (fop (k) + L, (k) = Reo(R))
This equation decomposes into its components over the blocks [a], which takes the form
L(k, a, )15 (k) = (k, Q)51 (k) + QS (k) = —ifi(k),

for |[k| < N. Argument now is similar to the first equation. Thanks to Proposition , for
any p € D'(k, N) we have estimate

||L(k;>aa ®)+|| Z Kk

i.e.
A |fa (k)| e—|k|a
S (k)] < = < C——|fial,
which leads us to estimate
1
Sl < Cmmaﬂa

for any 0 < o’ < 0. For 9,5, again we have estimate

10,L(k.a. ). || < ON6

thus
R 1 . CN§, -
0,51 (k)] < E!apf[a](k?ﬂ t—3 | fla ().
In the end
1 1 Né
< O— (= - ,
|0pS(allor < o U,)n(ﬁw’pf[a] + 5 fial)
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The third equation. The equation decomposes into its components:

(4.10) Q- 0pSeece +1QScece +18cece@Q = feece + e, — Regces
(4.11) Q- 09Scpne +iQScens — 1ScineQ = feone + 0, — Reenes
(4.12) Q- 9Scpwr +1QScswr + Scpwr JK = fepwr + My, — Rewrs
(4.13) Q- 0pSursr + KIS — Surir K = furarr + s — s

and the similar equations with (. is replaced by 7., which are treated in the same way.
Equation Written in the Fourier variables, it becomes

<k> Q(p>>§CLCL(k) + QS’CLC[: (k) + SCﬁCE(k)Q = _ZfCLCa (k>
for |k| < N. Here we get hl ., =0, Re.c. (k) = fepeo (k) for [k| > N and Re.¢, (k) = 0 for

|k] < N. This equation decomposes into its components over the product blocks [a] x [b],
which takes the form

(4.14) L(k,a,0): 8% = (k, Q(p)) S (k) + QS (k) + Sk (k) Quy = —ifl1 (k).

Since || L(k,a,b)+|| > K, Vp € D we have

Therefor we obtain a solution satisfying for any |36| < o’
1

1S(@)¢ecel < C(U — 1FO)cecel-
For the estimating of 0,5¢,.¢., we have
(4.15) L(k, a,b) 0,54 (k) = —i0,f 1| (k) — 0,L(k, a,b) S} (k).
Since
10,(L(k,a,b) — LO(k,a,b).)|| < k6,
we have

10,L(k, a,b)+|| < ||0,(L(k,a,b)4 — L(k,a,b)4)|| + ||0,L°(k, a,b)+ || < Nx + |k|6 < CNG.
Now we consider this equation as the equation 4| where ¢ f[a} is replaced by —id, f[[ﬂ(k) —
d,L(k,a, b)g[[ﬁ(k), then we get the desired estimate

1

. 1, & No, -
|005¢cce| < Cm (;‘8pr£CL| + ?’sz:Q:‘) :
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The others are solved in the same way and give us the same estimation except the case
k =0 and [a] = [b] in the equation m In this case, we get A2 = f2(0). In the end, we get

the solution S the normal form A" and the error term R such that

1

4.1 < Cor——|fT
( 6) |S’U — C(O’—O'/)n/ﬂ}|f ’0’7

1 1 SN

, ) < O—— | =0, e + = |fT
(4.17) 10,5, _C(U_G,)n (I{Iapf o+ 5 1f Io)a
418 SRl <t i
( . ) | P |U'— (O__O_,)n| pf |0"
(4.19) 020, < ClOIfT o,

for j = 0,1, and C' is an absolute constant. We would like to have 975 and 9/R small
and controlled, which is dependent on the choice of k,0’ and N. A specific choice of such
parameters would be given later, but we can see that for QZR we just need to take N

T T
< e =61, the terms |fT‘ and % in estimates of S and

3o
K2

sufficiently large. Since [f]; ,p
0,8 are small and controlled if § > k > €. The only remained problem is the term

which is small when § > xk > §117/2,

Proposition 4.1. Let h is a Hamiltonian normal form satisfying , and f € T2 (o, 1, D)
with s > 1/2. Assume aslo that Hypothesis A0, A1, A2 are satisfied, then there exist a closed
subset D' C D such that

meas(D\ D') < CgMQN"+2
and there exist jet function S, R and h™ verifying, for p € D’

{h,S}+f"=h, +R

and
. 1 NG, .,
(42()) [S]J/W?Dl < Cm?[fT}a,u,D
s 6_(0_0/)N T7s
(42]‘> I:R:IO',,'LL,D/ S Om[f ](r,,u,D
(422) [h+]¢s7’,,u,D’ S [fT]i',,u,D'

for any 0 < o’ < 0.

Here we use % < % + JZ—Q‘S < C’]:—f, which is satisfied by the choice of parameters.
Now, we turn back to the non linear homological equation

The non linear homological equation

{h,SYy+ fT+{f—f",S}" =h"+R
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Let S = Sy + S1 + S, with Sy, 51,9 are jet functions start with oder 0,1,2 of r,w. The

equation now decomposes into three equations:

(4.23) {h,So} + [T =hi + Ry,
(4.24) {h,S1} + f = h3 + Ry, {f—r". 5} =f,
(4.25) {h,So} + f = hi + Rs, {fi— L, 51} = fo.
Let X X X
X:C<(0—0’)"+(u—w)2)’ U
Let o' <03 <0y <0y <o, ' <pg<py<p <pandD CD; CD. Denote e =[],

by Lemma |3.7] and Proposition 4.1} we have

s s s 5N T1s 52
[fl]ag,,ug,’Dl S X[f]crl,/,q,Dl [S]Ul,ul,Dl S XY(S—[f ]o,u,’D = XYN?éT

K2

By Lemma [f115, s, have the same bound as [fi]

S
oo D1 hence

; 6
€1 = [fir]ag,,ug,pl S XYNE&?

Similar, we get
T 62
Eg = [f2 ]Z’,,u’,D’ S XYNﬁgl

Hence
s No
(426) [Si]a’,p/,D’ S CY?SZ‘,
. e—(a—a’)N
(427) [Ri]o’,u’,l?’ S C(J_—O_/)ngi,
(428) [h“l‘:i]fr’,u’,pl S ng
for i = 0,1, 2. Putting each term respectively together, we find that
a2\’ 3%
(4.29) e+er+e < <1+XYN—2) e <OX’Y’N°—,
K K
and
(4.30) [S)2) v < OX3Y4N4&
[y - 1{8
—(oc—0’)N 56
s € 3v-3730 €
(4.31) [R5 v < C’mX Y°N <
(4.32) [RtE < CX?’Y?’N?’&
. o'W D= K/G .
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Proposition 4.2. Let h is a Hamiltonian normal form satisfying (3.13)), and f € T2 (o, u, D)
with s > 1/2. Assume aslo that Hypothesis A0, A1, A2 are satisfied, then there exist a closed
subset D' C D such that

meas(D\ D') < C’§M2]\77”r2
and there exist jet functions S, R and h wverifying, for p € D’
{(h.SY+ fT+{f—f",S}=h +R
and S, R, h* satisfies estimates to forany 0 <o <o, 0<V <vw.
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5. PrRooOF OoF THE KAM THEOREM

The theorem [2.3|is proved by an interactive KAM procedure. We first describe the general
step of this KAM procedure.

The KAM step. Let h be a Hamiltonian normal form
1
h=Q r+ §<w,Aw)

such that 5
|09(A — Ag)| < 7 102 =)[ <0

for j = 0,1. Let f € T (0,1, D) be a (small) Hamiltonian perturbation. Let S = ST €
TS

s.(d', 1/, D) be the solution of the homological equation

{h,SYy+ ff+{f-f",S}' =h"+R
Then defining
h:=h+h",
we get
hobs=h+f
with
F=r="={r=rmsy" + {7, 53 +/01{<1 —t)(h* + R) + tfT, 5} o dLdt + R.
We first estimate the new perturbation.

Esmating /7.

1 T
fTZU?ﬂ+(/KL4Wﬁ+m+ﬁﬁao%ﬁ)+R.
0
For the first term, thank to (4.30) and Lemma [3.3] we get

. 1 i §7e?
17 S opm < C ol Slor e < CXYINIEE

here we choose 0 < ¢’ < 0" = %"/ <o.
For the second term, let g' = (1 —t)(h* + R) + tfT. Thank to all estimate of h™ and R
we have done: )
o', W < OXYN S Yo
By Lemma [3.11]

(51362
li14 ’

[{gt7 S} ° (I)g']z'/,u’,D’ < C[{gt7 S}]i,u,D < CX6Y8N7
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For estimating R, we choose N = —8(c — ¢’)"!lne then for ¢ sufficiently small we get a

good estimate

[R]§./7“/7D/ S 52.

In the end, since X, Y, N > 1 and § > k, we get

_ 51322
er =Ty wp < CX6Y8N7F.

Here we use C' as a constant which is the maximum of constants should appear in each
estimate. Sine ¢ is very small compare to o, u, and 1 | the parameters relate to X, Y, N
appear in each estimate are very small compare to % and easy to deal with. By the definitions
of X, Y and N, these parameters rise again slowly compare to decreasing of €.

Let £ = 0%, and € = §'77, assume that

CXSYENT < 5%
we get:
(51) £y S 61+2’y—15a

Choose a small enough compare to v, (o = /100 for example) we get:
= 4
ey = [fT]i’#’,D’ S 51+3'\/

when [fT]5 5 <67

Choice of parameters. We shall construct a transformation ® as the composition of

infinite many transformations ®g, :

(i + fi) 0 @5, = hig1 + frs1

At each step the domain is O%(oy, pux) X Dy, with Dy = D(kg, Nk) N Dx_1 C Dg_1. The
normal form hy = Q. - r + %(w, Arw) is closed to hg, and its Fourier series are truncated at
order Nj. We now give here a specific choice of all the parameters for £ > 1.
Let g = 017, ki, = 017 such that

4 4

= 5 Vk—-1, ap = Z0_1,
Yk 3%1 k 3k1

with v =7, ap = ﬁy. We also choose

1 1 1 1 B
Tk = 50 + oEr1 7 P =G5H + BYEsTa Ny = =8(0% — oxr1)” ' Ineg.
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Iterative lemma. We have

1
ho = Q-1+ §<w,A0w>
and fo = f €T, ., p, satislying
[fO]UO:NmDO < 57 [fg]ao,ug,Do <e= 51+7-
Let us denote Dy =D and O, = O, .

Lemma 5.1. For § sufficiently small compare to og, jo and 1, assume that § < y < 5%

Then for all k > 1 there exist Dy C Dy_1, Sk € T}
form and fi,T} such that

e The mapping

orpie Do ke = Qk'?“+§< w, Agw) on normal

kskksDg

=05 :Opy1 O, peED k=1,2,...
1s an analytic symplectomorphism verifying
(hr + fr) © P = hgyr + frra-
e we have the estimates
meas(Dy_1 \ Dy) < 57,

Tk
o

[fg]ik,#k,pk S 6k'7

)
) [P — hiealy, D <
)
) H@g (@k(x,p)—x)n < s+ x € Oki1, p € Diya,

for 3 =0,1.

Here C is an absolute constant.

Proof. At step 1, hg = Qo -r+ %(w, Agw) satisfies condition m trivially, so by Proposition
and the choices of parameters, we can construct Sy, R, hg verifying, for p € Dy

{ho, So} + fi +{fo— 13,50} =hi + Ro

such that
meas(Dy \ D) < C%M%VSLH <67

and

7
(5.6) [Sol5, .y < CX3Y4N4@ < g0 < 5%

Ko

6

(5.7) [h+]01 oy < CX3Y3N36 €0 < gt < SR

0
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By Lemma for any p € Dy, &y = <I>§0 : 01 — Oy is an analytic symplectomorphism
such that

(ho + fo) o @1 =h1 + f1
with hy = ho + h¢ and

109 (®o(x, p) — )| < C[Sol: <C8% w€0, peD,

o1,u1,D1

for j = 0,1. The estimate of f{ is already done before.
Assume that the iteration is true up to step £. We want to prove it for step ¢ + 1. By

construction
he=ho+hd +hi+...hf
satisfying
[he = ol 1y p, < S(O0F 40 4. po) <20t < g
So that

. ) )
|af;(Ae - AO>| < 4_17 |8g,(Qg — Qo)| < )

for j = 0,1. Therefore condition (3.13)) is satisfied at rank ¢ and by Proposition we can

construct Sy, h), R, verifying the non linear homological equation on Dy such that

meas(Dy \ Dyy1) < o MQN”Jr2 <67

5
and
57
(5.8) (8012 e Doy < CXPYANI=LE L e < 6
Z
S 5 (67
(5.9) [h;]%mﬂ,pm CXJYPN)—— < §ttreTee < SHF

Ky
By Lemma , for any p € Dyyq, Py = P s,  Oer1 — Oy is an analytic symplectomorphism
such that
(ho + fo) o @1 =h1 + f1
with heyy = he + b/ and

H@J (Py(x,p) — H < C[S; <053 we O¢i1, p € Dyyq,

Oe+1:t04+1,Doy1 —

for j = 0, 1. Finally, we have

1
feor=fo—f0 = {fe— 1S +{f7, S} + / {(1 = t)(hf + Re) +tf], Se} o B, dt + Ry,
0
satisfying

T
[f€+1]i'g+1,ug+1,'Dg+1 S E041-
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Proof of KAM theorem. Let
D/ - mkzopk.

By Lemma [5.1}
meas(D\D') <07 +67 +...<207.

Notice that oy > /2 and p, > p/2 and
O(0/2, 1/2) = Ni20 0% (ok, i) = lim O (o, ).
Let us denote @?V =Py 10...0Py5y for N > ¢ > 0. By Lemma , @év is an analytic

symplectomorphism from Oy to O; satisfying
(he + fo) 0 @y = by + fx
and
109 (@4 (x, p) — Id)|| < C(6F +...+073) <206% x €Oy, pe€Dy, j=0,1.
We also have for M > N >/
o (04— a4 < 8%, G=o.
i.e. (®4)y is a Cauchy sequence, which converge to the analytic symplectomorphism ®7_ :

O%(0/2,1/2) = Oy. By Lemma [5.1] we also have hy, and fj, are Cauchy sequences. Let us

denote h = limy_sooht, g = limg_.oo fr and ® = ®° . By construction, we have for p € D’
(ho+ f)o®P=h+g
with g € T3 /0 and g' = 0. The normal form
h= Qe+ 1/20w, Aw) = Qo) -1+ (Ce, QoIne) + 1/2(wr, K(p)wr)

satisfies

that is
952 - Q) <267 F,19,(Q - Qo) < 20", |9,(K — Ko)| < 26"
for 7 =0, 1.
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6. APPLICATIONS
Consider the non linear Schrodinger equation on the torus
(6.1) 10 + Oppu = |utu, (t,z) € R x T.

The Hamiltonian of the equation is given by

1
h = / ug? + = |ul®dx.
. 3

Let us expand u and % in Fourier basis:

u(z) = Zajeijx, u(zr) = ijeijm.

jez =
Define
1 o1
(6.2) P(a,b) = 3 |u|®dx = 3 Z @, @y Qs e, by, b
Ch JLETB M (j,0)=0

(6.3) N(a,b) =Y ja;b;,

JEL
where M(j,0) = jy+ jo+ js— {1 — €3 — {3 denotes the momentum of the milti-index (j,1) € Z°
or equivalently the momentum of the monomial a; a;,a;,0¢,b¢,0p,. In this Fourier formular,

the equation [6.1] reads as an infinte Hamiltonian system

{m‘j =i+ 5 Je€L,
—ib; = j%b; + o JEL
and the Hamiltonian:
h=N+P= g 52a;b; + %jﬁéezg%:(mo 1y, 5,00, 00, by

We also introduce the mass and momentum Hamiltonians:

L= ab;, M= jab;.

JET JEZ

Notice that the Hamiltonian flow preserves the mass and the momentum, or equivalently h
commutes with both I and M :

{h,L} = {h,M} = 0.

The Birkhoff normal form procedure. We first recall a result proved in [3].
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Proposition 6.1. There exist a canonical change of variable T from O*(o, ) into O%(20, 211)
such that
B:hOT:N+Z6+R10,

where
o N is the term N(I) = 3., 5°I};
e g is the homogeneous polynomial of degree 6
Zs =Y aj,a,a;,be,be, by
R

where
R={(j,0) €2’ xLstji+jo+js="Lli+ Lo+ L3, J7+75+ 75 =00+ 0G+ G}

e Ry is the remainder of order 10, i.e a Hamiltonian satisfying
9
HXRm("L‘)“s <C Hst

for all x € O%(o, p);
e 7 is close to the identity: there exists a constant C such that

I7(2) = 2|l < O le]l”
for all x € O%(o, ).

Start with two modes.
Firstly, we want to study the persistence of a two dimensional invariant torus for equation

(6.1) around the original point Assume that
ap = (Vpl + 7”1 2 201 \/_6201
aq — (VpQ + 7,.2 ’592(?5 _ \/_ezﬁg(t)

a; =G J%n%
where {p1, p2} € [1,2]*> = D and v is a small parameter such that

lap — 7oL+ lag = Vopal* + ) (14 72 lay]* = O).

J#p,q

The canonical symplectic structure now becomes

—idC Adn — dI A df

with I = (11, 1), 0 = (61,02), ¢ = (¢;); and 1 = (n;); = (¢;);-

Let
T = {(1,0,0)l11 = vp| = 0, 36] < o, [¢]|, = 0}
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and its neighborhood

Ty (v,0,1,8) = {(1,6. Q1L — vp| <wvii®, |36] < o, |I¢]l, < v'/?u}.
We want to study the persistence of torus T,(v, o, 11, 5). Indeed we have

Ty(v,0,1,8) = O%o, v ) = {(r.0, Ollr| < v, |S6] < o, |[¢[l, < v}
By theorem [6.1] we have
hot =N+ Zs+ Ryp.
We see that the term N contributes the effective Hamiltonian and the term R contributes
the remainder term f. So we just need to focus on the term Zs. Let us split it:
Zs = Zoe + Z16+ Zas+ L3

Here Zyg, Z16, Z26 are homogeneous polynomial of degree 6 which contains respectively
external modes of order 0,1,2. Z34 is an homogeneous polynomial of degree 6 contains
external modes of at least order 3,this term contributes the remainder term.

Thank to Lemma 2.2 on [3], the term Z; s = 0. We have

Zos = |ap|6 + |aq|6 +9 (|ap|4|aq|2 + |ap|2|aq|4)
= (vp1 +71)° + (vp2 +72)° + 9 (vp1 +11) (Vp2 4 72) (vpy + 11 + V2 +72)
=V (pi + p3 + 9pip2 + 9p3p1) + V7 (ri(p + 6p1p2 + 3p3) + 12(p3 + 6p1p2 + 3p7))
+ remainder.

For the term Z; ¢, there are two cases that can happen.

The first case
There are not s,t # p, ¢ such that

(6.4)

2p+s =2q+1
2% + 52 = 2¢% + 2.

Hence

Zae = Z21,6 =9 (|ap|4 +ag|* + 4|ap|2|aq|2) Z |a;|* = 9v° (:0% + 5+ 4P1P2) Z |G [*+remainder.

J#Dp,q J#Dp,q

Hence the effective Hamiltonian h¢ reads

he = (p* + 307 (pT + 3p3 + 6pipa)) 1 + (¢ + 3% (05 + 3p7 + 6p1p2) ) 72
n Z (]2 + 92 (p% + pg + 401;02)) |§j|2

J
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It is on normal form

(6.5) Qp) -7+ Y Al
J#p,q

where
Q(p) = p* 4 3v% (07 + 3p5 + 6p1p2)
q* + 3% (p3 + 3p; + 6p1p2)

and
Aj = 72+ 90 (o} + p3 + 4p1p2) -
The remainder term R reads
R =Ry+ Zs6 + 3upir? 4+ 13+ 3upyr? + 13 + Oriry(ry + 1))
+ (7’% + 73+ 2v(py + 2p2)r1 + 20(pa + 2p1)r2) Z |Cj|2.
J#Pa

In order to work on O%(o, ;1) we use the rescaling ¥ : r +— vr, ¢ — v'/2¢. The symplectic

structure now becomes
—vdr N\ df — ivd( A dn.
By definition, this change of variables send O°(e, 1) to the neighborhood of Tp”". By this
rescaling, we get
(h*+ R)oVU =vhy+vf
where hy and f are defined by

1 1
ho=—h"ol f=-Rol.
1% 1%

By theorem Ry € T°(o,v"/?u, D). It is straightforward to prove that the rest part of
R is in T*(o,v"?u, D). By construction, all of these terms commute with I and M, hence
thank to Lemma 4.3 on [5] they are all in 7,2 (o, v"/%u, D), so that R € T2 (o, v"/%u, D).
After rescaling, we get f € 7.2, (0, i, D). For estimating the norm of f, notice that R contains

only term of order at least 3 in v and RT = R is of order 9 in v, so that

[zﬂz,u,D 5 V2

and

[fT]csz,u,D SJ V7/2‘

Theorem 6.2. Assume that for p,q € Z there are not s,t solving the equation [6.4 The
change of variables ®, = 7 o U is a real holomorphic transformations, symplectic and ana-
lytically depending on p satisfying

o &,: 0%, pn) > T,(v,20,2v,s);
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o O, puts the Hamiltonian h in normal form in the following sense:
1
;(hoCI)p—C') =ho+ f
where C' is a constant and the effective part hg of the Hamiltonian reads

ho = Qp) -+ Y AjlGI

J#pa
where
Q(p) — (pz + 3uz (pz + 3p§ + 6p1p2))
q* + 3v* (p3 + 3p1 + 6p1p2)
and

Aj =32+ 9° (0} + p3 + 4p1p2) ;

e The remainder term f belongs to T*(o, 1, D) and satisfies

[f}i,u,D 5 I/2
and

[fT]i',u,D rS V7/2'

The second case
There are s,t # p, ¢ solving [6.4] so

Zog = 22176 + (aiasbgbt - bibsagat) = Z21’6 + Zs4
For the second term, let us rewrite it

Z(Vpl +71)(vp2 + 12) (621’(91792)@% + 6722’(91792)773@)
s,t
The effective part of this term is just given by
Vpipa Y (e Gy + e

st

Notice that

{157 Csnt + nsgt} = {It7 Cs"?t + 775@} =0.

This gives us a clue that the above term does not effect to the stability of the solution.

In order to kill the angles, we introduce the symplectic change of variables

\I[angles(rly T2, ‘97 C) = (Tlla T‘;, 07 C/) ’
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defined by
fC; — 621'(91—62)4*8
Cé =G
CJI :Cj7 j#&tap?q
7‘3 =" — 2|Cs|2
\Té :7“2+2|CS|2.

By this change of variables
h=hoWumges =C +h°+ R.
Here C' is a constant given by
C = V3(pi + ps + 9pip2 + 9p3p1) + vp*p1 + v pa.
The effective Hamiltonian h® reads
he = (" +3v* (b1 + 33 + 6p1p2) ) 1 + (a7 + 307 (p2 + 3] + 6p1p2) ) 1%
+ Y (P9 (0T 4 05+ 4pip2)) 117+ (82 4+ 907 (07 + 03 + 4prp2) ) G

J#D:q;8,t
+ (74 2p” — 2¢° + V7 (21p3 — 3p7 + 36p1p2) ) |CL? + v2 p1pa(Cny + 1LG)).

It is on normal form
Ap)-r+ D NIGE + A + MG + v prpa(Cry + 167
J#D,q,8:t

where Q(p) and A; are defined as in the first case except
Ay =12+ 12 (21,03 —3p% + 36p1p2) .

We would like to diagonalize it into the normal form as in KAM theorem. In order to do

that, we use a change of variables

Gt = ﬁ(@l + agy)
G- = ﬁ(g — ag)

Then A€ can be rewritten in normal form
Qp) - r+ Z A1 + Mo |G | + Ae |G-
J#p,q,8,t
Here o, Ay 4, Ay _ are chosen by solving
aMy =N o) = (1 +®)Ppip,
At7+ + OéQAtV_ = (1 + 042)At
At7_ + 062At7+ = (1 + 042)As
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After solving this equation system, we get a > 1 and Ay = A; — ”2’2’02, A=A+ @.

The remainder term R reads
R = RlO o \Ijangles + 23,6 o \I]angles + 3Vpl7°% + 71? + 3’/027”% + 7“3
+9rira(ry 4 1) 4 (rF 73 + 20(p1 + 2p2)71 + 20(p2 + 2p1)72) Z [€1&

J#p:a
with 71 = 74 + 2|2, e = 1) — 2|2
By rescaling
(h®+ R) oW = vhy + vf.

The study of f is the same as in the previous case.

Theorem 6.3. Assume that p, q, s, t satisfy the equation [6.f] The change of variables
O, = 70 VUyupgies © ¥ 15 a real holomorphic transformations, analytically depending on p
satisfying

¢ D, 02,28 S T, (v, 0,1, 5);

o &, puts the Hamiltonian h in normal form in the following sense:

1
;(ho(I)p—C') =ho+ f
where C' is a constant and the effective part hy of the Hamiltonian reads

ho =Q(p) - r+ Z NIGE 4 NG I+ A |G-

J#Pa:sit
where
o) = (BT ha A Tia T ane)
¢* +3v* (p3 + 3pi + Gp1p2)
and

Ay =32+ 9% (i + p3 + 4p1p2) J#s,
e The remainder term f belongs to T*°(1,1,D) and satisfies

[zﬂz,u,D 5 V2
and

[T SV

Proof of Theorem [1.1. By Theorem and [6.3] there exists a symplectic change of
variables @1, on D = [1,2]%, puts the Hamiltonian h = N + P in normal form hgy + f,
that satisfy assumption of KAM theorem for 6 =12, e =02 =§""and Q) = w =
(p%, ¢%) + O(v?). So by KAM theorem, since the hyperbolic set F is empty, the torus

T 1= {(1,0,0)l11 — vp| = 0, |36] < o, ||Cll, = 0}
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or equivalently, its neighborhood
T,(v,1,1,5) == {(1,0, Ol — vpl < v, [30] < 1, [[C]l, < /2.

is linear stable. Here we denote I = (1, 1,).

3 modes Assume that

(t ez’@l(t) —. \/[_peiel(t)
= ()7 €0 =: /T et
am = (vp3 +13(t))2 %O = /T, 0

Cj j?épJQ7m

ap = (vpr+m

Qq Vpo + 1o

~— — —
[T ST ST

)
)
)
a;

where p = (p1, p2, p3) € D C R? and v is a small parameter such that
ay — 7B+ Lty = VT + s — TP+ Y (14 )y = O7).

J#P,q

The canonical symplectic structure now becomes

—idC Adn — dI A df

with I = (I1, I3, I3), 0 = (61,62, 63) ¢ = (¢;); and n = (n;) = ({).
The same as the two-modes case, we have

hi:hOT:N+Zﬁ+R10.

We see that as the previous case, the term N contributes the effective Hamiltonian hy and
the term Rio contributes the remainder term f. So we just need to focus on the term Zg.
Let us split it:

Ze = Lo+ L1+ Zog + Zsg.

Here, Z) ¢ is homogeneous polynomial of degree 6 which just contains inner modes (p, ¢, m);
Z16, Zae are homogeneous polynomials of degree 6 which contain outer modes of order 1
and 2. Z3 ¢ is an homogeneous polynomial of degree 6 contains outer modes of at least order

3, this term contributes the remainder term. We have:

Zog = lapl® + lagl® + lam® +9 Y |aj[*ac® + 36|ay[*|ay|*|am|*
gbe{p,g;m}

Even it looks a bit more complicated, we deal with Zj¢ as in the previous case.
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For Z, ¢ there are two case:

The first case, there is no s solving the equation

{2j1+j2 — W+ s

6.6
(6:6) 27 +53 =20+ 5

with {j1, j2, ¢} = {p, ¢, m}. In this case, Z; 5 = 0.

The second case, there exist s solving the above equation, then Z; g contains monomials

of forms
2 12 2
aj a;,bybs and 0 by, aza.

In this case we are not in KAM theorem. So we just assume that we are in the first case.

For Zs ¢, we have

Zog= Y laj Plaglacd®+ > (a3a4,b3 by, + b3 b,07,a,,)

Ji,g2,¢ J3,Ja,51,t1€A

+ Z (6@5 U je bj7b82 bt2 + b]25 bj6 Aj; Asy at2)

J5,J6,J7,82,t2€B

+ Z ( o Uss b]s b]m bts + b?g b83 Ajg Aj1oAts )

J8,J9,J10,53,t3€C

E : 2 2 2
+ ( ]11a312bJ13b54 + b]llb]12a’]13 54)

J11,J12,J13,54€E

with j; € {p,q,m}, s # t. The sets A, B, C, £ are finite and possibly empty such that
2j3+s1 =2ja+t 2j5+Js =Jrtsatis
2j5+s1 =2+ 23 +J5 =Ji+s+t

2j9 + 83 = jg+ jio+ 13 2jn1 +J12 = Jiz + 284
2j5 + 55 =Ji+ it +13 2551 + it = Jis + 287

We shall deal with each term one by one (in case it’s not empty). The first term is just

depends on the actions, and we have
|aj, [*laj, [*lac® = v2pj pi| Gl + remainder.
The second and the fourth term are similar, since their effective parts are all of the form
e G + €

The idea to deal with these two terms is the same as that in the two-modes case. Since

{]s + ]ta Csnt} = {Is + It; Ctns} = Oa
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these terms do not affect the stability of the flow. We see that A, B,C,D are disjointed,
and as in the two-modes case, a change of variables that used to deal with a pair s,¢ only
affect that modes, i.e the changes of variables commute. We call ®; the composition of all
changes of variables used to deal with the sets A and C.

For the third term, its effective parts are of the form

Vzpjs)\/ Pie Pir (eiaCSCt + 6_ia77577t)
where a = 0;, — 0, — 20;,. For explicitness, assuming that we are dealing with the case

Jjs =p, je = q, j7 = m, and s, t solve the following equation

2 = t
(6.7) {p+q m+ s+

then a = 03 — 0 — 20;. An example for this could be (p, ¢, m,s,t) = (3,10,9,1,6). In order

to kill the angles, we introduce the symplectic change of variables

\Ilangal(n 67 C) = (’r/a ‘97 gl) )

defined by
(gé = Zleimns 77; = iemgs
G =G m ="
) C], :Cja 773277] j#svtapaq
rll =r+ 2|C8|2
ry =1y + |G
\Té :7"3— |CS’2'
The effective part related to s,t is of form
(65) MG + MG = i o1/ + 1)
where
Ay =2+ 9% (0T + ps + i + 4p1pa + 4paps + 4pspr)
and

Ay = 1% 4 30(=pT + p5 + 5p3 — 6p1p2 + 12p2p3 + 6pspr).
Denoting a = % and b = At%/\s, we diagonalize by the change of variables

1

G = = —iag))  m - = = (1, — iam))
G = = (G i) Mt = = (0} + iar)

where

a—/a? — vipipaps
v2p1+/P2P3 .

o= —
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Then becomes
Ao G|+ A=)

where A;+ = b+ \/a? — v*pipaps. We see that A, . is real or not depends on sign of
a® — v p2paps, which is dependent on choice of parameter p. Precisely, for p € Dy = [1,2]3,
we have A; y € R while there is a neighborhood of (1, %, %) :Dy=D.=[1—¢€1+¢] X [% —

€5+ € X [2—¢ 9+ ¢l such that [SA, 4| > v? for all p € D.
We call &, the composition of all changes of variables related to B.

For the set £, assume that we are dealing with the case

{Qp—i—q =m+2s

6.9
(6.9) 20 + ¢ = m?+2s%

Then, using the change of variables

\Ilang,2(r7 97 C) = (Tlﬂ ‘97 C/) )

defined by
(Cé = 6ia/2§s 77; = eiia/Qns
i =G m=n; JF# D4
ro =GP
o=t P
\’ré =T3— %|Cs|2
The effective part related to s becomes
(6.10) NI + P pin/p2ps(C2 + 1)
where

As = 30%(2p7 + p5 — p3 + 9p1p2 + 3pap1)

. . 1—32 L/g_;'_ g
If A, # 0, we can rewrite (6.10)) into 5 +§2A5 i/%
Cetrim me+ids

B2)v2p1y/paps, otherwise we rewrite it into iv°p1\/paps(* 25 =o2s). However, meas{p €
R3: A, =0} = 0, so we do not focus on this case. We call ®3 the composition of all changes

2 with B satisfying A8 = (1 —

of variables related to £. Using the rescaling ¥ introduced in the two-modes case, we get

Theorem 6.4. Assume that we are not in case of . The change of variables ®, :=
Wo®dz0®Py0®D 07 is a holomorphic, symplectic transformation, and analytically depending

on p € D, satisfying
1

o d,: 0%, %&) — T,(v,0,p,s);
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o O, puts the Hamiltonian h in normal form in the following sense:
Lho®,~C)=ho+ ]
where C' is a constant and the effective part hy of the Hamiltonian reads
ho =Q(p) -7+ NalGal?

a€Z

where

p? + 302 (p7 + 3p5 + 303 + 6p1p2 + 6p1ps + 12p2p3)
Qp) = | ¢ +3v% (5 + 3p7 + 3p3 + 6p1p2 + 6paps + 12p1p3)
m? + 3v% (03 + 3p7 + 3p3 + 6p1ps + 6p3p2 + 12p2p1)

e Z is the disjoint union LU F; L corresponds to elliptic part, and F corresponds to
hyperbolic part;

o for D =Dy, then F = {@};

o for D =Dy, then F = {@&} if and only if B = {@};

e A, satisfies the Hypothesis A0, A1, A2;

e the remainder term f belongs to T*(o, u, D) and satisfies

[f}i,u,D 5 I/2

and

[fT]i',,u,D 5 V7/2‘

The remainder term is dealt as in the two-modes case. It remains to verify the Hypothesis
A0, A1, A2, which requires explicit and careful calculus, but the idea is similar as in the
two-modes case.

Proof of Theorem By Theorem [6.4] there exists a symplectic change of variables ®,
on Dy puts the Hamiltonian h = N 4+ P in normal form hg + f, that satisfies assumptions
of KAM theorem 2.3 for § = 1%, ¢ = v7/2 = §7/* and Qy = w = (p?, ¢, m?) + O(¥?). So
by KAM theorem, the hyperbolic set F is not empty if and only if D = D, and there are
s,t # p,q, m solving the equation

2 = t
(6.11) {p—l—q m+ s+

20 + ¢ =m?+ 52 + 2
Hence, for p € Dy, the torus

T," = {(L,0,llI —vp| =0, [30] < o, [|C]|, =0}
or equivalently, its neighborhood

T,(,1,1,8) = {(L.6, Q|11 — vp| < v, 30 < 1, |C]l, < v}
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is linearly stable, while for p € Dy and p, ¢, m satisfying (6.11)), that torus is linearly unstable.
O
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7. APPENDIX

In this appendix, we will verify the hypothesis A0, A1, A2 for the Hamiltonian in our
applications. The hypothesis A0 is trivial, so we focus on Al and A2.

The two-modes case. The first case In this case, we have F = () and the other estimates

are trivial. For the hypothesis A2, we recall that

0 P> +3v2 (pi + 3p3 + 6p1p2)
( ) 2 2 (2 2
q- + 37 (pz + 3p1 + 6p1p2)

and
Ay =52+ 97 (p} + p3 + 4p1p2) -

Let k = (ky, ko) € Z*/{0} and z = 2(k) = (kT,’c’rl), then we have

(V,-2)(Qp) - k) = 61° (3(p1 + p2)k3 + 3(p2 + 3p1)ki + 4(p1 + p2)kika) |k|7!

> 2y

V2

and
(V- 2)A; = 1807 ((p1 + 2p2)ka + (p2 + 2p1) k) [k| .

Choosing 6 = 402, we get the hypothesis A2 (1). Since (V, - z)(A; — Ay) = 0, the estimate
of small divisor -k + A; — A, is followed. To estimate the small divisors €2 -k + A; and
Q-k+A; + Ay we use the fact that f commute with both the mass . and momentum M.
We just need to control small divisors Q- k + A; and Q - k + A; + A, whenever ¢, € f

ik-6

and e""n;n, € f, respectively. We have for the mass and momentum:

L=v(p+p2)+ri+r2+ ¢
J

and

M = v(pp1 + gp2) +pr1+qra+ Y 51¢1
J

By conservation of I, we have

{€ik'67’]j, L} = Z.eik.enj(k?l + k‘g + 1) =0.
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Therefore, for A2 (2) we just have to study the case k; + ko = —1. In this situation
(Vo 2)(Qp) - k+ Aj) =602k (3(p1 + p2)k3 + 3(p2 + pr)ki + 4(p1 + p2)krk2)
+ 602k~ (3(p1 + 2p2)ka + 3(p2 + 2p1)k1)
= 6V°[k|™! (o1 + p2)k3 + (p2 + p1)kT + 2(p1 + p2))
+ 60 |k| ™ (3paka 4 3p1k1 — 3(p1 + p2))
= 602 |k| ! (2(p1 + pa)ki + (5p1 — pa)k1 — 3p2) )
This term is bigger than ¢ except the cases k = (—1,0) and (0, —1). The conservation of M
gives us
{e®Pn;, M} = ie™n;(pky + qhy + 7) = 0.
For k € {(—1,0), (0, —1)}, this implies j € {p, ¢}, which is excluded.
We consider the small divisor 2-k+A;+ A, in the same way. The conservation of the mass L.
gives us k1 +ks = —2 and then by computation we get k € {(0,—-2), (—2,0), (—1,—-1),(-3,1),(1,-3)}.
The conservation of the momentum gives us pk; + gks + j + ¢ = 0. We have
Q-k+AN+A=N(p,q.7,0) + ulp,k,)

where N(p,q,7,0) = p*k1 + ¢*ka + 52 + €2 and u(p) very small for |k| < 4. We see that
N(p,q,4,0) € Z,s0o N(p,q,3j,¢) <6 if and only if p*k; + ¢*ko + j2 + 2 = 0. Combined with
conservation of the momentum, this gives

for the case k = (—1,—1)

p+qg=7j+¢ and p*+4¢*=j>+ 0
for the case k = (—2,0)
2p=j+¢ and 2p*=j>+¢?
for the case k = (0, —2)
2¢=7j+¢ and 2¢° =+
for the case k = (—3,1)
3p=q+j+¢ and 3p® =g+ +
for the case k = (1, —3)
3g=p+j+¢ and 3¢* =p*+ >+ 12

In all these cases, we get j,¢ € {p, ¢} which is excluded.

The second case We see that  and {A;};., s+ are all the same as the previous case
except A, and A, _. We remind that A, = Ay — ”2—003@ and Ay~ = A; + ﬁ%@ with
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a > 1. It is easy to see that |(V, - z)j%| < 2v% = §/2, so instead of estimating directly
with A; 4, A, we can estimate with A; and A,. Since A; has the same form as the other
A; we just need to focus on estimating divisors relating to A, which are Q -k + Ay and
Q- k+ A, £ A,. For simplicity, we omit l/;p—/ip% since it is very small. For Q -k 4+ A,, using
the conservation of the mass, we get k; + ko = —1 and

(V- 2)(Qp) - b+ Ag) = 602 k|71 (2(p1 + p2)ki + (91 + 3p2)ky + 4p1 — 3p2) .
Then we get the estimate except for k € {(0,1),(—1,0),(—2,1),(—3,2)}. By the conserva-
tion of the momentum, combining with [6.4] we need

pkl + qu +t =0

2p+s =2q+1

2p2 + 82 — 2q2 +t2
For k € {(0,1),(—1,0),(—2,1),(—3,2)}, this gives either {s,t} = {p,q} or p = ¢ which are
all excluded. For Q -k + Ay — Ay, by the conservation of the mass, we have k; + ko = 0 and
then

(V- 2)(Q-k+ Ay = Ap) = 60°|k[ 7" (2(p1 + p2)kT + 8(pa + pr)k1 + 12p1 + 16py) > 12

we get the estimate. For Q-k+ A+ Ay, the conservation of the mass IL gives us ki +ky = —2
and then by computation we get the estimate except for k € {(—1,—1),(—2,0),(-3,1), }.
Combining with the conservation of the momentum and the equation we get that all

these cases are excluded.

The three modes case. Let us start with simple probability assuming that A, B, C are

all empty. In this case, we have

p? + 302 (p7 + 3p5 + 303 + 6p1p2 + 6p1ps + 12p2p3)
Qp) = | ¢° + 302 (p5 + 3pi + 3p3 + 6p1pa + 6paps + 12p1p3)
m? + 3v% (03 + 3p7 + 3p3 + 6p1ps + 6p3p2 + 12p2p1)

and
Aj = 5% 4+ 9% (p] + p3 + p3 + 4p1pa + 4paps + 4pspr).
Let k = (ku, ko, ks) € Z2/{0}, K" = (ko + ks, k1 + k3, ki + ko) and z = z(k) = &, then we
have
(V- 2)(Qp) - k) = 602K |7 (3(p2 + pa)ki + 3(p1 + pa)ks + 3(p2 + pr)k3+
6(p1 + p2 + p3) (ky + bz + k) + (p1 + p2)kika + (ps + pa)ksks + (p1 + ps)kiks)

and

(V, - 2)A; = 18K/ [ ((4p1 + 3pa + 3pa)ky + (4p2 + 3p1 + 3p3)ka + (4ps + 3pa + 3p1)ks).
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Choosing & = 1%, we get the hypothesis A2 (1). Since (V, - 2)(A; — Ay) = 0, the estimate
of small divisor €2 - k + A; — A, is followed. For € -k 4+ A;, by conservation of the mass,
we just need to estimate this divisor in the case k; + kg + k3 = —1, then by computation
we have estimate except for k& € {(0,0,—1);(0,—1,0);(—1,0,0)}. By conservation of the
momentum, we have pk; + gks + mks + 7 = 0, so that j € p,q, m which is excluded. For
Q-k+A; + Ay, again we have ky + kg + k3 = —2 by conservation of the mass, which leads
us to consider |k| = |ki| + |k2| + |k3| < 2. By conservation of the momentum, we have
pk1 + qks + mks + 5 + ¢ =0, and the term Q- k + A; + A, is small if only if

P2 + gk +mk2 + 2+ 2 = 0.

After all, we will get j,¢ € {p,q, m} which is excluded. Now, we will estimate divisors in
case A, B, C are not empty.
The set B For p € D,: we have

|%At7:|:’ > 1/2
and so that
|Q -k + At,+ — At,—| Z 21/2.

For Q-k+ A+ + Ay, wesee that Ay + Ay - = A+ Ay = 2A4 + 20 +Qy — (3, so argument
as in the trivial case above for k} = k1 —2, k}, = ko — 1, k% = k3 +1 we get desired estimates.
Nevertheless, by the conservation of the mass and the momentum, we just need to estimate
this small divisor if ki + ko + k3 = 2t and p?k; + ¢*ky + m2ks = 2t?, combining with ,
this is never the case.

For p € Dy : the importance of this domain is \/aZ—Tp%prg € R, so we can forget
\/m in estimating (if it is not small we can change the domain). Besides, we
have b = % = A+ w, so by checking estimates in trivial case above with a
change k| = k1 — 1, k) = kg — %, ki = ks + %, we get desired estimates.

The set A Assume that s, solve the following equation

2p+s =2q+1
{2}02 +52 =2¢% +t*

Then by change of variables, we have A, = A; + 20, — 2Qy + s* — t2 + O(v*). Using results
in the trivial case for k] = k1 — 2, k), = ky + 2, we get desired estimates.

The set C Assume that s,t solve the following equation

2p+ s =qg+m+t
20 + 52 = ¢ +m? + 2
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Then by change of variables, we have Ay = A; + 2Q; — Qy — Q3 + 52 — 2 + O(v*). Using
results in the trivial case for k] = k; — 2, k), = ko + 1,k = k3 + 1 we get desired estimates.

The set £ is just a special case of the set B when s = t.
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