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1 Introduction
Le laboratoire GPEM (Granulats et Procédés d’Elaboration des Matériaux), rattaché au

campus de Nantes (Bouguenais) de l’université Gustave Eiffel, est composé de chercheurs aux
compétences très diverses qui vont des mathématiques appliquées au génie civil en passant par
la physique, le génie des procédés ou encore la chimie. Ces compétences sont mobilisées pour
développer l’économie circulaire de la ville et les procédés qui y sont associés.

Une thématique commune à toutes les recherches du laboratoire concerne les pâtes granulaires.
Ce sont des matériaux viscoplastiques, c’est-à-dire qu’ils se comportent comme un fluide ou un
solide localement : plus ils sont soumis à une forte sollicitation à un endroit, plus ils s’écoulent
de façon liquide au voisinage de cet endroit, comme de la purée. Au-delà des préoccupations
du laboratoire (fabrication de béton, tri des déchets, construction en terre, etc.), la modélisa-
tion des écoulements de pâtes granulaires offre de nombreuses applications en génie civil (boues
d’épuration), environnementales (coulées de boue, avalanches), biologiques (fluides corporels tels
que le sang). Le modèle de Bingham ([Bin22]) est un modèle viscoplastique que l’on utilise en
général comme prototype, car il contient la difficulté fondamentale de la viscoplasticité : l’effet de
seuil. Cette difficulté se traduit par l’existence de zones de l’écoulement (dites rigides) de mesure
de Lebesgues non-négligeables dans lesquelles le taux de déformation (partie symétrique du gra-
dient de vitesse) est nul. La régularité du champ de vitesse est a priori limitée au voisinage du
bord des zones rigides. Plus précisément le champs de vitesse n’est a priori pas dans l’espace
de Sobolev H3pΩq (où Ω Ă RN est le domaine de l’écoulement), même lorsque les données du
problème sont très régulières. Cette particularité conduit à de nombreuses limitations dans les
méthodes d’approximation connues. Ainsi, de nombreuses recherches visent à réduire à ces limi-
tations. Dans le présent travail, c’est la vitesse de convergence d’une classe d’algorithmes pour la
non-linéarité décrite par l’effet de seuil qui est concernée.

Généralement, sur un ouvert borné Ω Ă R3, le modèle de Bingham s’écrit sous la forme
#

~τ~ ď g ðñ Dpuq “ 0

~τ~ ą g ðñ τ “ 2µ Dpuq ` g Dpuq

~Dpuq~

où u est le champ de vitesse, Dpuq :“ p∇u ` p∇uqJq{2 son taux de déformation, et τ le déviateur
du tenseur de contrainte1. On utilise la norme ~w~ “

?
w : w associée au produit scalaire tensoriel

w : v “
ř

i,j wijvij . On définit aussi g le seuil de plasticité du matériau, parfois aussi noté τy dans
la littérature, et la viscosité µ.

Ce modèle, complété par les équations de conservation de la mécanique des milieux continus,
ainsi que des conditions initiales et aux limites, définit un système d’équations aux dérivées par-
tielles décrivant complètement l’écoulement. Dans le cas présent, l’objectif étant de travailler sur
la résolution de la non-linéarité de l’effet de seuil, on se concentre sur une description stationnaire
et sans effet d’inertie, à masse volumique ρ constante :

"

ρ p∇uq ¨ u ´ div τ ´ ∇p “ f “ 0 (conservation de la quantité de mouvement)
div u “ 0 (conservation de la masse)

avec le produit scalaire p∇uq ¨ u négligé (précisément ce que signifie "sans effet d’inertie").

La plupart des algorithmes de la littérature consacrés à la résolution de ce problème non
linéaire considère une formulation dans le cadre de l’optimisation convexe sous contraintes. La non-
différentiabilité de la fonctionnelle à minimiser pour trouver u rend difficile l’obtention d’algorithmes
performants (c’est-à-dire dont les temps de calcul sont compatibles avec les besoins de simulation,
et plus généralement avec les taux de convergence les meilleurs possibles), c’est l’objet de nom-
breuses recherches depuis une cinquantaine d’années ([GLT81], [BT09], [Ble17a], [Ble17b], [Sar16],
[SW17]).

1Le tenseur de contrainte (noté souvent σ par les mécaniciens) se décompose en sa partie déviatrice (ici τ) et sa
partie sphérique qui est la pression isostatique notée p.
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On trouve des méthodes itératives de calcul de point de selle dans [GLT81], [RS03], [BT09] et
ses variantes récentes, robustes et simples à programmer mais dont la lenteur reste insatisfaisante
en pratique malgré la populaire accélération récente initiée dans [BT09] pour le traitement d’images
à partir de travaux généraux de [Nes83], puis appliquée à Bingham dans [Tre+18].

Des approches plus récentes [Ble17a], [Ble17b] et [Sar16] montrent des performances supérieures
d’un ordre dans leur taux ce convergence, mais avec un coût untitaire de l’itération bien supérieur
et avec davantage de complexité de mise en oeuvre. Le problème reste donc largement ouvert.

On peut également mentionner une classe de méthode au succès déclinant mais encore très util-
isées, consistant à régulariser l’effet de seuil de manière à pouvoir appliquer des méthodes efficaces
pour minimiser des fonctionnelles différentiables. La plus populaire est [Pap87]. Cependant, il est
délicat d’interpréter physiquement et de fixer le paramètre de régularisation, ce qui a conduit à
une grande difficulté d’utilisation fiable en pratique. En outre, les performances sont fortement
dégradées lorsque le modèle régularisé tend vers le modèle initial.

Dans le présent travail, il s’agit d’utiliser des propriétés locales pour modifier un algorithme de
gradient projeté connu sous le nom ISTA ([BT09]) ou Uzawa ([GLT81]) selon le contexte applicatif.
C’est une approche originale, car toutes les recherches actuelles utilisent des propriétés globales.
Notre motivation vient du fait que les propriétés locales d’un matériau viscoplastique ne sont pas
les mêmes partout.

Plus précisément, dans le cadre du stage, on présentera un problème modèle (celui de Bing-
ham), pour ensuite se focaliser sur un pas de descente variable en espace (dans l’algorithme de
gradient projeté), en privilégiant notamment des valeurs différentes dans les zones rigides, les zones
complémentaires dites fluides. Dans un premier temps, on s’intéresse à des valeurs constantes du
pas dans les deux types de région et on examine les performances sur des cas mono-dimensionnels
simples (Sections 2 à 5), tout en démontrant la convergence de l’algorithme de gradient projeté
localement pondéré (LWPG). L’un semble pouvoir être traité explicitement (problème de Poiseuille
plan, quitte à adapter l’algorithme ; Section 5), l’autre numériquement (problème de Couette, Sec-
tion 6). Dans un second temps (Section 6), on réalisera des tests numériques sur le problème de
Couette avec l’algorithme LWPG ainsi que la variante de pénalisation (LPWPG) pour mettre en
évidence les gains de performances qu’on espère obtenir par rapport à l’algorithme ISTA.

2 Un problème modèle
La solution du problème qu’on propose consiste à appliquer une méthode de gradient projeté

en trouvant λ (défini par τ “ 2µDpuq `gλ) comme l’argument minimum d’une fonctionnelle qu’on
explicitera dans cette section-ci.

Sans perte de généralité, on formule dans cette section l’écoulement stationnaire d’un matériau
de Bingham confiné dans une conduite droite de section constante Ω. Ce cadre est introduit ici
pour simplifier la présentation. Le matériau est mis en mouvement par une chute linéique de
pression f et le fluide adhère aux parois. Le champ de vitesse se réduit alors une seule composante
parallèle à l’axe de la conduite, encore notée u. Les contraintes se réduisent aux composantes de
cisaillement, en particulier Dpuq se réduit à ∇u. La viscosité est fixée à 1 dans le but de simplifier
l’écriture, puisque le paramètre physique pertinent est le seuil de plasticité g. Soit Ω un ouvert
borné de R2. On définit pour les fonctions u, v P H1

0 pΩq le produit scalaire ppu, vqq “
ş

Ω
∇u ¨∇v dx,

et la norme associée }u} “
a

ppu, uqq.

Soit la fonctionnelle
Jpvq :“

1

2

ż

Ω

|∇v|2 ` g

ż

Ω

|∇v| ´

ż

Ω

f v.

On définit aussi l’ensemble convexe K “ tν P pL2pΩqq2; |ν| ď 1 p.p. sur Ωu. Pour introduire
l’algorithme d’Uzawa pour le problème de Bingham avec un pas ρ constant, on définit la vitesse u
et le champ de tension λ P K liés par le problème de Bingham : avec p., .q le produit scalaire de
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pL2pΩqq2,
#

ppu, vqq ` gpλ, ∇vq “ pf, vq, @v P H1
0 pΩq

pµ ´ λ, ∇uq ď 0 @µ P K
(1)

On peut montrer ([GLT81]) que (1) est une formulation variationnelle du présent problème
d’écoulement et qu’on a les caractérisations suivantes :

u P argmin
H1

0 pΩq

J ô

ż

Ω

∇u ¨ ∇pv ´ uq ` g

ż

Ω

|∇v| ´ g

ż

Ω

|∇u| ě

ż

Ω

fpv ´ uq, @ v P H1
0 pΩq

ô Dλ P K et D! u P H1
0 pΩq tels que (1) est vérifié.

Pour µ P pL2pΩqq2 donné, on pose upµq P H1
0 pΩq l’unique fonction (d’après le théorème de

Lax-Milgram) qui vérifie
ż

Ω

∇upµq ¨ ∇v ` g

ż

Ω

µ ¨ ∇v “

ż

Ω

f v, @ v P H1
0 pΩq

la fonctionnelle Φpµq “ 1
2g

ş

Ω
|∇upµq|2 pour µ P K ainsi que

Ψpµq “ Φpµq ` 1Kpµq, µ P pL2pΩqq2

où la fonction indicatrice de l’analyse convexe est 1Kpxq “

#

0 si x P K

`8 si x R K
.

On a alors
λ P argminΨ ô pµ ´ λ , ∇upλqq ď 0 @µ P K.

Autrement dit, minimiser Φ sur K revient à minimiser Ψ sur pL2pΩqq2 et à trouver une solution
de (1). On peut ainsi écrire différentes formulations variationnelles du problème de Bingham, mais
c’est la minimisation de Ψ et la formulation (1) que nous utilisons dans ce travail.

2.1 Propriétés d’analyse fonctionnelle
On résume ici quelques résultats utiles pour comprendre et analyser la convergence des algorithmes
de gradient projeté.

Lemme 2.1. Les assertions suivantes sont vraies sur L2pΩq2 :

• Φ est convexe et lipschitzienne.

• Φ est dérivable sur K, de dérivée Φ1pµq “ ´∇upµq.

• Φ1 est continue et g-lipschitzienne.

Preuve. • Convexité. La fonction up¨q vérifie de par sa définition, pour tout α P r0; 1s, λ, µ P K,

upαλ ` p1 ´ αqµq “ α upλq ` p1 ´ αq upµq

Ainsi 2g Φpαλ`p1´αqµq ď 2gpα Φpλq`p1´αq Φpµqq par inégalité triangulaire et composition
des fonctions u, u ÞÑ }u} et x ÞÑ x2.

• Dérivabilité. On prend la première ligne du problème (1) avec v “ upµ ` ηq ´ upµq,

}upµ ` ηq ´ upµq}2 “ ´g pη, ∇pupµ ` ηq ´ upµqqq

ď g|η| }upµ ` ηq ´ upµq}

ď
g2

2
|η|2 `

1

2
}upµ ` ηq ´ upµq}2
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avec les inégalités de Cauchy-Schwarz et de Young, ce qui entraîne }upµ ` ηq ´ upµq}2 “

Op|η|2q. Or pour tout v P H1
0 pΩq,

2gpΦpµ ` ηq ´ Φpµqq “ }upµ ` ηq ´ upµq}2 ` 2ppupµ ` ηq ´ upµq, upµqqq

et d’autre part ppupµ ` ηq ´ upµq, upµqq “ ´gpη, ∇pupµqqq.

On a aussi ppupλq ´upµq, vqq “ ´gpλ´µ, ∇vq, @v P H1
0 pΩq puis en prenant v “ upλq ´upµq

et par l’inégalité de Cauchy-Schwarz, il vient |∇upλq ´ ∇upµq| “ }upλq ´ upµq} ď g|λ ´ µ|.

• Continuité. Enfin pour la continuité lipschitzienne de Φ,

}upλq}2 ´ }upµq}2 “ }upλq ´ upµq}2 ` 2ppupλq ´ upµq, upµqqq

“ ´g pλµ, ∇pupλq ´ upµqqq ´ 2g pλ ´ µ, ∇upµqq

“ ´g pλµ, ∇pupλq ` upµqqq

Par conséquent, avec l’inégalité de Cauchy-Schwarz
ˇ

ˇ}upλq}2 ´ }upµq}2
ˇ

ˇ ď g|λ ´ µ| }upλq `

upµq}. Sachant que ppupλq ` upµq, vqq “ 2pf, vq ´ gpλ ` µ, ∇vq, on obtient

}upλq ` upµq} ď 2|f | ` g|λ ` µ| ď 2p|f | ` gq

donc
|Φpλq ´ Φpµq| ď

1

2g
¨ g|λ ´ µ| ¨ 2p|f | ` gq “ p|f | ` gq|λ ´ µ|

Pour déterminer l’existence d’un minimiseur de Ψ, on va fournir les définitions et le théorème
tirés de [Pey15] :

Définition 2.1. Soient X un espace séparé (ou de Hausdorff), et une fonction f : X Ñ RYt`8u

:

• f est dite propre lorsque son domaine effectif dom f “ tx P X : fpxq ă `8u n’est pas
vide.

• On dit que f est semi-continue inférieurement en un point x0 P X si, pour tout α ă

fpx0q, il existe un voisinage V de x0 tel que fpyq ą α pour tout y P V . Si f est semi-continue
inférieurement en tout point de X, on dit que f est semi-continue inférieurement sur X.

Théorème 2.1 (existence d’un minimiseur de f). Soient X un espace séparé (ou de Hausdorff),
et une fonction f : X Ñ R Y t`8u. Si f est propre, semi-continue inférieurement, convexe et
coercive (pour les suites dans X), alors argminX f est non-vide et faiblement compacte. De plus,
si f est strictement convexe, alors argminX f est un singleton (autrement dit f admet un unique
minimiseur sur son domaine).

Corollaire 2.1. La fonctionnelle Ψ admet au moins un minimiseur λ P K.

Preuve. En prenant X “ pL2pΩqqN , on cherche à caractériser Ψ, sachant qu’elle coïncide avec Φ
sur K.

• Propreté. Soit v P H1
0 pΩq bornée et telle que ∇v soit borné aussi, et µ P K. On a bien

ppupµq, vqq “ pf, vq ´ gpµ, ∇vq qui est fini. On peut montrer avec les outils classiques que si
µ P K, on a :

}upµq}2 “ |pf, upµqq ´ gpµ, ∇upµqq|

ď |pf, upµqq| ` g |µ| ¨ }upµq}

ď }f}˚ }upµq} ` g |Ω|1{2 ¨ }upµq}

On obtient donc la majoration
a

2g Φpµq “ }upµq} ď }f}˚ `g |Ω|1{2. En effet, on définissant
H´1pΩq comme le dual topologique de H1

0 pΩq, f P L2pΩq peut être identifié à un sous-
ensemble de H´1pΩq (les deux espaces sont même isomorphes d’après le théorème de Riesz).
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En notant encore f l’élément de H´1pΩq défini par : v ÞÑ pf, vq pour v P H1
0 pΩq, on peut

écrire sa norme H´1 :
}f}˚ “ sup

vPH1
0 pΩq,v‰0

|fpvq|

}v}

De plus, comme |µpxq| ď 1 p.p. sur Ω, la norme L2 de µ est bien majoré par |Ω|1{2.
On a donc bien Φ finie, et donc aussi Ψ finie puisque µ est pris dans K. Cela signifie donc
que dom Ψ “ K. En fait, il suffit ici de remarquer que Ψp0q “ 0, donc dom Ψ n’est pas vide.

• Semi-continuité inférieure. Ψ est déjà continue sur int K (intérieur de K) parce qu’elle y
coïncide avec Φ. Par sa définition, K est fermé dans pL2pΩqqN pour la norme L2, ce qui donne
BK Ă K. Il suffit alors de montrer sa semi-continuité inférieure sur K ou son complémentaire.
Pour cela, il faut considérer un voisinage V de µ dans lequel Ψpµq ą a (avec a ą 0 donné),
ensuite :

– d’une part V X K, dans ce cas la continuité Lipschitzienne de Ψ permet de définir
explicitement V tels que tous éléments de V évaluent Ψ à une valeur plus grande que a.

– d’autre part V X ppL2pΩqq2zKq, dans ce cas la définition de semi-continuité s’applique
immédiatement quel que soit V puisque Ψ “ 8 ą a.

• Convexité. Ψ est convexe sur K d’après le Lemme 2.1, et tend vers `8 dès qu’on dépasse
BK. Donc Ψ est convexe sur tout son domaine.

• Coercivité. En utilisant la définition d’une fonction coercive par [Pey15], Ψ est coercive car
elle vaut `8 en dehors de K.

Théorème 2.2. Soient H un espace de Hilbert, et K une partie non-vide, fermée et convexe de
H. Alors la projection orthogonale PK vérifie, pour tous x P H, y P K,

⟨x ´ PKpxq, y ´ PKpxq⟩H ď 0.

Dans le cas présent, PK la projection orthogonale sur K est définie par :

PKpµq “

#

µ si |µ| ď 1
µ

|µ|
sinon

Pour comprendre l’algorithme qui vient, on peut synthétiser dans un lemme différentes expres-
sions équivalentes du modèle de Bingham, lorsqu’on utilise λ plutôt que τ . Cet algorithme dit de
gradient projeté est caractérisé par λn`1 “ λn ´ ρ Gρpλnq où

Gρpµq “
1

ρ
pµ ´ PKpµ ´ ρ Ψ1pµqqq

Cette manière d’écrire l’itération en λn permet d’identifier à la fois une direction de descente Gρ

et un pas de descente ρ.

Lemme 2.2. Soit λ P pL2pΩqq2 et u P H1
0 pΩq. Alors les trois relations sont équivalentes :

• pµ ´ λ,∇uq ď 0, @µ P K

• λ ¨ ∇u “ |∇u|, |λ| ď 1 p.p. sur Ω

• λ “ PKpλ ` ρ ∇uq, @ρ ą 0

3 L’algorithme de gradient projeté (ou ISTA/Uzawa)
Algorithme 3.1 (algorithme classique d’Uzawa, ISTA). Soit ρ ą 0 et λ0 P K. Par récurrence, la
suite des pun`1, λn`1q P H1

0 pΩq ˆ K se calcule comme suit:
"

ppun`1, vqq ` gpλn,∇vq “ pf, vq, @ v P H1
0 pΩq

λn`1 “ PKpλn ` ρ ∇un`1q
(2)
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qui reflète l’équation (1).

Remarque 3.1. En fait, on pourrait aussi décrire un algorithme de minimisation pour J , c’est
l’approche qui est utilisée dans les méthodes très populaires de Lagrangien augmenté ([RS03],
[SW17]). Nous ne le faisons pas car elle introduit une formulation à trois champs, ce qui est
plus coûteux en mémoire alors que, dans le modèle de Bingham écrit en pu, λq, nous n’utilisons
que deux champs. L’avantage des méthodes de Lagrangien augmenté est qu’elles convergent sans
conditions sur leur paramètre (un paramètre semblable à ρ). Mais, outre le coût mémoire des trois
champs, il peut être plus coûteux de résoudre le sous-problème linéaire qui apparaît à chaque itéra-
tion des méthodes de Lagrangien augmenté, car, dans Uzawa, nous avons à résoudre un simple
problème de Poisson pour lequel des méthodes très performantes existent ([Du+09], [ZZ20]), tan-
dis que le sous-problème linéaire des méthodes de Lagrangien augmenté est formé par l’opérateur
divpDp.qq (ou divpgradp.qq dans le cas présent), qui après discrétisation spatiale est différent de la
discrétisation du Laplacien et également souvent plus cher à résoudre numériquement en terme de
coût CPU et mémoire.

Preuve de convergence ([GLT81]). Comme PK est la projection sur K, donc une contraction, on
a |λn`1 ´λ| “ |PKpλn `ρ ∇un`1q ´PKpλ`ρ ∇uq| ď |λn ´λ`ρ ∇pun`1 ´uq| d’où, par définition
de la norme } ¨ },

|λn`1 ´ λ|2
looooomooooon

sn`1

ď |λn ´ λ|2
loooomoooon

sn

` 2ρpλn ´ λ,∇pun`1 ´ uqq ` ρ2}un`1 ´ u}2

En posant v “ un`1 ´ u, la première ligne du schéma (2) et celle de l’équation (1) entraînent

}un`1 ´ u}2 ` gpλn ´ λ,∇pun`1 ´ uqq “ 0

On a alors sn`1 ď sn ` pρ2 ´
2ρ
g q}un`1 ´ u}2.

Si ρ ă 2
g , alors

0 ă ρ

ˆ

2

g
´ ρ

˙

}un`1 ´ u}2 ` sn`1 ď sn

sn`1 ď sn, ainsi la suite psnqn est décroissante et bornée entre 0 et s0, donc elle converge :
sn ÝÝÝÝÝÑ

nÑ`8
l. On en déduit aussi par le théorème des gendarmes (ρ étant constante) que }un`1´u}2

tend vers zéro.

Soit λn P K. Comme sa norme est majorée par 1, presque partout sur Ω, on a

ˆ
ż

Ω

}λn}2
˙1{2

ď |Ω|1{2

d’où λn á
w

λ̃ (convergence faible). Donc :

ppu, vqq ` gpλ̃,∇vq “ pf, vq, @v P H1
0 pΩq

On se rappelle la deuxième ligne du schéma :

λn`1 “ PKpλn ` ρ ∇un`1q ;

de par le Théorème 2.2,

0 ě pµ ´ λn`1, ρ∇un`1 ´ λn`1 ` λnq

ě pµ, ρ∇un`1 ´ λn`1 ` λnq ´ pλn`1, ρ∇un`1q ´ pλ, λn ´ λ ` λ ´ λn`1q

´pλn`1 ´ λ, λn ´ λ ` λ ´ λn`1q
looooooooooooooooooooomooooooooooooooooooooon

1
2 t|λn´λ´pλn`1´λq|2`|λn`1´λ|2´|λn´λ|2u
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or, on a |λn ´ λ|2 ÝÑ
n

l et l’accolade est justifiée par

|an|2 “ |an ´ an`1 ` an`1|2 “ |an ´ an`1|2 ` |an`1|2 ` 2pan`1, an ´ an`1q

en écrivant an “ λn ´ λ. L’inégalité ci-dessus nous donne pµ ´ λ̃, ρ∇uq ď 0; donc

pu, λ̃q P H1
0 pΩq ˆ K

est bien solution du problème (1).

4 Première approche théorique du gradient projeté locale-
ment pondéré (LWPG)

La zone rigide R peut être définie de plusieurs manières différentes et équivalentes :

∇u “ 0

ðñ |∇u ` g λ| ă g

ðñ |λ ` ρ ∇u| ă 1, @ρ ą 0

Or, la caractérisation ∇u “ 0 n’est pas utilisable en arithmétique flottante, et ces equivalences
sont dont très utiles en pratique. Alors, on choisit de ne pas utiliser la troisième caractérisation
pour éviter de la rendre dépendante d’un paramètre numérique, même si elle a un intérèt pratique
puisqu’elle est en partie calculée dans l’operation de projection dans l’algorithme. L’algorithme
LWPG (avec détermination dynamique de la zone rigide Rk) s’écrit

$

’

’

’

&

’

’

’

%

ppun`1, vqq ` gpλn,∇vq “ pf, vq, @ v P H1
0 pΩq

ρn “

#

ρR si |∇un`1 ` g λn| ă g

ρF sinon
λn`1 “ PKpλn ` ρn ∇un`1q

(3)

Cet algorithme et celui décrit juste après sont étudiés dans le cadre décrit dans les sections 2 et
3. De fait, on verra qu’on peut établir des résultats de convergence dans le cas simplifié où R est
connue à l’avance.

4.1 Convergence pour R connue à l’avance
Proposition 4.1. (algorithme LWPG-R) Pour Ω ouvert borné de R2, ρR, ρF ą 0, ρpxq “ ρRχR `

ρFχF où F est la zone fluide ; on suppose que la zone rigide R est connue à l’avance. Soit λ0 P K,
et pour n P N, soit l’algorithme :

"

ppun`1, vqq ` gpλn,∇vq “ pf, vq, @ v P H1
0 pΩq

λn`1 “ PKpλn ` ρ ∇un`1q

On suppose que ρR, ρF P

ı

0; 2
g

”

. Alors les suites punqn et pλnqn convergent faiblement (et punqn

converge aussi fortement) vers une solution du problème (1).

Preuve. On restreint les produits scalaires et leurs normes associées sur Ω à n’importe quel partie
ouverte O Ă Ω :

pλ, µqO “

ż

O
λpxqµpxq dx ; |λ|2O “ pλ, λqO

ppu, vqqO “

ż

O
∇u ¨ ∇v dx ; ||u||2O “ ppu, uqqO

Sachant que Ω “ R Y F (réunion disjointe), on reprend la première inégalité de la preuve de con-
vergence de l’algorithme (2) en l’appliquant sur R et F en désignant les produits scalaires/normes

9



restreints sur ces deux zones par les lettres R et F , et en notant λ̄n “ λn ´ λ et ūn “ un ´ u :

pL1q |λ̄n`1|2R ď |λ̄n|2R ` 2ρR pλ̄n,∇ūn`1qR ` ρ2R }ūn`1}2R

pL2q |λ̄n`1|2F ď |λ̄n|2F ` 2ρF pλ̄n,∇ūn`1qF ` ρ2F }ūn`1}2F

plnqn converge car décroissante et bornée, donc il y a convergence forte de un vers u (∇un ùñL2 ∇u
et un ùñL2 u grâce à l’inégalité de Poincaré car u P H1

0 pΩq).λn P K et le caractère borné de Ω
entraînent que la suite pλnqn est bornée dans L2pΩq, et converge donc faiblement vers λ à une
sous-suite près.

Dans la preuve de convergence de (2) on avait }un`1 ´u}2 ` gpλn ´λ,∇pun`1 ´uqq “ 0 ce qui
donne sur R et F :

}ūn`1}2R,F ` gpλ̄n,∇pūn`1qqR,F “ 0
somme
ùñ pλ̄n,∇pūn`1qq “ ´

1

g
}ūn`1}2

En posant ln :“ 1
ρR

|λ̄n|2R ` 1
ρF

|λ̄n|2F , l’opération 1
ρR

pL1q ` 1
ρF

pL2q entraîne

ln`1 ď ln ´
2

g
}ūn`1}2 ` ρR}ūn`1}2R ` ρF }ūn`1}2F

ñ

ˆ

2

g
´ ρR

˙

}ūn`1}2R `

ˆ

2

g
´ ρF

˙

}ūn`1}2F ` ln`1 ď ln

ñmin

ˆ

2

g
´ ρR,

2

g
´ ρF

˙

}ūn`1}2F ` ln`1 ď ln

En restreignant λn`1 “ PKpλn ` ρ ∇un`1q à R puis en utilisant les propriétés de PK comme
projection orthogonale, on a bien

0 ě pµ ´ λn`1, ρR∇un`1 ´ λn`1 ` λnqR

ě pµ, ρR∇un`1 ´ λn`1 ` λnqR ´ pλn`1, ρR∇un`1qR ´ pλ, λ̄n ´ λ̄n`1qR

´ pλ̄n`1, λ̄n ´ λ̄n`1qR

Or ´pλ̄n`1, λ̄n ´ λ̄n`1qR “
ρR

2

ˆ

ˇ

ˇ

ˇ

λ̄n
?
ρR

´ λ̄n`1
?
ρR

ˇ

ˇ

ˇ

2

R
`

ˇ

ˇ

ˇ

λ̄n`1
?
ρR

ˇ

ˇ

ˇ

2

R
´

ˇ

ˇ

ˇ

λ̄n
?
ρR

ˇ

ˇ

ˇ

2

R

˙

ě
ρR

2

ˆ

ˇ

ˇ

ˇ

λ̄n`1
?
ρR

ˇ

ˇ

ˇ

2

R
´

ˇ

ˇ

ˇ

λ̄n
?
ρR

ˇ

ˇ

ˇ

2

R

˙

puis on fait la même décomposition sur F puis en faisant la somme 1
ρR

p¨ ¨ ¨ qR ` 1
ρF

p¨ ¨ ¨ qF , il vient

0 ě

ˆ

µ,
λn

ρ
´

λn`1

ρ
` ∇un`1

˙

´ pλn`1,∇un`1q ´

ˆ

λ

ρ
, λ̄n ´ λ̄n`1

˙

`
1

2
pln`1 ´ lnq

Par la convergence faible de pλnqn et de pλ̄nqn, la convergence forte de ∇un`1 et celle de ln, il
vient

0 ě pµ,∇uq ´ pλ,∇uq

4.2 Minimisation de la fonctionnelle Φ - ordre de convergence pour R
connu à l’avance

Proposition 4.2. La suite pλnqn minimise la fonctionnelle Φ sur K (donc Ψ sur pL2pΩqq2), sa
limite faible λ est aussi un argument minimum ; le couple de fonctions pupλq, λq est une solution
du problème de Bingham, et on a l’estimation de convergence pour Φ :

Φpλnq ´ Φpλq ď
1

2n

ˇ

ˇ

ˇ

ˇ

λ0 ´ λ
?
ρ

ˇ

ˇ

ˇ

ˇ

2

La preuve de cette proposition fait appel au lemme suivant (en analyse convexe).

Lemme 4.1. Soient ϕ une fonctionnelle convexe et différentiable sur un espace de Hilbert H, et
M Ă H une partie fermée convexe de H. Alors:
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(a) ϕpµq ď ϕpζq ` ⟨ϕ1pµq, µ ´ ζ⟩H , @µ, ζ P M

(b) si en plus ϕ1 est continue et L-lipschitizienne,

ϕpνq ď ϕpµq `
〈
ϕ1pµq, ν ´ µ

〉
H

`
L

2
|ν ´ µ|2H , @ν, µ P H

Preuve de la Proposition 4.2. Dans la suite, on note µ` “ µ´ρ Gρpµq, un "itéré" de µ P pL2pΩqqN

selon la direction de descente Gρpµq. La continuité g-lipschitzienne de Φ1 et l’estimation (b) dans
le lemme donnent :

Φpµ`q ď Φpµq ´ pΦ1pµq, ρ Gρpµqq `
g

2
|ρ Gρpµq|2

par suite, sous l’hypothèse 0 ď ρ ď 1{g, on trouve l’inégalité:

Φpµ`q ď Φpµq ´ pΦ1pµq, ρ Gρpµqq `
1

2
|
?
ρ Gρpµq|2

puis, en y insérant le bornage de convexité (a):

Φpµq ď Φpζq ´ pΦ1pµq, ζ ´ µq, @ζ P pL2pΩqqN

il vient
Φpµ`q ď Φpζq `

`

Φ1pµq, µ` ´ ζ
˘

`
1

2
|
?
ρ Gρpµq|2 (4)

Par la définition de Gρpµq, µ` “ PKpµ´ρ Φ1pµqq, ce qui peut être exprimé de façon variationnelle
comme

pξ ´ µ`, ρrGρpµq ´ Φ1pµqsq “ pξ ´ µ`, µ ´ ρΦ1pµqq ď 0, @ξ P K

Si on prend, d’une part ξ “ µ`χR ` ζχF , puis d’autre part, ξ “ ζχR ` µ`χF ,

p0, ρRrGρpµq ´ Φ1pµqsqR ` pζ ´ µ`, ρF rGρpµq ´ Φ1pµqsqF ď 0

pζ ´ µ`, ρRrGρpµq ´ Φ1pµqsqR ` p0, ρF rGρpµq ´ Φ1pµqsqF ď 0

puis ajoutant ensemble la première ligne divisée par ρF , et la deuxième ligne divisée par ρR, on
obtient

pζ ´ µ`, Gρpµq ´ Φ1pµqq ď 0

soit pΦ1pµq, µ` ´ ζq ď pGρpµq, µ ´ ρ Gρpµq ´ ζq “ pGρpµq, µ ´ ζq ´ ρ |Gρpµq|2. L’équation (4)
devient

Φpµ`q ď Φpζq ` pGρpµq, µ ´ ζq ´
1

2
|
?
ρ Gρpµq|2

Maintenant, en prenant µ “ ζ “ λi´1, et donc µ` “ λi, on obtient la relation de descente

Φpλiq ď Φpλi´1q ´
1

2
|
?
ρ Gρpλi´1q|2 ď Φpλi´1q

La dernière estimation s’obtient à partir de l’équation (4) reformulée en prenant ζ “ λ :

Φpλiq ´ Φpλq ď pGρpλi´1q, λi´1 ´ λq ´
1

2
|
?
ρ Gρpλi´1q|2

ď
1

2ρR

`

|λi´1 ´ λ|2R ´ |λi ´ λ|2R

˘

`
1

2ρF

`

|λi´1 ´ λ|2F ´ |λi ´ λ|2F

˘

En sommant pour i “ 1, ¨ ¨ ¨ , n et par décroissance de la suite pΦpλnqqn, il vient

npΦpλnq ´ Φpλqq ď
1

2ρR

`

|λ0 ´ λ|2R ´ |λn ´ λ|2R

˘

`
1

2ρF

`

|λ0 ´ λ|2F ´ |λn ´ λ|2F

˘
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4.3 Pénalisation
On remarque a priori dans LWPG, que ρR est limité tandis que ∇un tend vers zero dans Rn. Ce
qui veut dire que λn tend à stagner dans Rn, et que des valeurs de ρR plus grande que 2

g pourraient
alors peut-être offrir de meilleurs résultats. En outre, il est intéressant de chercher à exploiter la
propriété Dpuq “ 0 définissant les zones rigides.

C’est ainsi qu’on propose de considérer le problème equivalent à Bingham :
#

ppu, vqq ` aR ppu, vqqR ` gpλ, ∇vq “ pf, vq @v P H1
0 pΩq

pµ ´ λ, ∇uq ď 0 @µ P K

où le suffixe R dans le produit scalaire indique que l’intégration se fait sur le sous-domaine R et
qu’on inroduit l’agorithme LPWPG :

"

ppun`1, vqq ` aR ppun`1, vqqRn`1 “ pf, vq ´ gpλn,∇vq, @ v P H1
0 pΩq

λn`1 “ PKpλn ` ρ ∇un`1q

où Rk est la zone rigide calculée à chaque itération (selon la partition notée Ω “ Rk Y F k) et aR
un coefficient positif dont le rôle désiré est de forcer le gradient itéré ∇un`1 à converger plus vite
vers un gradient de solution ∇u qui est nul dans R et qui vérifie bien la première ligne du système
d’équation (2). L’algorithme LWPG devient LPWPG (pour penalized en anglais).

La conséquence de cette pénalisation est que ρR peut prendre des valeurs jusqu’à 2
g p1`aRq. En

effet, en adaptant la preuve de convergence en section 3 à l’algorithme LPWPG et en la restreignant
à la zone rigide Rn`1, on a bien

|λn`1 ´ λ|2Rn`1
loooooooomoooooooon

sn`1

ď |λn ´ λ|2Rn`1
loooooomoooooon

sn

` 2ρRpλn ´ λ,Dpun`1 ´ uqqRn`1 ` ρ2R}un`1 ´ u}2Rn`1

et
p1 ` aRq }un`1 ´ u}2Rn`1 ` gpλn ´ λ,Dpun`1 ´ uqqRn`1 “ 0.

Il s’ensuit sn`1 ď sn ` pρ2R ´
2ρR

g p1 ` aRqq}un`1 ´ u}2Rn`1 .

Si 0 ă ρR ă 2
g p1 ` aRq, on a

0 ă ρR

ˆ

2

g
p1 ` aRq ´ ρR

˙

}un`1 ´ u}2Rn`1 ` sn`1 ď sn

et la convergence est assurée.

5 L’algorithme d’Uzawa modifié appliqué au problème de
Poiseuille plan

Il s’agit de l’écoulement d’un fluide de Bingham entre deux plaques parallèles et planes, suffisam-
ment étendues pour réduire le problème à un système mono-dimensionnel. Le cas d’une conduite
droite dont la section Ω est un disque fournit des équations et une solution quasi-identiques une
fois le problème formulé en coordonnées polaires.

Soient u P H1
0 p´1; 1q et λ P K “ tµ P L2p´1; 1q; |µ| ď 1 p.p.u vérifiant

#

´u2 ´ gλ1 “ 1

λu1 “ |u1| ô λ “ PKpλ ` ρu1q @ρ ą 0

Soit l’algorithme d’Uzawa modifié suivant, conformément à l’algorithme (3) en section 4 (où on
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suppose la continuité des contraintes u1 ` λg) :

λ0 “ 0

n ě 0

$

’

’

’

&

’

’

’

%

´pun`1q2 ´ g pλnq1 “ 1

ρn “

#

ρR si |pun`1q1 ` g λn| ă g

ρF sinon
λn`1 “ PKpλn ` ρn pun`1q1q presque partout

où PKpµq “

#

µ si µ ă 1
µ

|µ|
sinon

. Dans l’algorithme, on suppose que les fonctions u, ρ sont paires sur

r´1; 1s, ainsi que leurs itérés successifs, tout comme λ et ses itérés sont impaires. On a aussi ρ ą 0
comme ses itérés.

On peut vérifier que la solution exacte est unique et définie par :

upxq “

#

1´g2

2 ` gpg ´ 1q si 0 ď |x| ă g
1´x2

2 ` gp|x| ´ 1q si g ď |x| ď 1

λpxq “

#

´x
g si 0 ď |x| ă g

´sgn x si g ď |x| ď 1

où sgn désigne la fonction signe définie par

sgn x “

$

’

&

’

%

1 si x ą 0

0 si x “ 0

´1 si x ă 0

5.1 Hypothèse sur ρ

En supposant la zone rigide R connue à l’avance (et on donc on connaît aussi ρ “ ρn) avec
ρF

g`1 ď ρR ď ρF , on introduit le lemme suivant sachant que

ρpxq “

#

ρR si 0 ď |x| ă g

ρF si g ď |x| ď 1

comme g ą 0, on a bien 1
g`1 ă 1 donc l’hypothèse sur ρR, ρF a bien un sens puisque ρ est toujours

strictement positive.

Lemme 5.1. On suppose ρF

g`1 ď ρR ď ρF . Soient les suites pξRn qn, pξFn qn, pηnqn définies par

ξRn “
g

1 ´ p1 ´ ρR gqn

ξFn “
g

1 ´ p1 ´ ρF gqn

ηn “ ξFn

«

1 ` ρF g
n´1
ÿ

i“1

ˆ

g

ξRi
´

g

ξFi

˙

ff

Alors, pour tout n ě 1, on a g ă ξFn ď ξRn . De plus, ces trois suites sont décroissantes, telles que
limnÑ8 ξR,F

n “ g et limnÑ8 ηn ď g.

Preuve. On a 0 ă ρR g ď ρF g ă 1, soit 1 ą p1 ´ ρR gqn ě p1 ´ ρF gqn ą 0 pour tout n ě 1.
En comparant les 1 ´ p1 ´ ρR,F gqn puis en inversant l’inégalité par l’opération g{¨, on a alors
ξnR ě ξnF ą g.
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Soit ρ P tρR, ρF u Ă R˚
`. On a déjà ξR,F

n ą g pour tout n ě 1. Comme p1´ρgqn tend vers zéro,
les réels ξRn , ξ

F
n définissent deux suites décroissantes qui tendent vers g.

La suite des ηn peut se réécrire

ηn “ ξFn

«

1 ` ρF g

˜

n´1
ÿ

i“1

p1 ´ ρF gqi ´

n´1
ÿ

i“1

p1 ´ ρR gqi

¸ff

“ ξFn

„

1 ` ρF g

ˆ

p1 ´ ρF gq
1 ´ p1 ´ ρF gqn´1

ρF g
´ p1 ´ ρR gq

1 ´ p1 ´ ρR gqn´1

ρR g

˙ȷ

On a alors

lim
nÑ8

ηn “ g

„

1 ` ρF g

ˆ

1 ´ ρF g

ρF g
´

1 ´ ρR g

ρR g

˙ȷ

“ g

ˆ

1 `
ρR ´ ρF
ρR g

˙

ď g

Soit n ě 1. On a bien 1 ` ρF g
řn

i“1

´

g
ξRi

´
g
ξFi

¯

“ ηn`1{ξFn`1 ě 0 et ce quotient définit une suite

décroissante. Comme les ξFn sont déjà positifs, on a ηn`1 ď ηn.

Remarque 5.1. La limite g
´

1 `
ρR´ρF

ρR g

¯

de la suite pηnqn est positive. En effet ρF

g`1 ď ρR ď ρF

entraîne ρF

ρR g ď
g`1
g , donc 1 ` 1

g ´
ρF

ρR g ě 0. Comme la suite pηnqn décroît vers une limite
strictement positive en n, tous ses termes sont positifs. Or, la caractérisation de cette limite et
le fait que η1 “ ξF1 ą g impliquent qu’il existe un rang Ncrit ą 1 tel que pour tout n, on a
n ě Ncrit ô ηn ď g.

5.2 Récurrence explicite du schéma de Poiseuille
Proposition 5.1. En notant aă “ minp0, aq pour a P R, le schéma modifié vérifie :

λ0 “ 0; u1pxq “
1 ´ x2

2

@n P r2;Ncrits, u
npxq “

1

2

ˆ

g

ξRn´1

´ 1

˙

px2 ´ g2qă

`
1

2

ˆ

g

ξFn´1

´ 1

˙

pmaxp|x|, gq2 ´ η2n´1qă `

ˆ

g

ξRn´1

´
g

ξFn´1

˙

gpmaxp|x|, gq ´ ηn´1qă

`
1 ´ maxp|x|, ηn´1q2

2
`

«

g

ξRn´1

´
g

ξFn´1

` 1 ` ρF

n´2
ÿ

i“1

ˆ

1

ξRi
´

1

ξFi

˙

g2

ff

gpmaxp|x|, ηn´1q ´ 1q

@n ě Ncrit ` 1, unpxq “

$

&

%

1
2

´

g
ξRn´1

´ 1
¯

px2 ´ g2q `
1´g2

2 `
g2

ξRn´1
pg ´ 1q si 0 ď |x| ă g

1´x2

2 `
g2

ξRn´1
p|x| ´ 1q si g ď |x| ď 1

@n P r1; Ncrit ´ 1s, λnpxq “

$

’

’

&

’

’

%

´ x
ξRn

si 0 ď |x| ă g

´ x
ξFn

` sgnpxq ρF
řn´1

i“1

´

g
ξRi

´
g
ξFi

¯

g si g ă |x| ă ηn

´sgn x si ηn ă |x| ď 1

@n ě Ncrit, λ
npxq “

#

´ x
ξRn

si 0 ď |x| ă g

´sgn x si g ă |x| ď 1

Preuve de l’algorithme. À partir de l’équation ´pu1q2 ´g pλ0q1 “ 1, on obtient pu1q2 “ ´1´g ¨0 “

´1. En intégrant deux fois, il vient u1pxq “ ´x2

2 ` ax ` b, or u1 est un polynôme pair, d’où
a “ pu1q1p0q “ 0 (car pu1q1 est impair), et u1p˘1q “ 0, ce qui entraîne u1pxq “ 1´x2

2 .
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Pour la récurrence, on suppose que la caractérisation explicite du schéma modifié est vrai pour
un entier 1 ď n ď Ncrit ´ 1, et on va la prouver au rang n ` 1.

On résout, pour 0 ď x ď 1, l’équation ´pun`1q2 ´ g pλnq1 “ 1. On a

pun`1q2 “ ´1 ´ gpλnq1 “

$

’

&

’

%

g
ξRn

´ 1 si 0 ď x ă g
g
ξFn

´ 1 si g ă x ă ηn

´1 si ηn ă x ď 1

un`1 doit être paire sur r´1; 1s et continue en ˘g et ˘ηn, et s’annuler en ˘1. Sa dérivée est un
polynôme impair, et s’annule donc en x “ 0. D’ailleurs, pun`1q1 doit aussi satisfaire à la continuité
des contraintes. On obtient alors

pun`1q1pxq “

$

’

’

&

’

’

%

´

g
ξRn

´ 1
¯

x si 0 ď x ď g
´

g
ξFn

´ 1
¯

px ´ gq ` pun`1q1pgq si g ă x ď ηn

´px ´ ηnq ` pun`1q1pηnq si ηn ă x ď 1

“

$

’

’

’

&

’

’

’

%

´

g
ξRn

´ 1
¯

x si 0 ď x ă g
´

g
ξFn

´ 1
¯

px ´ gq `

´

g
ξRn

´ 1
¯

g si g ď x ă ηn

´px ´ ηnq `

´

g
ξFn

´ 1
¯

pηn ´ gq `

´

g
ξRn

´ 1
¯

g si ηn ď x ď 1

Pour assurer la continuité de un sur r0; 1s et avec la condition unp1q “ 0, on intègre pun`1q1 avec
les constantes d’intégration a, b, c sur chaque sous-intervalle :

un`1pxq “

$

’

’

’

&

’

’

’

%

1
2

´

g
ξRn

´ 1
¯

x2 ` a si 0 ď x ă g

1
2

´

g
ξFn

´ 1
¯

x2 `

´

g
ξRn

´
g
ξFn

¯

gx ` b si g ď x ă ηn

´x2

2 `

”

g
ξFn

¨ ηn `

´

g
ξRn

´
g
ξFn

¯

g
ı

x ` c si ηn ď x ď 1

Les constantes a, b, c sont déterminées par

a “ un`1pgq ´ 1er polynome en x “ g

b “ un`1pηnq ´ 2e polynome en x “ ηn

c “ ´3e polynome en x “ 1

donc il vient, pour 1 ď n ď Ncrit ´ 1,

un`1pxq “

$

’

’

’

&

’

’

’

%

1
2

´

g
ξRn

´ 1
¯

px2 ´ g2q ` un`1pgq si 0 ď |x| ă g

1
2

´

g
ξFn

´ 1
¯

px2 ´ η2nq `

´

g
ξRn

´
g
ξFn

¯

gp|x| ´ ηnq ` un`1pηnq si g ď |x| ă ηn

1´x2

2 `

”

g
ξRn

´
g
ξFn

` 1 ` ρF
řn´1

i“1

´

1
ξRi

´ 1
ξFi

¯

g2
ı

gp|x| ´ 1q si ηn ď |x| ď 1

On a pu modifier un peu l’algorithme modifié en lui imposant que

ρ “

#

ρR si 0 ď |x| ă g

ρF sinon

soit déjà connue à l’avance avec l’hypothèse ρF

g`1 ď ρR ď ρF .
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Sur l’intervalle r0; 1s on doit évaluer λn ` ρnpun`1q1 pour calculer λn`1 :

λn`ρnpun`1q1 “

$

’

’

’

&

’

’

’

%

´ x
ξRn

` ρR

´

g
ξRn

´ 1
¯

x si 0 ď x ă g

´ x
ξFn

` ρF
řn´1

i“1

´

g
ξRi

´
g
ξFi

¯

g ` ρF

´

g
ξFn

´ 1
¯

x ` ρF

´

g
ξRn

´
g
ξFn

¯

g si g ă x ă ηn

´1 ´ ρF x ` ρF

”

g
ξRn

´
g
ξFn

` 1 ` ρF
řn´1

i“1

´

1
ξRi

´ 1
ξFi

¯

g2
ı

g si ηn ă x ď 1

On note ΞR “ ´ 1
ξRn

` ρR

´

g
ξRn

´ 1
¯

. La définition de ξRn entraîne, en notant d “ 1 ´ ρR g,

ΞR “
dn ´ 1

g
` ρR p1 ´ dn ´ 1q

“ pdn ´ 1q

ˆ

1

g
´ ρR

˙

´ ρR

“
pdn ´ 1qd ´ ρR g

g

“
dn`1 ´ d ´ ρR g

g

“
dn`1 ´ 1

g

“ ´
1

ξRn`1

de la même manière, ´ 1
ξFn

` ρF

´

g
ξFn

´ 1
¯

“ ´ 1
ξFn`1

.

Il vient, pour tout x P r0; 1s,

λn ` ρnpun`1q1 “

$

’

’

’

&

’

’

’

%

´ x
ξRn`1

si 0 ď x ă g

´ x
ξFn`1

` ρF
řn

i“1

´

g
ξRi

´
g
ξFi

¯

g si g ă x ă ηn

´1 ´ ρF x ` ρF

”

g
ξRn

´
g
ξFn

` 1 ` ρF
řn´1

i“1

´

1
ξRi

´ 1
ξFi

¯

g2
ı

g si ηn ă x ď 1

On passe en revue les cas où on a |λn ` ρnpun`1q1| ă 1 lorsque n ď Ncrit ´ 2 (le plus grand rang
n tel que g ă ηn`1) :

cas 1 : 0 ď x ă g et x
ξRn`1

ă 1. Ce cas équivaut à 0 ď x ă g car ξRn`1 ą g.

cas 2 : g ă x ă ηn et
ˇ

ˇ

ˇ

x
ξFn`1

´ ρF
řn

i“1

´

g
ξRi

´
g
ξFi

¯

g
ˇ

ˇ

ˇ
ă 1, ce qui implique l’inéquation

´1 ` ρF

n
ÿ

i“1

ˆ

g

ξRi
´

g

ξFi

˙

g ă
x

ξFn`1

ă 1 ` ρF

n
ÿ

i“1

ˆ

g

ξRi
´

g

ξFi

˙

g

or ξFn`1

”

1 ` ρF g
řn´1

i“1

´

g
ξRi

´
g
ξFi

¯ı

“ ηn`1 et la borne gauche dans l’inéquation est stricte-
ment négative.
Le cas 2 équivaut donc à g ă x ă ηn`1 car g ă ηn`1 ă ηn.

cas 3 : ηn ă x ď 1 et
ˇ

ˇ

ˇ
1 ` ρF x ´ ρF

”

g
ξRn

´
g
ξFn

` 1 ` ρF
řn´1

i“1

´

1
ξRi

´ 1
ξFi

¯

g2
ı

g
ˇ

ˇ

ˇ
ă 1. Il vient

´1 ` ρF

ˆ

g

ξRn
´

g

ξFn
`

ηn
ξFn

˙

g ă 1 ` ρF x ă 1 ` ρF

ˆ

g

ξRn
´

g

ξFn
`

ηn
ξFn

˙

g
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ce qui équivaut à

´
2

ρF
`

ˆ

g

ξRn
´

g

ξFn
`

ηn
ξFn

˙

g ă x ă

ˆ

g

ξRn
´

g

ξFn
`

ηn
ξFn

˙

g

la borne de gauche est plus petite que g ´ 2
ρF

ă 0 (car ρF ă 1
g ă 2

g ). Le cas 3 est impossible
car il entraînerait x ă g ă ηn.

Sur l’intervalle r0; 1s, on a

λn`1 “
λn ` ρnpun`1q1

supp|λn ` ρnpun`1q1|, 1q
“

$

’

’

’

’

&

’

’

’

’

%

´ x
ξRn`1

si 0 ď x ă g

´ x
ξFn`1

` ρF
řn

i“1

´

g
ξRi

´
g
ξFi

¯

g si g ă x ă ηn`1

´1 si ηn`1 ă x ă ηn

´1 si ηn ă x ď 1

En effet, on a ´ x
ξFn`1

` ρF
řn

i“1

´

g
ξRi

´
g
ξFi

¯

g ă 0 par le lemme 5.1 (ρR ď ρF ). Ensuite, on a

´1 ´ ρF x ` ρF

«

g

ξRn
´

g

ξFn
` 1 ` ρF

n´1
ÿ

i“1

ˆ

1

ξRi
´

1

ξFi

˙

g2

ff

g ă ´1 ` ρF pg ´ xq ă 0

lorsque ηn ă x ď 1 car g ă ηn.

Ainsi la fonction λn`1 peut être étendue à r´1; 1s par imparité (ici, pour n ď Ncrit ´ 2) :

λn`1pxq “

$

’

’

&

’

’

%

´ x
ξRn`1

si 0 ď |x| ă g

´ x
ξFn`1

` sgnpxq ρF
řn

i“1

´

g
ξRi

´
g
ξFi

¯

g si g ă |x| ă ηn`1

´sgn x si ηn`1 ă |x| ď 1

On passe maintenant au rang n “ Ncrit ´1. Le cas 2 utilisé pour définir λn`1 “ PKpλn`ρ pun`1q1q

devient faux à ce rang car ηNcrit ď g. Comme λNcrit est déjà défini sur r0, gr, on ajoute au cas 3
l’hypothèse g ă x ; ainsi le cas 3 est toujours faux. On obtient alors

λNcrit “

#

´ x
ξRNcrit

si 0 ď |x| ă g

´sgn x si g ă |x| ď 1

On résout l’équation ´puNcrit`1q2 ´ gpλNcritq1 “ 1 sur r0; 1s, sachant que puNcrit`1q1p0q “ 0 et
uNcrit`1p1q “ 0. On a

puNcrit`1q2pxq “ ´1 ´ gpλNcritq1pxq “

#

g
ξRNcrit

´ 1 si 0 ď |x| ă g

´1 si g ă |x| ď 1

ce qui donne par condition à la limite x “ 0, et continuité en g :

puNcrit`1q1pxq “

$

’

’

&

’

’

%

ˆ

g
ξRNcrit

´ 1

˙

x si 0 ď x ď g

´px ´ gq `

ˆ

g
ξRNcrit

´ 1

˙

g si g ă x ď 1
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puis par la condition en x “ 1 et la continuité en g, il vient

uNcrit`1pxq “

$

’

&

’

%

1
2

ˆ

g
ξRNcrit

´ 1

˙

x2 ` a si 0 ď x ă g

´x2

2 `
g2

ξRNcrit
x ` b si g ď x ď 1

“

$

’

&

’

%

1
2

ˆ

g
ξRNcrit

´ 1

˙

px2 ´ g2q ` uNcrit`1pgq si 0 ď x ă g

1´x2

2 `
g2

ξRNcrit
px ´ 1q si g ď x ď 1

Ensuite, on a

λNcrit ` ρ puNcrit`1q1 “

$

’

&

’

%

´ x
ξRNcrit

` ρR

ˆ

g
ξRNcrit

´ 1

˙

x “ ´ x
ξRNcrit`1

si 0 ď x ă g

´1 ´ ρF x ` ρF
g2

ξRNcrit
si g ă x ď 1

pour étudier les cas où |λNcrit ` ρ puNcrit`1q1| ă 1.

cas 1 : 0 ď x ă g et x
ξRNcrit`1

ă 1. Ce cas équivaut à 0 ď x ă g car g ă ξRNcrit`1.

cas 2 : g ă x ď 1 et
ˇ

ˇ

ˇ

ˇ

1 ` ρF x ´ ρF
g2

ξRNcrit

ˇ

ˇ

ˇ

ˇ

ă 1. On a, en particulier, 1 ` ρF x ă 1 ` ρF
g2

ξRNcrit
mais,

comme g ă ξRNcrit
, ce cas est faux car, sinon, il donnerait x ă

g2

ξRNcrit
ă

g2

g “ g.

Ainsi, λNcrit`1 se définit par

λNcrit`1 “

#

´ x
ξRNcrit`1

si 0 ď |x| ă g

´sgn x si g ă |x| ď 1

la même forme de définition que λNcrit un rang plus haut, car ´1 ´ ρF x ` ρF
g2

ξRNcrit
“ ´1 `

ρF

ˆ

g2

ξRNcrit
´ x

˙

ă ´1 ` ρF pg ´ xq ă 0.

Ainsi, par récurrence, pour tout n ą Ncrit ` 1, un sera calculé exactement de la même manière
que uNcrit`1, et λn de la même manière que λNcrit`1.

6 Tests et résultats pour le problème de Couette
On considère ici un cas particulier, celui de l’écoulement entre deux cylindres co-axiaux en

rotation, usuellement nommé écoulement de Couette. Il conviendra ici de formuler l’écoulement
de Couette sous la forme axisymétrique (symétrique autour d’un axe). Les champs u et λ sont
recherchés sous la forme

#

upr, θq “ uθprq eθ

λpr, θq “ λr,θprq er,θ

en se permettant les notations uθ et λr, θ pour les composantes scalaires. On va simplifier le
problème en supposant que l’écoulement de Couette est symétrique par rotation selon l’axe des
cylindres, ce qui nous donne un système d’équation en 1D radiale. Le symbole prime sera utilisé
pour la dérivée B

Br , et les équations à résoudre se réduisent alors à :
$

’

&

’

%

´ 1
r pru1q1 ` u

r2 ´ g
`

λ1 ` 2λ
r

˘

“ 0

λ “ PK

`

λ ` ρ r
2 pu

r q1
˘

upRq “ ω R et up1q “ 1

(5)

où u P H1pR; 1q, λ P K :“ tµ P L2pR; 1q ; ~µ~ ď 1u. On remarque que :
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• l’incompressibilité est satisfaite.

• le champ de pression nulle est adapté.

On se rappelle aussi que l’opérateur divergence, pour un champ tenseur symétrique µ avec une
unique pr, θq-composante scalaire de cisaillement non nulle encore notée µ, est donnée par div µ “

µ1 ` 2µ
r ; et le taux de déformation d’un champ de vecteurs v avec une unique θ-composante

scalaire non nulle encore notée c est donné par Dpvq “ r
2

`

v
r

˘1. Ainsi, le norme tensorielle devient
~µ~ “

?
2|µ|.

La solution au problème (5) donne la vitesse

u “

#

a´ r ` b´

r ` c r lnprq si r P sR; rcs

a` r ` b`

r si r P src; 1r

avec c “ ´g
?
2
2 et où la condition Dpuq “ 0 sur src; 1r implique b` “ 0. Il vient alors que

l’expression de b` en fonction de rc entraîne une condition qui détermine rc. On obtient la tension
:

λ “

# ?
2
2 si r P sR; rcs

K
r2 si r P src; 1r

où la constante réelle K obéit à la condition ~λ~ ď 1, @r Psrc; 1r, c’est-à-dire |K| ď
r2c?
2
. Plus

précisément, la continuité du champ de tension s’écrit ici r2 Dpuq ` gλsrc “ 0. Cependant, comme
u est déterminée de telle sorte que rusrc “ ru0src “ 0, la condition de transmission des contraintes
devient rλsrc “ 0, autrement dit K “

?
2
2 r2c . Ainsi, les expressions de a`, b`, a´ et b´ s’obtiennent

des conditions aux limites en r “ R et r “ 1, ainsi que des conditions de continuité de u et u1 en
r “ rc :

a` “
R2

1 ´ R2

„

1

R2
´ ω ´

c

2

ˆ

ln
´rc
R

¯2

´

´rc
R

¯2

` 1

˙ȷ

b` “
R2

1 ´ R2

„

ω ´ 1 `
c

2

ˆ

ln
´rc
R

¯2

´

´rc
R

¯2

` 1

˙ȷ

a´ “
1 ´ ω R2

1 ´ R2
´

c

1 ´ R2

ˆ

ln rc `
1 ´ r2c

2

˙

b´ “
R2

1 ´ R2

„

ω ´ 1 ` c

ˆ

ln
rc
R

`
1 ´ r2c

2

˙ȷ

La condition b` “ 0 permet d’évaluer rc PsR; 1r :

ω ´ 1 `
c

2

ˆ

ln
´rc
R

¯2

´

´rc
R

¯2

` 1

˙

“ 0

de plus, la condition rc PsR; 1r (en prenant ici R “ 1
2 ) équivaut à une condition sur g :

g “
1 ´ ω

?
2
4

´

ln
`

rc
R

˘2
´

`

rc
R

˘2
` 1

¯ P rg0; `8r

avec
g0 “ 2

?
2

1 ´ ω

2 ln R ` 1
R2 ´ 1

.

Cela signifie que les zones rigides peuvent ne pas exister pour g assez petit, alors que la situation
de blocage R “ Ω ne survient que pour g ÝÑ `8. Pour g ď g0, il vient :

u “
1 ´ ω R2 ´ g

?
2
2 R2 lnR

1 ´ R2
¨ r `

ω ´ 1 ` g
?
2
2 lnR

1 ´ R2
¨
R2

r
´ g

?
2
2 r ln r

Cela implique aussi que les deux cas g ă g0 et g ě g0 devraient être analysés, dans la mesure où ils
peuvent induire des performances différentes dues à des régularités différentes : le cas g ă g0 est
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en effet une des rares situations où la solution devient régulière car l’effet de seuil ne se manifeste
pas. C’est donc aussi un cas "dégénéré", moins pertinent pour notre propos, il ne sera donc pas
traité ici.

Dans le programme OneCouette (Fortran) utilisé dans tous les tests en Section 7, il y a une
option "´f" qui résout le problème de Couette pour un terme fprq “ 1000 cosp10πpr ´ Rqq. Cela
permet, à moindre coût de calcul, de tester un cas plus complexe. Par contre, on ne dispose alors
plus de solution connue explicitement.

On va d’abord tester l’algorithme LWPG et d’autres (à venir) dans le cas de Couette. On veut
simuler l’écoulement d’un fluide viscoplastique deux cylindres co-axiaux en rotation, de rayons
(resp. intérieur et extérieur) R “ r1 et r “ 1, et de vitesses angulaires omega “ ω1 et ω “ 1.

Dans ce programme, une discrétisation en éléments finis est utilisée pour calculer les approxi-
mations respectives uh et λh de u et λ, et ensuite pour comparer les itérés discrets uk

h et λk
h. Pour

1 ď i ď N ` 1, soit ri P R tel que r1 ă ¨ ¨ ¨ ă rN ă rN`1 “ 1, et

Vh “ tvh P C0prr1; 1sq ; vprq “ air ` bi, @r Psri; ri`1r, ai, bi P Ru

ainsi que Vh,0 “ Vh X H1
0 pr1; 1q. On considère :

Mh “ tµh P L2pr1; 1q ; µhprq “ ri P R, @r Psri; ri`1ru.

Une approximation par éléments finis uh P Vh et λh P Mh XK est alors recherchée comme solution
de la formulation variationnelle discrète de (5).

Dans tous les tests de Couette (réalisés en Fortran), on prend toujours un nombre d’itérations
maximal Nimax “ 10000, avec f “ 0 (par défaut). Le nombre de Bingham g est désigné dans
le programme Fortran par l’étiquette Bi. De plus, pour pouvoir obtenir une solution calculée
pu, λq avec autant de précision que voulue, on calcul des résidus (par exemple, ||un`1 ´ un||H1 ou
|λn`1 ´ λn|L2), et on regarde soit le temps de calcul total ou le nombre d’itérations qu’il a fallu
pour que le ou les résidus itérés passent sous un seuil de tolérance tol souvent très petit. Par défaut,
on prendra tol “ 10´10 pour les tests comparés avec ISTA. On choisit aussi les valeurs de ρR, ρF
dans les intervalles qui leur sont permis (par défaut r0, 2

Bi s, on prend les valeurs de ρR,F comme
des multiples 0,2

Bi k, 1 ď k ď 10).

Figure 1: Dans ce premier graphique retenu pour les tests, on a tracé le résidu itéré ||un`1 ´

un||H1 ` |λn`1 ´ λn|L2 en fonction du nombre d’itérations jusqu’à ce qu’il atteigne tol.

Pour réaliser les tests à l’origine du graphique (Figure 1), on a pris les valeurs ρR “ 0.06, ρF “

0.02, et avec un nombre de points de maillage Nr “ 1024. Pour Bi “ 10, la solution pu, λq est
calculée en presque 50 itérations, alors que Bi “ 100 semble demander 190 à 195 itérations, et Bi “

1000 environ 930 itérations. Mais ensuite il reste à trouver comment le nombre d’itérations varie
en fonction de ρR et ρF . L’erreur d’approximation |u´uh|H1 et |λ´λh|L2 a été systématiquement
calculée et vérifiée à la fin des algorithmes, ce qui a permis de valider l’implémentation du modèle
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numérique, l’ordre de convergence Ophq de l’approximation par élément finis étant bien vérifié pour
les deux erreurs calculées (avec des ordres de grandeur respectifs 10´8 et 10´5 pour les maillages
les plus grossiers).

6.1 Tests LWPG
Une campagne de tests avec l’algorithme LWPG a été réalisée en prenant le seuil de tolérance
tol “ 10´14, les valeurs Bi “ 10, 100, 1000, mais aussi Nr “ 1024, 2048, ρR “ 2

10¨Bik, 1 ď k ď 10,
et ρF “ 1. Il a été observé, en effet, que le nombre d’itérations semblait varier avec ρR, mais pas
en fonction de ρF . On a, en particulier, pu expliquer ce comportement en regardant le calcul itéré

λn`1 “ PKpλn ` ρ Dpun`1qq ;

par symétrie de rotation, Couette se réduit à un problème 1D. Ainsi, λn`1 est égal soit à l’argument
de PK , soit à `1 ou ´1. Dans la zone où |λn ` ρ Dpun`1q| est plus grand que 1, λn`1 vaut 1 ou -1
et ne dépend donc pas de ρF . C’est une limitation importante des tests en 1D ; les améliorations
apportées à ISTA n’auront pas forcément la même portée dans des cas généraux 2D ou en 3D car
alors λ ne sera plus déterminé de manière exacte dans les zones fluides. Ce qui est mis en évidence
en 1D, c’est donc la possibilité d’améliorer les performances en calculant plus efficacement λ dans
les zones rigides, mais dans les cas généraux, le gain de performance ne sera peut-être obtenu qu’en
ajoutant un autre traitement dans les zones fluides.
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(a) Pour Bi “ 10

(b) Pour Bi “ 100

(c) Pour Bi “ 1000

Figure 2: Premiers tests complets réalisés sur l’algorithme LWPG (à gauche Nr “ 1024, à droite
Nr “ 2048.

Les graphiques Figure 2 représentent le nombre d’itérations final Nit en fonction de ρR pour
chaque couple pBi,Nrq. Ici, Nit semble décroître généralement quand ρR s’approche de 2

Bi , avec
au moins un pic local qui peut dépendre de pBi,Nrq. À l’exception de ces pics, Nit ne varie pas
beaucoup en fonction de Nr. De fait, on constate surtout que cet algorithme sous cette forme n’a
pas été comparé à ISTA, mais comme la valeur de ρF semble ne pas intervenir dans les variations
de Nit, on peut supposer que ces courbes reviendraient au même que le cas ISTA (ρF “ ρR). Dans
l’ensemble, pour Bi “ 10, Nit descend jusqu’à 100 ; ce nombre d’itérations atteint au moins 200
pour Bi “ 100, ou encore un minimum de 1000 pour Bi “ 1000.

Pour cet algorithme, cinq résidus ont été ajoutés en une somme de résidus qui doit tendre vers
zéro :

• ||un`1´un||H1 , pour mesurer la convergence en norme L2 de un vers la vitesse u du problème
de Bingham (qui est ici celui de Couette), et de même celle de Dpunq vers Dpuq.

• |λn`1 ´ λn|L2 , pour vérifier lorsque λn est assez proche de λ en norme L2.

• la norme infinie ||λn`1 ¨Dpun`1q ´ |Dpun`1q|L2 ||L8 , parce que, d’après la deuxième ligne du
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problème (1) et le Lemme 2.2, la solution pu, λq vérifie

λ ¨ Dpuq “ |Dpuq|.

• la norme ||rn`1||L2 où rn`1 “ ´∆un`1 ´Bi div λn`1 ´f est défini de manière variationnelle,
c’est-à-dire par prn`1, vq “ pDpun`1q, Dpvqq `Bi pλn`1, Dpvqq ´ pf, vq. Dans le problème (1),
on a

pDpuq, Dpvqq ` gpλ, Dpvqq “ pf, vq, @v P H1
0 pΩq

• |Dpun`1q|L2 ´ |Dpunq|L2 qui doit mesurer la convergence de la fonctionnelle Ψ.

Or, dans quelques tests, il a été observé que le cinquième résidu par lequel on veut contrôler la
convergence de Dpunq pouvait augmenter légèrement avant de descendre.

6.2 L’algorithme LPWPG
Les résultats des calculs dans la section 6.1 montrent que les performances d’ISTA ne sont pas
améliorées. C’est la première justification qui veut qu’on recoure à l’algorithme LPWPG, qui a
pour principe de renforcer la rigidité.

Outre les résultats, l’algorithme est justifié principalement par le fait que Dpuq “ 0 sur R,
on cherche donc à l’imposer sur Rk au cours des itérations en espérant que cela va accélérer la
convergence. On remarque qu’en faisant cela on garde la cohérence avec l’idée première qui est de
distinguer ρR et ρF , car, pour aR assez grand, l’accélération due à la pénalisation n’est obtenue
que pour des ρF et ρR (très) différents.

Pour les tests avec f “ 0, on récupère sachant tol “ 10´8 le nombre d’itérations pour Bi “

10, 100; Nr “ 1024, 8192 et aR “ 0.1, 1, 10. Ici ρF reste dans l’intervalle s0, 2
Bi r mais cette fois, ρR

peut valoir jusqu’à 2
Bi p1 ` aRq. On prend aussi 1 ď j, k ď 10 et ρR “ 2

10¨Bi p1 ` aRqj, ρF “ 2
10¨Bik.
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(a) Bi “ 10, Nr “ 1024, aR “ 0.1 (b) Bi “ 10, Nr “ 8192, aR “ 0.1

(c) Bi “ 10, Nr “ 1024, aR “ 1 (d) Bi “ 10, Nr “ 8192, aR “ 1

(e) Bi “ 10, Nr “ 1024, aR “ 10 (f) Bi “ 10, Nr “ 8192, aR “ 10

Figure 3: Nombre d’itérations requises pour que le résidu de LPWPG atteigne tol “ 10´8, en
fonction de ρR., lorsque Bi “ 10.

.
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(a) Bi “ 100, Nr “ 1024, aR “ 0.1 (b) Bi “ 100, Nr “ 8192, aR “ 0.1

(c) Bi “ 100, Nr “ 1024, aR “ 1 (d) Bi “ 100, Nr “ 8192, aR “ 1

(e) Bi “ 100, Nr “ 1024, aR “ 10 (f) Bi “ 100, Nr “ 8192, aR “ 10

Figure 4: Nombre d’itérations requises, mais pour Bi “ 100.

Dans ces tests sur LPWPG, il apparaît que la valeur de ρF ne fait presque pas varier le nombre
d’itérations Nit. Sur les Figures 3 et 4, chaque courbe de Nit en fonction de ρR tend toujours à
décroître quand ρR augmente, sauf pour aR “ 10 où elle croît après avoir atteint un minimum ;
ainsi, il semble que des valeurs trop grandes de aR dégradent la précision du calcul itéré de un sur
la zone rigide, ce qui justifierait dans ce cas la remontée de Nit pour ρR proche de 2

Bi p1 ` aRq ;
néanmoins, Nit optimal est plus petit (donc meilleur) quand aR est plus grand. En outre, le nombre
de points du maillage radial Nr n’intervient (presque) pas sur les valeurs de Nit.

Ce dernier point est lié à la manière dont le système linéaire est résolu (une méthode directe).
C’est ce qui justifie l’expérimentation de cg_dual_pen_, dans lequel on espère que la perte de
précision numérique n’aura plus lieu, mais au prix d’une résolution itérative, donc plus lente.
Cette lenteur affecte les performances CPU globales en 1D puisque la résolution directe, elle, est
très efficace (elle est optimale : son coût de calcul est en OpNrq). Cependant, en 2D ou en 3D,
on ne dispose pas a priori de solveurs directs optimaux pour le problème linéaire pénalisé, donc
cg_dual_pen_ peut devenir alors une solution intéressante pour bénéficier des avantages de la
pénalisation en 2D et en 3D (il faut que le gain en iterations de LPWPG sur ISTA soit supérieur
à la perte dûe à cg_dual_pen_ par rapport au solveur de Poisson direct qui est utilisé par ISTA
et qui est, lui, optimal) en 2D et en 3D, dans la mesure où on travaille dans le code utilisé ici sur
des grilles structurées.
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En fait, tol doit être pris plus grand quand aR devient grand, sinon le résidu stagne sans jamais
atteindre tol. Dans ces conditions, la perte de précision numérique engendrée par la pénalisation
devient un facteur limitant. On se retrouve donc pris entre l’intérêt de prendre aR grand pour
accélérer l’algorithme, et l’impossibilité d’atteindre une tolérance arbitraire.

Remarque 6.1. cg_dual_pen_ est un algorithme qui fonctionne sur le même principe que LP-
WPG mais résout l’équation numérique sous forme matricielle.

En outre, pour aR “ 0.1 les meilleurs Nit (pour ρR Ñ 2
Bi p1 ` aRq)sont apparemment les mêmes

que pour LWPG. Pour aR “ 1, le calcul itéré de pu, λq a pris deux fois moins d’itérations (en
choisissant le ρR qui minimise le temps de calcul). Enfin, pour aR “ 10, le meilleur Nit réalisé est
en dessous de cinquante itérations, ce qui semble correspondre à un ρR plus ou moins proche de

2
10¨Bi p1 ` aRq ¨ 6.5, ou bien de 14

Bi avec une incertitude de 1
Bi .

6.3 Tests LPWPG comparés avec ISTA
Pour mieux mettre en évidence le gain de performace de LPWPG (LWPG+pénalisation) par rap-
port à ISTA (ou LWPG puisque ρF ne fait pas varier le calcul itéré de u), on poursuit les tests avec
Bi “ 10, 100 ; Nr “ 1024, 8192 ; aR “ 0.125, 0.25, 0.5, 1, 2, 4, 8, 10, 16, 32, 64, 100, 128 ; ρR “

2
10¨Bi p1 ` aRqk et ρF “ 1

Bi ; mais cette fois en comparant explicitement LPWPG à ISTA (Bi “

10, 100 ; Nr “ 1024, 8192 ; aR “ 0 ; ρR “ ρF “ 2
10¨Bik). Le seuil de tolérance est fixé

à tol “ 10´10. Afin de ne pas risquer une superposition chargée de courbes qui rendrait les
graphiques en Figures 5 et 6 illisibles, les courbes ont été réparties en trois parties pour chaque
couple pBi,Nrq.

26



(a) Bi “ 10, Nr “ 1024, première partie (b) Bi “ 10, Nr “ 8192, première partie

(c) Bi “ 10, Nr “ 1024, deuxième partie (d) Bi “ 10, Nr “ 8192, deuxième partie

(e) Bi “ 10, Nr “ 1024, troisième partie (f) Bi “ 10, Nr “ 8192, troisième partie

Figure 5: Nombre d’itérations de LPWPG en fonction de ρR pour Nr “ 1024 et 8192, et Bi “ 10.

S’il y a un pic, il est possible que le comportement de la courbe soit effectivement non-monotone.
Une manière d’avoir davantage d’information aurait consisté à prendre davantage de valeurs de ρR
au voisinage du pic et de regarder si un une courbure se précise, ainsi qu’un extremum local, ou
bien si la courbe devient bruitée. Mais pour alléger le travail du stage, on se contentera de vérifier
les Nit et ρR optimaux atteints sur 2 ď aR ď 20 (section 6.5).

Du reste, on peut supposer qu’en choisissant le bon ρR, on peut encore faire descendre le nombre
d’itération Nit à des minima encore plus petits en prenant aR dans un intervalle approprié. On
voit déjà que 2 ď aR ď 10 permet autour de ρR « 10

Bi un gain de performance sur ISTA. Les gains
de performances par rapport à ISTA sont explicités sur la Figure 7.
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(a) Bi “ 100, Nr “ 1024, première partie (b) Bi “ 100, Nr “ 8192, première partie

(c) Bi “ 100, Nr “ 1024, deuxième partie (d) Bi “ 100, Nr “ 8192, deuxième partie

(e) Bi “ 100, Nr “ 1024, troisième partie (f) Bi “ 100, Nr “ 8192, troisième partie

Figure 6: Nombre d’itérations de LPWPG en fonction de ρR pour Nr “ 1024 et 8192, et Bi “ 100.

(a) Nombre d’itérations optimal en fonction de aR.
(b) Le point de chaque courbe (Bi,Nr) d’abscisse aR
est indique le ρR qui minimise Nit pour le même
triplet (Bi,Nr,aR).

Figure 7: Gains de performances de LPWPG pour f “ 0. Sur chaque graphique, chaque point
d’abscisse aR “ 0 correspond au cas ISTA.
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6.4 Comparaison LPWPG/ISTA avec le terme de second membre f

Tous les tests LPWPG (sans ISTA) ont pu être faits avec cette option, et toujours avec tol “ 10´10,
pour vérifier la robustesse de l’algorithme, et il apparaît que le choix de f ne freine pas le gain
significatif de performance par rapport à ISTA.

(a) Nombre d’itérations optimal en fonction de aR.
(b) Le point de chaque courbe (Bi,Nr) d’abscisse aR
est indique le ρR qui minimise Nit pour le même
triplet (Bi,Nr,aR).

Figure 8: Gains de performances de LPWPG avec l’option "´f". Sur chaque graphique, chaque
point d’abscisse aR “ 0 correspond au cas ISTA.

6.5 Tests pour 2 ď aR ď 20

Avec ou sans option "´f" on constate que les courbes de Nit optimal se croisent sur l’intervalle
d’abscisse 10 ď aR ď 20. Ainsi on cherche à refaire les tests pour les mêmes valeurs de Bi, Nr, ρR, ρF
et tol mais cette fois pour 2 ď aR ď 20. Le gain de performance reste très important avec "´f"
pour Bi “ 100, mais ce n’est pas le cas pour Bi “ 10 où les performances sont quasi identiques.
Ceci vient probablement du fait que les zones rigides sont trop petites dans ce cas pour que la
pénalisation joue un rôle. Il s’agit en outre d’un cas où l’amélioration de performances est moins
crucial, car l’ensemble des expériences dans le présent travail et dans la littérature met en évidence
que les cas les plus coûteux correspondent aux plus grandes valeurs de g.
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(a) Nombre d’itérations optimal en fonction de 2 ď

aR ď 20, avec f “ 0

(b) Le point de chaque courbe (Bi,Nr) d’abscisse aR
est indique le ρR qui minimise Nit pour le même
triplet (Bi,Nr,aR), avec f “ 0.

(c) Nombre d’itérations optimal en fonction de 2 ď

aR ď 20, avec l’option "´f" (d) Les ρR optimaux avec "´f".

Figure 9: Gains de performances de LPWPG détaillés sur 2 ď aR ď 20, avec ou sans l’option "´f".
Sur chaque graphique, chaque point d’abscisse aR “ 0 correspond au cas ISTA.

7 Conclusion et perspectives
Une nouvelle approche algorithmique a été posée en modifiant localement l’algorithme d’Uzawa
pour le problème de Bingham. Une tentative explicite de calcul des itérés a été réalisée pour un
cas simple en dimension 1, le problème de Poiseuille. En effet, ce problème possède une solution
explicite très simple et on peut espérer qu’il en est de même pour le calcul des itérés. Or, la variation
de ρ avec n soulevaient des difficultés dans ce calcul explicite qui ont été résolues en supposant R
connue à l’avance. L’algorithme a été également programmé pour un autre cas simple, le problème
de Couette. En forçant par pénalisation la rigidité dans des zones Rk convergeant vers la zone
rigide finale, le gain de performance est important comme le montrent les Figures (5),(6) et (9).
Une démonstration générale de convergence a pu être établie, dans le cas où l’écoulement a lieu
dans une conduite droite de section constante avec une hypothèse simplificatrice : la zone rigide
est supposée être connue à l’avance. Cette hypothèse n’a pas de réalité pratique mais elle permet
une première exploration théorique des propriétés algorithmiques.

L’étape suivante du travail consiste à poursuivre l’exploration amorcée sur le problème de
Poiseuille et le problème de Couette. Parmi les simplifications envisagées pour le problème de
Poiseuille, on a considéré que la zone rigide est connue à l’avance. On prévoit également d’investiguer
des techniques permettant d’estimer ρR et ρF à chaque itération afin d’optimiser le nombre
d’itérations requises pour atteindre une précision donnée ; on pourra également faire les tests
en 2D sur le problème décrit en section 4, afin d’évaluer la généralisation du gain de performance
constaté et de voir l’effet d’un λF qui n’est plus exact, et donc dans ce cas le rôle de ρnF .
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