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1 Introduction

Le laboratoire GPEM (Granulats et Procédés d’Elaboration des Matériaux), rattaché au
campus de Nantes (Bouguenais) de I'université Gustave Eiffel, est composé de chercheurs aux
compétences trés diverses qui vont des mathématiques appliquées au génie civil en passant par
la physique, le génie des procédés ou encore la chimie. Ces compétences sont mobilisées pour
développer I’économie circulaire de la ville et les procédés qui y sont associés.

Une thématique commune a toutes les recherches du laboratoire concerne les pates granulaires.
Ce sont des matériaux viscoplastiques, c’est-a-dire qu’ils se comportent comme un fluide ou un
solide localement : plus ils sont soumis & une forte sollicitation & un endroit, plus ils s’écoulent
de fagon liquide au voisinage de cet endroit, comme de la purée. Au-deld des préoccupations
du laboratoire (fabrication de béton, tri des déchets, construction en terre, etc.), la modélisa-
tion des écoulements de pates granulaires offre de nombreuses applications en génie civil (boues
d’épuration), environnementales (coulées de boue, avalanches), biologiques (fluides corporels tels
que le sang). Le modéle de Bingham ([Bin22]) est un modéle viscoplastique que 1'on utilise en
général comme prototype, car il contient la difficulté fondamentale de la viscoplasticité : effet de
seuil. Cette difficulté se traduit par l'existence de zones de ’écoulement (dites rigides) de mesure
de Lebesgues non-négligeables dans lesquelles le taux de déformation (partie symétrique du gra-
dient de vitesse) est nul. La régularité du champ de vitesse est a priori limitée au voisinage du
bord des zones rigides. Plus précisément le champs de vitesse n’est a prior: pas dans 1’espace
de Sobolev H3(Q) (ot © = RY est le domaine de 1’écoulement), méme lorsque les données du
probléme sont trés réguliéres. Cette particularité conduit & de nombreuses limitations dans les
méthodes d’approximation connues. Ainsi, de nombreuses recherches visent & réduire & ces limi-
tations. Dans le présent travail, c’est la vitesse de convergence d’une classe d’algorithmes pour la
non-linéarité décrite par 'effet de seuil qui est concernée.

Généralement, sur un ouvert borné Q — R3, le modéle de Bingham s’écrit sous la forme

Il > g <= 7 = 2u D(w) + 91507

I7ll < g <= D(u) =0
D(u)
D)

ot u est le champ de vitesse, D(u) := (Vu + (Vu)")/2 son taux de déformation, et 7 le déviateur
du tenseur de contrainte!. On utilise la norme ||w|| = v/w : w associée au produit scalaire tensoriel
w:iv = ZZ ; WijVij- On définit aussi g le seuil de plasticité du matériau, parfois aussi noté 7, dans
la littérature, et la viscosité p.

Ce modéle, complété par les équations de conservation de la mécanique des milieux continus,
ainsi que des conditions initiales et aux limites, définit un systéme d’équations aux dérivées par-
tielles décrivant complétement I’écoulement. Dans le cas présent, ’objectif étant de travailler sur
la résolution de la non-linéarité de 'effet de seuil, on se concentre sur une description stationnaire
et sans effet d’inertie, & masse volumique p constante :

p(Vu)-u—divr—Vp=f=0  (conservation de la quantité de mouvement)
divu=0 (conservation de la masse)

avec le produit scalaire (Vu) - u négligé (précisément ce que signifie "sans effet d’inertie").

La plupart des algorithmes de la littérature consacrés a la résolution de ce probléme non
linéaire considére une formulation dans le cadre de I'optimisation convexe sous contraintes. La non-
différentiabilité de la fonctionnelle & minimiser pour trouver u rend difficile I’obtention d’algorithmes
performants (c’est-a-dire dont les temps de calcul sont compatibles avec les besoins de simulation,
et plus généralement avec les taux de convergence les meilleurs possibles), c’est 'objet de nom-
breuses recherches depuis une cinquantaine d’années ([GLT81], [BT09], [Ble17a], [Ble17b], [Sarl6],
[SW1T]).

ILe tenseur de contrainte (noté souvent o par les mécaniciens) se décompose en sa partie déviatrice (ici 7) et sa
partie sphérique qui est la pression isostatique notée p.



On trouve des méthodes itératives de calcul de point de selle dans [GLTS81], [RS03], [BT09] et
ses variantes récentes, robustes et simples & programmer mais dont la lenteur reste insatisfaisante
en pratique malgré la populaire accélération récente initiée dans [BT09] pour le traitement d’images
a partir de travaux généraux de [Nes83|, puis appliquée a Bingham dans [Tre+18].

Des approches plus récentes [Blel7al, [Ble17b] et [Sar16] montrent des performances supérieures
d’un ordre dans leur taux ce convergence, mais avec un cotiit untitaire de I'itération bien supérieur
et avec davantage de complexité de mise en oeuvre. Le probléme reste donc largement ouvert.

On peut également mentionner une classe de méthode au succés déclinant mais encore trés util-
isées, consistant a régulariser l'effet de seuil de maniére & pouvoir appliquer des méthodes efficaces
pour minimiser des fonctionnelles différentiables. La plus populaire est [Pap87]. Cependant, il est
délicat d’interpréter physiquement et de fixer le parameétre de régularisation, ce qui a conduit a
une grande difficulté d’utilisation fiable en pratique. En outre, les performances sont fortement
dégradées lorsque le modéle régularisé tend vers le modéle initial.

Dans le présent travail, il s’agit d’utiliser des propriétés locales pour modifier un algorithme de
gradient projeté connu sous le nom ISTA ([BT09]) ou Uzawa (|[GLT81|) selon le contexte applicatif.
C’est une approche originale, car toutes les recherches actuelles utilisent des propriétés globales.
Notre motivation vient du fait que les propriétés locales d’un matériau viscoplastique ne sont pas
les mémes partout.

Plus précisément, dans le cadre du stage, on présentera un probléme modéle (celui de Bing-
ham), pour ensuite se focaliser sur un pas de descente variable en espace (dans l'algorithme de
gradient projeté), en privilégiant notamment des valeurs différentes dans les zones rigides, les zones
complémentaires dites fluides. Dans un premier temps, on s’intéresse & des valeurs constantes du
pas dans les deux types de région et on examine les performances sur des cas mono-dimensionnels
simples (Sections 2 & 5), tout en démontrant la convergence de l’algorithme de gradient projeté
localement pondéré (LWPG). L’un semble pouvoir étre traité explicitement (probléme de Poiseuille
plan, quitte & adapter algorithme ; Section 5), I'autre numériquement (probléme de Couette, Sec-
tion 6). Dans un second temps (Section 6), on réalisera des tests numériques sur le probléme de
Couette avec 'algorithme LWPG ainsi que la variante de pénalisation (LPWPG) pour mettre en
évidence les gains de performances qu’on espére obtenir par rapport a l’algorithme ISTA.

2 Un probléme modéle

La solution du probléme qu’on propose consiste & appliquer une méthode de gradient projeté
en trouvant A (défini par 7 = 2uD(u) + gA) comme 'argument minimum d’une fonctionnelle qu’on
explicitera dans cette section-ci.

Sans perte de généralité, on formule dans cette section I’écoulement stationnaire d’un matériau
de Bingham confiné dans une conduite droite de section constante 2. Ce cadre est introduit ici
pour simplifier la présentation. Le matériau est mis en mouvement par une chute linéique de
pression f et le fluide adhére aux parois. Le champ de vitesse se réduit alors une seule composante
paralléle & I'axe de la conduite, encore notée u. Les contraintes se réduisent aux composantes de
cisaillement, en particulier D(u) se réduit & Vu. La viscosité est fixée & 1 dans le but de simplifier
I’écriture, puisque le paramétre physique pertinent est le seuil de plasticité g. Soit 2 un ouvert
borné de R?. On définit pour les fonctions u,v € Hg(€2) le produit scalaire ((u,v)) = {;, Vu- Vv dz,

et la norme associée ||ul| = 4/ ((u,u)).

Soit la fonctionnelle

J(v) := %L |Vol|? +ng |Vv| — Lf v.

On définit aussi Pensemble convexe K = {v € (L?(Q))?%;|v] < 1 p.p. sur Q}. Pour introduire
lalgorithme d’Uzawa pour le probléme de Bingham avec un pas p constant, on définit la vitesse u
et le champ de tension A € K liés par le probléme de Bingham : avec (.,.) le produit scalaire de



(L2 ()%,

(1)

{((u,v» +9(\, Vo) = (f, v), Yve HY(Q)
(L—A, Vu) <0 Vpe K

On peut montrer ([GLT81]) que (1) est une formulation variationnelle du présent probléme
d’écoulement et qu’on a les caractérisations suivantes :

u € argmin J < Vu-V(U—u)—I—gf |V11|—gf |Vul >J flv—u), Yve H}(Q)
HL(Q) Q Q Q Q

=3I e K et A ue Hy(Q) tels que (1) est vérifié.
Pour p € (L?(£2))? donné, on pose u(u) € HL(Q) 'unique fonction (d’aprés le théoréme de

Lax-Milgram) qui vérifie

LVU(M)'VU+9JQ;L~VU =Lfv, Vove Hi(Q)

la fonctionnelle ®(u) = ﬁ §o IVu(p)|? pour € K ainsi que

U(p) = D) + 1xe (), pe (L))

0 sire K

ot la fonction indicatrice de I’analyse convexe est 1x(x) = ) .
+0o siz¢ K

On a alors
A€argmin¥ < (u— A, Vu()\) <0Vue K.

Autrement dit, minimiser ® sur K revient & minimiser ¥ sur (L2(£2))? et a trouver une solution
de (1). On peut ainsi écrire différentes formulations variationnelles du probléme de Bingham, mais
c’est la minimisation de ¥ et la formulation (1) que nous utilisons dans ce travail.

2.1 Propriétés d’analyse fonctionnelle

On résume ici quelques résultats utiles pour comprendre et analyser la convergence des algorithmes
de gradient projeté.

Lemme 2.1. Les assertions suivantes sont vraies sur L*(2)? :
e O est convexe et lipschitzienne.
o O est dérivable sur K, de dérivée ' (u) = —Vu(p).

o ®’ est continue et g-lipschitzienne.

Preuve. e Convezité. La fonction u(-) vérifie de par sa définition, pour tout « € [0;1], A\, u € K,
u(lad + (1 —a)p) = au(d) + (1 —a) u(p)

Ainsi 2g P(a+(1—a)p) < 2g(a P(A)+(1—a) ®(u)) par inégalité triangulaire et composition

des fonctions u, u — |u] et x — 22

e Dérivabilité. On prend la premiére ligne du probléme (1) avec v = u(p + 1) — u(u),

lu(p +n) —w(p)|> = —g (n, V(u(p+n) —u(u)))
< gl lu(pe +n) — u(p)]

92 2, 1 2
<7 Inl”= + 3 | +n) —u(p)|



avec les inégalités de Cauchy-Schwarz et de Young, ce qui entraine |u(u + n) — u(p)|? =
O(|n]?). Or pour tout v € H (),

29(®(p+ 1) — (1) = Julp +n) — u(p)|® + 2((w(p +n) — u(p), u(w)))

et d’autre part ((u(u +n) —u(p), w(p)) = —g(n, V(u(n))).

On a aussi ((u(A\) —u(p), v)) = —g(A—p, Vo), Yo € H}(Q) puis en prenant v = u(\) —u(u)
et par l'inégalité de Cauchy-Schwarz, il vient |Vu(A) — Vu(p)| = u(X) — u(p)] < g|A — ).

e (Continuité. Enfin pour la continuité lipschitzienne de @,

[u)I? = )| = [u(A) = u(w)|* + 2((u(X) = u(p), u(p)))
= =9 (A, V(u(X) —u(p))) =29 (A = p, Vu(p))
= =9 (A, V() +u(p))

Par conséquent, avec I'inégalité de Cauchy-Schwarz |[u(A)|* = [u(p)]?| < g|A — pl [u(X) +
u(p)|. Sachant que ((w(A) + u(p), v)) = 2(f,v) — g(A + p, Vv), on obtient

lu(A) + u(p)| < 2[f1 + glA + pl < 2(1f1 + 9)

donc

B\ — ()] < % g —ul-20f] + 9) = (f] + DA — 4l

O

Pour déterminer I'existence d’un minimiseur de ¥, on va fournir les définitions et le théoréme
tirés de [Peyl5] :

Définition 2.1. Soient X un espace séparé (ou de Hausdorff), et une fonction f: X — Ru {400}

o f est dite propre lorsque son domaine effectif dom f ={zxe X : f(x) < +o0} nest pas
vide.

e On dit que [ est semi-continue inférieurement en un point xg € X si, pour tout a <
f (o), il existe un voisinage V' de ¢ tel que f(y) > a pour tout y € V. Si f est semi-continue
inférieurement en tout point de X, on dit que f est semi-continue inférieurement sur X .

Théoréme 2.1 (existence d’un minimiseur de f). Soient X un espace séparé (ou de Hausdorff),
et une fonction f : X — Ru {+o0}. Si f est propre, semi-continue inférieurement, conveze et
coercive (pour les suites dans X ), alors argminy f est non-vide et faiblement compacte. De plus,
si f est strictement conveze, alors argminy f est un singleton (autrement dit f admet un unique
minimiseur sur son domaine).

Corollaire 2.1. La fonctionnelle ¥ admet au moins un minimiseur A € K.

Preuve. En prenant X = (L?(2))", on cherche a caractériser ¥, sachant qu’elle coincide avec ®
sur K.

e Propreté. Soit v € H}(Q) bornée et telle que Vo soit borné aussi, et u € K. On a bien
((u(p),v)) = (f,v) — g(p, Vv) qui est fini. On peut montrer avec les outils classiques que si
pe K,ona:

lu(u)? = [(f, (k) = gk, Vu(p))l
< |[(fsulw)l + g lpl - |u(w)]
< [l lu)] + g 1942 - Ju(p)]
On obtient donc la majoration 1/2g ®(1) = |u(p)| < ||+ +g |Q|"/2. En effet, on définissant

H=(Q) comme le dual topologique de H}(Q), f € L%*(Q) peut étre identifié a4 un sous-
ensemble de H~1(£2) (les deux espaces sont méme isomorphes d’aprés le théoréme de Riesz).



En notant encore f 'élément de H () défini par : v — (f,v) pour v € H}(Q), on peut
écrire sa norme H ! : )
v
Ifl« = sup

UEH(} (Q),v#0 HUH

De plus, comme |u(z)| < 1 p.p. sur ©, la norme L? de p est bien majoré par [Q|'/2.

On a donc bien @ finie, et donc aussi ¥ finie puisque p est pris dans K. Cela signifie donc
que dom ¥ = K. En fait, il suffit ici de remarquer que ¥(0) = 0, donc dom ¥ n’est pas vide.

o Semi-continuité inférieure. W est déja continue sur int K (intérieur de K) parce qu’elle y
coincide avec ®. Par sa définition, K est fermé dans (L2(£2))" pour la norme L2, ce qui donne
0K < K. Il suffit alors de montrer sa semi-continuité inférieure sur X ou son complémentaire.
Pour cela, il faut considérer un voisinage V' de p dans lequel ¥(u) > a (avec a > 0 donné),
ensuite :

— d’une part V n K, dans ce cas la continuité Lipschitzienne de ¥ permet de définir
explicitement V tels que tous éléments de V' évaluent ¥ a une valeur plus grande que a.

— d’autre part V n ((L%(Q))?\K), dans ce cas la définition de semi-continuité s’applique
immédiatement quel que soit V' puisque ¥ = o0 > a.

o (Converité. ¥ est convexe sur K d’aprés le Lemme 2.1, et tend vers +00 dés qu’on dépasse
0K. Donc ¥ est convexe sur tout son domaine.

o Coercivité. En utilisant la définition d’une fonction coercive par [Peyl5|, ¥ est coercive car
elle vaut 400 en dehors de K.

O

Théoréme 2.2. Soient H un espace de Hilbert, et K une partie non-vide, fermée et convere de
H. Alors la projection orthogonale Py vérifie, pour tous x € H,y € K,

(x — Px(x), y — Px(2))yg <0.
Dans le cas présent, Pk la projection orthogonale sur K est définie par :

pooosifpl<1
Pr(p) = {

£ sinon
[

Pour comprendre ’algorithme qui vient, on peut synthétiser dans un lemme différentes expres-
sions équivalentes du modéle de Bingham, lorsqu’on utilise A plutot que 7. Cet algorithme dit de
gradient projeté est caractérisé par A"t = \" — p G,(A\") ou

qﬂ0=%w—Pﬂu—pyw»)

Cette maniére d’écrire l'itération en A" permet d’identifier a la fois une direction de descente G,
et un pas de descente p.

Lemme 2.2. Soit A\ € (L*(Q))? et ue HE (). Alors les trois relations sont équivalentes :
o (u—AVu) <0, Vue K
o \-Vu=|Vu|, [A\|<1pp. surQ
e A=Prx(A+pVu), Vp>0

3 L’algorithme de gradient projeté (ou ISTA /Uzawa)

Algorithme 3.1 (algorithme classique d’Uzawa, ISTA). Soit p > 0 et \° € K. Par récurrence, la
suite des (u" T, A"t e H(Q) x K se calcule comme suit:

(™t 0)) + g\, Vo) = (f,), Yve Hi(Q) (2)
N = Pre(A" 4+ p Vut)



qui reflete l’équation (1).

Remarque 3.1. En fait, on pourrait aussi décrire un algorithme de minimisation pour J, c’est
Dapproche qui est utilisée dans les méthodes trés populaires de Lagrangien augmenté ([RS03],
[SW17]). Nous ne le faisons pas car elle introduit une formulation & trois champs, ce qui est
plus cotdteur en mémoire alors que, dans le modeéle de Bingham écrit en (u, \), nous n'utilisons
que deux champs. L’avantage des méthodes de Lagrangien augmenté est qu’elles convergent sans
conditions sur leur paramétre (un paramétre semblable o p). Mais, outre le cott mémoire des trois
champs, il peut étre plus cotdteux de résoudre le sous-probleme linéaire qui apparait a chaque itéra-
tion des méthodes de Lagrangien augmenté, car, dans Uzawa, nous avons & résoudre un simple
probléme de Poisson pour lequel des méthodes trés performantes existent ([Du+09], [ZZ20]), tan-
dis que le sous-probléme linéaire des méthodes de Lagrangien augmenté est formé par l'opérateur
div(D(.)) (ou div(grad(.)) dans le cas présent), qui aprés discrétisation spatiale est différent de la
discrétisation du Laplacien et également souvent plus cher a résoudre numériquement en terme de
cott CPU et mémoire.

Preuve de convergence ([GLT81]). Comme Pk est la projection sur K, donc une contraction, on
a ATt =\ = [Px(A" +p Vu ™) — Pe(A+p Vu)| < A" =X+ p V(u"! —u)| d’on, par définition
de la norme || - |,

N A2 <N = AP 420\ = A\ V(T — ) + p? T —
—_— —

gn+1 sn
En posant v = ™" — u, la premiére ligne du schéma (2) et celle de I'équation (1) entrainent
[ut = uf® + g(\" = A, V(@™ —u)) =0

On a alors s"*1 < 5™ + (p% — %)Hu”*l — .

Sip< %, alors

2
0 < p <g p) Hun+1 7UH2 +SnJrl < Py

s"tl < 5™ ainsi la suite (s™), est décroissante et bornée entre 0 et s°, donc elle converge :

" — I. On en déduit aussi par le théoréme des gendarmes (p étant constante) que ||u™ Tt —u|?
n——+0o0

tend vers zéro.

Soit A™ € K. Comme sa norme est majorée par 1, presque partout sur €2, on a

1/2
(J,were) <o
Q

d’oit A — X (convergence faible). Donc :

((u,0)) + 9\, Vo) = (£,0), Yv e Hy(Q)
On se rappelle la deuxiéme ligne du schéma :
AL = P (A" + p Va1
de par le Théoréme 2.2,

0 (N o >\n+1’ pvun+1 _ >\n+1 + /\n)

>
> (p, pVUTE = XL A™) — (AL pWt ) — (A, AT = X+ A = A
—(AME = AT = A+ A=A

SR e e i



or, on a |A\" — A|2 — [ et Iaccolade est justifiée par
n

|an|2 _ |an _ an+1 + an+1|2 _ ‘an _ a7L+1|2 + |an+1|2 + 2<an+17 a — an+1>
en écrivant a” = A™ — A. L’inégalité ci-dessus nous donne (u — A, pVu) < 0; donc
(u, \) € HY(Q) x K

est bien solution du probléme (1). O

4 Premiére approche théorique du gradient projeté locale-
ment pondéré (LWPG)

La zone rigide R peut étre définie de plusieurs maniéres différentes et équivalentes :

Vu =0
— |Vu+gli<g
— [A+pVul<1, V¥p>0

Or, la caractérisation Vu = 0 n’est pas utilisable en arithmétique flottante, et ces equivalences
sont dont trés utiles en pratique. Alors, on choisit de ne pas utiliser la troisiéme caractérisation
pour éviter de la rendre dépendante d’un paramétre numérique, méme si elle a un intérét pratique
puisqu’elle est en partie calculée dans 'operation de projection dans ’algorithme. L’algorithme
LWPG (avec détermination dynamique de la zone rigide R*) s’écrit

(™)) + g(A", Vo) = (f,v), Yve H(Q)
. pr  si|Vu"™l 4+ g7 <g

= { (3)

pr  sinon
AL = P (A" + p Vu L)

Cet algorithme et celui décrit juste aprés sont étudiés dans le cadre décrit dans les sections 2 et
3. De fait, on verra qu’on peut établir des résultats de convergence dans le cas simplifié ot R est
connue a l'avance.

4.1 Convergence pour R connue a ’avance

Proposition 4.1. (algorithme LWPG-R) Pour Q ouvert borné de R?, pr, pr > 0, p(x) = prXR +
prXF 0 F est la zone fluide ; on suppose que la zone rigide R est connue a Uavance. Soit \° € K,
et pour n € N, soit l’algorithme :

(w1 0)) + g(A", Vo) = (f,v), Vve Hg(Q)
ATl — PK(An +p VunJrl)

On suppose que pr, pr € ]O; %[ Alors les suites (u™),, et (A™), convergent faiblement (et (u™)s,

converge aussi fortement) vers une solution du probléme (1).

Preuve. On restreint les produits scalaires et leurs normes associées sur €2 & n’importe quel partie
ouverte O c () :

(Ao = j @) plx) dz s N3 = (A Mo
O
((w,0))o = L Vu- Vo dz ; |[ul3 = ((wu)o

Sachant que Q = R U F' (réunion disjointe), on reprend la premiére inégalité de la preuve de con-
vergence de l'algorithme (2) en Pappliquant sur R et F' en désignant les produits scalaires/normes



restreints sur ces deux zones par les lettres R et F, et en notant A" = A" — X et 4" = u” — u :

1 A%+ 20k (A", V@R + o} @3

AR <
(L) IN"THE < MM+ 20r (A", V@ p + o |03

(I™),, converge car décroissante et bornée, donc il y a convergence forte de u™ vers v (Vu"™ =2 Vu
et u" =y u grace a l'inégalité de Poincaré car u € H}(Q2)).\" € K et le caractére borné de (2
entrainent que la suite (\"), est bornée dans L?(f2), et converge donc faiblement vers A a une
sous-suite pres.

Dans la preuve de convergence de (2) on avait |u"*! —u|? +g(A\" — A\, V(u" ! —u)) = 0 ce qui
donne sur R et F':

somme

—n an —n \n =N 1 e
|@" 3 o + 9N, V(@) pp = 0752 (A", V(@) = —lu +1)2

En posant [" := iﬂ"ﬁ% + p%ﬁ"\%, I'opération i(Ll) + p%(Lg) entraine

2
M = =@+ prla R + prplat

2 2
= (g - pR> [am % + (g - /)F> Ja" G + <1

2 2
— min ( — PR, - _pF> Han-kl”?J + ln+1 < mn
g g
En restreignant \"*! = Pg (A" + p Vu"*!) & R puis en utilisant les propriétés de Pr comme
projection orthogonale, on a bien

0= (u— A" ppVu Tt — AP 4 A"
> (p, pgVu" T = AL N e — (AL ppVU TR — (A, AT = AT g
_ (5\7L+17 j\n _ j\n-&-l)R

— — — 3 In+1 2 Y 1 2 n 2 3 1 2 by 2
OI' _()\n+1 )\n . )\n+1) _ pR A - At ant o A" > PR At o A"
’ R 2 \|VPor ~ VPR |p | VPE R prlp) = 2 \|VPr|g PR | g
puis on fait la méme décomposition sur F' puis en faisant la somme I%R( - )r+ I%F( -+ )r, il vient
DU A< 3 1
0> (/J, o~ + vun+1) _ ()\n+1,vun+1) _ <,)\n _ )\n+1> + 5(ln+1 _ ln)
P P P

Par la convergence faible de (A"),, et de (A"),, la convergence forte de Vu"*! et celle de 1", il
vient

0= (1, V) — (A, V)
O

4.2 Minimisation de la fonctionnelle ¢ - ordre de convergence pour R
connu a ’avance

Proposition 4.2. La suite (A\"),, minimise la fonctionnelle ® sur K (donc ¥ sur (L*(Q))?), sa
limite faible X est aussi un argument minimum ; le couple de fonctions (u(X),\) est une solution
du probléme de Bingham, et on a l’estimation de convergence pour ® :

A0 AP

\P

La preuve de cette proposition fait appel au lemme suivant (en analyse convexe).

D(A") — D(N) < %

Lemme 4.1. Soient ¢ une fonctionnelle conveze et différentiable sur un espace de Hilbert H, et
M < H une partie fermée convexe de H. Alors:

10



() ¢(p) < o(Q) + (' () n=CQp» Y, (€ M

(b) si en plus ¢’ est continue et L-lipschitizienne,

L
o) < S(u) + (' (W), v = 1)y + S lv = nlty, wope H

Preuve de la Proposition 4.2. Dans la suite, on note u= = p—p G,(u), un "itérd" de p € (L2(Q2))N

selon la direction de descente G,(ut). La continuité g-lipschitzienne de @’ et I’estimation (b) dans
le lemme donnent :

(%) < O(1) = (@' (1), p Gyl)) + 5 o Golp)]?

par suite, sous ’hypothése 0 < p < 1/g, on trouve I'inégalité:

, 1
Q") < @) = (¥ (1), p Gp(1) + 5IvP G|
puis, en y insérant le bornage de convexité (a):

D(p) < D(C) — (¥ (), ¢ —p), V¢ e (L)Y
il vient

B(ut) < () + (), 1" — Q) + 5V Gl (1)

Par la définition de G, (i), put = Pr(pn—p ®'(1)), ce qui peut étre exprimeé de facon variationnelle
comme

€ —n" plGo(p) = @' (W]) = (E—p" p—p2(n) <0, e K

Si on prend, d’une part £ = uTxr + (xr, puis d’autre part, £ = (xr + pXF,
(0, pr[Gp(1) =@ (W)])r + (= p", pr[Gy(p) — @' (1))
(€= u", prIGy(1) = @' (W]r + (0, pr[Gplp) — @' (1)])

puis ajoutant ensemble la premiére ligne divisée par pp, et la deuxiéme ligne divisée par pr, on
obtient

(C—n*, Gylp) — @' (n) <0

st (¥(1).14% = 0) < (Gylu) = p Gylt) =€) = (Gl = O) = p 1G] Lequation (4
evient

B(u*) < @) + (Gplp), 11— )~ LIV Gl

Maintenant, en prenant i = ¢ = A1, et donc p* = A\?, on obtient la relation de descente
. - 1 o o
P(\) < (W) = SIVp GNP < @(WT)
La derniére estimation s’obtient a partir de équation (4) reformulée en prenant ( = A :

BN — B(N) < (Gp(N1), N =) = 1y5 G )P

1 . . 1 . )
< )\1—1_A2_)\1_A2 + /\z—l_AZ_)\z_AQ
3o (W= AR = V= AR) + o (X = A = V= AR)
En sommant pour ¢ = 1,--- ,n et par décroissance de la suite (®(A™)),, il vient

o (N0 = A IV AR) + 5

n(@() - B(N) < 5 - 5

(A" = AE = A" =A%)
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4.3 Peénalisation

On remarque a priori dans LWPG, que pr est limité tandis que Vu'™ tend vers zero dans R™. Ce
qui veut dire que A" tend & stagner dans R", et que des valeurs de pg plus grande que 2 pourraient
alors peut-étre offrir de meilleurs résultats. En outre, il est intéressant de chercher & exploiter la
propriété D(u) = 0 définissant les zones rigides.

C’est ainsi qu’on propose de considérer le probléme equivalent & Bingham :

(0, 0)) + ar ((u,v))r + 9(A, Vo) = (f, v) Vve Hi(Q)
(L=, Vu) <0 Vue K

ou le suffixe p dans le produit scalaire indique que l'intégration se fait sur le sous-domaine R et

qu’on inroduit ’agorithme LPWPG :

{((un+1av)) tar ((un+1vv))R"+1 = (f7 U) - g()\n,VU), Voe H(%<Q)
)\71+1 — PK(/\n 4 p Vun+1)

ot R* est la zone rigide calculée & chaque itération (selon la partition notée Q = R¥ U F¥) et ar
un coefficient positif dont le role désiré est de forcer le gradient itéré Vu™+! a converger plus vite
vers un gradient de solution Vu qui est nul dans R et qui vérifie bien la premiére ligne du systéme
d’équation (2). L’algorithme LWPG devient LPWPG (pour penalized en anglais).

La conséquence de cette pénalisation est que pr peut prendre des valeurs jusqu’a %(1 +agr). En
effet, en adaptant la preuve de convergence en section 3 a I’algorithme LPWPG et en la restreignant
a la zone rigide R"*!, on a bien

N A < N s+ 29RO~ A DO — ) g+ Rl

gn+1 8™

et
(1 +ag) [[u™™ —u| %o + gA" = X\, D™ — u))gnsr = 0.

Il s’ensuit s" ™! < 5" + (p% — 2971%(1 +ap) |t — |2

SiO<pR<§(1+aR),ona

2
0<pr ( (1+ag) — pR> ™t — R + 8" < 8™
g

et la convergence est assurée.

5 L’algorithme d’Uzawa modifié appliqué au probléme de
Poiseuille plan

Il s’agit de ’écoulement d’un fluide de Bingham entre deux plaques paralleles et planes, suffisam-
ment étendues pour réduire le probléme & un systéme mono-dimensionnel. Le cas d’une conduite
droite dont la section €2 est un disque fournit des équations et une solution quasi-identiques une
fois le probléme formulé en coordonnées polaires.

Soient u € H}(—1;1) et A\e K = {ue L?(—1;1); |u| <1 p.p.} vérifiant

" _g)\/ -1
A = |u] < A=Pg(A+pu)Vp>0

Soit l'algorithme d’Uzawa modifié suivant, conformément & lalgorithme (3) en section 4 (ot on
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suppose la continuité des contraintes u’ + Ag) :

A =0
@y g (- 1
. n+1 n
I (AR
pr  sinon
A+l = Pg(A\" + p™ (u™1)’) presque partout

. pooosip<l . . .

ot P (u) = { L gnon Dans l'algorithme, on suppose que les fonctions u, p sont paires sur
im]

[—1;1], ainsi que leurs itérés successifs, tout comme A et ses itérés sont impaires. On a aussi p > 0

comme ses itérés.

On peut vérifier que la solution exacte est unique et définie par :

u(z) = 1_292+g(gfl) si0O<|z|<g
=2 gz - 1) sig <ol <1
-z si0< |z <
Mz) =9 lz| < g
—sgnz sig<|z| <1

1 six >0
sgnx =<0 siz=0
-1 siz<0

5.1 Hypothése sur p

En supposant la zone rigide R connue a l'avance (et on donc on connait aussi p = p™) avec
< pr < pr, on introduit le lemme suivant sachant que

g+1
pr si0<|z|<yg
p(x) =
pr sig<|z|<1
comme g > 0, on a blen < 1 donc ’hypothése sur pr, pr a bien un sens puisque p est toujours

strictement positive.

Lemme 5.1. On suppose +1 < pr < pr. Soient les suites (€F),, (¢5),, (nn)n définies par

R _ g

gn - 1_(1_pRg)n

F _ g

Sn = L—(1—prg)"

M =& [1+0F92 (53—@)1

Alors, pour tout n > 1, on a g < 8 < 8. De plus, ces trois suites sont décroissantes, telles que
lim,, 55 F = g et hmnﬂoo M < G-

Preuwve. Ona 0 < pr g < pr g <1,s0it 1 > (1—pr ¢9)" = (1 — pr ¢g)" > 0 pour tout n > 1.
En comparant les 1 — (1 — prr ¢)" puis en inversant l'inégalité par lopération g/-, on a alors

§r=8F>9.
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Soit p € {pr, pr} < R%. On a déja 87 > g pour tout n > 1. Comme (1 — pg)™ tend vers zéro,
les réels €8 ¢ définissent deux suites décroissantes qui tendent vers g.

La suite des 7,, peut se réécrire

=& l1+ng(nzj(l—ppg)i—i(l—pzzg)i)]

i=1 i=1

)1*(1*ppg)"’1_ 1(1pRg)”1>]

(1—prg)

=¢ [1+ng((1—ng
PF g PR Y

On a alors

1—ppg_1—pRg)]
PF g PR 9

<1+PR—PF)<§
PR Y

Soit n = 1. On a bien 1+ pp g >, (5% - 5%) = nNn41/€E, 1 = 0 et ce quotient définit une suite

lim nn—g[lﬂ)Fg(

n—0o0

Il
S

décroissante. Comme les £ sont déja positifs, on a 1,11 < 7y. O
Remarque 5.1. La limite g (1 + pR*”F) de la suite (0, )n est positive. En eﬁet < pr < pF
entraine L < 921 done 1 —|— — L2 > 0. Comme la suite (n,), décroit vers une limite

strictement positive en n, tous ses termes sont positifs. Or, la caractérisation de cette limite et
le fait que m = & > g impliquent qu’il existe un rang Neiw > 1 tel que pour tout n, on a
n > Ncrlt < nn S

5.2 Reécurrence explicite du schéma de Poiseuille

Proposition 5.1. En notant a~ = min(0,a) pour a € R, le schéma modifié vérifie :

1— 2
N =0; ul(z) = z
2
. niy L 9 2 2
Vn € [2; Nerig], u™(z) = slem 1) (z*—9g°)<
n—1
L( g 9 g9
+5 (g 1) max(el, 0 - )<+ (g = o ) atman(iel o) = o)
n—1 n—1 n—1

1 — max(|x], np_1)? g g n=2 /4 1 )
+ 2 + 571 5 ) +1+pr Z SR fZF g9° | g(max(|z|,np—1) — 1)

1l
Vn = Neie + 1, v (z) = 26

2

—1)(3:2—92)4— +§—(g—1) si0<|m|<g
1)

2
o 4 (fal - si g <l <
— R si0<|z|<g
e [1; New — 1], X"(@) = { & + sgn(a) pr S0t (5 — &) o sig <ol <m,
—sgn x sin, < |zl <1

- 510 < |z| <
Vn > N, \'(2) = { o <ol <9
—sgnx  sig<|z|<1

Preuve de l'algorithme. A partir de I'équation —(u')” —g (A\°)’ = 1, on obtient (u!)” = —1—g-0 =

—1. En intégrant deux fois, il vient u!(z) = —%2 + ax + b, or u' est un polynéme pair, d’olt
a = (u')(0) = 0 (car (u!) est impair), et u'(£1) = 0, ce qui entraine u'(z) = %
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Pour la récurrence, on suppose que la caractérisation explicite du schéma modifié est vrai pour

un entier 1 < n < Ngj — 1, et on va la prouver au rang n + 1.

On résout, pour 0 < z < 1, I'équation —(u"*1)” —g (A\") =1. On a

%—1 si0<z<g
(un-i—l)//:_l_g()\n)/: 5%7 -1 Sig<1?<77n

-1 sin, <z <1

u™1 doit étre paire sur [—1;1] et continue en +g et +7,, et s’annuler en +1. Sa dérivée est un

polynéme impair, et s’annule donc en z = 0. D’ailleurs, (u
des contraintes. On obtient alors

n+1)’ doit aussi satisfaire a la continuité

si0<z<g

sig<z <y,

(é—l)x si0<zx<g
(u"* ) (z) = (é—l (x—g)+ W) (g) sig<xz<n,
—(z = n) + (WY () sin, <z <1
(&-1)=
=4 (F-)@-9+(&-1)9
—(x—nn)+(%—1)(nn—g)+ %—1)9 sin, <z <1

Pour assurer la continuité de u™ sur [0;1] et avec la condition u™(1) = 0, on intégre (u"T1) avec

les constantes d’intégration a, b, ¢ sur chaque sous-intervalle :

%(%—1)1‘24—@ si0<z<g
u"t(x) = %(%—1)%—}—(%—%)99&4—1) sig<z<n,
f§+[%'nn+(§f%)g]x+c sin, <x<1

Les constantes a, b, ¢ sont déterminées par
a = u""*(g) — ler polynome en x = g
b=u""!(n,) — 2 polynome en = = n,

¢ = —3e polynome en z = 1

donc il vient, pour 1 < n < Neyp — 1,
& 1) @ - g +umti(g)

(& -1) @ =)+ (& — &) gllel = m) + un(mn)
S (k= &) 9% olel = 1)

=1 e

On a pu modifier un peu 'algorithme modifié en lui imposant que

_)pr siO<|z|<yg
pr  sinon

soit déja connue a ’avance avec I’hypothése ﬁ < PR < PF.
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Sur I'intervalle [0; 1] on doit évaluer A" + p"(u™*1)" pour calculer A"*1 :

—%-FPR(%—l)x si0<z<g

1 .
N ppt () =~ +or X5 (& —ggp)ngpF (%—1)w+pF (é—%)g sig <<y,
—1—prx+pr %—é+1+pp2?;11(§—§>92]g sing, <x<1

On note Zff = —é + PR (é — 1). La définition de ¢ entraine, en notant d = 1 — pg g,

dr —1
2R = J +pr (1 —d*—1)

1
dn_l _ _
( )(g PR) PR
(d"—1)d—prg
g

d"“*dprg

g
dn+1 -1
g
_ 1
&
de la méme maniére, —5% + pr (5% - 1) =2t
n n n+1
Il vient, pour tout = € [0;1],
o si0<z<g
n+1
A4 (a1 = —ﬁerpZ?:l <§%f§)g sig<x<ny

—1—prx+pr [é—%+1+pF Z?=_11<€13—51_p)g2]g sin, <zr<1

On passe en revue les cas ott on a [A\" + p"(u""1)’| < 1 lorsque n < Ngi, — 2 (le plus grand rang
n tel que g < Mp41) :

Y

casl: 0<zx<get %
En+1

< 1. Ce cas équivaut 4 0 < x < g car 5,?“ > g.

ﬁ — pF 2y (ELR - 5%) g‘ < 1, ce qui implique I'inéquation

n n
g g L g g
X (G )i (G- )
1=1 ? ? i=1 7 7

n+1

cas2: g<z <mn, et

or 55“ [1 + pr gzzzll (5% — ELF)] = 7p+1 et la borne gauche dans I'inéquation est stricte-
ment négative.

Le cas 2 équivaut donc & g < < 141 car g < Mp41 < Mp.
cas3: <z <let ‘1+ppx—pp [%—5%4-1—#,017 St (%—5%)92]9‘ < 1. 1l vient

g g g g M
-1+ pFr (—+>g<1+pFat<1+pF (——i—)g
&G & & &
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ce qui équivaut a

2 <g g nn> <g g nn>
——+ (- tmlg<r<|ZH -+ ]g
pr o \&F & & & & &l
la borne de gauche est plus petite que g — p% < 0 (car pp < é < %) Le cas 3 est impossible

car il entrainerait x < g < n,.

Sur l'intervalle [0; 1], on a

_5f'{g‘c+1 si0<z<g
i P pn(um—l)/ )= I;DH + pr Z?:l (5% — 5%) g sig<z<npt1
+1 n k2 k2
sup(|A™ + p™(unt1)[, 1) -1 Sl Npy1 < <Ny
-1 simg, <x <1

En effet, on a —ﬁ + pF iy (;}{ - 5%) g < 0 par le lemme 5.1 (pr < pr). Ensuite, on a

n—1
1 1
—1—prz+pr %—%+1+PF Z(R—F)92 g<-1l+pr(g—2)<0
En En i=1 61 61

lorsque 1, < x < 1 car g < n,.

Ainsi la fonction A" ! peut étre étendue a [—1;1] par imparité (ici, pour n < Neye — 2) :

— si0o<|z|<g
n+1
1 .
A (z) = _5§+1 +sgn(z) pr Xy (5?3 — sp) g sig<|z| <1
—sgn T St Ppi1 < |zl <1

On passe maintenant au rang n = Nt — 1. Le cas 2 utilisé pour définir A" = Pr (A" +p (u™1)")
devient faux a ce rang car ny,,,, < g. Comme \Verit est déja défini sur [0, g[, on ajoute au cas 3
I’hypothése g < x ; ainsi le cas 3 est toujours faux. On obtient alors

crit

\Newt _ —ﬁ si0<|z|<g
—sgnzx sig<|z| <1

On résout I'équation —(uNeriet1)” — g(ANerit)’ = 1 sur [0;1], sachant que (uVerit™1)/(0) = 0 et
uNeriet1(1) = 0. On a

-1 si0<|z|<yg
(uNersitF 1) () = —1 — g(ANerit) () = €N
-1 sig<|z| <1
ce qui donne par condition & la limite x = 0, et continuité en g :
<Rg 1>x si0<z<gyg
Nerit

(uNcritJrl)/(x) _
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puis par la condition en x = 1 et la continuité en g, il vient

1 1> 2 :
s | =— z“+a si0<z<g
) 2
uNC““+1(x) = <2§Ncrit e

—Z + x+b sig<z<l1
2 §Ncrit
BE ( B 1) (a% = g*) +uNetl(g) si0<w<yg
==+ F— (z—1) sig<a <1
>Nerit
Ensuite, on a
— 4 1 = 0z <
/\Ncrit +p (uNCfitJrl)’ = ﬁvcrit * R (Eﬁcm ) * 5113,"“+1 ot r=9
—1—prx+pr sig<zr<l1
N,

pour étudier les cas ot [ANerit + p (uMNerie 1)/ < 1.

casl: 0<x<get < 1. Ce cas équivauté0<x<gcarg<§ﬁcrit+1.

ENcrlt +1

< 1. On a, en particulier, 1 + pr x < 1+ pp T R mais,
N,

crit

cas2: g<zx<let 1+ppm—pp5 g
N,

crit

2

comme g < ch ce cas est faux car, sinon, il donnerait x < ENcnt < % =g.
Ainsi, ANerit+1 g définit par
Nere 1 _ {‘s;@ﬂ sio<|z|<g
—sgn x sig<lz| <1
la méme forme de définition que AVerit un rang plus haut, car —1 — pp x + pp §N2 = -1+

crit

PF (152—95> <—1+4+pr(g—2x)<0O.

Ainsi, par récurrence, pour tout n > Nt + 1, u™ sera calculé exactement de la méme maniére
b b )
que uNeritt1 et A\? de la méme maniére que A\ Vernt1,
O

6 Tests et résultats pour le probléme de Couette

On considére ici un cas particulier, celui de ’écoulement entre deux cylindres co-axiaux en
rotation, usuellement nommé écoulement de Couette. Il conviendra ici de formuler 1’écoulement
de Couette sous la forme axisymétrique (symétrique autour d’un axe). Les champs u et A sont

recherchés sous la forme
u(r, 0) = ug(r) eg
A

(’I“, 9) = )\T,G(r) €r.0

en se permettant les notations ug et A, ¢ pour les composantes scalaires. On va simplifier le
probléme en supposant que I’écoulement de Couette est symétrique par rotation selon 'axe des
cylindres, ce qui nous donne un systéme d’équation en 1D radiale. Le symbole prime sera utilisé
pour la dérivée %, et les équations a résoudre se réduisent alors a :

fl(ru’) X — g()\’+2) 0
A=Pg(A+pL (;f)) (5)
u(R) =w R et u(l) =

otue HY(R;1), Ne K :={pe L3(R;1); ||p]| < 1}. On remarque que :
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e l'incompressibilité est satisfaite.
e le champ de pression nulle est adapté.

On se rappelle aussi que 'opérateur divergence, pour un champ tenseur symétrique p avec une
unique (r, #)-composante scalaire de cisaillement non nulle encore notée p, est donnée par div y =
p + 28 5 et le taux de déformation d'un champ de vecteurs v avec une unique #-composante

. , , / . . . .
scalaire non nulle encore notée ¢ est donné par D(v) = % (%) . Ainsi, le norme tensorielle devient

2
el = v/2ul.

La solution au probléme (5) donne la vitesse

"= ar+% +crn(r) sirelRr]
atr+ 2 sire]re 1]
r Cy
avec ¢ = —g% et ou la condition D(u) = 0 sur ]r.;1[ implique b+ = 0. Il vient alors que
I’expression de b+ en fonction de 7. entraine une condition qui détermine .. On obtient la tension

5= % sire]R;r.]
% sire]rel]

2
ou la constante réelle K obéit a la condition ||A|| < 1, Vr €]re; 1], c’est-a-dire | K| < % Plus

précisément, la continuité du champ de tension s’écrit ici [2 D(u) + gA],, = 0. Cependant, comme
u est déterminée de telle sorte que [u],, = [ug],, = 0, la condition de transmission des contraintes

devient [A],, = 0, autrement dit K = @rf Ainsi, les expressions de a™, b, a~ et b~ s’obtiennent

des conditions aux limites en 7 = R et » = 1, ainsi que des conditions de continuité de u et u’ en

=T
= s (- ()
oo oS (o) -

. 1-wR? c < 1—7"3)
a = In r. +

1-R2 1-R?

_ R? Te 1—7“(2;

=
(V)

La condition b* = 0 permet d’évaluer 7. €]R; 1] :

w—1+;(1n<;)2—(7£)2+1> —0

de plus, la condition 7. €]R; 1[ (en prenant ici R = }) équivaut & une condition sur g :

B 1—w
- re)2 Te 2
2 (i ()"~ ()" + 1

9 € [g0; +oo[
)

avec
1—w

S N, QR R
g0 =2V2 2l R+ 2 —1

Cela signifie que les zones rigides peuvent ne pas exister pour g assez petit, alors que la situation
de blocage R = €2 ne survient que pour ¢ — +00. Pour g < gy, il vient :

1-wR*— g2 R> InR ~1+g¥ InR R?
U= it 9 3 - -7"+w 93 1 -R——g§rlnr
1— R? 1— R? T

Cela implique aussi que les deux cas g < gg et g = go devraient étre analysés, dans la mesure ou ils
peuvent induire des performances différentes dues a des régularités différentes : le cas g < gg est
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en effet une des rares situations ou la solution devient réguliére car I'effet de seuil ne se manifeste
pas. C’est donc aussi un cas "dégénéré", moins pertinent pour notre propos, il ne sera donc pas
traité ici.

Dans le programme OneCouette (Fortran) utilisé dans tous les tests en Section 7, il y a une
option "—f" qui résout le probléme de Couette pour un terme f(r) = 1000 cos(10m(r — R)). Cela
permet, & moindre cofit de calcul, de tester un cas plus complexe. Par contre, on ne dispose alors
plus de solution connue explicitement.

On va d’abord tester ’algorithme LWPG et d’autres (& venir) dans le cas de Couette. On veut
simuler 1’écoulement d’un fluide viscoplastique deux cylindres co-axiaux en rotation, de rayons
(resp. intérieur et extérieur) R =r; et r = 1, et de vitesses angulaires omega = wy et w = 1.

Dans ce programme, une discrétisation en éléments finis est utilisée pour calculer les approxi-
mations respectives uy et A, de u et A, et ensuite pour comparer les itérés discrets uﬁ et /\Z’. Pour
1<i<N+1,soitr;eRtelquer; <---<ry <ryy1=1,et

Vi, = {vp € C([r1;1]) 5 v(r) = a;r + by, Vr €]rg;rigal, a;, b € R}
ainsi que Vi, 0 = Vi, n H(r1;1). On considére :
My, = {pun € L*(r1;1) 5 pn(r) = r € R, Vr €lrisriga[}.

Une approximation par éléments finis uy, € Vj, et \j, € My, n K est alors recherchée comme solution
de la formulation variationnelle discréte de (5).

Dans tous les tests de Couette (réalisés en Fortran), on prend toujours un nombre d’itérations
maximal Nijnax = 10000, avec f = 0 (par défaut). Le nombre de Bingham g est désigné dans
le programme Fortran par l'étiquette Bi. De plus, pour pouvoir obtenir une solution calculée
(u, \) avec autant de précision que voulue, on calcul des résidus (par exemple, [|[u"*! — u™||g1 ou
[AmTL — A\"|;2), et on regarde soit le temps de calcul total ou le nombre d’itérations qu’il a fallu
pour que le ou les résidus itérés passent sous un seuil de tolérance tol souvent trés petit. Par défaut,
on prendra tol = 10710 pour les tests comparés avec ISTA. On choisit aussi les valeurs de pr, pr
dans les intervalles qui leur sont permis (par défaut [0, %], on prend les valeurs de pr r comme

des multiples OB’?k, 1<k <10).

lg T T T T T T

Bi=10 ——

Bi=100 ——
Bi=1000

0.01 &

T S
|
L

0.0001

12106 %& E
1x10°8 -
1x10°10 ¥ k|
1x1012 |- % -
1x101 -
Il 1 1 1 Il Il 1 1 1

0 100 200 300 400 500 600 700 800 900 1000

Figure 1: Dans ce premier graphique retenu pour les tests, on a tracé le résidu itéré ||um™t —

u™|| g2 + [N — A2 en fonction du nombre d’itérations jusqu’a ce qu’il atteigne tol.

Pour reéaliser les tests a l'origine du graphique (Figure 1), on a pris les valeurs pg = 0.06, pp =
0.02, et avec un nombre de points de maillage Nr = 1024. Pour Bi = 10, la solution (u, \) est
calculée en presque 50 itérations, alors que Bi = 100 semble demander 190 & 195 itérations, et Bi =
1000 environ 930 itérations. Mais ensuite il reste a trouver comment le nombre d’itérations varie
en fonction de pg et pp. L'erreur d’approximation |u—up|g1 et [A—Ap|p2 a été systématiquement
calculée et vérifiée & la fin des algorithmes, ce qui a permis de valider I'implémentation du modéle
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numeérique, l’ordre de convergence O(h) de 'approximation par élément finis étant bien vérifié pour
les deux erreurs calculées (avec des ordres de grandeur respectifs 1078 et 10~° pour les maillages
les plus grossiers).

6.1 Tests LWPG

Une campagne de tests avec l'algorithme LWPG a été réalisée en prenant le seuil de tolérance
tol = 1071, les valeurs Bi = 10, 100, 1000, mais aussi Nr = 1024, 2048, pr = 125k, 1 < k < 10,
et pp = 1. Il a été observé, en effet, que le nombre d’itérations semblait varier avec pgr, mais pas

en fonction de pg. On a, en particulier, pu expliquer ce comportement en regardant le calcul itéré
>\n+1 — PK(An —|—pD(u"+1)) :

par symétrie de rotation, Couette se réduit 4 un probléme 1D. Ainsi, A" *! est égal soit 4 ’argument
de Py, soit & +1 ou —1. Dans la zone ott |\" + p D(u™*1)| est plus grand que 1, \»*! vaut 1 ou -1
et ne dépend donc pas de pp. C’est une limitation importante des tests en 1D ; les améliorations
apportées & ISTA n’auront pas forcément la méme portée dans des cas généraux 2D ou en 3D car
alors A ne sera plus déterminé de maniére exacte dans les zones fluides. Ce qui est mis en évidence
en 1D, c’est donc la possibilité d’améliorer les performances en calculant plus efficacement A dans
les zones rigides, mais dans les cas généraux, le gain de performance ne sera peut-étre obtenu qu’en
ajoutant un autre traitement dans les zones fluides.
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thog

(¢) Pour Bi = 1000

Figure 2: Premiers tests complets réalisés sur 1'algorithme LWPG (& gauche Nr = 1024, a droite
Nr = 2048.

Les graphiques Figure 2 représentent le nombre d’itérations final Nit en fonction de pr pour
chaque couple (Bi,Nr). Ici, Nit semble décroitre généralement quand pr s’approche de %, avec
au moins un pic local qui peut dépendre de (Bi, Nr). A Pexception de ces pics, Nit ne varie pas
beaucoup en fonction de Nr. De fait, on constate surtout que cet algorithme sous cette forme n’a
pas été comparé a ISTA, mais comme la valeur de pr semble ne pas intervenir dans les variations
de Nit, on peut supposer que ces courbes reviendraient au méme que le cas ISTA (pp = pr). Dans
I’ensemble, pour Bi = 10, Nit descend jusqu’a 100 ; ce nombre d’itérations atteint au moins 200
pour Bi = 100, ou encore un minimum de 1000 pour Bi = 1000.

Pour cet algorithme, cinq résidus ont été ajoutés en une somme de résidus qui doit tendre vers
Z€éro :

o |[u"Tt —u™|| g1, pour mesurer la convergence en norme L? de u™ vers la vitesse u du probléme

de Bingham (qui est ici celui de Couette), et de méme celle de D(u™) vers D(u).
o [\t — A\"|; 2. pour vérifier lorsque A" est assez proche de A en norme L2.

e la norme infinie |[A"*1 . D(u"*1) — |D(u"*1) |12 || =, parce que, d’aprés la deuxiéme ligne du
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probléme (1) et le Lemme 2.2, la solution (u, \) vérifie

X-D(u) = |D(u)].

e la norme ||r"*|p2 ot r™ ! = — Ayt —Bi div A" ™! — f est défini de maniére variationnelle,
c’est-a-dire par (r"*1 v) = (D(u™*!), D(v)) 4+ Bi (A"™!, D(v)) — (f,v). Dans le probléme (1),
on a

(D(u), D(v)) + g(A, D(v)) = (f, v), Vv e Hy()
o |D(u"™1)|p2 — |D(u™)|2 qui doit mesurer la convergence de la fonctionnelle W.

Or, dans quelques tests, il a été observé que le cinquiéme résidu par lequel on veut controler la
convergence de D(u™) pouvait augmenter légérement avant de descendre.

6.2 L’algorithme LPWPG

Les résultats des calculs dans la section 6.1 montrent que les performances d’'ISTA ne sont pas
ameéliorées. C’est la premiére justification qui veut qu’on recoure a l'algorithme LPWPG, qui a
pour principe de renforcer la rigidité.

Outre les résultats, l'algorithme est justifié principalement par le fait que D(u) = 0 sur R,
on cherche donc a I'imposer sur R* au cours des itérations en espérant que cela va accélérer la
convergence. On remarque qu’en faisant cela on garde la cohérence avec 'idée premiére qui est de
distinguer pr et pg, car, pour agr assez grand, l'accélération due a la pénalisation n’est obtenue
que pour des pr et pgr (trés) différents.

Pour les tests avec f = 0, on récupére sachant tol = 10~8 le nombre d’itérations pour Bi =

10, 100; Nr = 1024, 8192 et ag = 0.1, 1, 10. Ici pF reste dans 'intervalle ]0, %[ mais cette fois, pr
peut valoir jusqu’a & (1 + ag). On prend aussi 1 < j, k <10 et pr = 155 (1 + ar)j, pr = g k-
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Figure 3: Nombre d’itérations requises pour que le résidu de LPWPG atteigne tol = 10
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Figure 4: Nombre d’itérations requises, mais pour Bi = 100.

Dans ces tests sur LPWPG, il apparait que la valeur de pg ne fait presque pas varier le nombre
d’itérations Nit. Sur les Figures 3 et 4, chaque courbe de Nit en fonction de pgr tend toujours a
décroitre quand pr augmente, sauf pour ag = 10 ou elle croit aprés avoir atteint un minimum ;
ainsi, il semble que des valeurs trop grandes de ag dégradent la précision du calcul itéré de u™ sur
la zone rigide, ce qui justifierait dans ce cas la remontée de Nit pour pr proche de %(1 + aRr) ;
néanmoins, Nit optimal est plus petit (donc meilleur) quand ag est plus grand. En outre, le nombre
de points du maillage radial Nr n’intervient (presque) pas sur les valeurs de Nit.

Ce dernier point est lié & la maniére dont le systéme linéaire est résolu (une méthode directe).
C’est ce qui justifie 'expérimentation de cg dual pen , dans lequel on espére que la perte de
précision numérique n’aura plus lieu, mais au prix d’une résolution itérative, donc plus lente.
Cette lenteur affecte les performances CPU globales en 1D puisque la résolution directe, elle, est
trés efficace (elle est optimale : son cott de calcul est en O(Nr)). Cependant, en 2D ou en 3D,
on ne dispose pas a priori de solveurs directs optimaux pour le probléme linéaire pénalisé, donc
cg_dual pen_ peut devenir alors une solution intéressante pour bénéficier des avantages de la
pénalisation en 2D et en 3D (il faut que le gain en iterations de LPWPG sur ISTA soit supérieur
a la perte diie & cg_dual _pen_ par rapport au solveur de Poisson direct qui est utilisé par ISTA
et qui est, lui, optimal) en 2D et en 3D, dans la mesure ol on travaille dans le code utilisé ici sur
des grilles structurées.
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En fait, tol doit étre pris plus grand quand ar devient grand, sinon le résidu stagne sans jamais
atteindre tol. Dans ces conditions, la perte de précision numérique engendrée par la pénalisation
devient un facteur limitant. On se retrouve donc pris entre 'intérét de prendre ag grand pour
accélérer l'algorithme, et 'impossibilité d’atteindre une tolérance arbitraire.

Remarque 6.1. cg_dual _pen_ est un algorithme qui fonctionne sur le méme principe que LP-
WPG mais résout I’équation numérique sous forme matricielle.

En outre, pour ag = 0.1 les meilleurs Nit (pour pr — %(1 + aRr))sont apparemment les mémes
que pour LWPG. Pour ag = 1, le calcul itéré de (u,\) a pris deux fois moins d’itérations (en
choisissant le pr qui minimise le temps de calcul). Enfin, pour agr = 10, le meilleur Nit réalisé est
en dessous de cinquante itérations, ce qui semble correspondre & un pg plus ou moins proche de

& (1 + ar) - 6.5, ou bien de 4 avec une incertitude de g;.

6.3 Tests LPWPG comparés avec ISTA

Pour mieux mettre en évidence le gain de performace de LPWPG (LWPG-+pénalisation) par rap-
port & ISTA (ou LWPG puisque pp ne fait pas varier le calcul itéré de u), on poursuit les tests avec
Bi = 10, 100 ; Nr = 1024, 8192 ; ag = 0.125, 0.25, 0.5, 1, 2, 4, 8, 10, 16, 32, 64, 100, 128 ; pr =
251+ ar)k et pp = & ; mais cette fois en comparant explicitement LPWPG & ISTA (Bi =
10, 100 ; Nr = 1024, 8192 ; ar = 0 ; pr = pr = ﬁk). Le seuil de tolérance est fixé
a tol = 10719 Afin de ne pas risquer une superposition chargée de courbes qui rendrait les
graphiques en Figures 5 et 6 illisibles, les courbes ont été réparties en trois parties pour chaque

couple (Bi, Nr).
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Figure 5: Nombre d’itérations de LPWPG en fonction de pr pour Nr = 1024 et 8192, et Bi
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S’il y a un pic, il est possible que le comportement de la courbe soit effectivement non-monotone.
Une maniére d’avoir davantage d’information aurait consisté a prendre davantage de valeurs de pr
au voisinage du pic et de regarder si un une courbure se précise, ainsi qu'un extremum local, ou
bien si la courbe devient bruitée. Mais pour alléger le travail du stage, on se contentera de vérifier
les Nit et pg optimaux atteints sur 2 < ar < 20 (section 6.5).

Du reste, on peut supposer qu’en choisissant le bon pr, on peut encore faire descendre le nombre
d’itération Nit & des minima encore plus petits en prenant ar dans un intervalle approprié. On
voit déja que 2 < ag < 10 permet autour de pr ~
de performances par rapport a ISTA sont explicités sur la Figure 7.
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Figure 6: Nombre d’itérations de LPWPG en fonction de pr pour Nr = 1024 et 8192, et Bi = 100.
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Figure 7: Gains de performances de LPWPG pour f = 0. Sur chaque graphique, chaque point
d’abscisse ag = 0 correspond au cas ISTA.
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6.4 Comparaison LPWPG/ISTA avec le terme de second membre f

Tous les tests LPWPG (sans ISTA) ont pu étre faits avec cette option, et toujours avec tol = 10719,
pour vérifier la robustesse de 'algorithme, et il apparait que le choix de f ne freine pas le gain
significatif de performance par rapport a ISTA.

Bi=10, Nr=1024 ——
1000 12 Bi=10, Nr=8192
Bi=10, Nr=1024 ——
Bi=10, Nr=8192 ——
Bi=100, Nr=1024
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£
_ 2
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= 100 2
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w&——’\ 140
10 :
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ar
(b) Le point de chaque courbe (Bi, Nr) d’abscisse ar
(a) Nombre d’itérations optimal en fonction de ag. est indique le pr qui minimise Nit pour le méme
triplet (Bi, Nr,aR).

Figure 8: Gains de performances de LPWPG avec Uoption "—f". Sur chaque graphique, chaque
point d’abscisse ag = 0 correspond au cas ISTA.

6.5 Tests pour 2 < ag < 20

Avec ou sans option "—f" on constate que les courbes de Nit optimal se croisent sur I'intervalle

d’abscisse 10 < ar < 20. Ainsi on cherche a refaire les tests pour les mémes valeurs de Bi, Nr, pgr, pr
et tol mais cette fois pour 2 < ag < 20. Le gain de performance reste trés important avec "—f"
pour Bi = 100, mais ce n’est pas le cas pour Bi = 10 ou les performances sont quasi identiques.
Ceci vient probablement du fait que les zones rigides sont trop petites dans ce cas pour que la
pénalisation joue un roéle. Il s’agit en outre d’un cas ol 'amélioration de performances est moins
crucial, car I’ensemble des expériences dans le présent travail et dans la littérature met en évidence
que les cas les plus cotliteux correspondent aux plus grandes valeurs de g.

29



25 "
1000 Bi=10, Nr=1024 ——

Bi=10, Nr=1024 —+— Bi=10, Nr=8192 ——
Bi=10, Nr=B192 —— 2 Bi=100, Nr=1024
Bi=100, Nr=1024 Bi=100, Nr=8192 -
Bi=100, Nr=8192

- £ 15

g 5

& 100 o

53 o 1

= £

=

10 0 5 10 15 20

ar
ap
(b) Le point de chaque courbe (Bi, Nr) d’abscisse ar
est indique le pr qui minimise Nit pour le méme
triplet (Bi, Nr,agr), avec f = 0.

(a) Nombre d’itérations optimal en fonction de 2 <
ar < 20, avec f =0

100

Bi=10, Nr=1024 ——— 25
Bi=10, Nr=8192 —— Bi=10, Nr=1024 ——
Bi=100, Nr=1024 Bi=10, Nr=8192 —=—
Bi=100, Nr=8192 2 BI=100, Nr=1024 ]

Bi=100, Nr=819.

Nit optimal

rhog optimal

ar

(c) Nombre d’itérations optimal en fonction de 2 <

ar < 20, avec Poption "—f" (d) Les pr optimaux avec "—f".

Figure 9: Gains de performances de LPWPG détaillés sur 2 < ag < 20, avec ou sans 'option "—f".
Sur chaque graphique, chaque point d’abscisse ar = 0 correspond au cas ISTA.

7 Conclusion et perspectives

Une nouvelle approche algorithmique a été posée en modifiant localement 'algorithme d’Uzawa
pour le probléme de Bingham. Une tentative explicite de calcul des itérés a été réalisée pour un
cas simple en dimension 1, le probléme de Poiseuille. En effet, ce probléme posséde une solution
explicite trés simple et on peut espérer qu’il en est de méme pour le calcul des itérés. Or, la variation
de p avec n soulevaient des difficultés dans ce calcul explicite qui ont été résolues en supposant R
connue & 'avance. L’algorithme a été également programmé pour un autre cas simple, le probléme
de Couette. En forcant par pénalisation la rigidité dans des zones R* convergeant vers la zone
rigide finale, le gain de performance est important comme le montrent les Figures (5),(6) et (9).
Une démonstration générale de convergence a pu étre établie, dans le cas ot I’écoulement a lieu
dans une conduite droite de section constante avec une hypothése simplificatrice : la zone rigide
est supposée étre connue & I'avance. Cette hypothése n’a pas de réalité pratique mais elle permet

une premiére exploration théorique des propriétés algorithmiques.

L’étape suivante du travail consiste & poursuivre ’exploration amorcée sur le probléme de
Poiseuille et le probléme de Couette. Parmi les simplifications envisagées pour le probléme de
Poiseuille, on a considéré que la zone rigide est connue a I’avance. On prévoit également d’investiguer
des techniques permettant d’estimer pr et prp & chaque itération afin d’optimiser le nombre
d’itérations requises pour atteindre une précision donnée ; on pourra également faire les tests
en 2D sur le probléme décrit en section 4, afin d’évaluer la généralisation du gain de performance
constaté et de voir l'effet d’'un Ap qui n’est plus exact, et donc dans ce cas le réle de p}.
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