INTEGRALE GENERALISEE

NICOLAS PETRELIS

1. INTRODUCTION

On considere (Q, A4, ) un espace mesuré et f : (Q, 4, 1) — (R, Bor(R)) une fonction
mesurable. L’objectif est de définir une notion d’intégrale de f contre p qui généralise
I'intégrale de Riemann et la somme de séries absoluement convergentes, i.e.,

e si Q= [a,b] CR, A= Borla,b], p = A alors [, f(x) du correspond a f;f(:v)dm au
sens de Riemann quand f est Riemann intégrable.

esi O = N, A = P(N), 4 = mesure de comptage alors [, f(z)du correspond &
> nen f(n) quand -, f(n) est absoluement convergente.

1.1. Intégrale des fonctions mesurables positives.

Definition 1.1. Soit (2,4, 1) mesuré et n € N. On considere une famille quelconque de
nombre positifs (a;)7; € [0,00]", et une famille quelconque d’événements (4;)?_, € A"
deuz & deuzx disjoints. La fonction f : Q — [0, 0c] définie par

n
flw) =2 aily(w) (1.1)
i=1
est une fonction étagée positive et son intégrale contre p est définie par

/ﬂ Faydu =" oi p(Ay). (1.2)
=1

Remark 1.2. L’intégrale d’une fonction étagée positive ne dépend pas de sa décomposition
sous la forme (L.I), ie.,si f=> 1", a;14, = Z;"Zl Bjlp; avec (4;); ) € A" et (B;)]L, €
A™ deux familles d’événement de A deuz a deux disjoints on a nécessairement

D ip(Ai) = B u(By).
i=1 j=1

La notion d’intégrale d’une fonction étagée positive nous permet de définir l'intégrale
d’une fonction positive mesurable quelconque.

Definition 1.3. Soit f : (2, A, u) — (R*,Bor(R")) mesurable. L’intégrale de f contre p
est définie par

/ f(x)dp = sup { / gdu : g étagée et positive et g < f}. (1.3)
Q Q
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On peut facilement déduire de la définition les propriétés suivantes

e VAec Aona pu(A) = [,1adpu,

o sip({we Q: f(w) =o00}) > 0alors [, fdu = oo,

e si f est mesurable positive alors [, fdu =0ssi f =0 p-p.p.

e Soit ¢ € RT et f mesurable positive alors [, cf du = c [, fdpu.

e Soient f,g mesurables positives telles que f > g p-p.p. alors [ fdu > [, gdp.

e En conséquence, si f,g sont mesurables positives telles que f = ¢ p-p.p. alors
Jo fdp=Jo gdp.

Remark 1.4. Soit (2, .4, 1) un espace mesuré et B € A. Si f est une fonction mesurable
positive sur (€2,.4) on utilisera parfois la notation suivante

/deuz/ﬂflgdu-

Dans la Définition 1.8 du premier chapitre on a défini la tribu trace de A sur B, i.e.,
Ap = {ANB,A € A}. Des lors, on peut considérer la restriction fp de la fonction f au
sous ensemble B et il est facile de prouver que fp est une fonction mesurable positive sur
(B, Ap, it). Son intégrale vérifie alors

/Bdeu=/deu=/Qledu-

Le théoreme suivant nous indique que la suite des intégrales d’une suite croissante de
fonctions mesurables positives converge vers l'intégrale de la limite de cette suite de fonc-
tion. Il nous donne donc une premiere condition suffisante sur la suite de fonction (fy,)5;
pour pouvoir échanger limite et intégrale.

Theorem 1.5. [Beppo-Levy: convergence monotone] Soit (§2, A, 1) mesuré et ()02, une
suite croissante de fonctions mesurables positives. On note f la limite ponctuelle de (fr,)02 1,
i.e., f(w) = lim, 00 frn(w) € [0,00] pour tout w € Q. Alors f est une fonction mesurable

positive et
lim / f,,,,du/ fdu. (1.4)

Un outil important dans de nombreuses preuve est enoncé dans la Proposition suivante.
Il nous indique que toutes fonctions mesurable positive est la limite ponctuelle d’une suite
croissante de fonctions étagées positives.

Proposition 1.6. Soit f : (Q,.A) — (R*,Bor(R")) mesurable. Alors, il existe (f,,)°°; une
suite croissante de fonctions étagées positives telle que

@) = lim fo(w), Ve
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Proof. Une telle suite peut étre construite explicitement, il suffit de considérer

n2"—1
k
= 2 sy T e

Du Théoréme de Beppo-Levy et de la Proposition [I.6] on déduit:
e si f, g sont mesurables positives alors fQ f+gdu= fQ fdu+ fQ gdpu,

o soit (f,)o2; une suite de fonctions mesurables positives sur (2,4, u), alors

Lgnwzgénm

Nous terminons cette section concernant l’intégrale des fonctions mesurables positive en
énoncant le lemme de Fatou qui est une conséquence du théoreme de Beppo-Levy.

Lemma 1.7. [Lemme de Fatou] Soit (€2, A, 1) mesurable et (f,,)2°; une suite de fonctions
mesurables positives. Alors

/ liminf f, dp < liminf / fndpu.
—00 9

Q n—o0o n

1.2. Mesures définies par densité. On considere (2, .A, ) un espace mesuré et f une
fonction mesurable positive sur (£2,.4). On peut alors définir pour tout A € A la quantité
v(A) = [, fdu. On vérifie alors facilement que v est une mesure et que p(A) = 0 implique
v(A) = 0. De plus, pour toute fonction g mesurable positive sur (£2,.4) on a

/diV=/ngdu-

On définit & présent une notion d’absolue continuité d’une mesure par rapport a une
autre. Ceci nous permettra de déterminer quand une mesure admet une densité par rapport
a une autre mesure.

Definition 1.8. Soit (£2,.4) un espace mesurable et u et v deux mesures sur (£2,.4). On
dit que v est absolument continue par rapport a p et on note v < pu si tout ensemble de
mesure nulle pour x est aussi de mesure nulle pour v (i.e., u(4) =0 = v(A) = 0). Dans le
cas ou v < p et u < v on dit que p et v sont équivalentes.

Ceci nous amene au Théoreme de Radon-Nikodym ci-dessous.

Theorem 1.9. [Radon-Nikodym)] Soit (Q2, A) un espace mesurable et p et v deux mesures
o-finies sur (2, A). Si p < v, alors il existe une fonction f positive et mesurable sur (€2, A)
telle que

w(A) = / fdv, pour tout A € A.
JA

S - s iy X \ ;du
La fonction f est appelée densité de p par rapport a v et est notée .
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1.3. Intégrale des fonctions mesurables de signe quelconque. On peut décomposer
de facon unique chaque fonction mesurable en une partie positive et une partie négative.
L’intégrale d’une fonction mesurable sera donc définie comme 'intégrale de sa partie pos-
itive & laquelle on soustrait l'intégrale de sa partie négative (lorsque cette soustraction a
bien un sens).

Definition 1.10. Soit f : (2, A, 1) — (R, Bor(R)) mesurable. On note f* = max{f,0} la
partie positive de f et f~ = max{0, —f} la partie négative de f. Les deux fonctions f7 et
f~ sont mesurables et positives et satisfont f = fT — f~.

Avant de définir I'intégrale d'une fonction mesurable quelconque comme [ f* — [ f~
faut prendre garde au fait que la différence +0o — oo n’est pas définie. C’est pour cette
raison qu’on introduit dans la définition suivante une classe de fonctions dites intégrables.

Definition 1.11. Soit f : (2,4, 1) — (R,Bor(R)) mesurable. La fonction f est dite
intégrable contre y (ou p-intégrable) si [o, |f|du < co. Des lors, I'intégrale de f est définie

par
Lf@zéﬁ@héfdw

Ainsi construite, I'intégrale est linéaire sur ’espace vectoriel L' (9, A, 1) contenant les fonc-
tions f : (2,4, ) — (R,Bor(R)) intégrables, i.e., si (o, 8) € R? et si f,g € L' (9, A, i) on
a

/QaerBgdu—a/Qfdquﬁ/diu- (1.5)

Le cas de deux fonctions mesurables et égales u-p.p. est étudié dans la Proposition
suivante.

Proposition 1.12. Soient f,g: (2, A, 1) — (R,Bor(R)) o1 f est intégrable, g mesurable
et f =g u-p.p. Alors g est intégrable et

Lf@—égw (1.6)

Remark 1.13. La Proposition [I.12] implique que si I’on change la valeur d’une fonction
intégrable sur un ensemble mesurable et pu-négligeable, alors la fonction reste intégrable et
son intégrale reste la méme.

Le théoreme nous donne une condition nécessaire pour échanger limite et intégrale avec
des fonctions de signe quelconque.

Theorem 1.14. [Convergence dominée] Soit (f,);2; une suite de fonctions mesurables de

(92, A, i) dans (R, Bor(R)). Si
e il existe f: (©2,.4) — (R, Bor(R)) mesurable telle que lim,, oo fr(w) = f(w) pu-p.p.

e il existe g: (Q2,.4) — (RT, Bor(R")) intégrable telle que Vn € N, | f,,(w)| < g(w) p-p.p-
Alors f,, est integrable Vn € N ainsi que f et

lim fnd,u / fdpu. (1.7)

TL*)OC
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A présent nous énongons un théoréme qui nous indique comment calculer 'intégrale
d’une fonction composée avec une autre fonction mesurable. On considére donc (2, .A, 1)
un espace mesuré et (£,B8) un espace mesuré et f : (Q,A4) — (£,B) une application
mesurable. On rappelle que 'on peut munir (€, B) de us la mesure image de p par f.

Theorem 1.15. [Théoréeme de Transfert] Soit f: (2, A, u) — (€, B) mesurable.
(1) Version positive: soit ¢ : (€, B) — (R, Bor(R*)) mesurable. Alors

/QWfdu:/gwduf (1.8)

(2) Version générale: soit ¢ : (€,B) — (R, Bor(R)) mesurable. Alors ¢ est us intégrable
ssi po f est p-intégrable et alors

/Q@Ofduz/gwduf (1.9)

1.4. Intégrales de fonctions de plusieurs variables. On étudie a présent 'intégrale
d’une fonction définie sur un produit d’espaces mesurés. on considere donc 2 = 7 x Qo,
A=A ® Ay et 1 = g @ pg avec (Qq,Ar, u1) et (Qo, A2, p2) des espaces mesurés et (i et
po des mesures o-finies.
Theorem 1.16. [Fubini positif] Soit f : (22,4, ) — (R*, Bor(R")) mesurable alors

e 'application suivante est mesurable

(1, Ay) — (RT, Bor(R))

wy — fwr,w2) dpa(we)
Q2

e 'application suivante est mesurable
(QQ, .AQ) — (]R+, BOI‘(R+))

w9 — f(wl,wg) dul(wl)
1951

e on a les égalités suivantes

fwi,w2) dp(wr, wa) —/

Jo Jh
:/ [ fwi,wa) dps (W1>] dpiz(w2)
Qo LJoy

On voit donc que dans le cas d’une fonction positive, on peut calculer son intégrale
en intégrant successivement sur ses différentes coordonnées et dans l’ordre que 1’on
souhaite.

Dans le cas d’une fonction de signe quelconque, il faut s’assurer avant de permuter les
intégrales que la fonction est bien p; ® po intégrables.

Theorem 1.17. [Fubini général] Soit f: (2,4, u) — (R, Bor(R)) intégrable alors

| ) dua(wn)] dpn (1)
Qo

e 'application suivante est ui-intégrable
(le Al) — (]Rv BOI«(R))

w1 — f(wi,w2) dpz(ws)
Qo
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e 'application suivante est uo-intégrable
(Q2,A2) = (R, Bor(R))

wy — flwi,w2) dpy (wr)
Q1

e on a les égalités suivantes

/Qf(wlvw2)d/1/(wlaw2> /s;l [ S;Q f(wlaw)dm(wz)} dpir(wr)
— [ [ feorwn din(en)] dua(en
JQo =JO

Remark 1.18. Dans la pratique si ’on veut calculer I'intégrale d’une fonction de plusieur
variables de signe quelconque, on commence par s’assurer que la fonction est bien intégrable.
Pour cela on considere |f| qui est une fonction mesurable positive et a laquelle on peut
appliquer le Théoreme de Fubini positif, ce qui permet d’intégrer successivement en les
différentes coordonnées. Si ce calcul nous donne une intégrale de |f| finie. Alors f est
intégrable et on peut calculer son intégrale en appliquent Fubini général.
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