
INTÉGRALE GÉNÉRALISÉE

NICOLAS PÉTRÉLIS

1. Introduction

On considère (Ω,A, µ) un espace mesuré et f : (Ω,A, µ) 7→ (R̄,Bor(R̄)) une fonction
mesurable. L’objectif est de définir une notion d’intégrale de f contre µ qui généralise
l’intégrale de Riemann et la somme de séries absoluement convergentes, i.e.,

• si Ω = [a, b] ⊂ R, A = Bor[a, b], µ = λ1 alors
∫

Ω f(x) dµ correspond à
∫ b
a f(x)dx au

sens de Riemann quand f est Riemann intégrable.

• si Ω = N, A = P(N), µ = mesure de comptage alors
∫

Ω f(x) dµ correspond à∑
n∈N f(n) quand

∑
n≥1 f(n) est absoluement convergente.

1.1. Intégrale des fonctions mesurables positives.

Definition 1.1. Soit (Ω,A, µ) mesuré et n ∈ N. On considère une famille quelconque de
nombre positifs (αi)

n
i=1 ∈ [0,∞]n, et une famille quelconque d’événements (Ai)

n
i=1 ∈ An

deux à deux disjoints. La fonction f : Ω→ [0,∞] définie par

f(ω) =

n∑
i=1

αi 1Ai(ω) (1.1)

est une fonction étagée positive et son intégrale contre µ est définie par∫
Ω
f(x) dµ =

n∑
i=1

αi µ(Ai). (1.2)

Remark 1.2. L’intégrale d’une fonction étagée positive ne dépend pas de sa décomposition
sous la forme (1.1), i.e., si f =

∑n
i=1 αi 1Ai =

∑m
j=1 βj 1Bj avec (Ai)

n
i=1 ∈ An et (Bj)

m
j=1 ∈

Am deux familles d’événement de A deux à deux disjoints on a nécessairement
n∑
i=1

αi µ(Ai) =

n∑
j=1

βj µ(Bj).

La notion d’intégrale d’une fonction étagée positive nous permet de définir l’intégrale
d’une fonction positive mesurable quelconque.

Definition 1.3. Soit f : (Ω,A, µ) → (R̄+,Bor(R̄+)) mesurable. L’intégrale de f contre µ
est définie par ∫

Ω
f(x) dµ = sup

{∫
Ω
g dµ : g étagée et positive et g ≤ f

}
. (1.3)
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On peut facilement déduire de la définition les propriétés suivantes

• ∀A ∈ A on a µ(A) =
∫

Ω 1A dµ,

• si µ({ω ∈ Ω: f(ω) =∞}) > 0 alors
∫

Ω f dµ =∞,

• si f est mesurable positive alors
∫

Ω f dµ = 0 ssi f = 0 µ-p.p.

• Soit c ∈ R+ et f mesurable positive alors
∫

Ω cf dµ = c
∫

Ω f dµ.

• Soient f, g mesurables positives telles que f ≥ g µ-p.p. alors
∫

Ω f dµ ≥
∫

Ω g dµ.

• En conséquence, si f, g sont mesurables positives telles que f = g µ-p.p. alors∫
Ω f dµ =

∫
Ω g dµ.

Remark 1.4. Soit (Ω,A, µ) un espace mesuré et B ∈ A. Si f est une fonction mesurable
positive sur (Ω,A) on utilisera parfois la notation suivante∫

B
f dµ =

∫
Ω
f 1B dµ.

Dans la Définition 1.8 du premier chapitre on a défini la tribu trace de A sur B, i.e.,
AB = {A ∩ B,A ∈ A}. Dès lors, on peut considérer la restriction fB de la fonction f au
sous ensemble B et il est facile de prouver que fB est une fonction mesurable positive sur
(B,AB, µ). Son intégrale vérifie alors∫

B
fB dµ =

∫
B
f dµ =

∫
Ω
f 1B dµ.

Le théorème suivant nous indique que la suite des intégrales d’une suite croissante de
fonctions mesurables positives converge vers l’intégrale de la limite de cette suite de fonc-
tion. Il nous donne donc une première condition suffisante sur la suite de fonction (fn)∞n=1

pour pouvoir échanger limite et intégrale.

Theorem 1.5. [Beppo-Levy: convergence monotone] Soit (Ω,A, µ) mesuré et (fn)∞n=1 une
suite croissante de fonctions mesurables positives. On note f la limite ponctuelle de (fn)∞n=1,
i.e., f(ω) = limn→∞ fn(ω) ∈ [0,∞] pour tout ω ∈ Ω. Alors f est une fonction mesurable
positive et

lim
n→∞

∫
Ω
fn dµ =

∫
Ω
f dµ. (1.4)

Un outil important dans de nombreuses preuve est enoncé dans la Proposition suivante.
Il nous indique que toutes fonctions mesurable positive est la limite ponctuelle d’une suite
croissante de fonctions étagées positives.

Proposition 1.6. Soit f : (Ω,A) 7→ (R̄+,Bor(R̄+)) mesurable. Alors, il existe (fn)∞n=1 une
suite croissante de fonctions étagées positives telle que

f(ω) = lim
n→∞

fn(ω), ∀ω ∈ Ω.
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Proof. Une telle suite peut être construite explicitement, il suffit de considérer

fn =
n2n−1∑
k=0

k

2n
1{

f∈
[

k
2n
, k+1
2n

[} + n 1{f≥n}

�

Du Théorème de Beppo-Levy et de la Proposition 1.6 on déduit:

• si f, g sont mesurables positives alors
∫

Ω f + g dµ =
∫

Ω f dµ+
∫

Ω g dµ,

• soit (fn)∞n=1 une suite de fonctions mesurables positives sur (Ω,A, µ), alors∫
Ω

∞∑
n=1

fn dµ =
∞∑
n=1

∫
Ω
fn dµ.

Nous terminons cette section concernant l’intégrale des fonctions mesurables positive en
énonçant le lemme de Fatou qui est une conséquence du théorème de Beppo-Levy.

Lemma 1.7. [Lemme de Fatou] Soit (Ω,A, µ) mesurable et (fn)∞n=1 une suite de fonctions
mesurables positives. Alors∫

Ω
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
Ω
fn dµ.

1.2. Mesures définies par densité. On considère (Ω,A, µ) un espace mesuré et f une
fonction mesurable positive sur (Ω,A). On peut alors définir pour tout A ∈ A la quantité
ν(A) =

∫
A fdµ. On vérifie alors facilement que ν est une mesure et que µ(A) = 0 implique

ν(A) = 0. De plus, pour toute fonction g mesurable positive sur (Ω,A) on a∫
Ω
gdν =

∫
Ω
gfdµ.

On définit à présent une notion d’absolue continuité d’une mesure par rapport à une
autre. Ceci nous permettra de déterminer quand une mesure admet une densité par rapport
à une autre mesure.

Definition 1.8. Soit (Ω,A) un espace mesurable et µ et ν deux mesures sur (Ω,A). On
dit que ν est absolument continue par rapport à µ et on note ν � µ si tout ensemble de
mesure nulle pour µ est aussi de mesure nulle pour ν (i.e., µ(A) = 0⇒ ν(A) = 0). Dans le
cas ou ν � µ et µ� ν on dit que µ et ν sont équivalentes.

Ceci nous amène au Théorème de Radon-Nikodym ci-dessous.

Theorem 1.9. [Radon-Nikodym] Soit (Ω,A) un espace mesurable et µ et ν deux mesures
σ-finies sur (Ω,A). Si µ� ν, alors il existe une fonction f positive et mesurable sur (Ω,A)
telle que

µ(A) =

∫
A
fdν, pour tout A ∈ A.

La fonction f est appelée densité de µ par rapport à ν et est notée dµ
dν .
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1.3. Intégrale des fonctions mesurables de signe quelconque. On peut décomposer
de façon unique chaque fonction mesurable en une partie positive et une partie négative.
L’intégrale d’une fonction mesurable sera donc définie comme l’intégrale de sa partie pos-
itive à laquelle on soustrait l’intégrale de sa partie négative (lorsque cette soustraction a
bien un sens).

Definition 1.10. Soit f : (Ω,A, µ)→ (R̄,Bor(R̄)) mesurable. On note f+ = max{f, 0} la
partie positive de f et f− = max{0,−f} la partie négative de f . Les deux fonctions f+ et
f− sont mesurables et positives et satisfont f = f+ − f−.

Avant de définir l’intégrale d’une fonction mesurable quelconque comme
∫
f+ −

∫
f− il

faut prendre garde au fait que la différence +∞ −∞ n’est pas définie. C’est pour cette
raison qu’on introduit dans la définition suivante une classe de fonctions dites intégrables.

Definition 1.11. Soit f : (Ω,A, µ) → (R̄,Bor(R̄)) mesurable. La fonction f est dite
intégrable contre µ (ou µ-intégrable) si

∫
Ω |f |dµ < ∞. Dès lors, l’intégrale de f est définie

par ∫
Ω
f dµ =

∫
Ω
f+ dµ−

∫
Ω
f− dµ.

Ainsi construite, l’intégrale est linéaire sur l’espace vectoriel L1(Ω,A, µ) contenant les fonc-
tions f : (Ω,A, µ)→ (R̄,Bor(R̄)) intégrables, i.e., si (α, β) ∈ R2 et si f, g ∈ L1(Ω,A, µ) on
a ∫

Ω
αf + βg dµ = α

∫
Ω
f dµ+ β

∫
Ω
g dµ. (1.5)

Le cas de deux fonctions mesurables et égales µ-p.p. est étudié dans la Proposition
suivante.

Proposition 1.12. Soient f, g : (Ω,A, µ)→ (R̄,Bor(R̄)) où f est intégrable, g mesurable
et f = g µ-p.p. Alors g est intégrable et∫

Ω
f dµ =

∫
Ω
g dµ. (1.6)

Remark 1.13. La Proposition 1.12 implique que si l’on change la valeur d’une fonction
intégrable sur un ensemble mesurable et µ-négligeable, alors la fonction reste intégrable et
son intégrale reste la même.

Le théorème nous donne une condition nécessaire pour échanger limite et intégrale avec
des fonctions de signe quelconque.

Theorem 1.14. [Convergence dominée] Soit (fn)∞n=1 une suite de fonctions mesurables de
(Ω,A, µ) dans (R̄,Bor(R̄)). Si

• il existe f: (Ω,A)→ (R̄,Bor(R̄)) mesurable telle que limn→∞ fn(ω) = f(ω) µ-p.p.

• il existe g: (Ω,A)→ (R̄+,Bor(R̄+)) intégrable telle que ∀n ∈ N, |fn(ω)| ≤ g(ω) µ-p.p.

Alors fn est integrable ∀n ∈ N ainsi que f et

lim
n→∞

∫
Ω
fndµ =

∫
Ω
fdµ. (1.7)
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A présent nous énonçons un théorème qui nous indique comment calculer l’intégrale
d’une fonction composée avec une autre fonction mesurable. On considère donc (Ω,A, µ)
un espace mesuré et (E ,B) un espace mesuré et f : (Ω,A) → (E ,B) une application
mesurable. On rappelle que l’on peut munir (E ,B) de µf la mesure image de µ par f .

Theorem 1.15. [Théorème de Transfert] Soit f : (Ω,A, µ)→ (E ,B) mesurable.

(1) Version positive: soit ϕ : (E ,B)→ (R̄+,Bor(R̄+)) mesurable. Alors∫
Ω
ϕ o fdµ =

∫
E
ϕdµf (1.8)

(2) Version générale: soit ϕ : (E ,B)→ (R̄,Bor(R̄)) mesurable. Alors ϕ est µf intégrable
ssi ϕo f est µ-intégrable et alors∫

Ω
ϕ o fdµ =

∫
E
ϕdµf (1.9)

1.4. Intégrales de fonctions de plusieurs variables. On étudie à présent l’intégrale
d’une fonction définie sur un produit d’espaces mesurés. on considère donc Ω = Ω1 × Ω2,
A = A1 ⊗A2 et µ = µ1 ⊗ µ2 avec (Ω1,A1, µ1) et (Ω2,A2, µ2) des espaces mesurés et µ1 et
µ2 des mesures σ-finies.

Theorem 1.16. [Fubini positif] Soit f : (Ω,A, µ)→ (R̄+,Bor(R̄+)) mesurable alors

• l’application suivante est mesurable

(Ω1,A1)→ (R̄+,Bor(R̄+))

ω1 →
∫

Ω2

f(ω1, ω2) dµ2(ω2)

• l’application suivante est mesurable

(Ω2,A2)→ (R̄+,Bor(R̄+))

ω2 →
∫

Ω1

f(ω1, ω2) dµ1(ω1)

• on a les égalités suivantes∫
Ω
f(ω1, ω2) dµ(ω1, ω2) =

∫
Ω1

[ ∫
Ω2

f(ω1, ω2) dµ2(ω2)
]
dµ1(ω1)

=

∫
Ω2

[ ∫
Ω1

f(ω1, ω2) dµ1(ω1)
]
dµ2(ω2)

On voit donc que dans le cas d’une fonction positive, on peut calculer son intégrale
en intégrant successivement sur ses différentes coordonnées et dans l’ordre que l’on
souhaite.

Dans le cas d’une fonction de signe quelconque, il faut s’assurer avant de permuter les
intégrales que la fonction est bien µ1 ⊗ µ2 intégrables.

Theorem 1.17. [Fubini général] Soit f : (Ω,A, µ)→ (R̄,Bor(R̄)) intégrable alors

• l’application suivante est µ1-intégrable

(Ω1,A1)→ (R̄,Bor(R̄))

ω1 →
∫

Ω2

f(ω1, ω2) dµ2(ω2)
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• l’application suivante est µ2-intégrable

(Ω2,A2)→ (R̄,Bor(R̄))

ω2 →
∫

Ω1

f(ω1, ω2) dµ1(ω1)

• on a les égalités suivantes∫
Ω
f(ω1, ω2) dµ(ω1, ω2) =

∫
Ω1

[ ∫
Ω2

f(ω1, ω2) dµ2(ω2)
]
dµ1(ω1)

=

∫
Ω2

[ ∫
Ω1

f(ω1, ω2) dµ1(ω1)
]
dµ2(ω2)

Remark 1.18. Dans la pratique si l’on veut calculer l’intégrale d’une fonction de plusieur
variables de signe quelconque, on commence par s’assurer que la fonction est bien intégrable.
Pour cela on considère |f | qui est une fonction mesurable positive et à laquelle on peut
appliquer le Théorème de Fubini positif, ce qui permet d’intégrer successivement en les
différentes coordonnées. Si ce calcul nous donne une intégrale de |f | finie. Alors f est
intégrable et on peut calculer son intégrale en appliquent Fubini général.

Laboratoire de Mathématiques Jean Leray UMR 6629, Université de Nantes, 2 Rue de la
Houssinière, BP 92208, F-44322 Nantes Cedex 03, France
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