Compléments sur les équations différentielles .
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2. ORGANISATION DU TRAVAIL

Il conviendra de travailler seul les exercices de cours a savoir les exercices 1-2-18-19-21-22-29-36-
40.
Pour la réunion de rentrée, je ramasserai vos solutions des exercices 4-9-17-26.
Pour la premiere séance, je ramasserai vos solutions des exercices 30-31-44.
Pour la seconde séance, je ramasserai vos solutions des exercices 28-47.



3. QUELQUES RAPPELS DE COURS

3.1. Les équations différentielles linéaires.

3.2. Le lemme des noyaux.

Lemme 3.1. Soit E un K espace vectoriel et f € L(E). Si P € K[X] s’écrit P = ()1.Q5...Q),, out les
polynomes ()1, ..., Q) sont deux a deux premiers entre eux alors

ker P(f) =ker Q1(f) © ker Qo(f) @ ... © ker Q,(f).

De plus, le projecteur sur le j'™€ facteur de cette décomposition parallélement aux autres facteurs
est un polynome en f.

Démonstration. On le montre pour 7 = 2, une récurrence facile permettra alors d’en déduire le résul-
tat général. Grace au théoreme de Bezouth, on sait qu’il y a des polynémes Uy, U, tel que

U1Q1+ UsQ2 =1

Pour tout = € F, on a alors

(D Ur(f)-@u(f)x + Ua(f)-Qa(f) . = 2.
Puisque P(f) = Q1(f)-Q2(f) = Q2(f).Q1(f), il est clair que I’on a les inclusions :
ker Q1(f) C ker P(f) et ker Qa(f) C ker P(f).

Lorsque € ker P(f), onaalors Qa(f)[U:(f).Q1(f)-a] = [U2()-Qu(f) ()] = Us(F).[P(f).a] =
0, donc Uy (f).Q1(f).x € ker Q2(f). De la méme fagon, on obtient que lorsque = € ker P(f) alors

Us(f)Qa(f).x € ker Q1(f). De ceci et de I’identité (1), on en déduit que

ker P(f) = ker Q1(f) + ker Q2(f).

Il reste & démontrer que ker Q1 (f) Nker Q2(f) = {0}. Considérons donc x € ker Q;(f) Nker Q2(f)
alors en appliquant I’identité 1 on obtient z = 0.
Remarquons que I’on démontre ainsi que sur ker P(f) le projecteur sur ker Q1 ( f) parallélement a

ker Q2(f) est I’endomorphisme Us(f)Q2(f).
0J

3.3. Applications aux équations différentielles a coefficients constants. On vaici étudier les équa-
tions différentielles de la forme

™ (1) + ay "I (t) 4 o+ a2 (1) + ana(t) =0

ol on a noté z* la dérivée k iéme de z :

d*z K
W(t) = z"(t).

Lorsque I’on pose



Ona

X'(t) = :
(1)
Donc z vérifie I’équation différentielle
(2) 2™ () + a1z V() + . 4 ap1 2 (t) + anz(t) = 0
si et seulement si X vérifie X'(t) = AX(¢) ou A est la matrice
0 1 0 0
0 0 1 0
A=) = : : :
0 0 : 0 1
—Qp —Op_q ... —Qy —a

Un calcul par récurrence en développant la premiere colonne montre que le polyndme caractéristique
de Aest
Xa(A) = (=1)" (A" + e A"+ 4 a A+ ay)
On appelle équation caractéristique de 1’équation différentielle (2) I’équation
N4+ a NP+ +a, A+ a,=0

Comme dans le cours d’analyse de base en L1, les solutions de cette équation sont exactement les
) tel que la fonction ¢ — e est solution de I’équation différentielle (2)
Supposons donc que

N X+t aa At a = [ )%
j=1
ou les \; sont deux a deux différents. Notons S I’espace des solutions de 1’équation différentielle 2,
c’est a dire
S ={z € C*(R,C), tel que Vt € R : 2™ (t) + a1z "V (t) + ... + ap_12/(t) + a,2(t) = 0}.
Introduisons I’endomorphisme D de C*°(R, C) défini par
dz
D(z) =2 = -
qui a une fonction associe sa dérivéee. On a donc
S =ker(D" 4+ a;D" ' (t) + ... + an_1D + a,I) = ker xa(D).
Le lemme des noyaux nous permet donc d’affirmer que
3) S =@ ker(D — \;I)™

Pour ¢ € C, on note M; I’endomorphisme de C*(R, C) défini par (M.z)(t) = e'z(t), c’est Ien-
domorphisme de multiplication par la fonction ¢ + €. C’est un endomorphisme inversible dont
I’inverse est M_.. De plus la régle de dérivation du produit de deux fonctions montre que

(D —¢I) = M:DM_
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c’est a dire que pour z € C*(R, C) on a la relation

d —ct Lt
E(e “x(t)) = e (2 (t) — Cx(t)) -

On en déduit donc que
(D—C(I)* = M:D*M_,
et que
z € ker(D— () D*M_x =0

& —M x2=0
dpe ¢t
& M_cx € Coqt]

Ceci équivaut également a I’existence d’une fonction P polynomiale de degré inférieure a o — 1 telle
que pour tout ¢

z(t) = P(t)es.
Grace a la décomposition 3, on a montré le théoréme suivant :
Théoréme 3.2. Soit ay, ..., a, des nombres complexes.A I’équation différentielle
2™ (1) + ay "I (t) 4 o+ a2 (1) + ana(t) =0
on associe son l’équation caractéristique
AN+ N 4 a, N+ a, =0.
Si A1, ..., \s sont les racines distinctes de I’équation caractéristique et oy, .., o, leurs multiplicités,

c’est a dire que
T

N+ a4 a, Nt a, = H(/\ — )Y
j=1
Alors les solutions de cette équation différentielle sont de la forme

o(t) = > Pi(t)e

ou P; est un polynome a coefficients complexes de degré inférieure a a;; — 1
Lorsque les coefficients ay, ..a, sont réels, les solutions de cette équation qui sont a valeurs réelles
sont obtenues en prenant les parties réelles des solutions trouvées si dessus.
4. EXERCICES SUR LES EQUATIONS DIFFERENTIELLES LINEAIRES
4.1. Questions de cours.

Exercice 1. Le théoreme de Cauchy-Lipschitz linéaire.
a) Enoncer et démontrer le théoreme de Cauchy-Lipschitz pour les systemes linéaires d’ordre 1 :
) Y'(t) = A@)Y () + B(t), Y (to) = Yo,

ou A(t) € M,,(R), B(t) € R"ett € I intervalle de R



b) On appelle équation homogéne associée a (1), I’équation sans second membre :
(5) Y'(t) = A@t)Y (1).
Que peut-on dire de I’ensemble des solutions de I’équation homogene (2) ?
c) Si T € I, que dire que I’application ev. qui a une solution associe sa valeur au temps 7 ?

d) Quelle est la structure de I’ensemble des solutions de I’équation générale (1) lorsque I’on ne fixe
pas de condition initiale ?

e) Enoncer la méthode de variation des constantes.
f) Implémenter la méthode sur les équations différentielles du type
ay”(t) + by’ (t) + cy(t) = f(1)
ou a # 0.
g) Résoudre de cette facon 1’équation différentielle y" (t) + y(t) = cos(t).

Exercice 2. Résolvante.
On considere le systeme différentiel linéaire :

(6) Y'(t) = A()Y (t) + B(t), Y(to) = Yo,
ou A(t) € M,(R), B(t) € R" ett € I intervalle de R. On se place sous les conditions du théoréme
de Cauchy-Lipschitz linéaire.
a) Donner la définition de la résolvante (notée R(t,t,)) de A(t)?
b) Quel est le lien avec la solution de I’équation (3) ?
c) En général, sait-on calculer facilement la résolvante ? Donner des cas ou le calcul est aisé.
d) Montrer que, Vs, t,u € I,
R(s,u) = R(s,t) o R(t,u).
e) En déduire que R(t, s) est une matrice inversible et déterminer son inverse.

4.2. Equations linéaires scalaires du premier ordre.
Exercice 3.
(1) Résoudre les équations différentielles d’ordre 1 suivantes :

Y +2y=da? |y —2y=2"+z Y —y=x+e",

x

Y +y=2zre ™, y+y=sinx+ 3sin2x.
(2) Ou il faut faire attention a l’intervalle de définition des solutions.

Intégrer les équations suivantes :

@) 2+x)y =2—vy , 3zy —4y ==,

(8) vy +y=cosz , (1+2)y +y=(1+z)sinz.
Pour chaque équation, on cherchera si certaines solutions peuvent se prolonger sur R tout
entier.

1. Si y; et yo sont des solutions de ’équation différentielle homogene ay” (t) + by’ (t) + cy(t) = O telles que
(y1,y2) forment une base de I’espace des solutions cette équation différentielle homogene, alors on trouve les solu-
tions de I’équation différentielle ay”(t) + by'(t) + cy(t) = f(t) sous la forme t — A(t)y:(t) + B(t)y2(t) avec
Vi: A'(t)y1 (t) + B'(t)y2(t) = 0.
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Exercice 4. On introduit A € C°(]0, +o00[, M3(R)) défini par

1
0= (1 1)
L g
On étudie ici les solutions x € C'(]0, +00[, R?) de I’équation différentielle
(V) @(t) = A(t)=(1)
C’est a dire les fonctions t €]0, +o00[— (u(t), v(t )) qui vérifient le systeme différentiel

() = Tu(t) + oft)
”{vu) u(t) + ()

a) Montrer que les fonctions x1,xs |0, +o00[— R? eﬁmes par

te~t
—te™!
forment une base de I’espace des solutions de (
b) Trouver les solutions de I’équation dlﬂerentlelle
u(t) = u(t) +1v(t) +t
0(t) = u(t) + v(t)
a l'aide de la méthode de variations des constantes.

Exercice 5. probleme.

a) Préambule.
On considere I’équation différentielle scalaire du premier ordre :

(Eo) Y (t) = —a(t) y(t),
+oo
o a : R — [0, 400][ est continue et telle que / a(t) dt soit divergente.
0

Vérifier que toute solution y(t) de (Ey) tend vers 0 lorsque t — +0o0.

Généralisation en dimension supérieure.

On munit R" du produit scalaire canonique < , >, et on note || . || la norme associée a ce produit

scalaire. On rappelle qu’une matrice réelle symétrique A est négative si, pour tout X € R",
<AX, X >< 0.

On considere le systame différentiel :
() X'(t) = A@t) X(t),
On suppose que I'application t — A(t) est continue sur R et que la matrice A(t) est symétrique
et négative.
b) Soit X (t) une solution de (E). Montrer que I’application f : R — R définie par :
fo) =l X 1%

est décroissante, ot || . || désigne la norme associée au produit scalaire.



c¢) En déduire que lim f(t) existe.
t——+o00
d) Soit X1 (t) et X5(t) deux solutions de (F). En utilisant la question précédente, montrer que :

lim < Xi(t), Xo(t) > existe.

t——+o0

Indication : on pourra utiliser I’identité de polarisation :

4 <X Y>=||X+Y|P-||X-Y|?, VX,Y eR™

e) Soit (X1(t), ..., X,,(t)) une base de I’ensemble des solutions de (E). On note R(t) la matrice
de M, (R) dont les vecteurs colonnes sont les X;(t). Déduire de ce qui précade qu’il existe une
matrice M telle que

lim R(t) R(t) = M,

t—-+oo
o 'R(t) désigne la transposée de R(t).
f) Soit X (t) une solution de (E). Montrer qu’il existe X, € R"™ tel que X (t) = R(t) X.
g) On suppose maintenant que :

t

lim tr(A(s)) ds = —oc.

t——+4o00 0
(a) En utilisant une formule du cours, montrer que :

) lim det R(t) =0.

t—+00

(b) En déduire que det M = 0.

(c) Montrer qu’il existe une solution X (t) de (E) non identiquement nulle et qui tend vers 0
lorsque t — +oc.

Indication : on utilisera la question (e) avec un choix judicieux pour X.

Exercice 6. Un peu d’algébre linéaire élémentaire.
Soit E = C*(]0, +0]) ; R) et soit a # 0. On définit 'application T, : E — E parT,(y) = y+azy'.

(1) Montrer que T}, est un endomorphisme sur E et calculer son noyau.

(2) Soient a,b non nuls. Déterminer le noyau de T, o T}, et écrire I’ équation différentielle du
second ordre que vérifient les éléments de ce noyau.

(3) Trouver les éléments de E satisfaisant les équations différentielles :

y+ 8xy +42%y" =0,

1
y+2my’+ 5x2y// -0
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4.3. Systemes différentiels linéaires a coefficients non constants.

Exercice 7. On considére le systeme différentiel homogéne (Ey) :

;o tr—y x+1ty
= teR.
(1) Vérifier que (1,t) et (t,—1) sont solutions de (Ey).

(2) En déduire I’ensemble des solutions de (Ey).

(3) Résoudre le systeme différentiel

tr—y x+ty t 1
") = — — teR.
(.9 (1+t2’ 1+t2)+( 2 +1 t2+1) ’

Exercice 8. On considere le systeme différentiel homogene (Ey) :

(', y) = Q2tx —y, x+2ty) , teR

a0 = %)

b) Que remarque-t-on sur la matrice de passage ?

a) Diagonaliser la matrice

¢) Résoudre le systeme différentiel (Ey).

d) Calculer la résolvante R(t,0) et vérifier sur cet exemple la formule du cours :

det(R(t,0)) = exp ( /0 " tr(A(s)) ds) |

4.4. Systemes différentiels a coefficients constants.

Exercice 9. a) Lemme de Gronwall Ici || || est une norme sur R". Soit y: [0,T] — R" une fonction
C! telle que pour tout t € [0,T) :

ly' @ < ally@) +b

Démontrer que pour tout t € [0,T] :
ly@)1 < (ly(O)] + bt) e
b) Soit A une matrice réelle carrée n x n et
S ={z cC'R,R"), @ = Az}

Démontrer que S est un espace vectoriel et que ev: S — R" définie par ev(x) = x(0) est une
application linéaire injective. En déduire que dim S < n.

¢) On suppose que A est diagonalisable sur R. En déduire que dim S = n en explicitant une base de

S.

d) Faire de méme lorsque A est diagonalisable sur C.
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Exercice 10. Soit A une matrice carrée réelle 2 x 2. Si § est un nombre réel, on note s; et cs les
fonctions définies sur R par

+00 Sk2k+1 +00 Sk2k
ss(t) =Y o etes(t) =Y ——
L (2% + 1)! £ (2k)!

C’est a dire ce sont des solutions de I’équation différentielle y" + 0y = 0 et
s5(0) = 0,5(0) = 1 et ¢5(0) = 1,5(0) = 0.

Posons § = det A — (TFTA)Q. Démontrer que

e = e 5 (s5(1) A + c5(1)L)
Exercice 11. On considere la matrice
1 1 —1
A= 1 -1 1
-1 1 1

(1) Montrer que A est diagonalisable.
(2) Résoudre le systeme différentiel X' = AX.

Exercice 12. On considere la matrice
-3 3 2
A= —4 4 2
—4 3 3

dont les valeurs propres sont \y = 1 et \y = 2. Résoudre le systeme différentiel X' = AX.

Exercice 13. On considere la matrice

a) La matrice A est-elle diagonalisable ?

b) On pose N), = ker (A — I)*. Déterminer Ny, Ny, Nj.
c) Déterminer un supplémentaire de N, dans Ns.

d) En déduire une trigonalisation de A.

e) Résoudre le systeme différentiel X' = AX.

4.5. Equations différentielles linéaires du second ordre.

Exercice 14. Tres facile!
Intégrer les équations du second ordre suivantes :

' =2y + 2y =xe” | Y — 4y + 4y =2(x — 2)e”.
y" — 4y + 13y = 10 cos(2z) + 25sin(2x) , y" +y = cot z.



10

Exercice 15. On souhaite résoudre sur |0, +ool, I’équation différentielle du second ordre :
(E) (z+1)y" =y —zy=0.
(1) Chercher une solution de (E) sous la forme e’*, \ € R.

(2) Déterminer toutes les solutions de (E).

Exercice 16. La méthode de Lagrange.
On considere ’équation différentielle linéaire du second ordre :

(B) (* +1)a" — 22 =0.
(1) Déterminer une solution x1(t) de (E) sous la forme d’un polynUme.
(2) Chercher une seconde solution de (E) sous la forme xo(t) = A(t)x1(t) ot \(t) est de classe
Cl
(3) En déduire I’ensemble des solutions de (E).

Exercice 17. Résolution avec les séries entieres.
On considere I’équation différentielle du second ordre :

xy" 4+ 3y —42Py =0
Montrer qu’il existe une unique solution développable en série entiére au voisinage de 0, y(0) = 1 et

reconnaitre y comme expression de fonctions élémentaires.

5. EXERCICES POUR COMPRENDRE ET APPLIQUER LE THEOREME DE CAUCHY-LIPSCHITZ

5.1. Questions de cours.

Exercice 18. théoreme de Cauchy-Lipschitz global.

Soit I un intervalle ouvert et f : I x R™ — R™ une application continue. On souhaite résoudre
I’équation différentielle (probléme de Cauchy) ©'(t) = f(t, xz(t)) avec la condition initiale x(to) = xg
ou (to, xg) € I x R™.

(1) Enoncer et démontrer le théoreme de Cauchy-Lipschitz global.

(2) On considére I’équation différentielle ' (t) = sin(t + x(t)). Montrer que pour toute condition
initiale x(ty) = xo, il existe une unique solution définie sur R tout entier.

Exercice 19. Soit U C R x R un ouvert et soit f : U — R™ une application continue.
(1) Donner la définition de " f est localement lipschitzienne (LL) par rapport a x".
(2) Montrer que f : R x R — R ou f(t,x) = tz? est (LL) par rapport a x.
(3) Montrer que f : R x R — Roun f(t,x) = t\/| x | n’est pas (LL) par rapport a x.
Exercice 20. On considere I’équation différentielle, dite de Clairaut,
(«'(t))”
2
(1) Montrer que les droites z(t) = Ct — C? /2 sont des solutions de cette équation différentielle.

z(t) =t (t) —

(2) Montrer que la parabole x(t) = t*/2 est également solution de cette équation différentielle.
Puis montrer que toutes les droites de la question précédente sont tangentes a cette parabole.
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(3) Expliquer ce qui fait que le théoreme de Cauchy-Lipschtitz ne s’applique pas ici.

Exercice 21. Résultat a connaitre impérativement.

Soit U C R x R™ un ouvert et soit f : U — R™ une application de classe C*. Montrer que f est
(LL) par rapport a x.

Indication : on pourra utiliser ’inégalité des accroissements finis.

Exercice 22. Le théoreme de Cauchy-Lipschitz local.
Soit U C R x R™ un ouvert et soit f : U — R™ une application continue, (LL) en x.

(1) Enoncer et démontrer le théoreme de Cauchy-Lipschitz local.

(2) Qu’appelle-t-on solution maximale et que peut-on dire de I’intervalle de définition d’une so-
lution maximale ?

(3) Le graphe (t,x(t)) d’une solution maximale du probléme de Cauchy x' = f(t,z), x(ty) = x¢
est appelé courbe intégrale. Montrer que 1’ensemble des courbes intégrales lorsque (to, xo)
décrit U constitue une partition de U.

5.2. Exercices d’applications.

Exercice 23. Déterminer les solutions maximales des problemes de Cauchy (scalaires) suivants :
(1) @ =2 | z(ty) = xo.
Indication : on pourra distinguer les cas xo = 0,x9 > 0,29 < O.
(2) ' =1+2%, 2(ty) = 0.
Exercice 24. On considere le probléme de Cauchy scalaire ' = x(x — 1) avec x(ty) = x.
(1) Déterminer les solutions maximales de ce probléeme lorsque xo = 0 ou x¢ = 1.
(2) On suppose maintenant que x est différent de 0 ou 1.
(a) Montrer que toute solution maximale x(t) ne prend jamais la valeur 0 ou 1. En déduire
que x(t) appartient, ou bien a | — oo, 0], ou bien a |0, 1], ou bien a 1, +00|.
(b) Déterminer les solutions maximales de ce probleme de Cauchy, (on distinguera les cas
xo < 0, zg €]0,1], g > 1).
Exercice 25. On considere le probleme de Cauchy scalaire :

2(t) = ; | 2(t) |5, 2(0) =0.

(1) Trouver une solution évidente.

(2) Montrer que la fonction x(t) = t+/| t | est de classe C' sur R et vérifier qu’elle est solution
de ce probleme de Cauchy.

(3) Est-ce contradictoire avec le théoreme de Cauchy-Lipschitz ?

Exercice 26. Equation de Bernoulli.
On veut résoudre I’équation différentielle d’inconnue y : I — R, I C]0, 400,

1 e’
Y —=y+—y" =0, y(zo) = yo,
X X

ou (xo,y0) € I x R.
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1) En posant z = =, montrer que, formellement, [’équation précédente se ramene a une équation
y
différentielle linéaire du premier ordre que l’on résolvera.
(2) Nous voulons maintenant résoudre rigoureusement I’équation (E).

(a) Montrer que (E) admet une unique solution maximale et que I’intervalle de définition de
cette solution maximale est ouvert.

(b) Quelle est cette solution lorsque yo = 0 ?
(c) On suppose yy # 0 et on pose A\ = i—g — €%,
(i) Montrer que si \ > —1, la solution maximale est définie sur |0, +o0|.

(ii) Déterminer la solution maximale de (E) lorsque \ < —1, (on distinguera les cas
1o > 0 etyy <0).

6. CONTROLE DU TEMPS D’EXISTENCE
6.1. Temps d’existence des solutions : critéres de complétude.
p p

Exercice 27. Le théoreme des bouts.
Soit x(t) : |T_, T [— R la solution maximale de I’équation différentielle du premier ordre avec la
condition initiale :

o'(t) =a2*(t)—t , z(0)=0.
(1) Montrer que x(t) = o(t) au voisinage de t = 0. En déduire que x*(t) < t pourt €)0, [ pour
un J suffisamment petit.
(2) Montrer que I’on a en fait z*(t) < t pourt €]0,T,|.
Indication : on pourra faire un dessin.

(3) En déduire que T’y = +o0.

Exercice 28. Intégrales premieres.

Soit U un ouvert de R™ et soit f : U — R™ une application (LL). On considere le systeme différentiel
autonome ' (t) = f(x(t)), z(to) = xo. On dit que Uapplication h : U — R de classe C" est une
intégrale premiére si la fonction t — h(x(t)) est constante.

(1) Montrer qu’une fonction h : U — R est une intégrale premiere si et seulement si Vh(x)- f(x)
pour tout x € U.

(2) On suppose que le systeme différentiel x'(t) = f(x(t)) posséde une intégrale premiére telle
que ¥r € R, h™'({r}) soit compact. Montrer que toute solution x(t) est définie sur R (on dit
que le champ f est complet).

(3) Montrer que le champ de vecteurs f défini sur R3 par f(x,y,2) = (y — 2,2 — x,0 — y) est
complet. On pourra commencer par montrer que h(x,y, z) = z% + y* + 2° est une intégrale
premiere.

(4) Pouvait-on démontrer ce dernier résultat d’une autre facon ?

Indication : on pourra vérifier que le champ f est uniformément lipschitzien.

Exercice 29. théoreme de majoration a priori.
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Soit U un ouvert de R™ et soit f : U — R™ une application (LL). On considére le probléme de

Cauchy autonome x'(t) = f(z(t)), x(to) = xo. On suppose que x(t) vérifie une majoration a priori :
VT >0, 3Ky C U compact, V |t |< T, z(t) € Kr.

On note x(t) la solution maximale définie sur |T_, T [ et on pose V.= R x U ouvert de R™'. On
considere Uapplication g : V — R™" définie par g(xo, ) = (1, f(x)).

(1) Vérifier que g est(LL).

(2) On considere le systéme différentiel autonome y'(t) = g(y(t)), y(to) = (to, o). Déterminer
la solution maximale y(t) en fonction de x(t).

(3) On suppose que I', < +oo et soit’l' > T'\. On pose Kr = [-T,T] x Ky C V compact.
Montrer qu’il existe unt < T tel que y(t) sort du compact Kr.

(4) Conclure.

Exercice 30. Soit X : R" — R" une application de classe C* telle qu’il existe des constantes A et B
telles que pour tout x € R™ alors

X ()] < allz]| +b.

En se servant du lemme de Gronwall, démontrer que les solutions maximales de |’ équation différen-
tielles

T = X(x)

sont définies sur R.

Exercice 31. On note ( . ) le produit scalaire usuel sur R™ et on suppose que X : R" — R"™ est une
application de classe C* telle qu’il existe des constantes A et B telles que pour tout v € R™ alors

(X (x),z) <allz| +b.
En se servant du lemme de Gronwall, démontrer que les solutions maximales du probléme de Cauchy
&= X(z),z(0) =z

sont définies sur R .. Enoncer une condition similaire pour les solutions du méme probleme de Cauchy
soient définies sur R _.

Exercice 32. Equation de Hamilton.
Soit V€ C?*(R) un potentiel positif. On considere le systéme Hamiltonien sur R? :

(q'(1),p'(t)) = (p(£), =V'(q())), (a(to),p(to)) = (g0, Po)-
(1) Montrer que I’énergie totale a(q, p) = %pQ + V(q) est une intégrale premiere du systeme.

(2) En utilisant le théoréme de majoration a priori, montrer que la solution (q(t), p(t))est définie
sur R tout entier.

Exercice 33. On considere I’équation différentielle de Riccati
(R) a'(t) =2t x(t) + 22(t) +t* — 1,
avec la condition initiale x(0) = 1.

(1) Montrer qu’il existe une unique solution maximale x(t) définie sur un intervalle |T_, T |.
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(2) Soit xy(t) une solution particuliére de (R). On pose y(t) = x(t) — zo(t).

Vérifier que y(t) est solution de I’équation différentielle de Bernoulli :

(B) /() =2t +xo(t) y(t) +y* (1),

avec la condition initiale y(0) = 1 — x(0).
(3) Chercher une solution particuliére de I’équation (R) de la forme xy(t) = at +bo~a,b € R.
(4) Montrer que y(t) ne s’ annule jamais sur |T_, T [ et résoudre I’équation (B).
(5) En déduire la solution de (R) vérifiant x(0) = 1 et préciser Uintervalle |T_, T, .

Exercice 34. Soit F : R — R une application de classe C'. On suppose que ¥y € R, F(y) > 0 et

+o0o
que / m dy est convergente. On considére le probleme de Cauchy
- Y

oo

2'(t) = F(z(t)) , z(to) =z0, avec (to, ) € R?.

On notera |T_, T\ | lintervalle de définition de la solution maximale x(t) et on pose pour v € R,

|
G(zr) = / — dy.
) w F)
(1) Montrer que G réalise une bijection de R sur un intervalle que I’on précisera.
(2) Montrer que G(x(t)) =t — t.
(3) En déduire une expression de x(t) et expliciter |T_, T |

Exercice 35. Soit f : R — R une application k—lipschitzienne, (k > 0). On considere le probléme

de Cauchy
() 2(t) = f@(®), =(0) = 0.

(1) Quel est l'intervalle de définition |T_, T | de la solution maximale ?

(2) Déterminer la solution maximale lorsque f(xq) = 0.

(3) Le but de ce probléme est de démontrer I’estimation suivante pour la solution maximale x(t) :

(B) () —wo | <[t]] flao) | M, VLT T,
Pour simplifier, on ne considerera que le cas o™t > 0.

eft — 1] < ktef

(b) Lorsque f(x) = kx, déterminer explicitement x(t) et vérifier que (E) est satisfaite.

(a) Montrer que pourt > 0,

(c¢) On se place désormais dans le cas général. Montrer que :

1) |x<t>—xo|sﬂf<xo>|+k/o | 2(s) — w0 | ds.

¢
(d) On pose G(t) = k/ | 2(s) — x| ds e™™. Ecrire l'inégalité (1) a I'aide de G(t) et en
0

déduire que :

G'(t) < kt| f(zo) | e ™.
(e) En déduire que :

6l0) <1 fGwo) | (- —te™).
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(f) En déduire I’estimation (E).

(4) A l'aide de (E), retrouver la réponse a la premiére question de cet exercice.

7. SUR LA STABILITE DES POINTS D’EQUILIBRES DES EQUATIONS DIFFERENTIELLES

7.1. Questions de cours.

Exercice 36. Notion de point d’équilibre.
Soit U C R™ un ouvert et soit f : U — R™ une application de classe C*. On considere le systeme
dynamique ' (t) = f(x(t)).

(1) Qu’appelle-t-on flot du champ de vecteur f ?

(2) Donner la définition de point d’équilibre.

(3) Donner la définition avec des quantificateurs de I’assertion suivante : x est un point d’équi-
libre stable.

(4) Quand dit-on que x est est point d’équilibre asymptotiquement stable ?

Exercice 37.
On considere le systeme dynamique défini sur R* par :

(«',y') = (=2y,2).
(1) Montrer que (0,0) est un point d’équilibre stable.
(2) Est-il asymptotiquement stable ?
Indication : on rappelle que H(x,y) = %:132 + y? est une intégrale premiére du systéme.

Exercice 38. On considére le systeme dynamique défini sur R? par :
(xlu y/) - <—ZL', y)
Montrer que (0,0) est un point d’équilibre instable.
Exercice 39. On considére le systeme dynamique défini sur R? par :
(mlvy/) = (ya —T + Oéy) , Q€ R.
(1) Déterminer le point d’équilibre.
(2) Montrer que le point d’équilibre est asymptotiquement stable si et seulement si o < 0.
Indication : on pourra étudier les valeurs propres de la matrice associée a ce systeme.

(3) Dessiner les portraits de phase pour o = 0 et o« = 2
7.2. Le théoreme de Liapounov.

Exercice 40. Question de cours.
Enoncer et démontrer le théoréme de Liapounov.
On considere le sytéme différentiel non linéaire sur R? :
3
(Ilayla Zl) = (2y(2 - ]')7 _I(Z - 1)7 -z )
(1) Déterminer 'unique point d’équilibre.

(2) Chercher une fonction de Liapounov de la forme L(x,y, 2) = ax?+by?+cz* avec a, b, c > 0.
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(3) Conclusion.

Exercice 41. Fonction de Liapounov pour un systeme hamiltonien.
Soit V € C*(R) un potentiel. On considére le systéme hamiltonien sur R? :

(d'(1),p'(t) = (p(t), =V'(q(t))), (a(to),p(to)) = (qo;po)-

(1) Vérifier que les points d’équilibre sont de la forme (x,0) ou xq doit satisfaire une hypothése.

(2) On suppose que V (x) > V (xg) pour x # x¢ dans un voisinage de x (puits de potentiel).
Montrer que (x0,0) est stable. Ce point est-il asymptotiquement stable ?

Indication : on pourra utiliser une intégrale premiere du systeme pour construire une fonction
de Liapounov.

Exercice 42. Linéarisé d’un systeme différentiel.

(1) Soit U C R™ un voisinage ouvert de l’origine. On définit ’application f : U — R™ de classe
C! par f(x) = Az + fi(x). On suppose que les valeurs propres de la matrice A € M,,(R)
sont de parties réelles strictement négatives et que f1(x) = o(|| = ||). On considere le systéme

différentiel x'(t) = f(x(1)).
(2) Vérifier que I’origine est un point d’équilibre.

(3) On définit la fonction
+o0
L@):/ | etha |2 dt.
0

(4) Montrer que L(x) existe et que la fonction L est différentiable.
(5) Montrer que Vh € R?,

“+o00
VL(z)-h=2 / e . e h dt.
0

(6) Montrer que L est une fonction de Liapounov.

(7) Conclusion.

Exercice 43. Soit f : U — R™ ouvert quelconque, f de classe C* et soit xy € U un point d’équilibre.
On suppose que la différentielle de f au point xq n’a que des valeurs propres de parties réelles
strictement négatives. Montrer que x est asymptotiquement stable.

Exercice 44. On étudie le systeme différentielle (une modification du modéle de Lotka-Volterra) :
t=uz(l —y—ax)
y=ylz—1)
(1) Déterminer les points d’équilibres de ce systeme en fonction du paramétre a € R.

(2) Discuter en fonction de a la stabilité asymptotique de ces points d’équilibres.
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8. EXEMPLE D’ETUDE QUALITATIVE D’EQUATIONS DIFFERENTIELLES

Exercice 45. Le pendule : Le mouvement d’un pendule de longueur ¢ dans un plan vertical est
((sinx(t), —Ccosx(t)) ou l'angle x(t) est solution de I’équation différentielle

d2
—x =—Ksinz

dt?

et ou K = g/l est une constante positive.
Posant v = %x, [’équation est équivalente a

ou encore
d
(*) E(xvv) :F(IIJ,U>.

avec F(x,v) = (v, —K sinx). On appellera énergie la fonction

2
E(z,v) = 5 K cosx

(1) Vérifier que les zéros de F sont les (k,0), k parcourant 7. A quoi correspondent-ils ?

(2) Les trajectoires du pendule dans I’espace des états du pendule (x,v) (on dit plutUt espace des
phases) sont des courbes paramétrées par le temps t.

Montrer, quand elles ne sont pas réduites a un point, qu’elles admettent une tangente en
chaque état (x(to), v(tg)).

0 0
(3) Verifier que (a—E(x, v), —a—E(;E, v)) = F(z,v), et que E est une intégrale premiére du
v x
mouvement.

(4) Etudier E : symétries, périodicités, minimum. Montrer que les ((2k + 1)7,0), k € Z, sont
des points selles de E : minimum local dans une direction et maximum local dans une autre
direction.

(5) Déduire de la question précedente que le pendule a seulement deux points d’équilibres (ou
le pendule ne bouge pas) S = (0,—R) et N = (R, 0). Expliquer le terme ’point d’équilibre
stable’ pour S et ’point d’équilibre instable’ pour N.

(6) Dessiner les courbes de niveau de E : T'c = {(x,v) € R?; E(x,v) = C}, en distinguant les
cas suivants

(a) C =—-K.

(b) |C| < K : montrer que Uc est alors une courbe fermée convexe dont on précisera les
tangentes aux points des axes.

(c) C = K : montrer que I'k est la courbe d’équation v = £2+/K cos(z/2).
(d) C > K.
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Pour une condition initiale (x,vo), par convention a 'instant t = ty = 0, on note Ey =
E(x0,v0). On veut étudier la trajectoire des solutions maximales (z(t), v(t)) dans chaque cas.
On pourra admettre qu’elles sont définies sur R en entier ', et on s’aidera du dessin pour les
questions les plus difficiles.

(7) Indiquer le sens de parcours des trajectoires sur les lignes de niveau de E.
(8) Montrer qu’une trajectoire non constante ne passe jamais par un des points (km,0).
(9) |Eo| < K.

(a) Montrer que le pendule a un mouvement périodique de période donnée par l’intégrale
convergente

T_4/X dz B /E/X dzx
0 2(Ey+ K cosx) K J_x Vcosx —cos X

ou X annule Ey + K cos x.

(b) Vu lutilisation du pendule pour mesurer le temps, on aimerait savoir dans quel sens
varie la période en fonction de Ey. Montrer que la période tend vers ’infini quand F
tend vers K.

(10) Ey = K.

(a) Montrer que la loi du mouvement est donnée, implicitement, par la formule suivante :

z(t) dr
t—tg = / .
zo  \/2K(1+ cosx)
(b) En déduire que la trajectoire décrit tout un arc de I i, mais en un temps infini.
(c) Décrire le mouvement du pendule dans ce cas.
(11) Ey > K.
(a) Montrer que la trajectoire décrit toute une composante connexe de I'g,,.

(b) En déduire que le pendule fait des tours complets ad lib.
Exercice 46. On étudie ici les solutions de I’équation différentielle

d@;—f) =y°(t) —t.
a) Soit (ty,yo) € R, démontrer que le probleme de Cauchy
{ y(t) = y*(t) — t
y(to) = Yo
a une unique solution maximale.
On considére donc y : J — R une solution maximale de I’équation différentielle y(t) =
y2(t) —t.
On considere les ensembles du plan ou la solution qui y passe a une dérivée nulle :

PO = {<t7y) S R2,y2 = t}7

1. cette question est traitée dans le livre d’Arnold, Equations différentielles ordinaires, 2.12.7. Elle peut aussi se
déduire de I’exercice 29
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ainsi que ceux out la dérivée est de signe fixé :
Py ={(t,y) e R%y* > 1}, P_ = {(t,y) e R*y* <},
et le lieu des points du plan out la solution qui y passe a une dérivée seconde nulle :
Co = {(t,y) € R?,2¢y° — 2ty — 1 = 0},
ainsi que ceux ou la dérivée seconde est de signe fixé :
Cy ={(t,y) € R? 2y*> — 2ty — 1 > 0},
C_={(t,y) € R*2y> — 2ty — 1 < 0}.
b) Dessiner les ensembles Py, Cy et indiquer ou se trouve les ensembles Py, C-.

c¢) Montrer que t €)0,+oo[— B(t) = \/t est une barriére supérieure de notre équation différen-

tielle; et montrer que t €]0,+oo[— a(t) = —\/t est une barriére inférieure de notre équation
différentielle.

d) Démontrer que si (ty,y(ty)) € Cy alors pourt > to, ona (t,y(t)) € Cy.2

e) Démontrer que si (to,y(ty)) € C_ alors pourt < to, ona (t,y(t)) € C_.
On étudie maintenant le futur de la solution maximale :

f) On suppose qu’il y a ty € J telle que (ty,yo) € Ps.

i) Démontrer que [to, +00[C J et que pour tout t >ty on a y(t) € Ps.

ii) Montrer que y est décroissante sur [to, +00|.
iii) Démontrer qu’il y a forcément unt, > to, tel que (t1,y(t,)) € Cy :°
iv) On sait donc que sur [ty, 00|, y est une fonction décroissante, convexe, y' est donc croissante.

Montrer que lim y'(t) =0.*
t—+o00
v) Montrer que lim,_, o, y(t) + v/t = 0.

g) On suppose maintenant qu’il y a ty € J tel que (ty,y(to)) € Cy, et que y(ty) > 0. On sait donc
que sur intervalle J N [ty, +00], y est convexe, positive, croissante.

i) Démontrer qu’il y a des constantes a > 0,b € R telles que sur J N [ty, +00] :

y(t) > at + b.
5

ii) Soit w = sup J. Montrer que lim,_,, y(t) = +o0.®
iii) En déduire qu’il y a des constantes o > 0 et (5 telles que sur J N [ty, +00[

y(t) > y*(t) — ay(t) — B.

2. Pour cela démontrer que si (1,y(7)) € 9C4 = Co ie. siy”(7) = 0alors ¥y’ (1) = 2(y?(7) — 7)% > 0; ’est & dire
qu’alors y”/(t) > 0 pour t > T et assez proche de 7.

3. si cela n’était pas vrai on aurait que sur J¢g, 00|, y serait concave, décroissante donc en dessous de ces tangentes :
montrer que ceci est absurde. (on pourra faire un dessin pour s’aider a raisonner)

4. On rappelle que |y(t)| < V1t

5. 1l faut utiliser la convexité de y

6. distinguer deux cas : le cas ol w est fini et celui ot w = +00



20

iv) Démontrer qu’ily a T > 1 telle que pourt € J N [T, +o0]

y(t) d
[
yry Y —ay—p

v) En déduire que w est fini et que lim;_,, y(t) = +o0.
On étudie maintenant le passé de la solution maximale :

h) On veut montrer qu’il y a forcément un ty € J telle que (to,y(to)) € C_. Pour cela on suppose
que pour toutt € J, (t,y(t)) € C,.

i) On a donc soit y(t) > 0 pour tout t soit y(t) < 0 pour tout t. Montrer que I’on a forcément
y(t) > 0 pour tout t.”

ii) y est donc une fonction positive, croissante, convexe. Montrer que inf J = —o0.
iii) Montrer que lim;_, ., y'(t) = +oc. En déduire une absurdité.

i) Soit donc ty € J, telle que (to, y(to)) € C_. On sait donc que pour toutt < tq alors (t,y(t)) € C_;
i.e. y est concave sur JN| — 00, to)

(a) Démontrer qu’il y a un t| < tg telle que y'(t1) > 0.

(b) On sait alors que sur JN| — 0o, t1], y est croissante et concave. Démontrer qu’il y a des
constantes a > 0,b € R telles que sur J N [ty, +00] :

y(t) <at+b

(c) Soit o = inf J. Montrer que lim;_,, y(t) = —o0. ®
(d) En déduire qu’il y a des constantes ¢ > 0 et d telles que sur J N [ty, +00|

Y () < y*(t) — cy(t) —d.
(e) Démontrer qu’ily aT < t; telle que pourt € JN| — 0o, T

/y(T) # <T_t

ye Y —cy—d

(f) En déduire que « est fini et que lim,_,,, y(t) = —oc.

J) Représenter sur un dessin vos résultats.

Exercice 47. Modéle Proie-Prédateur de Lotka-Volterra On étudie I’équation différentielle

d
sr = x(a—by)
(LV)
d
Sy = y(—c+drv)
ou a,b, c,d sont des constantes strictement positives.

a) Démontrer que pour tout (xg,vo) € R? alors il existe une unique solution maximale de I’équation
différentielle (LV') telle que x(0) = xq et y(0) = yo

b) Démontrer que la solution maximale de cette équation partant en t = 0 de (o, yo) out xy > 0 et
Yo > 0 reste dans le quart de plan ouvert D = {(z,y) € R* 2 > 0ety >0 }.

7. Montrer que sinon sur un intervalle J N [0, ¢o], y reste dans un compact
8. distinguer deux cas : le cas ol « est fini et celui ol @ = —00
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c¢) Préciser les points d’équilibre de 1’équation différentielle (LV').

d) Montrer que la fonction H(x,y) = dx + by — cIn(z) — aIn(y) est une intégrale premiére. Etudier
les lignes de niveau de H et démontrer que les solutions maximales de I’équation différentielle
(LV) partant en 't = 0 d’un point de D sont définie sur R.

e) On décompose le quart de plan en le découpant le long des droites y = a/bet v = c/d :
D__={(z,y) € D,x <c/dety < a/b}
D_, ={(z,y) € D,x <c/dety > a/b}
D,_={(z,y) € D,x >c/dety <a/b}
Dy ={(z,y) € D,x >c/dety > a/b}.

Démontrer qu’une solution maximale de I’équation différentielle (LV') rentrant dans un de ces
ouverts doit en sortir.

f) Démontrer que les solutions maximales de 1’équation différentielle (LV') sont périodiques.



