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2. ORGANISATION DU TRAVAIL

Il conviendra de travailler seul les exercices de cours à savoir les exercices 1-2-18-19-21-22-29-36-
40.
Pour la réunion de rentrée, je ramasserai vos solutions des exercices 4-9-17-26.
Pour la première séance, je ramasserai vos solutions des exercices 30-31-44.
Pour la seconde séance, je ramasserai vos solutions des exercices 28-47.
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3. QUELQUES RAPPELS DE COURS

3.1. Les équations différentielles linéaires.

3.2. Le lemme des noyaux.

Lemme 3.1. Soit E un K espace vectoriel et f ∈ L(E). Si P ∈ K[X] s’écrit P = Q1.Q2...Qr, où les
polynômes Q1, ..., Qr sont deux à deux premiers entre eux alors

kerP (f) = kerQ1(f)⊕ kerQ2(f)⊕ ...⊕ kerQr(f).

De plus, le projecteur sur le jieme facteur de cette décomposition parallélement aux autres facteurs
est un polynôme en f .

Démonstration. On le montre pour r = 2, une récurrence facile permettra alors d’en déduire le résul-
tat général. Grâce au théorème de Bezouth, on sait qu’il y a des polynômes U1, U2 tel que

U1Q1 + U2Q2 = 1

Pour tout x ∈ E, on a alors

(1) U1(f).Q1(f).x+ U2(f).Q2(f).x = x.

Puisque P (f) = Q1(f).Q2(f) = Q2(f).Q1(f), il est clair que l’on a les inclusions :

kerQ1(f) ⊂ kerP (f) et kerQ2(f) ⊂ kerP (f).

Lorsque x ∈ kerP (f), on a alorsQ2(f)[U1(f).Q1(f).x] = [U1(f).Q1(f).2(f)].x = U1(f).[P (f).x] =
0, donc U1(f).Q1(f).x ∈ kerQ2(f). De la même façon, on obtient que lorsque x ∈ kerP (f) alors
U2(f)Q2(f).x ∈ kerQ1(f). De ceci et de l’identité (1), on en déduit que

kerP (f) = kerQ1(f) + kerQ2(f).

Il reste à démontrer que kerQ1(f)∩ kerQ2(f) = {0}. Considérons donc x ∈ kerQ1(f)∩ kerQ2(f)
alors en appliquant l’identité 1 on obtient x = 0.

Remarquons que l’on démontre ainsi que sur kerP (f) le projecteur sur kerQ1(f) parallélement à
kerQ2(f) est l’endomorphisme U2(f)Q2(f).

�

3.3. Applications aux équations différentielles à coefficients constants. On va ici étudier les équa-
tions différentielles de la forme

x(n)(t) + a1x
(n−1)(t) + ...+ an−1x

′(t) + anx(t) = 0

où on a noté xk la dérivée k iéme de x :
dkx

dtk
(t) = xk(t).

Lorsque l’on pose

X(t) =


x(t)
x′(t)

...
xn−1(t)


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On a

X ′(t) =


x′(t)
x′′(t)

...
xn(t)


Donc x vérifie l’équation différentielle

(2) x(n)(t) + a1x
(n−1)(t) + ...+ an−1x

′(t) + anx(t) = 0

si et seulement si X vérifie X ′(t) = AX(t) où A est la matrice

A =) =


0 1 0 . . . 0
0 0 1 . . . 0
...

... . . . . . . ...

0 0
... 0 1

−an −an−1 . . . −a2 −a1


Un calcul par récurrence en développant la première colonne montre que le polynôme caractéristique
de A est

χA(λ) = (−1)n
(
λn + a1λ

n−1 + ...+ an−1λ+ an
)

On appelle équation caractéristique de l’équation différentielle (2) l’équation

λn + a1λ
n−1 + ...+ an−1λ+ an = 0

Comme dans le cours d’analyse de base en L1, les solutions de cette équation sont exactement les
λ tel que la fonction t 7→ eλt est solution de l’équation différentielle (2)

Supposons donc que

λn + a1λ
n−1 + ...+ an−1λ+ an =

r∏
j=1

(λ− λj)αj

où les λj sont deux à deux différents. Notons S l’espace des solutions de l’équation différentielle 2,
c’est à dire

S = {x ∈ C∞(R,C), tel que ∀t ∈ R : x(n)(t) + a1x
(n−1)(t) + ...+ an−1x

′(t) + anx(t) = 0}.
Introduisons l’endomorphisme D de C∞(R,C) défini par

D(x) = x′ =
dx

dt
qui à une fonction associe sa dérivéee. On a donc

S = ker(Dn + a1D
n−1(t) + ...+ an−1D + anI) = kerχA(D).

Le lemme des noyaux nous permet donc d’affirmer que

(3) S = ⊕rj=1 ker(D − λjI)αj

Pour ζ ∈ C, on note Mζ l’endomorphisme de C∞(R,C) défini par (Mζx)(t) = eζtx(t), c’est l’en-
domorphisme de multiplication par la fonction t 7→ eζt. C’est un endomorphisme inversible dont
l’inverse est M−ζ . De plus la régle de dérivation du produit de deux fonctions montre que

(D − ζI) = MζDM−ζ
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c’est à dire que pour x ∈ C∞(R,C) on a la relation

d

dt

(
e−ζtx(t)

)
= e−ζt (x′(t)− ζx(t)) .

On en déduit donc que
(D − ζI)α = MζD

αM−ζ

et que

x ∈ ker(D − ζI)α ⇔ DαM−ζx = 0

⇔ dα

dtα
M−ζx = 0

⇔M−ζx ∈ Cα−1[t]

Ceci équivaut également à l’existence d’une fonction P polynomiale de degré inférieure à α− 1 telle
que pour tout t

x(t) = P (t)eζt.

Grâce à la décomposition 3, on a montré le théorème suivant :

Théorème 3.2. Soit a1, ..., an des nombres complexes.À l’équation différentielle

x(n)(t) + a1x
(n−1)(t) + ...+ an−1x

′(t) + anx(t) = 0

on associe son l’équation caractéristique

λn + a1λ
n−1 + ...+ an−1λ+ an = 0.

Si λ1, ..., λr sont les racines distinctes de l’équation caractéristique et α1, .., αr leurs multiplicités,
c’est à dire que

λn + a1λ
n−1 + ...+ an−1λ+ an =

r∏
j=1

(λ− λj)αj .

Alors les solutions de cette équation différentielle sont de la forme

x(t) =
r∑
j=1

Pj(t)e
λjt

où Pj est un polynôme à coefficients complexes de degré inférieure à αj − 1

Lorsque les coefficients a1, ..an sont réels, les solutions de cette équation qui sont à valeurs réelles
sont obtenues en prenant les parties réelles des solutions trouvées si dessus.

4. EXERCICES SUR LES ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

4.1. Questions de cours.

Exercice 1. Le théorème de Cauchy-Lipschitz linéaire.

a) Enoncer et démontrer le théorème de Cauchy-Lipschitz pour les systèmes linéaires d’ordre 1 :

(4) Y ′(t) = A(t)Y (t) +B(t), Y (t0) = Y0,

où A(t) ∈Mn(R), B(t) ∈ Rn et t ∈ I intervalle de R
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b) On appelle équation homogène associée à (1), l’équation sans second membre :

(5) Y ′(t) = A(t)Y (t).

Que peut-on dire de l’ensemble des solutions de l’équation homogène (2)?
c) Si τ ∈ I , que dire que l’application evτ qui à une solution associe sa valeur au temps τ ?
d) Quelle est la structure de l’ensemble des solutions de l’équation générale (1) lorsque l’on ne fixe

pas de condition initiale?
e) Enoncer la méthode de variation des constantes.
f) Implémenter la méthode sur les équations différentielles du type 1

ay′′(t) + by′(t) + cy(t) = f(t)

où a 6= 0.
g) Résoudre de cette façon l’équation différentielle y′′(t) + y(t) = cos(t).

Exercice 2. Résolvante.
On considère le système différentiel linéaire :

(6) Y ′(t) = A(t)Y (t) +B(t), Y (t0) = Y0,

où A(t) ∈ Mn(R), B(t) ∈ Rn et t ∈ I intervalle de R. On se place sous les conditions du théorème
de Cauchy-Lipschitz linéaire.
a) Donner la définition de la résolvante (notée R(t, t0)) de A(t)?
b) Quel est le lien avec la solution de l’équation (3)?
c) En général, sait-on calculer facilement la résolvante? Donner des cas où le calcul est aisé.
d) Montrer que, ∀s, t, u ∈ I ,

R(s, u) = R(s, t) ◦R(t, u).

e) En déduire que R(t, s) est une matrice inversible et déterminer son inverse.

4.2. Equations linéaires scalaires du premier ordre.
Exercice 3.

(1) Résoudre les équations différentielles d’ordre 1 suivantes :

y′ + 2y = 4x2 , y′ − 2y = 2x3 + x , y′ − y = x+ ex ,

y′ + y = 2x e−x , y′ + y = sinx+ 3 sin 2x.

(2) Où il faut faire attention à l’intervalle de définition des solutions.
Intégrer les équations suivantes :

(7) (2 + x)y′ = 2− y , 3xy′ − 4y = x,

(8) xy′ + y = cosx , (1 + x)y′ + y = (1 + x) sinx.

Pour chaque équation, on cherchera si certaines solutions peuvent se prolonger sur R tout
entier.

1. Si y1 et y2 sont des solutions de l’équation différentielle homogène ay′′(t) + by′(t) + cy(t) = 0 telles que
(y1, y2) forment une base de l’espace des solutions cette équation différentielle homogène, alors on trouve les solu-
tions de l’équation différentielle ay′′(t) + by′(t) + cy(t) = f(t) sous la forme t 7→ A(t)y1(t) + B(t)y2(t) avec
∀t : A′(t)y1(t) +B′(t)y2(t) = 0.



6

Exercice 4. On introduit A ∈ C0(]0,+∞[,M2(R)) défini par

A(t) =

(
1
t

1
1 1

t

)
.

On étudie ici les solutions x ∈ C1(]0,+∞[,R2) de l’équation différentielle

(♥) ẋ(t) = A(t)x(t)

C’est à dire les fonctions t ∈]0,+∞[ 7→ (u(t), v(t)) qui vérifient le système différentiel

(♥)

{
u̇(t) = 1

t
u(t) + v(t)

v̇(t) = u(t) + 1
t
v(t)

a) Montrer que les fonctions x1, x2 : ]0,+∞[→ R2 définies par

x1(t) =

(
tet

tet

)
, x2(t) =

(
te−t

−te−t
)

forment une base de l’espace des solutions de (♥).

b) Trouver les solutions de l’équation différentielle{
u̇(t) = 1

t
u(t) + v(t) + t

v̇(t) = u(t) + 1
t
v(t)

à l’aide de la méthode de variations des constantes.

Exercice 5. problème.

a) Préambule.
On considère l’équation différentielle scalaire du premier ordre :

(E0) y′(t) = −a(t) y(t),

où a : R→ [0,+∞[ est continue et telle que
∫ +∞

0

a(t) dt soit divergente.

Vérifier que toute solution y(t) de (E0) tend vers 0 lorsque t→ +∞.

Généralisation en dimension supérieure.
On munit Rn du produit scalaire canonique < , >, et on note || . || la norme associée à ce produit
scalaire. On rappelle qu’une matrice réelle symétrique A est négative si, pour tout X ∈ Rn,
< AX,X > ≤ 0.

On considère le systàme différentiel :

(E) X ′(t) = A(t) X(t),

On suppose que l’application t → A(t) est continue sur R et que la matrice A(t) est symétrique
et négative.

b) Soit X(t) une solution de (E). Montrer que l’application f : R→ R définie par :

f(t) =|| X(t) ||2,
est décroissante, où || . || désigne la norme associée au produit scalaire.
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c) En déduire que lim
t→+∞

f(t) existe.

d) Soit X1(t) et X2(t) deux solutions de (E). En utilisant la question précédente, montrer que :

lim
t→+∞

< X1(t), X2(t) > existe.

Indication : on pourra utiliser l’identité de polarisation :

4 < X, Y > = || X + Y ||2 − || X − Y ||2 , ∀X, Y ∈ Rn.

e) Soit (X1(t), ..., Xn(t)) une base de l’ensemble des solutions de (E). On note R(t) la matrice
de Mn(R) dont les vecteurs colonnes sont les Xi(t). Déduire de ce qui précàde qu’il existe une
matrice M telle que

lim
t→+∞

TR(t) R(t) = M,

où TR(t) désigne la transposée de R(t).

f) Soit X(t) une solution de (E). Montrer qu’il existe X0 ∈ Rn tel que X(t) = R(t) X0.

g) On suppose maintenant que :

lim
t→+∞

∫ t

0

tr(A(s)) ds = −∞.

(a) En utilisant une formule du cours, montrer que :

(9) lim
t→+∞

det R(t) = 0.

(b) En déduire que det M = 0.

(c) Montrer qu’il existe une solution X(t) de (E) non identiquement nulle et qui tend vers 0
lorsque t→ +∞.

Indication : on utilisera la question (e) avec un choix judicieux pour X0.

Exercice 6. Un peu d’algèbre linéaire élémentaire.
SoitE = C∞(]0,+∞[) ; R) et soit a 6= 0. On définit l’application Ta : E → E par Ta(y) = y+axy′.

(1) Montrer que Ta est un endomorphisme sur E et calculer son noyau.

(2) Soient a, b non nuls. Déterminer le noyau de Ta ◦ Tb et écrire l’ équation différentielle du
second ordre que vérifient les éléments de ce noyau.

(3) Trouver les éléments de E satisfaisant les équations différentielles :

y + 8xy′ + 4x2y′′ = 0 ,

y + 2xy′ +
1

2
x2y′′ = 0
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4.3. Systèmes différentiels linéaires à coefficients non constants.

Exercice 7. On considère le système différentiel homogène (E0) :

(x′, y′) =

(
tx− y
1 + t2

,
x+ ty

1 + t2

)
, t ∈ R.

(1) Vérifier que (1, t) et (t,−1) sont solutions de (E0).

(2) En déduire l’ensemble des solutions de (E0).

(3) Résoudre le système différentiel

(x′, y′) =

(
tx− y
1 + t2

,
x+ ty

1 + t2

)
+

(
− t

t2 + 1
, − 1

t2 + 1

)
, t ∈ R.

Exercice 8. On considère le système différentiel homogène (E0) :

(x′, y′) = (2tx− y, x+ 2ty) , t ∈ R.

a) Diagonaliser la matrice

A(t) =

(
2t −1
1 2t

)
b) Que remarque-t-on sur la matrice de passage?

c) Résoudre le système différentiel (E0).

d) Calculer la résolvante R(t, 0) et vérifier sur cet exemple la formule du cours :

det(R(t, 0)) = exp

(∫ t

0

tr(A(s)) ds

)
.

4.4. Systèmes différentiels à coefficients constants.

Exercice 9. a) Lemme de Gronwall Ici ‖ ‖ est une norme sur Rn. Soit y : [0, T ] → Rn une fonction
C1 telle que pour tout t ∈ [0, T ] :

‖y′(t)‖ ≤ a‖y(t)‖+ b

Démontrer que pour tout t ∈ [0, T ] :

‖y(t)‖ ≤ (‖y(0)‖+ bt) eat.

b) Soit A une matrice réelle carrée n× n et

S = {x ∈ C1(R,Rn), ẋ = Ax}

Démontrer que S est un espace vectoriel et que ev : S → Rn définie par ev(x) = x(0) est une
application linéaire injective. En déduire que dimS ≤ n.

c) On suppose que A est diagonalisable sur R. En déduire que dimS = n en explicitant une base de
S.

d) Faire de même lorsque A est diagonalisable sur C.
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Exercice 10. Soit A une matrice carrée réelle 2 × 2. Si δ est un nombre réel, on note sδ et cδ les
fonctions définies sur R par

sδ(t) =
+∞∑
k=0

δkt2k+1

(2k + 1)!
et cδ(t) =

+∞∑
k=0

δkt2k

(2k)!

C’est à dire ce sont des solutions de l’équation différentielle y′′ + δy = 0 et

sδ(0) = 0, s′δ(0) = 1 et cδ(0) = 1, c′δ(0) = 0.

Posons δ = detA−
(
TrA
2

)2. Démontrer que

etA = e
TrA
2
t (sδ(t)A+ cδ(t)I2)

Exercice 11. On considère la matrice

A =

 1 1 −1
1 −1 1
−1 1 1


(1) Montrer que A est diagonalisable.

(2) Résoudre le système différentiel X ′ = AX .

Exercice 12. On considère la matrice

A =

 −3 3 2
−4 4 2
−4 3 3

 ,

dont les valeurs propres sont λ1 = 1 et λ2 = 2. Résoudre le système différentiel X ′ = AX .

Exercice 13. On considère la matrice

A =

 0 1 0
0 0 1
1 −3 3


a) La matrice A est-elle diagonalisable?

b) On pose Nk = ker (A− I)k. Déterminer N1, N2, N3.

c) Déterminer un supplémentaire de N2 dans N3.

d) En déduire une trigonalisation de A.

e) Résoudre le système différentiel X ′ = AX .

4.5. Equations différentielles linéaires du second ordre.

Exercice 14. Très facile !
Intégrer les équations du second ordre suivantes :

y′′ − 2y′ + 2y = xex , y′′ − 4y′ + 4y = 2(x− 2)ex.

y′′ − 4y′ + 13y = 10 cos(2x) + 25 sin(2x) , y′′ + y = cotx.
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Exercice 15. On souhaite résoudre sur ]0,+∞[, l’équation différentielle du second ordre :

(E) (x+ 1)y′′ − y′ − xy = 0.

(1) Chercher une solution de (E) sous la forme eλx, λ ∈ R.

(2) Déterminer toutes les solutions de (E).

Exercice 16. La méthode de Lagrange.
On considère l’équation différentielle linéaire du second ordre :

(E) (t2 + 1)x′′ − 2x = 0.

(1) Déterminer une solution x1(t) de (E) sous la forme d’un polynÙme.

(2) Chercher une seconde solution de (E) sous la forme x2(t) = λ(t)x1(t) où λ(t) est de classe
C1.

(3) En déduire l’ensemble des solutions de (E).

Exercice 17. Résolution avec les séries entières.
On considère l’équation différentielle du second ordre :

xy′′ + 3y′ − 4x3y = 0

Montrer qu’il existe une unique solution développable en série entière au voisinage de 0, y(0) = 1 et
reconnaître y comme expression de fonctions élémentaires.

5. EXERCICES POUR COMPRENDRE ET APPLIQUER LE THÉORÈME DE CAUCHY-LIPSCHITZ

5.1. Questions de cours.

Exercice 18. théorème de Cauchy-Lipschitz global.
Soit I un intervalle ouvert et f : I × Rm → Rm une application continue. On souhaite résoudre
l’équation différentielle (problème de Cauchy) x′(t) = f(t, x(t)) avec la condition initiale x(t0) = x0
où (t0, x0) ∈ I × Rm.

(1) Enoncer et démontrer le théorème de Cauchy-Lipschitz global.

(2) On considère l’équation différentielle x′(t) = sin(t+x(t)). Montrer que pour toute condition
initiale x(t0) = x0, il existe une unique solution définie sur R tout entier.

Exercice 19. Soit U ⊂ R× Rm un ouvert et soit f : U → Rm une application continue.

(1) Donner la définition de "f est localement lipschitzienne (LL) par rapport à x".

(2) Montrer que f : R× R→ R où f(t, x) = tx2 est (LL) par rapport à x.

(3) Montrer que f : R× R→ R où f(t, x) = t
√
| x | n’est pas (LL) par rapport à x.

Exercice 20. On considère l’équation différentielle, dite de Clairaut,

x(t) = tx′(t)− (x′(t))2

2
.

(1) Montrer que les droites x(t) = Ct− C2/2 sont des solutions de cette équation différentielle.

(2) Montrer que la parabole x(t) = t2/2 est également solution de cette équation différentielle.
Puis montrer que toutes les droites de la question précédente sont tangentes à cette parabole.
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(3) Expliquer ce qui fait que le théorème de Cauchy-Lipschtitz ne s’applique pas ici.

Exercice 21. Résultat à connaître impérativement.
Soit U ⊂ R × Rm un ouvert et soit f : U → Rm une application de classe C1. Montrer que f est
(LL) par rapport à x.
Indication : on pourra utiliser l’inégalité des accroissements finis.

Exercice 22. Le théorème de Cauchy-Lipschitz local.
Soit U ⊂ R× Rm un ouvert et soit f : U → Rm une application continue, (LL) en x.

(1) Enoncer et démontrer le théorème de Cauchy-Lipschitz local.

(2) Qu’appelle-t-on solution maximale et que peut-on dire de l’intervalle de définition d’une so-
lution maximale?

(3) Le graphe (t, x(t)) d’une solution maximale du problème de Cauchy x′ = f(t, x), x(t0) = x0
est appelé courbe intégrale. Montrer que l’ensemble des courbes intégrales lorsque (t0, x0)
décrit U constitue une partition de U .

5.2. Exercices d’applications.

Exercice 23. Déterminer les solutions maximales des problèmes de Cauchy (scalaires) suivants :

(1) x′ = x2 , x(t0) = x0.

Indication : on pourra distinguer les cas x0 = 0, x0 > 0, x0 < 0.

(2) x′ = 1 + x2 , x(t0) = x0.

Exercice 24. On considère le problème de Cauchy scalaire x′ = x(x− 1) avec x(t0) = x0.

(1) Déterminer les solutions maximales de ce problème lorsque x0 = 0 ou x0 = 1.

(2) On suppose maintenant que x0 est différent de 0 ou 1.

(a) Montrer que toute solution maximale x(t) ne prend jamais la valeur 0 ou 1. En déduire
que x(t) appartient, ou bien à ]−∞, 0[, ou bien à ]0, 1[, ou bien à ]1,+∞[.

(b) Déterminer les solutions maximales de ce problème de Cauchy, (on distinguera les cas
x0 < 0, x0 ∈]0, 1[, x0 > 1).

Exercice 25. On considère le problème de Cauchy scalaire :

x′(t) =
3

2
| x(t) |

1
3 , x(0) = 0.

(1) Trouver une solution évidente.

(2) Montrer que la fonction x(t) = t
√
| t | est de classe C1 sur R et vérifier qu’elle est solution

de ce problème de Cauchy.

(3) Est-ce contradictoire avec le théorème de Cauchy-Lipschitz?

Exercice 26. Equation de Bernoulli.
On veut résoudre l’équation différentielle d’inconnue y : I → R, I ⊂]0,+∞[,

y′ − 1

x
y +

ex

x
y2 = 0 , y(x0) = y0,

où (x0, y0) ∈ I × R.
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(1) En posant z = 1
y
, montrer que, formellement, l’équation précédente se ramène à une équation

différentielle linéaire du premier ordre que l’on résolvera.

(2) Nous voulons maintenant résoudre rigoureusement l’équation (E).

(a) Montrer que (E) admet une unique solution maximale et que l’intervalle de définition de
cette solution maximale est ouvert.

(b) Quelle est cette solution lorsque y0 = 0?

(c) On suppose y0 6= 0 et on pose λ = x0
y0
− ex0 .

(i) Montrer que si λ ≥ −1, la solution maximale est définie sur ]0,+∞[.

(ii) Déterminer la solution maximale de (E) lorsque λ < −1, (on distinguera les cas
y0 > 0 et y0 < 0).

6. CONTRÔLE DU TEMPS D’EXISTENCE

6.1. Temps d’existence des solutions : critères de complétude.

Exercice 27. Le théorème des bouts.
Soit x(t) : ]T−, T+[→ R la solution maximale de l’équation différentielle du premier ordre avec la
condition initiale :

x′(t) = x2(t)− t , x(0) = 0.

(1) Montrer que x(t) = o(t) au voisinage de t = 0. En déduire que x2(t) < t pour t ∈]0, δ[ pour
un δ suffisamment petit.

(2) Montrer que l’on a en fait x2(t) < t pour t ∈]0, T+[.
Indication : on pourra faire un dessin.

(3) En déduire que T+ = +∞.

Exercice 28. Intégrales premières.
Soit U un ouvert de Rm et soit f : U → Rm une application (LL). On considère le système différentiel
autonome x′(t) = f(x(t)), x(t0) = x0. On dit que l’application h : U → R de classe C1 est une
intégrale première si la fonction t→ h(x(t)) est constante.

(1) Montrer qu’une fonction h : U → R est une intégrale première si et seulement si∇h(x) ·f(x)
pour tout x ∈ U .

(2) On suppose que le système différentiel x′(t) = f(x(t)) possède une intégrale première telle
que ∀r ∈ R, h−1({r}) soit compact. Montrer que toute solution x(t) est définie sur R (on dit
que le champ f est complet).

(3) Montrer que le champ de vecteurs f défini sur R3 par f(x, y, z) = (y − z, z − x, x − y) est
complet. On pourra commencer par montrer que h(x, y, z) = x2 + y2 + z2 est une intégrale
première.

(4) Pouvait-on démontrer ce dernier résultat d’une autre façon?
Indication : on pourra vérifier que le champ f est uniformément lipschitzien.

Exercice 29. théorème de majoration a priori.
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Soit U un ouvert de Rm et soit f : U → Rm une application (LL). On considère le problème de
Cauchy autonome x′(t) = f(x(t)), x(t0) = x0. On suppose que x(t) vérifie une majoration a priori :

∀T > 0, ∃KT ⊂ U compact, ∀ | t |≤ T, x(t) ∈ KT .

On note x(t) la solution maximale définie sur ]T−, T+[ et on pose V = R × U ouvert de Rm+1. On
considère l’application g : V → Rm+1 définie par g(x0, x) = (1, f(x)).

(1) Vérifier que g est(LL).

(2) On considère le système différentiel autonome y′(t) = g(y(t)), y(t0) = (t0, x0). Déterminer
la solution maximale y(t) en fonction de x(t).

(3) On suppose que T+ < +∞ et soit T > T+. On pose K̃T = [−T, T ] × KT ⊂ V compact.
Montrer qu’il existe un t < T+ tel que y(t) sort du compact K̃T .

(4) Conclure.

Exercice 30. Soit X : Rn → Rn une application de classe C1 telle qu’il existe des constantes A et B
telles que pour tout x ∈ Rn alors

‖X(x)‖ ≤ a‖x‖+ b.

En se servant du lemme de Gronwall, démontrer que les solutions maximales de l’équation différen-
tielles

ẋ = X(x)

sont définies sur R.

Exercice 31. On note 〈 . 〉 le produit scalaire usuel sur Rn et on suppose que X : Rn → Rn est une
application de classe C1 telle qu’il existe des constantes A et B telles que pour tout x ∈ Rn alors

〈X(x), x〉 ≤ a‖x‖+ b.

En se servant du lemme de Gronwall, démontrer que les solutions maximales du problème de Cauchy

ẋ = X(x), x(0) = x0

sont définies sur R+. Énoncer une condition similaire pour les solutions du même problème de Cauchy
soient définies sur R−.

Exercice 32. Equation de Hamilton.
Soit V ∈ C2(R) un potentiel positif. On considère le système Hamiltonien sur R2 :

(q′(t), p′(t)) = (p(t),−V ′(q(t))), (q(t0), p(t0)) = (q0, p0).

(1) Montrer que l’énergie totale a(q, p) = 1
2
p2 + V (q) est une intégrale première du système.

(2) En utilisant le théorème de majoration a priori, montrer que la solution (q(t), p(t))est définie
sur R tout entier.

Exercice 33. On considère l’équation différentielle de Riccati

(R) x′(t) = 2t x(t) + x2(t) + t2 − 1,

avec la condition initiale x(0) = 1.

(1) Montrer qu’il existe une unique solution maximale x(t) définie sur un intervalle ]T−, T+[.
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(2) Soit x0(t) une solution particulière de (R). On pose y(t) = x(t)− x0(t).
Vérifier que y(t) est solution de l’équation différentielle de Bernoulli :

(B) y′(t) = 2(t+ x0(t)) y(t) + y2(t),

avec la condition initiale y(0) = 1− x0(0).
(3) Chercher une solution particulière de l’équation (R) de la forme x0(t) = at+ b o˘ a, b ∈ R.
(4) Montrer que y(t) ne s’annule jamais sur ]T−, T+[ et résoudre l’équation (B).
(5) En déduire la solution de (R) vérifiant x(0) = 1 et préciser l’intervalle ]T−, T+[.

Exercice 34. Soit F : R → R une application de classe C1. On suppose que ∀y ∈ R, F (y) > 0 et

que
∫ +∞

−∞

1

F (y)
dy est convergente. On considère le problème de Cauchy

x′(t) = F (x(t)) , x(t0) = x0 , avec (t0, x0) ∈ R2.

On notera ]T−, T+[ l’intervalle de définition de la solution maximale x(t) et on pose pour x ∈ R,

G(x) =

∫ x

x0

1

F (y)
dy.

(1) Montrer que G réalise une bijection de R sur un intervalle que l’on précisera.
(2) Montrer que G(x(t)) = t− t0.
(3) En déduire une expression de x(t) et expliciter ]T−, T+[

Exercice 35. Soit f : R → R une application k−lipschitzienne, (k > 0). On considère le problème
de Cauchy

(C) x′(t) = f(x(t)) , x(0) = x0.

(1) Quel est l’intervalle de définition ]T−, T+[ de la solution maximale?
(2) Déterminer la solution maximale lorsque f(x0) = 0.
(3) Le but de ce problème est de démontrer l’estimation suivante pour la solution maximale x(t) :

(E) | x(t)− x0 | ≤ | t | | f(x0) | ek|t| , ∀t ∈]T−, T+[.

Pour simplifier, on ne considèrera que le cas o˘ t > 0.
(a) Montrer que pour t ≥ 0, | ekt − 1 | ≤ kt ekt.
(b) Lorsque f(x) = kx, déterminer explicitement x(t) et vérifier que (E) est satisfaite.
(c) On se place désormais dans le cas général. Montrer que :

(1) | x(t)− x0 | ≤ t | f(x0) | +k
∫ t

0

| x(s)− x0 | ds.

(d) On pose G(t) = k

∫ t

0

| x(s)− x0 | ds e−kt. Ecrire l’inégalité (1) à l’aide de G(t) et en

déduire que :
G′(t) ≤ kt | f(x0) | e−kt.

(e) En déduire que :

G(t) ≤ | f(x0) |
(

1

k
(1− e−kt)− te−kt

)
.
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(f) En déduire l’estimation (E).

(4) A l’aide de (E), retrouver la réponse à la première question de cet exercice.

7. SUR LA STABILITÉ DES POINTS D’ÉQUILIBRES DES ÉQUATIONS DIFFÉRENTIELLES

7.1. Questions de cours.

Exercice 36. Notion de point d’équilibre.
Soit U ⊂ Rm un ouvert et soit f : U → Rm une application de classe C1. On considère le système
dynamique x′(t) = f(x(t)).

(1) Qu’appelle-t-on flot du champ de vecteur f ?

(2) Donner la définition de point d’équilibre.

(3) Donner la définition avec des quantificateurs de l’assertion suivante : x0 est un point d’équi-
libre stable.

(4) Quand dit-on que x0 est est point d’équilibre asymptotiquement stable?

Exercice 37.
On considère le système dynamique défini sur R2 par :

(x′, y′) = (−2y, x).

(1) Montrer que (0, 0) est un point d’équilibre stable.

(2) Est-il asymptotiquement stable?
Indication : on rappelle que H(x, y) = 1

2
x2 + y2 est une intégrale première du système.

Exercice 38. On considère le système dynamique défini sur R2 par :

(x′, y′) = (−x, y).

Montrer que (0, 0) est un point d’équilibre instable.

Exercice 39. On considère le système dynamique défini sur R2 par :

(x′, y′) = (y,−x+ αy) , α ∈ R.
(1) Déterminer le point d’équilibre.

(2) Montrer que le point d’équilibre est asymptotiquement stable si et seulement si α < 0.
Indication : on pourra étudier les valeurs propres de la matrice associée à ce système.

(3) Dessiner les portraits de phase pour α = 0 et α = 2

7.2. Le théorème de Liapounov.

Exercice 40. Question de cours.
Enoncer et démontrer le théorème de Liapounov.
On considère le sytéme différentiel non linéaire sur R3 :

(x′, y′, z′) = (2y(z − 1),−x(z − 1),−z3).
(1) Déterminer l’unique point d’équilibre.

(2) Chercher une fonction de Liapounov de la forme L(x, y, z) = ax2+by2+cz2 avec a, b, c ≥ 0.
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(3) Conclusion.

Exercice 41. Fonction de Liapounov pour un système hamiltonien.
Soit V ∈ C2(R) un potentiel. On considère le système hamiltonien sur R2 :

(q′(t), p′(t)) = (p(t),−V ′(q(t))), (q(t0), p(t0)) = (q0, p0).

(1) Vérifier que les points d’équilibre sont de la forme (x0, 0) où x0 doit satisfaire une hypothése.

(2) On suppose que V (x) > V (x0) pour x 6= x0 dans un voisinage de x0 (puits de potentiel).
Montrer que (x0, 0) est stable. Ce point est-il asymptotiquement stable?
Indication : on pourra utiliser une intégrale première du système pour construire une fonction
de Liapounov.

Exercice 42. Linéarisé d’un système différentiel.

(1) Soit U ⊂ Rm un voisinage ouvert de l’origine. On définit l’application f : U → Rm de classe
C1 par f(x) = Ax + f1(x). On suppose que les valeurs propres de la matrice A ∈ Mm(R)
sont de parties réelles strictement négatives et que f1(x) = o(|| x ||). On considère le système
différentiel x′(t) = f(x(t)).

(2) Vérifier que l’origine est un point d’équilibre.

(3) On définit la fonction

L(x) =

∫ +∞

0

|| etAx ||2 dt.

(4) Montrer que L(x) existe et que la fonction L est différentiable.

(5) Montrer que ∀h ∈ R3,

∇L(x) · h = 2

∫ +∞

0

etAx · etAh dt.

(6) Montrer que L est une fonction de Liapounov.

(7) Conclusion.

Exercice 43. Soit f : U → Rm ouvert quelconque, f de classe C1 et soit x0 ∈ U un point d’équilibre.
On suppose que la différentielle de f au point x0 n’a que des valeurs propres de parties réelles
strictement négatives. Montrer que x0 est asymptotiquement stable.

Exercice 44. On étudie le système différentielle (une modification du modéle de Lotka-Volterra) :{
ẋ = x(1− y − ax)
ẏ = y(x− 1)

(1) Déterminer les points d’équilibres de ce système en fonction du paramétre a ∈ R.

(2) Discuter en fonction de a la stabilité asymptotique de ces points d’équilibres.
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8. EXEMPLE D’ÉTUDE QUALITATIVE D’ÉQUATIONS DIFFÉRENTIELLES

Exercice 45. Le pendule : Le mouvement d’un pendule de longueur ` dans un plan vertical est
(` sinx(t), −` cosx(t)) où l’angle x(t) est solution de l’équation différentielle

d2

dt2
x = −K sinx

et où K = g/` est une constante positive.
Posant v = d

dt
x, l’équation est équivalente à

d
dt
x = v

d
dt
v = −K sinx

ou encore

(∗) d

dt
(x, v) = F (x, v).

avec F (x, v) = (v,−K sinx). On appellera énergie la fonction

E(x, v) =
v2

2
−K cosx

(1) Vérifier que les zéros de F sont les (kπ, 0), k parcourant Z. À quoi correspondent-ils?

(2) Les trajectoires du pendule dans l’espace des états du pendule (x, v) (on dit plutÙt espace des
phases) sont des courbes paramétrées par le temps t.

Montrer, quand elles ne sont pas réduites à un point, qu’elles admettent une tangente en
chaque état (x(t0), v(t0)).

(3) Verifier que
(
∂

∂v
E(x, v), − ∂

∂x
E(x, v)

)
= F (x, v), et que E est une intégrale première du

mouvement.

(4) Étudier E : symétries, périodicités, minimum. Montrer que les ((2k + 1)π, 0), k ∈ Z, sont
des points selles de E : minimum local dans une direction et maximum local dans une autre
direction.

(5) Déduire de la question précedente que le pendule a seulement deux points d’équilibres (où
le pendule ne bouge pas) S = (0,−R) et N = (R, 0). Expliquer le terme ’point d’équilibre
stable’ pour S et ’point d’équilibre instable’ pour N .

(6) Dessiner les courbes de niveau de E : ΓC = {(x, v) ∈ R2; E(x, v) = C}, en distinguant les
cas suivants

(a) C = −K.

(b) |C| < K : montrer que ΓC est alors une courbe fermée convexe dont on précisera les
tangentes aux points des axes.

(c) C = K : montrer que ΓK est la courbe d’équation v = ±2
√
K cos(x/2).

(d) C > K.
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Pour une condition initiale (x0, v0), par convention à l’instant t = t0 = 0, on note E0 =
E(x0, v0). On veut étudier la trajectoire des solutions maximales (x(t), v(t)) dans chaque cas.
On pourra admettre qu’elles sont définies sur R en entier 1, et on s’aidera du dessin pour les
questions les plus difficiles.

(7) Indiquer le sens de parcours des trajectoires sur les lignes de niveau de E.

(8) Montrer qu’une trajectoire non constante ne passe jamais par un des points (kπ, 0).

(9) |E0| < K.

(a) Montrer que le pendule a un mouvement périodique de période donnée par l’intégrale
convergente

T = 4

∫ X

0

dx√
2(E0 +K cosx)

=

√
2

K

∫ X

−X

dx√
cosx− cosX

où X annule E0 +K cosx.

(b) Vu l’utilisation du pendule pour mesurer le temps, on aimerait savoir dans quel sens
varie la période en fonction de E0. Montrer que la période tend vers l’infini quand E0

tend vers K.

(10) E0 = K.

(a) Montrer que la loi du mouvement est donnée, implicitement, par la formule suivante :

t− t0 =

∫ x(t)

x0

dx√
2K(1 + cos x)

.

(b) En déduire que la trajectoire décrit tout un arc de ΓK , mais en un temps infini.

(c) Décrire le mouvement du pendule dans ce cas.

(11) E0 > K.

(a) Montrer que la trajectoire décrit toute une composante connexe de ΓE0 .

(b) En déduire que le pendule fait des tours complets ad lib.

Exercice 46. On étudie ici les solutions de l’équation différentielle
dy(t)

dt
= y2(t)− t.

a) Soit (t0, y0) ∈ R2, démontrer que le problème de Cauchy{
ẏ(t) = y2(t)− t
y(t0) = y0

a une unique solution maximale.
On considère donc y : J → R une solution maximale de l’équation différentielle ẏ(t) =

y2(t)− t.
On considère les ensembles du plan où la solution qui y passe à une dérivée nulle :

P0 = {(t, y) ∈ R2, y2 = t},

1. cette question est traitée dans le livre d’Arnold, Equations différentielles ordinaires, 2.12.7. Elle peut aussi se
déduire de l’exercice 29
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ainsi que ceux où la dérivée est de signe fixé :

P+ = {(t, y) ∈ R2, y2 ≥ t}, P− = {(t, y) ∈ R2, y2 ≤ t},
et le lieu des points du plan où la solution qui y passe à une dérivée seconde nulle :

C0 = {(t, y) ∈ R2, 2y3 − 2ty − 1 = 0},
ainsi que ceux où la dérivée seconde est de signe fixé :

C+ = {(t, y) ∈ R2, 2y3 − 2ty − 1 ≥ 0},

C− = {(t, y) ∈ R2, 2y3 − 2ty − 1 ≤ 0}.
b) Dessiner les ensembles P0, C0 et indiquer où se trouve les ensembles P±, C±.

c) Montrer que t ∈]0,+∞[ 7→ β(t) =
√
t est une barriére supérieure de notre équation différen-

tielle ; et montrer que t ∈]0,+∞[7→ α(t) = −
√
t est une barriére inférieure de notre équation

différentielle.

d) Démontrer que si (t0, y(t0)) ∈ C+ alors pour t ≥ t0, on a (t, y(t)) ∈ C+. 2

e) Démontrer que si (t0, y(t0)) ∈ C− alors pour t ≤ t0, on a (t, y(t)) ∈ C−.
On étudie maintenant le futur de la solution maximale :

f) On suppose qu’il y a t0 ∈ J telle que (t0, y0) ∈ P+.

i) Démontrer que [t0,+∞[⊂ J et que pour tout t ≥ t0 on a y(t) ∈ P+.

ii) Montrer que y est décroissante sur [t0,+∞[.

iii) Démontrer qu’il y a forcément un t1 ≥ t0, tel que (t1, y(t1)) ∈ C+ : 3

iv) On sait donc que sur [t1,∞[, y est une fonction décroissante, convexe, y′ est donc croissante.
Montrer que lim

t→+∞
y′(t) = 0. 4

v) Montrer que limt→+∞ y(t) +
√
t = 0.

g) On suppose maintenant qu’il y a t0 ∈ J tel que (t0, y(t0)) ∈ C+, et que y(t0) > 0. On sait donc
que sur l’intervalle J ∩ [t0,+∞[, y est convexe, positive, croissante.

i) Démontrer qu’il y a des constantes a > 0, b ∈ R telles que sur J ∩ [t0,+∞[ :

y(t) ≥ at+ b.

5

ii) Soit ω = sup J . Montrer que limt→ω y(t) = +∞. 6

iii) En déduire qu’il y a des constantes α > 0 et β telles que sur J ∩ [t0,+∞[

y′(t) ≥ y2(t)− αy(t)− β.
2. Pour cela démontrer que si (τ, y(τ)) ∈ ∂C+ = C0 i.e. si y′′(τ) = 0 alors y′′′(τ) = 2(y2(τ)− τ)2 > 0 ; c’est à dire

qu’alors y′′(t) > 0 pour t > τ et assez proche de τ .
3. si cela n’était pas vrai on aurait que sur ]t0,∞[, y serait concave, décroissante donc en dessous de ces tangentes :

montrer que ceci est absurde. (on pourra faire un dessin pour s’aider à raisonner)
4. On rappelle que |y(t)| ≤

√
t

5. Il faut utiliser la convexité de y
6. distinguer deux cas : le cas où ω est fini et celui où ω = +∞
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iv) Démontrer qu’il y a T > t0 telle que pour t ∈ J ∩ [T,+∞[∫ y(t)

y(T )

dy

y2 − αy − β
≥ t− T.

v) En déduire que ω est fini et que limt→ω y(t) = +∞.

On étudie maintenant le passé de la solution maximale :
h) On veut montrer qu’il y a forcément un t0 ∈ J telle que (t0, y(t0)) ∈ C−. Pour cela on suppose

que pour tout t ∈ J , (t, y(t)) ∈ C+.

i) On a donc soit y(t) > 0 pour tout t soit y(t) < 0 pour tout t. Montrer que l’on a forcément
y(t) > 0 pour tout t. 7

ii) y est donc une fonction positive, croissante, convexe. Montrer que inf J = −∞.

iii) Montrer que limt→−∞ y
′(t) = +∞. En déduire une absurdité.

i) Soit donc t0 ∈ J , telle que (t0, y(t0)) ∈ C−. On sait donc que pour tout t ≤ t0 alors (t, y(t)) ∈ C− ;
i.e. y est concave sur J∩]−∞, t0]
(a) Démontrer qu’il y a un t1 ≤ t0 telle que y′(t1) > 0.

(b) On sait alors que sur J∩] − ∞, t1], y est croissante et concave. Démontrer qu’il y a des
constantes a > 0, b ∈ R telles que sur J ∩ [t0,+∞[ :

y(t) ≤ at+ b

(c) Soit α = inf J . Montrer que limt→α y(t) = −∞. 8

(d) En déduire qu’il y a des constantes c > 0 et d telles que sur J ∩ [t0,+∞[

y′(t) ≤ y2(t)− cy(t)− d.

(e) Démontrer qu’il y a T ≤ t1 telle que pour t ∈ J∩]−∞, T ]∫ y(T )

y(t)

dy

y2 − cy − d
≤ T − t.

(f) En déduire que α est fini et que limt→α y(t) = −∞.

j) Représenter sur un dessin vos résultats.

Exercice 47. Modèle Proie-Prédateur de Lotka-Volterra On étudie l’équation différentielle

(LV )


d
dt
x = x(a− by)

d
dt
y = y(−c+ dx)

où a, b, c, d sont des constantes strictement positives.

a) Démontrer que pour tout (x0, y0) ∈ R2 alors il existe une unique solution maximale de l’équation
différentielle (LV ) telle que x(0) = x0 et y(0) = y0

b) Démontrer que la solution maximale de cette équation partant en t = 0 de (x0, y0) où x0 > 0 et
y0 > 0 reste dans le quart de plan ouvert D := {(x, y) ∈ R2; x > 0 et y > 0 }.

7. Montrer que sinon sur un intervalle J ∩ [0, t0], y reste dans un compact
8. distinguer deux cas : le cas où α est fini et celui où α = −∞
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c) Préciser les points d’équilibre de l’équation différentielle (LV ).

d) Montrer que la fonction H(x, y) = dx+ by− c ln(x)− a ln(y) est une intégrale première. Étudier
les lignes de niveau de H et démontrer que les solutions maximales de l’équation différentielle
(LV ) partant en t = 0 d’un point de D sont définie sur R.

e) On décompose le quart de plan en le découpant le long des droites y = a/b et x = c/d :

D−,− = {(x, y) ∈ D, x < c/d et y < a/b}
D−,+ = {(x, y) ∈ D, x < c/d et y > a/b}
D+,− = {(x, y) ∈ D, x > c/d et y < a/b}
D+,+ = {(x, y) ∈ D, x > c/d et y > a/b}.

Démontrer qu’une solution maximale de l’équation différentielle (LV ) rentrant dans un de ces
ouverts doit en sortir.

f) Démontrer que les solutions maximales de l’équation différentielle (LV ) sont périodiques.


