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Chapitre 1 : Notions affines

I_ Espaces affines dans R"

Définition Une partie non vide & de R™ est un espace affine sl existe un élément A de & tel que l’ensemble
Esx={M—-A/M € &}

soit un sous-espace vectoriel de R™.

Lemme 1 Soit & un espace affine dans R™ et A € & tel que E4 soit un sous-espace vectoriel de R™. Alors,
pour tout élément B de &, on a
Ep=Es={Q—-P/P,Qe&}.

Démonstration.
e Soit 7 un élément de Ep etMegtelqueﬁzM—B. On a:

U=M-B=(M-A)+(A-B)=(M—-A) —(B-—A) e E,

car M — A, B— A sont dans F 4 et ce dernier est un sous-espace vectoriel de R™. Ainsi, Ep est inclus dans E4.

e Soit @ un élément de E4 et M € & tel que @ = M — A. 1l s’agit de

montrer que U € Eg, cest-a-dire de montrer qu’il existe N € & tel que M
U =N-B /
Si un tel N existe, il est nécessairement égal a B+ :soit donc N = B+ A

et montrons que N € &. On a : N

N-A=(N-B)+(B-A) =i+ (B-A) =(M—-A)+(B-A) e Eq /
B

car F4 est un sous-espace vectoriel de R™. Il existe donc P € & tel que
N—-A=P—Aetonobtient N=P € &.

e Ainsi, on a Ep = FE4 pour tout élément P de &. Puisque {Q — P/ P,Q € &} :Pué” Ep, on a bien
€

Es={Q-P/PQec &
O

Remarque : en pratique, pour montrer qu'une partie & de R™ est espace affine, on exhibe un élément A de &
et un sous-espace vectoriel F de R™ tel que & = A+ E:={A+ 4 /i € E}.

Notations et vocabulaire. Si & est un espace affine dans R™ :
e les éléments de & sont des points ;
e l'espace vectoriel E4(= Ep VB € &) est la direction de &, notée & ;
e les éléments de 2 sont des vecteurs; si P et @) sont deux points de &, le vecteur () — P est noté 1@

Remarque : si & est un espace affine dans R"”, alors, pour tout point A de &, on a
E=A+E={a+/T ¥}

Exemples.
1) {(z,y) € R? /3x — Ty = 5} est un espace affine (dans R?) de direction {(z,y) € R? /3z — Ty = 0}.
2) R™ est lui-méme un espace affine.

)
3) Plus généralement, tout sous-espace vectoriel de R™ est un espace affine de direction lui-méme.
)

4) Si A € R", alors & = {A} est un espace affine de direction {ﬁ}



6 CHAPITRE 1. NOTIONS AFFINES

Proposition 1.1 Soit & un espace affine dans R™.
1) Pour tout point A de &, on a ﬂ =0.
2) Pour tous points A, B et C de &, on a AB + BC = AC (relation de Chasles?).
3) Pour tous points A et B de &, on a E)l = —/@.
4) Pour tous points A et B de &, on a A—I—/ﬁ = B.

—
5) Pour tout point A de &, Uapplication M — AM est une bijection de & sur ?
6) Pour tous points A, B, C et D de &, on a : B

AB=CD < AC =BD. D

On dit dans ce cas que ABDC' est un parallélogramme.
c

Démonstration. il n’y a aucune difficulté : ces propriétés découlent immédiatement du fait que P@ =Q-P
dans R et leur démonstration est laissée en exercice.
O

Définition La dimension d’un espace affine est la dimension de sa direction.

Ainsi, un sous-espace affine de dimension nulle est réduit a un point.
Un sous-espace affine de dimension 1 est appelé une droite (affine).
Un sous-espace affine de dimension 2 est appelé une plan (affine).

I1_ Propriétés des sous-espaces affines

a) Sous-espaces affines

Définition Un sous-espace affine d’un espace affine & est une partie F de & qui est un espace affine dans
R™. Un hyperplan d’un espace affine & est un sous-espace affine de & de dimension dim & — 1.

Remarque : si % est un sous-espace affine d’un espace affine &, la direction ? de % est un sous-espace
vectoriel de & .

Proposition 1.2 Soit & un espace affine, A un point de & et F' un sous-espace vectoriel de ?
1l existe un unique sous-espace affine de & dirigé par F' et contenant A : il s’agit de

A+F:={A+i/icF}.

Démonstration. C’est une conséquence immédiate des définitions.
O

Proposition 1.3 Soit F et 9 deux sous-espaces affines d’un espace affine &.
1) Si } et ? sont supplémentaires dans ? (ie 2 = }@?}, alors Uintersection F NY est réduite a un point.
2) Si}:?, alors F =9 ou F NG =1).

Démonstration. 1) Fixons deux points A et B respectivement dans .7 et ¢. Le vecteur zﬁ se décompose
sous 1aforme1ﬁ=ﬁ+ﬁ'avecﬁ€ ? et U € ? Alors, si M = A+, on a :

A
— MeﬁcarAeyetJE?;
e oL . . . ? i
— M=B+BA+id=B—-(i+0)+d=B-vcYcarBeYetiiec¥.
Ainsi, M € . % N¥Y et cette derniére intersection est non vide. M
B v

1. Michel Chasles, mathématicien frangais, 1793-1880.
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I1 _ Propriétés des sous-espaces affines 7

Si maintenant N est un second point de % N¥ alors le vecteur M 23 est dans ? ﬂ?. Mais les deux sous-espaces

vectoriels ? et ? étant supplémentaires, cette intersection est réduite a {6} Par conséquent, on a M N = 0 et
donc N = M.

2) Supposons que .F NY # () et fixons un point A dans cette intersection. D’apres la proposition 1.2, il existe un

unique sous-espace affine de & contenant A et dirigé par ? = ? Puisque Z et ¢4 sont deux tels sous-espaces
affines, ils sont égaux.
O

Définition Deux sous-espaces affines d’un espace affine & sont dits paralleles s’ils ont méme direction.

b) Sous-espace affine engendré

Proposition 1.4 L’intersection d’une famille de sous-espace affines d’un espace affine & est soit vide, soit un
sous-espace affine de & .

Démonstration. Soit (%;);c; une famille de sous-espaces affines d’un espace affine & telle que % :zﬂlﬁi
1€

—
soit non vide et fixons un point A dans .#. On veut montrer que Fy := {AM /M e ZF } est un sous-espace
—
vectoriel de 2 Mais on a Fq z_ﬂlﬁi :
1€

— =
— 81 M € #, alors, pour tout i € I, M € %; donc AM € .%;;
H
— Siu E‘ﬁlﬁ} et M = A+ i, alors M est dans .%; pour tout i € I, c’est-a-dire que M € F et donc
1€
ey
=AM € Fyu.

L’intersection d’une famille de sous-espaces vectoriels étant encore un sous-espace vectoriel, ceci montre que F4

est un sous-espace vectoriel de & .
O

Définition Soit S une partie non vide d’un espace affine &. On appelle sous-espace affine de & engendré par
S le plus petit sous-espace affine de & contenant S : c’est lintersection des sous-espaces affines de & contenant
S d’aprés la propriété précédente. On le note (S).

Exemples. 1) Si A est un point de &, alors (A) = {A}.

2) Si A et B sont deux points distincts de &, alors (A, B) est la droite passant par A et dirigée par zﬁ Plus
généralement, nous avons la propriété suivante :

Proposition 1.5 Soit & un espace affine. Le sous-espace affine (Ao, ..., Ax) de & engendré par k + 1 points
Ag, A1, ..., A coincide avec le sous-espace affine de & contenant Ay et dirigé par Vect (AOAl, e AOAk).

—_—
Démonstration. Notons .Z le sous-espace affine de & contenant Ay et dirigé par F' := Vect (AoAl, e AoAk) :
F =Ao+ F.

—
e Puisque A; = Ag + AgA; € .F, F est un sous-espace affine de & contenant Ag, Ay, ..., Ag.

e D’autre part, si ¢ est un sous-espace affine de & contenant Ag, ..., Ax, sa direction contient les vecteurs
AgAq, ..., AgAy donc F C ? Par conséquent, on obtient # = Ag+ F C Ag+ ¥ =Y.

Ainsi, % est le plus petit sous-espace affine de & contenant Ag, A1, ..., Ap : F = (Ao, ..., Ak)-

S. Gervais L2 Géométrie affine et euclidienne 2014-2015



8 CHAPITRE 1. NOTIONS AFFINES

c) Repére cartésien

Définition 1) On dit que k + 1 points d’un espace affine & sont affinement indépendants si le sous-espace
affine qu’ils engendrent est de dimension k.
2) Un repere cartésien d’un espace affine & est la donnée d’un point Q (I’origine du repére) et d’une base de la

direction & .
Proposition-Définition Si (Q2; €1, ...,€,) est un repére cartésien d’un espace affine &, alors, pour tout point
n

M de &, il existe un unique n-uplet (aq, ..., ) dans R™ tel que M = Q + Z ;€.
i=1
Ces n nombres réels (ordonnés) sont appelés coordonnées cartésiennes de M dans le repére (Q; €1, ..., €5).

2 . 7 s — —
Démonstration. Les nombres réels ay, ..., o, sont les coordonnées du vecteur QM dans la base (€1, ..., €,,).
O
Exemples

1) Deux points distincts A et B engendrent une droite et (A4; zﬁ) en est un repere cartésien;
2) Trois points non alignés A, B, C engendrent un plan et (A4; E , zﬁ) en est un repere cartésien.

d) Orientation

E désigne un espace vectoriel réel de dimension finie et B I’ensemble des bases de E.
Notation : si by et bz sont deux bases de E, on notera Py, p, la matrice de passage de by a ba.

Fixons une base e de E. On note :
Bt ={ bases b de E telles que det Pop >0} et B~ ={ bases b de E telles que det Pep < 0}.
Lemme 2 On aBtNB- =0 et BTUB™ =B.

Démonstration. L’intersection est vide car un déterminant ne peux pas étre simultanément strictement positif
et strictement négatif. D’autre part, toute base est dans une de ces deux parties car le déterminant de la matrice
de passage entre deux bases n’est pas nul.

O

Lemme 3 Cette partition de B ne dépend pas du choiz de la base e.

Démonstration. Soit e’ une seconde base de E, {B'", B'~} la partition de B associée et ¢ le signe de det P, ..
Pour toute base b de E, on a

det Pep = (det Pe7e/) (det Pe/)b) =c (det Pe/7b) .
On a donc :
BT=BTetB~=B"sie>0, e BT=B etB =B"sie<0.
O
Définition Orienter E, c¢’est choisir une base e de E. Alors, les bases dans la méme classe que e (ie dans BT)

sont dites directes, celles de lautre classe (ie dans B~ ) étant dites indirectes. Un espace affine est dit orienté
st sa direction est orientée.

Proposition-Définition Soient E un espace vectoriel orienté et f un isomorphisme de E. Les trois assertions
sutvantes sont équivalentes :

(i) f transforme toute base directe en une base directe;
(i) il existe une base directe b de E telle que f(b) soit directe ;
(ii) det f > 0.

Un isomorphisme vérifiant une de ces trois assertions (et donc toutes) est dit direct.

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais



111 _ Barycentres 9

Démonstration. Il est clair que la premiere assertion implique la seconde. Supposons donc que b soit une
base directe de F telle que f(b) soit directe. Si A est la matrice de f dans cette base b, alors A est la matrice
de passage de b & f(b) donc det f = det A > 0. Ceci montre que la deuxieme assertion implique la troisieme.
Supposons a présent que f soit de déterminant strictement positif et considérons une base directe b. Puique la
matrice de passage de b a f(b) est la matrice de f dans la base b, on a det P, f) = det f > 0 donc f(b) est
également directe.

O

IIT _ Barycentres

a) Définition

Proposition-Définition Soient A1, ..., Ax k points d’un espace affine & et A1, ..., \x k nombres réels tels que
k

S Ai = 1. 1l existe un unique point G dans & vérifiant :

=1
k
VM e &, MG=Y A\MA.
=1

Le point G est appelé barycentre du systéme de points pondérés (Ai, \i)1<i<k-

k
—
Démonstration. Soit 2 un point de &. Le point G cherché vérifie nécessairement G = ) + Z i QA; et est

i=1
donc unique s’il existe. Réciproquement, si G est ce point, on a, pour tout point M de & :
k
MG = MG+Q0= ‘§+ZAQA MG+ 3"\ (@QM + MA;)

i=1

k ., k k

= MG+ <Z/\> QM + 3 0 MA =S NMA; car 3 N =1
i=1 i=1 i=1 i=1

O

Remarque : On a en fait montré que dans un espace affine &, un point G est barycentre d un systeme de
points pondérés (A;, \;)icr si, et seulement si, il existe un point Q dans & tel que Q Z)\ QA
el
k
Remarque : Si A, ..., Ay sont k nombres réels tels que A :=3"\; # 0, on appellera barycentre de la famille de
=1
points pondérés (A;, Ai)1<i<k le barycentre du systeme (A;, %)193;@ ; il sera noté bar(A;, A\i)1<i<k-

Définition L’isobarycentre de k points Ay, ..., Ay est le barycentre du systéme pondéré (A;, 1)<, ;- Le milieu
d’un couple de point (A, B) est lisobarycentre de ces deuz points.

Proposition 1.6 (Associativité du barycentre) Soit & un espace affine. Soient (A;, A\;)ier une famille finie
de points pondérés de & et I = _UJIj une partition de I. On note, pour j € J,
je

B =Y Ny A=Y =y A

i€l jeJ i€l

et on suppose que A et les p1; sont tous non nuls.

Alors, si, pour j € J, G; désigne le barycentre du systéeme (A;, A;) on a :

icl;’

bar(A;, A\;)ier = bar (Gja ,Uj)je,] :

S. Gervais L2 Géométrie affine et euclidienne 2014-2015



10 CHAPITRE 1. NOTIONS AFFINES

Démonstration. Soit  un point de &. On a, si G = bar(Gj, ;) e :

0 = 13m0 =33 o PSR O DLt

jeJ jeJ Jier; ;e]“ﬂ i€l
1 — 1

OB BT TS PPN
jeJiel; iel

ce qui montre bien que G est le barycentre du systeme (A4;, A;)icr-
O

Exercice. Montrer que dans un triangle, les trois médianes sont concourantes en G, I'isobarycentre des trois
sommets.

b) Sous-espaces affines et barycentres

Théoréme 1.1 Soient & un espace affine et .F une partie non vide de &. Alors F est un sous-espace affine de

& si, et seulement si, pour toute famille finie (A;)icr de points de F et toute famille de scalaires (N\;)ier telle

que Y Ai # 0, le barycentre du systéme (A;, \i)icr appartient a F .
i€l

Démonstration. e Supposons que .% soit un sous-espace affine de & et considérons un systeme (A4;, A\;)1<i<k

k
de points pondérés de .Z tel que > A; = 1. Si G est le barycentre de ce systéme, alors
i=1

k k
A0 = Z)\Al Z)\lAlA — G=A+ Y NAAL

=2

_— — k —
Les points Aq,..., A étant dans .%, les vecteurs A;As, ..., A1 A sont dans } et donc Y \; A A; également
=2

-

puisque # est un sous-espace vectoriel de ? Par conséquent, le point G appartient a .%.

e Réciproquement, supposons que % soit stable par <prise de barycentres. Fixons un point A dans .# et
montrons que Fy4 = {AM /MeZF } est un sous-espace vectoriel de 2 Soient @ et ¥ deux éléments de E4 et

—
« un nombre réel. Il existe deux points M et N dans .7 tels que @ = AM et ¥ = ﬁ Si P est le barycentre du
systeme ((A4, —a), (M, a),(N,1)), alors P € .# par hypothese donc AP € E4. Mais on a :

AP = —aAA+aAM + AN = i+

donc ot +7 € Ey.
O

Corollaire 1.1 Soit F une partie non vide d’un espace affine &. Les conditions suivantes sont équivalentes :
(i) F est un sous-espace affine de & ;

(i) pour tout couple (A, B) de points de F et tout réel X, le barycentre de ((A, A),(B,1 — )\)) appartient
o F;
(i11) pour tout couple (A, B) de points de F, la droite (AB) est incluse dans F

Démonstration. C’est une conséquence du théoreme précédent et de I'associativité du barycentre.

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais



IV _ Applications affines 11

¢) Coordonnées barycentriques

Proposition-Définition Soient Ag, A1, ..., Ay n+ 1 points affinement indépendants d’un espace affine & de
dimension n. Alors, pour tout point M de &, il existe une unique famille (Ao, A1, ..., A\n) € R wérifiant :

Z)\i =1 et M =bar(4;, /\i)ogign'
i=0

Le (n + 1)-uplet (Ao, ..., An) est appelé repere barycentrique de & et les nombres réels Ao, ..., A, sont appelés
coordonnées barycentriques de M dans ce repere.

e
Démonstration.  Puisque par hypothese (AgA1, ..., AgA,) est une base de ?, il existe n nombres réels
A1y .y Ap tel que

A()M = /\z AO

1

'M=
£l

(2

ce qui implique

Ao—]\>42 (1—zn:)\i> M+Xn:)\iAo—Az
i=1 i=1
Ainsi, si on pose A\g =1 — Z i, M est le barycentre du systéme (A;, )\i)OSign'
i=1
Réciproquement, si (Mg, A1,..., A\n) € R vérifient : i/\i =1 et M = bar(A;N)jcc,  alors
Mo =1-— i)\i et Aq,..., A\, sont les coordonnées du vecteur AO—]\Z dans la base (AO—A:)

i=1
l'unicité de ce (n + 1)-uplet.

__ce qui montre
1<i<n

O

IV _ Applications affines

a) Définition et application linéaire associée

Définition Une application f: & — F entre deux espaces affines est dite affine si elle préserve le barycentre,
c’est-a-dire : si (Aj, Ni)icr est un systéme de point pondérés de & tel que > A; # 0 et G' son barycentre, alors

el
f(G) est le barycentre du systéme (f(A:), \i)ier-

Remarque : par associativité du barycentre, il suffit de vérifier cette propriété pour tout systéme de deux
points.

Remarque : toute application constante est affine, ainsi que ’application Identité.

Premier exemple. Soient & un espace affine et @ un vecteur de ? L’application tz : & — & définie par
tz(M) = M + @ est affine. Cette application est appelée translation de vecteur .

Démonstration. Soient A, B € &, A € R et G le barycentre de ((A, A), (B,1 — )\)) Si A’, B" et G’ sont les
— = ——
images respectives de A, B et G, alors AA’ = BB’ = GG’ = 4 donc

— —
BA = BB+ BA+AA — —ii+ BA+ i — BA.
De la, on obtient :

— = — — —
B'G' = B'B+BG+GG = —ii+ (ABA+ (1- NBB) + @ = BA=AB'A' = \B'A' + (1 - \B'B

donc G’ est bien le barycentre de ((A', ), (B',1—\)).

S. Gervais L2 Géométrie affine et euclidienne 2014-2015



12 CHAPITRE 1. NOTIONS AFFINES

Lemme 4 Soient f : & — % une application affine. Pour tout point A de &, 'application ¢ 4 : ? — deﬁme
par pa(d) = f(A)f(A+ @) est linéaire et vérifie, pour tous points M et N dans & :

FADF(N) = pa (MN).

De plus, pour tout point B de &, on a ¢4 = ¢B.

Démonstration. Soient @, v € & et A € R : il s’agit de montrer que ¢4 (AT + 0) = Apa (@) + pa (D).
Solent M =A+u, N=A+7etG=A+ ) i+9. Ona:

AC = Xii + 7= AAM + AN = \AM + AN — A A4
donc G est le barycentre de ((M, A), (N, 1), (A, —)\)). Puisque f est affine, f(G) est donc le barycentre du
systeme ((F(M), ), (F(N), 1), (£(4),=N)) :

FAF(G) = X F(A) F(M) + FIA)F(N) = N f(A)F(A) = X F(A) F(M) + f(A)F(N)

c’est-a-dire
PA(NI + V) = Apa (1) + pa(V).

Ensuite, si M et N sont deux points de &, on a :

FOM)f(A) + f<A>f< Ny = f(A)F(N)— f(A)f(M)
= @Aﬁ —al AM @A(ﬁ—m):m(m).

(M) f(N}

Enfin, si B est un point de &, on a, pour tout vecteur @ (on note M = A + ) :

o (i) = op(AM) = F(A)F(M) = pa(id)

O

Lemme 5 Soient & et F deux espaces affines, ¢ : 2 — } une application linéaire et A (resp. B) un point de
e
& (resp. F ). Alors, Uapplication [ : & — F définie, pour tout M dans &, par f(M) = B+ (AM), est affine.

Démonstration. Soit (4;, \;)ies un systeme de points pondérés de & tel que > \; = 1 et G son barycentre.

iel
On a:

Bf(G) = ¢(Ad)=¢ (ZAw‘l—fﬁ)

icl
= ZAlgp(A—A» car ¢ est linéaire

i€l
= Y ABf(4)
i€l

donc f(G) est le barycentre du systeme (f(Ai), /\i) .
iel
(]
Ces deux lemmes démontrent le théoreme suivant :

Théoréme-Définition 1.2 Soient & et .% deux espaces affines. Une application [ : & — F est affine si, et

seulement si, il existe une application linéaire v : & — F telle que pour tout couple (M, N) de points de &, on
ait :

f(M)f(szgo(MN) c’est-a-dire f(N)Zf(M)-FQD(]WV).

Dans ce cas, une telle application linéaire est unique et est appelée application linéaire associée a f, notée ?

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais
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Proposition 1.7 Deuzx applications affines f,g : & — F coincident si, et seulement si, les deux conditions
suivantes sont vérifiées :

1) il existe un point A de & tel que f(A) = g(A);
9) 7 =7

Démonstration. Les deux conditions sont évidemment nécessaires. Si elles sont satisfaites, on a, pour tout
point M de & :

F(OM) = f(A) + F (A = g(4) + 7 (ADD) = g(0).

Proposition 1.8
1) L’application linéaire associée a Idg est Id= : Idg = ld=.

2) Soient f1 : & —> 52 et fo 1 & — & deux applications affines. Alors fo o f1 1 & — &3 est une application
affine et fao f1 = f2 o f1

3) Une application affine f : & — F est bijective si, et seulement si, f est un isomorphisme. Dans ce cas, f~"

est affine et }:? = (?)71.

Démonstration. e Le point 1) est clair.
e Pour A et M points de &1, on a :

(oo f) (M) = LIAGD] = B[ (A+AM)] = p]A(4) + 7 (AM)]
= pla@]+ B [7 (AM)] = (o f) (A + (fo 1) (A1),
ce qui démontre la deuxieme propriété car la composée de deux applications linéaires est linéaire.

e Soit & présent une bijection affine f : & — .%. Commencons par démontrer que ? est bijective. Pour cela,
fixons un point A dans &.

— Si ¥ est un vecteur de }, il existe un point M dans & tel que f(M) = f(A) + ¥, c’est-a-dire tel que
S ﬁ -7 . - - . S =21, L

= f(A)f(M) = 7 (AM) : ¥ admet donc un antécédent, ceci pour tout v dans % . L’application 7 est donc

surjective.
— Si 4 est un élément de ker ? alors f(A+ ) A)+ ? ) donc A = A+ @ puisque f est injective.
Ceci implique © = 0. On a donc ker f = {0} : est injective.

Montrons & présent que f~! : F — & est affine. On utilise pour cela le critére du théoreme 1.2. Soient N, et
N5 deux points de #. On a :

T (I Df ) = (Fo FH(N)(F o £ () = NidVs,

donc f=H(Ny)f~H(N) = (?)71 (]TN;) puisque ? est un isomorphisme. Ceci montre que f~' est affine avec
(7).

e Pour finir, on considere une application affine f : & — % telle que f soit un isomorphisme. Montrons que f
est bijective. Fixons un point A dans & et notons B := f(A).

— Pour tous points M et N dans &, on a

F(M) = F(N) = FQ)FMS = FAVF(NS = F(AM) = F/(AN) 722 A0 = AN = M = N

donc f est injective.

— Soit N un point de .%. Puisque f est un isomorphisme, il existe un vecteur 4 € 2 tel que f BZ@ Alors,
siM=A+1d,ona:

F(M) = f(A)+ f(@)) =B+ BN = N

donc f est surjective.
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14 CHAPITRE 1. NOTIONS AFFINES

b) Points fixes

Proposition 1.9 L’ensemble des points fizes d’une application affine f d’un espace affine & dans lui-méme est
soit vide, soit un sous-espace affine de & de direction ker ( — Idg).

Remarque : I'ensemble des points fixes d’une application affine f est souvent noté Fix(f).

Démonstration.  Supposons que Fix(f) soit non vide. Fixons un point A dans Fix(f) et montrons que
Fix(f) = A+ ker (7 — 1dz).

e Si f(M) = M, alors ? (m) = f(A)f(M) — AN donc AM € ker (? - Idz). Par conséquent, M = A—I—m
appartient & € A + ker (? — Idg).

o Si f (@) =1, alors f(A+@) = f(A) + f () = A+ donc A+ @ € Fix(f).
[l

Théoréme 1.3 Une application affine f d’un espace affine & dans lui-méme admet un unique point fize si, et

seulement si, 1 n’est pas valeur propre de

Démonstration. La proposition précédente montre que si f a un unique point fixe alors ker (? — Idz) est

réduit a {6} Supposons maintenant que 1 ne soit pas valeur propre de f. Si A € &, on a :

M) =M = [A)f(M) =AM
oy
— 7 (F/[) = f(A)A+m
— ——
— (7 -1dz) (AM) = F(A)A.
Puisque 1 n’est pas valeur propre de ? par hypothese, I’endomorphisme ? —Id> est injectif et donc bijectif
puisque nous sommes en dimension finie. Ainsi :
— -1 f— -1 f—
JM) =M = AM = (F -1d3) " (JAA) = M=Aa+(F -1a3)  (F(A)A)

Ceci montre bien que f admet un unique point fixe.

O
c) Sous-espaces affines et applications affines
Proposition 1.10 Soit f : & — & une application affine.
Si F est un sous-espace affine de &1, alors f(F) est un sous-espace affine de & de direction 7 ( )
Démonstration. Soit A un point de #. On a, puisque .% = A + ? :
J(P) = (M) MeFy={fA+ia)ieZ)={fA)+ T @) ic ) =)+ ] (F)
donc f(%) est un sous-espace affine de &, de direction ? (? )
d

d) Applications affines et repéres

Théoréme 1.4 Soit (Ay, ..., A,) un repere affine d’un espace affine & et (By, ..., B,) n+1 points d’un espace
affine & . Il existe une unique application affine f de & dans F telle que f(A;) = B; pour tout i.

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais
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e
Démonstration. Puisque (AoAl, ...,AoAn> est une base de ?, il existe une unique application linéaire
@ 2 — ? telle que ¢ (AoAl-) = ByB; pour tout .

—
e Maintenant, si on définit f : & — F par f(M) = By + ¢ (A0M>, alors f est affine d’application linéaire
associée ¢ (théoreme 1.2) et vérifie, pour i =0,1,...,n :
— T
f(A)) =Bo+¢ (AoAl-) = By + ByB, = B;.
e Si g est une application affine envoyant chacun des points A; sur B;, alors 'image par ? du vecteur AgA; est

égale & ByB; donc ¢ = p = ? Puisque g(Ag) = Bo = f(Ap), on en déduit que g = f (proposition 1.7).
O

e) Translations et homothéties

Théoréme 1.5 Une application affine f d’un espace affine & dans lui-méme est une translation si, et seulement

si, elle vérifie 7 =Id.
Démonstration.
OSiﬁezetAeg,ona,pourtoutﬁez:
tg(A+70)=(A+0)+d=(A+u0)+ 0 =1tz(A)+7
donc t_ﬁ> =1Id.
e Réciproquement, soit f une application affine de & telle que ? = Id. Fixons un point A dans & et posons
U= m Alors, pour tout point M de & :

FOM) = £(A) + T (AM) = f(A) + AM = A+ AF(A) + AM = M + @

donc f est la translation de vecteur .
O

Définition Soient & un espace affine, 2 un point de & et k un nombre réel nonn_ul>. On appelle homothétie
de rapport k et de centre Q) Uapplication h de & dans & définie par h(M) =Q + kQM.

Proposition 1.11 Une homothétie de rapport k est une transformation affine dont l'inverse est l’homothétie
de méme centre et de rapport %

Démonstration. D’apres la définition et le théoreme 1.2, une homothétie est une application affine d’appli-
cation linéaire 'homothétie vectorielle de rapport k (ie kId—). Si h’ est ’'homothétie de méme centre et de

rapport %, alors on a, pour tout point M de & :

%
(W o h)(M) = I (Q+ k QM) = W'(Q) + I (k(W):Q—l—%-km:M

et de méme, (hoh')(M) = M. Par conséquent, h est bijective d’inverse h'.
(]

Théoréme 1.6 Une application affine h est une homothétie distincte de Id si, et seulement si, son application
linéaire est une homothétie vectorielle de rapport différent de 1.

Démonstration. La condition nécessaire découle directement de la définition. Supposons donc que A soit une

ﬁ
application affine de & telle que h = kld avec k ¢ {0,1}. D’aprés le théoreme 1.3, h admet alors un unique
point fixe €. De la, on obtient, pour tout point M de & :

WM)=h(Q+QM) = hQ) + 7 (QM) =0+ kOM

donc h est 'homothétie de centre 2 et de rapport k.
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16 CHAPITRE 1. NOTIONS AFFINES

f) Projections et symétries

Rappel d’algebre linéaire. Soient E un espace vectoriel, F' et G deux sous-espaces vectoriels supplémen-
taires : £ = F @ G. Tout élément & de F s’écrit alors de fagon unique sous la forme ¥ = @ + ¢ avec 4 € F et
veq.

On appelle projet

(resp. symétrique) de & sur F' (resp. par rapport a F') parallelement & G 1’élément p(Z) = @
(resp. s(Z) =u — V=

Z — 27). On notera ¢ la projection sur G parallelement & F'.

Lemme 6 Les applications p,q,s : E — E sont linéaires et vérifient pop =p, qoq=q, p+q =1Idg, sos =1Idg
ets=p—q=2p—Idg.

Lemme 7

1) Une application linéaire p : E — E est une projection si, et seulement si, pop = p. Dans ce cas, on a
E =ker(p—1Id) @ kerp et p est la projection sur ker(p — Id) = Imp parallélement a ker p.

2) Une application linéaire s : E — E est une symétrie si, et seulement si, s o s = Id. Dans ce cas,
E =ker(s — Id) @ ker(s + 1d) et s est la symétrie par rapport & ker(s —1d) parallélement a ker(s + Id).

-

Théoréme 1.7 Soient & un espace affine, F un sous-espace affine de & et G un supplémentaire de F dans

Alors, pour tout point M de &, Uintersection de F et de M + G est réduite a un point; si p(M) est ce point,

Uapplication p : & — & ainsi définie est affine, d’application linéaire associée la projection vectorielle sur
parallélement & G. L’application p est appelée projection (affine) sur % dans la direction G et vérifie pop = p.

Démonstration. Pour M € &, la proposition 1.3 permet d’affirmer que l'intersection de % et ¢4 := M + G
est réduite & un point. Notons p(M) ce point et montrons que l'application p : & — & ainsi définie est affine,

d’application linéaire 7, la projection vectorielle sur ? dans la direction G.

Soit A € .Z : p(A) est par définition égal & A. Si M € &, le vecteur AM se décompose de fagon unique en une
S L ? - Ry, S

somme % + ¥ avec ¥ € ¥ et ¥ € G. On a alors 7 (AM) = u. D’autre part :

fA—l-ﬁEf?carAeyetﬁE?;
- - R ?
fA—i—u:A—i—(AM—U)=M—v€gcarM€getU€ =G.

Ainsi FN(M +G) = {A+ 4}, donc p(M) =A+id=p(A)+7 (m) Ceci montre que p est affine avec 7 = 7
(théoréme 1.2).
Enfin, pour tout point M de &, on a p(M) € .% donc (pop)(M) = p(M).

(]

Proposition 1.12 Une application affine p: & — & est une projection si, et seulement si, pop = p.

Démonstration. La condition est nécessaire d’apres le théoreme 1.7.
Supposons que p soit une application affine vérifiant pop = p. On a alors ? ) ? = ? donc ? est la projection
vectorielle sur F' = ker(? —1d2) dans la direction G = ker ' (lemme 7). D’autre part, pour tout point M de

&, on a p(p(M)) = p(M) donc Fix(p) # (. Maintenant, si ¢ est la projection sur Fix(p) dans la direction G,

ona ' = et,si A€ Fix(p), ¢(A) = A = p(A). Par conséquent, p = ¢ d’apres la proposition 1.7.
O

Théoréme 1.8 Soient & un espace affine, F un sous-espace affine de & et G un sous-espace vectoriel sup-

plémentaire de ? dans & . Pour M € &, on note s(M) le point défini par s(M) = M + 2Mp(M; ol p est la
projection sur F parallélement a G.
Alors s : & — & est une application affine, d’application linéaire associée la symétrie vectorielle par rapport a

parallélement a G. L’application s est appelée symétrie (affine) par rapport a .F et de direction G et vérifie
sos=1Idg.

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais
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/S(JI)

Démonstration. Pour tout couple (M, N) de points de &, on a :

s(M)M + MN + Ns(N) = —2 Mp(M) + MN + 2Np(N)
2p(M)M +2MN +2Np(N)— MN = 2p(M)p(N) — MN

27 (MN) - MN = (27 - 1d3) (MN).

s(M)s(N)

-

Ceci montre que s est affine d’application linéaire (2 ? — Idz), la symétrie vectorielle par rapport a % et de
direction G (théoreme 1.2 et lemme 6). Enfin, pour tout point M de .%, on a

s(M)=M+2Mp(M)=M+2MM =M

donc (s o s)(M) = M. D’autre part, 508 = § 0 § = Id2 (lemme 6). On a donc sos = Idg d’apres la
proposition 1.7.
O

Proposition 1.13 Une application affine s est une symétrie si, et seulement si, so s =1d.

Démonstration. La condition est nécessaire d’apres le théoreme 1.8.
Supposons que s soit une application affine vérifiant s o s = Idg. On a Tod =508 = Id— donc T est

la symétrie vectorielle par rapport a F := ker (? — Id—g) dans la direction G := ker (? + Idg) (lemme 7).
D’autre part, pour tout point M de &, le milieu M’ = M + %MS(M} de [M, s(M)] est invariant par s :

s(M') = s(M) + % (M)(s 0 5)(M) = s(M) + %S(M)M — s(M) + s(M)M — %s(M)M =M

Ainsi, Fix(s) est non vide; c’est donc un sous-espace affine de & de direction F' (proposition 1.9). Si o est la
symétrie par rapport & Fix(s) et de direction G, alors o et s ont méme application linéaire et coincident en
chaque point de Fix(s) donc sont égales (proposition 1.7).

O

g) Une application : le théoréme de Thales

Théoréme 1.9 (Théoréme de Thales?) Soient & un espace affine de dimension finie, H un hyperplan

vectoriel de 2, 9 et D' deux droites de & dont les directions sont chacune supplémentaire de H dans
Soient Hi, Ha et Hg trois hyperplans de & deux a deuz distincts de méme direction H, rencontrant 9 (resp.
2') en trois points My, My et My (resp. My, M} et M}). Alors :

_ ——
MiMs  MiMs;

MM M{Mé

2. Thaleés de Milet était un mathématicien grec ayant vécu vers 600 avant J.-C.
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—_ —
Remarque : Les points My, Ms et J\Man‘c alignés, les vecteurs M7 Ms et My M5 sont colinéaires : le scalaire
A tel que My M3z = X\ My M, est noté :%11”3

1My
7 \@'
M, tMi
I
/M2 \nMQ
"y :

Démonstration.

Soit p la projection sur 2’ dans la direction H. Pour i € {1,2,3}, p(M;) est le point
d’intersection de 2’ avec ’hyperplan contenant M; et dirigé par H, ¢’est-a-dire H; : p(M;) = M]. Par conséquent,
si M1M3 = /\MlMQ, on a :

M{M} = p(My)p(Ms) = F (M1M3> =7 (/\Mle) =\7 (Mle) = Ap(My)p(Ma) = N M M.

L2 Géométrie affine et euclidienne 2014-2015
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Chapitre 2 : Notions euclidiennes

I_ Produit scalaire

a) Définition et propriétés

Définition Un produit scalaire sur un espace vectoriel E est une application de E x E dans R, notée ici
(u,v) = (u|v), vérifiant :
1) bilinéarité : V(u,v,w) € E3,VA € R, (u+ M |w) = (u|w)+A (v|w) et (ulvo+ Aw) = (u|v)+A (u|w);
2) symétrie : V(u,v) € E?, (u|v) = (v|u);
3) stricte positivité : Yu € E\ {0}, (u|u) > 0.
Un espace vectoriel euclidien est un espace vectoriel de dimension finie muni d’un produit scalaire.

Exemples. 1) Dans R?, ((2,y), (z/,y')) = x2’ + yy’ est un produit scalaire.
2) Dans R3, ((z,y,2), (2,9, 2')) — a2’ + yy' + 22’ est un produit scalaire.

3) Dans R", (x,y) '—>Z x;y; (avee © = (21, ..., 2n) et y = (Y1, ..., yn)) est un produit scalaire.
=
4) L’application (P, Q) — / P(t)Q(¢t)dt est un produit scalaire dans R3[X], I'espace vectoriel des polynoémes
0
de degré inférieur ou égal a 3.

Proposition 2.1 Si E est un espace vectoriel euclidien, Uapplication || - || : E — R définie par |Jul| = /{u|u)
est une norme sur E, c’est-a-dire qu’elle vérifie :

1) Vu e EN{0}, [lul >0;
2) pour uw € E, on a |lul]| =0 si, et seulement si, u=0;
3) Yu € E, VA eR, |[Mull = A - |Jull ;

4) Y(u,v) € E?, ||lu+o| < ||u|| + ||v|| (inégalité de Minkowski') avec égalité si, et seulement si, u et v
sont colinéaires de méme sens (ie IX > 0 tel que u = Av).

Démonstration. Les deux premieres propriétés découlent de la stricte positivité et de la bilinéarité du produit
scalaire. La troisieme est une conséquence de la bilinéarité : (Mu | u) = A\? (u|u). L’inégalité de Minkowski est
une conséquence de I'inégalité de Cauchy 2-Schwarz? :

Lemme 1 (Inégalité de Cauchy-Schwarz) Si E est espace vectoriel euclidien, on a, pour tout (u,v) € E? :
[ (ulo) | < flull- ol

avec éqgalité si, et seulement si, u et v sont colinéaires.

En effet, on déduit de 'inégalité de Cauchy-Schwarz :

lutol* = (utvlutv)=(uu)+(ufp) + @)+ (vlv) = u]® +2 (ulv) + o]
2
<l + 2wl [loll + ol* = (llull + [0l

et si |Ju 4+ v|| = [|u]| + ||v]|, on obtient, en élevant au carré, (u |v) = ||u|| - ||v]|, soit u et v colinéaires d’apres le
lemme. De plus, en remplacant u par \v dans 1'égalité (u|v) = |Jul| - ||v]|, on obtient A|[v||? = |A| - [|[v]]?, soit
A=A >0.

O

1. Hermann Minkowski, mathématicien allemand, 1864-1909.
2. Augustin Louis Cauchy, mathématicien frangais, 1789-1857.
3. Hermann Amandus Schwarz, mathématicien allemand,1843-1921.
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Démonstration de l’inégalité de Cauchy-Schwarz. Fixons u et v non nuls dans E (si v ou v est nul,
I'inégalité est claire) et considérons I'application f de R dans R définie par f()\) = ||u + Av||?. Par bilinéarité
du produit scalaire, on a f(A) = |Jul* + 2\ (u|v) + A?||v|? donc f est un polynome de degré 2. Or f ne prend
que des valeurs positives donc le discriminant de ce polynome est négatif : (u|v)* — |Ju|2 - [|v]|2 < 0.
Enfin, si [(u|v)| = [|u]| - ||v]|, ce discriminant est nul donc il existe A\g € R tel que f(A\g) = 0, ¢’est-a-dire
[lu + Xov||? = 0. Ainsi, u + Aov = 0 : u et v sont colinéaires.

(]

Proposition 2.2 (Formules de polarité) Soit E un espace vectoriel euclidien. Pour tout (u,v) € E?, on a :
(ulv) =

(Il + ol = Jlull® = [[0l*) = 7 (lu+v]* = u— o).

|~
=

Démonstration. Il suffit de développer les expressions de droite en utilisant la bilinéarité du produit scalaire.
Les calculs sont laissés au lecteur.
O

b) Expression matricielle

Définition Soit E un espace vectoriel euclidien de dimension n et e = (ey, ..., e,) une base de E. La matrice
du produit scalaire dans la base e est la matrice carrée de taille n dont le coefficient (i, ) est égal a {(e; |e; ).

Proposition 2.3 Soit E un espace vectoriel euclidien et e = (e, ..., e,) une base de E. On note A la matrice du
produit scalaire dans cette base. Si U et V' sont les matrices colonnes des coordonnées dans e de deux éléments
u etv de E, alors :

(ulv) = UAV.

Z1 Y1
Démonstration. Si U = ( : ) et V= ( : ) alors, par bilinéarité du produit scalaire :

Tn Yn

n n n n n n
(ulp) = inei Zyjej = le €; yje; ) = Z le y; {eilej) = "UAV,
i=1 j=1 ' j=1

j= i=1 j= i=1 j=1

la derniere égalité s’obtenant simplement en calculant le produit des trois matrices.
O

Proposition 2.4 Soit E un espace vectoriel euclidien et e, €' deux bases de E. On note P la matrice de passage
dee ae et A (resp A') la matrice du produit scalaire dans la base e (resp. €’). Alors :

A ='PAP.

Démonstration. Soient u et v deux éléments de E, U et V' (resp. U’ et V') leurs vecteurs coordonnées dans
la base e (resp. €’). Ces matrices sont reliées par les égalités U = PU’ et V = PV’. Par conséquent, en utilisant
la proposition 2.3, on obtient

() ="UAV = (PUYAPV') = U ((PAP)V' ='U'AV'.

Cette derniere égalité étant satisfaite pour tous vecteurs u,v de E, on obtient A’ = ‘PAP.

IT _ Orthogonalité

a) Vecteurs orthogonaux - Bases orthonormées

Définition Deux vecteurs d’un espace vectoriel euclidien sont dits orthogonaux si leur produit scalaire est nul.

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais



IT _ Orthogonalité 21

Proposition 2.5 (Théoréme de Pythagore?) Deux vecteurs u et v d’un espace vectoriel euclidien sont
orthogonaux si, et seulement si :
llu+ o = ull® + o).

Démonstration. Il suffit de calculer le membre de gauche :
lut ol = (u+vlutv) = [[ul* +2 (o) + o]
O

Définition Une base d’un espace vectoriel euclidien est dite orthogonale si ses vecteurs sont deux a deux
orthogonauz. La base sera dite orthonormée si de plus chacun de ses vecteurs est unitaire (ie de norme égale
al).

Proposition 2.6 Toute famille orthogonale de vecteurs non nuls de E est libre.

Démonstration. Si (uq,...,u;) est une famille orthogonale de vecteurs non nuls de F et si une combinaison

k
linéaire Y A;u; de ces vecteurs est nulle, alors, pour tout j € {1,....k} :
i=1

k k
0= <Z it |uj> = Xi (i u;) = Ajllu;l|* done A; =0.
i=1

=1

Théoréme 2.1 Tout espace vectoriel euclidien admet des bases orthonormées.

On va en fait démontrer (dans le cas de la dimension 2 et 3) par un procédé algorithmique (appelé procédé
d’orthonormalisation de Gram ®-Schmidt ©) un résultat un peu plus fort :

Théoréme 2.2 Soit (e1, ..., ) une base d’un espace vectoriel euclidien E. Il existe alors une base orthonormée
(f1, -, fn) telle que pour tout entier k, 1 < k <mn, on ait Vect (e1, ...,ex) = Vect (f1, ..., fx)-

oy . . . NP €1
e La premiere étape est simple : il suffit de normaliser e, c’est-a-dire de poser f1 = H Les deux vecteurs e;
€1

et f1 étant colinéaires, on a bien Vect(e;) = Vect(f1).

e La deuxieéme étape consiste a projeter orthogonalement es sur l'orthogonal de f; dans le plan Vect(f1,e2),
c’est-a-dire de poser e}, = ez — (e2|f1) f1. En effet, on a par bilinéarité du produit scalaire

(ex]f1) = (e2|fr) — (e[ f1) {filfr) = (e2|f1) — (e2|f1) =0 ) Sttty
|
el €2

puisque (f1|f1) = ||f1]|> = 1. Puisque la famille (f,ez) est libre, le vecteur ? :

/ |

e}, n’est pas nul et on peut, pour finir, le normaliser en posant fo = He?” : la !
e —
famille (f1, f2) est orthonormale par construction. La définition de f; et de €} w bil

montre que Vect(f1, f2) = Vect(f1, e2) = Vect(eq, e2). up = ez |f1) fu

e On définit ensuite e} comme étant le projeté orthogonal de es sur l'orthogonal de Vect(fi, f2) dans
VeCt(fl,fg,eg) :
ey =e3—(es|f1) f1 — (es|f2) f.

On vérifie que ef est orthogonal & f1 et & fo :

(es]f1) = (eslfi) —(eslfr) (filfr) — (eslf2) (falfr) =0 puisque (f1|f1)=1 et (fa]f1) =0,

/
€3
/

les

4. Pythagore de Samos, philosophe et mathématicien grec, vers 580-495 av. J.-C.

5. Jorgen Pedersen Gram, mathématicien danois, 1850-1916
6. Erhard Schmidt, mathématicien allemand, 1876-1959

et de méme (e§ | f2) = 0. On conclut en posant f3 = (e n’est pas nul car la famille (fi, f2, e3) est libre).
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VeCt(f1,f2) uz = <e3|f1>f1+<63|f2>f2

e La démonstration générale consiste a poursuivre la construction des vecteurs fi par récurrence en utilisant la

formule suivante a I’étape k :
k—1

ep = e — Z (ex | fi) fi-

i=1
Proposition 2.7 Soit e = (ey, ..., e,,) une base orthonormée d’un espace vectoriel euclidien E. Les coordonnées

n
dun élément x de E dans cette base sont ({e; )iy, s r =2 (eilz) e

1=1

n
Démonstration. Siz =) wzje;, alors, pour k € {1,...,n},ona (e |r) = <ek

n n
> xiei> =Y x; (ex lei) = @y
=1 i=1 i=1
O
Proposition 2.8 Soient (e1, ..., en) une base orthonormée d’un espace vectoriel euclidien E, x ety deux vecteurs
de E de coordonnées respectives (x1,...,Tn) et (y1,...,yn) dans cette base. Alors :

n n
(x]y) Zziﬂiyi et |l :Z a3,
1=1 =1

Démonstration. La deuxiéme égalité est une conséquence de la premiere (y = z). Celle-ci découle du fait que
(eilejy vaut Osii# jet 1sii=j:

n n n n n
(ly) = ( D_wes|D_yse; ) =y > wiysleiles) = Yz
i=1 j=1 i=1

i=1 j=1

b) Orthogonal d’une partie

Définition Soit A une partie d’un espace vectoriel euclidien E. L’orthogonal de A, noté AL, est ’ensemble
des vecteurs de E orthogonaux a tous les vecteurs de A :

At = {ueE [ (ulv) =0 pour tout vecteur v de A}.

Lemme 2 Pour toute partie A d’un espace vectoriel euclidien E, AL est un sous-espace vectoriel de E.

Démonstration. La démonstration est aisée et laissée au soin du lecteur.

Lemme 3 Pour toute partie A d’un espace vectoriel euclidien E, on a Vect(A)+ = A+,

Démonstration. Siv € Vect(A)L, v est orthogonal & tout élément de Vect(A) donc & tout élément de A. Par
conséquent v € A+, Ceci montre que Vect(A4)L C A+.
Soit & présent un vecteur v de A+ et montrons qu’il est orthogonal & tout élément de Vect(A). Si u appartient

k
a Vect(A), il existe ay, ..., ar dans A et Ay, ..., A\ dans R tels que u =3 A;a;. De la, on obtient :
=1

k k
(ulv) = <Z i@ |v> = Z Ai {a;|Jv) =0 car v est orthogonal & chacun des a;.
i=1 i=1
O
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Théoréme 2.3 Soit F un sous-espace vectoriel d’un espace vectoriel euclidien E. Alors F et F+ sont sup-
plémentaires :
E=FeoFt

En particulier, on a dim E = dim F + dim F*.

Démonstration. Un vecteur appartenant & FNF= serait orthogonal & lui-méme donc de norme nulle. Puisque
seul le vecteur nul est de norme nulle, on en déduit que F'N F+ = {0}. Ainsi, les deux sous-espaces vectoriels
F et F* sont en somme directe. Il suffit donc pour conclure de démontrer 1’égalité concernant les dimensions.
Pour cela, on considére une base orthonormée (eq,...,ex) de F que 'on complete en une base orthonormée
(€1, -y €k, €41, ..., €n) de E (ceci est possible en utilisant le procédé de Gram-Schmidt). On va montrer que
F+ = Vect(ey1,...,en), ce qui termine la démonstration du théoréme. Notons que d’apres le lemme 3, on a
Ft={ey,...,ex}t.

e Sii€ {k+1,..,n} e est orthogonal & chacun des e;, 1 < j <k, donc ¢; € {e1,...,ex}- = F*. Ceci montre
que Vect(egi1,...,en) C FL.

n
e Soit & présent un élément u de F'-. On décompose u dans la base (e1,...,e,) : u =3 Aie;. Pour 1 < j < E,
i=1

e; € I donc :

0= (e u) = <

< - B . 0 sijAi
le\iei>—zl/\i<ej|ei>—/\j puisque <ej|ei>—{1 §ij=i

n
Par conséquent, u = Y A;e; est dans Vect(epy1, ..., €,). On a donc montré que FL C Vect(eri1, ..., en).
i=k+1

Corollaire 2.1 Pour tout sous-espace vectoriel F' d’un espace vectoriel euclidien E, il vient (FL)L =F.

. . . . 1
Démonstration. Puisque tout vecteur de F est orthogonal & tout vecteur de F*, on a F C (FL) . Le
théoreme 2.3 montrant que ces deux sous-espaces vectoriels ont méme dimension, ils sont donc égaux.

O

Le résultat du théoreme 2.3 permet de donner la définition suivante :

Définition Une projection orthogonale d’un espace vectoriel euclidien E est une projection sur un sous-espace
vectoriel F dans la direction F-. De méme, une symétrie orthogonale est une symétrie par rapport a un sous-
espace vectoriel F' dans la direction F+. Une symétrie orthogonale par rapport a un hyperplan est une réflexion.

Proposition 2.9 Soient F un sous-espace vectoriel d’un espace affine euclidien E et (e1,...,ex) une base
orthonormée de F'. On note p la projection orthogonale sur F'. Alors :

Ve e B, p(r) =) (eilr)ei

-

=1

Démonstration. Complétons (eq,...,er) en une base orthonormée de E (procédé de Gram-Schmidt). On a
alors (proposition 2.7) :

n k n

T = Z e;lz)e; = (Z (e; |x>ei> + ( Z (e; |x>ei> ,
i=1 i=1 i=k+1

cette derniére expression étant la décomposition de 2 en la somme d’un élément de F et d’un élément de F1.

D’ou le résultat.
O
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IIT - Endomorphisme orthogonal

a) Généralités

Définition Soit E un espace vectoriel euclidien. Un endomorphisme orthogonal de E est une application
linéaire f : E — E qui conserve le produit scalaire :

V(u,v) € B2, (f(u)|f(v)) = (ulv).

Remarque : on parle aussi d’isométrie vectorielle.

Remarque : il est évident que la composée de deux endomorphismes orthogonaux est un endomorphisme
orthogonal.

Notation : on notera O(F) ’ensemble des endomorphismes orthogonaux d’un espace vectoriel euclidien E.

Proposition 2.10 Soit E un espace vectoriel euclidien. Un endomorphisme f de E est orthogonal si, et seule-
ment si, il préserve la norme, c’est-a-dire que pour tout u € E, on a || f(u)]] = |lu].

Démonstration. Ceci résulte des deux égalités

If@l = (f@) |f(w) et (f)[f(v)) =5 (If@+)> = [f)]* = [f()]*) pour tous u,v € E.

O
Exemple : une symétrie orthogonale est un endomorphisme orthogonal. En effet, soit s une symétrie orthogonale
par rapport a un sous-espace vectoriel F' d’un espace vectoriel euclidien FE. Pour tout élément x de F se
décomposant sous la forme x = u +v avec u € F et v € F*, on a s(x) = u — v. Alors, puisque (u|v) = 0, il

vient [|s(z)[[* = flull* + [|v]|* = [|=[|*.

N~

Proposition 2.11 Un endomorphisme orthogonal est bijectif.

Démonstration. Si z est dans le noyau d’un endomorphisme orthogonal f, alors 0 = ||f(z)| = ||z|| donc

x = 0. Ceci montre que f est injectif et donc qu’il est bijectif puisqu’on est en dimension finie.
O

Théoréme 2.4 Soit f un endomorphisme d’un espace vectoriel euclidien E. Les trois assertions suivantes sont
équivalentes :

(i) f est orthogonal ;
(i1) f transforme toute base orthonormée en une base orthonormée ;

(#ii) il existe une base orthonormée e de E telle que f(e) soit orthonormée.

Démonstration. Puisqu'un endomorphisme orthogonal préserve le produit scalaire et la norme, il est clair
que la premiere assertion implique la deuxieme. La troisieme est clairement conséquence de la deuxieme. Il reste
donc & démontrer que la troisiéme implique la premiere. Soit e = (eq, ..., €,) une base orthonormée de E telle
que f(e) = (f(e1),..., f(en)) soit également une base orthonormée. On va montrer que || f(z)|| = ||z|| pour tout
x dans E, ce qui permettra de conclure en utilisant la proposition 2.10. Soit z € E et décomposons-le dans la
base e : x :i x;e;. Alors, par linéarité de f, f(x) :i x; f(e;) et on obtient, en utilisant la proposition 2.8 :

=1 1=1
n
1F @17 =D aF = |«
i=1
(]
Définition Une matrice A de M, (R) est dite orthogonale si elle est inversible, d’inverse sa transposée, c’est-

a-dire : "AA =T, = A'A. On notera O(n) l'ensemble des matrices orthogonales de taille n : c’est le groupe
orthogonal d’ordre n.
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Proposition 2.12 Une matrice A € M,,(R) est orthogonale si, et seulement si, ses vecteurs colonnes forment
une base orthonormée de R".

Démonstration. Notons (Cy,...,C,) les vecteurs colonnes de A. Si (e, ..., e,) est la base canonique de R™,

3 n
alors C; =3 ayjex et donc (C;|C;) =3 agar,; (proposition 2.8). D’autre part, si ‘A = (b; ;)1<i j<n (donc
k=1

b@j = aj)i), on a :

n n
(Ad)is = binars = arian; =(Ci|C) ().
k=1 k=1
Par conséquent, si A est orthogonale, alors (C; |C;) vaut 0sii # j et 1sié = j, donc la famille (C1,...,Cy,) est
orthonormée. C’est en particulier une base de E (proposition 2.6).
Réciproquement, si (C1, ..., Cy,) est une base orthonormée, alors A est de rang n, donc inversible et I’égalité (x)
montre que "AA =1I,, : I'inverse de A est bien 'A.
O

Proposition 2.13 Un endomorphisme d’un espace vectoriel euclidien est orthogonal si, et seulement si, sa
matrice dans une base orthonormée est une matrice orthogonale.

Démonstration. En utilisant la propositon 2.12, cet énoncé est une autre fagon de dire qu’un endomorphisme

est orthogonal si, et seulement si, il transforme une base orthonormée en une base orthonormée.
O

Corollaire 2.2 Le déterminant d’un endomorphisme orthogonal vaut 1 sl est direct, —1 s’il est indirect.

Démonstration. Si f est un endomorphisme orthogonal et A sa matrice dans une base orthonormée, alors
det f = det A. Mais "AA =1,, donc

1 =det ("AA) = (det"A) (det A) = (det A)(det A) = (det A)°.

Par conséquent, det A = +1.
O

Définition On note SO(n) l’ensemble des matrices orthogonales de taille n dont le déterminant vaut 1. C’est
le groupe spécial orthogonal d’ordre n. Si E est un espace vectoriel euclidien, on notera SO(FE) l’ensemble des
endomorphismes orthogonaux directs de E.

b) Cas d’un plan vectoriel euclidien

Proposition 2.14 Tout élément de O(2) est de la forme ( @ —<b ) avec e = 1 et a® + > = 1.

b ea

Démonstration. Soit A = (3 g) un élément de O(2). Puisque les vecteurs colonnes de A forment une base
orthonormée de R? (proposition 2.12), on a :

a?+~42=1, p2+62=1 et af+~5=0.
En multipliant la premiere égalité par 62, on obtient, en utilisant la troisieme puis la deuxieme :
62 = 8%a% + 6292 = %% + ? B = % (6% + %) = .
Il existe donc € € {1} tel que § = ea. De la, on obtient
O=af+vd=aB+eay, soit «a(f+ey)=0.
Si =0, alors 82 =1 =~2 donc v = 4. Si o # 0, on obtient bien 3 = —¢7.

Réciproquement, si A = (¢ ") avec a? 4 b® = 1, alors les colonnes de A forment une base orthonormée de R?

(calcul aisé laissé au lecteur) et A est donc orthogonale.
O
Remarque : le déterminant de la matrice ci-dessus vaut e.
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Corollaire 2.3 Soit f un endomorphisme orthogonal direct d’un plan vectoriel euclidien orienté E. Il existe
un nombre réel 0 tel que pour toute base orthonormée directe e de E, la matrice de f dans e soit

cos —sinb
Ro '_( sinf cosf )

Démonstration. D’apres la proposition 2.14 et le corollaire 2.2, si e est une base orthonormée de F, il existe
deux nombes réels a et b tels que la matrice de f dans e soit ( b _ab) (¢ = 1). De plus, ces deux nombres réels
vérifient 1’égalité a® + b> = 1 donc peuvent s’écrire sous la forme a = cosf et b = sinf. La matrice de f dans
la base e est donc bien de la forme Ry. Il reste a démontrer que celle-ci ne change pas lorque 'on effectue
un changement de base orthonormée directe. Mais si P est la matrice d’un tel changement de base, P est une
matrice orthogonale de déterminant 1 d’apres le corollaire 2.2. D’apres ce que l'on vient de dire, il existe donc
un nombre réel 8 tel que P = Ry:. De la on obtient P_lR‘gP = R_gRyRy = R_y Ry Ry = Ry en utilisant le
lemme ci-dessous.

O
Lemme 4 Pour tous nombres réels 61 et 02, on a :
Ro, Ro, = Rg, +9, = Ro, Ry, et R;ll =R_y,.
Démonstration. Il suffit d’effectuer les calculs et d’utiliser les formules de trigonométrie suivantes :
cos(fy + 02) = cosby cosfy —sinfysinfy et sin(f; 4 02) = sin 6y cos Oz + cos 6; sin 5.
O

Définition Soit E un plan vectoriel euclidien. Les éléments de SO(E) sont appelés des rotations. Si E est
orienté, on appelle angle d’une rotation R tout réel 6 tel que la matrice de R dans une base orthonormée directe
(et donc dans toutes) soit (<58 = sinf).

Proposition 2.15 Si E est un plan vectoriel euclidien, les élément de O(E) \ SO(FE) sont des réflexions.

Démonstration. Soit f un endomorphisme orthogonal indirect. Fixons une base orthonormée e de E. D’apres
la proposition 2.14, la matrice de f dans e est de la forme (‘g _ba) avec a? +b? = 1. Le polynoéme caractéristique

de f est donc

Xr =

a—bX_ab_X) —la—X)(—a—-X) - =X?—a> - =X2-1=(X-1)(X+1).
Puisqu’il est scindé & racines simples, f est diagonalisable et donc E = ker(f — Id) & ker(f + Id). Ainsi, f est

une symétrie. Montrons pour conclure que ses deux sous-espaces propres sont orthogonaux. Si u € ker(f — Id)
et v € ker(f +1d), on a, puisque f préserve le produit scalaire :

(ufo) = (f(u)[f(v)) = (u]-v) = = (ufv)

donc (u|v) = 0.

Proposition 2.16 Si R est une rotation et s une réflexion, alors so Ros = R™1.

Démonstration. La composée de deux endomorphismes orthogonaux est un endomorphisme orthogonal.
D’autre part, det(so R) = (det s)(det R) = —1 donc so R est indirect, donc est une réflexion (proposition 2.15).
Par conséquent, (so R) o (so R) =1d, soit so Ros = R L.

O
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¢) Produit vectoriel

Dans tout ce paragraphe, E est un espace vectoriel euclidien orienté de dimension 3.
Lemme 5 Soient e et € deuz base orthonormées directes de E et u,v,w trois éléments de E. Alors :

dete(u, v, w) = detes (u, v, w).

Démonstration. Si P est la matrice de passage de e & €', alors les propriétés du déterminant donnent
dete(u,v,w) = (det P) (dete (u,v,w)). Mais les bases e et € étant orthonormées directes, la matrice P est
orthogonale (proposition 2.12) de déterminant 1, ce qui conduit au résultat.

O

Définition On appelle produit mixte de trois vecteurs (u,v,w) dans un espace vectoriel euclidien orienté de
dimension 3 le déterminant de ces vecteurs dans une base orthonormée directe. Il est noté [u,v,w].

Théoréme-Définition 2.5 Soient E un espace vectoriel euclidien orienté et u,v deux éléments de E. Il existe
un unique vecteur w dans E tel que, pour tout x € E, on ait [u,v,x] = (w|x).
Le vecteur w ainsi défini est appelé produit vectoriel de u et v, et noté u A wv.

Démonstration. Notons d’abord que si u et v sont liés, alors le produit mixte [u, v, 2] est toujours nul et seul
le vecteur nul répond au probleme. On suppose donc que (u,v) est libre et on note P le plan vectoriel qu’ils
engendrent.

e Si w € E vérifie [u, v, z] = (w|z) pour tout = € E, alors :

(wlu) =[u,v,u] =0 et (wlv) = [u,v,v] =0.

Ainsi, w est nécessairement dans ’orthogonal de P, qui est une droite AN
vectorielle d’apres le théoreme 2.3. Si wy est un vecteur unitaire di-
rigeant P, il existe donc A € R tel que w = Awp. On a alors

[u, v, wo] = (w|wo) = A{wo |we ) = A, Wo

ce qui montre l'unicité : on a nécessairement w = [u, v, wo|wo.

e Réciproquement, le vecteur w = [u, v, wplwo est solution du probleme. En effet, puique E = P & Vect(wy),
(u,v,wp) est une base de F et on a, pour tout z € E de coordonnées (a, 8,7) dans cette base :

[u,v, 2] = [u, v, au 4+ Bv + ywo] = alu, v, u] + Blu, v, v] + y[u, v, wo] = Y[u, v, wo)

et d’autre part

(w|x) = ([u, v, wolwo |au + Bv + ywy ) = [u, v, wo) (a (wo |u) + B (wo |v) + v (wo |w0)) = [u, v, woly.

Proposition 2.17 Soient u et v deux vecteurs de E. Alors :
1) uAv =0 si, et seulement si, (u,v) est lice.
2) w A v est orthogonal a u et v.

3) Siw et v sont unitaires et orthogonauz, alors (u,v,u A v) est une base orthonormée directe de E.

Démonstration. Nous avons déja vu dans la démonstration du théoréme 2.5 que si (u, v) est liée alors uAv = 0
et que u A v est orthogonal & u et v. Si on suppose que u A v = 0, alors on a [u,v,z] = (uAvl|z) = 0 pour
tout « dans E donc (u,v) est liée (si (u,v) est libre, on peut la compléter en une base (u,v,w) de E et alors
[u,v,w] # 0). Il reste & démontrer que si u et v sont unitaires et orthogonaux, alors u A v est unitaire et
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(u, v, uAv) est directe. Remarquons d’abord que si on calcule le déterminant des trois vecteurs (u, v, u Av) dans
une base orthonormée directe e, on a, par définition du produit vectoriel :

dete(u, v, u Av) = [u,v,u Av] = uAvuAv) =|[uAv||* >0

donc la base (u,v,u A v) est bien directe. Mais de cette derniere égalité, on déduit :

A
[lu Ao = dete(u, v, u A v) = dete (u,v, u) .

1
[lu Ao [lu Ao

Or ce dernier déterminant vaut 1 car la base (u, v, %) est orthonormée directe.

O

Proposition 2.18 Soit e une base orthonormée directe de E, u et v deux éléments de E de coordonnées
respectives (x1,x2,23) et (y1,y2,y3) dans cette base. Les coordonnées de u Av dans e sont alors :

($2y3 — X3Y2,T3Y1 — T1Y3, T1Y2 — xzyl)-

Démonstration. Sion pose uAv = aje;+agestases, alors ap = (u A v e ) (proposition 2.7). Par conséquent :
a1 = (uAvler) = [u,v,e1] = [x1e1 + T2€2 + T3€3,0, €1]
Il[elv v, 61] + T2 [625 v, 61] + 1173[63, v, 61] = T2 [627 v, 61] + 1173[63, v, 61]
= T2 (y1[€2, e1,e1] + y2lea, e2, e1] + yzlez, e3, 61]) + x3 (y1[637 e1,e1] + yz2les, ez, e1] + ysles, es, 61])

= $2y3[€2, €3, 61] + $3y2[€3, €2, 61] = $2y3[€1, €2, 63] - 5633/2[617 €2, 63]

T2Y3 — T3Y2.

On procede de la méme fagon pour les deux autres coordonnées.

IV _ Angles

Il y a en géométrie plusieurs notions d’angles : angle d’une rotation, angle orienté de vecteurs ou de droites,
angle non orienté (ou angle géométrique). Nous allons définir ces différentes notions.

Dans toute cette section, E est un plan vectoriel euclidien.

a) Angles orientés de vecteurs

Lemme 6 Soient u et v deuz vecteurs unitaires de E. Il existe une unique rotation R de E telle que R(u) = v.

Démonstration. Complétons u en une base orthonormée (u,u’). Si v s’écrit dans cette base v = au + bu/,
alors a2 4 b2 = 1 puisque v est unitaire. La matrice (‘g _ab) est donc la matrice d’une rotation R de E et celle-ci
vérifie R(u) = v. C’est la seule satisfaisant cette condition car si R’ est une rotation vérifiant R'(u) = v, sa

matrice dans la base (u,u’) est nécessairement (“ _b).

b a
, oy . 1. v U1 O

Définition Soient u et v deux éléments non nuls de E. On appelle 1
angle orienté de u et v l'unique rotation R vérifiant R(HZ_H = ﬁ 1l

. U
sera noté u,v. " !
Si E est orienté, on appelle mesure de cet angle tout nombre réel 0
tel que R ailt pour matrice (dans n’importe quelles base orthonormée
directe) (gfjg ’Cslsnee). Sa mesure principale est la mesure appartenant Ry = Ry—ar
a)—m, 7. Ces deux angles sont égaux

Sommes d’angles. Si uq,v1,us et vo sont quatre vecteurs de E et Ry, Ro, les rotations de E vérifiant res-
) ) q ) )
pectivement Ry (m) = ﬁ et Ry (ﬁ) = Hz—ZII’ alors la somme 1, v1 + Uz, V3 est par définition la rotation

Ry 0o Ry = Ry o Ry (voir lemme 4). C’est donc 'angle orienté des vecteurs u et Ry o Ro(u) pour tout vecteur
non nul v de E. Il y a un angle nul, représenté par Id : c’est 'angle orienté w, u pour tout u € E \ {0}. Chaque
angle u, v posséde un opposé —u, v qui est 'angle v, u (représenté par la rotation R~! si R représente u, v).
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Proposition 2.19 (Relation de Chasles) Pour tous vecteurs non nulsu, v etw de E, on a u, v+v, w = U, w.

Démonstration. C’est une conséquence immeédiate de la définition d’un angle orienté de vecteurs et du

lemme 4.
O
Proposition 2.20 Soient u, vy et ve trois vecteurs non nuls de E. On a :
U, 01 = U, vy Si, et seulement si, INER, X > 0, tel que vo = \vy.
Démonstration. Si v, = \v; avec A > 0, alors m = H:j—i” donc u,v1 = u, vz (définition de I'angle orienté de
deux vecteurs). Réciproquement, si ces deux angles sont égaux, il existe une rotation R telle que
U v v
o(g) - e 1
ull 7 ol oz
done vy = 122lly) ot X = 1221l convient.
loall floal 0

Proposition 2.21 Soient u et v deux éléments de E.

1) Pour toute rotation R on a R(u), R(v) =, v (les rotations préservent les angles).

2) Pour toute réflexion s on a s(u),s(v) = —u, v (les réflexions renversent les angles).

Démonstration. Quitte & normaliser les vecteurs, on peut supposer qu’ils sont unitaires. Notons Ry la rotation
vérifiant Ro(u) = v.
1) On a Ry(R(u)) = R(Ro(u)) = R(v) d’apres le lemme 4, donc Ry est bien la rotation représentant I’angle

orienté R(u), R(v).
2) En utilisant la proposition 2.16, on calcule de méme Ry (s(v)) = (Ro o s)(v) = (so Ry ")(v) = s(u) donc Ry

représente également angle s(v), s(u) : s(v), s(u) = u, v, ou encore s(u), s(v) = —u, v.
(]

Proposition 2.22 Soient u et v deuz éléments d’un plan vectoriel euclidien orienté E et 6 une mesure de
Uangle orienté u,v. Alors :

(wlv) = ||lul| ||v]| cos et det(u,v) = ||u| ||v] sinb.

Démonstration. Quitte & diviser chacun des membres de ces deux égalités par |[ul| [|v]| (bilinéarité du produit
scalaire et du déterminant), on peut supposer que w et v sont unitaires. Soit u’ tel que (u,u’) soit une base
orthonormée directe de E et R la rotation envoyant u sur v. La matrice de R dans (u,u’) est (€258 —5n9) donc
on a R(u) = (cos@)u + (sinf)u’ = v. De 14, on obtient :

(u|v) = (u|(cosO)u + (sin@)u’) = (cos ) (u|u) + (sin ) (u|u') = cos¥,
det(u,v) = det(u, (cos O)u + (sinf)u’) = (cos ) det(u, u) + (sin ) det(u, u') = sin6.

b) Angles orientés de droites

Lemme 7 Soient D1 et Dy deux droites de E. Il existe exactement deux rotations envoyant Dy sur Do. Si 6
est une mesure de l’angle de l'une de ces rotations, l'autre a pour angle 8 — 7 (dans le cas ot E est orienté).

Démonstration. Soient u; et us deux vecteurs unitaires dirigeant respectivement D; et Ds. Une rotation R
envoie D; sur Dy si, et seulement si, R(u1) = +us. D’apres le lemme 6, il existe donc exactement deux rotations
envoyant D; sur Dy. Si 6 est une mesure de I'angle uy, uz, alors Ry est une de ces rotations (Rg(ui) = ug) et
Ry_r est Pautre (Rg—r(u1) = R_r(u2) = —ua).

O
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Définition On appelle angle orienté de deuz droites Dy et Do l’ensemble {R, R’} ot R et R’ sont les deux

_

rotations envoyant Dy sur Ds. Cet angle sera noté D1, Do .

On appelle mesure de cet angle tout nombre réel 0 tel que R ou R’ ait pour matrice (Z;’;g _Cf;i“e@) (dans n’importe

quelle base orthonormée directe).

Commentaire : si u; et us sont deux vecteurs engendrant respectivement D
et Dy, nous avons a priori le choix entre quatre angles de vecteurs pour définir
) — —  — - ) :

Iangle de D; et Do : uy,uz, w1, —ug, —ui,us €t —ui, —us. Il n’y a en fait que

. . —_— _ — - .z 7

deux choix puisque w1, us = —uy, —ug et uy, —ug = —uq, us (propriété 2.21).
En fait on ne choisit pas et on considére que I’angle orienté des deux droites
est 'ensemble de ces deux angles orientés de vecteurs. A noter que la mesure
d’un angle orienté de droites n’est bien définie qu’a 7 pres. La figure ci-contre

illustre tout ceci : les quatre angles qui y sont décrits correspondent & un seul

angle de droites, 'angle D1, Ds.

Sommes. Comme pour les angles orientés de vecteurs, on peut définir la somme de deux angles orientés Dy, Do
et A1, Ay de droites dans F, de mesures respectives 6 et « : ce sera 'ensemble {Rg1q, Rot+a+r}- Cest Pangle

orienté D, Ry (D) pour toute droite D de E. Il y a un angle nul, représenté par {Id, —Id = R, }, qui est égal
a D, D pour toute droite D. Tout angle orienté D1, Dy admet un opposé : —Dy, Dy = Dy, Ds.

Des propriétés 2.19, 2.20 et 2.21 on déduit des propriétés similaires pour les angles orientés de droites :

Proposition 2.23 (Relation de Chasles) Pour toutes droites D1, Dy et D3 de E, on a
Dy, D3 + Dy, D3 = Dy, Ds.
Proposition 2.24 Soient D, Dy et Dy trois droites de E. On a :

D,Dy=D,Dsy si, et seulement si, Dy = Ds.

Démonstration. Soient u, v; et vo trois vecteurs unitaires dirigeant respectivement D, Dy et Dy. On a :

—

D,Dy=D,D;, <~— m:u,i’vg
<= wv; = vy d’apres la proposition 2.20
<— Di=D-,.

Proposition 2.25 Soient D1 et Do deux droites de E.

1) Pour toute rotation R on a R(D1), R(Ds3) = D/l,\l)g (les rotations préservent les angles).

2) Pour toute réflexion s on a s(D1),s(D2) = —D1, Dy (les réflexions renversent les angles).
Notons, pour x € F non nul, D, la droite vectorielle engendrée par x.

Lemme 8 Soient u, v, u', v' quatre vecteurs unitaires de . Alors :

—

D'UJD'U

—

Dy Dy — 2@2 2’[1,/,’0/.

Démonstration. Notons que si p (resp. p’) est la rotation représentant ’angle u, v (resp u’,v’), alors po p et

p' o p' représentent respectivement 2w, v et 2u’,v’'. Par conséquent, si 6 (resp. 6') est 'angle de R (resp. R’),
on a

—

2w, 0 =2u',v <= pop=pop <= 20=20" mod2rm
< 0=0 modm << p=poup=-—p
= To=u,v ou Go=u,—V
<— m:Du/,Dv,

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais



V _ Espaces affines euclidiens 31

¢) Angles géométriques

On parle d’angle géométrique (ou d’angle non orienté) lorsque ’on ne fait pas la différence entre un angle orienté
(de vecteurs ou de droites) et son opposé. Ainsi, n’importe quelle isométrie conserve les angles géométriques.
La mesure d’'un angle géométrique de deux vecteurs est bien définie modulo 7, alors que la mesure d’un angle

géométrique de deux droites est bien définie modulo 5. Par contre, il faudra faire attention au fait qu’il n’y a
pas en général de relation de Chasles entre les angles géométriques.

V _ Espaces affines euclidiens
a) Généralités

Les notions introduites et étudiées en géométrie vectorielle euclidienne conduisent naturellement aux définitions
suivantes en géométrie affine.

Définition Un espace affine euclidien est un espace affine dont la direction est un espace vectoriel euclidien.

Dans un tel espace, nous pouvons introduire les notions suivantes.

e La distance entre deux points A et B est d(A, B) := ||1@||, que l'on notera également AB. Des propriétés de
la norme dans un espace vectoriel euclidien (proposition 2.1), découlent les propriétés suivantes de la distance :

Proposition 2.26 Soit & un espace affine euclidien. On a :
1) VA,Be &, d(A,B) >0 et d(A, B) =0 si, et seulement si, A= B.
2) VA,B e &, d(B,A) =d(A, B).
3) VA, B,M € &, d(A,B) < d(A, M)+ d(M, B) (inégalité triangulaire), avec égalité si, et seulement
si, M € [A, B] (ie 3p € [0,1] tel que M = pA+ (1 — p)B).

Démonstration. Les deux premieres propriétés et I'inégalité triangulaire sont des conséquences directes des
propriétés de la norme énoncées dans la proposition 2.1. Examinons le cas d’égalité dans I'inégalité triangulaire :

|AM][ +||BM|| = ||AB|| = ||AM + M B||
A >0 tel que AM =AMB ou M € {A,B} (proposition 2.1)

d(A, M)+ d(B, M) = d(A, B)

X >0 tel que M:HL)\(A—I—)\B) ou M e {A, B}

Juel0,1] tel que M =pA+(1—p)B (p= 1%\ ou p € {0,1}).

rrie

O

e Deux sous-espaces affines % et 4 d’un espace affine euclidien & sont dits orthogonauz si la direction de I'un est

1 1 n
incluse dans ’orthogonal de I'autre : ? C (?) ou ? - (?) . Si de plus ? = (?) , les deux sous-espaces
affines sont dits perpendiculaires. Le théoreme de Pythagore peut par exemple se réécrire comme suit :

Théoreme 2.6 Soient A, B et C trois points d’un plan affine euclidien. Alors, les droites (AB) et (BC') sont
perpendiculaires si, et seulement si, AC* = AB% + BC?.

e Un repere cartésien (2; €, ..., €,) est dit orthonormé si la base (€1, ..., €,) est orthonormée.
A

e Si A, B et C sont trois points d’un plan affine euclidien, on notera — c
— L ‘8 ABC
ABC l’angle non orienté des vecteurs B Z et BC.

B

e On appelle angle orienté de deux droites affines Z; et 25 d’un plan affine euclidien ’angle de leurs directions.
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e Une projection (affine) orthogonale dans un espace affine euclidien & est une projection sur un sous-espace

1L
affine .Z de & dans la direction (? ) . De méme, une symétrie (affine) orthogonale est une symétrie par rapport

1L
a un sous-espace affine % dans la direction (? ) . Une réflexion affine est une symétrie orthogonale par rapport
a un hyperplan.

b) Isométries affines

Définition Soit & un espace affine euclidien. Une isométrie (affine) de & est une application affine f : & — &
qui conserve les distances :

vA,Be &, d(f(4),f(B)) =d(A,B).
Remarque : il découle immédiatement de la définition que la composée de deux isométries est une isométrie.

Proposition 2.27 Une application affine est une isométrie si, et seulement si, l’application linéaire associée
est une isométrie vectorielle (ie un endomorphisme orthogonal).

Démonstration. Soit f : & — & une application affine. Pour A et B dans &, on a
(110,00 = [T = [ 7)o = 3]

f(ﬁ) H = H/@H pour tout couple de points (A, B)

Par conséquent, f est une isométrie si, et seulement si,

de &, c’est-a-dire f est un endomorphisme orthogonal.
O
Exemples. 1) Puisque Id—ég est un endomorphisme orthogonal, toute translation est une isométrie.

2) De méme, toute symétrie orthogonale est une isométrie car toute symétrie vectorielle orthogonale est un
endomorphisme orthogonal.

Corollaire 2.4 Une isométrie est bijective et sa réciproque est également une isométrie.

Démonstration. Cela découle des propositions 2.27, 2.11 et 1.8.
O

Définition Un déplacement (resp. antidéplacement) d’un espace affine euclidien & est une isométrie affine
directe (resp. indirecte) de &.
On notera Is(&) l'ensemble des isométries de & et IsT(&) 'ensemble des déplacements de & .

Théoreme 2.7 Soit f une isométrie d’un espace affine &. Il existe un unique couple (u,g) € z x Is(&)
vérifiant :

1) f=tgog=gota;
2) g admet au moins un point fize.

—

Le vecteur @ ainsi associé a [ vérifie f(d) =4 = §(u).

— -

Lemme 9 Si f est une isométrie, alors ker(f —1Id—) et Im(f — Id—2) sont supplémentaires orthogonauz.

Démonstration. Notons que d’apres le théoreme du rang, ces deux sous-espaces vectoriels ont des dimensions
complémentaires. 1l suffit donc de démontrer qu’ils sont orthogonaux et d’utiliser le théoreme 2.3 pour conclure.

— —

On considere donc un élément u € ker(f —Id3) et un élément ¥ € Im(f — Id2). Il existe & € & tel que

U= (f—1d3)(w). De la:

S

(@lo) =

(@|(f - 1ag)@) ) = (@| fm) ) ¢
_ <*(a)‘f(u7)>_<a|w> car f(il) =i
(
0

|@)
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O
Démonstration du théoréme 2.7. e Fixons un point A dans &. D’apres le lemme 9, il existe deux vecteurs

4 et U dans rd tels que f(d) = et Af(A; =u+ (f— Idz) (¥). Notons g l'isométrie g :=t_z o f. Alors :
—)f:tﬂogetfﬂ:tﬂog:t og=4.
— Pour tout point M de &, on a (gotz)(M) = g (M + @) = g(M)+g(@) = g(M)+f(@) = g(M)+4 = (tgog)(M).

— SiQ:=A -7, alors :
9(€) = (—agof)(A-0)=f(A-0)—u=f(A) - f(V) —di=A+Af(A) - f(¥) —d
= A+ i+ (f-1d3) (@) - f@0)—i=A-7=0Q
donc g admet au moins un point fixe. Ceci montre I'existence du couple (i, g).

¢ Examinons a présent 'unicité : on suppose qu’il existe deux décompositions f = tzog = gotz =t 09 = g'ot -
telles que g (resp. ¢') admette un point fixe Q (resp. Q'). On a alors f(Q) = (tz 0 g)(Q) = g(Q) +i=Q+4+4a
donc @ = Qf(Q), et de méme o’ = Q' f(€'). De 14 on obtient :

- — ——— > —
7= = Qf(Q) = Q) = QF Q) + F@)FQ) + F(@)Y = Q0 + F()F (@) = (F-1dz) (¥9).

Or le vecteur de gauche appartient a ker(f — Id—) et celui de droite a Im(f — Id). D’apres le lemme 9, ces
deux vecteurs sont donc nuls et on obtient @ =u/ et g =t_go f = t mof=4g.

d

Corollaire 2.5 Soit f un déplacement distinct de 1d d’un plan affine euclidien orienté &.

1) Si Fix(f) # 0, alors f est une rotation vectorielle et f admet un unique point five Q. Si 0 est Uangle de
f, on dit que [ est la rotation de centre ) et d’angle 6.
2) Si Fix(f) =0, alors [ est une translation.

Démonstration. L’endomorphisme f est orthogonal direct donc est soit une rotation, soit Id?;. Dans le
deuxiéme cas, f est une translation et n’admet aucun point fixe (f # Idp par hypothése). Dans le premier cas,

1 n’est pas valeur propre de f donc f admet un unique point fixe (théoréme 1.3).
O

Corollaire 2.6 Soit f un antidéplacement distinct de Id d’un plan affine euclidien orienté Z.
1) SiFix(f) # 0, alors f est une réflexion.

2) SiFix(f) =0, alors f est la composée (commutative) d’une translation et d’une réflexion, le vecteur 4 de
la translation dirigeant Uaxe 9 de la réflexion. On dit que f est une symétrie glissée d’axe 9 et de vecteur u.

Démonstration. Notons d’abord que f est une réflexion vectorielle (proposition 2.15). Ainsi, si Fix(f) # 0,
Fix(f) est une droite car c’est un sous-espace affine de 2 de direction ker(f — Idz) (proposition 1.9). Par
conséquent, f est la réflexion d’axe Fix(f). Si f n’admet pas de point fixe, f se décompose (de fagon unique)
sous la forme f =tz 0 g = g otz avec g isométrie admettant au moins un point fixe et @ vecteur invariant par
f (théoréme 2.7). D’apres ce qui précede, g est une réflexion d’axe dirigé par ker( — Id—>) = ker (f— Id?;),
donc par 1.

O
f(M) M
] 17
o M )
I SNy
0 |
rotation de centre §2 et d’angle 6 symétrie glissée d’axe Z et de vecteur @
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¢) Distance d’un point & un sous-espace affine

Définition Soient .% un sous-espace affine et A un point d’un espace affine euclidien &. On appelle distance
de A a .7, notée d(A,.F), la plus petite des distances de A a un point M de F :

d(A, F) = inf {d(A, M)/ M € F}.

Proposition 2.28 Soient F un sous-espace affine d’un espace affine & et A un point de &. Il existe un unique
point H dans F tel que d(A, F) = AH ; ce point est le projeté orthogonal de A sur .

Démonstration. Notons H le projeté orthogonal de A sur #. Puisque H € %,
on a d(A,#) < AH. D’autre part, si M est un point de %, il vient (théoréme de
Pythagore) :

AM? = AH? + HM? > AH?
donc AH minore 'ensemble {AM /M € Z#}. On a donc AH < d(A,.7).
Enfin, si H' € % vérifie d(A, #) = AH', alors

Y

AH® = d(A,.7)* = AH” = AH? + HH"”

donc HH' =0, c’est-a-dire H = H'. 0

Corollaire 2.7 (Cas de la dimension 2) Soit Z une droite d’un plan affine euclidien & et A un point de

. On se donne e, une base orthonormée de ﬁ, U un vecteur directeur de 9, U un vecteur unitaire orthogonal
a 2 et Q un point de 9. Alors :

ete ﬁ,ﬁ
d(A,@)_‘<m|ﬁ>)_W.

Démonstration. Si H est le projeté orthogonal de A sur 2, il existe A € R
tel que AH = A7 et on a d(A, 2) = AH = |\|. D’autre part,

(A8 15 = (AH + HOY|5) = (AH [5) = (|7 = A
Pour la deuxieme égalité, on calcule
dete (m,a) = dete (zﬁ + ﬁﬁ, ﬁ) = dete (ﬁ,

= dete (AG, @) + 0 = A||@]|dete

S

) + dete (HS, @)

) ==l

E

v,

S

/N

[l
,92) = AH = |)|, on a bien ’égalité cherchée.

= ) est une base orthonormée. Puisque d(

b

car (G, -

O

Définition Soit E un espace vectoriel euclidien de dimension n. On appelle déterminant de Gram de k vecteurs
U1, ..., Uy le déterminant de la matrice carrée de taille k dont le coefficient (i,7) vaut (U; |4;) :

Gram (ﬁl, veey ﬁk) = det((ﬁz |ﬁj >)1Si,j§k'
Proposition 2.29 Pour toute famille 1, ..., Uy de k éléments d’un espace vectoriel euclidien E, on a :
1) Gram (¢, ...,d) = 0 si, et seulement si, la famille (i1, ..., Uy) est liée.

2) Si (1, ..., Uy) est libre et e est une base orthonormée de Vect(iy, ..., dy), alors

2
Gram (@1, ..., @) = (dete (ﬁl,...,ﬁk)) .

—

En particulier, Gram (i1, ..., Ux) > 0.
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Démonstration. 1) Si la famille (@, ..., 4) est liée, il existe une combinaison linéaire nulle non triviale de

k o
ces vecteurs : Y Aji; = 0. Pour tout 4, 1 <4 <k, on a donc
=1

ce qui montre que les colonnes de la matrice ((d; [;)), ; ;< sont liées et donc que Gram (4, ..., @) = 0.

Réciproquement, si Gram (1, ...,4;) = 0, les colonnes de la matrice ((;|d;))
(A1, .y Ax) € RPN\ {(0, ..., 0)} tel que

1<i i<k sont liées : il existe

k
u; Z Aj; ) =0 pour tout i.
—

k —
> AU ) =
7=1

2) Rappelons (proposition 2.7) que les coordonnées d’un vecteur @ dans la base orthonormée e = (é, ..., €)
sont ((€1 @), ..., (€ |u)). Ainsi, si A désigne la matrice des coordonnées de la famille (i1, ..., @) dans la base
e,onaA;,; =(€]u;). On a donc :

2

k
et le vecteur Y A;U; est donc nul :

1=1

k k k
On a donc 0 :Z /\z <’(7:1 E /\7’177> = <Z /\zﬁz
] 7=1 1=1

la famille (1, ..., dy) est liée.

k
> Ajt;
7=1

k k k k
Z (€p|t:) €p Z (€q i) €q Z (€p |s) (€p|tij) = Z Apidp,j = (tAA)m .
p=1 q=1 p=1 p=1
2 2
De 13, on obtient Gram (@1, ..., @) = det (‘AA) = (det A) = (dete (U, ..y ﬁk)) .

O

Proposition 2.30 Soient % un sous-espace affine d’un espace affine euclidien & et A un point de &. On
suppose que F est muni d’un repére (2;€1,...,€x). Alors :
Gram (m, €1, ..., ﬂk)

é
72 —
(4, 7) = Gram (€1, ..., €x)

Démonstration. Notons H le projeté orthogonal de A sur & :ona d(A, %) = AH (proposition 2.28). Puisque
Ei = zﬁ + ﬁ, on obtient, en utilisant le fait que zﬁ est orthogonal a tout vecteur de .# :

Gram(m,él,...,€k> = Gram(ﬁ—l—ﬁ,eﬁ,...,é@

<,ﬁ+ﬁ)ﬁ+ﬂ> (AH + HG|e) - (AH + HG e )
<el ’Zﬁ—i— —§> (€11]e1) (€1 ex)

<é‘k)ﬁ+ﬁ§> <€k.|é’1> <€7c'|€7c>

|AH |2 + (HG? (HSG)E) - (Hbla)
(afmd)  @e) e @la

<gk )ﬁ) <€kiél> » <€kiék>
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AR (EE) . (Ee) | | (FOES) (Hhla) - (HGle)
< > < > <é’1‘ﬁ> (€11]€1) (€1 ]er)

0 @ld) - (@ le) <gk\ﬁ> <5kié'1> - <€ki€k>

)
=

o

g
=]
o
a

Il
&l
_l’_
D)
=

2V)

g
=
o
)

d(A, #)? Gram (€1, ..., &) car la famille (H—ﬁ, €, ., é’k) est lide.

d) médiatrice
Proposition 2.31 Soient A et B deux points distincts d’un espace affine euclidien &. L’ensemble des points
de & équidistants de A et B est un hyperplan passant par le milieu de (A, B) et perpendiculaire ¢ (AB).

Définition Cet hyperplan est appelé hyperplan médiateur de [A, B]. En dimension 2, on parle de la (droite)
médiatrice de [A, B] et en dimension 3, du plan médiateur de [A, B].

Démonstration. Notons I le milieu de (A, B). Pour tout point M de &, on a
AM? — BM? = (AM + BM|AM - BM ) = 2 (T0 | 4B )
i
donc AM = BM si, et seulement si, <ﬁ>4 ’zﬁ> =0, c’est-a~-dire M € I + Vect (zﬁ) .

e) Bissectrices

On se place ici dans un plan affine euclidien Z.

Proposition-Définition Soient P et Yo deux droites de & sécantes en un point A. Soient Uy et Uz deux
vecteurs unitaires dirigeant respectivement 91 et Do.

1l existe exactement deux réflexions échangeant 21 et Do. Elles admettent pour axes les droites passant par A
et dirigées respectivement par iy + s et Wy — Uds. En particulier, ces deux droites sont perpendiculaires. Elles
sont appelées bissectrices des droites 21 et Ds.

Démonstration. Soit s une réflexion échangeant 2; et %5, 2 son axe. Puisque A € 21 N Ps, on a s(A) = A
donc A € 2. D’autre part, §(i1) = etls avec € = %1 et §(i2) est alors égal & eti1, donc §(U; + etiz) = etla + Us.
Il n’y a donc que deux possibilités pour 'axe de s :

Ay = A+ Vect (g +12) et Ag= A+ Vect (dy — Ua).
Réciproquement, notons s; et sy les réflexions d’axes respectifs A et As. Puisque
(@ + a2 @) —d2) = |@]® - @[> =1-1=0,
ces deux droites sont perpendiculaires. Par conséquent, les décompositions

. r . .
u1=§(u1+uQ)+§(u1—u2) et Uy =

L. . - . = 0o L1
= 5 (u1 “FUQ) — 5 (u1 — UQ) = U2 et Sg(ul) = —5 (u1 “FUQ) + 5 (u1 — UQ) = —U3.
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Puisque s1(A4) = s2(A) = A, on a done $1(%1) = Do = s2(D1).
On dispose de deux caractérisations des bissectrices de deux droites (une angulaire, Pautre métrique) :

Proposition 2.32 Soient 21 et 95 deux droites de P sécantes en un point A.

1) Une droite A de & est une des bissectrices de 2y et D si, et seulement si, A € A et @/1\,A = A/,\%

2) La réunion des deuz bissectrices de 2y et P coincide avec l'ensemble des points équidistants de Dy et Ds.

Démonstration. 1) Soient A une droite passant par A et s la réflexion d’axe A :
A bissectrice de 21 et Do <  $(Z1) = Do

— A;s(%)= A/,\% d’apres la proposition 2.24

— A/,\% =—s(A), 9 = —A/,\% d’apres la proposition 2.25

—

— A/,\%: 1, A

2) Soient u; et iy deux vecteurs unitaires dirigeant respectivement 27 et %,. D’apres le corollaire 2.7, on a,
—
pour M € & d(M, D) = )det (AM,ﬁk)) (k=1 ou 2). De la, on obtient :

d(M, 90)* — d(M, 75> = det (AM, i) — det (AM, i)
= [det (m,ﬁl) — det (m,ﬁg) - |det (m,ﬁl) + det (m,ﬁz)]

= det (AM, @ — @2) - det (AM, i + 2)
Par conséquent, d(M, %,) = d(M, Z-) si, et seulement si, det (m,ﬁl - ﬁg) = 0 ou det (m;ﬁl + ﬁ2) =0,

NETYTY ; o - - - R . N . .
c’est-a-dire AM est colinéaire & 11 — Uz ou U7 + us. Ceci signifie que M appartient & une des deux bissectrices.
O
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VI _ Similitudes

Définition Soit E un espace vectoriel euclidien et k un nombre réel, k > 0. Une application linéaire o : E — E
est appelée similitude (vectorielle) de rapport k si elle vérifie :

(o(@) () = k* (@|T)  pour tous @, € E.
En géométrie affine euclidienne, la notion de similitude peut étre définie comme suit :

Définition Soit & un espace affine euclidien et k un nombre réel, k > 0. Une application affine f : & — &
est une similitude (affine) de rapport k si

d(f(A),f(B)) =kd(A,B) pour tous A,B € &.

Remarques : 1) Une isométrie (affine ou vectorielle) est une similitude (affine ou vectorielle) de rapport 1.
2) Une homothétie de rapport A est une similitude de rapport |A|.

4) La composée de deux similitudes de rapport respectifs k; et ko est une similitude de rapport ki ks.

Proposition 2.33 Soit E un espace vectoriel euclidien et k un nombre réel, k > 0. Une application linaire
¢ : E— E est une similitude de rapport k si, et seulement si, on a

le(@)|| = k||@]| pour tout @ € E.

Corollaire 2.8 Un endomorphisme ¢ d’un espace vectoriel euclidien E est une similitude de rapport k si, et
seulement st, %cp est un endomorphisme orthogonal de E.

Démonstration. C’est une conséquence des propositions 2.33 et 2.10.
O

Corollaire 2.9 Une similitude vectorielle de rapport k est bijective et son inverse est une similitude de rap-
1
port .

Démonstration. Si ¢ est une similitude de rapport k, alors, pour tout @ € E, on a

(p(@) lp(@)) = k* (@]@) donc |lp(@)] = k.

Réciproquement, si ||o(i]| = k||i@|| pour tout vecteur @, alors, pour tout (@, 7) € E?, on a

(@ |e@) = 7 (le@ + @@ - lle(@) - o(@)]?) =

(k2@ + 0])> — k*||@ — 0)|*) = k> (@|7) .

(le(@+D)* = lle(@—0)|?)

N
W] =

O

Proposition 2.34 Une application affine f: & — & est une similitude de rapport k si, et seulement si, f est
une similitude vectorielle de rapport k.

Démonstration. Il suffit de se rappeler que pour tout couple (A, B) de points de &, on a
d(£(A), 1(B)) = IF(AB)| et d(A,B) = |AB|.

et d’utiliser la proposition 2.33.
Proposition 2.35 Toute similitude affine de rapport k différent de 1 admet un unique point fixe.
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Remarque : : cet unique point fixe est appelé centre de la similitude.

Démonstration. On va démontrer que 1 n’est pas valeur propre de f afin d’utiliser le théoréeme 1.3. Or si

i € E vérifie f(@) = @, on a
@ = | f(@)| = k||@| ce qui implique @ = 0 puisque k # 1.
O

Ainsi, si s est une similitude de centre € et de rapport k différent de 1, et h 'homothétie de centre 2 et de
rapport %, hos est une isométrie admettant {2 comme point fixe. En utilisant la classification des isométries du
plan affine euclidien, nous pouvons donc donner la liste des similitudes de rapport différent de 1 dans le plan
affine euclidien.

Théoréme 2.8 Soit & un plan affine euclidien. Une similitude s de &2, de rapport k différent de 1 et de centre
Q, s’écrit de fagon unique comme la composée (commutative) d’une homothétie de centre Q et de rapport k, et
d’une isométrie admettant & comme point fize.

e Si s est directe, l'isométrie est une rotation. Si 0 est son angle, on dit que s est la similitude de centre (), de
rapport k et d’angle 0.

e Si s est indirecte, lisométrie est une réflexion par rapport a une droite 9 passant par 2. On dit que s est la
similitude de centre 2, de rapport k et d’axe 9.

Démonstration. Il ne reste qu’a démontrer qu’'une homothétie h de centre €2 et une isométrie f admettant
Q pour point fixe commutent (M € &) : pour tout M € &

ho f(M) = h(f(Q+QM)) =n(f()+ F(QM)) =h(2+ F(O2]))
= Q4 kf(QM) =+ f(kOQM) = () + F(k QM) = £ (Q + QM)

= foh(M).
O
Remarque : Puisque les homothéties et les isométries préservent I'orthogonalité, il en est de méme des simili-
tudes. La réciproque est vraie :

Théoréme 2.9 Soit E un espace vectoriel euclidien et ¢ une application linéaire de E dans E. On suppose
que @ # 0. Alors, ¢ est une similitude si, et seulement si, ¢ préserve l'orthogonalité.

Démonstration. Il s’agit de montrer que si un endomorphisme non nul ¢ de F préserve 'orthogonalité, il
existe un nombre réel k tel que %gp soit une isométrie (corollaire 2.8). Soit (eq,. .., e,) une base orthonormée de
E. Puisque ¢ préserve l'orthogonalité, la famille (cp(el), ceey gp(en)) est orthogonale. De plus, on a, pour i # j :

(e;+ejle;—e;) = ||€i||2 - ||€j||2 =0

donc
0= (plei +e;) [e(es — e5)) = (pler) + ple;) [pler) — ple;)) = [lole)l* — (e[

Ainsi, si k = [|p(e1)|| et f = 1o, la famille (f(e1),..., f(en)) est orthonormée, donc f est une isométrie
(théoréme 2.4).
O

Corollaire 2.10 Soit E un espace vectoriel euclidien et ¢ une application linéaire de E dans E. On suppose
que @ # 0. Alors, ¢ est une similitude directe (resp. indirecte) si, et seulement si, ¢ préserve (resp. renverse)
les angles orientés.

Démonstration. Si ¢ préserve ou renverse les angles orientés, ¢ préserve I'orthogonalité donc est une similitude
d’apres le théoreme 2.9. Réciproquement, une similitude directe (resp. indirecte) préserve (resp. renverse) les
angles orientés car les homothéties et les isométries directes les préservent tandis que les isométries indirectes
les renversent.

O
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VI1I _ Utilisation des nombres complexes

L’ensemble des nombres complexes C est un espace vectoriel de dimension 2 sur R et a ce titre, est muni d’une
structure d’espace affine. L’application C x C — R, (z,2’) — % (25’ + 22’) est un produit scalaire sur C dont la
norme n’est autre que ||z|| = |z|. Le couple (1,7) est une base orthonormée pour ce produit scalaire et 1'usage
veut que l'on oriente C avec cette base.

Si & est un plan affine euclidien muni d’un repere orthonormé (Q;€i,é3), on peut identifier & avec C en
identifiant un point M de coordonnées (z,y) avec le nombre complexe z = z + iy. On identifie de méme tout
vecteur 4 = z€] + yé3 de la direction de & avec le nombre complexe x + iy. On dira que M (resp. @) a pour
affixe z dans le repere (€2; €1, €3) (resp. la base (€1, €3)).

De ce point de vue, on peut identifier les similitudes du plan comme suit.

Théoréme 2.10 Les similitudes directes (resp. indirectes) du plan complexe sont les applications de la forme
zraz+b (resp. z+—azZ+b) pour a € C* et be C.
Plus précisément, si A est un point d’affize a et U un vecteur d’affize b, alors :

1) l’homothétie de centre A et de rapport A € R* est Uapplication z — Az —a) + a;
2) a) la similitude directe de centre A, de rapport k € R, k # 1, et d’angle 6 est l’application z — ke (z—a)+a.
En particulier, la rotation de centre A et d’angle  est Uapplication z — € (z — a) + a.

b) la translation de vecteur @ est Uapplication z — z + b.

3) a) la similitude indirecte de centre A, de rapport k € R, k # 1, et d’axe I dirigé par i est lapplication
2 ks Ib\2 (z—a)+a.

En particulier, la réflexion d’axe 9 est donnée par z — Ib\2( a) +a.

b) la symétrie glissée d’aze P passant par A et dirigé par U est application z — Ib\2( a)+a+b.

Démonstration. Si s : C — C est application donnée par s(z) = az + b, alors s est affine d’application
linéaire §': z — az et, pour tout couple de nombres complexes (21, 2z2), on a

A(f(z0), f () = 1£(z1) = F2)] = fal] - |22 —

donc s est une similitude de rapport |a|. Puisque 5(1) = a et §(¢) = ai, la matrice de § dans la base orthonormée
directe (1,1) est (Im((‘;)) 751,4:1&‘)1 ) On a donc det 8= Re(a)? + Im(a)? = |a]?> > 0 donc § est directe. On voit de
méme que Uapplication z — aZ + b est une similitude indirecte de rapport |al.

Examinons a présent chacun des cas décrits dans 1’énoncé.
1) Ce cas est immédiat : c’est la définition de 'homothétie de centre A et de rapport A.

2) a) Soit 5 : C — C, s(z) = ke?(z — a) + a. D’apres ce qui précede, s est une similitude directe de rapport
|ke?| = k # 1. Puisque s(a) = a, son centre est le point A. Notons h I’homothétie de centre A et de rapport
k. On a h™'(z) = (2 —a) + a donc, si R = h™' o's, R(z) = €(z — a) + a. R est une isométrie directe
(similitude directe de rapport |¢?| = 1) admettant A comme point fixe, donc est une rotation de centre A
(voir corollaire 2.5). Son application linéaire étant donnée par R(z) = ¢z, on a R(1) = ¢ = cosf + isinf

et R(i) = icosf — sinf. La matrice de R dans la base orthonormée directe (1,4) est donc (cosb —sinf) Ceci
montre que R est la rotation vectorielle d’angle 0 et donc que R est la rotation affine de centre A et d’angle 6.

En conséquence, s = h o R est la similitude de centre A, de rapport k et d’angle 6.

b) Ce cas est également immédiat.

3) Soit s : C — C, s(z) = k|b‘2( —a) + a : c’est une similitude indirecte de centre A (s(a) = a) et de rapport

)kﬁg = k. Comme précédemment, notons h I’homothétie de centre A et de rapport k. Si o = h™!os, on a,
pour z € C

o) = (hinemm +a) = 1 (G0 +a) ] +a= oG a o
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Par conséquent, o est une isométrie indirecte (similitude indirecte de rapport ’%’ = 1) admettant A pour

point fixe. C’est donc une réflexion d’axe passant par A (voir corollaire 2.6). Or si un point M de 2 a pour
affixe z, il existe p € R tel que z — a = pb. De la, on déduit :

2 b2 _
o(z)=——=pub+a=—=pb+a=bu+a=z
(2) s e I
donc chaque point de Z est fixé par o. Ceci montre que o est la réflexion d’axe Z et donc que s = ho o est la
similitude indirecte de centre A, de rapport k et d’axe Z.
b) Si s est 'application donnée par s(z) = %(z —a)+a+b, tz la translation de vecteur @ et 0 = t_zos, alors,

pour z € C, on a
[/ —
o(z) = W(z—a)—i—a

donc o est la réflexion d’axe 2 d’apres ce qui précede. Puisque 4 dirige 2, ceci montre que s =tzoo =oc oty

est la symétrie glissée d’axe Z et de vecteur .
O
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Chapitre 3 : Triangles et cercles

Dans tout ce chapitre, &2 est un plan affine euclidien.

I_ Cercles
a) Définitions et propriétés d’incidence
Définition 1) Soit Q un point de & et R un nombre réel positif. On appelle cercle de centre ) et de rayon
R l’ensemble des points de & situés a la distance R de ) :
€(Q,R):={MecP/QM = R}.

2) Deux points A et B d’un cercle de centre Q sont dits diamétralement opposés s’ils sont symétriques par
rapport a Q). On dit dans ce cas que le segment [A, B] (ou, par abus, la droite (AB)) est un diametre du cercle.

Remarque : si € est un cercle de centre Q et de rayon R et f une isométrie du plan, alors f(%) est le cercle
de centre f(f2) et de rayon R. En particulier, toute droite passant par ) est axe de symétrie du cercle.

Proposition 3.1 Soit [A, B] un diamétre d’un cercle € et M un point de €. Alors, les vecteurs MZ et M§
sont orthogonauz.

— ?
Réciproquement, tout point M du plan vérifiant <MA ’M > =0 est sur le cercle de diamétre [A, B).

Démonstration. Pour tout point M du plan, on a, puisque @ = —(ﬁl :
(VA[WE) = (3% 04 [Wid + a8
_ (36 i 6 - k)

= MQ*-QA?
= MQ*-R%

—
Par conséquent, M est sur le cercle si, et seulement si, les vecteurs M A et
M B sont orthogonaux.

d

Proposition 3.2 (Intersection d’une droite et d’un cercle) Soient € un cercle et 9 une droite de .
Notons Q) le centre de € et R son rayon. L’intersection de € avec 9 est
— vide 51 d(Q,2) > R;
— réduite & un point si d(2, Z) = R, ce point étant le projeté orthogonal de Q sur P (dans ce cas, P est
la droite perpendiculaire o (QH) passant par H) ;
— constituée d’eractement deuz points st d(Q2, 2) < R.
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Démonstration. Notons H le projeté de 2 sur Z et considérons un vecteur unitaire « dirigeant 2. Alors :
2 est perpendiculaire & (QH), P ={H+Xi/AeR} et d(Q,2)=0QH.

Ainsi, si M € €N 2, il existe A € R tel que M = H + M\ et QM = R. D’apres le théoreme de Pythagore, il
vient
R?*=QM? = QH?* + HM? = QH?* + )\*  soit A = R? - QH? = R? —d(Q, 2)%.
En conséquence :
-s1d(Q,2) > R, iln’y a pas de solution : € N2 =0;
-1 d(Q,2) =R, il y aune unique solution A\=0: NP ={H};
-si d(Q,Z) < R, il y a exactement deux solutions : A = +1/R? — d(Q2, 2)2.
O

Définition Une droite 9 est dite tangente a un cercle € si lintersection de € avec 9 est réduite d un point.

Proposition 3.3 (Intersection de deux cercles) Soient € et €' deux cercles du plan affine euclidien 22,
respectivement de centres ), ' et de rayons strictement positifs R, R’.

1) L’intersection € N6’ est non vide si, et seulement si, |[R— R'| < Q' <R+ R'.

2) Si QY € {|R— R'|,R+R'}, alors € N¢" est réduit ¢ un point. Si M est ce point, alors M € (Q€)
et les deux cercles € et €' ont méme tangente en M : la droite perpendiculaire a (Q€Q) passant par M.

3) Si|R—R'| < QO < R+ R, alors € N €' est constitué de deuz points distincts P et Q et la droite
(QQY) est la médiatrice de [P, Q).

Définition Deux cercles sont dits tangents lorsque leur intersection est réduite d un point.

P
Q Q Q
Q
QO =R-R Q=R+ R 0O<R-R <QO <R+ R

Démonstration. Si M est un point de € N€”, alors on a (inégalité triangulaire, proposition 2.26)
IR—R|=|OM - QM| <QQ <QM +Q'M =R+ R
ce qui montre que la double inégalité du 1) est une condition nécessaire.

e Supposons que QY = |R— R'|. Si R = R/, alors Q = Q' et € = ¢’. On suppose donc que R # R’ avec par
o0
exemple R > R’, de sorte que Q' = R — R’. Alors le point M = Q+ R % est dans ¥ N%" :

s QQ/
* QM =R oo = QM =R;
— QQ/ (9194 QQ/
/ _ 0 _ _ I _p! / Y
* UM =0+ Rgm = (R-0) g = Rog, = M =R

D’autre part, si N € € N%E’, alors Q' = R— R = QN — Q'N, soit Q' + NQ' = QN. Par conséquent,
Q' € [Q, N] (proposition 2.26) et il existe A € [0, 1] tel que ' = A2+ (1 — A)N. De la, on obtient Q' N = AQN,
donc R’ = AR, et

—
o0 R R-FR R — Q0 —
Q0 = (1— sﬁ:(p—)ﬁﬁ: aN ON = —" QO = — QM N = M.
(1=2) R R — R_I Eoo —
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Enfin, la tangente & 4 en M est la droite perpendiculaire & (QQM) passant par M ; c’est également la tangente
a % en M car Q, Q' et M sont alignés.

—

Qo

Q-

e Si QO = R+ R/, on procede de méme, toujours avec M = Q + R

e Supposons pour finir que |R — R'| < Q' < R+ R’. Quitte & échanger les deux cercles € et ¢’, on peut

’ . . PLR2_R"? OO » ’ . . N ’

supposer que R > R’. Soit H le point Q + S5 Q0 ot d = Q€, et Z la droite perpendiculaire a (')
2

passant par H. Ainsi, H est le projeté orthogonal de  sur 2 donc d(2, Z) = QH. De Qﬁ = % QO et

>+R?—R?=(R+R —d)(R—R)+dR— R +d) >0, on déduit

d® + R? — R? d® + R?> — R”? + 2dR
dQ,2)-R = QH—R:+T—R: + - +
- (d+R)2—R’2_(d+R—R’)(d+R+R’)>O
B 2d B 2d

car (R’ — R) < |R — R'| < d. D’aprés la proposition 3.2, 2 rencontre donc ¢ en deux points distincts P et Q.
Montrons que ces deux points sont sur ¢’. On a

QOP?* = VH?>+ HP?=Q'H?+ (QP? - QH?) (théoréme de Pythagore)
— — — —
0P+ (VH + QH |0H - 0 ) = B + (1 + QH [0/

Or
d2 2 _pr2
o - TEE R g
2d?
- — d2 R2_Rl2_> R2_R/2_d2_>
OH = QO+ +7 QY =""_" Qq/
2d? 2d?
— 2 —
donc Q' H + (_Z_ﬁ = RQ;QR > QY et finalement
2 _ pr2 —_ s — 2 _ pr2
VP2 =R?+ % (o |0/'0) = R? - % 00”2 = R2,

On montre de méme que Q'Q = R’. Enfin, puisque QP = R = QQ et O’P = R' = Q'Q, la droite (2Q’) est bien
la médiatrice de [P, Q] (proposition 2.31).
Il reste & démontrer que ¥ N %’ ne contient pas d’autre point. Soit M un point de ¥ N %’ et supposons que
M ¢ {P,Q}. Les deux points Q et €' étant équidistants de P, Q et M, ils sont sur les médiatrices de [P, Q)]
et [M, P]. Ces deux médiatrices n’étant pas confondues (sinon @ = M comme symétriques de P par rapport
a ces droites), on en déduit que Q = ', soit d = 0. Ceci contredit 'hypothese |R — R’| < d. Par conséquent,
M e {P,Q}.

O

Proposition 3.4 (Tangente(s) & un cercle issue(s) d’un point) Soient € un cercle et M un point de 2.
Notons Q le centre de € et R son rayon. On suppose que R > 0.

1) Si QM > R, € admet exactement deux tangentes passant par M.
2) Si QM = R, € admet exactement une tangente passant par M.
3) Si QM < R, € n’admet pas de tangente passant par M.

Démonstration. e S’il existe une droite 2 passant par M et tangente & ¢, alors d(£2, ) = R (proposition 3.2).
Or QM > d(R2, 2) (car M € 2) donc QM > R. Ceci montre le point 3) de I’énoncé.

e Si QM = R, alors M € € et la perpendiculaire & (Q2M) passant par M est la seule tangente & € contenant
M (proposition 3.2).

e Supposons & présent que QM > R. Notons H le milieu de [Q, M] et €’ le cercle de centre H et de rayon
R :=HM = QH.
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On a:
* QH=HM <R+ HM =R+ R;
* RR—R<R =QHet R—R <QM - R =QM — QH = QH donc |R— R'| < QH.

Par conséquent, €’ rencontre € en exactement deux points P et @ (proposition 3.3). Puisque [, M] est un
diametre de ¢, les droites (QP) et (MP) (resp. (QQ) et (MQ)) sont perpendiculaires (proposition 3.1) donc
(PM) est tangente & € en P (resp. Q).
Enfin, si 2 est une droite tangente en un point 7' & € et contient M, alors 'angle QT M est droit donc T est
également sur ¥’ (proposition 3.1). Par conséquent, T € {P,Q} et Z est I'une des droites (PM) ou (QM).

]

b) Angle inscrit et angle au centre - Cocyclicité

Proposition 3.5 (Théoréme de ’angle inscrit) Soient € un cercle de centre Q, A et B deux points de €.
Pour tout point M de € distinct de A et B et tout point Ty de la tangente a € en A, distinct de A, les égalités
d’angles orientés de vecteurs suivantes sont vérifiées :

QA, QB = 2 MA, MB = 2 ATy, AB.

A ME
Définition L’angle (ﬁl, (ﬁ est appelé angle au centre et l'angle M A, M B angle inscrit.

Puisque les réflexions renversent les angles, on obtient

AG, AB = —BG, BA = BA, B = AB,QB.
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" = e —
D’autre part, puisque l'angle ATy, E est droit, 24Ty, E est égal a l'angle plat donc a l'angle (ﬁl,m La
relation de Chasles nous permet alors d’obtenir :

2ATA, AB — 2ATa, A +2 A0, AD = QOA, AQ + AG, AD + AG, AD

~ 04, 4B + AB, 0B - 04,08,

Ensuite, en considérant les réflexions d’axes les médiatrices de [A, M] et [B, M], nous voyons que

MG, MA=—AG,AM et MO, MB = —BG, BM.

Ceci nous conduit au calcul suivant :

2 MA, MB = MA, MB + MA, MG + MG, MB = AM, BM + AS, AM + BM, BG = AG, BG = Q4 OB.

O

Théoréme 3.1 (Condition angulaire de cocyclicité) Quatre points A, B, C, D deux & deux distincts du

plan sont cocycliques ou alignés si, et seulement si, les angles orientés de droites (AB), (AC) et (DB),(DC)
sont égau.

Démonstration. e Si les quatre points sont alignés, alors les quatre droites (AB), (AC), (DB) et (DC)

coincident, donc les deux angles (AB), (AC) et (DB), (DC) sont nuls.
Réciproquement, si ces deux angles sont nuls, alors (AC) = (AB) et (DC) = (DB) (proposition 2.24) donc les
quatre points sont sur la droite (BC).

e Supposons que les quatre points soient sur un méme cercle centré en un point 2. Le théoreme de I’angle inscrit

implique
2 AB, AC' = OB, 0C = 2 DB, DC

soit, d’apres le lemme 8

e Réciproquement, supposons que ces deux angles orientés de droites soient égaux et non nuls. Les droites (AB)
et (AC) n’étant alors pas paralleles, il en est de méme des médiatrices de [A, B] et [A, C] : soit Q leur point
d’intersection. Puisque {2 est équidistant de A, B et C, il est le centre d'un cercle € passant par ces trois points.
Si T est un point de la tangente en B & €, alors (théoréme de 1’angle inscrit)

2 1B, AC = 2 BT, BC.

De méme, le point d’intersection 2’ des médiatrices de [D, B] et [D, C] est le centre d’un cercle €’ passant par
D, B et C. Si T’ est un point de la tangente & ¢’ en B, alors

_

9 DB.DC — 2 BT, BC.
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On obtient donc, en utilisant I’hypothese et le lemme 8 :

(BT),(BC) = (AB),(AC) = (DB),(DC) = (BT"),(BC).

Par conséquent, les droites (BT) et (BT") coincident (propositon 2.24) et il en est donc de méme des droites (2B)
et (' B) (perpendiculaires respectives en B aux tangentes & € et ). On montre de méme que (QC) = ('C).
De la

{Q} = (QB)N(QC) = (Y'B) N (Q'C) = {Q'}.
Ainsi € = €’ (cercle de centre Q = ' et de rayon QB = Q'B) et donc A, B, C et D sont cocycliques.

II _ Triangles du plan affine euclidien

Nous commengons par quelques notations et définitions. Dans toute cette section, ABC est un triangle non
aplati de &, c’est-a-dire la donnée de trois points deux & deux distincts non alignés dans &. On notera :

e a=BC=d(B,C),b=CAetc=AB;
p=3(a+b+c) (pest le demi-périmetre) ;

e A la valeur absolue de la mesure principale de I’angle orienté de vecteurs E , ﬁ ;

) e —
B la valeur absolue de la mesure principale de ’angle orienté de vecteurs B?’ ,BA;

— :\
C la valeur absolue de la mesure principale de I’angle orienté de vecteurs C'A, C_Tg .

Définition Le triangle ABC' est dit :
(i) rectangle en A si AB est orthogonal a AC ;
(i) isocele en A si AB = AC;
(#i) équilatéral si AB = BC = CA.

Lemme 1 Soient e et €' deux bases orthonormées directes de ﬁ Alors :

dete (/@,/@) = dete (B?,ﬂl) = dete (Cﬁl, C@) = det,/ (ﬁ,/@) = det,/ (B?,ﬂl) = det, (Cﬁl, C@) .

Démonstration. On a déja vu que le déterminant de deux vecteurs ne dépend pas du choix de la base
orthonormée directe dans laquelle on le calcule. D’autre part, on a

det (,ﬁ,@) — det (A—B>,ﬂ§ + ﬁ) = det (ﬂ?,fl—B)) + det (ﬂ?,ﬁ)
det (E,B?) = —det (B?,/@) = det (B?,E)l) .

On montre de méme que cette quantité coincide avec det (Cﬁl, C@)
O

Définition On appelle aire algébrique du triangle ABC le nombre réel %det (E,@) (calculé dans une

base orthonormée directe). L’aire géométrique d’un triangle est la valeur absolue de son aire algébrique; elle
sera notée A dans la suite.

Nous garderons ces notations dans toute la suite de ce paragraphe. Nous allons maintenant démontrer quelques
unes des nombreuses propriétés des triangles. Commencons par celle qui est peut-étre la plus connue :

Proposition 3.6 A+B+C=n.
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Démonstration. En utilisant la relation de Chasles et le fait que —Id préserve les angles, nous avons (apres
avoir orienté ﬁ)

AB,AC + BC,BA + CA,CB = AB, AC + BC,BA + AC, BC = AB, AC + AC, BA = AB, BA

ce qui implique, puisque la mesure de la somme de deux angles orientés est égale a la somme des mesures des
deux angles (si vous avez compris ce que sont un angle orienté de deux vecteurs, leur somme et leur mesure,
vous comprendrez que cette affirmation n’est rien d’autre que ’énoncé du lemme 4 du chapitre 2) :

mes (ﬁ) + mes (ﬁ) + mes (ﬁ) = mes (ﬁ) =m mod 27.

Notre énoncé concerne la valeur absolue de ces trois mesures. Pour conclure, nous allons donc voir que les
mesures principales (ie celles appartenant & | — m; 7)) de ces trois angles orientés de vecteurs ont méme signe
(celui-ci dépendant bien siir de l'orientation choisie). Mais ce signe est égal & celui du déterminant des deux
vecteurs d’apres la proposition 2.22. Le lemme 1 ci-dessus permet donc de conclure.
O
a) Meédianes - Isobarycentre

L’isobarycentre G d’un triangle ABC' est, par associativité, le barycentre de (A, 1) et (A’,2) si A’ est le milieu

de [B,C], donc G € (AA") et GA = 24'C. De méme, si B’ et C” sont les milieux respectifs de [C, 4] et [A, B],
G appartient aux droites (BB') et (CC").
= LAG

— 1BG
— 110G

Définition Les trois droites (AA"), (BB’) et (CC") sont
appelées médianes du triangle ABC.

Nous venons donc de voir

Proposition 3.7 Les trois médianes d’un triangle sont
concourantes en G, lisobarycentre des trois sommets.

b) Médiatrices - Cercle circonscrit

Définition Les médiatrices d’un triangle ABC' sont les médiatrices des segments [A, B], [B,C] et [C, A].

Proposition 3.8 Les trois médiatrices d’un triangle ABC sont concourantes en un point  qui est l'unique
point de &P équidistant de A, B et C. C’est le centre de l'unique cercle passant par ces trois sommets.

Démonstration. Notons A4, Ap et Ac les médiatrices res-
pectives de [B, C], [C, A] et [A, B]. Puisque (BC) et (CA) ne
sont pas paralleles, il en est de méme de A4 et Ap (voir pro-
position 2.31) : soit 2 leur point d’intersection. Ce point est
équidistant de B et C, et de C et A: QB = QC = QA. Par
conséquent, 2 est sur la troisitme médiatrice A¢. De plus, il
est le centre d’un cercle passant par A, B et C.
Réciproquement, un point équidistant des trois sommets est
sur les trois médiatrices donc coincide avec €. Enfin, si € est
un cercle contenant A, B et C, son centre est équidistant de
ces trois points donc coincide avec 2 ; le rayon de € est alors
QA = QB = QC, ce qui montre que ce cercle coincide avec le
précédent.

O

Définition L’unique cercle passant par les sommets d’un triangle est appelé cercle circonscrit au triangle.

S. Gervais L2 Géométrie affine et euclidienne 2014-2015



50 CHAPITRE 3. TRIANGLES ET CERCLES

¢) Hauteurs - Orthocentre - Droite et cercle d’Euler

Définition La hauteur issue de A (resp. B, C') d’un triangle ABC
est la droite perpendiculaire o (BC) (resp. (CA), (AB)) passant par
A (resp. B, C).

Proposition 3.9 Les trois hauteurs d’un triangle sont concou-
rantes.

Définition Le point de concours des trois hauteurs d’un triangle
est appelé orthocentre du triangle.

Théoréme 3.2 L’isobarycentre, le centre du cercle circonscrit et l’orthocentre d’un triangle sont alignés.
Définition La droite portant ces trois points est appelée droite d’Euler! du triangle.

Démonstration des propositions 3.9 et théoréme 3.2. Notons Aa, Ap et Ac les trois médiatrices du
triangle ABC, ¢, #% et #¢ les trois hauteurs. On consideére 'homothétie h de centre G et de rapport —2.
o — —

On a vu que GA = 2A'G = —2G A’ donc h(A’) = A. Par conséquent, puisque A" € A4, h(A4) est la parallele
a Ay passant par A, c’est-a-dire la hauteur J#4. De méme, on voit que h(Ap) = H#5 et h(Ac) = H¢. Ainsi,
les trois médiatrices étant concourantes, il en est de méme des trois hauteurs. De plus, si H est leur point

d’intersection, on a h(Q?) = H donc GH = —2@, ce qui montre que les trois points G, €2 et H sont alignés.
O

Théoréme 3.3 (Cercle des neuf points) Soit ABC un triangle. On note H son orthocentre, A', B’ et C’
les milieux respectifs de [B,C], [C, A] et [A,B], Ha, Hp, et Hc les pieds des hauteurs, et I5, Ip et Ic les
milieus respectifs de [H, A], [H, B] et [H,C].

Alors, les neufs points A, B', C', Ha, Hp, Hc, 14, Ig, et Ic sont sur un méme cercle dont le centre appartient
a la droite d’Euler du triangle et le rayon est égal a la moitié du rayon du cercle circonscrit a ABC.

Définition Ce cercle est appelé cercle d’Euler ou cercle des neuf points de Poncelet? du triangle.

GH = 200 ot HO=2HO

r = 0A' =0B =0
= 0I4=0Ip=0I¢
= OH),=0Hp=0H¢

R = QA=QB =QC

Démonstration. Notons % le cercle circonscrit & ABC, ) son centre et R son rayon. On considere de nouveau
I’homothétie h de centre G et de rapport —2 et on introduit ’homothétie A’ de centre H et de rapport %

1. Leonhard Paul Euler, mathématicien et physicien suisse, 1707-1783.
2. Jean-Victor Poncelet, mathématicien, ingénieur et général frangais, 1788-1867.
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e Puique I, est le milieu de [A4, H], Iy = h'(A) et de méme, Ip = h'(B), Ic = h'(C). Par conséquent, si
€' = 1 (€), les trois points 14, Ip et I appartiennent & €’. De plus, €’ est un cercle de centre O = h/(Q) et
de rayon %R. En effet, si M € & et M’ = h/(M), alors

Mec€¢ = Mec¥
— OM =R

1 1
= OM' = §R car h’ est une similitude de rapport 3

Enfin, puisque O = W/(Q) = H + %ﬁ, le point O est bien sur la droite d’Euler (H(Q).

e Notons F le symétrique de H par rapport & A’ et montrons qt&E € €. Alors, A’ = h/(FE) € ¢’. On note S
la symétrie centrale de centre A’ et ¢ la translation de vecteur 2 QA’.

Puisque H = h(Q2) et A =h(A’), on a
oo —y —
AH =h (46) = —24'02 = 204" done H = A+204" = 1(4).

On obtient alors E = S(H) = S ot(A). Mais

(@) =5 (2+204) =5 (44 04) =4 O

~

— -
— Sot=.5=—Id donc S ot est une symétrie centrale (homothétie de rapport —1);
— Sot =0Q

donc S ot est la symétrie de centre Q). Par conséquent, puisque A € € et que 2 est le centre de €, E = Sot(A)
est sur ¥. Ceci montre que A’ appartient & 4’. On montre de méme que B’ et C’ sont sur %”.

e On utilise le méme principe pour montrer que les pieds des hauteurs appartiennent & %’. Pour cela, on
considere la réflexion o par rapport a (BC) : si P = o(H), alors H4 = h/(P) et on aura montré que Hy € ¢’
si on montre que P € €. On a :

— oot =0 est une réflexion vectorielle d’axe Vect(B—a) donc o ot est une réflexion ou une symétrie
gissée d’axe une droite parallele a (BC);

— — — —
— ocot(Q) =0 (Q + QQA’) =0 (A’ + QA’) — A~ QA =Q car QA et BC sont orthogonaux

donc o ot est la réflexion d’axe la droite parallele & (BC') passant par . Cet axe étant un diametre de %, le
point P = o(H) = o o t(A) appartient & €. Ceci montre que Hy4 est sur ¢’. On montre de méme que Hp et
H¢ appartiennent a 4.

O

d) Relations métriques dans le triangle

Rappelons quelques notations :

A

R désigne le rayon du cercle circonscrit ;
p est le demi-périmetre : p = %(a +b+c¢);
A désigne I'aire géométrique de ABC':

A = 1| det(AB, AC)| = L| det(BA, BC)| = L|det(CA, CB)).

2
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On se propose de démontrer le formulaire suivant :

a? = b% + ¢® — 2bccos A\, b2 =c2+a2—2cacosB et ¢ =a2+b?—2abcosC (Formules d’Al Kashi?)

b b
@ - =% _—9p=2~ (Formules des sinus)
sind  sinB  sinC 2A
A= \/p(p —a)(p—"b)(p—rc) (Formule de Héron?)

Démonstration. Formules d’Al Kashi. C’est une conséquence de la proposition 2.22 :
a2 BCQ=<@)@>=<ﬁ+ﬁ’ﬁ+ﬁ>
BA2+CA2+2<B—/qﬁ> =b2+02—2<B—1>4‘C—/i>

= ¥ +2- 2bccos A.

Les deux autres formules s’obtiennent de facon analogue.

Formules des sinus. En utilisant de nouveau la proposition 2.22, on obtient :

A = %’det <Iﬁ’jﬁ>’ = %HEH ) ||f@|| : |Sinzzl\| = %bcsing

b c abe

A~ . - . - 7 . re a
et on montre de méme que A = %ca sin B = %ab sin C'. Ces égalités montrent que ——= = = = — = —.
sinA  sinB sinC 24

Pour la suite, considérons le point B’ diamétralement opposé a B sur &, le cercle circonscrit & ABC.

A

Le critere angulaire de cocyclicité (théoréme 3.1) donne (AB), (AC) = (B’B),(B’C). Si « est la mesure prin-

S — N N N
cipale de B'B, B'C, on a donc o € {A,® — A} ce qui implique sin A = sin |a|. D’autre part, le triangle BB'C
est rectangle en C car [B, B’] est un diametre de € (proposition 3.1). En appliquant & ce triangle la premiere
partie de la formule des sinus démontrée précédemment, on obtient :
BB’ 2R
¢ ==t _9R,

sinfal  sing 1

a
ce qui conduit a 1’égalité manquante = =2R.
sin A

3. Ghiyath ad-Din Jamshid Mas’ud al-Kashi, mathématicien et astronome perse, vers 1380-1429
4. Héron d’Alexandrie, ingénieur, mécanicien et mathématicien grec, Ier siécle apres J.-C.
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Formule de Héron. De A = %bc sin A, on obtient :

1 -1 o1 b2+c2—a2)2
2 _ L2207 Lioacs o _ 12|, ; -
A° = 4b c“sin” A 4b c (1 cos A) 4b c {1 < e (formule d’Al Kashi)
_ Lpes o o 20) _ 1 2., .2 2 222
= 16(41)0 (0" +c a))—16(2bc (b°+¢ a))(2bc (b +c a))

+
_ %((b—l—c)?_a2))(a2_(b—c)2)):1_16((b+c)+a)((b+c)—a))(a+(b—c)))(a_(b_c))
a+b+c¢c b+c—a a+b—c a+c—0b
2 T2 XT3 XT3
= p(p—a)(p—0b)(p—o).

e) Triangles homothétiques, isométriques ou semblables

Définition Deux triangles non plats ABC et A'B'C’ du plan affine (resp. affine euclidien) sont dits ho-
mothétiques (resp. isométriques, semblables) s’il existe une homothétie ou une translation (resp. une isométrie,
une similitude) f telle que

f({A,B,C}) = {4, B".C"}.
Remarque : quitte & renommer les sommets, on pourra prendre pour condition f(A) = A, f(B) = B’ et
f(c)=c.

Remarque : les sommets de ABC formant un repere du plan, la transformation f, si elle existe, est unique
(théoréme 1.4).

Remarque : deux triangles isométriques (resp. semblables) seront dits directement ou indirectement isomé-
triques (resp. semblables) selon que isométrie (resp. la similitude) envoyant I'un sur Pautre est directe ou
indirecte.

Proposition 3.10 (Triangles homothétiques) Deux triangles sont homothétiques si, et seulement si, leurs
cotés sont deux a deux paralléles.

Rappels : si 4 et ¥ sont deux vecteurs colinéaires et non nuls, % désigne le scalaire \ vérifiant @ = A\¥.
? v

Démonstration. Puisque les homothéties et les translations transforment une droite en une droite parallele,
la condition est nécessaire. Supposons donc que (AB) et (A’B’) sont paralleles, de méme que (BC) et (B'C")
ainsi que (C'A) et (C'A").

vy
e Si A = A’ ’homothétie de centre A et de rapport %— envoie B sur B’ et C sur C’ (théoréme de Thales). 11
en va de méme si B= B’ ou C = (".
e On suppose que A £ A') B # B’ et C # C’. Si (AA’) est paralléle & (BB’), on note f la translation de vecteur

—_— PV
AA'; si ces droites se coupent en un point O, f désigne ’homothétie de centre O et de rapport %. Dans les
deux cas, f(A)=A'.

A
A/

C/

* f((AB)) est une droite parallele & (AB) passant par f(A) = A’ donc f((AB)) = (A'B');
* f((BB")) = (BB').
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Par conséquent, f(B) € (A’B')N(BB') ={B’} : f(B) = B’. Ensuite :

* f((BC)) est une droite parallele & (BC) passant par f(B) = B’ donc f((BC)) = (B'C");
* f((AC)) est une droite parallele a (AC) passant par f(A) = A" donc f((AC)) = (A'C),

donc f(C) € (B'C") N (AC") = {C"} : f(C) =C".
O

Proposition 3.11 (Triangles isométriques) Deuz triangles ABC et A’B’'C’ du plan affine euclidien & sont
isométriques si, et seulement si, l'une des trois assertions équivalentes suivantes est vérifiée :

1) Az;l\’,bzb’ etc=c;
2) a=d,b=betc=(;

3) Az;l\’,ﬁ:@, etc=—c.

Remarque : les notations sont toujours les mémes : a = BC, o’ = B'C’, A est la valeur absolue de la mesure
principale de E , ﬁ, etc.

Démonstration. Les isométries préservant les distances et les angles au signe pres, les trois assertions sont
nécessaires.

Le théoréme 1.4 nous fournit une transformation affine f de & telle que f(A) = A, f(B) = B’ et f(C) =C".
Pour tous points M et N de &2, on a, si MN = )\E + uﬁ :

HWHQ <Aﬁ+uﬁ]AE+uﬁ> :A2A32+2Au</@]ﬁ>+umc?

= A2 + 2)\ubccos A + p2b? (proposition 2.22)

et d’autre part,

JODFN) = F(MN) = \A'B + A0 — Hf(zw)f(z\fi))2 — A2 oAb cos AT + b2,

Ainsi, si 'assertion 1) est vérifiée, f est une isométrie et les deux triangles sont isométriques. En particulier,
Passertion 1) implique les assertions 2) et 3).
Supposons 1'assertion 2) satisfaite. Alors (formule d’Al Kashi)

- b2 + 02 _ CL2 b/2 + C/2 _ a/2
cos A = =
2bc 20!

=cos A’

donc A = A’ car ces deux réels sont dans [0, 7]. Par conséquent, ’assertion 1) est vérifiée.

Si l’assertion 3) est vraie, alors C=nm— (A+B)=m— (;1\’ + 1/3\’) = C’ donc on obtient (formules des sinus) :

sin A sin A’ , sin B sinB’ ,
a= —c= —cc =a et b= —c= —cc =b
sin C' sin C' sin C' sin C'

et 'assertion 2) est satisfaite.
O

Proposition 3.12 (Triangles semblables) Deux triangles ABC et A’B'C’ du plan affine euclidien & sont
semblables si, et seulement si, l'une des trois assertions équivalentes suivantes est vérifiée :

o % ¢

1) A=A et — = —;

) “ c’
a b

2 _ = — = —

)a b c’

3) B=D etC=0C".
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Démonstration. Les similitudes préservant les angles au signe pres ainsi que les rapports de distances, les
trois conditions sont nécessaires.

Supposons que la condition 1) soit satisfaite et considérons une homothétie de rapport %. L’image A” B"C" de
ABC par h est un triangle isométrique & A’B’C" car (proposition 3.11) :

b b / /\ o
b= 3 b=V, = 3¢= Ce=c et A=A=A (une homothétie préserve les angles).
c

Par conséquent, il existe une isométrie f de & telle que f(A”) = A’, f(B"”) = B’ et f(C") = C’. L’application
f o h est alors une similitude transformant ABC en A’B'C".

Si l’assertion 2) est satisfaite, on a (formules d’Al Kashi)

cosﬁ—b2+62_a2—1<b+c aa)il(b’_kc’ a/a/)*cosz\’
- 2bc T 2\¢ b be) 2\¢ VW V)

donc A = A (ces deux réels sont dans [0, 7)) et 'assertion 1) est vérifiée.

Enfin, si 3) est vraie, ona A =7 — (§—|— 6) =7 — (ﬁ + ZZ'\’) =4 et (formules des sinus) :

b sinB sinB VY v
¢ gsinC sinC’ ¢ b c

Ainsi, I’assertion 1) est satisfaite.

I1I _ Conjugaison, polarité et inversion

Dans tout ce paragraphe, € est un cercle de centre 2 et de rayon R du plan affine euclidien &2.
a) Puissance d’un point par rapport a4 un cercle

Définition Soit € un cercle de centre ) et de rayon R. On appelle puissance d’un point M de & par rapport
a € le nombre réel Py(M) = QM? — R2.

Remarque : un point M est donc sur un cercle € si, et seulement si, Py (M) = 0.
Définition Un point M est dit extérieur au cercle € si Pe(M) > 0, intérieur ¢ € si Pe(M) < 0.

Proposition 3.13 Soit 2 une droite du plan rencontrant € en deux points A et B. Alors, pour tout point M
s

de 9, on a Pg(M) = <MA}M§>

Si 9 est tangente a € en T, alors, pour tout point M de 2, on a Pg(M) = MT?.

Démonstration. Notons H le projeté orthogonal de €2 sur &. Puisque A
et B sont équidistants de , la droite (QH) est la médiatrice de [A, B] donc
H est le milieu de ce segment. On obtient donc, en utilisant deux fois le
théoreme de Pythagore

Py(M)=QM? — R* = QH? + HM? — QA? = HM? — H A*
(I + A | - A
:<}ﬁ4+§ﬁ)m>
(i ). (A [VTB) - (304
Ce calcul reste correct si Z est tangente & € en T, avec A=B=H =T.

]
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Corollaire 3.1 Si 2 et 2’ sont deux droites tangentes o € respecti-

vement en P et Q et si 9 et 9’ se coupent en M, alors MP = MQ. M
Démonstration. D’apres la proposition 3.13, on a
PM? = Pg(M) = QM>.
O MP=MQ

b) Polarité

Définition Deux points P et QQ de & sont dits conjugués par rapport ¢ € si <(ﬁ ’®> = R2.

Proposition-Définition 1) L’ensemble des points conjugués a un point P donné, distinct de 2, est une droite
perpendiculaire a la droite (QP) ne contenant pas Q : on Uappelle polaire de P par rapport d €.

2) Si A est une droite de & ne contenant pas Q, il existe un unique point P dont la polaire est A ; ce point est
appelé pole de A.

Démonstration. 1) Déterminons les points @ de la droite (Q2P) conjugués & P. Pour un tel point, il existe
A€eR tel que Q =0+ /\Sﬁ. On obtient alors :

<ﬁ)@> - <ﬁ)xsﬁ§> — AQP?

et donc P et un point @ de (P) sont conjugués si, et seulement si, AQP? = R? avec \ = QR—PQQ. Il n’y a donc
qu'un seul point sur (2P) conjugué & P : le point Qo = Q + QR—PQZ (ﬁ
Maintenant, pour tout point @ du plan, on a :

(8 0 = ([0 ) = (P[0 (P ) = (0

donc P et @ sont conjugués si, et seulement si, <(ﬁ ’Q0<§> = 0, c’est-a-dire @ est sur la droite perpendiculaire
a (QLP) passant par Qo.

2) Soient @ et Q2 deux points distincts de A, et A;, Ag leurs polaires respectives par rapport & €. Nous

venons de voir que A (resp. Ag) est perpendiculaire a (Q2Q1) (resp. (2Q2)). Puisque Q1 # Q2, ces deux droites

ne sont pas paralleles : soit P leur point d’intersection. Maintenant, puisque P est conjugué a Q1 et @QQ2, ces

deux points sont conjugués a P donc sont sur la polaire Ap de P. Puisque Ap est une droite d’apres le premier

point, celle-ci est donc (Q1Q2) = A : A est bien la polaire de P.

Enfin, si A est la polaire d’un second point P’ de &2, P’ est conjugué & Q1 et Q2 donc P’ € AyNAy: P/ =P.
O

Construction. Les constructions de polaires ou de podles sont basées sur le principe de symétrie suivant : si P
est conjugué a @ alors @) est conjugué a P, ce qui se traduit par le résultat suivant :

P est sur la polaire de @ si, et seulement si, @ est sur la polaire de P.

D’autre part, si P est un point de %, il est conjugué a lui-méme. Par conséquent, sa polaire étant perpendiculaire
a (QP), c’est la tangente & € en P : c’est la figure de gauche ci-dessous (ou la polaire de P est notée Ap).
Sur la figure du centre (cas o P est extérieur a %), on a tracé les deux tangentes au cercle passant par P
(proposition 3.4). Si A et B sont les points de contact, le premier cas montre que les polaires de A et B sont
respectivement les droites (PA) et (PB). Par conséquent, A et B sont conjugués & P. Ils sont donc sur la polaire
de P, qui est ainsi la droite (AB).

Si P est intérieur & €, on trace deux droites passant par P et coupant le cercle respectivement en M, N et
M’, N’. On considere le point d’intersection A (resp. B) des tangentes au cercle en M et N (resp. M’ et N') :
la polaire de P est la droite (AB). En effet, le deuxieme cas nous permet d’affirmer que les droites (M N) et
(M'N') sont les polaires respectives de A et B. Comme P est sur ces deux droites, P est conjugué & A et B.
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Notons que ces constructions peuvent se lire <a ’enverss pour construire le pole P d’une droite A.

c¢) Inversion

Définition Soit € un cercle de centre Q et de rayon R. On appelle inversion de cercle € (ou inversion de
centre et de rapport R?) l'application Iy de P\ {Q} dans 2\ {Q} qui, a un point M, associe le projeté
orthogonal de M sur sa polaire.

Remarque : l'inverse de M par rapport & € est donc le point d’intersection de la polaire de M avec (QM) ou,
dit autrement, l'unique point de (M) conjugué a M.

Proposition 3.14 Soient M et M' deux points de & distincts de Q.
Les trois assertions suivantes sont équivalentes :

1) M’ = I (M) ;
—
2) M’ € (QM) et <W oM’ ) = B2 ;

R —

—
3) M’ € (QM) et OM' = =5 QM.

Démonstration. Notons Ay, la polaire de M par rapport & €.

Les assertions 1) et 2) sont clairement équivalentes puisque la deuxieme dit exactement que M’ est 'unique
point de (QM) conjugué & M.

2) = 3) Puisque M’ appartient & (2M), il existe A € R tel que QM’' = AQM. De 14, on obtient :

R2
QM2

R? = <§TJ\7)W> —AQM? donc A=

—
3)=1) On a <§_ﬁ\—>4 ’QM’> = QI};Q QM? = R? donc M’ et M sont conjugués : M’ € Ajs. Ensuite, puisque

(QM) est perpendiculaire & Ay et M’ € (QM), M’ est bien le projeté orthogonal de M sur Ay : M = I (M).
O

Corollaire 3.2 Une inversion est involutive : 14 o I = 1d.

Démonstration. Ceci se voit aisément avec I'assertion 2) de la proposition 3.14 : si M’ est I'inverse de M,
alors M est l'inverse de M.
O

Corollaire 3.3 L’ensemble des points fixes de I est exactement € .
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Démonstration. En utilisant assertion 3) de la proposition 3.14, on voit que, pour M € Z\{Q}, M = Ix(M)
si, et seulement si, QM?2 = R?, c’est-a-dire M € %.

O

Corollaire 3.4 Soient M et N deux points distincts de Q, non alignés avec ), et M', N’ leurs inverses respectifs
par rapport a 6. Alors, les quatre points M, N, M' et N' sont cocycliques.

Démonstration. Notons 4’ le cercle ciconscrit & M, N et M’ et montrons que N’ € €”.
Notons N” le second point d’intersection de (Q2N) avec €.

Puisque N’ € (N), il existe A € R tel que QN = XQN".
Maintenant, d’apres la proposition 3.13, la puissance de §2 par
rapport & €’ est

— —
Mais <(W/[)QM’> - R = <(7V>)QN’> (proposition 3.14)

donc on obtient

Py (Q) = <W)W> . <W)W>

([ = (% ) = (79 7).

Les trois points Q, N et N” étant alignés, le produit scalaire <£Tﬁ ’QN ’> est non nul. Par conséquent, A = 1
et NN=N"e%'.

O

Corollaire 3.5 Soient M et N deuz points distincts de 2, non alignés avec Q, et M', N' leurs inverses respectifs
par rapport a €. Les égalités d’angles orientés de droites suivantes sont vérifiées :

(QM),(MN)=(MM"),(MN) = (N'M"),(N'N) = (N'M'"), (QN).

Démonstration. C’est une conséquence du corollaire 3.4 et du critere angulaire de cocyclicité (théoréme 3.1).

O

Théoréme 3.4 Soit € un cercle de centre Q. Alors :

L2

1) toute droite passant par Q est sa propre image par Iy ;

2) limage par Iy d’une droite 9 ne passant pas par Q est le cercle de diamétre [, P] ot P est le péle
de 9. Réciproquement, linverse d’un cercle de diamétre [Q, A] est la polaire de A ;

3) linverse d’un cercle ne contenant pas 0 est un cercle ne contenant pas Q. Plus précisément, si T est
un cercle de centre O, ne rencontrant pas Q, et si A et B sont les points d’intersection de (QO) avec
T, alors Ix(T') est le cercle de diamétre [A', B'] ot A’ et B’ sont les inverses de A et B.

2 9

I' et 2 sont inverses I'un de l'autre (P est le pdle de 2)
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Les deux cercles I' et I sont inverses I'un de 'autre

Démonstration. 1) Quel que soit M différent de Q, I'inverse de M est sur la droite (2M). Par conséquent,
si M appartient a une droite & passant par ), son inverse est sur Z.

2) Notons P le pole de 2. Pour M € Z\ {1} et M' = Ix(M), on a :

<§W W> = (oM ﬁ+QM'>:QM'2—<W ap)
= QR—];[Q — QR—]VQ[Q <(_2?\—>4 ’Kﬁ> d’apres la proposition 3.14
2
- e (i [R)).

On obtient donc
——
M appartient & ¥ < <QM ‘Sﬁ> =R? car 2 est la polaire de P

— | —
— <QM' PM'> =0 d’apres le calcul ci-dessus

<= M’ est sur le cercle de diametre [2P] d’apres la proposition 3.1.

Réciproquement, une inversion étant involutive, 'image d’un cercle T de diameétre [, A] est égal & la polaire
A4 de A puisque ce qui précéde montre que Ix(Ay) =T.

3) Soit I un cercle ne contenant pas Q, O son centre et A, B les deux points d’intersections de (20) avec I :
[A, B] est un diametre de T'. Notons A’ et B’ les inverses respectifs de A et B par rapport & € : les cing points
Q, A, A, B et B’ sont donc alignés. Pour M € 22\ {Q}, M # A, B, et M' = Iz(M), on a :

(MA),(MB) = (MA),(Q4)+ (QA),(MB)
= (QA),(M'A") + (M'B’),(QA’") dapres le corollaire 3.5
— (M'B'),(M'A").

Or M €T si, et seulement si, 'angle de droite (M A), (M B) est droit (proposition 3.1) et de méme, M’ est sur

le cercle de diametre [A’, B'] si, et seulement si, (M’A’), (M'B'’) est droit. L’égalité d’angles précédente montre
donc que linverse de I par rapport a % est le cercle de diametre [A’, B'].

d

IV _ Cercles inscrit et exinscrits - Théoréme de Feuerbach

a) Bissectrices d’un triangle - Cercles inscrit et exinscrits

Considérons un triangle ABC et les deux bissectrices des droites (AB) et (AC) : on a vu que l'une est dirigée

AB |, AC AB _ AC
AC

par 47 + 45 et lautre par 42 — 4& (voir page 36).
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Définition On appelle bissectrice intérieure (resp. extérieure) en A du triangle ABC' la bissectrice de (AB)

et (AC) dirigée par AB + 4 ¢ (resp. par % - ﬁ—c

Proposition 3.15 Soient ABC un triangle non plat, a, b et c les distances BC, CA et AB.

1) Les trois bissectrices intérieures sont concourantes en le barycentre I de (A,a), (B,b) et (C,c).

2) La bissectrice intérieure en A (resp. B, resp. C) et les bissectrices extérieures en B et C (resp. C et A, resp.
A et B) sont concourantes en le barycentre 14 de (A,—a), (B,b) et (C,c) (resp. le barycentre Ig de (A,a),
(B, =) et (C,c), resp. le barycentre Ic de (A,a), (B,b) et (C,—c)).

3) Il existe exactement quatre cercles tangents aux trois cotés du triangle, respectivement centrés en I, I, Ip
et Ic.

Définition Le cercle tangent auzx cotés du triangle et centré en I est appelé cercle inscrit dans le triangle
ABC'; les trois autres sont appelés cercles exinscrits.

Démonstration. e Soit I le barycentre de (4, a), (B,b) et (C,c). Puisque

I}_i(bﬁﬂﬁ) be b/@ﬂ@z be (@Jr?),

at+b+c be a+b+c c

le point I est sur la bissectrice intérieure en A. On montre de méme que I est sur les deux autres bissectrices
intérieures.

e Notons que les trois points A, B et C' n’étant pas alignés, on a a < b+ ¢ donc b + ¢ — a # 0, et de méme,
a—b+c#0eta+b—c+#0.
Si I4 est le barycentre de (A, —a), (B,b) et (C,c¢), alors :

—
— Aly = a+b+ (bzﬁ + 01@) _a_bfbH (@ + ﬁ) donc I4 est sur la bissectrice intérieure en A,
—
— Bl = m ((—a) BA+ c@) = =% (? — -“i) donc I4 est sur la bissectrice extérieure en B,

et on montre de méme que I4 appartient a la bissectrice extérieure en C.
La démonstration est identique pour Ip et Io.

e Notons X, Y et Z les projetés orthogonaux de I respectivement sur (BC'), (CA) et (AB). On a donc
IX =d(I,(BC)), 1Y =d(I,(CA)) et IZ=d(I,(AB)).

Or I est sur les trois bissectrices intérieures du triangle, donc est équidistant de (AB), (BC) et (CD) (propo-
sition 2.32). Ainsi, IX = IY = IZ et les trois points X, Y et Z sont sur un méme cercle centré en I. De plus,
les droites (BC'), (CA) et (AB) sont tangentes & ce cercle en ces points d’aprés la propriété 3.2.

On montre de méme que 4, I et I sont également les centres de cercles tangents aux trois cotés du triangle.

e Enfin, si un cercle € est tangent aux trois c6tés du triangle, son centre M est équidistant de (AB), (BC) et
(CA) donc, d’apres la proposition 2.32, appartient & une intersection Z4 N 5 N Do ot D4 (resp. I, D)
est une bissectrice en A (resp. B, C). Or d’aprés ce qui précéde, deux bissectrices intérieures se coupent en [
et deux bissectrices extérieures en I4, Ip ou Io. Par conséquent, M est un de ces quatre points et ¥ un des
quatre cercles tangents précédents.

O

Proposition 3.16 La bissectrice intérieure issue de A (resp. B, resp. C) rencontre (BC) (resp. (CA), resp.
(AB)) en le barycentre de (B,b) et (C,c) (resp. (C,c) et (A,a), resp. (A,a) et (B,D)).

Démonstration. Si S est le barycentre de (B,b) et (C,c), alors S appartient & (BC) d’une part, et d’autre

part :
A% = 1C(bﬂ§+c@)= (aﬂ+b@+cﬁ) a+b+c?ﬁ

b+c
d’apres la proposition 3.15. Par conséquent, S est également sur (AI).
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b) Le théoréme de Feuerbach

Théoréme 3.5 (Feuerbach) Le cercle d’Euler d’un triangle ABC' est tangent au cercle inscrit et aux trois
cercles exinscrits de ABC'.

Définition Les quatre points de contact sont appelés points de Feuerbach® du triangle.

5. Karl Wilhelm Feuerbach, mathématicien allemand, 1800-1834.
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Complétons la liste des notations :
x a, b, et ¢ désignent les longueurs respectives BC, CA et AB;
x A') B’ et C’ sont les milieux respectifs de [B, C], [C, A], et [A, B];
x 6 est le cercle inscrit dans ABC', I son centre;
* X, Y et Z sont les points de contact de €; avec (BC), (CA) et (AC) respectivement;
* €. est le cercle exinscrit & ABC, issu de A, I4 son centre et X 4 son point de contact avec (BC);
* S est le point d’intersection de (BC') avec (IxI) = (AI);
x H, est le pied de la hauteur issue de A;
* I est le cercle d’Euler de ABC : il contient Ha, A’, B’ et C'.

Lemme 2 <ﬁ‘3?>: (a® + b2 — c?), <ﬁ‘(§'—/{>:%(b2+c2—a2) et <C@‘@>=%(02+a2—b2).

1
2

Démonstration. On a c? = AB? = <m + cE )/ﬁ + C@> = AC? +2 </ﬁ ‘C@> + CB?2, ce qui conduit &

la premiere égalité. Les deux autres égalités se démontrent de la méme fagon.
d

Lemme 3 X et X4 ont respectivement pour coordonnées barycentriques dans le repére (A, B,C) :

X:(O,a—l—b—c’a—kc—b) XA:(O,G+C_b,a+b_C).
2a 2a 2a 2a

Démonstration. Notons respectivement M et N les deux points ayant ces coordonnées. Puisque leur premiere
coordonnée est nulle, ils sont sur (BC). D’autre part, X (resp. X 4) est le projeté orthogonal de I (resp. I4) sur

— N
(BC). Nous allons donc montrer que <IM ‘B?’> = <IA )B?> = 0 pour conclure. D’apres la proposition 3.15,

on a

T ¥(am+bﬁ}+cm)

at+b+ec

_ 1 (a+b—c@+a+c—bm+b(a—i—c—b)B?_'_c(a—i—b—c)C@)
at+b+ec 2 2 2a 2a

_ _ 2 2

_ 1 <a+b c(@_i_@)_i_a—i—c b@_ﬁ_ba b —ca+c B——g)

at+b+e 2 2 2a
1 2 2 _ g2

= (eAl+ ST T RE).

at+b+ec 2a

En utilisant le lemme 2, on obtient donc
2a(a+b+c) <IT)4’B?> = 2a? <1@’B?>—|—(c2—b2—a2) <B—8)B—8> =a*(b* +a* — ) +a*(* —bv* —a®) = 0.

On procede de la méme maniere pour montrer que X4 = N.
O
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Corollaire 3.6 A’ est le milieu de [X, X ] et XX 4 = |b—¢|.

Démonstration. Par associativité du barycentre, les coordonnéees barycentriques du milieu de [X, X 4] sont :

a+b—c a+c—b at+c—b a—l—b—c)_( 11)
(0’ o 40 4a T da _0’2’2'

D’autre part, on a

s b—c——s N b—c)? —b)?
Xx, - Otbocpyr atesber (atboopa (atc—b)on
2a 2a 4a? 4a?
a2 _p)2 _ _
_ (a+b—c)*—(a+c—0) B——8:4a(b C)B—g:b el
4a? 4a? a

O

Démonstration du théoréme de Feuerbach. Nous allons montrer que I' est tangent au cercle inscrit %;
et au cercle exinscrit %, issu de A, la démonstration étant la méme pour les deux autres cercles exinscrits.

1) Si le triangle ABC est isocele en A (ie b = ¢), les cing points X, X4, A’, S et H,4 coincident car la bissectrice
intérieure et la hauteur issues de A, ainsi que la médiatrice de [B, C], sont confondues. Dans ce cas, I' est tangent
a (BC) en A’ = Hy, donc & €; et €.. Nous supposons dorénavant que ABC' n’est pas isocele en A. Dans ce
cas, b # ¢ donc les cing points X, X 4, A’, S et H4 sont deux & deux distincts :
— c’est clair pour les quatre premiers car on connait leurs écritures comme barycentres de B et C';
— si Hy coincide avec X, S ou X4, alors Hy = X =5 = X4 car la hauteur issue de A coincide avec la
bissectrice intérieure issue de A;

— enfin, si H4 = A’, la hauteur issue de A coincide avec la médiatrice de [B, C] donc b = ¢, ce qui est
contraire a notre hypothese.

2) Notons € le cercle de diametre [X, X 4] et I linversion de cercle €. D’apres le corollaire 3.6, A’ est le
centre de €. Par conséquent, la droite (BC) est sa propre inverse par rapport & ¢ (théoréme 3.4).

Puisque X est distinct de A’, 6; ne contient pas A’ donc I4(%;) est un cercle (théoreme 3.4). Ce cercle n’est
autre que %; lui-méme car :

— X appartient & € donc I (X) = X;
— or X est 'unique point d’intersection de é; avec (BC) donc X = I (X) est 'unique point d’intersec-
tion de I¢(%;) avec Icg((BC)) = (BC) : I4(%;) est tangent & (BC) en X ;
— 81 X’ est le second point d’intersection de & avec 4;, alors I¢(X') = X’ donc I¢(%6;) passe par X'.
On montre de méme que I¢(%6.) = ..
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3) Notons o la réflexion d’axe la bissectrice (AI), By et C; les images respectives de B et C par o et A la
droite (B1C1), image de (BC) par o. Puisque o échange (AB) et (AC), les points B; et C} sont respectivement
sur (AC) et (AB).

D’autre part, les deux cercles &; et %, étant invariants par o (’axe passe par les centres), A est tangente a ces
cercles puisque (BC') Dest. Pour conclure la démonstration du théoréme, nous allons démontrer que I'image de
A par I est le cercle d’Euler I : puisque %; et %, sont invariants par I, cela montrera que I' leur est tangent.
Nous allons en fait montrer que I4(I') = A. Notons déja que I (T") est bien une droite car le pole A’ de I est
sur I'.

4) Le pied de la hauteur issue de A, H 4, est sur I : son inverse est donc sur I (I"). Montrons que Iy (H4) = S, le
point d’intersection de la bissectrice (AI) avec (BC'). L’inverse de S est le point d’intersection de (A’S) = (BC)
avec la polaire Ag de S. Or Ag = (AH4) :

— A et S sont conjugués par rapport a ¢ car

(i3

( < ‘A/ > C< AC ‘A/ >) d’apres la proposition 3.16

- (o (CB[474) +< (BC|a'4))

2b+c
- 2(b+cc (cB4 > %<@)‘L§C—A>

- 10vs (CB[FA) + (@B [H))

- 8(bb_+cc ((t? —a® =) + (a® +b* — ¢*))  d’apres le lemme 2
_ %(%2—% ) = (b;c)2

= A'X? dapres le corollaire 3.6 ;

— Ag est donc la droite perpendiculaire & (A'S) = (BC') passant par A, soit la hauteur (AH4).
Ainsi, I4(T) est une droite passant par S.

5) Notons 2; la tangente en A au cercle circonscrit & ABC. D’apres le théoréme de I'angle inscrit (et le

lemme 8), les angles orientés de droites %, (AB) et (CA), (CB) sont égaux. Puisque les réflexions renversent
les angles, on a

o(91),0((AB)) = %, (AB) = ~(CA), (CB), soit (%), (AC) = o(%1), (AB:) = (CB), (CA).

En utilisant le résultat de la proposition 2.24, on en déduit que o(%) est parallele & (BC') et donc que 2, est
pMﬂEbéUGBC»::A.

Considérons I’homothétie h de centre G et de rapport —% : elle envoie A, B et C respectivement sur A’, B’ et
C’, donc le cercle circonscrit & ABC sur le cercle d’Euler T'. Par conséquent, si % est la tangente & T" en A,
Do = h(21) est parallele & 2y, donc & A.

Maintenant, puisque A’ est sur s, I¢(%2) = Po. D’autre part, 25\ { A’} ne rencontre pas I', donc I (%2) = P

ne rencontre pas I« (I"). Les deux droites I (I') et 2, sont donc paralleles.

6) Nous pouvons maintenant conclure : I (T") est la droite parallele & A (point 5)) passant par S (point 4)),
c’est-a-dire I (I") = A. Clest ce que nous voulions démontrer.
O
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