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Chapitre 1 : Notions affines

I Espaces affines dans R
n

Définition Une partie non vide E de Rn est un espace affine s’il existe un élément A de E tel que l’ensemble

EA = {M −A/M ∈ E }

soit un sous-espace vectoriel de Rn.

Lemme 1 Soit E un espace affine dans Rn et A ∈ E tel que EA soit un sous-espace vectoriel de Rn. Alors,
pour tout élément B de E , on a

EB = EA = {Q− P /P,Q ∈ E } .

Démonstration.
• Soit −→u un élément de EB et M ∈ E tel que −→u = M −B. On a :

−→u = M −B = (M −A) + (A−B) = (M −A)− (B − A) ∈ EA

car M −A, B−A sont dans EA et ce dernier est un sous-espace vectoriel de Rn. Ainsi, EB est inclus dans EA.

• Soit −→u un élément de EA et M ∈ E tel que −→u = M − A. Il s’agit de
montrer que −→u ∈ EB , c’est-à-dire de montrer qu’il existe N ∈ E tel que
−→u = N −B.
Si un tel N existe, il est nécessairement égal à B+−→u : soit donc N = B+−→u
et montrons que N ∈ E . On a :

N −A = (N −B) + (B −A) = ~u+ (B −A) = (M −A) + (B −A) ∈ EA

car EA est un sous-espace vectoriel de R
n. Il existe donc P ∈ E tel que

N −A = P −A et on obtient N = P ∈ E .

−→u

−→u

b
A

bM

b
B

b
N

• Ainsi, on a EP = EA pour tout élément P de E . Puisque {Q− P /P,Q ∈ E } = ∪
P∈E

EP , on a bien

EA = {Q− P /P,Q ∈ E }.
�

Remarque : en pratique, pour montrer qu’une partie E de Rn est espace affine, on exhibe un élément A de E

et un sous-espace vectoriel E de R
n tel que E = A+ E := {A+ ~u / ~u ∈ E}.

Notations et vocabulaire. Si E est un espace affine dans Rn :

• les éléments de E sont des points ;

• l’espace vectoriel EA(= EB ∀B ∈ E ) est la direction de E , notée
−→
E ;

• les éléments de
−→
E sont des vecteurs ; si P et Q sont deux points de E , le vecteur Q− P est noté

−−→
PQ.

Remarque : si E est un espace affine dans Rn, alors, pour tout point A de E , on a

E = A+
−→
E :=

¶
A+−→u /−→u ∈

−→
E

©
.

Exemples.

1)
{
(x, y) ∈ R2 / 3x− 7y = 5

}
est un espace affine (dans R2) de direction

{
(x, y) ∈ R2 / 3x− 7y = 0

}
.

2) Rn est lui-même un espace affine.

3) Plus généralement, tout sous-espace vectoriel de Rn est un espace affine de direction lui-même.

4) Si A ∈ Rn, alors E = {A} est un espace affine de direction {
−→
0 }.
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6 CHAPITRE 1. NOTIONS AFFINES

Proposition 1.1 Soit E un espace affine dans Rn.

1) Pour tout point A de E , on a
−→
AA = ~0.

2) Pour tous points A, B et C de E , on a
−−→
AB +

−−→
BC =

−→
AC (relation de Chasles 1).

3) Pour tous points A et B de E , on a
−−→
BA = −

−−→
AB.

4) Pour tous points A et B de E , on a A+
−−→
AB = B.

5) Pour tout point A de E , l’application M 7→
−−→
AM est une bijection de E sur

−→
E .

6) Pour tous points A, B, C et D de E , on a :

−−→
AB =

−−→
CD ⇐⇒

−→
AC =

−−→
BD.

On dit dans ce cas que ABDC est un parallélogramme.

bA

bB

b

C

bD

Démonstration. il n’y a aucune difficulté : ces propriétés découlent immédiatement du fait que
−−→
PQ = Q−P

dans Rn et leur démonstration est laissée en exercice.
�

Définition La dimension d’un espace affine est la dimension de sa direction.

Ainsi, un sous-espace affine de dimension nulle est réduit à un point.
Un sous-espace affine de dimension 1 est appelé une droite (affine).
Un sous-espace affine de dimension 2 est appelé une plan (affine).

II Propriétés des sous-espaces affines

a) Sous-espaces affines

Définition Un sous-espace affine d’un espace affine E est une partie F de E qui est un espace affine dans
R

n. Un hyperplan d’un espace affine E est un sous-espace affine de E de dimension dim E − 1.

Remarque : si F est un sous-espace affine d’un espace affine E , la direction
−→
F de F est un sous-espace

vectoriel de
−→
E .

Proposition 1.2 Soit E un espace affine, A un point de E et F un sous-espace vectoriel de
−→
E .

Il existe un unique sous-espace affine de E dirigé par F et contenant A : il s’agit de

A+ F := {A+ ~u / ~u ∈ F} .

Démonstration. C’est une conséquence immédiate des définitions.
�

Proposition 1.3 Soit F et G deux sous-espaces affines d’un espace affine E .

1) Si
−→
F et

−→
G sont supplémentaires dans

−→
E ( ie

−→
E =

−→
F ⊕

−→
G ), alors l’intersection F ∩G est réduite à un point.

2) Si
−→
F =

−→
G , alors F = G ou F ∩ G = ∅.

Démonstration. 1) Fixons deux points A et B respectivement dans F et G . Le vecteur
−−→
AB se décompose

sous la forme
−−→
AB = ~u+ ~v avec ~u ∈

−→
F et ~v ∈

−→
G . Alors, si M = A+ ~u, on a :

→ M ∈ F car A ∈ F et ~u ∈
−→
F ;

→ M = B +
−−→
BA+ ~u = B − (~u+ ~v) + ~u = B − ~v ∈ G car B ∈ G et ~v ∈

−→
G .

Ainsi, M ∈ F ∩ G et cette dernière intersection est non vide.

~u

~v

b
A

B

b
M

1. Michel Chasles, mathématicien français, 1793-1880.
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II Propriétés des sous-espaces affines 7

Si maintenant N est un second point de F ∩G alors le vecteur
−−→
MN est dans

−→
F ∩

−→
G . Mais les deux sous-espaces

vectoriels
−→
F et

−→
G étant supplémentaires, cette intersection est réduite à {~0}. Par conséquent, on a

−−→
MN = ~0 et

donc N = M .

2) Supposons que F ∩G 6= ∅ et fixons un point A dans cette intersection. D’après la proposition 1.2, il existe un

unique sous-espace affine de E contenant A et dirigé par
−→
F =

−→
G . Puisque F et G sont deux tels sous-espaces

affines, ils sont égaux.

�

Définition Deux sous-espaces affines d’un espace affine E sont dits parallèles s’ils ont même direction.

b) Sous-espace affine engendré

Proposition 1.4 L’intersection d’une famille de sous-espace affines d’un espace affine E est soit vide, soit un
sous-espace affine de E .

Démonstration. Soit (Fi)i∈I une famille de sous-espaces affines d’un espace affine E telle que F := ∩
i∈I

Fi

soit non vide et fixons un point A dans F . On veut montrer que FA :=
{−−→
AM /M ∈ F

}
est un sous-espace

vectoriel de
−→
E . Mais on a FA = ∩

i∈I

−→
Fi :

→ si M ∈ F , alors, pour tout i ∈ I, M ∈ Fi donc
−−→
AM ∈

−→
Fi ;

→ Si ~u ∈ ∩
i∈I

−→
Fi et M = A+ ~u, alors M est dans Fi pour tout i ∈ I, c’est-à-dire que M ∈ F et donc

~u =
−−→
AM ∈ FA.

L’intersection d’une famille de sous-espaces vectoriels étant encore un sous-espace vectoriel, ceci montre que FA

est un sous-espace vectoriel de
−→
E .

�

Définition Soit S une partie non vide d’un espace affine E . On appelle sous-espace affine de E engendré par
S le plus petit sous-espace affine de E contenant S : c’est l’intersection des sous-espaces affines de E contenant
S d’après la propriété précédente. On le note 〈S〉.

Exemples. 1) Si A est un point de E , alors 〈A〉 = {A}.

2) Si A et B sont deux points distincts de E , alors 〈A,B〉 est la droite passant par A et dirigée par
−−→
AB. Plus

généralement, nous avons la propriété suivante :

Proposition 1.5 Soit E un espace affine. Le sous-espace affine 〈A0, ..., Ak〉 de E engendré par k + 1 points

A0, A1, ..., Ak cöıncide avec le sous-espace affine de E contenant A0 et dirigé par Vect
Ä−−−→
A0A1, ...,

−−−→
A0Ak

ä
.

Démonstration. Notons F le sous-espace affine de E contenant A0 et dirigé par F := Vect
Ä−−−→
A0A1, ...,

−−−→
A0Ak

ä
:

F = A0 + F .

• Puisque Ai = A0 +
−−−→
A0Ai ∈ F , F est un sous-espace affine de E contenant A0, A1, ..., Ak.

• D’autre part, si G est un sous-espace affine de E contenant A0, ..., Ak, sa direction contient les vecteurs
−−−→
A0A1, ...,

−−−→
A0Ak donc F ⊂

−→
G . Par conséquent, on obtient F = A0 + F ⊂ A0 +

−→
G = G .

Ainsi, F est le plus petit sous-espace affine de E contenant A0, A1, ..., Ak : F = 〈A0, ..., Ak〉.

�

S. Gervais L2 Géométrie affine et euclidienne 2014-2015



8 CHAPITRE 1. NOTIONS AFFINES

c) Repère cartésien

Définition 1) On dit que k + 1 points d’un espace affine E sont affinement indépendants si le sous-espace
affine qu’ils engendrent est de dimension k.
2) Un repère cartésien d’un espace affine E est la donnée d’un point Ω (l’origine du repère) et d’une base de la

direction
−→
E .

Proposition-Définition Si (Ω; ~e1, ..., ~en) est un repère cartésien d’un espace affine E , alors, pour tout point

M de E , il existe un unique n-uplet (α1, ..., αn) dans Rn tel que M = Ω+
n∑

i=1

αi ~ei.

Ces n nombres réels (ordonnés) sont appelés coordonnées cartésiennes de M dans le repère (Ω; ~e1, ..., ~en).

Démonstration. Les nombres réels α1, ..., αn sont les coordonnées du vecteur
−−→
ΩM dans la base (~e1, ..., ~en).

�

Exemples

1) Deux points distincts A et B engendrent une droite et (A;
−−→
AB) en est un repère cartésien ;

2) Trois points non alignés A,B,C engendrent un plan et (A;
−−→
AB,

−→
AC) en est un repère cartésien.

d) Orientation

E désigne un espace vectoriel réel de dimension finie et B l’ensemble des bases de E.

Notation : si b1 et b2 sont deux bases de E, on notera Pb1,b2
la matrice de passage de b1 à b2.

Fixons une base e de E. On note :

B+ = { bases b de E telles que detPe,b > 0} et B− = { bases b de E telles que detPe,b < 0} .

Lemme 2 On a B+ ∩ B− = ∅ et B+ ∪ B− = B.

Démonstration. L’intersection est vide car un déterminant ne peux pas être simultanément strictement positif
et strictement négatif. D’autre part, toute base est dans une de ces deux parties car le déterminant de la matrice
de passage entre deux bases n’est pas nul.

�

Lemme 3 Cette partition de B ne dépend pas du choix de la base e.

Démonstration. Soit e′ une seconde base de E, {B′+,B′−} la partition de B associée et ε le signe de detPe,e′ .
Pour toute base b de E, on a

detPe,b =
(
detPe,e′

) (
detPe

′,b

)
= ε

(
detPe

′,b

)
.

On a donc :
B′+ = B+ et B′− = B− si ε > 0, et B′+ = B− et B′− = B+ si ε < 0.

�

Définition Orienter E, c’est choisir une base e de E. Alors, les bases dans la même classe que e ( ie dans B+)
sont dites directes, celles de l’autre classe ( ie dans B−) étant dites indirectes. Un espace affine est dit orienté
si sa direction est orientée.

Proposition-Définition Soient E un espace vectoriel orienté et f un isomorphisme de E. Les trois assertions
suivantes sont équivalentes :

(i) f transforme toute base directe en une base directe ;

(ii) il existe une base directe b de E telle que f(b) soit directe ;

(iii) det f > 0.

Un isomorphisme vérifiant une de ces trois assertions (et donc toutes) est dit direct.

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais



III Barycentres 9

Démonstration. Il est clair que la première assertion implique la seconde. Supposons donc que b soit une
base directe de E telle que f(b) soit directe. Si A est la matrice de f dans cette base b, alors A est la matrice
de passage de b à f(b) donc det f = detA > 0. Ceci montre que la deuxième assertion implique la troisième.
Supposons à présent que f soit de déterminant strictement positif et considérons une base directe b. Puique la
matrice de passage de b à f(b) est la matrice de f dans la base b, on a detPb,f(b) = det f > 0 donc f(b) est
également directe.

�

III Barycentres

a) Définition

Proposition-Définition Soient A1, ..., Ak k points d’un espace affine E et λ1, ..., λk k nombres réels tels que
k∑

i=1
λi = 1. Il existe un unique point G dans E vérifiant :

∀M ∈ E ,
−−→
MG =

k∑

i=1

λi

−−−→
MAi.

Le point G est appelé barycentre du système de points pondérés (Ai, λi)1≤i≤k.

Démonstration. Soit Ω un point de E . Le point G cherché vérifie nécessairement G = Ω+
k∑

i=1

λi

−−→
ΩAi et est

donc unique s’il existe. Réciproquement, si G est ce point, on a, pour tout point M de E :

−−→
MG =

−−→
MΩ+

−→
ΩG =

−−→
MΩ+

k∑

i=1

λi

−−→
ΩAi =

−−→
MΩ+

k∑

i=1

λi(
−−→
ΩM +

−−−→
MAi)

=
−−→
MΩ+

(
k∑

i=1

λi

)
−−→
ΩM +

k∑

i=1

λi

−−−→
MAi =

k∑

i=1

λi

−−−→
MAi car

k∑

i=1

λi = 1.

�

Remarque : On a en fait montré que dans un espace affine E , un point G est barycentre d’un système de

points pondérés (Ai, λi)i∈I si, et seulement si, il existe un point Ω dans E tel que
−→
ΩG =

∑

i∈I

λi

−−→
ΩAi.

Remarque : Si λ1, ..., λk sont k nombres réels tels que λ :=
k∑

i=1
λi 6= 0, on appellera barycentre de la famille de

points pondérés (Ai, λi)1≤i≤k le barycentre du système (Ai,
λi

λ
)1≤i≤k ; il sera noté bar(Ai, λi)1≤i≤k.

Définition L’ isobarycentre de k points A1, ..., Ak est le barycentre du système pondéré (Ai, 1)0≤i≤k. Le milieu
d’un couple de point (A,B) est l’isobarycentre de ces deux points.

Proposition 1.6 (Associativité du barycentre) Soit E un espace affine. Soient (Ai, λi)i∈I une famille finie
de points pondérés de E et I = ∪

j∈J
Ij une partition de I. On note, pour j ∈ J ,

µj =
∑

i∈Ij

λi, λ =
∑

j∈J

µj =
∑

i∈I

λi

et on suppose que λ et les µj sont tous non nuls.
Alors, si, pour j ∈ J , Gj désigne le barycentre du système (Ai, λi)i∈Ij

, on a :

bar(Ai, λi)i∈I = bar (Gj , µj)j∈J
.
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10 CHAPITRE 1. NOTIONS AFFINES

Démonstration. Soit Ω un point de E . On a, si G = bar(Gj , µj)j∈J :

−→
ΩG =

1

λ

∑

j∈J

µj

−−→
ΩGj =

1

λ

∑

j∈J

µj

Ñ
1

µj

∑

i∈Ij

λi

−−→
ΩAi

é
=

1

λ

∑

j∈J

µj

µj

Ñ
∑

i∈Ij

λi

−−→
ΩAi

é

=
1

λ

∑

j∈J

∑

i∈Ij

λi

−−→
ΩAi =

1

λ

∑

i∈I

λi

−−→
ΩAi

ce qui montre bien que G est le barycentre du système (Ai, λi)i∈I .

�

Exercice. Montrer que dans un triangle, les trois médianes sont concourantes en G, l’isobarycentre des trois
sommets.

b) Sous-espaces affines et barycentres

Théorème 1.1 Soient E un espace affine et F une partie non vide de E . Alors F est un sous-espace affine de
E si, et seulement si, pour toute famille finie (Ai)i∈I de points de F et toute famille de scalaires (λi)i∈I telle

que
∑
i∈I

λi 6= 0, le barycentre du système (Ai, λi)i∈I appartient à F .

Démonstration. • Supposons que F soit un sous-espace affine de E et considérons un système (Ai, λi)1≤i≤k

de points pondérés de F tel que
k∑

i=1
λi = 1. Si G est le barycentre de ce système, alors

−−→
A1G =

k∑

i=1

λi

−−−→
A1Ai =

k∑

i=2

λi

−−−→
A1Ai =⇒ G = A1 +

k∑

i=2

λi

−−−→
A1Ai.

Les points A1, ..., Ak étant dans F , les vecteurs
−−−→
A1A2, ...,

−−−→
A1Ak sont dans

−→
F et donc

k∑
i=2

λi

−−−→
A1Ai également

puisque
−→
F est un sous-espace vectoriel de

−→
E . Par conséquent, le point G appartient à F .

• Réciproquement, supposons que F soit stable par ≪prise de barycentre≫. Fixons un point A dans F et

montrons que EA =
¶−−→
AM /M ∈ F

©
est un sous-espace vectoriel de

−→
E . Soient ~u et ~v deux éléments de EA et

α un nombre réel. Il existe deux points M et N dans F tels que ~u =
−−→
AM et ~v =

−−→
AN . Si P est le barycentre du

système
(
(A,−α), (M,α), (N, 1)

)
, alors P ∈ F par hypothèse donc

−→
AP ∈ EA. Mais on a :

−→
AP = −α

−→
AA+ α

−−→
AM +

−−→
AN = α~u+ ~v

donc α~u+ ~v ∈ EA.

�

Corollaire 1.1 Soit F une partie non vide d’un espace affine E . Les conditions suivantes sont équivalentes :

(i) F est un sous-espace affine de E ;

(ii) pour tout couple (A,B) de points de F et tout réel λ, le barycentre de
(
(A, λ), (B, 1 − λ)

)
appartient

à F ;

(iii) pour tout couple (A,B) de points de F , la droite (AB) est incluse dans F .

Démonstration. C’est une conséquence du théorème précédent et de l’associativité du barycentre.

�
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c) Coordonnées barycentriques

Proposition-Définition Soient A0, A1, ..., An n+ 1 points affinement indépendants d’un espace affine E de
dimension n. Alors, pour tout point M de E , il existe une unique famille (λ0, λ1, ..., λn) ∈ Rn+1 vérifiant :

n∑

i=0

λi = 1 et M = bar (Ai, λi)0≤i≤n .

Le (n + 1)-uplet (A0, ..., An) est appelé repère barycentrique de E et les nombres réels λ0, ..., λn sont appelés
coordonnées barycentriques de M dans ce repère.

Démonstration. Puisque par hypothèse (
−−−→
A0A1, ...,

−−−→
A0An) est une base de

−→
E , il existe n nombres réels

λ1, ..., λn tel que

−−−→
A0M =

n∑

i=1

λi

−−−→
A0Ai,

ce qui implique

−−−→
A0M =

(
1−

n∑

i=1

λi

)
−−−→
A0A0 +

n∑

i=1

λi

−−−→
A0Ai.

Ainsi, si on pose λ0 = 1−
n∑

i=1

λi, M est le barycentre du système (Ai, λi)0≤i≤n.

Réciproquement, si (λ0, λ1, ..., λn) ∈ Rn+1 vérifient :
n∑

i=0

λi = 1 et M = bar (Ai, λi)0≤i≤n , alors

λ0 = 1 −
n∑

i=1

λi et λ1, ..., λn sont les coordonnées du vecteur
−−−→
A0M dans la base

Ä−−−→
A0Ai

ä
1≤i≤n

ce qui montre

l’unicité de ce (n+ 1)-uplet.
�

IV Applications affines

a) Définition et application linéaire associée

Définition Une application f : E → F entre deux espaces affines est dite affine si elle préserve le barycentre,
c’est-à-dire : si (Ai, λi)i∈I est un système de point pondérés de E tel que

∑
i∈I

λi 6= 0 et G son barycentre, alors

f(G) est le barycentre du système (f(Ai), λi)i∈I .

Remarque : par associativité du barycentre, il suffit de vérifier cette propriété pour tout système de deux
points.

Remarque : toute application constante est affine, ainsi que l’application Identité.

Premier exemple. Soient E un espace affine et ~u un vecteur de
−→
E . L’application t~u : E → E définie par

t~u(M) = M + ~u est affine. Cette application est appelée translation de vecteur ~u.

Démonstration. Soient A,B ∈ E , λ ∈ R et G le barycentre de
(
(A, λ), (B, 1 − λ)

)
. Si A′, B′ et G′ sont les

images respectives de A, B et G, alors
−−→
AA′ =

−−→
BB′ =

−−→
GG′ = ~u donc

−−−→
B′A′ =

−−→
B′B +

−−→
BA+

−−→
AA′ = −~u+

−−→
BA+ ~u =

−−→
BA.

De là, on obtient :

−−−→
B′G′ =

−−→
B′B +

−−→
BG+

−−→
GG′ = −~u+

Ä
λ
−−→
BA+ (1− λ)

−−→
BB
ä
+ ~u = λ

−−→
BA = λ

−−−→
B′A′ = λ

−−−→
B′A′ + (1− λ)

−−−→
B′B′

donc G′ est bien le barycentre de
(
(A′, λ), (B′, 1− λ)

)
.

�
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12 CHAPITRE 1. NOTIONS AFFINES

Lemme 4 Soient f : E → F une application affine. Pour tout point A de E , l’application ϕA :
−→
E →

−→
F définie

par ϕA(~u) =
−−−−−−−−−−→
f(A)f(A+ ~u) est linéaire et vérifie, pour tous points M et N dans E :

−−−−−−−→
f(M)f(N) = ϕA

Ä−−→
MN
ä
.

De plus, pour tout point B de E , on a ϕA = ϕB .

Démonstration. Soient ~u,~v ∈
−→
E et λ ∈ R : il s’agit de montrer que ϕA(λ~u + ~v) = λϕA(~u) + ϕA(~v).

Soient M = A+ ~u, N = A+ ~v et G = A+ λ~u + ~v. On a :

−→
AG = λ~u + ~v = λ

−−→
AM +

−−→
AN = λ

−−→
AM +

−−→
AN − λ

−→
AA

donc G est le barycentre de
(
(M,λ), (N, 1), (A,−λ)

)
. Puisque f est affine, f(G) est donc le barycentre du

système
(
(f(M), λ), (f(N), 1), (f(A),−λ)

)
:

−−−−−−→
f(A)f(G) = λ

−−−−−−−→
f(A)f(M) +

−−−−−−−→
f(A)f(N)− λ

−−−−−−→
f(A)f(A) = λ

−−−−−−−→
f(A)f(M) +

−−−−−−−→
f(A)f(N)

c’est-à-dire
ϕA(λ~u + ~v) = λϕA(~u) + ϕA(~v).

Ensuite, si M et N sont deux points de E , on a :

−−−−−−−→
f(M)f(N) =

−−−−−−−→
f(M)f(A) +

−−−−−−−→
f(A)f(N) =

−−−−−−−→
f(A)f(N)−

−−−−−−−→
f(A)f(M)

= ϕA(
−−→
AN )− ϕA(

−−→
AM) = ϕA(

−−→
AN −

−−→
AM) = ϕA(

−−→
MN).

Enfin, si B est un point de E , on a, pour tout vecteur ~u (on note M = A+ ~u) :

ϕB(~u) = ϕB(
−−→
AM) =

−−−−−−−→
f(A)f(M) = ϕA(~u).

�

Lemme 5 Soient E et F deux espaces affines, ϕ :
−→
E →

−→
F une application linéaire et A (resp. B) un point de

E (resp. F ). Alors, l’application f : E → F définie, pour tout M dans E , par f(M) = B+ϕ
Ä−−→
AM
ä
, est affine.

Démonstration. Soit (Ai, λi)i∈I un système de points pondérés de E tel que
∑
i∈I

λi = 1 et G son barycentre.

On a :

−−−−→
Bf(G) = ϕ

Ä−→
AG
ä
= ϕ

(∑

i∈I

λi

−−→
AAi

)

=
∑

i∈I

λi ϕ
Ä−−→
AAi

ä
car ϕ est linéaire

=
∑

i∈I

λi

−−−−→
Bf(Ai)

donc f(G) est le barycentre du système
(
f(Ai), λi

)
i∈I

.

�

Ces deux lemmes démontrent le théorème suivant :

Théorème-Définition 1.2 Soient E et F deux espaces affines. Une application f : E → F est affine si, et

seulement si, il existe une application linéaire ϕ :
−→
E →

−→
F telle que pour tout couple (M,N) de points de E , on

ait : −−−−−−−→
f(M)f(N) = ϕ

Ä−−→
MN
ä

c’est-à-dire f(N) = f(M) + ϕ
Ä−−→
MN
ä
.

Dans ce cas, une telle application linéaire est unique et est appelée application linéaire associée à f , notée
−→
f .

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais
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Proposition 1.7 Deux applications affines f, g : E → F cöıncident si, et seulement si, les deux conditions
suivantes sont vérifiées :

1) il existe un point A de E tel que f(A) = g(A) ;

2)
−→
f = −→g .

Démonstration. Les deux conditions sont évidemment nécessaires. Si elles sont satisfaites, on a, pour tout
point M de E :

f(M) = f(A) +
−→
f
Ä−−→
AM
ä
= g(A) +−→g

Ä−−→
AM
ä
= g(M).

�

Proposition 1.8

1) L’application linéaire associée à IdE est Id−→
E

:
−→
IdE = Id−→

E
.

2) Soient f1 : E1 → E2 et f2 : E2 → E3 deux applications affines. Alors f2 ◦ f1 : E1 → E3 est une application

affine et
−−−−→
f2 ◦ f1 =

−→
f2 ◦

−→
f1.

3) Une application affine f : E → F est bijective si, et seulement si, ~f est un isomorphisme. Dans ce cas, f−1

est affine et
−−→
f−1 =

Ä−→
f
ä−1

.

Démonstration. • Le point 1) est clair.
• Pour A et M points de E1, on a :

(f2 ◦ f1) (M) = f2

[
f1(M)

]
= f2

[
f1
Ä
A+

−−→
AM
ä]

= f2

[
f1(A) +

−→
f1
Ä−−→
AM
ä]

= f2

[
f1(A)

]
+
−→
f2
î−→
f1
Ä−−→
AM
äó

= (f2 ◦ f1) (A) +
Ä−→
f2 ◦

−→
f1
ä Ä−−→

AM
ä
,

ce qui démontre la deuxième propriété car la composée de deux applications linéaires est linéaire.

• Soit à présent une bijection affine f : E → F . Commençons par démontrer que
−→
f est bijective. Pour cela,

fixons un point A dans E .

→ Si ~v est un vecteur de
−→
F , il existe un point M dans E tel que f(M) = f(A) + ~v, c’est-à-dire tel que

~v =
−−−−−−−→
f(A)f(M) =

−→
f
Ä−−→
AM
ä
: ~v admet donc un antécédent, ceci pour tout ~v dans

−→
F . L’application

−→
f est donc

surjective.

→ Si ~u est un élément de ker
−→
f , alors f(A+ ~u) = f(A) +

−→
f (~u) = f(A) donc A = A+ ~u puisque f est injective.

Ceci implique ~u = ~0. On a donc ker
−→
f = {~0} :

−→
f est injective.

Montrons à présent que f−1 : F → E est affine. On utilise pour cela le critère du théorème 1.2. Soient N1 et
N2 deux points de F . On a :

−→
f
(−−−−−−−−−−−−→
f−1(N1)f

−1(N2)
)
=

−−−−−−−−−−−−−−−−−−−−→
(f ◦ f−1)(N1)(f ◦ f−1)(N2) =

−−−→
N1N2,

donc
−−−−−−−−−−−−→
f−1(N1)f

−1(N2) =
Ä−→
f
ä−1 Ä−−−→

N1N2

ä
puisque

−→
f est un isomorphisme. Ceci montre que f−1 est affine avec

−−→
f−1 =

Ä−→
f
ä−1

.

• Pour finir, on considère une application affine f : E → F telle que ~f soit un isomorphisme. Montrons que f
est bijective. Fixons un point A dans E et notons B := f(A).

→ Pour tous points M et N dans E , on a

f(M) = f(N) ⇒
−−−−−−−→
f(A)f(M) =

−−−−−−−→
f(A)f(N) ⇒ ~f

Ä−−→
AM
ä
= ~f
Ä−−→
AN
ä ~f isom.

=⇒
−−→
AM =

−−→
AN ⇒ M = N

donc f est injective.

→ Soit N un point de F . Puisque ~f est un isomorphisme, il existe un vecteur ~u ∈
−→
E tel que ~f(~u) =

−−→
BN . Alors,

si M = A+ ~u, on a :

f(M) = f(A) + ~f(~u) = B +
−−→
BN = N

donc f est surjective.
�
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14 CHAPITRE 1. NOTIONS AFFINES

b) Points fixes

Proposition 1.9 L’ensemble des points fixes d’une application affine f d’un espace affine E dans lui-même est

soit vide, soit un sous-espace affine de E de direction ker
Ä−→
f − Id−→

E

ä
.

Remarque : l’ensemble des points fixes d’une application affine f est souvent noté Fix(f).

Démonstration. Supposons que Fix(f) soit non vide. Fixons un point A dans Fix(f) et montrons que

Fix(f) = A+ ker
Ä−→
f − Id−→

E

ä
.

• Si f(M) = M , alors
−→
f
Ä−−→
AM
ä
=

−−−−−−−→
f(A)f(M) =

−−→
AM donc

−−→
AM ∈ ker

Ä−→
f − Id−→

E

ä
. Par conséquent,M = A+

−−→
AM

appartient à ∈ A+ ker
Ä−→
f − Id−→

E

ä
.

• Si
−→
f (~u) = ~u , alors f(A+ ~u) = f(A) +

−→
f (~u) = A+ ~u donc A+ ~u ∈ Fix(f).

�

Théorème 1.3 Une application affine f d’un espace affine E dans lui-même admet un unique point fixe si, et

seulement si, 1 n’est pas valeur propre de
−→
f .

Démonstration. La proposition précédente montre que si f a un unique point fixe alors ker
Ä−→
f − Id−→

E

ä
est

réduit à {~0}. Supposons maintenant que 1 ne soit pas valeur propre de f . Si A ∈ E , on a :

f(M) = M ⇐⇒
−−−−−−−→
f(A)f(M) =

−−−−→
f(A)M

⇐⇒
−→
f
Ä−−→
AM
ä
=

−−−−→
f(A)A+

−−→
AM

⇐⇒
Ä−→
f − Id−→

E

ä Ä−−→
AM
ä
=

−−−−→
f(A)A.

Puisque 1 n’est pas valeur propre de
−→
f par hypothèse, l’endomorphisme

−→
f − Id−→

E
est injectif et donc bijectif

puisque nous sommes en dimension finie. Ainsi :

f(M) = M ⇐⇒
−−→
AM =

Ä−→
f − Id−→

E

ä−1 (−−−−→
f(A)A

)
⇐⇒ M = A+

Ä−→
f − Id−→

E

ä−1 (−−−−→
f(A)A

)
.

Ceci montre bien que f admet un unique point fixe.

�

c) Sous-espaces affines et applications affines

Proposition 1.10 Soit f : E1 → E2 une application affine.

Si F est un sous-espace affine de E1, alors f(F ) est un sous-espace affine de E2 de direction
−→
f
Ä−→
F

ä
.

Démonstration. Soit A un point de F . On a, puisque F = A+
−→
F :

f (F ) = {f(M) /M ∈ F} =
¶
f(A+ ~u) / ~u ∈

−→
F

©
=
¶
f(A) +

−→
f (~u) / ~u ∈

−→
F

©
= f(A) +

−→
f
Ä−→
F

ä

donc f(F ) est un sous-espace affine de E2 de direction
−→
f
Ä−→
F

ä
.

�

d) Applications affines et repères

Théorème 1.4 Soit (A0, . . . , An) un repère affine d’un espace affine E et (B0, . . . , Bn) n+1 points d’un espace
affine F . Il existe une unique application affine f de E dans F telle que f(Ai) = Bi pour tout i.
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Démonstration. Puisque
Ä−−−→
A0A1, ...,

−−−→
A0An

ä
est une base de

−→
E , il existe une unique application linéaire

ϕ :
−→
E →

−→
F telle que ϕ

Ä−−−→
A0Ai

ä
=

−−−→
B0Bi pour tout i.

• Maintenant, si on définit f : E → F par f(M) = B0 + ϕ
Ä−−−→
A0M

ä
, alors f est affine d’application linéaire

associée ϕ (théorème 1.2) et vérifie, pour i = 0, 1, ..., n :

f(Ai) = B0 + ϕ
Ä−−−→
A0Ai

ä
= B0 +

−−−→
B0Bi = Bi.

• Si g est une application affine envoyant chacun des points Ai sur Bi, alors l’image par −→g du vecteur
−−−→
A0Ai est

égale à
−−−→
B0Bi donc

−→g = ϕ =
−→
f . Puisque g(A0) = B0 = f(A0), on en déduit que g = f (proposition 1.7).

�

e) Translations et homothéties

Théorème 1.5 Une application affine f d’un espace affine E dans lui-même est une translation si, et seulement

si, elle vérifie
−→
f = Id−→

E
.

Démonstration.

• Si ~u ∈
−→
E et A ∈ E , on a, pour tout ~v ∈

−→
E :

t~u(A+ ~v) = (A+ ~v) + ~u = (A+ ~u) + ~v = t~u(A) + ~v

donc
−→
t~u = Id−→

E
.

• Réciproquement, soit f une application affine de E telle que
−→
f = Id−→

E
. Fixons un point A dans E et posons

~u =
−−−−→
Af(A). Alors, pour tout point M de E :

f(M) = f(A) +
−→
f
Ä−−→
AM
ä
= f(A) +

−−→
AM = A+

−−−−→
Af(A) +

−−→
AM = M + ~u

donc f est la translation de vecteur ~u.
�

Définition Soient E un espace affine, Ω un point de E et k un nombre réel non nul. On appelle homothétie

de rapport k et de centre Ω l’application h de E dans E définie par h(M) = Ω + k
−−→
ΩM .

Proposition 1.11 Une homothétie de rapport k est une transformation affine dont l’inverse est l’homothétie
de même centre et de rapport 1

k
.

Démonstration. D’après la définition et le théorème 1.2, une homothétie est une application affine d’appli-
cation linéaire l’homothétie vectorielle de rapport k (ie k Id−→

E
). Si h′ est l’homothétie de même centre et de

rapport 1
k
, alors on a, pour tout point M de E :

(h′ ◦ h)(M) = h′
Ä
Ω + k

−−→
ΩM
ä
= h′(Ω) +

−→
h′
Ä
k
−−→
ΩM
ä
= Ω+

1

k
· k

−−→
ΩM = M

et de même, (h ◦ h′)(M) = M . Par conséquent, h est bijective d’inverse h′.
�

Théorème 1.6 Une application affine h est une homothétie distincte de Id si, et seulement si, son application
linéaire est une homothétie vectorielle de rapport différent de 1.

Démonstration. La condition nécessaire découle directement de la définition. Supposons donc que h soit une

application affine de E telle que
−→
h = k Id−→

E
avec k 6∈ {0, 1}. D’après le théorème 1.3, h admet alors un unique

point fixe Ω. De là, on obtient, pour tout point M de E :

h(M) = h
Ä
Ω+

−−→
ΩM
ä
= h(Ω) +

−→
h
Ä−−→
ΩM
ä
= Ω+ k

−−→
ΩM

donc h est l’homothétie de centre Ω et de rapport k.
�
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16 CHAPITRE 1. NOTIONS AFFINES

f) Projections et symétries

Rappel d’algèbre linéaire. Soient E un espace vectoriel, F et G deux sous-espaces vectoriels supplémen-
taires : E = F ⊕ G. Tout élément ~x de E s’écrit alors de façon unique sous la forme ~x = ~u + ~v avec ~u ∈ F et
~v ∈ G.
On appelle projeté (resp. symétrique) de ~x sur F (resp. par rapport à F ) parallèlement à G l’élément p(~x) = ~u
(resp. s(~x) = ~u− ~v = ~x− 2~v). On notera q la projection sur G parallèlement à F .

Lemme 6 Les applications p, q, s : E → E sont linéaires et vérifient p◦p = p, q◦q = q, p+q = IdE, s◦s = IdE
et s = p− q = 2p− IdE.

Lemme 7

1) Une application linéaire p : E → E est une projection si, et seulement si, p ◦ p = p. Dans ce cas, on a
E = ker(p− Id)⊕ ker p et p est la projection sur ker(p− Id) = Im p parallèlement à ker p.

2) Une application linéaire s : E → E est une symétrie si, et seulement si, s ◦ s = Id. Dans ce cas,
E = ker(s− Id)⊕ ker(s+ Id) et s est la symétrie par rapport à ker(s− Id) parallèlement à ker(s+ Id).

Théorème 1.7 Soient E un espace affine, F un sous-espace affine de E et G un supplémentaire de
−→
F dans

−→
E .
Alors, pour tout point M de E , l’intersection de F et de M +G est réduite à un point ; si p(M) est ce point,

l’application p : E → E ainsi définie est affine, d’application linéaire associée la projection vectorielle sur
−→
F

parallèlement à G. L’application p est appelée projection (affine) sur F dans la direction G et vérifie p ◦ p = p.

Démonstration. Pour M ∈ E , la proposition 1.3 permet d’affirmer que l’intersection de F et G := M +G
est réduite à un point. Notons p(M) ce point et montrons que l’application p : E → E ainsi définie est affine,

d’application linéaire π, la projection vectorielle sur
−→
F dans la direction G.

Soit A ∈ F : p(A) est par définition égal à A. Si M ∈ E , le vecteur
−−→
AM se décompose de façon unique en une

somme ~u+ ~v avec ~u ∈
−→
F et ~v ∈ G. On a alors π

Ä−−→
AM
ä
= ~u. D’autre part :

– A+ ~u ∈ F car A ∈ F et ~u ∈
−→
F ;

– A+ ~u = A+
Ä−−→
AM − ~v

ä
= M − ~v ∈ G car M ∈ G et v ∈

−→
G = G.

Ainsi F ∩ (M +G) = {A+ ~u}, donc p(M) = A+ ~u = p(A)+ π
Ä−−→
AM
ä
. Ceci montre que p est affine avec −→p = π

(théorème 1.2).

Enfin, pour tout point M de E , on a p(M) ∈ F donc (p ◦ p)(M) = p(M).

�

Proposition 1.12 Une application affine p : E → E est une projection si, et seulement si, p ◦ p = p.

Démonstration. La condition est nécessaire d’après le théorème 1.7.
Supposons que p soit une application affine vérifiant p ◦ p = p. On a alors −→p ◦−→p = −→p donc −→p est la projection
vectorielle sur F = ker(−→p − Id−→

E
) dans la direction G = ker−→p (lemme 7). D’autre part, pour tout point M de

E , on a p
(
p(M)

)
= p(M) donc Fix(p) 6= ∅. Maintenant, si q est la projection sur Fix(p) dans la direction G,

on a −→q = −→p et, si A ∈ Fix(p), q(A) = A = p(A). Par conséquent, p = q d’après la proposition 1.7.

�

Théorème 1.8 Soient E un espace affine, F un sous-espace affine de E et G un sous-espace vectoriel sup-

plémentaire de
−→
F dans

−→
E . Pour M ∈ E , on note s(M) le point défini par s(M) = M + 2

−−−−−→
Mp(M) où p est la

projection sur F parallèlement à G.
Alors s : E → E est une application affine, d’application linéaire associée la symétrie vectorielle par rapport à
−→
F parallèlement à G. L’application s est appelée symétrie (affine) par rapport à F et de direction G et vérifie
s ◦ s = IdE .

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais



IV Applications affines 17

F

G

b M

b p(M)

b s(M)

Démonstration. Pour tout couple (M,N) de points de E , on a :

−−−−−−−→
s(M)s(N) =

−−−−−→
s(M)M +

−−→
MN +

−−−−→
Ns(N) = −2

−−−−−→
Mp(M) +

−−→
MN + 2

−−−−→
Np(N)

= 2
−−−−−→
p(M)M + 2

−−→
MN + 2

−−−−→
Np(N)−

−−→
MN = 2

−−−−−−−→
p(M)p(N)−

−−→
MN

= 2−→p
Ä−−→
MN
ä
−
−−→
MN =

Ä
2−→p − Id−→

E

ä Ä−−→
MN
ä
.

Ceci montre que s est affine d’application linéaire (2−→p − Id−→
E
), la symétrie vectorielle par rapport à

−→
F et de

direction G (théorème 1.2 et lemme 6). Enfin, pour tout point M de F , on a

s(M) = M + 2
−−−−−→
Mp(M) = M + 2

−−−→
MM = M

donc (s ◦ s)(M) = M . D’autre part, −−→s ◦ s = −→s ◦ −→s = Id−→
E

(lemme 6). On a donc s ◦ s = IdE d’après la
proposition 1.7.

�

Proposition 1.13 Une application affine s est une symétrie si, et seulement si, s ◦ s = Id.

Démonstration. La condition est nécessaire d’après le théorème 1.8.
Supposons que s soit une application affine vérifiant s ◦ s = IdE . On a −→s ◦ −→s = −−→s ◦ s = Id−→

E
donc −→s est

la symétrie vectorielle par rapport à F := ker
Ä
−→s − Id−→

E

ä
dans la direction G := ker

Ä
−→s + Id−→

E

ä
(lemme 7).

D’autre part, pour tout point M de E , le milieu M ′ = M + 1
2

−−−−−→
Ms(M) de [M, s(M)] est invariant par s :

s(M ′) = s(M) +
1

2

−−−−−−−−−−−→
s(M)(s ◦ s)(M) = s(M) +

1

2

−−−−−→
s(M)M = s(M) +

−−−−−→
s(M)M −

1

2

−−−−−→
s(M)M = M ′.

Ainsi, Fix(s) est non vide ; c’est donc un sous-espace affine de E de direction F (proposition 1.9). Si σ est la
symétrie par rapport à Fix(s) et de direction G, alors σ et s ont même application linéaire et cöıncident en
chaque point de Fix(s) donc sont égales (proposition 1.7).

�

g) Une application : le théorème de Thalès

Théorème 1.9 (Théorème de Thalès 2) Soient E un espace affine de dimension finie, H un hyperplan

vectoriel de
−→
E , D et D ′ deux droites de E dont les directions sont chacune supplémentaire de H dans

−→
E .

Soient H1, H2 et H3 trois hyperplans de E deux à deux distincts de même direction H, rencontrant D (resp.
D ′) en trois points M1, M2 et M3 (resp. M ′

1, M
′
2 et M ′

3). Alors :

−−−−→
M1M3
−−−−→
M1M2

=

−−−−→
M ′

1M
′
3

−−−−→
M ′

1M
′
2

.

2. Thalès de Milet était un mathématicien grec ayant vécu vers 600 avant J.-C.

S. Gervais L2 Géométrie affine et euclidienne 2014-2015



18 CHAPITRE 1. NOTIONS AFFINES

Remarque : Les points M1, M2 et M3 étant alignés, les vecteurs
−−−−→
M1M3 et

−−−−→
M1M2 sont colinéaires : le scalaire

λ tel que
−−−−→
M1M3 = λ

−−−−→
M1M2 est noté

−−−−→
M1M3
−−−−→
M1M2

.

H1

H2

H3

D D ′

bM3

bM1

bM ′
3

b M ′
1

b M2
b
M ′

2

Démonstration. Soit p la projection sur D ′ dans la direction H . Pour i ∈ {1, 2, 3}, p(Mi) est le point
d’intersection de D ′ avec l’hyperplan contenantMi et dirigé parH , c’est-à-direHi : p(Mi) = M ′

i . Par conséquent,

si
−−−−→
M1M3 = λ

−−−−→
M1M2, on a :

−−−−→
M ′

1M
′
3 =

−−−−−−−−→
p(M1)p(M3) =

−→p
Ä−−−−→
M1M3

ä
= −→p

Ä
λ
−−−−→
M1M2

ä
= λ−→p

Ä−−−−→
M1M2

ä
= λ

−−−−−−−−→
p(M1)p(M2) = λ

−−−−→
M ′

1M
′
2.

�
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Chapitre 2 : Notions euclidiennes

I Produit scalaire

a) Définition et propriétés

Définition Un produit scalaire sur un espace vectoriel E est une application de E × E dans R, notée ici
(u, v) 7→ 〈u |v 〉, vérifiant :

1) bilinéarité : ∀(u, v, w) ∈ E3, ∀λ ∈ R, 〈u+ λv |w 〉 = 〈u |w 〉+λ 〈v |w 〉 et 〈u |v + λw 〉 = 〈u |v 〉+λ 〈u |w 〉 ;

2) symétrie : ∀(u, v) ∈ E2, 〈u |v 〉 = 〈v |u〉 ;

3) stricte positivité : ∀u ∈ E \ {0}, 〈u |u〉 > 0.

Un espace vectoriel euclidien est un espace vectoriel de dimension finie muni d’un produit scalaire.

Exemples. 1) Dans R2,
(
(x, y), (x′, y′)

)
7→ xx′ + yy′ est un produit scalaire.

2) Dans R3,
(
(x, y, z), (x′, y′, z′)

)
7→ xx′ + yy′ + zz′ est un produit scalaire.

3) Dans Rn, (x, y) 7→
n∑

i=1
xiyi (avec x = (x1, ..., xn) et y = (y1, ..., yn)) est un produit scalaire.

4) L’application (P,Q) 7→

∫ 1

0

P (t)Q(t)dt est un produit scalaire dans R3[X ], l’espace vectoriel des polynômes

de degré inférieur ou égal à 3.

Proposition 2.1 Si E est un espace vectoriel euclidien, l’application ‖ · ‖ : E → R définie par ‖u‖ =
√
〈u |u 〉

est une norme sur E, c’est-à-dire qu’elle vérifie :

1) ∀u ∈ E \ {0}, ‖u‖ > 0 ;

2) pour u ∈ E, on a ‖u‖ = 0 si, et seulement si, u = 0 ;

3) ∀u ∈ E, ∀λ ∈ R, ‖λu‖ = |λ| · ‖u‖ ;

4) ∀(u, v) ∈ E2, ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (inégalité de Minkowski 1) avec égalité si, et seulement si, u et v
sont colinéaires de même sens ( ie ∃λ > 0 tel que u = λv).

Démonstration. Les deux premières propriétés découlent de la stricte positivité et de la bilinéarité du produit
scalaire. La troisième est une conséquence de la bilinéarité : 〈λu |λu 〉 = λ2 〈u |u〉. L’inégalité de Minkowski est
une conséquence de l’inégalité de Cauchy 2-Schwarz 3 :

Lemme 1 (Inégalité de Cauchy-Schwarz) Si E est espace vectoriel euclidien, on a, pour tout (u, v) ∈ E2 :

| 〈u |v 〉 | ≤ ‖u‖ · ‖v‖

avec égalité si, et seulement si, u et v sont colinéaires.

En effet, on déduit de l’inégalité de Cauchy-Schwarz :

‖u+ v‖2 = 〈u+ v |u+ v 〉 = 〈u |u〉+ 〈u |v 〉+ 〈v |u 〉+ 〈v |v 〉 = ‖u‖2 + 2 〈u |v 〉+ ‖v‖2

≤ ‖u‖2 + 2‖u‖ · ‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2 ,

et si ||u+ v|| = ||u||+ ||v||, on obtient, en élevant au carré, 〈u |v 〉 = ||u|| · ||v||, soit u et v colinéaires d’après le
lemme. De plus, en remplaçant u par λv dans l’égalité 〈u |v 〉 = ||u|| · ||v||, on obtient λ||v||2 = |λ| · ||v||2, soit
λ = |λ| > 0.

�

1. Hermann Minkowski, mathématicien allemand, 1864-1909.

2. Augustin Louis Cauchy, mathématicien français, 1789-1857.

3. Hermann Amandus Schwarz, mathématicien allemand,1843-1921.
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Démonstration de l’inégalité de Cauchy-Schwarz. Fixons u et v non nuls dans E (si u ou v est nul,
l’inégalité est claire) et considérons l’application f de R dans R définie par f(λ) = ‖u + λv‖2. Par bilinéarité
du produit scalaire, on a f(λ) = ‖u‖2 + 2λ 〈u |v 〉+ λ2‖v‖2 donc f est un polynôme de degré 2. Or f ne prend

que des valeurs positives donc le discriminant de ce polynôme est négatif : 〈u |v 〉2 − ‖u‖2 · ‖v‖2 ≤ 0.
Enfin, si | 〈u |v 〉 | = ||u|| · ||v||, ce discriminant est nul donc il existe λ0 ∈ R tel que f(λ0) = 0, c’est-à-dire
||u+ λ0v||2 = 0. Ainsi, u+ λ0v = 0 : u et v sont colinéaires.

�

Proposition 2.2 (Formules de polarité) Soit E un espace vectoriel euclidien. Pour tout (u, v) ∈ E2, on a :

〈u |v 〉 =
1

2

(
‖u+ v‖2 − ‖u‖2 − ‖v‖2

)
=

1

4

(
‖u+ v‖2 − ‖u− v‖2

)
.

Démonstration. Il suffit de développer les expressions de droite en utilisant la bilinéarité du produit scalaire.
Les calculs sont laissés au lecteur.

�

b) Expression matricielle

Définition Soit E un espace vectoriel euclidien de dimension n et e = (e1, ..., en) une base de E. La matrice
du produit scalaire dans la base e est la matrice carrée de taille n dont le coefficient (i, j) est égal à 〈ei |ej 〉.

Proposition 2.3 Soit E un espace vectoriel euclidien et e = (e1, ..., en) une base de E. On note A la matrice du
produit scalaire dans cette base. Si U et V sont les matrices colonnes des coordonnées dans e de deux éléments
u et v de E, alors :

〈u |v 〉 = tUAV.

Démonstration. Si U =

Ç x1

...
xn

å
et V =

Ç y1

...
yn

å
alors, par bilinéarité du produit scalaire :

〈u |v 〉 =

∞
n∑

i=1

xiei

∣∣∣∣∣∣

n∑

j=1

yjej

∫
=

n∑

i=1

xi

∞
ei

∣∣∣∣∣∣

n∑

j=1

yjej

∫
=

n∑

i=1

n∑

j=1

xi yj 〈ei |ej 〉 =
tUAV,

la dernière égalité s’obtenant simplement en calculant le produit des trois matrices.
�

Proposition 2.4 Soit E un espace vectoriel euclidien et e, e′ deux bases de E. On note P la matrice de passage
de e à e′ et A (resp A′) la matrice du produit scalaire dans la base e (resp. e′). Alors :

A′ = tPAP.

Démonstration. Soient u et v deux éléments de E, U et V (resp. U ′ et V ′) leurs vecteurs coordonnées dans
la base e (resp. e′). Ces matrices sont reliées par les égalités U = PU ′ et V = PV ′. Par conséquent, en utilisant
la proposition 2.3, on obtient

〈u |v 〉 = tU AV =
t
(PU ′)A(PV ′) =

t
U ′(tPAP )V ′ =

t
U ′A′V ′.

Cette dernière égalité étant satisfaite pour tous vecteurs u, v de E, on obtient A′ = tPAP .
�

II Orthogonalité

a) Vecteurs orthogonaux - Bases orthonormées

Définition Deux vecteurs d’un espace vectoriel euclidien sont dits orthogonaux si leur produit scalaire est nul.

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais
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Proposition 2.5 (Théorème de Pythagore 4) Deux vecteurs u et v d’un espace vectoriel euclidien sont
orthogonaux si, et seulement si :

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Démonstration. Il suffit de calculer le membre de gauche :

‖u+ v‖2 = 〈u+ v |u+ v 〉 = ‖u‖2 + 2 〈u |v 〉+ ‖v‖2.

�

Définition Une base d’un espace vectoriel euclidien est dite orthogonale si ses vecteurs sont deux à deux
orthogonaux. La base sera dite orthonormée si de plus chacun de ses vecteurs est unitaire ( ie de norme égale
à 1).

Proposition 2.6 Toute famille orthogonale de vecteurs non nuls de E est libre.

Démonstration. Si (u1, ..., uk) est une famille orthogonale de vecteurs non nuls de E et si une combinaison

linéaire
k∑

i=1
λiui de ces vecteurs est nulle, alors, pour tout j ∈ {1, ..., k} :

0 =

〈
k∑

i=1

λiui |uj

〉
=

k∑

i=1

λi 〈ui |uj 〉 = λj‖uj‖
2 donc λj = 0.

�

Théorème 2.1 Tout espace vectoriel euclidien admet des bases orthonormées.

On va en fait démontrer (dans le cas de la dimension 2 et 3) par un procédé algorithmique (appelé procédé
d’orthonormalisation de Gram 5-Schmidt 6) un résultat un peu plus fort :

Théorème 2.2 Soit (e1, ..., en) une base d’un espace vectoriel euclidien E. Il existe alors une base orthonormée
(f1, ..., fn) telle que pour tout entier k, 1 ≤ k ≤ n, on ait Vect (e1, ..., ek) = Vect (f1, ..., fk).

• La première étape est simple : il suffit de normaliser e1, c’est-à-dire de poser f1 =
e1
‖e1‖

. Les deux vecteurs e1

et f1 étant colinéaires, on a bien Vect(e1) = Vect(f1).

• La deuxième étape consiste à projeter orthogonalement e2 sur l’orthogonal de f1 dans le plan Vect(f1, e2),
c’est-à-dire de poser e′2 = e2 − 〈e2 |f1 〉 f1. En effet, on a par bilinéarité du produit scalaire

〈e′2 |f1 〉 = 〈e2 |f1 〉 − 〈e2 |f1 〉 〈f1 |f1 〉 = 〈e2 |f1 〉 − 〈e2 |f1 〉 = 0

puisque 〈f1 |f1 〉 = ‖f1‖2 = 1. Puisque la famille (f1, e2) est libre, le vecteur

e′2 n’est pas nul et on peut, pour finir, le normaliser en posant f2 =
e′2
‖e′2‖

: la

famille (f1, f2) est orthonormale par construction. La définition de f2 et de e′2
montre que Vect(f1, f2) = Vect(f1, e2) = Vect(e1, e2).

f1

e2e′2

u1

u1 = 〈e2 |f1 〉 f1

• On définit ensuite e′3 comme étant le projeté orthogonal de e3 sur l’orthogonal de Vect(f1, f2) dans
Vect(f1, f2, e3) :

e′3 = e3 − 〈e3 |f1 〉 f1 − 〈e3 |f2 〉 f2.

On vérifie que e′3 est orthogonal à f1 et à f2 :

〈e′3 |f1 〉 = 〈e3 |f1 〉 − 〈e3 |f1 〉 〈f1 |f1 〉 − 〈e3 |f2 〉 〈f2 |f1 〉 = 0 puisque 〈f1 |f1 〉 = 1 et 〈f2 |f1 〉 = 0,

et de même 〈e′3 |f2 〉 = 0. On conclut en posant f3 =
e′3
‖e′3‖

(e′3 n’est pas nul car la famille (f1, f2, e3) est libre).

4. Pythagore de Samos, philosophe et mathématicien grec, vers 580-495 av. J.-C.

5. Jørgen Pedersen Gram, mathématicien danois, 1850-1916

6. Erhard Schmidt, mathématicien allemand, 1876-1959
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e3

f1

f2

e′3

u3

Vect(f1, f2)
u3 = 〈e3 |f1 〉 f1 + 〈e3 |f2 〉 f2

bC

• La démonstration générale consiste à poursuivre la construction des vecteurs fk par récurrence en utilisant la
formule suivante à l’étape k :

e′k = ek −
k−1∑

i=1

〈ek |fi 〉 fi.

Proposition 2.7 Soit e = (e1, ..., en) une base orthonormée d’un espace vectoriel euclidien E. Les coordonnées

d’un élément x de E dans cette base sont
(
〈ei |x 〉

)
i=1,...,n

: x =
n∑

i=1
〈ei |x 〉 ei.

Démonstration. Si x =
n∑

i=1
xiei, alors, pour k ∈ {1, ..., n}, on a 〈ek |x〉 =

≠
ek

∣∣∣∣
n∑

i=1
xiei

∑
=

n∑
i=1

xi 〈ek |ei 〉 = xk.

�

Proposition 2.8 Soient (e1, ..., en) une base orthonormée d’un espace vectoriel euclidien E, x et y deux vecteurs
de E de coordonnées respectives (x1, ..., xn) et (y1, ..., yn) dans cette base. Alors :

〈x |y 〉 =
n∑

i=1

xi yi et ‖x‖2 =
n∑

i=1

x2
i .

Démonstration. La deuxième égalité est une conséquence de la première (y = x). Celle-ci découle du fait que
〈ei |ej 〉 vaut 0 si i 6= j et 1 si i = j :

〈x |y 〉 =

∞
n∑

i=1

xiei

∣∣∣∣∣∣

n∑

j=1

yjej

∫
=

n∑

i=1

n∑

j=1

xiyj 〈ei |ej 〉 =
n∑

i=1

xiyi.
�

b) Orthogonal d’une partie

Définition Soit A une partie d’un espace vectoriel euclidien E. L’orthogonal de A, noté A⊥, est l’ensemble
des vecteurs de E orthogonaux à tous les vecteurs de A :

A⊥ =
{
u ∈ E / 〈u |v 〉 = 0 pour tout vecteur v de A

}
.

Lemme 2 Pour toute partie A d’un espace vectoriel euclidien E, A⊥ est un sous-espace vectoriel de E.

Démonstration. La démonstration est aisée et laissée au soin du lecteur.
�

Lemme 3 Pour toute partie A d’un espace vectoriel euclidien E, on a Vect(A)⊥ = A⊥.

Démonstration. Si v ∈ Vect(A)⊥, v est orthogonal à tout élément de Vect(A) donc à tout élément de A. Par
conséquent v ∈ A⊥. Ceci montre que Vect(A)⊥ ⊂ A⊥.
Soit à présent un vecteur v de A⊥ et montrons qu’il est orthogonal à tout élément de Vect(A). Si u appartient

à Vect(A), il existe a1, ..., ak dans A et λ1, ..., λk dans R tels que u =
k∑

i=1
λiai. De là, on obtient :

〈u |v 〉 =

〈
k∑

i=1

λiai |v

〉
=

k∑

i=1

λi 〈ai |v 〉 = 0 car v est orthogonal à chacun des ai.

�
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Théorème 2.3 Soit F un sous-espace vectoriel d’un espace vectoriel euclidien E. Alors F et F⊥ sont sup-
plémentaires :

E = F ⊕ F⊥.

En particulier, on a dimE = dimF + dimF⊥.

Démonstration. Un vecteur appartenant à F ∩F⊥ serait orthogonal à lui-même donc de norme nulle. Puisque
seul le vecteur nul est de norme nulle, on en déduit que F ∩ F⊥ = {0}. Ainsi, les deux sous-espaces vectoriels
F et F⊥ sont en somme directe. Il suffit donc pour conclure de démontrer l’égalité concernant les dimensions.
Pour cela, on considère une base orthonormée (e1, ..., ek) de F que l’on complète en une base orthonormée
(e1, ..., ek, ek+1, ..., en) de E (ceci est possible en utilisant le procédé de Gram-Schmidt). On va montrer que
F⊥ = Vect(ek+1, ..., en), ce qui termine la démonstration du théorème. Notons que d’après le lemme 3, on a
F⊥ = {e1, ..., ek}⊥.

• Si i ∈ {k + 1, ..., n}, ei est orthogonal à chacun des ej, 1 ≤ j ≤ k, donc ei ∈ {e1, ..., ek}⊥ = F⊥. Ceci montre
que Vect(ek+1, ..., en) ⊂ F⊥.

• Soit à présent un élément u de F⊥. On décompose u dans la base (e1, ..., en) : u =
n∑

i=1
λiei. Pour 1 ≤ j ≤ k,

ej ∈ F donc :

0 = 〈ej |u〉 =

〈
ej

∣∣∣∣∣
n∑

i=1

λiei

〉
=

n∑

i=1

λi 〈ej |ei 〉 = λj puisque 〈ej |ei 〉 =

ß
0 si j 6= i
1 si j = i.

Par conséquent, u =
n∑

i=k+1
λiei est dans Vect(ek+1, ..., en). On a donc montré que F⊥ ⊂ Vect(ek+1, ..., en).

�

Corollaire 2.1 Pour tout sous-espace vectoriel F d’un espace vectoriel euclidien E, il vient
(
F⊥
)⊥

= F .

Démonstration. Puisque tout vecteur de F est orthogonal à tout vecteur de F⊥, on a F ⊂
(
F⊥
)⊥

. Le
théorème 2.3 montrant que ces deux sous-espaces vectoriels ont même dimension, ils sont donc égaux.

�

Le résultat du théorème 2.3 permet de donner la définition suivante :

Définition Une projection orthogonale d’un espace vectoriel euclidien E est une projection sur un sous-espace
vectoriel F dans la direction F⊥. De même, une symétrie orthogonale est une symétrie par rapport à un sous-
espace vectoriel F dans la direction F⊥. Une symétrie orthogonale par rapport à un hyperplan est une réflexion.

Proposition 2.9 Soient F un sous-espace vectoriel d’un espace affine euclidien E et (e1, ..., ek) une base
orthonormée de F . On note p la projection orthogonale sur F . Alors :

∀x ∈ E, p(x) =
k∑

i=1

〈ei |x 〉 ei.

Démonstration. Complétons (e1, ..., ek) en une base orthonormée de E (procédé de Gram-Schmidt). On a
alors (proposition 2.7) :

x =

n∑

i=1

〈ei |x〉 ei =

(
k∑

i=1

〈ei |x〉 ei

)
+

(
n∑

i=k+1

〈ei |x〉 ei

)
,

cette dernière expression étant la décomposition de x en la somme d’un élément de F et d’un élément de F⊥.
D’où le résultat.

�
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III Endomorphisme orthogonal

a) Généralités

Définition Soit E un espace vectoriel euclidien. Un endomorphisme orthogonal de E est une application
linéaire f : E → E qui conserve le produit scalaire :

∀(u, v) ∈ E2, 〈f(u) |f(v) 〉 = 〈u |v 〉 .

Remarque : on parle aussi d’isométrie vectorielle.

Remarque : il est évident que la composée de deux endomorphismes orthogonaux est un endomorphisme
orthogonal.

Notation : on notera O(E) l’ensemble des endomorphismes orthogonaux d’un espace vectoriel euclidien E.

Proposition 2.10 Soit E un espace vectoriel euclidien. Un endomorphisme f de E est orthogonal si, et seule-
ment si, il préserve la norme, c’est-à-dire que pour tout u ∈ E, on a ‖f(u)‖ = ‖u‖.

Démonstration. Ceci résulte des deux égalités

‖f(u)‖ = 〈f(u) |f(u) 〉 et 〈f(u) |f(v) 〉 =
1

2

(
‖f(u+ v)‖2 − ‖f(u)‖2 − ‖f(v)‖2

)
pour tous u, v ∈ E.

�

Exemple : une symétrie orthogonale est un endomorphisme orthogonal. En effet, soit s une symétrie orthogonale
par rapport à un sous-espace vectoriel F d’un espace vectoriel euclidien E. Pour tout élément x de E se
décomposant sous la forme x = u + v avec u ∈ F et v ∈ F⊥, on a s(x) = u − v. Alors, puisque 〈u |v 〉 = 0, il
vient ‖s(x)‖2 = ‖u‖2 + ‖v‖2 = ‖x‖2.

Proposition 2.11 Un endomorphisme orthogonal est bijectif.

Démonstration. Si x est dans le noyau d’un endomorphisme orthogonal f , alors 0 = ‖f(x)‖ = ‖x‖ donc
x = 0. Ceci montre que f est injectif et donc qu’il est bijectif puisqu’on est en dimension finie.

�

Théorème 2.4 Soit f un endomorphisme d’un espace vectoriel euclidien E. Les trois assertions suivantes sont
équivalentes :

(i) f est orthogonal ;

(ii) f transforme toute base orthonormée en une base orthonormée ;

(iii) il existe une base orthonormée e de E telle que f(e) soit orthonormée.

Démonstration. Puisqu’un endomorphisme orthogonal préserve le produit scalaire et la norme, il est clair
que la première assertion implique la deuxième. La troisième est clairement conséquence de la deuxième. Il reste
donc à démontrer que la troisième implique la première. Soit e = (e1, ..., en) une base orthonormée de E telle
que f(e) = (f(e1), ..., f(en)) soit également une base orthonormée. On va montrer que ‖f(x)‖ = ‖x‖ pour tout
x dans E, ce qui permettra de conclure en utilisant la proposition 2.10. Soit x ∈ E et décomposons-le dans la

base e : x =
n∑

i=1
xiei. Alors, par linéarité de f , f(x) =

n∑
i=1

xif(ei) et on obtient, en utilisant la proposition 2.8 :

‖f(x)‖2 =
n∑

i=1

x2
i = ‖x‖2.

�

Définition Une matrice A de Mn(R) est dite orthogonale si elle est inversible, d’inverse sa transposée, c’est-
à-dire : tAA = In = A tA. On notera O(n) l’ensemble des matrices orthogonales de taille n : c’est le groupe
orthogonal d’ordre n.
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Proposition 2.12 Une matrice A ∈ Mn(R) est orthogonale si, et seulement si, ses vecteurs colonnes forment
une base orthonormée de R

n.

Démonstration. Notons (C1, ..., Cn) les vecteurs colonnes de A. Si (e1, ..., en) est la base canonique de Rn,

alors Cj =
n∑

k=1
ak,jek et donc 〈Ci |Cj 〉 =

n∑
k=1

ak,iak,j (proposition 2.8). D’autre part, si tA = (bi,j)1≤i,j≤n (donc

bi,j = aj,i), on a :

(tAA)i,j =

n∑

k=1

bi,kak,j =

n∑

k=1

ak,iak,j = 〈Ci |Cj 〉 (∗).

Par conséquent, si A est orthogonale, alors 〈Ci |Cj 〉 vaut 0 si i 6= j et 1 si i = j, donc la famille (C1, ..., Cn) est
orthonormée. C’est en particulier une base de E (proposition 2.6).
Réciproquement, si (C1, ..., Cn) est une base orthonormée, alors A est de rang n, donc inversible et l’égalité (∗)
montre que tAA = In : l’inverse de A est bien tA.

�

Proposition 2.13 Un endomorphisme d’un espace vectoriel euclidien est orthogonal si, et seulement si, sa
matrice dans une base orthonormée est une matrice orthogonale.

Démonstration. En utilisant la propositon 2.12, cet énoncé est une autre façon de dire qu’un endomorphisme
est orthogonal si, et seulement si, il transforme une base orthonormée en une base orthonormée.

�

Corollaire 2.2 Le déterminant d’un endomorphisme orthogonal vaut 1 s’il est direct, −1 s’il est indirect.

Démonstration. Si f est un endomorphisme orthogonal et A sa matrice dans une base orthonormée, alors
det f = detA. Mais tAA = In donc

1 = det
(
tAA

)
=
(
det tA

)
(detA) = (detA)(detA) = (detA)2.

Par conséquent, detA = ±1.
�

Définition On note SO(n) l’ensemble des matrices orthogonales de taille n dont le déterminant vaut 1. C’est
le groupe spécial orthogonal d’ordre n. Si E est un espace vectoriel euclidien, on notera SO(E) l’ensemble des
endomorphismes orthogonaux directs de E.

b) Cas d’un plan vectoriel euclidien

Proposition 2.14 Tout élément de O(2) est de la forme

Å
a −εb
b εa

ã
avec ε = ±1 et a2 + b2 = 1.

Démonstration. Soit A =
Ä
α β
γ δ

ä
un élément de O(2). Puisque les vecteurs colonnes de A forment une base

orthonormée de R2 (proposition 2.12), on a :

α2 + γ2 = 1, β2 + δ2 = 1 et αβ + γδ = 0.

En multipliant la première égalité par δ2, on obtient, en utilisant la troisième puis la deuxième :

δ2 = δ2α2 + δ2γ2 = δ2α2 + α2β2 = α2(δ2 + β2) = α2.

Il existe donc ε ∈ {±1} tel que δ = εα. De là, on obtient

0 = αβ + γδ = αβ + εαγ, soit α(β + εγ) = 0.

Si α = 0, alors β2 = 1 = γ2 donc γ = ±β. Si α 6= 0, on obtient bien β = −εγ.

Réciproquement, si A =
(
a −εb
b εa

)
avec a2 + b2 = 1, alors les colonnes de A forment une base orthonormée de R2

(calcul aisé laissé au lecteur) et A est donc orthogonale.
�

Remarque : le déterminant de la matrice ci-dessus vaut ε.
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Corollaire 2.3 Soit f un endomorphisme orthogonal direct d’un plan vectoriel euclidien orienté E. Il existe
un nombre réel θ tel que pour toute base orthonormée directe e de E, la matrice de f dans e soit

Rθ :=

Å
cos θ − sin θ
sin θ cos θ

ã
.

Démonstration. D’après la proposition 2.14 et le corollaire 2.2, si e est une base orthonormée de E, il existe
deux nombes réels a et b tels que la matrice de f dans e soit

(
a −b
b a

)
(ε = 1). De plus, ces deux nombres réels

vérifient l’égalité a2 + b2 = 1 donc peuvent s’écrire sous la forme a = cos θ et b = sin θ. La matrice de f dans
la base e est donc bien de la forme Rθ. Il reste à démontrer que celle-ci ne change pas lorque l’on effectue
un changement de base orthonormée directe. Mais si P est la matrice d’un tel changement de base, P est une
matrice orthogonale de déterminant 1 d’après le corollaire 2.2. D’après ce que l’on vient de dire, il existe donc
un nombre réel θ′ tel que P = Rθ′ . De là on obtient P−1RθP = R−θ′RθRθ′ = R−θ′Rθ′Rθ = Rθ en utilisant le
lemme ci-dessous.

�

Lemme 4 Pour tous nombres réels θ1 et θ2, on a :

Rθ1Rθ2 = Rθ1+θ2 = Rθ2Rθ1 et R−1
θ1

= R−θ1 .

Démonstration. Il suffit d’effectuer les calculs et d’utiliser les formules de trigonométrie suivantes :

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 et sin(θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2.

�

Définition Soit E un plan vectoriel euclidien. Les éléments de SO(E) sont appelés des rotations. Si E est
orienté, on appelle angle d’une rotation R tout réel θ tel que la matrice de R dans une base orthonormée directe
(et donc dans toutes) soit

(
cos θ − sin θ
sin θ cos θ

)
.

Proposition 2.15 Si E est un plan vectoriel euclidien, les élément de O(E) \ SO(E) sont des réflexions.

Démonstration. Soit f un endomorphisme orthogonal indirect. Fixons une base orthonormée e de E. D’après
la proposition 2.14, la matrice de f dans e est de la forme

(
a b
b −a

)
avec a2+ b2 = 1. Le polynôme caractéristique

de f est donc

χf =
∣∣∣ a−X b

b −a−X

∣∣∣ = (a−X)(−a−X)− b2 = X2 − a2 − b2 = X2 − 1 = (X − 1)(X + 1).

Puisqu’il est scindé à racines simples, f est diagonalisable et donc E = ker(f − Id) ⊕ ker(f + Id). Ainsi, f est
une symétrie. Montrons pour conclure que ses deux sous-espaces propres sont orthogonaux. Si u ∈ ker(f − Id)
et v ∈ ker(f + Id), on a, puisque f préserve le produit scalaire :

〈u |v 〉 = 〈f(u) |f(v) 〉 = 〈u |−v 〉 = −〈u |v 〉

donc 〈u |v 〉 = 0.

�

Proposition 2.16 Si R est une rotation et s une réflexion, alors s ◦R ◦ s = R−1.

Démonstration. La composée de deux endomorphismes orthogonaux est un endomorphisme orthogonal.
D’autre part, det(s ◦R) = (det s)(detR) = −1 donc s ◦R est indirect, donc est une réflexion (proposition 2.15).
Par conséquent, (s ◦R) ◦ (s ◦R) = Id, soit s ◦R ◦ s = R−1.

�
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c) Produit vectoriel

Dans tout ce paragraphe, E est un espace vectoriel euclidien orienté de dimension 3.

Lemme 5 Soient e et e′ deux base orthonormées directes de E et u, v, w trois éléments de E. Alors :

dete(u, v, w) = dete′(u, v, w).

Démonstration. Si P est la matrice de passage de e à e′, alors les propriétés du déterminant donnent
dete(u, v, w) = (detP ) (dete′(u, v, w)) . Mais les bases e et e′ étant orthonormées directes, la matrice P est
orthogonale (proposition 2.12) de déterminant 1, ce qui conduit au résultat.

�

Définition On appelle produit mixte de trois vecteurs (u, v, w) dans un espace vectoriel euclidien orienté de
dimension 3 le déterminant de ces vecteurs dans une base orthonormée directe. Il est noté [u, v, w].

Théorème-Définition 2.5 Soient E un espace vectoriel euclidien orienté et u, v deux éléments de E. Il existe
un unique vecteur w dans E tel que, pour tout x ∈ E, on ait [u, v, x] = 〈w |x 〉.
Le vecteur w ainsi défini est appelé produit vectoriel de u et v, et noté u ∧ v.

Démonstration. Notons d’abord que si u et v sont liés, alors le produit mixte [u, v, x] est toujours nul et seul
le vecteur nul répond au problème. On suppose donc que (u, v) est libre et on note P le plan vectoriel qu’ils
engendrent.

• Si w ∈ E vérifie [u, v, x] = 〈w |x〉 pour tout x ∈ E, alors :

〈w |u 〉 = [u, v, u] = 0 et 〈w |v 〉 = [u, v, v] = 0.

Ainsi, w est nécessairement dans l’orthogonal de P , qui est une droite
vectorielle d’après le théorème 2.3. Si w0 est un vecteur unitaire di-
rigeant P⊥, il existe donc λ ∈ R tel que w = λw0. On a alors

[u, v, w0] = 〈w |w0 〉 = λ 〈w0 |w0 〉 = λ,

ce qui montre l’unicité : on a nécessairement w = [u, v, w0]w0.
u

v

u ∧ v

w0

• Réciproquement, le vecteur w = [u, v, w0]w0 est solution du problème. En effet, puique E = P ⊕ Vect(w0),
(u, v, w0) est une base de E et on a, pour tout x ∈ E de coordonnées (α, β, γ) dans cette base :

[u, v, x] = [u, v, αu+ βv + γw0] = α[u, v, u] + β[u, v, v] + γ[u, v, w0] = γ[u, v, w0]

et d’autre part

〈w |x〉 = 〈[u, v, w0]w0 |αu+ βv + γw0 〉 = [u, v, w0]
(
α 〈w0 |u 〉+ β 〈w0 |v 〉+ γ 〈w0 |w0 〉

)
= [u, v, w0]γ.

�

Proposition 2.17 Soient u et v deux vecteurs de E. Alors :

1) u ∧ v = 0 si, et seulement si, (u, v) est liée.

2) u ∧ v est orthogonal à u et v.

3) Si u et v sont unitaires et orthogonaux, alors (u, v, u ∧ v) est une base orthonormée directe de E.

Démonstration. Nous avons déjà vu dans la démonstration du théorème 2.5 que si (u, v) est liée alors u∧v = 0
et que u ∧ v est orthogonal à u et v. Si on suppose que u ∧ v = 0, alors on a [u, v, x] = 〈u ∧ v |x 〉 = 0 pour
tout x dans E donc (u, v) est liée (si (u, v) est libre, on peut la compléter en une base (u, v, w) de E et alors
[u, v, w] 6= 0). Il reste à démontrer que si u et v sont unitaires et orthogonaux, alors u ∧ v est unitaire et
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(u, v, u∧v) est directe. Remarquons d’abord que si on calcule le déterminant des trois vecteurs (u, v, u∧v) dans
une base orthonormée directe e, on a, par définition du produit vectoriel :

dete(u, v, u ∧ v) = [u, v, u ∧ v] = 〈u ∧ v |u ∧ v 〉 = ‖u ∧ v‖2 > 0

donc la base (u, v, u ∧ v) est bien directe. Mais de cette dernière égalité, on déduit :

‖u ∧ v‖ =
1

‖u ∧ v‖
dete(u, v, u ∧ v) = dete

Å
u, v,

u ∧ v

‖u ∧ v‖

ã
.

Or ce dernier déterminant vaut 1 car la base (u, v, u∧v
‖u∧v‖ ) est orthonormée directe.

�

Proposition 2.18 Soit e une base orthonormée directe de E, u et v deux éléments de E de coordonnées
respectives (x1, x2, x3) et (y1, y2, y3) dans cette base. Les coordonnées de u ∧ v dans e sont alors :

(
x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1

)
.

Démonstration. Si on pose u∧v = α1e1+α2e2+α3e3, alors αk = 〈u ∧ v |ek 〉 (proposition 2.7). Par conséquent :

α1 = 〈u ∧ v |e1 〉 = [u, v, e1] = [x1e1 + x2e2 + x3e3, v, e1]

= x1[e1, v, e1] + x2[e2, v, e1] + x3[e3, v, e1] = x2[e2, v, e1] + x3[e3, v, e1]

= x2

(
y1[e2, e1, e1] + y2[e2, e2, e1] + y3[e2, e3, e1]

)
+ x3

(
y1[e3, e1, e1] + y2[e3, e2, e1] + y3[e3, e3, e1]

)

= x2y3[e2, e3, e1] + x3y2[e3, e2, e1] = x2y3[e1, e2, e3]− x3y2[e1, e2, e3]

= x2y3 − x3y2.

On procède de la même façon pour les deux autres coordonnées.
�

IV Angles

Il y a en géométrie plusieurs notions d’angles : angle d’une rotation, angle orienté de vecteurs ou de droites,
angle non orienté (ou angle géométrique). Nous allons définir ces différentes notions.

Dans toute cette section, E est un plan vectoriel euclidien.

a) Angles orientés de vecteurs

Lemme 6 Soient u et v deux vecteurs unitaires de E. Il existe une unique rotation R de E telle que R(u) = v.

Démonstration. Complétons u en une base orthonormée (u, u′). Si v s’écrit dans cette base v = au + bu′,
alors a2 + b2 = 1 puisque v est unitaire. La matrice

(
a −b
b a

)
est donc la matrice d’une rotation R de E et celle-ci

vérifie R(u) = v. C’est la seule satisfaisant cette condition car si R′ est une rotation vérifiant R′(u) = v, sa
matrice dans la base (u, u′) est nécessairement

(
a −b
b a

)
.

�

Définition Soient u et v deux éléments non nuls de E. On appelle

angle orienté de u et v l’unique rotation R vérifiant R
(

u
‖u‖

)
= v

‖v‖ . Il

sera noté û, v.
Si E est orienté, on appelle mesure de cet angle tout nombre réel θ
tel que R ait pour matrice (dans n’importe quelles base orthonormée
directe)

(
cos θ − sin θ
sin θ cos θ

)
. Sa mesure principale est la mesure appartenant

à ]− π, π].

u1

v1v1

u1

Rθ = Rθ−2π

Ces deux angles sont égaux

Sommes d’angles. Si u1, v1, u2 et v2 sont quatre vecteurs de E et R1, R2, les rotations de E vérifiant res-

pectivement R1

(
u1

‖u1‖

)
= v1

‖v1‖
et R2

(
u2

‖u2‖

)
= v2

‖v2‖
, alors la somme ’u1, v1 +’u2, v2 est par définition la rotation

R1 ◦ R2 = R2 ◦ R1 (voir lemme 4). C’est donc l’angle orienté des vecteurs u et R1 ◦ R2(u) pour tout vecteur
non nul u de E. Il y a un angle nul, représenté par Id : c’est l’angle orienté û, u pour tout u ∈ E \ {~0}. Chaque
angle û, v possède un opposé −û, v qui est l’angle v̂, u (représenté par la rotation R−1 si R représente û, v).
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Proposition 2.19 (Relation de Chasles) Pour tous vecteurs non nuls u, v et w de E, on a û, v+‘v, w =‘u,w.

Démonstration. C’est une conséquence immédiate de la définition d’un angle orienté de vecteurs et du
lemme 4.

�

Proposition 2.20 Soient u, v1 et v2 trois vecteurs non nuls de E. On a :

‘u, v1 = ‘u, v2 si, et seulement si, ∃λ ∈ R, λ > 0, tel que v2 = λv1.

Démonstration. Si v2 = λv1 avec λ > 0, alors v1
‖v1‖

= v2
‖v2‖

donc ‘u, v1 = ‘u, v2 (définition de l’angle orienté de

deux vecteurs). Réciproquement, si ces deux angles sont égaux, il existe une rotation R telle que

R

Å
u

‖u‖

ã
=

v1
‖v1‖

=
v2

‖v2‖

donc v2 = ‖v2‖
‖v1‖

v1 et λ = ‖v2‖
‖v1‖

convient.
�

Proposition 2.21 Soient u et v deux éléments de E.

1) Pour toute rotation R on a ⁄�R(u), R(v) = û, v (les rotations préservent les angles).

2) Pour toute réflexion s on a Ÿ�s(u), s(v) = −û, v (les réflexions renversent les angles).

Démonstration. Quitte à normaliser les vecteurs, on peut supposer qu’ils sont unitaires. Notons R0 la rotation
vérifiant R0(u) = v.
1) On a R0

(
R(u)

)
= R

(
R0(u)

)
= R(v) d’après le lemme 4, donc R0 est bien la rotation représentant l’angle

orienté ⁄�R(u), R(v).
2) En utilisant la proposition 2.16, on calcule de même R0

(
s(v)

)
= (R0 ◦ s)(v) = (s ◦ R−1

0 )(v) = s(u) donc R0

représente également l’angle Ÿ�s(v), s(u) : Ÿ�s(v), s(u) = û, v, ou encore Ÿ�s(u), s(v) = −û, v.
�

Proposition 2.22 Soient u et v deux éléments d’un plan vectoriel euclidien orienté E et θ une mesure de
l’angle orienté û, v. Alors :

〈u |v 〉 = ‖u‖ ‖v‖ cosθ et det(u, v) = ‖u‖ ‖v‖ sinθ.

Démonstration. Quitte à diviser chacun des membres de ces deux égalités par ‖u‖ ‖v‖ (bilinéarité du produit
scalaire et du déterminant), on peut supposer que u et v sont unitaires. Soit u′ tel que (u, u′) soit une base
orthonormée directe de E et R la rotation envoyant u sur v. La matrice de R dans (u, u′) est

(
cos θ − sin θ
sin θ cos θ

)
, donc

on a R(u) = (cos θ)u + (sin θ)u′ = v. De là, on obtient :

〈u |v 〉 = 〈u |(cos θ)u+ (sin θ)u′ 〉 = (cos θ) 〈u |u〉+ (sin θ) 〈u |u′ 〉 = cos θ,

det(u, v) = det
(
u, (cos θ)u + (sin θ)u′

)
= (cos θ) det(u, u) + (sin θ) det(u, u′) = sin θ.

�

b) Angles orientés de droites

Lemme 7 Soient D1 et D2 deux droites de E. Il existe exactement deux rotations envoyant D1 sur D2. Si θ
est une mesure de l’angle de l’une de ces rotations, l’autre a pour angle θ − π (dans le cas où E est orienté).

Démonstration. Soient u1 et u2 deux vecteurs unitaires dirigeant respectivement D1 et D2. Une rotation R
envoie D1 sur D2 si, et seulement si, R(u1) = ±u2. D’après le lemme 6, il existe donc exactement deux rotations
envoyant D1 sur D2. Si θ est une mesure de l’angle ’u1, u2, alors Rθ est une de ces rotations (Rθ(u1) = u2) et
Rθ−π est l’autre (Rθ−π(u1) = R−π(u2) = −u2).

�
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Définition On appelle angle orienté de deux droites D1 et D2 l’ensemble {R,R′} où R et R′ sont les deux

rotations envoyant D1 sur D2. Cet angle sera noté ÷D1, D2 .
On appelle mesure de cet angle tout nombre réel θ tel que R ou R′ ait pour matrice

(
cos θ − sin θ
sin θ cos θ

)
(dans n’importe

quelle base orthonormée directe).

Commentaire : si u1 et u2 sont deux vecteurs engendrant respectivement D1

et D2, nous avons a priori le choix entre quatre angles de vecteurs pour définir

l’angle de D1 et D2 : ’u1, u2, ◊�u1,−u2, ◊�−u1, u2 et Ÿ�−u1,−u2. Il n’y a en fait que

deux choix puisque ’u1, u2 = Ÿ�−u1,−u2 et ◊�u1,−u2 = ◊�−u1, u2 (propriété 2.21).
En fait on ne choisit pas et on considère que l’angle orienté des deux droites
est l’ensemble de ces deux angles orientés de vecteurs. À noter que la mesure
d’un angle orienté de droites n’est bien définie qu’à π près. La figure ci-contre
illustre tout ceci : les quatre angles qui y sont décrits correspondent à un seul

angle de droites, l’angle ÷D1, D2.

θ

θ

θ − π

θ − π

D1
D2

Sommes. Comme pour les angles orientés de vecteurs, on peut définir la somme de deux angles orientés ÷D1, D2

et◊�∆1,∆2 de droites dans E, de mesures respectives θ et α : ce sera l’ensemble {Rθ+α, Rθ+α+π}. C’est l’angle

orienté ¤�D,Rθ+α(D) pour toute droite D de E. Il y a un angle nul, représenté par {Id,−Id = Rπ}, qui est égal

à’D,D pour toute droite D. Tout angle orienté ÷D1, D2 admet un opposé : −÷D1, D2 = ÷D2, D1.

Des propriétés 2.19, 2.20 et 2.21 on déduit des propriétés similaires pour les angles orientés de droites :

Proposition 2.23 (Relation de Chasles) Pour toutes droites D1, D2 et D3 de E, on a

÷D1, D2 + ÷D2, D3 = ÷D1, D3.

Proposition 2.24 Soient D, D1 et D2 trois droites de E. On a :

÷D,D1 =÷D,D2 si, et seulement si, D1 = D2.

Démonstration. Soient u, v1 et v2 trois vecteurs unitaires dirigeant respectivement D, D1 et D2. On a :

÷D,D1 =÷D,D2 ⇐⇒ ‘u, v1 =÷u,±v2

⇐⇒ v1 = ± v2 d’après la proposition 2.20

⇐⇒ D1 = D2.

�

Proposition 2.25 Soient D1 et D2 deux droites de E.

1) Pour toute rotation R on a ¤�R(D1), R(D2) = ÷D1, D2 (les rotations préservent les angles).

2) Pour toute réflexion s on a ¤�s(D1), s(D2) = −÷D1, D2 (les réflexions renversent les angles).

Notons, pour x ∈ E non nul, Dx la droite vectorielle engendrée par x.

Lemme 8 Soient u, v, u′, v′ quatre vecteurs unitaires de ~P. Alors :

◊�Du, Dv = ÿ�Du′ , Dv′ ⇐⇒ 2 û, v = 2 ‘u′, v′.

Démonstration. Notons que si ρ (resp. ρ′) est la rotation représentant l’angle û, v (resp ‘u′, v′), alors ρ ◦ ρ et

ρ′ ◦ ρ′ représentent respectivement 2 û, v et 2 ‘u′, v′. Par conséquent, si θ (resp. θ′) est l’angle de R (resp. R′),
on a

2 û, v = 2 ‘u′, v′ ⇐⇒ ρ ◦ ρ = ρ′ ◦ ρ′ ⇐⇒ 2θ = 2θ′ mod 2π

⇐⇒ θ = θ′ mod π ⇐⇒ ρ′ = ρ ou ρ′ = −ρ

⇐⇒ û, v = ‘u′, v′ ou û, v = ÷u′,−v′

⇐⇒ ◊�Du, Dv = ÿ�Du′ , Dv′ .

�
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c) Angles géométriques

On parle d’angle géométrique (ou d’angle non orienté) lorsque l’on ne fait pas la différence entre un angle orienté
(de vecteurs ou de droites) et son opposé. Ainsi, n’importe quelle isométrie conserve les angles géométriques.
La mesure d’un angle géométrique de deux vecteurs est bien définie modulo π, alors que la mesure d’un angle
géométrique de deux droites est bien définie modulo π

2 . Par contre, il faudra faire attention au fait qu’il n’y a
pas en général de relation de Chasles entre les angles géométriques.

V Espaces affines euclidiens

a) Généralités

Les notions introduites et étudiées en géométrie vectorielle euclidienne conduisent naturellement aux définitions
suivantes en géométrie affine.

Définition Un espace affine euclidien est un espace affine dont la direction est un espace vectoriel euclidien.

Dans un tel espace, nous pouvons introduire les notions suivantes.

• La distance entre deux points A et B est d(A,B) := ‖
−−→
AB‖, que l’on notera également AB. Des propriétés de

la norme dans un espace vectoriel euclidien (proposition 2.1), découlent les propriétés suivantes de la distance :

Proposition 2.26 Soit E un espace affine euclidien. On a :

1) ∀A,B ∈ E , d(A,B) ≥ 0 et d(A,B) = 0 si, et seulement si, A = B.

2) ∀A,B ∈ E , d(B,A) = d(A,B).

3) ∀A,B,M ∈ E , d(A,B) ≤ d(A,M) + d(M,B) (inégalité triangulaire), avec égalité si, et seulement
si, M ∈ [A,B] (ie ∃µ ∈ [0, 1] tel que M = µA+ (1− µ)B).

Démonstration. Les deux premières propriétés et l’inégalité triangulaire sont des conséquences directes des
propriétés de la norme énoncées dans la proposition 2.1. Examinons le cas d’égalité dans l’inégalité triangulaire :

d(A,M) + d(B,M) = d(A,B) ⇐⇒ ||
−−→
AM ||+ ||

−−→
BM || = ||

−−→
AB|| = ||

−−→
AM +

−−→
MB||

⇐⇒ ∃λ > 0 tel que
−−→
AM = λ

−−→
MB ou M ∈ {A,B} (proposition 2.1)

⇐⇒ ∃λ > 0 tel que M =
1

1 + λ
(A+ λB) ou M ∈ {A,B}

⇐⇒ ∃µ ∈ [0, 1] tel que M = µA+ (1 − µ)B
(
µ = 1

1+λ
ou µ ∈ {0, 1}

)
.

�

• Deux sous-espaces affines F et G d’un espace affine euclidien E sont dits orthogonaux si la direction de l’un est

incluse dans l’orthogonal de l’autre :
−→
F ⊂

Ä−→
G

ä⊥
ou

−→
G ⊂

Ä−→
F

ä⊥
. Si de plus

−→
F =

Ä−→
G

ä⊥
, les deux sous-espaces

affines sont dits perpendiculaires. Le théorème de Pythagore peut par exemple se réécrire comme suit :

Théorème 2.6 Soient A, B et C trois points d’un plan affine euclidien. Alors, les droites (AB) et (BC) sont

perpendiculaires si, et seulement si, AC2 = AB2 +BC2.

• Un repère cartésien (Ω ;~e1, ..., ~en) est dit orthonormé si la base (~e1, ..., ~en) est orthonormée.

• Si A, B et C sont trois points d’un plan affine euclidien, on notera
’ABC l’angle non orienté des vecteurs

−−→
BA et

−−→
BC.

’ABC

b
A

b

B

b
C

• On appelle angle orienté de deux droites affines D1 et D2 d’un plan affine euclidien l’angle de leurs directions.
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• Une projection (affine) orthogonale dans un espace affine euclidien E est une projection sur un sous-espace

affine F de E dans la direction
Ä−→
F

ä⊥
. De même, une symétrie (affine) orthogonale est une symétrie par rapport

à un sous-espace affine F dans la direction
Ä−→
F

ä⊥
. Une réflexion affine est une symétrie orthogonale par rapport

à un hyperplan.

b) Isométries affines

Définition Soit E un espace affine euclidien. Une isométrie (affine) de E est une application affine f : E → E

qui conserve les distances :

∀A,B ∈ E , d
(
f(A), f(B)

)
= d(A,B).

Remarque : il découle immédiatement de la définition que la composée de deux isométries est une isométrie.

Proposition 2.27 Une application affine est une isométrie si, et seulement si, l’application linéaire associée
est une isométrie vectorielle ( ie un endomorphisme orthogonal).

Démonstration. Soit f : E → E une application affine. Pour A et B dans E , on a

d
(
f(A), f(B)

)
=
∥∥∥
−−−−−−→
f(A)f(B)

∥∥∥ =
∥∥∥~f
Ä−−→
AB
ä∥∥∥ et d(A,B) =

∥∥∥−−→AB
∥∥∥ .

Par conséquent, f est une isométrie si, et seulement si,
∥∥∥~f
Ä−−→
AB
ä∥∥∥ =

∥∥∥−−→AB
∥∥∥ pour tout couple de points (A,B)

de E , c’est-à-dire ~f est un endomorphisme orthogonal.
�

Exemples. 1) Puisque Id−→
E

est un endomorphisme orthogonal, toute translation est une isométrie.

2) De même, toute symétrie orthogonale est une isométrie car toute symétrie vectorielle orthogonale est un
endomorphisme orthogonal.

Corollaire 2.4 Une isométrie est bijective et sa réciproque est également une isométrie.

Démonstration. Cela découle des propositions 2.27, 2.11 et 1.8.
�

Définition Un déplacement (resp. antidéplacement) d’un espace affine euclidien E est une isométrie affine
directe (resp. indirecte) de E .
On notera Is(E ) l’ensemble des isométries de E et Is+(E ) l’ensemble des déplacements de E .

Théorème 2.7 Soit f une isométrie d’un espace affine E . Il existe un unique couple (~u, g) ∈
−→
E × Is(E )

vérifiant :

1) f = t~u ◦ g = g ◦ t~u ;

2) g admet au moins un point fixe.

Le vecteur ~u ainsi associé à f vérifie ~f(~u) = ~u = ~g(~u).

Lemme 9 Si f est une isométrie, alors ker(~f − Id−→
E
) et Im(~f − Id−→

E
) sont supplémentaires orthogonaux.

Démonstration. Notons que d’après le théorème du rang, ces deux sous-espaces vectoriels ont des dimensions
complémentaires. Il suffit donc de démontrer qu’ils sont orthogonaux et d’utiliser le théorème 2.3 pour conclure.

On considère donc un élément ~u ∈ ker(~f − Id−→
E
) et un élément ~v ∈ Im(~f − Id−→

E
). Il existe ~w ∈

−→
E tel que

~v = (~f − Id−→
E
)(~w). De là :

〈~u |~v 〉 =
〈
~u
∣∣∣(~f − Id−→

E
)(~w)

〉
=
〈
~u
∣∣∣~f(~w)

〉
− 〈~u |~w 〉

=
〈
~f(~u)

∣∣∣~f(~w)
〉
− 〈~u |~w 〉 car ~f(~u) = ~u

= 〈~u |~w 〉 − 〈~u |~w 〉 car ~f est un endomorphisme orthogonal

= 0.
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�

Démonstration du théorème 2.7. • Fixons un point A dans E . D’après le lemme 9, il existe deux vecteurs

~u et ~v dans
−→
E tels que ~f(~u) = ~u et

−−−−→
Af(A) = ~u+

Ä
~f − Id−→

E

ä
(~v). Notons g l’isométrie g := t−~u ◦ f . Alors :

→ f = t~u ◦ g et ~f =
−−−→
t~u ◦ g =

−→
t~u ◦ ~g = ~g.

→ Pour tout pointM de E , on a (g◦t~u)(M) = g (M + ~u) = g(M)+~g(~u) = g(M)+ ~f(~u) = g(M)+~u = (t~u◦g)(M).

→ Si Ω := A− ~v, alors :

g(Ω) = (t−~u ◦ f)(A− ~v) = f(A− ~v)− ~u = f(A)− ~f(~v)− ~u = A+
−−−−→
Af(A) − ~f(~v)− ~u

= A+
î
~u+
Ä
~f − Id−→

E

ä
(~v)
ó
− ~f(~v)− ~u = A− ~v = Ω

donc g admet au moins un point fixe. Ceci montre l’existence du couple (~u, g).

• Examinons à présent l’unicité : on suppose qu’il existe deux décompositions f = t~u◦g = g◦t~u = t~u′ ◦g′ = g′◦t~u′

telles que g (resp. g′) admette un point fixe Ω (resp. Ω′). On a alors f(Ω) = (t~u ◦ g)(Ω) = g(Ω) + ~u = Ω + ~u

donc ~u =
−−−−→
Ωf(Ω), et de même ~u′ =

−−−−−→
Ω′f(Ω′). De là on obtient :

~u− ~u′ =
−−−−→
Ωf(Ω)−

−−−−−→
Ω′f(Ω′) =

−−−−→
Ωf(Ω′) +

−−−−−−−→
f(Ω′)f(Ω) +

−−−−−→
f(Ω′)Ω′ =

−−→
ΩΩ′ +

−−−−−−−→
f(Ω′)f(Ω) =

Ä
~f − Id−→

E

ä(−−→
Ω′Ω

)
.

Or le vecteur de gauche appartient à ker(~f − Id−→
E
) et celui de droite à Im(~f − Id−→

E
). D’après le lemme 9, ces

deux vecteurs sont donc nuls et on obtient ~u = ~u′ et g = t−~u ◦ f = t−~u′ ◦ f = g′.
�

Corollaire 2.5 Soit f un déplacement distinct de Id d’un plan affine euclidien orienté P.

1) Si Fix(f) 6= ∅, alors ~f est une rotation vectorielle et f admet un unique point fixe Ω. Si θ est l’angle de
~f , on dit que f est la rotation de centre Ω et d’angle θ.

2) Si Fix(f) = ∅, alors f est une translation.

Démonstration. L’endomorphisme ~f est orthogonal direct donc est soit une rotation, soit Id−→
P
. Dans le

deuxième cas, f est une translation et n’admet aucun point fixe (f 6= IdP par hypothèse). Dans le premier cas,

1 n’est pas valeur propre de ~f donc f admet un unique point fixe (théorème 1.3).
�

Corollaire 2.6 Soit f un antidéplacement distinct de Id d’un plan affine euclidien orienté P.

1) Si Fix(f) 6= ∅, alors f est une réflexion.

2) Si Fix(f) = ∅, alors f est la composée (commutative) d’une translation et d’une réflexion, le vecteur ~u de
la translation dirigeant l’axe D de la réflexion. On dit que f est une symétrie glissée d’axe D et de vecteur ~u.

Démonstration. Notons d’abord que ~f est une réflexion vectorielle (proposition 2.15). Ainsi, si Fix(f) 6= ∅,

Fix(f) est une droite car c’est un sous-espace affine de P de direction ker(~f − Id−→
P
) (proposition 1.9). Par

conséquent, f est la réflexion d’axe Fix(f). Si f n’admet pas de point fixe, f se décompose (de façon unique)
sous la forme f = t~u ◦ g = g ◦ t~u avec g isométrie admettant au moins un point fixe et ~u vecteur invariant par
~f (théorème 2.7). D’après ce qui précède, g est une réflexion d’axe dirigé par ker

Ä
~g − Id−→

P

ä
= ker

Ä
~f − Id−→

P

ä
,

donc par ~u.
�

θ

bΩ

b
M

b
f(M)

rotation de centre Ω et d’angle θ

D

bM
bc~u

bc b f(M)~u

symétrie glissée d’axe D et de vecteur ~u
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c) Distance d’un point à un sous-espace affine

Définition Soient F un sous-espace affine et A un point d’un espace affine euclidien E . On appelle distance
de A à F , notée d(A,F ), la plus petite des distances de A à un point M de F :

d(A,F ) := inf {d(A,M) /M ∈ F} .

Proposition 2.28 Soient F un sous-espace affine d’un espace affine E et A un point de E . Il existe un unique
point H dans F tel que d(A,F ) = AH ; ce point est le projeté orthogonal de A sur F .

Démonstration. Notons H le projeté orthogonal de A sur F . Puisque H ∈ F ,
on a d(A,F ) ≤ AH . D’autre part, si M est un point de F , il vient (théorème de
Pythagore) :

AM2 = AH2 +HM2 ≥ AH2

donc AH minore l’ensemble {AM /M ∈ F}. On a donc AH ≤ d(A,F ).

Enfin, si H ′ ∈ F vérifie d(A,F ) = AH ′, alors

AH2 = d(A,F )2 = AH ′2 = AH2 +HH ′2

donc HH ′ = 0, c’est-à-dire H = H ′.

F

b M

b A

b
H

�

Corollaire 2.7 (Cas de la dimension 2) Soit D une droite d’un plan affine euclidien P et A un point de

P. On se donne e, une base orthonormée de
−→
P, ~u un vecteur directeur de D , ~v un vecteur unitaire orthogonal

à D et Ω un point de D . Alors :

d(A,D) =
∣∣∣
¨−→
AΩ |~v

∂∣∣∣ =
∣∣∣dete

Ä−→
AΩ, ~u

ä∣∣∣
‖~u‖

.

Démonstration. Si H est le projeté orthogonal de A sur D , il existe λ ∈ R

tel que
−−→
AH = λ~v et on a d(A,D) = AH = |λ|. D’autre part,

¨−→
AΩ |~v

∂
=
¨−−→
AH +

−−→
HΩ |~v

∂
=
¨−−→
AH |~v

∂
= 〈λ~v |~v 〉 = λ.

Pour la deuxième égalité, on calcule

dete
Ä−→
AΩ, ~u

ä
= dete

Ä−−→
AH +

−−→
HΩ, ~u

ä
= dete

Ä−−→
AH, ~u

ä
+ dete

Ä−−→
HΩ, ~u

ä

= dete (λ~v, ~u) + 0 = λ||~u||dete

Å
~v,

~u

||~u||

ã
= ±λ||~u||

~v

~u
b

Ω

bA

b

H

car
Ä
~u, ~u

||~u||

ä
est une base orthonormée. Puisque d(A,D) = AH = |λ|, on a bien l’égalité cherchée.

�

Définition Soit E un espace vectoriel euclidien de dimension n. On appelle déterminant de Gram de k vecteurs
~u1, ..., ~uk le déterminant de la matrice carrée de taille k dont le coefficient (i, j) vaut 〈~ui |~uj 〉 :

Gram(~u1, ..., ~uk) := det
(
〈~ui |~uj 〉

)
1≤i,j≤k

.

Proposition 2.29 Pour toute famille ~u1, ..., ~uk de k éléments d’un espace vectoriel euclidien E, on a :

1) Gram (~u1, ..., ~uk) = 0 si, et seulement si, la famille (~u1, ..., ~uk) est liée.

2) Si (~u1, ..., ~uk) est libre et e est une base orthonormée de Vect(~u1, ..., ~uk), alors

Gram (~u1, ..., ~uk) =
(
dete (~u1, ..., ~uk)

)2
.

En particulier, Gram(~u1, ..., ~uk) > 0.
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Démonstration. 1) Si la famille (~u1, ..., ~uk) est liée, il existe une combinaison linéaire nulle non triviale de

ces vecteurs :
k∑

j=1
λj~uj = ~0. Pour tout i, 1 ≤ i ≤ k, on a donc

0 =

∞
ui

∣∣∣∣∣∣

k∑

j=1

λj~uj

∫
=

k∑

j=1

λj 〈~ui |~uj 〉

ce qui montre que les colonnes de la matrice (〈~ui |~uj 〉)1≤i,j≤k
sont liées et donc que Gram(~u1, ..., ~uk) = 0.

Réciproquement, si Gram(~u1, ..., ~uk) = 0, les colonnes de la matrice (〈~ui |~uj 〉)1≤i,j≤k sont liées : il existe

(λ1, ..., λk) ∈ R
k \ {(0, ..., 0)} tel que

∞
ui

∣∣∣∣∣∣

k∑

j=1

λj~uj

∫
= 0 pour tout i.

On a donc 0 =
k∑

i=1
λi

Æ
~ui

∣∣∣∣∣
k∑

j=1
λj~uj

∏
=

Æ
k∑

i=1
λi~ui

∣∣∣∣∣
k∑

j=1
λj~uj

∏
=

∥∥∥∥∥
k∑

j=1
λj~uj

∥∥∥∥∥

2

et le vecteur
k∑

i=1
λi~ui est donc nul :

la famille (~u1, ..., ~uk) est liée.

2) Rappelons (proposition 2.7) que les coordonnées d’un vecteur ~u dans la base orthonormée e = (~e1, ..., ~ek)
sont

(
〈~e1 |~u 〉 , ..., 〈~ek |~u〉

)
. Ainsi, si A désigne la matrice des coordonnées de la famille (~u1, ..., ~uk) dans la base

e, on a Ai,j = 〈~ei |~uj 〉. On a donc :

〈~ui |~uj 〉 =

∞
k∑

p=1

〈~ep |~ui 〉~ep

∣∣∣∣∣∣

k∑

q=1

〈~eq |~uj 〉~eq

∫
=

k∑

p=1

〈~ep |~ui 〉 〈~ep |~uj 〉 =
k∑

p=1

Ap,iAp,j =
(
tAA

)
i,j

.

De là, on obtient Gram (~u1, ..., ~uk) = det
(
tAA

)
=
(
detA

)2
=
(
dete (~u1, ..., ~uk)

)2
.

�

Proposition 2.30 Soient F un sous-espace affine d’un espace affine euclidien E et A un point de E . On
suppose que F est muni d’un repère (Ω ;~e1, ..., ~ek). Alors :

d(A,F )2 =
Gram

Ä−→
AΩ, ~e1, ..., ~ek

ä

Gram(~e1, ..., ~ek)
.

Démonstration. Notons H le projeté orthogonal de A sur F : on a d(A,F ) = AH (proposition 2.28). Puisque
−→
AΩ =

−−→
AH +

−−→
HΩ, on obtient, en utilisant le fait que

−−→
AH est orthogonal à tout vecteur de

−→
F :

Gram
Ä−→
AΩ, ~e1, ..., ~ek

ä
= Gram

Ä−−→
AH +

−−→
HΩ, ~e1, ..., ~ek

ä

=

∣∣∣∣∣∣∣∣∣∣∣∣

〈−−→
AH +

−−→
HΩ

∣∣∣−−→AH +
−−→
HΩ

〉 ¨−−→
AH +

−−→
HΩ |~e1

∂
· · ·

¨−−→
AH +

−−→
HΩ |~ek

∂
〈
~e1

∣∣∣−−→AH +
−−→
HΩ

〉
〈~e1 |~e1 〉 · · · 〈~e1 |~ek 〉

...
...

. . .
...〈

~ek

∣∣∣−−→AH +
−−→
HΩ

〉
〈~ek |~e1 〉 · · · 〈~ek |~ek 〉

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

‖
−−→
AH‖2 + ‖

−−→
HΩ‖2

¨−−→
HΩ |~e1

∂
· · ·

¨−−→
HΩ |~ek

∂
〈
~e1

∣∣∣−−→HΩ
〉

〈~e1 |~e1 〉 · · · 〈~e1 |~ek 〉

...
...

. . .
...〈

~ek

∣∣∣−−→HΩ
〉

〈~ek |~e1 〉 · · · 〈~ek |~ek 〉

∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣

‖
−−→
AH‖2

¨−−→
HΩ |~e1

∂
· · ·

¨−−→
HΩ |~ek

∂

0 〈~e1 |~e1 〉 · · · 〈~e1 |~ek 〉
...

...
. . .

...
0 〈~ek |~e1 〉 · · · 〈~ek |~ek 〉

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

〈−−→
HΩ

∣∣∣−−→HΩ
〉 ¨−−→

HΩ |~e1
∂

· · ·
¨−−→
HΩ |~ek

∂
〈
~e1

∣∣∣−−→HΩ
〉

〈~e1 |~e1 〉 · · · 〈~e1 |~ek 〉

...
...

. . .
...〈

~ek

∣∣∣−−→HΩ
〉

〈~ek |~e1 〉 · · · 〈~ek |~ek 〉

∣∣∣∣∣∣∣∣∣∣∣∣

Gram
Ä−→
AΩ, ~e1, ..., ~ek

ä
= ‖

−−→
AH‖2

∣∣∣∣∣∣∣

〈~e1 |~e1 〉 · · · 〈~e1 |~ek 〉
...

. . .
...

〈~ek |~e1 〉 · · · 〈~ek |~ek 〉

∣∣∣∣∣∣∣
+Gram

Ä−−→
HΩ, ~e1, ..., ~ek

ä

= d(A,F )2 Gram(~e1, ..., ~ek) car la famille
Ä−−→
HΩ, ~e1, ..., ~ek

ä
est liée.

�

d) médiatrice

Proposition 2.31 Soient A et B deux points distincts d’un espace affine euclidien E . L’ensemble des points
de E équidistants de A et B est un hyperplan passant par le milieu de (A,B) et perpendiculaire à (AB).

Définition Cet hyperplan est appelé hyperplan médiateur de [A,B]. En dimension 2, on parle de la (droite)
médiatrice de [A,B] et en dimension 3, du plan médiateur de [A,B].

Démonstration. Notons I le milieu de (A,B). Pour tout point M de E , on a

AM2 −BM2 =
〈−−→
AM +

−−→
BM

∣∣∣−−→AM −
−−→
BM

〉
= 2

〈−−→
IM

∣∣∣−−→AB
〉

donc AM = BM si, et seulement si,
〈−−→
IM

∣∣∣−−→AB
〉
= 0, c’est-à-dire M ∈ I +Vect

Ä−−→
AB
ä⊥

.

�

e) Bissectrices

On se place ici dans un plan affine euclidien P.

Proposition-Définition Soient D1 et D2 deux droites de P sécantes en un point A. Soient ~u1 et ~u2 deux
vecteurs unitaires dirigeant respectivement D1 et D2.
Il existe exactement deux réflexions échangeant D1 et D2. Elles admettent pour axes les droites passant par A
et dirigées respectivement par ~u1 + ~u2 et ~u1 − ~u2. En particulier, ces deux droites sont perpendiculaires. Elles
sont appelées bissectrices des droites D1 et D2.

Démonstration. Soit s une réflexion échangeant D1 et D2, D son axe. Puisque A ∈ D1 ∩ D2, on a s(A) = A
donc A ∈ D . D’autre part, ~s(~u1) = ε~u2 avec ε = ±1 et ~s(~u2) est alors égal à ε~u1, donc ~s(~u1 + ε~u2) = ε~u2 + ~u1.
Il n’y a donc que deux possibilités pour l’axe de s :

∆1 = A+Vect (~u1 + ~u2) et ∆2 = A+Vect (~u1 − ~u2) .

Réciproquement, notons s1 et s2 les réflexions d’axes respectifs ∆1 et ∆2. Puisque

〈~u1 + ~u2 |~u1 − ~u2 〉 = ‖~u1‖
2 − ‖~u2‖

2 = 1− 1 = 0,

ces deux droites sont perpendiculaires. Par conséquent, les décompositions

~u1 =
1

2
(~u1 + ~u2) +

1

2
(~u1 − ~u2) et ~u2 =

1

2
(~u1 + ~u2)−

1

2
(~u1 − ~u2)

sont les décompositions de ~u1 et ~u2 suivant la somme directe
−→
P =

−→
∆1

⊥
⊕

−→
∆2. On a donc

~s1(~u1) =
1

2
(~u1 + ~u2)−

1

2
(~u1 − ~u2) = ~u2 et ~s2(~u1) = −

1

2
(~u1 + ~u2) +

1

2
(~u1 − ~u2) = −~u2.
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Puisque s1(A) = s2(A) = A, on a donc s1(D1) = D2 = s2(D1).

�

On dispose de deux caractérisations des bissectrices de deux droites (une angulaire, l’autre métrique) :

Proposition 2.32 Soient D1 et D2 deux droites de P sécantes en un point A.

1) Une droite ∆ de P est une des bissectrices de D1 et D2 si, et seulement si, A ∈ ∆ et ’D1,∆ = ’∆,D2.

2) La réunion des deux bissectrices de D1 et D2 cöıncide avec l’ensemble des points équidistants de D1 et D2.

D1

D2

∆1

∆2

~u1~u2

~u1 − ~u2

~u1 + ~u2

A b

Démonstration. 1) Soient ∆ une droite passant par A et s la réflexion d’axe ∆ :

∆ bissectrice de D1 et D2 ⇐⇒ s(D1) = D2

⇐⇒ ÿ�∆, s(D1) = ’∆,D2 d’après la proposition 2.24

⇐⇒ ’∆,D2 = −ÿ�s(∆),D1 = −’∆,D1 d’après la proposition 2.25

⇐⇒ ’∆,D2 = ’D1,∆.

2) Soient ~u1 et ~u2 deux vecteurs unitaires dirigeant respectivement D1 et D2. D’après le corollaire 2.7, on a,

pour M ∈ P, d(M,Dk) =
∣∣∣det
Ä−−→
AM,~uk

ä∣∣∣ (k = 1 ou 2). De là, on obtient :

d(M,D1)
2 − d(M,D2)

2 = det
Ä−−→
AM,~u1

ä2
− det

Ä−−→
AM,~u2

ä2

=
î
det
Ä−−→
AM,~u1

ä
− det

Ä−−→
AM,~u2

äó
·
î
det
Ä−−→
AM,~u1

ä
+ det

Ä−−→
AM,~u2

äó

= det
Ä−−→
AM,~u1 − ~u2

ä
· det

Ä−−→
AM,~u1 + ~u2

ä
.

Par conséquent, d(M,D1) = d(M,D2) si, et seulement si, det
Ä−−→
AM,~u1 − ~u2

ä
= 0 ou det

Ä−−→
AM,~u1 + ~u2

ä
= 0,

c’est-à-dire
−−→
AM est colinéaire à ~u1 − ~u2 ou ~u1 + ~u2. Ceci signifie que M appartient à une des deux bissectrices.

�
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VI Similitudes

Définition Soit E un espace vectoriel euclidien et k un nombre réel, k > 0. Une application linéaire ϕ : E → E
est appelée similitude (vectorielle) de rapport k si elle vérifie :

〈ϕ(~u) |ϕ(~v) 〉 = k2 〈~u |~v 〉 pour tous ~u,~v ∈ E.

En géométrie affine euclidienne, la notion de similitude peut être définie comme suit :

Définition Soit E un espace affine euclidien et k un nombre réel, k > 0. Une application affine f : E → E

est une similitude (affine) de rapport k si

d
(
f(A), f(B)

)
= k d(A,B) pour tous A,B ∈ E .

Remarques : 1) Une isométrie (affine ou vectorielle) est une similitude (affine ou vectorielle) de rapport 1.

2) Une homothétie de rapport λ est une similitude de rapport |λ|.

4) La composée de deux similitudes de rapport respectifs k1 et k2 est une similitude de rapport k1k2.

Proposition 2.33 Soit E un espace vectoriel euclidien et k un nombre réel, k > 0. Une application linaire
ϕ : E → E est une similitude de rapport k si, et seulement si, on a

‖ϕ(~u)‖ = k‖~u‖ pour tout ~u ∈ E.

Corollaire 2.8 Un endomorphisme ϕ d’un espace vectoriel euclidien E est une similitude de rapport k si, et
seulement si, 1

k
ϕ est un endomorphisme orthogonal de E.

Démonstration. C’est une conséquence des propositions 2.33 et 2.10.
�

Corollaire 2.9 Une similitude vectorielle de rapport k est bijective et son inverse est une similitude de rap-
port 1

k
.

Démonstration. Si ϕ est une similitude de rapport k, alors, pour tout ~u ∈ E, on a

〈ϕ(~u) |ϕ(~u) 〉 = k2 〈~u |~u〉 donc ‖ϕ(~u)‖ = k‖~u‖.

Réciproquement, si ‖ϕ(~u‖ = k‖~u‖ pour tout vecteur ~u, alors, pour tout (~u,~v) ∈ E2, on a

〈ϕ(~u) |ϕ(~v) 〉 =
1

4

(
‖ϕ(~u) + ϕ(~v)‖2 − ‖ϕ(~u)− ϕ(~v)‖2

)
=

1

4

(
‖ϕ(~u+ ~v)‖2 − ‖ϕ(~u− ~v)‖2

)

=
1

4

(
k2‖~u+ ~v‖2 − k2‖~u− ~v‖2

)
= k2 〈~u |~v 〉 .

�

Proposition 2.34 Une application affine f : E → E est une similitude de rapport k si, et seulement si, ~f est
une similitude vectorielle de rapport k.

Démonstration. Il suffit de se rappeler que pour tout couple (A,B) de points de E , on a

d
(
f(A), f(B)

)
= ‖~f

(−−→
AB
)
‖ et d(A,B) = ‖

−−→
AB‖.

et d’utiliser la proposition 2.33.
�

Proposition 2.35 Toute similitude affine de rapport k différent de 1 admet un unique point fixe.
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Remarque : : cet unique point fixe est appelé centre de la similitude.

Démonstration. On va démontrer que 1 n’est pas valeur propre de ~f afin d’utiliser le théorème 1.3. Or si
~u ∈ E vérifie ~f(~u) = ~u, on a

‖~u‖ = ‖~f(~u)‖ = k‖~u‖ ce qui implique ~u = ~0 puisque k 6= 1.
�

Ainsi, si s est une similitude de centre Ω et de rapport k différent de 1, et h l’homothétie de centre Ω et de
rapport 1

k
, h ◦ s est une isométrie admettant Ω comme point fixe. En utilisant la classification des isométries du

plan affine euclidien, nous pouvons donc donner la liste des similitudes de rapport différent de 1 dans le plan
affine euclidien.

Théorème 2.8 Soit P un plan affine euclidien. Une similitude s de P, de rapport k différent de 1 et de centre
Ω, s’écrit de façon unique comme la composée (commutative) d’une homothétie de centre Ω et de rapport k, et
d’une isométrie admettant Ω comme point fixe.

• Si s est directe, l’isométrie est une rotation. Si θ est son angle, on dit que s est la similitude de centre Ω, de
rapport k et d’angle θ.

• Si s est indirecte, l’isométrie est une réflexion par rapport à une droite D passant par Ω. On dit que s est la
similitude de centre Ω, de rapport k et d’axe D .

Démonstration. Il ne reste qu’à démontrer qu’une homothétie h de centre Ω et une isométrie f admettant
Ω pour point fixe commutent (M ∈ E ) : pour tout M ∈ E

h ◦ f(M) = h
Ä
f
(
Ω+

−−→
ΩM

)ä
= h
Ä
f(Ω) + ~f

(−−→
ΩM

)ä
= h
Ä
Ω+ ~f

(−−→
ΩM

)ä

= Ω+ k ~f
(−−→
ΩM

)
= Ω+ ~f

(
k
−−→
ΩM

)
= f(Ω) + ~f

(
k
−−→
ΩM

)
= f
Ä
Ω + k

−−→
ΩM
ä

= f ◦ h(M).
�

Remarque : Puisque les homothéties et les isométries préservent l’orthogonalité, il en est de même des simili-
tudes. La réciproque est vraie :

Théorème 2.9 Soit E un espace vectoriel euclidien et ϕ une application linéaire de E dans E. On suppose
que ϕ 6= 0. Alors, ϕ est une similitude si, et seulement si, ϕ préserve l’orthogonalité.

Démonstration. Il s’agit de montrer que si un endomorphisme non nul ϕ de E préserve l’orthogonalité, il
existe un nombre réel k tel que 1

k
ϕ soit une isométrie (corollaire 2.8). Soit (e1, . . . , en) une base orthonormée de

E. Puisque ϕ préserve l’orthogonalité, la famille
(
ϕ(e1), . . . , ϕ(en)

)
est orthogonale. De plus, on a, pour i 6= j :

〈ei + ej |ei − ej 〉 = ||ei||
2 − ||ej ||

2 = 0

donc

0 = 〈ϕ(ei + ej) |ϕ(ei − ej) 〉 = 〈ϕ(ei) + ϕ(ej) |ϕ(ei)− ϕ(ej) 〉 = ||ϕ(ei)||
2 − ||ϕ(ej)||

2.

Ainsi, si k = ||ϕ(e1)|| et f = 1
k
ϕ, la famille

(
f(e1), . . . , f(en)

)
est orthonormée, donc f est une isométrie

(théorème 2.4).
�

Corollaire 2.10 Soit E un espace vectoriel euclidien et ϕ une application linéaire de E dans E. On suppose
que ϕ 6= 0. Alors, ϕ est une similitude directe (resp. indirecte) si, et seulement si, ϕ préserve (resp. renverse)
les angles orientés.

Démonstration. Si ϕ préserve ou renverse les angles orientés, ϕ préserve l’orthogonalité donc est une similitude
d’après le théorème 2.9. Réciproquement, une similitude directe (resp. indirecte) préserve (resp. renverse) les
angles orientés car les homothéties et les isométries directes les préservent tandis que les isométries indirectes
les renversent.

�
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VII Utilisation des nombres complexes

L’ensemble des nombres complexes C est un espace vectoriel de dimension 2 sur R et à ce titre, est muni d’une
structure d’espace affine. L’application C×C → R, (z, z′) 7→ 1

2

(
zz̄′ + z̄z′

)
est un produit scalaire sur C dont la

norme n’est autre que ‖z‖ = |z|. Le couple (1, i) est une base orthonormée pour ce produit scalaire et l’usage
veut que l’on oriente C avec cette base.

Si P est un plan affine euclidien muni d’un repère orthonormé (Ω; ~e1, ~e2), on peut identifier P avec C en
identifiant un point M de coordonnées (x, y) avec le nombre complexe z = x + iy. On identifie de même tout
vecteur ~u = x~e1 + y ~e2 de la direction de P avec le nombre complexe x + iy. On dira que M (resp. ~u) a pour
affixe z dans le repère (Ω; ~e1, ~e2) (resp. la base (~e1, ~e2)).

De ce point de vue, on peut identifier les similitudes du plan comme suit.

Théorème 2.10 Les similitudes directes (resp. indirectes) du plan complexe sont les applications de la forme
z 7→ a z + b (resp. z 7→ a z̄ + b) pour a ∈ C∗ et b ∈ C.
Plus précisément, si A est un point d’affixe a et ~u un vecteur d’affixe b, alors :

1) l’homothétie de centre A et de rapport λ ∈ R∗ est l’application z 7→ λ(z − a) + a ;

2) a) la similitude directe de centre A, de rapport k ∈ R∗
+, k 6= 1, et d’angle θ est l’application z 7→ keiθ(z−a)+a.

En particulier, la rotation de centre A et d’angle θ est l’application z 7→ eiθ(z − a) + a.

b) la translation de vecteur ~u est l’application z 7→ z + b.

3) a) la similitude indirecte de centre A, de rapport k ∈ R∗
+, k 6= 1, et d’axe D dirigé par ~u est l’application

z 7→ k b2

|b|2 (z − a) + a.

En particulier, la réflexion d’axe D est donnée par z 7→ b2

|b|2 (z − a) + a.

b) la symétrie glissée d’axe D passant par A et dirigé par ~u est l’application z 7→ b2

|b|2 (z − a) + a+ b.

Démonstration. Si s : C → C est l’application donnée par s(z) = az + b, alors s est affine d’application
linéaire ~s : z 7→ az et, pour tout couple de nombres complexes (z1, z2), on a

d
(
f(z1), f(z2)

)
= |f(z1)− f(z2)| = |a| · |z1 − z2|

donc s est une similitude de rapport |a|. Puisque ~s(1) = a et ~s(i) = ai, la matrice de ~s dans la base orthonormée

directe (1, i) est
Ä

Re(a) −Im(a)
Im(a) Re(a)

ä
. On a donc det~s = Re(a)2 + Im(a)2 = |a|2 > 0 donc ~s est directe. On voit de

même que l’application z 7→ az̄ + b est une similitude indirecte de rapport |a|.

Examinons à présent chacun des cas décrits dans l’énoncé.

1) Ce cas est immédiat : c’est la définition de l’homothétie de centre A et de rapport λ.

2) a) Soit s : C → C, s(z) = keiθ(z − a) + a. D’après ce qui précède, s est une similitude directe de rapport
|keiθ| = k 6= 1. Puisque s(a) = a, son centre est le point A. Notons h l’homothétie de centre A et de rapport
k. On a h−1(z) = 1

k
(z − a) + a donc, si R = h−1 ◦ s, R(z) = eiθ(z − a) + a. R est une isométrie directe

(similitude directe de rapport |eiθ| = 1) admettant A comme point fixe, donc est une rotation de centre A

(voir corollaire 2.5). Son application linéaire étant donnée par ~R(z) = eiθz, on a ~R(1) = eiθ = cos θ + i sin θ

et ~R(i) = i cos θ − sin θ. La matrice de ~R dans la base orthonormée directe (1, i) est donc
(
cos θ − sin θ
sin θ cos θ

)
. Ceci

montre que ~R est la rotation vectorielle d’angle θ et donc que R est la rotation affine de centre A et d’angle θ.
En conséquence, s = h ◦R est la similitude de centre A, de rapport k et d’angle θ.

b) Ce cas est également immédiat.

3) Soit s : C → C, s(z) = k b2

|b|2 (z − a) + a : c’est une similitude indirecte de centre A (s(a) = a) et de rapport∣∣∣k b2

|b|2

∣∣∣ = k. Comme précédemment, notons h l’homothétie de centre A et de rapport k. Si σ = h−1 ◦ s, on a,

pour z ∈ C

σ(z) = h−1

Å
k
b2

|b|2
(z − a) + a

ã
=

1

k

ïÅ
k
b2

|b|2
(z − a) + a

ã
− a

ò
+ a =

b2

|b|2
(z − a) + a.
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Par conséquent, σ est une isométrie indirecte (similitude indirecte de rapport
∣∣∣ b2

|b|2

∣∣∣ = 1) admettant A pour

point fixe. C’est donc une réflexion d’axe passant par A (voir corollaire 2.6). Or si un point M de D a pour
affixe z, il existe µ ∈ R tel que z − a = µb. De là, on déduit :

σ(z) =
b2

|b|2
µb+ a =

b2

bb̄
µb̄+ a = bµ+ a = z

donc chaque point de D est fixé par σ. Ceci montre que σ est la réflexion d’axe D et donc que s = h ◦ σ est la
similitude indirecte de centre A, de rapport k et d’axe D .

b) Si s est l’application donnée par s(z) = b2

|b|2 (z − a)+a+ b, t~u la translation de vecteur ~u et σ = t−~u ◦ s, alors,

pour z ∈ C, on a

σ(z) =
b2

|b|2
(z − a) + a

donc σ est la réflexion d’axe D d’après ce qui précède. Puisque ~u dirige D , ceci montre que s = t~u ◦ σ = σ ◦ t~u
est la symétrie glissée d’axe D et de vecteur ~u.

�
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Chapitre 3 : Triangles et cercles

Dans tout ce chapitre, P est un plan affine euclidien.

I Cercles

a) Définitions et propriétés d’incidence

Définition 1) Soit Ω un point de P et R un nombre réel positif. On appelle cercle de centre Ω et de rayon
R l’ensemble des points de P situés à la distance R de Ω :

C (Ω, R) := {M ∈ P /ΩM = R} .

2) Deux points A et B d’un cercle de centre Ω sont dits diamétralement opposés s’ils sont symétriques par
rapport à Ω. On dit dans ce cas que le segment [A,B] (ou, par abus, la droite (AB)) est un diamètre du cercle.

Remarque : si C est un cercle de centre Ω et de rayon R et f une isométrie du plan, alors f(C ) est le cercle
de centre f(Ω) et de rayon R. En particulier, toute droite passant par Ω est axe de symétrie du cercle.

Proposition 3.1 Soit [A,B] un diamètre d’un cercle C et M un point de C . Alors, les vecteurs
−−→
MA et

−−→
MB

sont orthogonaux.

Réciproquement, tout point M du plan vérifiant
〈−−→
MA

∣∣∣−−→MB
〉
= 0 est sur le cercle de diamètre [A,B].

Démonstration. Pour tout point M du plan, on a, puisque
−→
ΩB = −

−→
ΩA :

b

Ω b B

bA

b
N

b M

〈−−→
MA

∣∣∣−−→MB
〉

=
〈−−→
MΩ+

−→
ΩA

∣∣∣−−→MΩ+
−→
ΩB

〉

=
〈−−→
MΩ+

−→
ΩA

∣∣∣−−→MΩ−
−→
ΩA

〉

= MΩ2 − ΩA2

= MΩ2 −R2.

Par conséquent, M est sur le cercle si, et seulement si, les vecteurs
−−→
MA et

−−→
MB sont orthogonaux.

�

Proposition 3.2 (Intersection d’une droite et d’un cercle) Soient C un cercle et D une droite de P.
Notons Ω le centre de C et R son rayon. L’intersection de C avec D est

– vide si d(Ω,D) > R ;

– réduite à un point si d(Ω,D) = R, ce point étant le projeté orthogonal de Ω sur D (dans ce cas, D est
la droite perpendiculaire à (ΩH) passant par H) ;

– constituée d’exactement deux points si d(Ω,D) < R.

bΩ bΩbΩ

bH
bH

bH

bM

b M ′
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Démonstration. Notons H le projeté de Ω sur D et considérons un vecteur unitaire ~u dirigeant D . Alors :

D est perpendiculaire à (ΩH), D = {H + λ~u / λ ∈ R} et d(Ω,D) = ΩH.

Ainsi, si M ∈ C ∩ D , il existe λ ∈ R tel que M = H + λ~u et ΩM = R. D’après le théorème de Pythagore, il
vient

R2 = ΩM2 = ΩH2 +HM2 = ΩH2 + λ2 soit λ2 = R2 − ΩH2 = R2 − d(Ω,D)2.

En conséquence :

– si d(Ω,D) > R, il n’y a pas de solution : C ∩ D = ∅ ;
– si d(Ω,D) = R, il y a une unique solution λ = 0 : C ∩ D = {H} ;
– si d(Ω,D) < R, il y a exactement deux solutions : λ = ±

√
R2 − d(Ω,D)2.

�

Définition Une droite D est dite tangente à un cercle C si l’intersection de C avec D est réduite à un point.

Proposition 3.3 (Intersection de deux cercles) Soient C et C ′ deux cercles du plan affine euclidien P,
respectivement de centres Ω, Ω′ et de rayons strictement positifs R, R′.

1) L’intersection C ∩ C ′ est non vide si, et seulement si, |R−R′| ≤ ΩΩ′ ≤ R+R′.

2) Si ΩΩ′ ∈
{
|R − R′|, R + R′

}
, alors C ∩ C ′ est réduit à un point. Si M est ce point, alors M ∈ (ΩΩ′)

et les deux cercles C et C ′ ont même tangente en M : la droite perpendiculaire à (ΩΩ′) passant par M .

3) Si |R − R′| < ΩΩ′ < R + R′, alors C ∩ C ′ est constitué de deux points distincts P et Q et la droite
(ΩΩ′) est la médiatrice de [P,Q].

Définition Deux cercles sont dits tangents lorsque leur intersection est réduite à un point.

b
Ω

b
M

b

Ω′
b
Ω

b
M b

Ω′
b
Ω

b

Ω′

b Q

b P

bH

ΩΩ′ = R−R′ ΩΩ′ = R+R′ 0 < R−R′ < ΩΩ′ < R+R′

Démonstration. Si M est un point de C ∩ C ′, alors on a (inégalité triangulaire, proposition 2.26)

|R−R′| = |ΩM − Ω′M | ≤ ΩΩ′ ≤ ΩM +Ω′M = R+R′

ce qui montre que la double inégalité du 1) est une condition nécessaire.

• Supposons que ΩΩ′ = |R − R′|. Si R = R′, alors Ω = Ω′ et C = C ′. On suppose donc que R 6= R′ avec par

exemple R > R′, de sorte que ΩΩ′ = R−R′. Alors le point M = Ω+R
−−→
ΩΩ′

ΩΩ′ est dans C ∩ C ′ :

⋆
−−→
ΩM = R

−−→
ΩΩ′

ΩΩ′
=⇒ ΩM = R ;

⋆
−−→
Ω′M =

−−→
Ω′Ω +R

−−→
ΩΩ′

ΩΩ′
= (R − ΩΩ′)

−−→
ΩΩ′

ΩΩ′
= R′

−−→
ΩΩ′

ΩΩ′
=⇒ Ω′M = R′.

D’autre part, si N ∈ C ∩ C ′, alors ΩΩ′ = R − R′ = ΩN − Ω′N , soit ΩΩ′ + NΩ′ = ΩN . Par conséquent,

Ω′ ∈ [Ω, N ] (proposition 2.26) et il existe λ ∈ [0, 1] tel que Ω′ = λΩ+ (1− λ)N . De là, on obtient
−−→
Ω′N = λ

−−→
ΩN ,

donc R′ = λR, et

−−→
ΩΩ′ = (1− λ)

−−→
ΩN =

Å
1−

R′

R

ã
−−→
ΩN =

R−R′

R

−−→
ΩN =⇒

−−→
ΩN =

R

R−R′

−−→
ΩΩ′ = R

−−→
ΩΩ′

ΩΩ′
=

−−→
ΩM =⇒ N = M.
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Enfin, la tangente à C en M est la droite perpendiculaire à (ΩM) passant par M ; c’est également la tangente
à C ′ en M car Ω, Ω′ et M sont alignés.

• Si ΩΩ′ = R+R′, on procède de même, toujours avec M = Ω +R
−−→
ΩΩ′

ΩΩ′ .

• Supposons pour finir que |R − R′| < ΩΩ′ < R + R′. Quitte à échanger les deux cercles C et C ′, on peut

supposer que R ≥ R′. Soit H le point Ω + d2+R2−R′2

2d2

−−→
ΩΩ′ où d = ΩΩ′, et D la droite perpendiculaire à (ΩΩ′)

passant par H . Ainsi, H est le projeté orthogonal de Ω sur D donc d(Ω,D) = ΩH . De
−−→
ΩH = d2+R2−R′2

2d2

−−→
ΩΩ′ et

d2 +R2 −R′2 = (R +R′ − d)(R −R′) + d(R−R′ + d) > 0, on déduit

d(Ω,D)−R = ΩH −R =
d2 +R2 −R′2

2d
−R =

d2 +R2 −R′2 + 2dR

2d

=
(d+R)2 −R′2

2d
=

(d+R−R′)(d+R+R′)

2d
> 0

car (R′ − R) ≤ |R − R′| < d. D’après la proposition 3.2, D rencontre donc C en deux points distincts P et Q.
Montrons que ces deux points sont sur C ′. On a

Ω′P 2 = Ω′H2 +HP 2 = Ω′H2 + (ΩP 2 − ΩH2) (théorème de Pythagore)

= ΩP 2 +
〈−−→
Ω′H +

−−→
ΩH

∣∣∣
−−→
Ω′H −

−−→
ΩH

〉
= R2 +

〈−−→
Ω′H +

−−→
ΩH

∣∣∣
−−→
Ω′Ω

〉
.

Or

−−→
ΩH =

d2 +R2 −R′2

2d2
−−→
ΩΩ′

−−→
Ω′H =

−−→
Ω′Ω+

d2 +R2 −R′2

2d2
−−→
ΩΩ′ =

R2 −R′2 − d2

2d2
−−→
ΩΩ′

donc
−−→
Ω′H +

−−→
ΩH = R2−R′2

d2

−−→
ΩΩ′ et finalement

Ω′P 2 = R2 +
R2 −R′2

d2

〈−−→
ΩΩ′

∣∣∣
−−→
Ω′Ω

〉
= R2 −

R2 −R′2

d2
ΩΩ′2 = R′2.

On montre de même que Ω′Q = R′. Enfin, puisque ΩP = R = ΩQ et Ω′P = R′ = Ω′Q, la droite (ΩΩ′) est bien
la médiatrice de [P,Q] (proposition 2.31).

Il reste à démontrer que C ∩ C ′ ne contient pas d’autre point. Soit M un point de C ∩ C ′ et supposons que
M 6∈ {P,Q}. Les deux points Ω et Ω′ étant équidistants de P , Q et M , ils sont sur les médiatrices de [P,Q]
et [M,P ]. Ces deux médiatrices n’étant pas confondues (sinon Q = M comme symétriques de P par rapport
à ces droites), on en déduit que Ω = Ω′, soit d = 0. Ceci contredit l’hypothèse |R − R′| < d. Par conséquent,
M ∈ {P,Q}.

�

Proposition 3.4 (Tangente(s) à un cercle issue(s) d’un point) Soient C un cercle et M un point de P.
Notons Ω le centre de C et R son rayon. On suppose que R > 0.

1) Si ΩM > R, C admet exactement deux tangentes passant par M .

2) Si ΩM = R, C admet exactement une tangente passant par M .

3) Si ΩM < R, C n’admet pas de tangente passant par M .

Démonstration. • S’il existe une droite D passant parM et tangente à C , alors d(Ω,D) = R (proposition 3.2).
Or ΩM ≥ d(Ω,D) (car M ∈ D) donc ΩM ≥ R. Ceci montre le point 3) de l’énoncé.

• Si ΩM = R, alors M ∈ C et la perpendiculaire à (ΩM) passant par M est la seule tangente à C contenant
M (proposition 3.2).

• Supposons à présent que ΩM > R. Notons H le milieu de [Ω,M ] et C ′ le cercle de centre H et de rayon
R′ := HM = ΩH .
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bΩ

b

M

b

H

×P

×
Q

C

C ′

On a :

⋆ ΩH = HM < R+HM = R+R′ ;

⋆ R′ −R < R′ = ΩH et R−R′ < ΩM −R′ = ΩM − ΩH = ΩH donc |R−R′| < ΩH .

Par conséquent, C ′ rencontre C en exactement deux points P et Q (proposition 3.3). Puisque [Ω,M ] est un
diamètre de C ′, les droites (ΩP ) et (MP ) (resp. (ΩQ) et (MQ)) sont perpendiculaires (proposition 3.1) donc
(PM) est tangente à C en P (resp. Q).

Enfin, si D est une droite tangente en un point T à C et contient M , alors l’angle ’ΩTM est droit donc T est
également sur C ′ (proposition 3.1). Par conséquent, T ∈ {P,Q} et D est l’une des droites (PM) ou (QM).

�

b) Angle inscrit et angle au centre - Cocyclicité

Proposition 3.5 (Théorème de l’angle inscrit) Soient C un cercle de centre Ω, A et B deux points de C .
Pour tout point M de C distinct de A et B et tout point TA de la tangente à C en A, distinct de A, les égalités
d’angles orientés de vecteurs suivantes sont vérifiées :

ÿ�−→
ΩA,

−→
ΩB = 2

Ÿ�−−→
MA,

−−→
MB = 2

Ÿ�−−→
ATA,

−−→
AB.

Définition L’angle
ÿ�−→
ΩA,

−→
ΩB est appelé angle au centre et l’angle

Ÿ�−−→
MA,

−−→
MB angle inscrit.

∆

b

Ω

bB

bA

b
TA

b

M

b
T ′
A

Démonstration. Considérons la réflexion σ d’axe ∆, la médiatrice de [A,B] :

σ(A) = B, σ(B) = A et σ(Ω) = Ω.

Puisque les réflexions renversent les angles, on obtient

ÿ�−→
AΩ,

−−→
AB = −

ÿ�−→
BΩ,

−−→
BA =

ÿ�−−→
BA,

−→
BΩ =

ÿ�−−→
AB,

−→
ΩB.
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D’autre part, puisque l’angle
Ÿ�−−→
ATA,

−→
AΩ est droit, 2

Ÿ�−−→
ATA,

−→
AΩ est égal à l’angle plat donc à l’angle

◊�−→
ΩA,

−→
AΩ. La

relation de Chasles nous permet alors d’obtenir :

2
Ÿ�−−→
ATA,

−−→
AB = 2

Ÿ�−−→
ATA,

−→
AΩ + 2

ÿ�−→
AΩ,

−−→
AB =

◊�−→
ΩA,

−→
AΩ+

ÿ�−→
AΩ,

−−→
AB +

ÿ�−→
AΩ,

−−→
AB

=
ÿ�−→
ΩA,

−−→
AB +

ÿ�−−→
AB,

−→
ΩB =

ÿ�−→
ΩA,

−→
ΩB.

Ensuite, en considérant les réflexions d’axes les médiatrices de [A,M ] et [B,M ], nous voyons que

Ÿ�−−→
MΩ,

−−→
MA = −

ÿ�−→
AΩ,

−−→
AM et

Ÿ�−−→
MΩ,

−−→
MB = −

ÿ�−→
BΩ,

−−→
BM.

Ceci nous conduit au calcul suivant :

2
Ÿ�−−→
MA,

−−→
MB =

Ÿ�−−→
MA,

−−→
MB +

Ÿ�−−→
MA,

−−→
MΩ+

Ÿ�−−→
MΩ,

−−→
MB =

Ÿ�−−→
AM,

−−→
BM +

ÿ�−→
AΩ,

−−→
AM +

ÿ�−−→
BM,

−→
BΩ =

ÿ�−→
AΩ,

−→
BΩ =

ÿ�−→
ΩA,

−→
ΩB.

�

Théorème 3.1 (Condition angulaire de cocyclicité) Quatre points A, B, C, D deux à deux distincts du

plan sont cocycliques ou alignés si, et seulement si, les angles orientés de droites ¤�(AB), (AC) et ¤�(DB), (DC)
sont égaux.

b
Ω

b Ω b
Ω

b
A

b
B

b

C
b

D

b
A

b
B

b

C

b

D

b

A

b
D

b B

b
C

Démonstration. • Si les quatre points sont alignés, alors les quatre droites (AB), (AC), (DB) et (DC)

cöıncident, donc les deux angles ¤�(AB), (AC) et ¤�(DB), (DC) sont nuls.
Réciproquement, si ces deux angles sont nuls, alors (AC) = (AB) et (DC) = (DB) (proposition 2.24) donc les
quatre points sont sur la droite (BC).

• Supposons que les quatre points soient sur un même cercle centré en un point Ω. Le théorème de l’angle inscrit
implique

2
ÿ�−−→
AB,

−→
AC =

ÿ�−→
ΩB,

−→
ΩC = 2

ÿ�−−→
DB,

−−→
DC

soit, d’après le lemme 8
¤�(AB), (AC) = ¤�(DB), (DC).

• Réciproquement, supposons que ces deux angles orientés de droites soient égaux et non nuls. Les droites (AB)
et (AC) n’étant alors pas parallèles, il en est de même des médiatrices de [A,B] et [A,C] : soit Ω leur point
d’intersection. Puisque Ω est équidistant de A, B et C, il est le centre d’un cercle C passant par ces trois points.
Si T est un point de la tangente en B à C , alors (théorème de l’angle inscrit)

2
ÿ�−−→
AB,

−→
AC = 2

ÿ�−→
BT,

−−→
BC.

De même, le point d’intersection Ω′ des médiatrices de [D,B] et [D,C] est le centre d’un cercle C ′ passant par
D, B et C. Si T ′ est un point de la tangente à C ′ en B, alors

2
ÿ�−−→
DB,

−−→
DC = 2

ÿ�−−→
BT ′,

−−→
BC.
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On obtient donc, en utilisant l’hypothèse et le lemme 8 :

¤�(BT ), (BC) = ¤�(AB), (AC) = ¤�(DB), (DC) = ¤�(BT ′), (BC).

Par conséquent, les droites (BT ) et (BT ′) cöıncident (propositon 2.24) et il en est donc de même des droites (ΩB)
et (Ω′B) (perpendiculaires respectives en B aux tangentes à C et C ′). On montre de même que (ΩC) = (Ω′C).
De là

{Ω} = (ΩB) ∩ (ΩC) = (Ω′B) ∩ (Ω′C) = {Ω′}.

Ainsi C = C ′ (cercle de centre Ω = Ω′ et de rayon ΩB = Ω′B) et donc A, B, C et D sont cocycliques.
�

II Triangles du plan affine euclidien

Nous commençons par quelques notations et définitions. Dans toute cette section, ABC est un triangle non
aplati de P, c’est-à-dire la donnée de trois points deux à deux distincts non alignés dans P. On notera :

• a = BC = d(B,C), b = CA et c = AB ;

• p = 1
2 (a+ b+ c) (p est le demi-périmètre) ;

• Â la valeur absolue de la mesure principale de l’angle orienté de vecteurs
ÿ�−−→
AB,

−→
AC ;

• “B la valeur absolue de la mesure principale de l’angle orienté de vecteurs
ÿ�−−→
BC,

−−→
BA ;

• “C la valeur absolue de la mesure principale de l’angle orienté de vecteurs
ÿ�−→
CA,

−−→
CB.

Définition Le triangle ABC est dit :

(i) rectangle en A si
−−→
AB est orthogonal à

−→
AC ;

(ii) isocèle en A si AB = AC ;

(iii) équilatéral si AB = BC = CA.

a

b
c

Â

“B
“C

b
A

bB

bC

Lemme 1 Soient e et e′ deux bases orthonormées directes de
−→
P. Alors :

dete
Ä−−→
AB,

−→
AC
ä
= dete

Ä−−→
BC,

−−→
BA
ä
= dete

Ä−→
CA,

−−→
CB
ä
= dete′

Ä−−→
AB,

−→
AC
ä
= dete′

Ä−−→
BC,

−−→
BA
ä
= dete′

Ä−→
CA,

−−→
CB
ä
.

Démonstration. On a déjà vu que le déterminant de deux vecteurs ne dépend pas du choix de la base
orthonormée directe dans laquelle on le calcule. D’autre part, on a

det
Ä−−→
AB,

−→
AC
ä

= det
Ä−−→
AB,

−−→
AB +

−−→
BC
ä
= det

Ä−−→
AB,

−−→
AB
ä
+ det

Ä−−→
AB,

−−→
BC
ä

= det
Ä−−→
AB,

−−→
BC
ä
= − det

Ä−−→
BC,

−−→
AB
ä
= det

Ä−−→
BC,

−−→
BA
ä
.

On montre de même que cette quantité cöıncide avec det
Ä−→
CA,

−−→
CB
ä
.

�

Définition On appelle aire algébrique du triangle ABC le nombre réel 1
2 det

Ä−−→
AB,

−→
AC
ä
(calculé dans une

base orthonormée directe). L’aire géométrique d’un triangle est la valeur absolue de son aire algébrique ; elle
sera notée A dans la suite.

Nous garderons ces notations dans toute la suite de ce paragraphe. Nous allons maintenant démontrer quelques
unes des nombreuses propriétés des triangles. Commençons par celle qui est peut-être la plus connue :

Proposition 3.6 Â+ “B + “C = π.
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Démonstration. En utilisant la relation de Chasles et le fait que −Id préserve les angles, nous avons (après

avoir orienté
−→
P)

ÿ�−−→
AB,

−→
AC +

ÿ�−−→
BC,

−−→
BA+

ÿ�−→
CA,

−−→
CB =

ÿ�−−→
AB,

−→
AC +

ÿ�−−→
BC,

−−→
BA+

ÿ�−→
AC,

−−→
BC =

ÿ�−−→
AB,

−→
AC +

ÿ�−→
AC,

−−→
BA =

ÿ�−−→
AB,

−−→
BA

ce qui implique, puisque la mesure de la somme de deux angles orientés est égale à la somme des mesures des
deux angles (si vous avez compris ce que sont un angle orienté de deux vecteurs, leur somme et leur mesure,
vous comprendrez que cette affirmation n’est rien d’autre que l’énoncé du lemme 4 du chapitre 2) :

mes

Åÿ�−−→
AB,

−→
AC

ã
+mes

Åÿ�−−→
BC,

−−→
BA

ã
+mes

Åÿ�−→
CA,

−−→
CB

ã
= mes

Åÿ�−−→
AB,

−−→
BA

ã
= π mod 2π.

Notre énoncé concerne la valeur absolue de ces trois mesures. Pour conclure, nous allons donc voir que les
mesures principales (ie celles appartenant à ] − π;π]) de ces trois angles orientés de vecteurs ont même signe
(celui-ci dépendant bien sûr de l’orientation choisie). Mais ce signe est égal à celui du déterminant des deux
vecteurs d’après la proposition 2.22. Le lemme 1 ci-dessus permet donc de conclure.

�

a) Médianes - Isobarycentre

L’isobarycentre G d’un triangle ABC est, par associativité, le barycentre de (A, 1) et (A′, 2) si A′ est le milieu

de [B,C], donc G ∈ (AA′) et
−→
GA = 2

−−→
A′G. De même, si B′ et C′ sont les milieux respectifs de [C,A] et [A,B],

G appartient aux droites (BB′) et (CC′).

Définition Les trois droites (AA′), (BB′) et (CC′) sont
appelées médianes du triangle ABC.

Nous venons donc de voir

Proposition 3.7 Les trois médianes d’un triangle sont
concourantes en G, l’isobarycentre des trois sommets.

−−→
GA′ = 1

2

−→
AG

−−→
GB′ = 1

2

−−→
BG

−−→
GC′ = 1

2

−−→
CG

b A

b

B
bC

b
C′

b

A′

b
B′

bG

b) Médiatrices - Cercle circonscrit

Définition Les médiatrices d’un triangle ABC sont les médiatrices des segments [A,B], [B,C] et [C,A].

Proposition 3.8 Les trois médiatrices d’un triangle ABC sont concourantes en un point Ω qui est l’unique
point de P équidistant de A, B et C. C’est le centre de l’unique cercle passant par ces trois sommets.

Démonstration. Notons ∆A, ∆B et ∆C les médiatrices res-
pectives de [B,C], [C,A] et [A,B]. Puisque (BC) et (CA) ne
sont pas parallèles, il en est de même de ∆A et ∆B (voir pro-
position 2.31) : soit Ω leur point d’intersection. Ce point est
équidistant de B et C, et de C et A : ΩB = ΩC = ΩA. Par
conséquent, Ω est sur la troisième médiatrice ∆C . De plus, il
est le centre d’un cercle passant par A, B et C.
Réciproquement, un point équidistant des trois sommets est
sur les trois médiatrices donc cöıncide avec Ω. Enfin, si C est
un cercle contenant A, B et C, son centre est équidistant de
ces trois points donc cöıncide avec Ω ; le rayon de C est alors
ΩA = ΩB = ΩC, ce qui montre que ce cercle cöıncide avec le
précédent.

�

b
A

bB

b C

b
C′

b

A′

b
B′

b Ω

∆B

∆C

∆A

Définition L’unique cercle passant par les sommets d’un triangle est appelé cercle circonscrit au triangle.
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c) Hauteurs - Orthocentre - Droite et cercle d’Euler

Définition La hauteur issue de A (resp. B, C) d’un triangle ABC
est la droite perpendiculaire à (BC) (resp. (CA), (AB)) passant par
A (resp. B, C).

Proposition 3.9 Les trois hauteurs d’un triangle sont concou-
rantes.

Définition Le point de concours des trois hauteurs d’un triangle
est appelé orthocentre du triangle.

bA

b

B

bC

b H

b

Théorème 3.2 L’isobarycentre, le centre du cercle circonscrit et l’orthocentre d’un triangle sont alignés.

Définition La droite portant ces trois points est appelée droite d’Euler 1 du triangle.

Démonstration des propositions 3.9 et théorème 3.2. Notons ∆A, ∆B et ∆C les trois médiatrices du
triangle ABC, HA, HB et HC les trois hauteurs. On considère l’homothétie h de centre G et de rapport −2.

On a vu que
−→
GA = 2

−−→
A′G = −2

−−→
GA′ donc h(A′) = A. Par conséquent, puisque A′ ∈ ∆A, h(∆A) est la parallèle

à ∆A passant par A, c’est-à-dire la hauteur HA. De même, on voit que h(∆B) = HB et h(∆C) = HC . Ainsi,
les trois médiatrices étant concourantes, il en est de même des trois hauteurs. De plus, si H est leur point

d’intersection, on a h(Ω) = H donc
−−→
GH = −2

−→
GΩ, ce qui montre que les trois points G, Ω et H sont alignés.

�

Théorème 3.3 (Cercle des neuf points) Soit ABC un triangle. On note H son orthocentre, A′, B′ et C′

les milieux respectifs de [B,C], [C,A] et [A,B], HA, HB, et HC les pieds des hauteurs, et IA, IB et IC les
milieus respectifs de [H,A], [H,B] et [H,C].
Alors, les neufs points A′, B′, C′, HA, HB , HC , IA, IB , et IC sont sur un même cercle dont le centre appartient
à la droite d’Euler du triangle et le rayon est égal à la moitié du rayon du cercle circonscrit à ABC.

Définition Ce cercle est appelé cercle d’Euler ou cercle des neuf points de Poncelet 2 du triangle.

b A

b

B

b C

b

C′

b

A′

b

B′

b Ω

bH

b
G

bO

b
IA

b
IB

b IC

b
HA

b

HB

b

HC

−−→
GH = 2

−→
ΩG et

−−→
HΩ = 2

−−→
HO

r = OA′ = OB′ = OC′

= OIA = OIB = OIC

= OHA = OHB = OHC

R = ΩA = ΩB = ΩC

r = 1
2R

Démonstration. Notons C le cercle circonscrit à ABC, Ω son centre et R son rayon. On considère de nouveau
l’homothétie h de centre G et de rapport −2 et on introduit l’homothétie h′ de centre H et de rapport 1

2 .

1. Leonhard Paul Euler, mathématicien et physicien suisse, 1707-1783.

2. Jean-Victor Poncelet, mathématicien, ingénieur et général français, 1788-1867.
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• Puique IA est le milieu de [A,H ], IA = h′(A) et de même, IB = h′(B), IC = h′(C). Par conséquent, si
C ′ = h′(C ), les trois points IA, IB et IC appartiennent à C ′. De plus, C ′ est un cercle de centre O = h′(Ω) et
de rayon 1

2R. En effet, si M ∈ P et M ′ = h′(M), alors

M ′ ∈ C
′ ⇐⇒ M ∈ C

⇐⇒ ΩM = R

⇐⇒ OM ′ =
1

2
R car h′ est une similitude de rapport

1

2
.

Enfin, puisque O = h′(Ω) = H + 1
2

−−→
HΩ, le point O est bien sur la droite d’Euler (HΩ).

• Notons E le symétrique de H par rapport à A′ et montrons que E ∈ C . Alors, A′ = h′(E) ∈ C ′. On note S

la symétrie centrale de centre A′ et t la translation de vecteur 2
−−→
ΩA′.

Puisque H = h(Ω) et A = h(A′), on a

−−→
AH = ~h

(−−→
A′Ω

)
= −2

−−→
A′Ω = 2

−−→
ΩA′ donc H = A+ 2

−−→
ΩA′ = t(A).

On obtient alors E = S(H) = S ◦ t(A). Mais

→
−−→
S ◦ t = ~S = −Id donc S ◦ t est une symétrie centrale (homothétie de rapport −1) ;

→ S ◦ t(Ω) = S
(
Ω+ 2

−−→
ΩA′

)
= S

(
A′ +

−−→
ΩA′

)
= A′ −

−−→
ΩA′ = Ω

donc S ◦ t est la symétrie de centre Ω. Par conséquent, puisque A ∈ C et que Ω est le centre de C , E = S ◦ t(A)
est sur C . Ceci montre que A′ appartient à C ′. On montre de même que B′ et C′ sont sur C ′.

• On utilise le même principe pour montrer que les pieds des hauteurs appartiennent à C ′. Pour cela, on
considère la réflexion σ par rapport à (BC) : si P = σ(H), alors HA = h′(P ) et on aura montré que HA ∈ C ′

si on montre que P ∈ C . On a :

→
−−→
σ ◦ t = ~σ est une réflexion vectorielle d’axe Vect(

−−→
BC) donc σ ◦ t est une réflexion ou une symétrie

gissée d’axe une droite parallèle à (BC) ;

→ σ ◦ t(Ω) = σ
(
Ω + 2

−−→
ΩA′

)
= σ

(
A′ +

−−→
ΩA′

)
= A′ −

−−→
ΩA′ = Ω car

−−→
ΩA′ et

−−→
BC sont orthogonaux

donc σ ◦ t est la réflexion d’axe la droite parallèle à (BC) passant par Ω. Cet axe étant un diamètre de C , le
point P = σ(H) = σ ◦ t(A) appartient à C . Ceci montre que HA est sur C ′. On montre de même que HB et
HC appartiennent à C ′.

�

d) Relations métriques dans le triangle

Rappelons quelques notations :

a

b
c

Â

“B
“C

C

b
A

bB

b C

R

b
Ω

R désigne le rayon du cercle circonscrit ;

p est le demi-périmètre : p = 1
2 (a+ b + c) ;

A désigne l’aire géométrique de ABC :

A = 1
2 | det(

−−→
AB,

−→
AC)| = 1

2 | det(
−−→
BA,

−−→
BC)| = 1

2 | det(
−→
CA,

−−→
CB)|.
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On se propose de démontrer le formulaire suivant :

a2 = b2 + c2 − 2bc cos Â, b2 = c2 + a2 − 2ca cos “B et c2 = a2 + b2 − 2ab cos“C (Formules d’Al Kashi 3)

a

sin Â
=

b

sin “B =
c

sin “C = 2R =
abc

2A
(Formules des sinus)

A =
»
p(p− a)(p− b)(p− c) (Formule de Héron 4)

Démonstration. Formules d’Al Kashi. C’est une conséquence de la proposition 2.22 :

a2 = BC2 =
〈−−→
BC

∣∣∣−−→BC
〉
=
〈−−→
BA+

−→
AC

∣∣∣−−→BA+
−→
AC

〉

= BA2 + CA2 + 2
〈−−→
BA

∣∣∣−→AC
〉
= b2 + c2 − 2

〈−−→
BA

∣∣∣−→CA
〉

= b2 + c2 − 2bc cos Â.

Les deux autres formules s’obtiennent de façon analogue.

Formules des sinus. En utilisant de nouveau la proposition 2.22, on obtient :

A =
1

2

∣∣∣det
Ä−−→
AB,

−→
AC
ä∣∣∣ = 1

2
||
−−→
AB|| · ||

−→
AC|| · | sin Â| =

1

2
bc sin Â

et on montre de même que A = 1
2ca sin

“B = 1
2ab sin

“C. Ces égalités montrent que
a

sin Â
=

b

sin “B =
c

sin “C =
abc

2A
.

Pour la suite, considérons le point B′ diamétralement opposé à B sur C , le cercle circonscrit à ABC.

Â
C

b
A

bB

b C

b
Ω bB′

α

a

Le critère angulaire de cocyclicité (théorème 3.1) donne ¤�(AB), (AC) = ¤�(B′B), (B′C). Si α est la mesure prin-

cipale de
Ÿ�−−→
B′B,

−−→
B′C, on a donc α ∈ {Â, π − Â} ce qui implique sin Â = sin |α|. D’autre part, le triangle BB′C

est rectangle en C car [B,B′] est un diamètre de C (proposition 3.1). En appliquant à ce triangle la première
partie de la formule des sinus démontrée précédemment, on obtient :

a

sin |α|
=

BB′

sin π
2

=
2R

1
= 2R,

ce qui conduit à l’égalité manquante
a

sin Â
= 2R.

3. Ghiyath ad-Din Jamshid Mas’ud al-Kashi, mathématicien et astronome perse, vers 1380-1429

4. Héron d’Alexandrie, ingénieur, mécanicien et mathématicien grec, Ier siècle après J.-C.
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Formule de Héron. De A = 1
2bc sin Â, on obtient :

A2 =
1

4
b2c2 sin2 Â =

1

4
b2c2
Ä
1− cos2 Â

ä
=

1

4
b2c2
ñ
1−

Å
b2 + c2 − a2

2bc

ã2ô
(formule d’Al Kashi)

=
1

16

(
4b2c2 − (b2 + c2 − a2)2

)
=

1

16

(
2bc+ (b2 + c2 − a2)

)(
2bc− (b2 + c2 − a2)

)

=
1

16

(
(b+ c)2 − a2)

)(
a2 − (b − c)2)

)
=

1

16

(
(b + c) + a

)(
(b + c)− a)

)(
a+ (b − c))

)(
a− (b− c)

)

=
a+ b+ c

2
×

b+ c− a

2
×

a+ b− c

2
×

a+ c− b

2
= p(p− a)(p− b)(p− c).

�

e) Triangles homothétiques, isométriques ou semblables

Définition Deux triangles non plats ABC et A′B′C′ du plan affine (resp. affine euclidien) sont dits ho-
mothétiques (resp. isométriques, semblables) s’il existe une homothétie ou une translation (resp. une isométrie,
une similitude) f telle que

f
(
{A,B,C}

)
= {A′, B′, C′}.

Remarque : quitte à renommer les sommets, on pourra prendre pour condition f(A) = A′, f(B) = B′ et
f(C) = C′.

Remarque : les sommets de ABC formant un repère du plan, la transformation f , si elle existe, est unique
(théorème 1.4).

Remarque : deux triangles isométriques (resp. semblables) seront dits directement ou indirectement isomé-
triques (resp. semblables) selon que l’isométrie (resp. la similitude) envoyant l’un sur l’autre est directe ou
indirecte.

Proposition 3.10 (Triangles homothétiques) Deux triangles sont homothétiques si, et seulement si, leurs
côtés sont deux à deux parallèles.

Rappels : si ~u et ~v sont deux vecteurs colinéaires et non nuls, ~u
~v
désigne le scalaire λ vérifiant ~u = λ~v.

Démonstration. Puisque les homothéties et les translations transforment une droite en une droite parallèle,
la condition est nécessaire. Supposons donc que (AB) et (A′B′) sont parallèles, de même que (BC) et (B′C′)
ainsi que (CA) et (C′A′).

• Si A = A′, l’homothétie de centre A et de rapport
−−→
AB′

−−→
AB

envoie B sur B′ et C sur C′ (théorème de Thalès). Il

en va de même si B = B′ ou C = C′.

• On suppose que A 6= A′, B 6= B′ et C 6= C′. Si (AA′) est parallèle à (BB′), on note f la translation de vecteur
−−→
AA′ ; si ces droites se coupent en un point O, f désigne l’homothétie de centre O et de rapport

−−→
OA′

−−→
OA

. Dans les

deux cas, f(A) = A′.

b
A

bB
b
C

b
A′

b

B′

b C′

b
O

b
A

b

B

b
A′

b

B′

b
C

b
C′

⋆ f
(
(AB)

)
est une droite parallèle à (AB) passant par f(A) = A′ donc f

(
(AB)

)
= (A′B′) ;

⋆ f
(
(BB′)

)
= (BB′).
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Par conséquent, f(B) ∈ (A′B′) ∩ (BB′) = {B′} : f(B) = B′. Ensuite :

⋆ f
(
(BC)

)
est une droite parallèle à (BC) passant par f(B) = B′ donc f

(
(BC)

)
= (B′C′) ;

⋆ f
(
(AC)

)
est une droite parallèle à (AC) passant par f(A) = A′ donc f

(
(AC)

)
= (A′C′),

donc f(C) ∈ (B′C′) ∩ (AC′) = {C′} : f(C) = C′.
�

Proposition 3.11 (Triangles isométriques) Deux triangles ABC et A′B′C′ du plan affine euclidien P sont
isométriques si, et seulement si, l’une des trois assertions équivalentes suivantes est vérifiée :

1) Â = Â′, b = b′ et c = c′ ;

2) a = a′, b = b′ et c = c′ ;

3) Â = Â′, “B = B̂′, et c = c′.

Remarque : les notations sont toujours les mêmes : a = BC, a′ = B′C′, Â est la valeur absolue de la mesure

principale de
ÿ�−−→
AB,

−→
AC, etc.

Démonstration. Les isométries préservant les distances et les angles au signe près, les trois assertions sont
nécessaires.

Le théorème 1.4 nous fournit une transformation affine f de P telle que f(A) = A′, f(B) = B′ et f(C) = C′.

Pour tous points M et N de P, on a, si
−−→
MN = λ

−−→
AB + µ

−→
AC :

∣∣∣
∣∣∣−−→MN

∣∣∣
∣∣∣
2

=
〈
λ
−−→
AB + µ

−→
AC

∣∣∣λ−−→AB + µ
−→
AC

〉
= λ2AB2 + 2λµ

〈−−→
AB

∣∣∣−→AC
〉
+ µ2AC2

= λ2c2 + 2λµbc cos Â+ µ2b2 (proposition 2.22)

et d’autre part,

−−−−−−−→
f(M)f(N) = ~f

Ä−−→
MN
ä
= λ

−−−→
A′B′ + µ

−−→
A′C′ =⇒

∣∣∣
∣∣∣
−−−−−−−→
f(M)f(N)

∣∣∣
∣∣∣
2

= λ2c′2 + 2λµb′c′ cos Â′ + µ2b′2.

Ainsi, si l’assertion 1) est vérifiée, f est une isométrie et les deux triangles sont isométriques. En particulier,
l’assertion 1) implique les assertions 2) et 3).
Supposons l’assertion 2) satisfaite. Alors (formule d’Al Kashi)

cos Â =
b2 + c2 − a2

2bc
=

b′2 + c′2 − a′2

2b′c′
= cos Â′

donc Â = Â′ car ces deux réels sont dans [0, π]. Par conséquent, l’assertion 1) est vérifiée.

Si l’assertion 3) est vraie, alors “C = π − (Â+ “B) = π − (Â′ + B̂′) = Ĉ′ donc on obtient (formules des sinus) :

a =
sin Â

sin “C c =
sin Â′

sin Ĉ′
c′ = a′ et b =

sin “B
sin “C c =

sin B̂′

sin Ĉ′
c′ = b′

et l’assertion 2) est satisfaite.
�

Proposition 3.12 (Triangles semblables) Deux triangles ABC et A′B′C′ du plan affine euclidien P sont
semblables si, et seulement si, l’une des trois assertions équivalentes suivantes est vérifiée :

1) Â = Â′ et
b′

b
=

c′

c
;

2)
a′

a
=

b′

b
=

c′

c
;

3) “B = B̂′ et “C = Ĉ′.
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Démonstration. Les similitudes préservant les angles au signe près ainsi que les rapports de distances, les
trois conditions sont nécessaires.

Supposons que la condition 1) soit satisfaite et considérons une homothétie de rapport b′

b
. L’image A′′B′′C′′ de

ABC par h est un triangle isométrique à A′B′C′ car (proposition 3.11) :

b′′ =
b′

b
b = b′, c′′ =

b′

b
c =

c′

c
c = c′ et ”A′′ = Â = Â′ (une homothétie préserve les angles).

Par conséquent, il existe une isométrie f de P telle que f(A′′) = A′, f(B′′) = B′ et f(C′′) = C′. L’application
f ◦ h est alors une similitude transformant ABC en A′B′C′.

Si l’assertion 2) est satisfaite, on a (formules d’Al Kashi)

cos Â =
b2 + c2 − a2

2bc
=

1

2

Å
b

c
+

c

b
−

a

b

a

c

ã
=

1

2

Å
b′

c′
+

c′

b′
−

a′

b′
a′

c′

ã
= cos Â′

donc Â = Â′ (ces deux réels sont dans [0, π]) et l’assertion 1) est vérifiée.

Enfin, si 3) est vraie, on a Â = π − (“B + “C) = π − (B̂′ + Ĉ′) = Â′ et (formules des sinus) :

b

c
=

sin “B
sin “C =

sin B̂′

sin Ĉ′
=

b′

c′
=⇒

b′

b
=

c′

c
.

Ainsi, l’assertion 1) est satisfaite.

�

III Conjugaison, polarité et inversion

Dans tout ce paragraphe, C est un cercle de centre Ω et de rayon R du plan affine euclidien P.

a) Puissance d’un point par rapport à un cercle

Définition Soit C un cercle de centre Ω et de rayon R. On appelle puissance d’un point M de P par rapport
à C le nombre réel PC (M) = ΩM2 −R2.

Remarque : un point M est donc sur un cercle C si, et seulement si, PC (M) = 0.

Définition Un point M est dit extérieur au cercle C si PC (M) > 0, intérieur à C si PC (M) < 0.

Proposition 3.13 Soit D une droite du plan rencontrant C en deux points A et B. Alors, pour tout point M

de D , on a PC (M) =
〈−−→
MA

∣∣∣−−→MB
〉
.

Si D est tangente à C en T , alors, pour tout point M de D , on a PC (M) = MT 2.

Démonstration. Notons H le projeté orthogonal de Ω sur D . Puisque A
et B sont équidistants de Ω, la droite (ΩH) est la médiatrice de [A,B] donc
H est le milieu de ce segment. On obtient donc, en utilisant deux fois le
théorème de Pythagore

PC (M)=ΩM2 −R2 = ΩH2 +HM2 − ΩA2 = HM2 −HA2

=
〈−−→
HM +

−−→
HA

∣∣∣−−→HM −
−−→
HA

〉

=
〈−−→
HM +

−−→
BH

∣∣∣−−→AM
〉

=
〈−−→
BM

∣∣∣−−→AM
〉
.

Ce calcul reste correct si D est tangente à C en T , avec A = B = H = T .
�

〈−−→
MA

∣∣∣−−→MB
〉
=
〈−−→
MA′

∣∣∣
−−−→
MB′

〉

b

Ω

b
M b

A
b
B

b A
′

b
B′

b
H
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Corollaire 3.1 Si D et D ′ sont deux droites tangentes à C respecti-
vement en P et Q et si D et D ′ se coupent en M , alors MP = MQ.

Démonstration. D’après la proposition 3.13, on a

PM2 = PC (M) = QM2.
� MP = MQ

b
Ω

b

M

b

P

b
Q

b) Polarité

Définition Deux points P et Q de P sont dits conjugués par rapport à C si
〈−→
ΩP

∣∣∣−→ΩQ
〉
= R2.

Proposition-Définition 1) L’ensemble des points conjugués à un point P donné, distinct de Ω, est une droite
perpendiculaire à la droite (ΩP ) ne contenant pas Ω : on l’appelle polaire de P par rapport à C .

2) Si ∆ est une droite de P ne contenant pas Ω, il existe un unique point P dont la polaire est ∆ ; ce point est
appelé pôle de ∆.

Démonstration. 1) Déterminons les points Q de la droite (ΩP ) conjugués à P . Pour un tel point, il existe

λ ∈ R tel que Q = Ω + λ
−→
ΩP . On obtient alors :

〈−→
ΩP

∣∣∣−→ΩQ
〉
=
〈−→
ΩP

∣∣∣λ−→ΩP
〉
= λΩP 2

et donc P et un point Q de (ΩP ) sont conjugués si, et seulement si, λΩP 2 = R2, avec λ = R2

ΩP 2 . Il n’y a donc

qu’un seul point sur (ΩP ) conjugué à P : le point Q0 = Ω + R2

ΩP 2

−→
ΩP .

Maintenant, pour tout point Q du plan, on a :
〈−→
ΩP

∣∣∣−→ΩQ
〉
=
〈−→
ΩP

∣∣∣−−→ΩQ0 +
−−→
Q0Q

〉
=
〈−→
ΩP

∣∣∣−−→ΩQ0

〉
+
〈−→
ΩP

∣∣∣−−→Q0Q
〉
= R2 +

〈−→
ΩP

∣∣∣−−→Q0Q
〉

donc P et Q sont conjugués si, et seulement si,
〈−→
ΩP

∣∣∣−−→Q0Q
〉
= 0, c’est-à-dire Q est sur la droite perpendiculaire

à (ΩP ) passant par Q0.

2) Soient Q1 et Q2 deux points distincts de ∆, et ∆1, ∆2 leurs polaires respectives par rapport à C . Nous
venons de voir que ∆1 (resp. ∆2) est perpendiculaire à (ΩQ1) (resp. (ΩQ2)). Puisque Q1 6= Q2, ces deux droites
ne sont pas parallèles : soit P leur point d’intersection. Maintenant, puisque P est conjugué à Q1 et Q2, ces
deux points sont conjugués à P donc sont sur la polaire ∆P de P . Puisque ∆P est une droite d’après le premier
point, celle-ci est donc (Q1Q2) = ∆ : ∆ est bien la polaire de P .
Enfin, si ∆ est la polaire d’un second point P ′ de P, P ′ est conjugué à Q1 et Q2 donc P ′ ∈ ∆1 ∩∆2 : P ′ = P .

�

Construction. Les constructions de polaires ou de pôles sont basées sur le principe de symétrie suivant : si P
est conjugué à Q alors Q est conjugué à P , ce qui se traduit par le résultat suivant :

P est sur la polaire de Q si, et seulement si, Q est sur la polaire de P.

D’autre part, si P est un point de C , il est conjugué à lui-même. Par conséquent, sa polaire étant perpendiculaire
à (ΩP ), c’est la tangente à C en P : c’est la figure de gauche ci-dessous (où la polaire de P est notée ∆P ).
Sur la figure du centre (cas où P est extérieur à C ), on a tracé les deux tangentes au cercle passant par P
(proposition 3.4). Si A et B sont les points de contact, le premier cas montre que les polaires de A et B sont
respectivement les droites (PA) et (PB). Par conséquent, A et B sont conjugués à P . Ils sont donc sur la polaire
de P , qui est ainsi la droite (AB).
Si P est intérieur à C , on trace deux droites passant par P et coupant le cercle respectivement en M , N et
M ′, N ′. On considère le point d’intersection A (resp. B) des tangentes au cercle en M et N (resp. M ′ et N ′) :
la polaire de P est la droite (AB). En effet, le deuxième cas nous permet d’affirmer que les droites (MN) et
(M ′N ′) sont les polaires respectives de A et B. Comme P est sur ces deux droites, P est conjugué à A et B.
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∆P

∆P

∆P

b

Ω
b

Ω
b
Ω

b
P

b P

b

A b
B

b
P

b N

b

M

bN ′

b

M ′

b

A
b

B

Notons que ces constructions peuvent se lire ≪à l’envers≫ pour construire le pôle P d’une droite ∆.

c) Inversion

Définition Soit C un cercle de centre Ω et de rayon R. On appelle inversion de cercle C (ou inversion de
centre Ω et de rapport R2) l’application IC de P \ {Ω} dans P \ {Ω} qui, à un point M , associe le projeté
orthogonal de M sur sa polaire.

Remarque : l’inverse de M par rapport à C est donc le point d’intersection de la polaire de M avec (ΩM) ou,
dit autrement, l’unique point de (ΩM) conjugué à M .

Proposition 3.14 Soient M et M ′ deux points de P distincts de Ω.
Les trois assertions suivantes sont équivalentes :

1) M ′ = IC (M) ;

2) M ′ ∈ (ΩM) et
〈−−→
ΩM

∣∣∣
−−→
ΩM ′

〉
= R2 ;

3) M ′ ∈ (ΩM) et
−−→
ΩM ′ =

R2

ΩM2

−−→
ΩM .

Démonstration. Notons ∆M la polaire de M par rapport à C .

Les assertions 1) et 2) sont clairement équivalentes puisque la deuxième dit exactement que M ′ est l’unique
point de (ΩM) conjugué à M .

2) ⇒ 3) Puisque M ′ appartient à (ΩM), il existe λ ∈ R tel que
−−→
ΩM ′ = λ

−−→
ΩM . De là, on obtient :

R2 =
〈−−→
ΩM

∣∣∣
−−→
ΩM ′

〉
= λΩM2 donc λ =

R2

ΩM2
.

3) ⇒ 1) On a
〈−−→
ΩM

∣∣∣
−−→
ΩM ′

〉
= R2

ΩM2 ΩM
2 = R2 donc M ′ et M sont conjugués : M ′ ∈ ∆M . Ensuite, puisque

(ΩM) est perpendiculaire à ∆M et M ′ ∈ (ΩM), M ′ est bien le projeté orthogonal de M sur ∆M : M ′ = IC (M).
�

Corollaire 3.2 Une inversion est involutive : IC ◦ IC = Id.

Démonstration. Ceci se voit aisément avec l’assertion 2) de la proposition 3.14 : si M ′ est l’inverse de M ,
alors M est l’inverse de M ′.

�

Corollaire 3.3 L’ensemble des points fixes de IC est exactement C .
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Démonstration. En utilisant l’assertion 3) de la proposition 3.14, on voit que, pourM ∈ P\{Ω},M = IC (M)
si, et seulement si, ΩM2 = R2, c’est-à-dire M ∈ C .

�

Corollaire 3.4 Soient M et N deux points distincts de Ω, non alignés avec Ω, et M ′, N ′ leurs inverses respectifs
par rapport à C . Alors, les quatre points M , N , M ′ et N ′ sont cocycliques.

Démonstration. Notons C ′ le cercle ciconscrit à M , N et M ′ et montrons que N ′ ∈ C ′.

Notons N ′′ le second point d’intersection de (ΩN) avec C ′.

Puisque N ′ ∈ (ΩN), il existe λ ∈ R tel que
−−→
ΩN ′ = λ

−−−→
ΩN ′′.

Maintenant, d’après la proposition 3.13, la puissance de Ω par
rapport à C ′ est

PC ′(Ω) =
〈−−→
ΩM

∣∣∣
−−→
ΩM ′

〉
=
〈−−→
ΩN

∣∣∣
−−−→
ΩN ′′

〉
.

Mais
〈−−→
ΩM

∣∣∣
−−→
ΩM ′

〉
= R2 =

〈−−→
ΩN

∣∣∣
−−→
ΩN ′

〉
(proposition 3.14)

donc on obtient
〈−−→
ΩN

∣∣∣
−−−→
ΩN ′′

〉
=
〈−−→
ΩN

∣∣∣
−−→
ΩN ′

〉
= λ

〈−−→
ΩN

∣∣∣
−−−→
ΩN ′′

〉
.

C

∆M

∆Nb
Ω

b
M

b

N

b

M ′

b

N ′

Les trois points Ω, N et N ′′ étant alignés, le produit scalaire
〈−−→
ΩN

∣∣∣
−−−→
ΩN ′′

〉
est non nul. Par conséquent, λ = 1

et N ′ = N ′′ ∈ C ′.
�

Corollaire 3.5 Soient M et N deux points distincts de Ω, non alignés avec Ω, et M ′, N ′ leurs inverses respectifs
par rapport à C . Les égalités d’angles orientés de droites suivantes sont vérifiées :

¤�(ΩM), (MN) = ¤�(MM ′), (MN) = ¤�(N ′M ′), (N ′N) = ¤�(N ′M ′), (ΩN).

Démonstration. C’est une conséquence du corollaire 3.4 et du critère angulaire de cocyclicité (théorème 3.1).
�

Théorème 3.4 Soit C un cercle de centre Ω. Alors :

1) toute droite passant par Ω est sa propre image par IC ;

2) l’image par IC d’une droite D ne passant pas par Ω est le cercle de diamètre [Ω, P ] où P est le pôle
de D . Réciproquement, l’inverse d’un cercle de diamètre [Ω, A] est la polaire de A ;

3) l’inverse d’un cercle ne contenant pas Ω est un cercle ne contenant pas Ω. Plus précisément, si Γ est
un cercle de centre O, ne rencontrant pas Ω, et si A et B sont les points d’intersection de (ΩO) avec
Γ, alors IC (Γ) est le cercle de diamètre [A′, B′] où A′ et B′ sont les inverses de A et B.

D

Γ

D

Γ

Γ et D sont inverses l’un de l’autre (P est le pôle de D)

C C

b
Ω

b

P
b Ωb

P
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Les deux cercles Γ et Γ′ sont inverses l’un de l’autre

C CΓ

Γ′

b
Ω

b
ObB bAbA

′

bB
′

bΩ

bO
b

I
b
J

b
I′b

J′

Γ

Γ′

Démonstration. 1) Quel que soit M différent de Ω, l’inverse de M est sur la droite (ΩM). Par conséquent,
si M appartient à une droite D passant par Ω, son inverse est sur D .

2) Notons P le pôle de D . Pour M ∈ P \ {Ω} et M ′ = IC (M), on a :

〈−−→
ΩM ′

∣∣∣
−−−→
PM ′

〉
=

〈−−→
ΩM ′

∣∣∣−→PΩ+
−−→
ΩM ′

〉
= ΩM ′2 −

〈−−→
ΩM ′

∣∣∣−→ΩP
〉

=
R4

ΩM2
−

R2

ΩM2

〈−−→
ΩM

∣∣∣−→ΩP
〉

d’après la proposition 3.14

=
R2

ΩM2

(
R2 −

〈−−→
ΩM

∣∣∣−→ΩP
〉)

.

On obtient donc

M appartient à D ⇐⇒
〈−−→
ΩM

∣∣∣−→ΩP
〉
= R2 car D est la polaire de P

⇐⇒
〈−−→
ΩM ′

∣∣∣
−−−→
PM ′

〉
= 0 d’après le calcul ci-dessus

⇐⇒ M ′ est sur le cercle de diamètre [ΩP ] d’après la proposition 3.1.

Réciproquement, une inversion étant involutive, l’image d’un cercle Γ de diamètre [Ω, A] est égal à la polaire
∆A de A puisque ce qui précède montre que IC (∆A) = Γ.

3) Soit Γ un cercle ne contenant pas Ω, O son centre et A, B les deux points d’intersections de (ΩO) avec Γ :
[A,B] est un diamètre de Γ. Notons A′ et B′ les inverses respectifs de A et B par rapport à C : les cinq points
Ω, A, A′, B et B′ sont donc alignés. Pour M ∈ P \ {Ω}, M 6= A,B, et M ′ = IC (M), on a :

¤�(MA), (MB) = ¤�(MA), (ΩA) + ¤�(ΩA), (MB)

= ¤�(ΩA′), (M ′A′) + ¤�(M ′B′), (ΩA′) d’après le corollaire 3.5

= ¤�(M ′B′), (M ′A′).

Or M ∈ Γ si, et seulement si, l’angle de droite ¤�(MA), (MB) est droit (proposition 3.1) et de même, M ′ est sur

le cercle de diamètre [A′, B′] si, et seulement si, ¤�(M ′A′), (M ′B′) est droit. L’égalité d’angles précédente montre
donc que l’inverse de Γ par rapport à C est le cercle de diamètre [A′, B′].

�

IV Cercles inscrit et exinscrits - Théorème de Feuerbach

a) Bissectrices d’un triangle - Cercles inscrit et exinscrits

Considérons un triangle ABC et les deux bissectrices des droites (AB) et (AC) : on a vu que l’une est dirigée

par
−−→
AB
AB

+
−→
AC
AC

et l’autre par
−−→
AB
AB

−
−→
AC
AC

(voir page 36).
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Définition On appelle bissectrice intérieure (resp. extérieure) en A du triangle ABC la bissectrice de (AB)

et (AC) dirigée par
−−→
AB
AB

+
−→
AC
AC

(resp. par
−−→
AB
AB

−
−→
AC
AC

).

Proposition 3.15 Soient ABC un triangle non plat, a, b et c les distances BC, CA et AB.

1) Les trois bissectrices intérieures sont concourantes en le barycentre I de (A, a), (B, b) et (C, c).

2) La bissectrice intérieure en A (resp. B, resp. C) et les bissectrices extérieures en B et C (resp. C et A, resp.
A et B) sont concourantes en le barycentre IA de (A,−a), (B, b) et (C, c) (resp. le barycentre IB de (A, a),
(B,−b) et (C, c), resp. le barycentre IC de (A, a), (B, b) et (C,−c)).

3) Il existe exactement quatre cercles tangents aux trois côtés du triangle, respectivement centrés en I, IA, IB
et IC .

Définition Le cercle tangent aux côtés du triangle et centré en I est appelé cercle inscrit dans le triangle
ABC ; les trois autres sont appelés cercles exinscrits.

Démonstration. • Soit I le barycentre de (A, a), (B, b) et (C, c). Puisque

−→
AI =

1

a+ b + c

Ä
b
−−→
AB + c

−→
AC
ä
=

bc

a+ b+ c

b
−−→
AB + c

−→
AC

bc
=

bc

a+ b+ c

Ç−−→
AB

c
+

−→
AC

b

å
,

le point I est sur la bissectrice intérieure en A. On montre de même que I est sur les deux autres bissectrices
intérieures.

• Notons que les trois points A, B et C n’étant pas alignés, on a a < b + c donc b + c − a 6= 0, et de même,
a− b + c 6= 0 et a+ b− c 6= 0.
Si IA est le barycentre de (A,−a), (B, b) et (C, c), alors :

→
−−→
AIA = 1

−a+b+c

Ä
b
−−→
AB + c

−→
AC
ä
= bc

−a+b+c

(−−→
AB
c

+
−→
AC
b

)
donc IA est sur la bissectrice intérieure en A,

→
−−→
BIA = 1

−a+b+c

Ä
(−a)

−−→
BA+ c

−−→
BC
ä
= ac

−a+b+c

(−−→
BC
a

−
−−→
BA
c

)
donc IA est sur la bissectrice extérieure en B,

et on montre de même que IA appartient à la bissectrice extérieure en C.
La démonstration est identique pour IB et IC .

• Notons X , Y et Z les projetés orthogonaux de I respectivement sur (BC), (CA) et (AB). On a donc

IX = d
(
I, (BC)

)
, IY = d

(
I, (CA)

)
et IZ = d

(
I, (AB)

)
.

Or I est sur les trois bissectrices intérieures du triangle, donc est équidistant de (AB), (BC) et (CD) (propo-
sition 2.32). Ainsi, IX = IY = IZ et les trois points X , Y et Z sont sur un même cercle centré en I. De plus,
les droites (BC), (CA) et (AB) sont tangentes à ce cercle en ces points d’après la propriété 3.2.
On montre de même que IA, IB et IC sont également les centres de cercles tangents aux trois côtés du triangle.

• Enfin, si un cercle C est tangent aux trois côtés du triangle, son centre M est équidistant de (AB), (BC) et
(CA) donc, d’après la proposition 2.32, appartient à une intersection DA ∩ DB ∩ DC où DA (resp. DB, DC)
est une bissectrice en A (resp. B, C). Or d’après ce qui précède, deux bissectrices intérieures se coupent en I
et deux bissectrices extérieures en IA, IB ou IC . Par conséquent, M est un de ces quatre points et C un des
quatre cercles tangents précédents.

�

Proposition 3.16 La bissectrice intérieure issue de A (resp. B, resp. C) rencontre (BC) (resp. (CA), resp.
(AB)) en le barycentre de (B, b) et (C, c) (resp. (C, c) et (A, a), resp. (A, a) et (B, b)).

Démonstration. Si S est le barycentre de (B, b) et (C, c), alors S appartient à (BC) d’une part, et d’autre
part :

−→
AS =

1

b+ c

Ä
b
−−→
AB + c

−→
AC
ä
=

1

b+ c

Ä
a
−→
AA+ b

−−→
AB + c

−→
AC
ä
=

a+ b+ c

b+ c

−→
AI

d’après la proposition 3.15. Par conséquent, S est également sur (AI).
�

L2 Géométrie affine et euclidienne 2014-2015 S. Gervais



IV Cercles inscrit et exinscrits - Théorème de Feuerbach 61

b
A

b

B

b

C

b
I

b

IA

b
IC

b

IB

b) Le théorème de Feuerbach

Théorème 3.5 (Feuerbach) Le cercle d’Euler d’un triangle ABC est tangent au cercle inscrit et aux trois
cercles exinscrits de ABC.

Définition Les quatre points de contact sont appelés points de Feuerbach 5 du triangle.

b
A

b

B

b
C

b

A′

b

B′

b
C′

b
FC

b
FA

b

Fb
FB

5. Karl Wilhelm Feuerbach, mathématicien allemand, 1800-1834.
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Complétons la liste des notations :

∗ a, b, et c désignent les longueurs respectives BC, CA et AB ;

∗ A′, B′ et C′ sont les milieux respectifs de [B,C], [C,A], et [A,B] ;

∗ Ci est le cercle inscrit dans ABC, I son centre ;

∗ X , Y et Z sont les points de contact de Ci avec (BC), (CA) et (AC) respectivement ;

∗ Ce est le cercle exinscrit à ABC, issu de A, IA son centre et XA son point de contact avec (BC) ;

∗ S est le point d’intersection de (BC) avec (IAI) = (AI) ;

∗ HA est le pied de la hauteur issue de A ;

∗ Γ est le cercle d’Euler de ABC : il contient HA, A
′, B′ et C′.

Γ

Ce

Ci

b
A b

B

b
C

b

A′

bB′

b

C′

b
I

b
IA

b XA

b

X

b

S

b

HA

b

Z

b
Y

b
YA

b

ZA

Lemme 2
〈−→
AC

∣∣∣−−→BC
〉
= 1

2 (a
2 + b2 − c2),

〈−−→
BA

∣∣∣−→CA
〉
= 1

2 (b
2 + c2 − a2) et

〈−−→
CB

∣∣∣−−→AB
〉
= 1

2 (c
2 + a2 − b2).

Démonstration. On a c2 = AB2 =
〈−→
AC +

−−→
CB

∣∣∣−→AC +
−−→
CB

〉
= AC2 + 2

〈−→
AC

∣∣∣−−→CB
〉
+ CB2, ce qui conduit à

la première égalité. Les deux autres égalités se démontrent de la même façon.
�

Lemme 3 X et XA ont respectivement pour coordonnées barycentriques dans le repère (A,B,C) :

X :

Å
0,

a+ b− c

2a
,
a+ c− b

2a

ã
XA :

Å
0,

a+ c− b

2a
,
a+ b − c

2a

ã
.

Démonstration. Notons respectivement M et N les deux points ayant ces coordonnées. Puisque leur première
coordonnée est nulle, ils sont sur (BC). D’autre part, X (resp. XA) est le projeté orthogonal de I (resp. IA) sur

(BC). Nous allons donc montrer que
〈−−→
IM

∣∣∣−−→BC
〉
=
〈−−→
IAN

∣∣∣−−→BC
〉
= 0 pour conclure. D’après la proposition 3.15,

on a

−−→
IM =

1

a+ b+ c

Ä
a
−−→
AM + b

−−→
BM + c

−−→
CM
ä

=
1

a+ b+ c

Å
a+ b− c

2

−−→
AB +

a+ c− b

2

−→
AC +

b(a+ c− b)

2a

−−→
BC +

c(a+ b− c)

2a

−−→
CB

ã

=
1

a+ b+ c

Å
a+ b− c

2
(
−→
AC +

−−→
CB) +

a+ c− b

2

−→
AC +

ba− b2 − ca+ c2

2a

−−→
BC

ã

=
1

a+ b+ c

Å
a
−→
AC +

c2 − b2 − a2

2a

−−→
BC

ã
.

En utilisant le lemme 2, on obtient donc

2a(a+ b+ c)
〈−−→
IM

∣∣∣−−→BC
〉
= 2a2

〈−→
AC

∣∣∣−−→BC
〉
+(c2− b2− a2)

〈−−→
BC

∣∣∣−−→BC
〉
= a2(b2+ a2− c2)+ a2(c2 − b2− a2) = 0.

On procède de la même manière pour montrer que XA = N .
�
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Corollaire 3.6 A′ est le milieu de [X,XA] et XXA = |b − c|.

Démonstration. Par associativité du barycentre, les coordonnéees barycentriques du milieu de [X,XA] sont :
Å
0,

a+ b− c

4a
+

a+ c− b

4a
,
a+ c− b

4a
+

a+ b− c

4a

ã
=

Å
0,

1

2
,
1

2

ã
.

D’autre part, on a

−−−→
XXA =

a+ b− c

2a

−−−→
BXA +

a+ c− b

2a

−−−→
CXA =

(a+ b− c)2

4a2
−−→
BC +

(a+ c− b)2

4a2
−−→
CB

=
(a+ b − c)2 − (a+ c− b)2

4a2
−−→
BC =

4a(b− c)

4a2
−−→
BC =

b− c

a

−−→
BC.

�

Démonstration du théorème de Feuerbach. Nous allons montrer que Γ est tangent au cercle inscrit Ci

et au cercle exinscrit Ce issu de A, la démonstration étant la même pour les deux autres cercles exinscrits.

1) Si le triangle ABC est isocèle en A (ie b = c), les cinq points X , XA, A
′, S et HA cöıncident car la bissectrice

intérieure et la hauteur issues de A, ainsi que la médiatrice de [B,C], sont confondues. Dans ce cas, Γ est tangent
à (BC) en A′ = HA, donc à Ci et Ce. Nous supposons dorénavant que ABC n’est pas isocèle en A. Dans ce
cas, b 6= c donc les cinq points X , XA, A

′, S et HA sont deux à deux distincts :

→ c’est clair pour les quatre premiers car on connâıt leurs écritures comme barycentres de B et C ;

→ si HA cöıncide avec X , S ou XA, alors HA = X = S = XA car la hauteur issue de A cöıncide avec la
bissectrice intérieure issue de A ;

→ enfin, si HA = A′, la hauteur issue de A cöıncide avec la médiatrice de [B,C] donc b = c, ce qui est
contraire à notre hypothèse.

2) Notons C le cercle de diamètre [X,XA] et IC l’inversion de cercle C . D’après le corollaire 3.6, A′ est le
centre de C . Par conséquent, la droite (BC) est sa propre inverse par rapport à C (théorème 3.4).
Puisque X est distinct de A′, Ci ne contient pas A′ donc IC (Ci) est un cercle (théorème 3.4). Ce cercle n’est
autre que Ci lui-même car :

→ X appartient à C donc IC (X) = X ;

→ or X est l’unique point d’intersection de Ci avec (BC) donc X = IC (X) est l’unique point d’intersec-

tion de IC (Ci) avec IC

(
(BC)

)
= (BC) : IC (Ci) est tangent à (BC) en X ;

→ si X ′ est le second point d’intersection de C avec Ci, alors IC (X ′) = X ′ donc IC (Ci) passe par X ′.

On montre de même que IC (Ce) = Ce.

C

∆

D1

D2

b

A b

B

bC

b

A′

b
B′

b

C′

b
I

b

IA

b
XA

b

X

b

S

b

HA

b

X′

bB1

b
C1

b

Ω
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3) Notons σ la réflexion d’axe la bissectrice (AI), B1 et C1 les images respectives de B et C par σ et ∆ la
droite (B1C1), image de (BC) par σ. Puisque σ échange (AB) et (AC), les points B1 et C1 sont respectivement
sur (AC) et (AB).
D’autre part, les deux cercles Ci et Ce étant invariants par σ (l’axe passe par les centres), ∆ est tangente à ces
cercles puisque (BC) l’est. Pour conclure la démonstration du théorème, nous allons démontrer que l’image de
∆ par IC est le cercle d’Euler Γ : puisque Ci et Ce sont invariants par IC , cela montrera que Γ leur est tangent.
Nous allons en fait montrer que IC (Γ) = ∆. Notons déjà que IC (Γ) est bien une droite car le pôle A′ de IC est
sur Γ.

4) Le pied de la hauteur issue de A,HA, est sur Γ : son inverse est donc sur IC (Γ). Montrons que IC (HA) = S, le
point d’intersection de la bissectrice (AI) avec (BC). L’inverse de S est le point d’intersection de (A′S) = (BC)
avec la polaire ∆S de S. Or ∆S = (AHA) :

→ A et S sont conjugués par rapport à C car

〈−−→
A′S

∣∣∣
−−→
A′A

〉
=

1

b+ c

(
b
〈−−→
A′B

∣∣∣
−−→
A′A

〉
+ c

〈−−→
A′C

∣∣∣
−−→
A′A

〉)
d’après la proposition 3.16

=
1

2(b+ c)

(
b
〈−−→
CB

∣∣∣
−−→
A′A

〉
+ c

〈−−→
BC

∣∣∣
−−→
A′A

〉)

=
b− c

2(b+ c)

〈−−→
CB

∣∣∣
−−→
A′A

〉
=

b− c

2(b+ c)

Æ
−−→
CB

∣∣∣∣∣

−−→
BA+

−→
CA

2

∏

=
b− c

4(b+ c)

(〈−−→
CB

∣∣∣−−→BA
〉
+
〈−−→
CB

∣∣∣−→CA
〉)

=
b− c

8(b+ c)

(
(b2 − a2 − c2) + (a2 + b2 − c2)

)
d’après le lemme 2

=
b− c

8(b+ c)

(
2b2 − 2c2)

)
=

(b − c)2

4

= A′X2 d’après le corollaire 3.6 ;

→ ∆S est donc la droite perpendiculaire à (A′S) = (BC) passant par A, soit la hauteur (AHA).

Ainsi, IC (Γ) est une droite passant par S.

5) Notons D1 la tangente en A au cercle circonscrit à ABC. D’après le théorème de l’angle inscrit (et le

lemme 8), les angles orientés de droites Ÿ�D1, (AB) et ¤�(CA), (CB) sont égaux. Puisque les réflexions renversent
les angles, on a

¤�
σ(D1), σ

(
(AB)

)
= −Ÿ�D1, (AB) = −¤�(CA), (CB), soit ¤�σ(D1), (AC) = ¤�σ(D1), (AB1) = ¤�(CB), (CA).

En utilisant le résultat de la proposition 2.24, on en déduit que σ(D1) est parallèle à (BC) et donc que D1 est

parallèle à σ
(
(BC)

)
= ∆.

Considérons l’homothétie h de centre G et de rapport − 1
2 : elle envoie A, B et C respectivement sur A′, B′ et

C′, donc le cercle circonscrit à ABC sur le cercle d’Euler Γ. Par conséquent, si D2 est la tangente à Γ en A′,
D2 = h(D1) est parallèle à D1, donc à ∆.
Maintenant, puisque A′ est sur D2, IC (D2) = D2. D’autre part, D2 \{A′} ne rencontre pas Γ, donc IC (D2) = D2

ne rencontre pas IC (Γ). Les deux droites IC (Γ) et D2 sont donc parallèles.

6) Nous pouvons maintenant conclure : IC (Γ) est la droite parallèle à ∆ (point 5)) passant par S (point 4)),
c’est-à-dire IC (Γ) = ∆. C’est ce que nous voulions démontrer.

�
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