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Problems of interest

We seek u(ξ) : y 7→ u(y, ξ), depending on (random) parameter ξ ∈ Ξ ⊂ Rp, solution of

P(u(ξ), ξ) = 0,

with P some parameter-dependent partial differential operator.

Forward problems related to parameter-dependent PDEs.

3 Usual discretization methods provide a numerical solution in vector space V

u(ξ) ≈ u(ξ).

7 When V is high dimensional, computing the numerical solution u(ξ), for many
instances of ξ in Ξ, may be too costly.

Model order reduction approaches. Approximation methods providing a surrogate ur of

u : Ξ→ V,

that can be evaluated for any ξ ∈ Ξ at low complexity.

M. Billaud-Friess · ECN-NU, LMJL · HDR Defense 1/28



Problems of interest

We seek u(ξ) : y 7→ u(y, ξ), depending on (random) parameter ξ ∈ Ξ ⊂ Rp, solution of

P(u(ξ), ξ) = 0,

with P some parameter-dependent partial differential operator.

Forward problems related to parameter-dependent PDEs.

3 Usual discretization methods provide a numerical solution in vector space V

u(ξ) ≈ u(ξ).

7 When V is high dimensional, computing the numerical solution u(ξ), for many
instances of ξ in Ξ, may be too costly.

Model order reduction approaches. Approximation methods providing a surrogate ur of

u : Ξ→ V,

that can be evaluated for any ξ ∈ Ξ at low complexity.

M. Billaud-Friess · ECN-NU, LMJL · HDR Defense 1/28



Problems of interest

We seek u(ξ) : y 7→ u(y, ξ), depending on (random) parameter ξ ∈ Ξ ⊂ Rp, solution of

P(u(ξ), ξ) = 0,

with P some parameter-dependent partial differential operator.

Forward problems related to parameter-dependent PDEs.

3 Usual discretization methods provide a numerical solution in vector space V

u(ξ) ≈ u(ξ).

7 When V is high dimensional, computing the numerical solution u(ξ), for many
instances of ξ in Ξ, may be too costly.

Model order reduction approaches. Approximation methods providing a surrogate ur of

u : Ξ→ V,

that can be evaluated for any ξ ∈ Ξ at low complexity.

M. Billaud-Friess · ECN-NU, LMJL · HDR Defense 1/28



Approximation and MOR for parameter-dependent PDEs

Many challenging questions for computing ur ≈ u:

• What if, y = x in Θ = D or y = (x, t) in Θ = D × I ?

• Under which form(at), do we seek the approximation ur?

• How to compute ur from suitable projection? optimization?

• What kind of algorithms to get ur? deterministic? probabilistic?

• Use snapshots in Ξ? or pointwise evaluations over Θ× Ξ?

• Can the approximation ur be optimal? quasi-optimal? in which sense?

• How to deal with high dimensional problems ?
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2. Time dependent non-linear problems
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2. Time dependent non-linear problems

3. Conclusion

PhD O. Zahm : (B.-F., Nouy, Zahm,2013) (B.-F., Nouy, Zahm,2014) (Zahm, B.-F., Nouy,2017)

PhD A. Macherey: (B.-F., Macherey, Nouy, Prieur,2020) (B.-F., Macherey, Nouy, Prieur,2022)

(B.-F., Macherey, Nouy, Prieur,in preparation)
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Elliptic parameter-dependent PDEs

Let D ⊂ Rd be an open bounded domain with boundary ∂D and Ξ ⊂ Rp be a parameter
set. We seek, for all ξ ∈ Ξ, u(ξ) : D → R solution of

−A(ξ)u(ξ) = g(ξ), in D,
u(ξ) = f(ξ), on ∂D,

(1)

with given functions g : D̄ × Ξ→ R and f : ∂D × Ξ→ R.

Here A(ξ) stands for the following partial differential operator

A(ξ) =
1

2

d∑
i,j=1

(σ(ξ)σ(ξ)T )ij∂
2
xixj

+

d∑
i=1

bi(ξ)∂xi − k(ξ),

with b(ξ) : Rd × Ξ→ Rd, σ(ξ) : Rd → Rd×d and k(ξ) : Rd → R∗+.
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Low-rank approximation for parameter-dependent problems in nutshell

We want to approximate u : Ξ→ V with V some high dimensional vector space.

Linear approximation.

We seek ur as the rank-r approximation of u ∈ X := V ⊗ S

ur(ξ) =
r∑
i=1

αi(ξ)vi

with {v1, . . . , vr} ⊂ V and {α1, . . . , αr} ⊂ S a vector space of functions defined on Ξ.

Two points of view. (Nouy,2017)

1 Approximation in low-rank tensor subset Mr(X) of X

2 Low-rank approximation methods based on projection in subspace Vr of V
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1 Approximation in low-rank tensor subset: with greedy algorithm

Let X (sim. Y ) be Hilbert tensor space with dual X′ and A ∈ L(X,Y ′).

Here, u ∈ X is solution of
Au = b, in Y ′. (2)

Tensor subset.
Minimal residual approximation. We seek ur ≈ u as

ur ∈ arg min
v∈Mr(X)

‖Av − b‖Y ′ . (3)

Greedy computation of ur.

For r ≥ 1, compute ur = ur−1 + wr with

wr ∈ arg min
w∈M1(X)

‖A(ur−1 + w)− b‖Y ′ .
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Ideal minimal residual method (B.-F., Nouy, Zahm,2013) (B.-F., Nouy, Zahm,2014)

The approximation ur ∈Mr(X) is sought as

min
v∈Mr(X)

‖Av − b‖Y ′ . (4)

7 When ‖ · ‖Y ′ is not properly chosen (e.g. canonical norm), A is badly conditionned
and ur can be far from the best approximation

min
v∈Mr(X)

‖u− v‖X . (5)

Ideal norm. If we choose (Cohen, Dahmen, Welper,2012) (Dahmen, Huang, Schwab, Welper,2012)

‖Av‖Y ′ = ‖v‖X .

3A is ideally conditionned and ur is the best approximation (5).

⇒ It can been seen as preconditioning the residual.

Practical approach. Perturbated gradient type algorithm

1. Compute an approximation of the residual with prescribed precision δ.

2. Compute a quasi-optimal approximation of the update (using greedy procedure).

⇒ The algorithm converges towards a neighborhood of the best approximation.
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Application for stochastic advection-reaction-diffusion equation.

Confronted approaches.

1. Black : Reference solution

2. Dashed black: Minimal residual with canonical norm

3. Perturbated ideal minimal residual with precision δ
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ũ
|| 2
/|
|u
|| 2

Direct approach

2 4 6 8 10 12 14 16 18 20
10−2

10−1

100

rank r

||u
re

f
−
ũ
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Relative approximation error in canonical norm with respect to rank.
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2 Projection based approach : reduced basis method (RBM)

Let V (sim. W) be Hilbert space and A(ξ) ∈ L(V,W ′).

For all ξ ∈ Ξ, we seek ur(ξ) ≈ u(ξ) ∈ V solution of

A(ξ)u(ξ) = b(ξ), ξ ∈ Ξ (6)

in a low-dimensional subspace Vr ⊂ V with dim(Vr) = r.

Offline : greedy construction of Vr.

Let Ξ̃ ⊂ Ξ be a discrete training set and V0 = {0}. For r ≥ 1 proceed as follows.

1) Select
ξr ∈ arg max

ξ∈Ξ̃
∆(ur−1(ξ), ξ).

2) Compute the snapshot u(ξr) and update Vr = span{u(ξ1), . . . , u(ξr)}.

∆(ur(ξ), ξ) is a suitable error estimate computable from the equation residual.

Online: computation of ur(ξ). It is obtained from suitable projection in Vr using
the equation residual, with complexity depending only on r.
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Framework for MOR for PDEs

• PDEs are discretized for given mesh of D.

• The equation residual is used as computable quantity for numerical purpose.

• Proposed algorithms are mainly deterministic.

But what if, we have access to pointwise estimates of u(x, ξ) for any (x, ξ) ∈ D×Ξ ?
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PDEs with probabilistic interpretation

The partial operator

A(ξ) =
1

2

d∑
i,j=1

(σ(ξ)σ(ξ)T )ij∂
2
xixj

+
d∑
i=1

bi(ξ)∂xi ,

is the infinitesimal generator related to the diffusion process Xx,ξ solution of

dXx,ξ
t = b(Xx,ξ

t , ξ)dt+ σ(Xx,ξ
t , ξ) dWt t ≥ 0, (7)

starting from Xx,ξ
0 = x ∈ D with W a d-dimensional brownian motion on (Ω,F ,P).

Probabilistic representation. By Feynman-Kac (FK) formula, for all x ∈ D we have

u(x, ξ) = E

(
f(Xx,ξ

τx,ξ
, ξ) +

∫ τx,ξ

0
g(Xx,ξ

t , ξ)dt

)
, (8)

where Xx,ξ is solution of (7) stopped at t = τx,ξ. (Friedman [§6,Theorem 2.4],2010)

⇒ Monte-Carlo estimates of u(x, ξ)
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where Xx,ξ is solution of (7) stopped at t = τx,ξ. (Friedman [§6,Theorem 2.4],2010)

⇒ Monte-Carlo estimates of u(x, ξ)
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PDEs with probabilistic interpretation
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Probabilistic and sample based RBM (B.-F., Macherey, Nouy, Prieur,in preparation)

Sample based projection.

Using FK samples, we compute snapshots u(ξ) and ur(ξ) avoiding the equation residual.

⇒ Least-square methods

⇒ Interpolation (within control variate setting and d >> 1)

(Gobet-Maire,2006) (B.-F., Macherey, Nouy, Prieur,2020)

Probabilistic interpretation of the square norm of the current error.

We choose
∆(ur(ξ), ξ) = ‖u(ξ)− ur(ξ)‖2L2(D)

= E (Zr(ξ)) ,

where Zr(ξ) are computed from FK samples of u(ξ)− ur(ξ).
⇒ Probabilistic greedy algorithm

(Boyaval, Lelièvre,2010) (Cohen, Dahmen, DeVore, Nichols,2020) (Blel, Ehrlacher, Lelièvre,2021)

(Cai, Yao, Liao,2022)
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Probabilistic greedy algorithm (B.-F., Macherey, Nouy, Prieur,in preparation)

Start from V0 = {0} and proceed, for n ≥ 1, as follows.

1) Select
ξr ∈ arg max

ξ∈Ξ̃
E(Zr−1(ξ))

2) Compute u(ξr) and update Vr = span{u(ξ1), . . . , u(ξr)}.

How to choose the "probabilistic selection procedure" S(Zr−1(ξ), Ξ̃) ?

Possible approaches.

• Crude Monte-Carlo based approach:

3practically simple,
7no guarantee that ξr is a (quasi-)optimum, a.s. or with high probability.

• Bandit algorithm based approach:

(Lattimore-Szepesvári,2022) (B.-F., Macherey, Nouy, Prieur,2022)

7structural complex assumption on Zr(ξ) leading to practical limitation,
3designed to return a probably approximately correct (PAC) maximum ξr in
relative precision with adaptive number of samples.

⇒ Weak-greedy algorithm with high probability
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Application for one-dimensional parameter-dependent advection-diffusion equation

• Snapshots are the exact solutions u(x, ξ) = 10x sin(xξ), ξ ∈ [2π, 4π]

• Projections are computed using Least-Square (LS), Residual LS (RLS).

Confronted approaches for greedy selection.

• D: deterministic exact error

• D (residual): deterministic residual based error

• MC: FK-MC estimate with K = 1 sample

• R: ξr chosen at random in Ξ̃ (without replacement).
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Outline

1. Time independent linear problems

2. Time dependent non-linear problems

3. Conclusion

Projects: GdR MoMas (Manu) REMDYN (2015), PEPS DROME by the Cellule Energie du CNRS
(2019) with T. Heuzé.

(B.-F., Nouy,2017) (B.-F., Falcò, Nouy,2021) (B.-F., Falcò, Nouy,2021b) (B.-F., Heuzé,preprint)
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Nonlinear time and parameter-dependent PDEs

Let T > 0. We seek, for all ξ ∈ Ξ, u(ξ) : D × [0, T ]→ R solution of

∂tu(t, ξ) = A(ξ)u(t, ξ) + h(u(t, ξ), t, ξ), in D × (0, T ],
u(0, ξ) = u0(ξ),

(9)

with suitable boundary conditions. Here h : R× [0, T ]× Ξ→ R and u0 : D × Ξ→ R.

M. Billaud-Friess · ECN-NU, LMJL · HDR Defense Time dependent non-linear problems 17/28



Dynamical low-rank approximation methods for time-dependent problems in nutshell

We want to approximate u(t) : Ξ→ V , t ∈ [0, T ].

Local (in time), linear approximation.

At each time t, we seek ur(t) as the rank-r approximation of u(t) ∈ X := V ⊗S, i.e.

ur(t, ξ) =
r∑
i=1

αi(t, ξ)vi(t)

where {v1(t), . . . , vr(t)} ⊂ V and {α1(t), . . . , αr(t)} ⊂ S.

Dynamical low-rank approximation (DLRA) methods.

(Koch, Lubich,2007) (Nonnenmacher, Lubich,2008) (Sapsis, Lermusiaux,2009) (Cheng, Hou, Zhang,

Sorensen,2013) (Musharbash, Nobile, Zhou,2015) (Feppon, Lermusiaux,2018)...

1 Approximation in low-rank tensor subset

2 Projection based method in low-dimensional subspaces
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1 Dynamical low-rank approximation in tensor subsets

Let X = Rn×m, we seek u : [0, T ]→ X s.t.

u̇(t) = f(u(t), t), t ∈ (0, T ] (10)

with u(0) = u0 ∈ Rn×m and f : Rn×m × [0, T ]→ Rn×m.

Tensor subset. We consider the set of rank-r matrices

Mr(Rn×m) = {v ∈ Rn×m : rank(v) = r} ⊂ X.

Dirac-Frenckel variational principle. We seek a ur(t) ∈Mr(Rn×m) as

u̇r(t) = arg min
v̇∈Tur(t)Mr(Rn×m)

‖v̇ − f(ur(t), t)‖F , t ∈ (0, T ], (11)

with TurMr(Rn×m) the tangent space to Mr(Rn×m) at ur.

Equivalently,
u̇r(t) = PTur(t)

f(ur(t), t), (12)

with PTur(t)
the orthogonal projection on the tangent space.
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Toward numerical methods

How to solve (matrix) differential equation (12) ?

Riemaniann based time-stepping schemes.

a. Work in the ambiant space Rn×m

b. Update/projection steps for ur with explicite Runge Kutta scheme

(Kieri, Vandereycken,2019)...

"Geometry" based approaches.

a. Suitable parametrization of Mr(Rn×m)

b. Suitable numerical discretization using projector splitting schemes
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a Suitable geometric description of Mr(Rn×m)

Parametrization of Mr(Rn×m). Any ur ∈Mr(Rn×m) may be decomposed as

ur = UGVT ,

with U ∈Mr(Rn×r),V ∈Mr(Rm×r) and G ∈ GLr.

7 But this decomposition is not unique!

Possible paths.

1. Impose the so-called gauge conditions through tangent space (Koch,Lubich,2007)

2. Use chart based geometric description of Mr(Rn×m) (B.-F., Falcò, Nouy,2021)

⇒ We recover naturally gauge conditions!
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b Projector-splitting integrators

Especially, u̇r ∈ TurM(Rn×m) is uniquely given by

u̇r = U⊥ẊGV
T + UG(V⊥Ẏ)T + UḢVT ,

with U⊥ ∈Mn−r(Rn×(n−r)), V⊥ ∈Mm−r(Rn×(m−r)), UT⊥U = 0 and VT⊥V = 0, and

Ẋ = U+
⊥f(ur)(V+)TG−1,

Ẏ = V+
⊥f(ur)T (U+)TG−T ,

Ḣ = U+f(ur)(V+)T .

(13)

Lie-Trotter projector-splitting integrators.

• Update successively X,Y,H (or U,G,V)

• Different variants depending on splitting order for PTur

(Lubich, Oseledets,2014) (Kieri, Lubich, Walach,2014) (Ceruti, Lubich,2022) (Kazashi, Nobile,

Vidličková,2021) (B.-F., Falcò, Nouy,2021b)...

M. Billaud-Friess · ECN-NU, LMJL · HDR Defense Time dependent non-linear problems 22/28



Application for one-dimensional parameter-dependent Burgers’s equation

Confronted approaches.

1. KSL : Symmetric splitting (Lubich, Oseledets,2014)

2. Chart: Chart based splitting algorithm
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2 Projection based method : time-dependent RBM (B.-F., Nouy,2017)

Let V = Rn, for all ξ ∈ Ξ, we seek u(ξ) : [0, T ]→ V s.t.

u′(t, ξ) = f(u(t, ξ), t, ξ), t ∈ (0, T ], (14)

with u(0, ξ) = u0(ξ) given.

(Online) Projection step.

We are given time-dependent reduced space Vr(t) ⊂ V with dim(Vr(t)) = r.
α′i(t, ξ) = 〈f(ur(t, ξ), t, ξ)−

r∑
i=1

v′i(t)αi, vi(t)〉, t > 0, i = 1, . . . , r

αi(0, ξ) = 〈u0(ξ), vi(0)〉.

(15)

(Offline) T-greedy algorithm.

Let Ξ̃ ⊂ Ξ be a discrete training set and V0 = {0}. For r ≥ 1 proceed as follows.

1) Select

ξr ∈ arg max
ξ∈Ξ̃

∆
(0,T )
r (ξ).

2) Compute t 7→ u(t, ξr) and update Vr(t) = span{u(t, ξ1), . . . , u(t, ξr)}.

3 The Galerkin projection ur interpolates the solution u for {ξ1, . . . , ξr}.
3 Smaller reduced spaces for reaching the same accuracy than RBM.
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We are given time-dependent reduced space Vr(t) ⊂ V with dim(Vr(t)) = r.
α′i(t, ξ) = 〈f(ur(t, ξ), t, ξ)−

r∑
i=1

v′i(t)αi, vi(t)〉, t > 0, i = 1, . . . , r

αi(0, ξ) = 〈u0(ξ), vi(0)〉.

(15)

(Offline) T-greedy algorithm.

Let Ξ̃ ⊂ Ξ be a discrete training set and V0 = {0}. For r ≥ 1 proceed as follows.

1) Select

ξr ∈ arg max
ξ∈Ξ̃

∆
(0,T )
r (ξ).

2) Compute t 7→ u(t, ξr) and update Vr(t) = span{u(t, ξ1), . . . , u(t, ξr)}.

3 The Galerkin projection ur interpolates the solution u for {ξ1, . . . , ξr}.
3 Smaller reduced spaces for reaching the same accuracy than RBM.
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Applications

One-dimensional viscous Burgers’s equation with random coefficients.

Time dependent Vr(t) Time independent Vr

0 5 10 15
10−12

10−9

10−6

10−3

100

rank r
0 20 40

10−12

10−9

10−6

10−3

100

rank r

max(E2)

max(E∞)

E(E2)

E(E∞)

Max and mean relative error for 50 instances of the parameter with respect to rank.

Some prospects for transport. The solution manifold can not be well approximated
with a single time-independent linear space Vr. (Ohlberger,Rave,2015) (Greif,Urban,2019)

• Better approximation with time-dependent reduced spaces (B.-F., Nouy,2017)

• MOR methods relying on transformed snapshots (Ohlberger, Rave,2013) (Cagniart,

Crisovan, Maday, Abgrall,2017) (Rim, Peherstorfer, Mandli,2019) (Black, Schulze,

Unger,2020) (Kleikamp, Ohlberger, Rave,2022)...

⇒ REA method: Reconstruction approach in FV framework (B.-F., Heuzé,preprint)
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Outline

1. Time independent linear problems

2. Time dependent non-linear problems

3. Conclusion
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Summary

Many challenging questions for computing ur.

3 What if y = x in Θ = D or y = (x, t) in Θ = D × I ?

3 Under which form(at), do we seek the approximation ur?

3 How to compute ur from suitable projection? optimization?

3 Compute ur(ξ) from snapshots in Ξ? from pointwise evaluations over Θ× Ξ?

3 Can the approximation ur be optimal? quasi-optimal? in which sense?

3 What kind of algorithms to get ur and/or Vr? deterministic? probabilistic?

3 How to deal with high dimensional problems ?
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Prospects: straightforward and MORe...

Parameter-dependent PDEs with probabilistic interpretation.

• Validate the approach in fully sample setting (ongoing work).

• Extension and validation for high dimensional cases or time-dependent problems.

Dynamical low-rank approximation methods for parameter and time-dependent PDEs.

• Further analysis of chart based splitting approach for matrix ODEs.

• Improve computational cost of projection based methods using randomized linear
algebra.

• Toward "nonlinear" approximation: applicability of REA for conservation laws,
Neural Network Galerkin approach.

...
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Thanks for your attention !
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