Contributions for the approximation and model order reduction of partial differential equations
Habilitation à diriger des recherches

Marie Billaud-Friess

Centrale Nantes, Nantes Université
Laboratoire Mathématiques Jean Leray

We seek $\mathbf{u}(\xi): y \mapsto \mathbf{u}(y, \xi)$, depending on (random) parameter $\xi \in \Xi \subset \mathbb{R}^{p}$, solution of

$$
\mathcal{P}(\mathbf{u}(\xi), \xi)=0
$$

with \mathcal{P} some parameter-dependent partial differential operator.

We seek $\mathbf{u}(\xi): y \mapsto \mathbf{u}(y, \xi)$, depending on (random) parameter $\xi \in \Xi \subset \mathbb{R}^{p}$, solution of

$$
\mathcal{P}(\mathbf{u}(\xi), \xi)=0
$$

with \mathcal{P} some parameter-dependent partial differential operator.

Forward problems related to parameter-dependent PDEs.

\checkmark Usual discretization methods provide a numerical solution in vector space V

$$
u(\xi) \approx \mathrm{u}(\xi)
$$

\boldsymbol{x} When V is high dimensional, computing the numerical solution $u(\xi)$, for many instances of ξ in Ξ, may be too costly.

We seek $\mathbf{u}(\xi): y \mapsto \mathbf{u}(y, \xi)$, depending on (random) parameter $\xi \in \Xi \subset \mathbb{R}^{p}$, solution of

$$
\mathcal{P}(\mathbf{u}(\xi), \xi)=0
$$

with \mathcal{P} some parameter-dependent partial differential operator.
Forward problems related to parameter-dependent PDEs.
\checkmark Usual discretization methods provide a numerical solution in vector space V

$$
u(\xi) \approx \mathrm{u}(\xi)
$$

\boldsymbol{x} When V is high dimensional, computing the numerical solution $u(\xi)$, for many instances of ξ in Ξ, may be too costly.

Model order reduction approaches. Approximation methods providing a surrogate u_{r} of

$$
u: \Xi \rightarrow V
$$

that can be evaluated for any $\xi \in \Xi$ at low complexity.

Many challenging questions for computing $u_{r} \approx u$:

Many challenging questions for computing $u_{r} \approx u$:

- What if, $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?

Many challenging questions for computing $u_{r} \approx u$:

- What if, $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?
- Under which form(at), do we seek the approximation u_{r} ?

Many challenging questions for computing $u_{r} \approx u$:

- What if, $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?
- Under which form(at), do we seek the approximation u_{r} ?
- How to compute u_{r} from suitable projection? optimization?

Many challenging questions for computing $u_{r} \approx u$:

- What if, $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?
- Under which form(at), do we seek the approximation u_{r} ?
- How to compute u_{r} from suitable projection? optimization?
- What kind of algorithms to get u_{r} ? deterministic? probabilistic?

Many challenging questions for computing $u_{r} \approx u$:

- What if, $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?
- Under which form(at), do we seek the approximation u_{r} ?
- How to compute u_{r} from suitable projection? optimization?
- What kind of algorithms to get u_{r} ? deterministic? probabilistic?
- Use snapshots in Ξ ? or pointwise evaluations over $\Theta \times \Xi$?

Many challenging questions for computing $u_{r} \approx u$:

- What if, $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?
- Under which form(at), do we seek the approximation u_{r} ?
- How to compute u_{r} from suitable projection? optimization?
- What kind of algorithms to get u_{r} ? deterministic? probabilistic?
- Use snapshots in Ξ ? or pointwise evaluations over $\Theta \times \Xi$?
- Can the approximation u_{r} be optimal? quasi-optimal? in which sense?

Many challenging questions for computing $u_{r} \approx u$:

- What if, $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?
- Under which form(at), do we seek the approximation u_{r} ?
- How to compute u_{r} from suitable projection? optimization?
- What kind of algorithms to get u_{r} ? deterministic? probabilistic?
- Use snapshots in Ξ ? or pointwise evaluations over $\Theta \times \Xi$?
- Can the approximation u_{r} be optimal? quasi-optimal? in which sense?
- How to deal with high dimensional problems ?

1. Time independent linear problems
2. Time dependent non-linear problems
3. Conclusion

Outline

1. Time independent linear problems

2. Time dependent non-linear problems

3. Conclusion

PhD 0. Zahm : (B.-F., Nouy, Zahm, 2013) (B.-F., Nouy, Zahm, 2014) (Zahm, B.-F., Nouy, 2017)
PhD A. Macherey: (B.-F., Macherey, Nouy, Prieur, 2020) (B.-F., Macherey, Nouy, Prieur, 2022) (B.-F., Macherey, Nouy, Prieur,in preparation)

Let $D \subset \mathbb{R}^{d}$ be an open bounded domain with boundary ∂D and $\Xi \subset \mathbb{R}^{p}$ be a parameter set. We seek, for all $\xi \in \Xi, \mathbf{u}(\xi): D \rightarrow \mathbb{R}$ solution of

$$
\begin{align*}
-\mathcal{A}(\xi) \mathbf{u}(\xi) & =\mathrm{g}(\xi), & & \text { in } D, \\
\mathrm{u}(\xi) & =\mathrm{f}(\xi), & & \text { on } \partial D, \tag{1}
\end{align*}
$$

with given functions $\mathrm{g}: \bar{D} \times \Xi \rightarrow \mathbb{R}$ and $\mathrm{f}: \partial D \times \Xi \rightarrow \mathbb{R}$.
Here $\mathcal{A}(\xi)$ stands for the following partial differential operator

$$
\mathcal{A}(\xi)=\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma(\xi) \sigma(\xi)^{T}\right)_{i j} \partial_{x_{i} x_{j}}^{2}+\sum_{i=1}^{d} b_{i}(\xi) \partial_{x_{i}}-k(\xi),
$$

with $b(\xi): \mathbb{R}^{d} \times \Xi \rightarrow \mathbb{R}^{d}, \sigma(\xi): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ and $k(\xi): \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{*}$.

We want to approximate $u: \Xi \rightarrow V$ with V some high dimensional vector space.

We want to approximate $u: \Xi \rightarrow V$ with V some high dimensional vector space.

Linear approximation.

We seek u_{r} as the rank-r approximation of $u \in X:=V \otimes S$

$$
u_{r}(\xi)=\sum_{i=1}^{r} \alpha_{i}(\xi) v_{i}
$$

with $\left\{v_{1}, \ldots, v_{r}\right\} \subset V$ and $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset S$ a vector space of functions defined on Ξ.

We want to approximate $u: \Xi \rightarrow V$ with V some high dimensional vector space.

Linear approximation.

We seek u_{r} as the rank-r approximation of $u \in X:=V \otimes S$

$$
u_{r}(\xi)=\sum_{i=1}^{r} \alpha_{i}(\xi) v_{i}
$$

with $\left\{v_{1}, \ldots, v_{r}\right\} \subset V$ and $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\} \subset S$ a vector space of functions defined on Ξ.
Two points of view. (Nouy, 2017)
(1) Approximation in low-rank tensor subset $\mathcal{M}_{r}(X)$ of X
(2) Low-rank approximation methods based on projection in subspace V_{r} of V

Let X (sim. Y) be Hilbert tensor space with dual X^{\prime} and $A \in \mathcal{L}\left(X, Y^{\prime}\right)$. Here, $u \in X$ is solution of

$$
\begin{equation*}
A u=b, \text { in } Y^{\prime} \tag{2}
\end{equation*}
$$

Let X (sim. Y) be Hilbert tensor space with dual X^{\prime} and $A \in \mathcal{L}\left(X, Y^{\prime}\right)$. Here, $u \in X$ is solution of

$$
\begin{equation*}
A u=b, \text { in } Y^{\prime} . \tag{2}
\end{equation*}
$$

Tensor subset. For $X=V \otimes S$, we define the low-rank tensor subset

$$
\mathcal{M}_{r}(X)=\left\{v=\sum_{i=1}^{r} \alpha_{i}(\xi) v_{i}: v_{i} \in V, \alpha_{i} \in S\right\} .
$$

Let X (sim. Y) be Hilbert tensor space with dual X^{\prime} and $A \in \mathcal{L}\left(X, Y^{\prime}\right)$. Here, $u \in X$ is solution of

$$
\begin{equation*}
A u=b, \text { in } Y^{\prime} . \tag{2}
\end{equation*}
$$

Tensor subset. For $X=\otimes_{\mu=1}^{p+1} X_{\mu}$, we define the low-rank tensor subset

$$
\mathcal{M}_{r}(X)=\left\{v=\sum_{i=1}^{r} \otimes_{\mu=1}^{p+1} v_{i}^{\mu}: v_{i}^{\mu} \in X_{\mu}, \mu=1, \ldots, p\right\} .
$$

Other suitable tensor formats are also possible (Hackbush, 2012).

Let X (sim. Y) be Hilbert tensor space with dual X^{\prime} and $A \in \mathcal{L}\left(X, Y^{\prime}\right)$. Here, $u \in X$ is solution of

$$
\begin{equation*}
A u=b, \text { in } Y^{\prime} . \tag{2}
\end{equation*}
$$

Tensor subset. For $X=\otimes_{\mu=1}^{p+1} X_{\mu}$, we define the low-rank tensor subset

$$
\mathcal{M}_{r}(X)=\left\{v=\sum_{i=1}^{r} \otimes_{\mu=1}^{p+1} v_{i}^{\mu}: v_{i}^{\mu} \in X_{\mu}, \mu=1, \ldots, p\right\} .
$$

Other suitable tensor formats are also possible (Hackbush, 2012).
Minimal residual approximation. We seek $u_{r} \approx u$ as

$$
\begin{equation*}
u_{r} \in \underset{v \in \mathcal{M}_{r}(X)}{\arg \min }\|A v-b\|_{Y^{\prime}} \tag{3}
\end{equation*}
$$

Let X (sim. Y) be Hilbert tensor space with dual X^{\prime} and $A \in \mathcal{L}\left(X, Y^{\prime}\right)$. Here, $u \in X$ is solution of

$$
\begin{equation*}
A u=b, \text { in } Y^{\prime} . \tag{2}
\end{equation*}
$$

Tensor subset. For $X=\otimes_{\mu=1}^{p+1} X_{\mu}$, we define the low-rank tensor subset

$$
\mathcal{M}_{r}(X)=\left\{v=\sum_{i=1}^{r} \otimes_{\mu=1}^{p+1} v_{i}^{\mu}: v_{i}^{\mu} \in X_{\mu}, \mu=1, \ldots, p\right\} .
$$

Other suitable tensor formats are also possible (Hackbush, 2012).
Minimal residual approximation. We seek $u_{r} \approx u$ as

$$
\begin{equation*}
u_{r} \in \underset{v \in \mathcal{M}_{r}(X)}{\arg \min }\|A v-b\|_{Y^{\prime}} . \tag{3}
\end{equation*}
$$

Greedy computation of u_{r}.

For $r \geq 1$, compute $u_{r}=u_{r-1}+w_{r}$ with

$$
w_{r} \in \underset{y, 1 \in \mathcal{M},(X)}{\arg \min }\left\|A\left(u_{r-1}+w\right)-b\right\|_{Y^{\prime}} .
$$

Ideal minimal residual method (B.-F., Nouy, Zahm, 2013) (B.-F., Nouy, Zahm, 2014)

The approximation $u_{r} \in \mathcal{M}_{r}(X)$ is sought as

$$
\begin{equation*}
\min _{v \in \mathcal{M}_{r}(X)}\|A v-b\|_{Y^{\prime}} \tag{4}
\end{equation*}
$$

The approximation $u_{r} \in \mathcal{M}_{r}(X)$ is sought as

$$
\begin{equation*}
\min _{v \in \mathcal{M}_{r}(X)}\|A v-b\|_{Y^{\prime}} \tag{4}
\end{equation*}
$$

X When $\|\cdot\|_{Y^{\prime}}$ is not properly chosen (e.g. canonical norm), A is badly conditionned and u_{r} can be far from the best approximation

$$
\begin{equation*}
\min _{v \in \mathcal{M}_{r}(X)}\|u-v\|_{X} \tag{5}
\end{equation*}
$$

The approximation $u_{r} \in \mathcal{M}_{r}(X)$ is sought as

$$
\begin{equation*}
\min _{v \in \mathcal{M}_{r}(X)}\|A v-b\|_{Y^{\prime}} \tag{4}
\end{equation*}
$$

X When $\|\cdot\|_{Y^{\prime}}$ is not properly chosen (e.g. canonical norm), A is badly conditionned and u_{r} can be far from the best approximation

$$
\begin{equation*}
\min _{v \in \mathcal{M}_{r}(X)}\|u-v\|_{X} . \tag{5}
\end{equation*}
$$

Ideal norm. If we choose (Cohen, Dahmen, Welper, 2012) (Dahmen, Huang, Schwab, Welper, 2012)

$$
\|A v\|_{Y^{\prime}}=\|v\|_{X} .
$$

$\checkmark A$ is ideally conditionned and u_{r} is the best approximation (5).
\Rightarrow It can been seen as preconditioning the residual.

The approximation $u_{r} \in \mathcal{M}_{r}(X)$ is sought as

$$
\begin{equation*}
\min _{v \in \mathcal{M}_{r}(X)}\|A v-b\|_{Y^{\prime}} \tag{4}
\end{equation*}
$$

X When $\|\cdot\|_{Y^{\prime}}$ is not properly chosen (e.g. canonical norm), A is badly conditionned and u_{r} can be far from the best approximation

$$
\begin{equation*}
\min _{v \in \mathcal{M}_{r}(X)}\|u-v\|_{X} \tag{5}
\end{equation*}
$$

Ideal norm. If we choose (Cohen, Dahmen, Welper, 2012) (Dahmen, Huang, Schwab, Welper, 2012)

$$
\|A v\|_{Y^{\prime}}=\|v\|_{X}
$$

$\checkmark A$ is ideally conditionned and u_{r} is the best approximation (5).
\Rightarrow It can been seen as preconditioning the residual.
Practical approach. Perturbated gradient type algorithm

1. Compute an approximation of the residual with prescribed precision δ.
2. Compute a quasi-optimal approximation of the update (using greedy procedure).
\Rightarrow The algorithm converges towards a neighborhood of the best approximation.

Application for stochastic advection-reaction-diffusion equation.

Confronted approaches.

1. Black : Reference solution
2. Dashed black: Minimal residual with canonical norm
3. Perturbated ideal minimal residual with precision δ

$$
\text { Small dimension } p=1
$$

$$
\text { High dimension } p=9
$$

Relative approximation error in canonical norm with respect to rank.

Let V (sim. W) be Hilbert space and $A(\xi) \in \mathcal{L}\left(V, W^{\prime}\right)$.
For all $\xi \in \Xi$, we seek $u_{r}(\xi) \approx u(\xi) \in V$ solution of

$$
\begin{equation*}
A(\xi) u(\xi)=b(\xi), \quad \xi \in \Xi \tag{6}
\end{equation*}
$$

in a low-dimensional subspace $V_{r} \subset V$ with $\operatorname{dim}\left(V_{r}\right)=r$.

Let V (sim. W) be Hilbert space and $A(\xi) \in \mathcal{L}\left(V, W^{\prime}\right)$.
For all $\xi \in \Xi$, we seek $u_{r}(\xi) \approx u(\xi) \in V$ solution of

$$
\begin{equation*}
A(\xi) u(\xi)=b(\xi), \quad \xi \in \Xi \tag{6}
\end{equation*}
$$

in a low-dimensional subspace $V_{r} \subset V$ with $\operatorname{dim}\left(V_{r}\right)=r$.

Offline : greedy construction of V_{r}.

Let $\tilde{\Xi} \subset \Xi$ be a discrete training set and $V_{0}=\{0\}$. For $r \geq 1$ proceed as follows.

1) Select

$$
\xi_{r} \in \arg \max _{\xi \in \tilde{\Xi}} \Delta\left(u_{r-1}(\xi), \xi\right) .
$$

2) Compute the snapshot $u\left(\xi_{r}\right)$ and update $V_{r}=\operatorname{span}\left\{u\left(\xi_{1}\right), \ldots, u\left(\xi_{r}\right)\right\}$.
$\Delta\left(u_{r}(\xi), \xi\right)$ is a suitable error estimate computable from the equation residual.

Let V (sim. W) be Hilbert space and $A(\xi) \in \mathcal{L}\left(V, W^{\prime}\right)$.
For all $\xi \in \Xi$, we seek $u_{r}(\xi) \approx u(\xi) \in V$ solution of

$$
\begin{equation*}
A(\xi) u(\xi)=b(\xi), \quad \xi \in \Xi \tag{6}
\end{equation*}
$$

in a low-dimensional subspace $V_{r} \subset V$ with $\operatorname{dim}\left(V_{r}\right)=r$.

Offline : greedy construction of V_{r}.

Let $\tilde{\Xi} \subset \Xi$ be a discrete training set and $V_{0}=\{0\}$. For $r \geq 1$ proceed as follows.

1) Select

$$
\xi_{r} \in \arg \max _{\xi \in \Xi} \Delta\left(u_{r-1}(\xi), \xi\right) .
$$

2) Compute the snapshot $u\left(\xi_{r}\right)$ and update $V_{r}=\operatorname{span}\left\{u\left(\xi_{1}\right), \ldots, u\left(\xi_{r}\right)\right\}$.
$\Delta\left(u_{r}(\xi), \xi\right)$ is a suitable error estimate computable from the equation residual.
Online: computation of $u_{r}(\xi)$. It is obtained from suitable projection in V_{r} using the equation residual, with complexity depending only on r.

- PDEs are discretized for given mesh of D.
- The equation residual is used as computable quantity for numerical purpose.
- Proposed algorithms are mainly deterministic.
- PDEs are discretized for given mesh of D.
- The equation residual is used as computable quantity for numerical purpose.
- Proposed algorithms are mainly deterministic.

But what if, we have access to pointwise estimates of $\mathbf{u}(x, \xi)$ for any $(x, \xi) \in D \times \Xi$?

The partial operator

$$
\mathcal{A}(\xi)=\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma(\xi) \sigma(\xi)^{T}\right)_{i j} \partial_{x_{i} x_{j}}^{2}+\sum_{i=1}^{d} b_{i}(\xi) \partial_{x_{i}}
$$

is the infinitesimal generator related to the diffusion process $X^{x, \xi}$ solution of

$$
\begin{equation*}
d X_{t}^{x, \xi}=b\left(X_{t}^{x, \xi}, \xi\right) d t+\sigma\left(X_{t}^{x, \xi}, \xi\right) d W_{t} \quad t \geq 0 \tag{7}
\end{equation*}
$$

starting from $X_{0}^{x, \xi}=x \in \bar{D}$ with W a d-dimensional brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$.

The partial operator

$$
\mathcal{A}(\xi)=\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma(\xi) \sigma(\xi)^{T}\right)_{i j} \partial_{x_{i} x_{j}}^{2}+\sum_{i=1}^{d} b_{i}(\xi) \partial_{x_{i}}
$$

is the infinitesimal generator related to the diffusion process $X^{x, \xi}$ solution of

$$
\begin{equation*}
d X_{t}^{x, \xi}=b\left(X_{t}^{x, \xi}, \xi\right) d t+\sigma\left(X_{t}^{x, \xi}, \xi\right) d W_{t} \quad t \geq 0 \tag{7}
\end{equation*}
$$

starting from $X_{0}^{x, \xi}=x \in \bar{D}$ with W a d-dimensional brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$.
Probabilistic representation. By Feynman-Kac (FK) formula, for all $x \in \bar{D}$ we have

$$
\begin{equation*}
\mathrm{u}(x, \xi)=\mathbb{E}\left(\mathrm{f}\left(X_{\tau^{x, \xi}}^{x, \xi}, \xi\right)+\int_{0}^{\tau^{x, \xi}} \mathrm{~g}\left(X_{t}^{x, \xi}, \xi\right) d t\right) \tag{8}
\end{equation*}
$$

where $X^{x, \xi}$ is solution of (7) stopped at $t=\tau^{x, \xi}$. (Friedman [$\$ 6$, Theorem 2.4], 2010)

The partial operator

$$
\mathcal{A}(\xi)=\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma(\xi) \sigma(\xi)^{T}\right)_{i j} \partial_{x_{i} x_{j}}^{2}+\sum_{i=1}^{d} b_{i}(\xi) \partial_{x_{i}}
$$

is the infinitesimal generator related to the diffusion process $X^{x, \xi}$ solution of

$$
\begin{equation*}
d X_{t}^{x, \xi}=b\left(X_{t}^{x, \xi}, \xi\right) d t+\sigma\left(X_{t}^{x, \xi}, \xi\right) d W_{t} \quad t \geq 0 \tag{7}
\end{equation*}
$$

starting from $X_{0}^{x, \xi}=x \in \bar{D}$ with W a d-dimensional brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$.
Probabilistic representation. By Feynman-Kac (FK) formula, for all $x \in \bar{D}$ we have

$$
\begin{equation*}
\mathrm{u}(x, \xi)=\mathbb{E}\left(\mathrm{f}\left(X_{\tau^{x, \xi}}^{x, \xi}, \xi\right)+\int_{0}^{\tau^{x, \xi}} \mathrm{~g}\left(X_{t}^{x, \xi}, \xi\right) d t\right) \tag{8}
\end{equation*}
$$

where $X^{x, \xi}$ is solution of (7) stopped at $t=\tau^{x, \xi}$. (Friedman [$\$ 6$, Theorem 2.4], 2010)
\Rightarrow Monte-Carlo estimates of $\mathbf{u}(x, \xi)$

Sample based projection.

Using FK samples, we compute snapshots $u(\xi)$ and $u_{r}(\xi)$ avoiding the equation residual.
\Rightarrow Least-square methods
\Rightarrow Interpolation (within control variate setting and $d \gg 1$)
(Gobet-Maire, 2006) (B.-F., Macherey, Nouy, Prieur, 2020)

Sample based projection.
Using FK samples, we compute snapshots $u(\xi)$ and $u_{r}(\xi)$ avoiding the equation residual.
\Rightarrow Least-square methods
\Rightarrow Interpolation (within control variate setting and $d \gg 1$)
(Gobet-Maire, 2006) (B.-F., Macherey, Nouy, Prieur, 2020)
Probabilistic interpretation of the square norm of the current error.
We choose

$$
\Delta\left(u_{r}(\xi), \xi\right)=\left\|\mathbf{u}(\xi)-u_{r}(\xi)\right\|_{L^{2}(D)}^{2}=\mathbb{E}\left(Z_{r}(\xi)\right)
$$

where $Z_{r}(\xi)$ are computed from FK samples of $\mathrm{u}(\xi)-u_{r}(\xi)$.
\Rightarrow Probabilistic greedy algorithm
(Boyaval, Lelièvre, 2010) (Cohen, Dahmen, DeVore, Nichols, 2020) (Blel, Ehrlacher, Lelièvre, 2021) (Cai, Yao, Liao, 2022)

Start from $V_{0}=\{0\}$ and proceed, for $n \geq 1$, as follows.

1) Select

$$
\xi_{r} \in \arg \max _{\xi \in \tilde{\Xi}} \mathbb{E}\left(Z_{r-1}(\xi)\right)
$$

2) Compute $u\left(\xi_{r}\right)$ and update $V_{r}=\operatorname{span}\left\{u\left(\xi_{1}\right), \ldots, u\left(\xi_{r}\right)\right\}$.

Start from $V_{0}=\{0\}$ and proceed, for $n \geq 1$, as follows.

1) Select

$$
\xi_{r} \in \mathcal{S}\left(Z_{r-1}(\xi), \tilde{\Xi}\right)
$$

2) Compute $u\left(\xi_{r}\right)$ and update $V_{r}=\operatorname{span}\left\{u\left(\xi_{1}\right), \ldots, u\left(\xi_{r}\right)\right\}$.

How to choose the "probabilistic selection procedure" $\mathcal{S}\left(Z_{r-1}(\xi), \tilde{\Xi}\right)$?

Start from $V_{0}=\{0\}$ and proceed, for $n \geq 1$, as follows.

1) Select

$$
\xi_{r} \in \mathcal{S}\left(Z_{r-1}(\xi), \tilde{\Xi}\right)
$$

2) Compute $u\left(\xi_{r}\right)$ and update $V_{r}=\operatorname{span}\left\{u\left(\xi_{1}\right), \ldots, u\left(\xi_{r}\right)\right\}$.

How to choose the "probabilistic selection procedure" $\mathcal{S}\left(Z_{r-1}(\xi), \tilde{\Xi}\right)$?

Possible approaches.

- Crude Monte-Carlo based approach:
\checkmark practically simple,
Xno guarantee that ξ_{r} is a (quasi-)optimum, a.s. or with high probability.

Start from $V_{0}=\{0\}$ and proceed, for $n \geq 1$, as follows.

1) Select

$$
\xi_{r} \in \mathcal{S}\left(Z_{r-1}(\xi), \tilde{\Xi}\right)
$$

2) Compute $u\left(\xi_{r}\right)$ and update $V_{r}=\operatorname{span}\left\{u\left(\xi_{1}\right), \ldots, u\left(\xi_{r}\right)\right\}$.

How to choose the "probabilistic selection procedure" $\mathcal{S}\left(Z_{r-1}(\xi), \tilde{\Xi}\right)$?

Possible approaches.

- Crude Monte-Carlo based approach:
\checkmark practically simple, Xno guarantee that ξ_{r} is a (quasi-)optimum, a.s. or with high probability.
- Bandit algorithm based approach:
(Lattimore-Szepesvári, 2022) (B.-F., Macherey, Nouy, Prieur, 2022)
Xstructural complex assumption on $Z_{r}(\xi)$ leading to practical limitation, \checkmark designed to return a probably approximately correct (PAC) maximum ξ_{r} in relative precision with adaptive number of samples.
\Rightarrow Weak-greedy algorithm with high probability
- Snapshots are the exact solutions $u(x, \xi)=10 x \sin (x \xi), \quad \xi \in[2 \pi, 4 \pi]$
- Projections are computed using Least-Square (LS), Residual LS (RLS).

Confronted approaches for greedy selection.

- D: deterministic exact error
- D (residual): deterministic residual based error
- MC: FK-MC estimate with $K=1$ sample
- R: ξ_{r} chosen at random in $\tilde{\Xi}$ (without replacement).

Mean relative error in L^{2}-norm for 100 instances of ξ, with respect to rank

Outline

1. Time independent linear problems
2. Time dependent non-linear problems
3. Conclusion

Projects: GdR MoMas (Manu) REMDYN (2015), PEPS DROME by the Cellule Energie du CNRS (2019) with T. Heuzé.
(B.-F., Nouy, 2017) (B.-F., Falcò, Nouy, 2021) (B.-F., Falcò, Nouy, 2021b) (B.-F., Heuzé,preprint)

Let $T>0$. We seek, for all $\xi \in \Xi, \mathbf{u}(\xi): D \times[0, T] \rightarrow \mathbb{R}$ solution of

$$
\begin{align*}
\partial_{t} \mathbf{u}(t, \xi) & =\mathcal{A}(\xi) \mathbf{u}(t, \xi)+\mathrm{h}(u(t, \xi), t, \xi), \quad \text { in } D \times(0, T] \tag{9}\\
\mathbf{u}(0, \xi) & =\mathbf{u}^{0}(\xi)
\end{align*}
$$

with suitable boundary conditions. Here $h: \mathbb{R} \times[0, T] \times \Xi \rightarrow \mathbb{R}$ and $\mathrm{u}_{0}: D \times \Xi \rightarrow \mathbb{R}$.

We want to approximate $u(t): \Xi \rightarrow V, t \in[0, T]$.

Dynamical low-rank approximation methods for time-dependent problems in nutshell

We want to approximate $u(t): \Xi \rightarrow V, t \in[0, T]$.

Local (in time), linear approximation.

At each time t, we seek $u_{r}(t)$ as the rank-r approximation of $u(t) \in X:=V \otimes S$, i.e.

$$
u_{r}(t, \xi)=\sum_{i=1}^{r} \alpha_{i}(t, \xi) v_{i}(t)
$$

where $\left\{v_{1}(t), \ldots, v_{r}(t)\right\} \subset V$ and $\left\{\alpha_{1}(t), \ldots, \alpha_{r}(t)\right\} \subset S$.

Dynamical low-rank approximation methods for time-dependent problems in nutshell

$$
\text { We want to approximate } u(t): \Xi \rightarrow V, t \in[0, T]
$$

Local (in time), linear approximation.

At each time t, we seek $u_{r}(t)$ as the rank-r approximation of $u(t) \in X:=V \otimes S$, i.e.

$$
u_{r}(t, \xi)=\sum_{i=1}^{r} \alpha_{i}(t, \xi) v_{i}(t)
$$

where $\left\{v_{1}(t), \ldots, v_{r}(t)\right\} \subset V$ and $\left\{\alpha_{1}(t), \ldots, \alpha_{r}(t)\right\} \subset S$.

Dynamical low-rank approximation (DLRA) methods.

(Koch, Lubich,2007) (Nonnenmacher, Lubich,2008) (Sapsis, Lermusiaux,2009) (Cheng, Hou, Zhang, Sorensen, 2013) (Musharbash, Nobile, Zhou, 2015) (Feppon, Lermusiaux, 2018)...
(1) Approximation in low-rank tensor subset
(2) Projection based method in low-dimensional subspaces

Dynamical low-rank approximation in tensor subsets

Let $X=\mathbb{R}^{n \times m}$, we seek $u:[0, T] \rightarrow X$ s.t.

$$
\begin{equation*}
\dot{u}(t)=f(u(t), t), t \in(0, T] \tag{10}
\end{equation*}
$$

with $u(0)=u^{0} \in \mathbb{R}^{n \times m}$ and $f: \mathbb{R}^{n \times m} \times[0, T] \rightarrow \mathbb{R}^{n \times m}$.

Dynamical low-rank approximation in tensor subsets

Let $X=\mathbb{R}^{n \times m}$, we seek $u:[0, T] \rightarrow X$ s.t.

$$
\begin{equation*}
\dot{u}(t)=f(u(t), t), t \in(0, T] \tag{10}
\end{equation*}
$$

with $u(0)=u^{0} \in \mathbb{R}^{n \times m}$ and $f: \mathbb{R}^{n \times m} \times[0, T] \rightarrow \mathbb{R}^{n \times m}$.
Tensor subset. We consider the set of rank-r matrices

$$
\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)=\left\{v \in \mathbb{R}^{n \times m}: \operatorname{rank}(v)=r\right\} \subset X
$$

Let $X=\mathbb{R}^{n \times m}$, we seek $u:[0, T] \rightarrow X$ s.t.

$$
\begin{equation*}
\dot{u}(t)=f(u(t), t), t \in(0, T] \tag{10}
\end{equation*}
$$

with $u(0)=u^{0} \in \mathbb{R}^{n \times m}$ and $f: \mathbb{R}^{n \times m} \times[0, T] \rightarrow \mathbb{R}^{n \times m}$.
Tensor subset. We consider the set of rank-r matrices

$$
\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)=\left\{v \in \mathbb{R}^{n \times m}: \operatorname{rank}(v)=r\right\} \subset X
$$

Dirac-Frenckel variational principle. We seek a $u_{r}(t) \in \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ as

$$
\begin{equation*}
\dot{u}_{r}(t)=\arg \min _{\dot{v} \in \mathrm{~T}_{u_{r}(t)} \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)}\left\|\dot{v}-f\left(u_{r}(t), t\right)\right\|_{F}, \quad t \in(0, T] \tag{11}
\end{equation*}
$$

with $\mathrm{T}_{u_{r}} \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ the tangent space to $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ at u_{r}.

Let $X=\mathbb{R}^{n \times m}$, we seek $u:[0, T] \rightarrow X$ s.t.

$$
\begin{equation*}
\dot{u}(t)=f(u(t), t), t \in(0, T] \tag{10}
\end{equation*}
$$

with $u(0)=u^{0} \in \mathbb{R}^{n \times m}$ and $f: \mathbb{R}^{n \times m} \times[0, T] \rightarrow \mathbb{R}^{n \times m}$.
Tensor subset. We consider the set of rank-r matrices

$$
\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)=\left\{v \in \mathbb{R}^{n \times m}: \operatorname{rank}(v)=r\right\} \subset X
$$

Dirac-Frenckel variational principle. We seek a $u_{r}(t) \in \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ as

$$
\begin{equation*}
\dot{u}_{r}(t)=\arg \min _{\dot{v} \in \mathrm{~T}_{u_{r}(t)} \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)}\left\|\dot{v}-f\left(u_{r}(t), t\right)\right\|_{F}, \quad t \in(0, T], \tag{11}
\end{equation*}
$$

with $\mathrm{T}_{u_{r}} \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ the tangent space to $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ at u_{r}.
Equivalently,

$$
\begin{equation*}
\dot{u}_{r}(t)=P_{\mathrm{T}_{u_{r}(t)}} f\left(u_{r}(t), t\right), \tag{12}
\end{equation*}
$$

with $P_{\mathrm{T}_{u_{r}(t)}}$ the orthogonal projection on the tangent space.

```
How to solve (matrix) differential equation (12) ?
```


Riemaniann based time-stepping schemes.

a. Work in the ambiant space $\mathbb{R}^{n \times m}$
b. Update/projection steps for u_{r} with explicite Runge Kutta scheme
(Kieri, Vandereycken, 2019)...
"Geometry" based approaches.
a. Suitable parametrization of $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$
b. Suitable numerical discretization using projector splitting schemes
(a) Suitable geometric description of $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$

Parametrization of $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$. Any $u_{r} \in \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ may be decomposed as

$$
u_{r}=\mathrm{UGV}^{T},
$$

with $\mathrm{U} \in \mathcal{M}_{r}\left(\mathbb{R}^{n \times r}\right), \mathrm{V} \in \mathcal{M}_{r}\left(\mathbb{R}^{m \times r}\right)$ and $\mathrm{G} \in \mathrm{GL}_{r}$.
X But this decomposition is not unique!
(a) Suitable geometric description of $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$

Parametrization of $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$. Any $u_{r} \in \mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ may be decomposed as

$$
u_{r}=\mathrm{UGV}^{T},
$$

with $\mathrm{U} \in \mathcal{M}_{r}\left(\mathbb{R}^{n \times r}\right), \mathrm{V} \in \mathcal{M}_{r}\left(\mathbb{R}^{m \times r}\right)$ and $\mathrm{G} \in \mathrm{GL}_{r}$.
X But this decomposition is not unique!

Possible paths.

1. Impose the so-called gauge conditions through tangent space (Koch,Lubich, 2007)
2. Use chart based geometric description of $\mathcal{M}_{r}\left(\mathbb{R}^{n \times m}\right)$ (B.-F., Falcò, Nouy, 2021) \Rightarrow We recover naturally gauge conditions!

Especially, $\dot{u}_{r} \in \mathrm{~T}_{u_{r}} \mathcal{M}\left(\mathbb{R}^{n \times m}\right)$ is uniquely given by

$$
\dot{u}_{r}=\mathrm{U}_{\perp} \dot{\mathrm{X}} \mathrm{GV}^{T}+\mathrm{UG}\left(\mathrm{~V}_{\perp} \dot{\mathrm{Y}}\right)^{T}+\mathrm{U} \dot{\mathrm{H}} \mathrm{~V}^{T}
$$

with $\mathrm{U}_{\perp} \in \mathcal{M}_{n-r}\left(\mathbb{R}^{n \times(n-r)}\right), V_{\perp} \in \mathcal{M}_{m-r}\left(\mathbb{R}^{n \times(m-r)}\right), \quad \mathrm{U}_{\perp}^{T} \mathrm{U}=0$ and $\mathrm{V}_{\perp}^{T} \mathrm{~V}=0$, and

$$
\begin{align*}
\dot{\mathrm{X}} & =\mathrm{U}_{\perp}^{+} f\left(u_{r}\right)\left(\mathrm{V}^{+}\right)^{T} \mathrm{G}^{-1}, \\
\dot{\mathrm{Y}} & =\mathrm{V}_{\perp}^{+} f\left(u_{r}\right)^{T}\left(\mathrm{U}^{+}\right)^{T} \mathrm{G}^{-T}, \tag{13}\\
\dot{\mathrm{H}} & =\mathrm{U}^{+} f\left(u_{r}\right)\left(\mathrm{V}^{+}\right)^{T} .
\end{align*}
$$

Lie-Trotter projector-splitting integrators.

- Update successively X, Y, H (or U, G, V)
- Different variants depending on splitting order for $P_{\mathrm{T}_{u_{r}}}$
(Lubich, Oseledets, 2014) (Kieri, Lubich, Walach, 2014) (Ceruti, Lubich, 2022) (Kazashi, Nobile, Vidličková, 2021) (B.-F., Falcò, Nouy, 2021b)...

Confronted approaches.

1. KSL : Symmetric splitting (Lubich, Oseledets, 2014)
2. Chart: Chart based splitting algorithm

Approximation error to reference in Frobenius norm with respect to rank.
(2) Projection based method : time-dependent RBM (B.-F., Nouy, 2017)

Let $V=\mathbb{R}^{n}$, for all $\xi \in \Xi$, we seek $u(\xi):[0, T] \rightarrow V$ s.t.

$$
\begin{equation*}
u^{\prime}(t, \xi)=f(u(t, \xi), t, \xi), \quad t \in(0, T] \tag{14}
\end{equation*}
$$

with $u(0, \xi)=u_{0}(\xi)$ given.
(2) Projection based method : time-dependent RBM (B.-F., Nouy, 2017)

Let $V=\mathbb{R}^{n}$, for all $\xi \in \Xi$, we seek $u(\xi):[0, T] \rightarrow V$ s.t.

$$
\begin{equation*}
u^{\prime}(t, \xi)=f(u(t, \xi), t, \xi), \quad t \in(0, T] \tag{14}
\end{equation*}
$$

with $u(0, \xi)=u_{0}(\xi)$ given.
(Online) Projection step.
We are given time-dependent reduced space $V_{r}(t) \subset V$ with $\operatorname{dim}\left(V_{r}(t)\right)=r$.

$$
\left\{\begin{align*}
\alpha_{i}^{\prime}(t, \xi) & =\left\langle f\left(u_{r}(t, \xi), t, \xi\right)-\sum_{i=1}^{r} v_{i}^{\prime}(t) \alpha_{i}, v_{i}(t)\right\rangle, t>0, i=1, \ldots, r \tag{15}\\
\alpha_{i}(0, \xi) & =\left\langle u^{0}(\xi), v_{i}(0)\right\rangle
\end{align*}\right.
$$

(2) Projection based method : time-dependent RBM (B.-F., Nouy, 2017)

Let $V=\mathbb{R}^{n}$, for all $\xi \in \Xi$, we seek $u(\xi):[0, T] \rightarrow V$ s.t.

$$
\begin{equation*}
u^{\prime}(t, \xi)=f(u(t, \xi), t, \xi), \quad t \in(0, T] \tag{14}
\end{equation*}
$$

with $u(0, \xi)=u_{0}(\xi)$ given.

(Online) Projection step.

We are given time-dependent reduced space $V_{r}(t) \subset V$ with $\operatorname{dim}\left(V_{r}(t)\right)=r$.

$$
\left\{\begin{array}{l}
\alpha_{i}^{\prime}(t, \xi)=\left\langle f\left(u_{r}(t, \xi), t, \xi\right)-\sum_{i=1}^{r} v_{i}^{\prime}(t) \alpha_{i}, v_{i}(t)\right\rangle, t>0, i=1, \ldots, r \tag{15}\\
\alpha_{i}(0, \xi)=\left\langle u^{0}(\xi), v_{i}(0)\right\rangle
\end{array}\right.
$$

(Offline) T-greedy algorithm.

Let $\tilde{\Xi} \subset \Xi$ be a discrete training set and $V_{0}=\{0\}$. For $r \geq 1$ proceed as follows.

1) Select

$$
\xi_{r} \in \arg \max _{\xi \in \tilde{\Xi}} \Delta_{r}^{(0, T)}(\xi)
$$

2) Compute $t \mapsto u\left(t, \xi_{r}\right)$ and update $V_{r}(t)=\operatorname{span}\left\{u\left(t, \xi_{1}\right), \ldots, u\left(t, \xi_{r}\right)\right\}$.
(2) Projection based method : time-dependent RBM (B.-F., Nouy, 2017)

Let $V=\mathbb{R}^{n}$, for all $\xi \in \Xi$, we seek $u(\xi):[0, T] \rightarrow V$ s.t.

$$
\begin{equation*}
u^{\prime}(t, \xi)=f(u(t, \xi), t, \xi), \quad t \in(0, T] \tag{14}
\end{equation*}
$$

with $u(0, \xi)=u_{0}(\xi)$ given.

(Online) Projection step.

We are given time-dependent reduced space $V_{r}(t) \subset V$ with $\operatorname{dim}\left(V_{r}(t)\right)=r$.

$$
\left\{\begin{array}{l}
\alpha_{i}^{\prime}(t, \xi)=\left\langle f\left(u_{r}(t, \xi), t, \xi\right)-\sum_{i=1}^{r} v_{i}^{\prime}(t) \alpha_{i}, v_{i}(t)\right\rangle, t>0, i=1, \ldots, r \tag{15}\\
\alpha_{i}(0, \xi)=\left\langle u^{0}(\xi), v_{i}(0)\right\rangle
\end{array}\right.
$$

(Offline) T-greedy algorithm.

Let $\tilde{\Xi} \subset \Xi$ be a discrete training set and $V_{0}=\{0\}$. For $r \geq 1$ proceed as follows.

1) Select

$$
\xi_{r} \in \arg \max _{\xi \in \tilde{\Xi}} \Delta_{r}^{(0, T)}(\xi)
$$

2) Compute $t \mapsto u\left(t, \xi_{r}\right)$ and update $V_{r}(t)=\operatorname{span}\left\{u\left(t, \xi_{1}\right), \ldots, u\left(t, \xi_{r}\right)\right\}$.
\checkmark The Galerkin projection u_{r} interpolates the solution u for $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$.
\checkmark Smaller reduced spaces for reaching the same accuracy than RBM.

Applications

One-dimensional viscous Burgers's equation with random coefficients.

Max and mean relative error for 50 instances of the parameter with respect to rank.

Applications

One-dimensional viscous Burgers's equation with random coefficients.

Time independent V_{r}

Max and mean relative error for 50 instances of the parameter with respect to rank.
Some prospects for transport. The solution manifold can not be well approximated with a single time-independent linear space V_{r}. (Ohlberger, Rave, 2015) (Greif, Urban, 2019)

- Better approximation with time-dependent reduced spaces (B.-F., Nouy, 2017)
- MOR methods relying on transformed snapshots (Ohlberger, Rave, 2013) (Cagniart, Crisovan, Maday, Abgrall,2017) (Rim, Peherstorfer, Mandli,2019) (Black, Schulze, Unger, 2020) (Kleikamp, Ohlberger, Rave, 2022)...
\Rightarrow REA method: Reconstruction approach in FV framework (B.-F., Heuzé, preprint)

Outline

1. Time independent linear problems

2. Time dependent non-linear problems

3. Conclusion

Many challenging questions for computing u_{r}.

\checkmark What if $y=x$ in $\Theta=D$ or $y=(x, t)$ in $\Theta=D \times I$?
\checkmark Under which form(at), do we seek the approximation u_{r} ?
\checkmark How to compute u_{r} from suitable projection? optimization?
\checkmark Compute $u_{r}(\xi)$ from snapshots in Ξ ? from pointwise evaluations over $\Theta \times \Xi$?
\checkmark Can the approximation u_{r} be optimal? quasi-optimal? in which sense?
\checkmark What kind of algorithms to get u_{r} and/or V_{r} ? deterministic? probabilistic?
\checkmark How to deal with high dimensional problems ?

Parameter-dependent PDEs with probabilistic interpretation.

- Validate the approach in fully sample setting (ongoing work).
- Extension and validation for high dimensional cases or time-dependent problems.

Parameter-dependent PDEs with probabilistic interpretation.

- Validate the approach in fully sample setting (ongoing work).
- Extension and validation for high dimensional cases or time-dependent problems.

Dynamical low-rank approximation methods for parameter and time-dependent PDEs.

- Further analysis of chart based splitting approach for matrix ODEs.
- Improve computational cost of projection based methods using randomized linear algebra.
- Toward "nonlinear" approximation: applicability of REA for conservation laws, Neural Network Galerkin approach.

Thanks for your attention !
M. B.-F., Stabilized finite element method for incompressible-compressible two-phase flows, PhD thesis, Université Sciences et Technologies - Bordeaux I, 2009.
M. B. -F., G. Gallice and B. Nkonga, Stabilized Finite Element Method for Compressible- Incompressible Diphasic Flows. In: Kreiss G., Lötstedt P., Målqvist A., Neytcheva M. (eds) Numerical Mathematics and Advanced Applications 2009, 2010.
M. B.-F., G. Gallice and B. Nkonga, A simple stabilized finite element method for solving two phase compressible-incompressible interface flows. Comput. Methods Appl. Mech. Eng., 2011.
M. Billaud-Friess, B. Boutin, F. Caetano, G. Faccanoni, S. Kokh, F. Lagoutière and L. Navoret, A second order anti-diffusive Lagrange-remap scheme for two-component flows. ESAIM Proc., 2011.
M. Billaud-Friess, and S. Kokh, An anti-diffusive Lagrange-Remap scheme for multi- material compressible flows with an arbitrary number of components. ESAIM Proc., 2012.
M. Billaud-Friess, J. Breil, P.-H. Maire and M. Shashkov, A Multi-Material CCALE- MOF Approach in Cylindrical Geometry. Comm. Comput. Phys., 2014.
M. Billaud-Friess, and S. Kokh, Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model. J. Comput. Phys., 2014.
M. Billaud-Friess, A. Nouy and O. Zahm, Méthode de réduction de modèle a priori basée sur des formulations idéales en minimum de résidu. Actes CSMA 2013, 2013.
M. Billaud-Friess, A. Nouy, and O. Zahm, A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 2014.

Zahm, O., M. Billaud-Friess, and A. Nouy, Projection-Based Model Order Reduction Methods for the Estimation of Vector-Valued Variables of Interest. SIAM J. Sci. Comput., 2017.
M. Billaud-Friess, and A. Nouy, Dynamical Model Reduction Method for Solving Parameter-Dependent Dynamical Systems. SIAM J. Sci. Comput., 2017.
M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur, Stochastic Methods for Solving High-Dimensional Partial Differential Equations. Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018, 2020.
M. Billaud-Friess, A. Falcó, and A. Nouy, Principal bundle structure of matrix manifolds. MDPI, Mathematics, 2021.
M. Billaud-Friess, A. Falcó, and A. Nouy, A new splitting algorithm for dynamical low-rank approximation motivated by the fibre bundle structure of matrix manifolds. Bit Numer. Math., 2021.
M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur, A PAC algorithm in relative precision for bandit problem with costly sampling., Mathematical Methods of Operations Research, 2022.
M. Billaud-Friess, and T. Heuzé, Reconstruction of finite volume solution for parameter-dependent linear hyperbolic conservation laws. arXiv, 2006.1035 (preprint)
M. Billaud-Friess, A. Macherey, A. Nouy and C. Prieur, A probabilistic reduced basis method for parameter-dependent problems. (in preparation)

