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Problems of interest

We seek u(§):y+— u(y,&), depending on (random) parameter £ € = C RP, solution of

with P some parameter-dependent partial differential operator.
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We seek u(§):y+— u(y,&), depending on (random) parameter £ € = C RP, solution of

with P some parameter-dependent partial differential operator.

Forward problems related to parameter-dependent PDEs.

v Usual discretization methods provide a numerical solution in vector space V'
u(§) ~ u(§).

X When V is high dimensional, computing the numerical solution w(&), for many
instances of £ in =, may be too costly.
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Problems of interest

We seek u(§):y+— u(y,&), depending on (random) parameter £ € = C RP, solution of
with P some parameter-dependent partial differential operator.
Forward problems related to parameter-dependent PDEs.

v Usual discretization methods provide a numerical solution in vector space V'

u(§) ~ u(§)-

X When V is high dimensional, computing the numerical solution w(&), for many
instances of £ in =, may be too costly.

Model order reduction approaches. Approximation methods providing a surrogate u, of
u:Z =V,

that can be evaluated for any £ € = at low complexity.

M. Billaud-Friess - ECN-NU, LMJL - HDR Defense 1/28



Approximation and MOR for parameter-dependent PDEs

Many challenging questions for computing u, =~ u:
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Approximation and MOR for parameter-dependent PDEs

Many challenging questions for computing u, =~ u:

® What if, y=2 in © =D or y= (z,¢) in © =D x I ?

® Under which form(at), do we seek the approximation wu,?

® How to compute wu, from suitable projection? optimization?

® What kind of algorithms to get u,? deterministic? probabilistic?

® Use snapshots in Z=? or pointwise evaluations over © x Z?

® Can the approximation u, be optimal? quasi-optimal? in which sense?

® How to deal with high dimensional problems ?
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Outline

1. Time independent linear problems
2. Time dependent non-linear problems

3. Conclusion
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Outline

1. Time independent linear problems

PhD 0. Zahm : (B.-F., Nouy, Zahm,2013) (B.-F., Nouy, Zahm,2014) (Zahm, B.-F., Nouy,2017)

PhD A. Macherey: (B.-F., Macherey, Nouy, Prieur,2020) (B.-F., Macherey, Nouy, Prieur,2022)
(B.-F., Macherey, Nouy, Prieur,in preparation)
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Elliptic parameter-dependent PDEs

Let D C R% be an open bounded domain with boundary D and = C RP be a parameter
set. We seek, for all £ € E, u(§): D — R solution of

—A@uE = g€, inD, o
u¢) = 1), on 9D,

with given functions g: Dx = — R and f: 9D x E — R.
Here A(§) stands for the following partial differential operator
1 d d
=3, Z )ijOa0; + D bi(€)da; — k(&),

i=1

with b(¢) : R x 2 = RY, o(¢) : RY — RYX? and k(&) : RY — R7.
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Low-rank approximation for parameter-dependent problems in nutshell

We want to approximate w:Z — V with V some high dimensional vector space.
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Low-rank approximation for parameter-dependent problems in nutshell

We want to approximate w:Z — V with V some high dimensional vector space.

Linear approximation.

We seek w, as the rank-r approximation of u€ X : =V ® S
T
ur(€) = 3 (€
i=1

with {vi,...,v.} CV and {a1,...,a,} C S a vector space of functions defined on E.
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Low-rank approximation for parameter-dependent problems in nutshell

We want to approximate w:Z — V with V some high dimensional vector space.

Linear approximation.

We seek w, as the rank-r approximation of u€ X : =V ® S
™
ur(€) = 3 (€
i=1

with {vi,...,v.} CV and {a1,...,a,} C S a vector space of functions defined on E.

Two points of view.
@ Approximation in low-rank tensor subset My (X) of X

@ Low-rank approximation methods based on projection in subspace V, of V
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@® Approximation in low-rank tensor subset: with greedy algorithm

Let X (sim. Y) be Hilbert tensor space with dual X’ and A € L(X,Y”).

Here, uw € X is solution of
Au=b, in Y. )
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@® Approximation in low-rank tensor subset: with greedy algorithm

Let X (sim. Y) be Hilbert tensor space with dual X’ and A € L(X,Y”).

Here, w € X is solution of
Au=b, in Y'. )

Tensor subset. For X =V ® S, we define the low-rank tensor subset

M (X) = {’L = Zoz,;(f)vi tv; €V, oy € S}

i=1
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Tensor subset. For X = xfﬁ‘leﬂ, we define the low-rank tensor subset

-
M (X) = {v = szilﬂﬁ‘ ol e X, p= L...,p}.
i=1

Other suitable tensor formats are also possible

M. Billaud-Friess - ECN-NU, LMJL - HDR Defense Time independent linear problems

7/28



@® Approximation in low-rank tensor subset: with greedy algorithm

Let X (sim. Y) be Hilbert tensor space with dual X’ and A € £(X,Y”).

Here, uw € X is solution of
Au=b, in Y. )

Tensor subset. For X = xﬁ‘ii)(ﬂ, we define the low-rank tensor subset

-
M (X) = {v = szillzﬁ‘ ol e X, p= L...,p}.
i=1

Other suitable tensor formats are also possible

Minimal residual approximation. We seek wu, ~ u as

ur € argmin ||Av — b||y. 3
vEM (X))
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@® Approximation in low-rank tensor subset: with greedy algorithm

Let X (sim. Y) be Hilbert tensor space with dual X’ and A € £(X,Y”).

Here, uw € X is solution of
Au=b, in Y. )

Tensor subset. For X = xﬁ‘ii)(ﬂ, we define the low-rank tensor subset

”
M (X) = {v = szillz'ﬁ‘ sl e Xy, pu= ]7...,p}.
1=1

Other suitable tensor formats are also possible

Minimal residual approximation. We seek wu, ~ u as

ur € argmin ||Av — b||y. 3
vEM (X))

Greedy computation of wu,.
For r > 1, compute u, = u,—1 + w, with

wy € argmin ||A(ur—1 +w) — bl|yr.
weM; (X)
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Ideal minimal residual method (B.-F., Nouy, Zahm,2013) (B.-F., Nouy, Zahm,2014)

The approximation u, € M,(X) is sought as

i A'—b 7. 4
veﬁnﬁx)\\ v—blly )
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Ideal minimal residual method (B.-F., Nouy, Zahm,2013) (B.-F., Nouy, Zahm,2014)

The approximation u, € M,(X) is sought as

min Av—b . 4
v€M7-(X)H [ly )
X When ||+ ||ys is not properly chosen (e.g. canonical norm), A is badly conditionned

and u, can be far from the best approximation

min |lu—v|x. (5)
vEM(X)
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Ideal minimal residual method (B.-F., Nouy, Zahm,2013) (B.-F., Nouy, Zahm,2014)

The approximation u, € M,(X) is sought as

min Av—b . 4
v€A4T(X)H [ly )
X When ||+ ||ys is not properly chosen (e.g. canonical norm), A is badly conditionned

and u, can be far from the best approximation

min |lu—v|x. (5)
vEM(X)

Ideal norm. If we choose
[Avllyr = [lvllx-
v/ A is ideally conditionned and u, is the best approximation (5).

= It can been seen as preconditioning the residual.
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Ideal minimal residual method (B.-F., Nouy, Zahm,2013) (B.-F., Nouy, Zahm,2014)

The approximation u, € M,(X) is sought as

min Av—b . 4
,min v = by @
X When ||+ ||ys is not properly chosen (e.g. canonical norm), A is badly conditionned

and u, can be far from the best approximation

min |lu—v|x. (5)
vEM(X)
Ideal norm. If we choose
[Avllyr = [lvllx-

v/ A is ideally conditionned and u, is the best approximation (5).
= It can been seen as preconditioning the residual.

Practical approach. Perturbated gradient type algorithm
1. Compute an approximation of the residual with prescribed precision §.
2. Compute a quasi-optimal approximation of the update (using greedy procedure).

= The algorithm converges towards a neighborhood of the best approximation.
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=

Application for stochastic advection-reaction-diffusion equation.

Confronted approaches.
1. Black : Reference solution
2. Dashed black: Minimal residual with canonical norm

3. Perturbated ideal minimal residual with precision §

Small dimension p =1 High dimension p =9
10 e —
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Relative approximation error in canonical norm with respect to rank.
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@ Projection based approach : reduced basis method (RBM)

Let V (sim. W) be Hilbert space and A(£) € L(V,W').

For all £ € E, we seek u, (&) =~ u(§) € V solution of

A(Q)u(§) =b(§), €€Z (6)

in a low-dimensional subspace V.. C V with dim(V,) =r.
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@ Projection based approach : reduced basis method (RBM)

Let V (sim. W) be Hilbert space and A(£) € L(V,W').

For all £ € E, we seek u, (&) =~ u(§) € V solution of

A(Qu(§) =b(§), €€

in a low-dimensional subspace V.. C V with dim(V,) =r.

[11

(6)

0ffline : greedy construction of V.

Let = C E be a discrete training set and Vo = {0}. For r > 1 proceed as follows.
1) Select

&r € argmax A(ur—1(8),§).
i3S

2) Compute the snapshot (&) and update V. = span{u(&1),...,u(&r)}.

A(ur(§),€) is a suitable error estimate computable from the equation residual.
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@ Projection based approach : reduced basis method (RBM)

Let V (sim. W) be Hilbert space and A(£) € L(V,W').

For all £ € E, we seek u, (&) =~ u(§) € V solution of

AQ)u(§) =b(§), C€E (6)

in a low-dimensional subspace V.. C V with dim(V,) =r.
0ffline : greedy construction of V.

Let 2 C E be a discrete training set and Vo = {0}. For r > 1 proceed as follows.
1) Select
&r € argmax A(ur—1(8),§).
fe=
2) Compute the snapshot (&) and update V. = span{u(&1),...,u(&r)}.

A(ur(§),€) is a suitable error estimate computable from the equation residual.

Online: computation of u,(£). It is obtained from suitable projection in V;. using
the equation residual, with complexity depending only on r.
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Framework for MOR for PDEs

® PDEs are discretized for given mesh of D.
® The equation residual is used as computable quantity for numerical purpose.

® Proposed algorithms are mainly deterministic.
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Framework for MOR for PDEs

® PDEs are discretized for given mesh of D.
® The equation residual is used as computable quantity for numerical purpose.

® Proposed algorithms are mainly deterministic.

But what if, we have access to pointwise estimates of u(z,&) for any (z,§) € DX ZE?
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PDEs with probabilistic interpretation

The partial operator

d d

1 T 2

A©) =5 > (0()a(©))ij0%,0; + D bi(€)as,
i,j=1 i=1

is the infinitesimal generator related to the diffusion process X*¢ solution of

AXPS = b(XS, 6)dt + o (X5, 6) dWy ¢ >0, )

starting from Xg’g =z € D with W a d-dimensional brownian motion on (2, F,P).
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PDEs with probabilistic interpretation

The partial operator
14 d
A©) =5 > (0()a(©))ij0%,0; + D bi(€)as,
i,j=1 i=1
is the infinitesimal generator related to the diffusion process X*¢ solution of
AXPS = b(XS, 6)dt + o (X5, 6) dWy ¢ >0, )
starting from Xg’g =z € D with W a d-dimensional brownian motion on (2, F,P).

Probabilistic representation. By Feynman-Kac (FK) formula, for all & € D we have

x,€

u(e,€) = E (f(Xffs,f) + /0 ’ g(Xf’f,o(zt), @

where X®§ is solution of (7) stopped at ¢t = 7%,
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PDEs with probabilistic interpretation

The partial operator
14 d
A©) =5 > (0()a(©))ij0%,0; + D bi(€)as,
i,j=1 i=1
is the infinitesimal generator related to the diffusion process X*¢ solution of
AXPS = b(XS, 6)dt + o (X5, 6) dWy ¢ >0, )
starting from Xg’g =z € D with W a d-dimensional brownian motion on (2, F,P).

Probabilistic representation. By Feynman-Kac (FK) formula, for all & € D we have

x,€

u(e,€) = E (f(Xffs,f) + /0 ’ g(Xf’f,o(zt), @

where X®§ is solution of (7) stopped at ¢t = 7%,

= Monte-Carlo estimates of u(z,¢)
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Probabilistic and sample based RBM (B.-F., Macherey, Nouy, Prieur,in preparation)

Sample based projection.

Using FK samples, we compute snapshots u(§) and u.,(§) avoiding the equation residual.
= Least-square methods
= Interpolation (within control variate setting and d >> 1)

(B.-F., Macherey, Nouy, Prieur,2020)
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Probabilistic and sample based RBM (B.-F., Macherey, Nouy, Prieur,in preparation)

Sample based projection.

Using FK samples, we compute snapshots u(§) and u.,(§) avoiding the equation residual.
= Least-square methods
= Interpolation (within control variate setting and d >> 1)
(B.-F., Macherey, Nouy, Prieur,2020)
Probabilistic interpretation of the square norm of the current error.
We choose

Aur(€),6) = u€) = ur(©ll72py = E(Zr(€))

where Z,(§) are computed from FK samples of u(§) — u,(&).
= Probabilistic greedy algorithm
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Probabilistic greedy algorithm (B.-F., Macherey, Nouy, Prieur,in preparation)

Start from Vo = {0} and proceed, for n > 1, as follows.

1) Select
& € argmax E(Z,—1(€))
¢eE

2) Compute u(&r) and update Vi. = span{u(&1),...,u(&r)}-
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Probabilistic greedy algorithm (B.-F., Macherey, Nouy, Prieur,in preparation)

Start from Vo = {0} and proceed, for n > 1, as follows.
&r € S(Zr-1(¢),5)

1) Select
2) Compute u(&,) and update Vi = span{u(&1),...,u(&r)}
How to choose the "probabilistic selection procedure” S(Z,_1(£),2) ?

14/28
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2) Compute u(&,) and update Vi = span{u(&1),...,u(&r)}
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® Crude Monte-Carlo based approach:
or with high probability.

Vpractically simple,
Xno guarantee that &, is a (quasi-)optimum, a.s.
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Probabilistic greedy algorithm (B.-F., Macherey, Nouy, Prieur,in preparation)

Start from Vo = {0} and proceed, for n > 1, as follows.
1) Select

[1]x

&r € S(Zr-1(6),2)
2) Compute u(&,) and update V. = span{u(&1),...,u(ér)}.

I
~
~)

How to choose the "probabilistic selection procedure” S(Z,_1(£),2

Possible approaches.
® Crude Monte-Carlo based approach:

Vpractically simple,
Xno guarantee that &, is a (quasi-)optimum, a.s. or with high probability.

® Bandit algorithm based approach:
(B.-F., Macherey, Nouy, Prieur,2022)

Xstructural complex assumption on Z.(£) leading to practical limitation,
v designed to return a probably approximately correct (PAC) maximum &, in
relative precision with adaptive number of samples.

= Weak-greedy algorithm with high probability
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Application for one-dimensional parameter-dependent advection-diffusion equation

® Snapshots are the exact solutions u(z,&) = 10zsin(zf), & € [2m,4n]

® Projections are computed using Least-Square (LS), Residual LS (RLS).

Confronted approaches for greedy selection.

® D: deterministic exact error

® D (residual):

deterministic residual based error

® MC: FK-MC estimate with K =1 sample

® R: & chosen at random in = (without replacement).

Mean relative error in L%-norm for 100 instances of &, with respect to rank

M. Billaud-Friess -

ECN-NU, LMJL -

10°
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—16
10 0

HDR Defense

n
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Outline

2. Time dependent non-linear problems

Projects: GdR MoMas (Manu) REMDYN (2015), PEPS DROME by the Cellule Energie du CNRS
(2019) with T. Heuzé.

(B.-F., Nouy,2017) (B.-F., Falco, Nouy,2021) (B.-F., Falco, Nouy,2021b) (B.-F., Heuzé,preprint)
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Nonlinear time and parameter-dependent PDEs

Let T > 0. We seek, for all £ € E, u(§): D x [0,7] = R solution of

atu(t9§) = A<£)u(t7£) + h(“(t9€)7t’ 6)7 in D x (O7T]7 (9
u(0,6) = u°(),

with suitable boundary conditions. Here h:R X [0,7] X Z - R and up : D x E — R.
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Dynamical low-rank approximation methods for time-dependent problems in nutshell

We want to approximate u(t) :E —V, t € [0,7].
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Dynamical low-rank approximation methods for time-dependent problems in nutshell

We want to approximate u(t) :E —V, t € [0,7].

Local (in time), linear approximation.

At each time t, we seek w,(t) as the rank-r approximation of u(t) € X :=V ®JY, i.e.
s
ur(t,6) =Y it Evi(t)
i=1

where {vi(¢),...,v.(t)} CV and {ai(t),...,a-(t)} CS.

M. Billaud-Friess - ECN-NU, LMJL - HDR Defense Time dependent non-linear problems 18/28



Dynamical low-rank approximation methods for time-dependent problems in nutshell

We want to approximate u(t) :E —V, t € [0,7].

Local (in time), linear approximation.

At each time t, we seek w,(t) as the rank-r approximation of u(t) € X :=V ®JY, i.e.
s
ur(t,6) =Y it Evi(t)
i=1
where {vi(t),...,v.(t)} CV and {1 (t),...,c.(t)} C S.

Dynamical low-rank approximation (DLRA) methods.

® Approximation in low-rank tensor subset

@ Projection based method in low-dimensional subspaces
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@ Dynamical low-rank approximation in tensor subsets

Let X =R"*"™  we seek u:[0,T] = X s.t.
a(t) = f(u(?),t),t € (0,T] (10

with u(0) = u® € R"X™ and f: R"X™ x [0, T] — RMX™
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@ Dynamical low-rank approximation in tensor subsets

Let X =R"*"™  we seek u:[0,T] = X s.t.

w(t) = f(u(t),t),t € (0,7 (10)
with u(0) = u® € R®*™ and f:R"*™ x [0,T] — R?X™,
Tensor subset. We consider the set of rank-r matrices

M (R™*™) = {v € R"*™ :rank(v) = r} C X.
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@ Dynamical low-rank approximation in tensor subsets

Let X =R"*"™  we seek u:[0,T] = X s.t.

w(t) = f(u(t),t),t € (0,7 (10)
with u(0) = u® € R®*™ and f:R"*™ x [0,T] — R?X™,
Tensor subset. We consider the set of rank-r matrices

M (R™*™) = {v € R"*™ :rank(v) = r} C X.

Dirac-Frenckel variational principle. We seek a wu,(t) € M,(R™"*™) as

() = arg min 16 — f(ur (D), )], t € (0,T), an
beTur(t)Mr(Rnxm)

with T, M, (R™"*™) the tangent space to M, (R"*™) at u,.
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@ Dynamical low-rank approximation in tensor subsets

Let X =R"*"™  we seek u:[0,T] = X s.t.

w(t) = f(u(t),t),t € (0,7 (10)
with u(0) = u® € R®*™ and f:R"*™ x [0,T] — R?X™,
Tensor subset. We consider the set of rank-r matrices

M (R™*™) = {v € R"*™ :rank(v) = r} C X.

Dirac-Frenckel variational principle. We seek a wu,(t) € M,(R™"*™) as

() = arg min 16 — f(ur (D), )], t € (0,T), an
beTur(t)Mr(Rnxm)

with T, M, (R™"*™) the tangent space to M, (R"*™) at u,.

Equivalently,
i (t) = Pr, ., fur(),t), (12)

with Pp the orthogonal projection on the tangent space.

(t)
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Toward numerical methods

How to solve (matrix) differential equation (12) ?

Riemaniann based time-stepping schemes.

a. Work in the ambiant space R"*™

b. Update/projection steps for u, with explicite Runge Kutta scheme

"Geometry” based approaches.

a. Suitable parametrization of M, (R™*"™)

b. Suitable numerical discretization using projector splitting schemes
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@ suitable geometric description of M, (R™*™)

Parametrization of M, (R"*™). Any u, € M,(R™"*™) may be decomposed as
ur = UGVT,

with U e M. (R™*7"),V € M, (R™*") and G € GL;-.

X But this decomposition is not unique!
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@ suitable geometric description of M, (R™*™)

Parametrization of M, (R"*™). Any u, € M,(R™"*™) may be decomposed as
ur = UGVT,

with U e M. (R™*7"),V € M, (R™*") and G € GL;-.

X But this decomposition is not unique!

Possible paths.
1. Impose the so-called gauge conditions through tangent space
2. Use chart based geometric description of M, (R™X™) (B.-F., Falcd, Nouy,2021)

= We recover naturally gauge conditions!
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® Projector-splitting integrators

Especially, 4, € Ty, M(R™ ™) is uniquely given by
i = Uy XGVT + UGV Y)T + URVT,

with Uj € Mp—p(R?*(=7)) V| € My (R**(m=7)), UTU =0 and VIV =0, and

X = Utf(u)(VHTG 1,
Y o= Vifu)TUhHTe T, 13)
H = Utfu)(vHT.

Lie-Trotter projector-splitting integrators.

® Update successively X,Y,H (or U,G,V)
® Different variants depending on splitting order for PTW

(B.-F., Falcd, Nouy,2021b)...
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Application for one-dimensional parameter-dependent Burgers’s equation

Confronted approaches.

1. KSL :
2. Chart:

Approximation error to reference in Frobenius norm with respect to rank.

M. Billaud-Friess -

Symmetric splitting

Chart based splitting algorithm

T
1071
%
S
=
1075 -
‘

—— KSL
- - - chart

ECN-NU, LMJL - HDR Defense
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@ Projection based method : time-dependent RBM (B.-F., Nouy,2017)

Let V =R", for all £ € =, we seek u(§):[0,T] =V s.t.
u(t,€) = f(u(t,€),,€), t€(0,T), a4
with u(0,§) = uo(§) given.
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=

@ Projection based method : time-dependent RBM (B.-F., Nouy,2017)

Let V =R", for all £ € =, we seek u(§):[0,T] =V s.t.
u(t,€) = f(u(t,€),,€), t€(0,T), a4
with u(0,§) = uo(§) given.

(Online) Projection step.
We are given time-dependent reduced space V,.(t) C V with dim(V,(t)) =r.

r

a;(t75) = <f(uT(t7 f),t,é)* Zvé(t)aiﬂvi(t»:t >0,i=1,...,r s
=1

;(0,€) = (u°(€),v:(0)).
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@ Projection based method : time-dependent RBM (B.-F., Nouy,2017)

Let V =R", for all £ € =, we seek u(§):[0,T] =V s.t.
u(t,€) = f(u(t,€),,€), t€(0,T), a4
with u(0,§) = uo(§) given.

(Online) Projection step.
We are given time-dependent reduced space V,.(t) C V with dim(V,(t)) =r.

r

a;(t75) = <f(u’f(t7£):t7£)7 Z’U;(t)amvi(t»,t >0,i=1,...,r
i=1 (15)

@;(0,€) = (u®(§),vi(0)).
(0ffline) T-greedy algorithm.

Let 2 C E be a discrete training set and Vo = {0}. For r > 1 proceed as follows.
1) Select
& € argmag(AE,O'l)(&).
£€E

2) Compute t — u(t,&r) and update Vi.(t) = span{u(t,&1),. .., u(t, &)}
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@ Projection based method : time-dependent RBM (B.-F., Nouy,2017)

Let V =R", for all £ € =, we seek u(§):[0,T] =V s.t.

u/(t,€) = f(u(t,§),t,6), te(0,T], as
with u(0,§) = uo(§) given.
(Online) Projection step.
We are given time-dependent reduced space V,.(t) C V with dim(V,(t)) =r.

a;(tvs) = <f(u7“(t7£):t7£)7 Z/Ui(t)aivvi(t»:t >0,i=1,...,r
i=1 (15)

@;(0,€) = (u®(§),vi(0)).
(0ffline) T-greedy algorithm.

Let 2 C E be a discrete training set and Vo = {0}. For r > 1 proceed as follows.
1) Select
& € argmax A" (¢).
£€E

2) Compute t — u(t,&r) and update Vi.(t) = span{u(t,&1),. .., u(t, &)}

v/ The Galerkin projection w, interpolates the solution u for {&i1,...,&}.

v/ Smaller reduced spaces for reaching the same accuracy than RBM.
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Applications

One-dimensional viscous Burgers’s equation with random coefficients.

Time dependent V;.(t) Time independent V.
10°
““““ max(FEs)
—max(Ex)
1073 F E(E;)
— E(Ex)
1076 .
1079
—12 | | —12 1 |
1077, 5 10 15 1077 20 40
rank r rank r

Max and mean relative error for 50 instances of the parameter with respect to rank.
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Applications

One-dimensional viscous Burgers’s equation

Time dependent V;.(t)

with random coefficients.

Time independent V,

10° 10°
1073 |- 1073
1076 - 10-¢
1079 10791 1
—12 I I —12 I |
10 0 5 10 10 20 40
rank r rank r

““““ max(FEs)
—max(Ex)
E(E2)

— E(Bx)

Max and mean relative error for 50 instances of the parameter with respect to rank.

Some prospects for transport.

® Better approximation with time-dependent reduced spaces (B.-F., Nouy,2017)

® MOR methods relying on transformed snapshots

= REA method:

M. Billaud-Friess - ECN-NU, LMJL -

Reconstruction approach in FV framework (B.-F., Heuzé, preprint)

HDR Defense
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The solution manifold can not be well approximated
with a single time-independent linear space V..
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Outline

3. Conclusion
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Summary

Many challenging questions for computing u,.

v
v
v
v
v
v
v

What if y=2 in © =D or y=(x,t) in © =D x 1 ?

Under which form(at), do we seek the approximation u,?

How to compute wu, from suitable projection? optimization?

Compute uy (&) from snapshots in E? from pointwise evaluations over © x =?
Can the approximation u, be optimal? quasi-optimal? in which sense?

What kind of algorithms to get u, and/or V,? deterministic? probabilistic?

How to deal with high dimensional problems ?
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Prospects: straightforward and MORe...

Parameter-dependent PDEs with probabilistic interpretation.
® Validate the approach in fully sample setting (ongoing work).

® Extension and validation for high dimensional cases or time-dependent problems.
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Prospects: straightforward and MORe...

Parameter-dependent PDEs with probabilistic interpretation.
® Validate the approach in fully sample setting (ongoing work).
® Extension and validation for high dimensional cases or time-dependent problems.

Dynamical low-rank approximation methods for parameter and time-dependent PDEs.
® Further analysis of chart based splitting approach for matrix ODEs.
® Tmprove computational cost of projection based methods using randomized linear
algebra.
® Toward "nonlinear” approximation: applicability of REA for conservation laws,
Neural Network Galerkin approach.
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Thanks for your attention !
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