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ABSTRACT. We suggest a linear filtering method
that involves preprocessing of data and postpro-
cessing of estimations.The main advantageof this
procedure is that it requires only ordinary linear
Kalman-Bucy filtering. The main disadvantage
is that it does not give the best estimation of the
data given the observation, since it is optimal for
a non-classicalL2 criterion.

The problem of linear filtering with fractional Brownian
motion noise, in the signal and/or the observations has
already been solved on the one hand by Coutin and De-
creusefond [3, 4], and on the other hand by Kleptsyna,
Kloeden and Anh [6, 7]. However, it does not seem to
be very easy to determine explicitly the weight functions
and/or to solve the Fredholm/Volterra integral equations.
This paper is an attempt to give a more explicit (numer-
ical) scheme (more understandable by a computer engi-
neer). The price to pay is that we do not have the best
estimation of the state of the system given the observa-
tions. The following archetypal example shall give more
insight into the machinery involved.
Assume that the state X of the system and the observa-
tions Y can be modelled as the solutions of the linear sto-
chastic differential system

(
dXt = aXt dt+ dWH

t

dYt = cXt dt+ dBH
t

(1)

where WH ; BH denote two independent Liouville frac-
tional Brownian motions of same Hurst parameter H. We
shall use the representation

BH (t) = IH+ 1

2 ( _B)(t) =

Z t

0

(t � s)H�
1

2

�(H + 1
2
)
dBs :

WH (t) = IH+ 1

2 ( _W )(t) =

Z t

0

(t� s)H�
1

2

�(H + 1
2
)
dWs :

Accordingly, the natural definition of a solution of the
system (1) is to consider that X = IH�

1

2 ~X,Y = IH�
1

2 ~Y

where ( ~X; ~Y ) is the solution of(
d ~Xt = a ~Xt dt+ dWt

d~Yt = c ~Xt dt+ dBt

(2)

where W;B are independent Brownian motions. Indeed,
we have then ~Y = cI1( ~X) +B, and thus
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IH�
1

2 ( ~Y ) = IH�
1

2 (B) + cIH+ 1

2 ( ~X)

= BH + cI1(IH�
1

2 ( ~X))

The filtering process we propose can be decomposed as
in the following diagram

Observations Y
#

Fractional differentiation (diffusive rep.)
#

~Y = DH� 1

2Y

#

Kalman-Bucy linear Filter
#

Estimation ~̂X of ~X = DH� 1

2X

#

Fractional integration (diffusive rep.)
#

Estimation �X(t) = IH�1=2( ~̂X)(t)

FIGURE 1. The Liouville fractional
Brownian motion filter

We need to explain the term diffusive rep. (see section 1
and the general references [1, 5, 9, 8, 2]). Fractional in-
tegration of order � 2 (0; 1) has the diffusive representa-
tion:

I�f(t) = (const:)

Z
1

0

���f�(t) d� ;

where for � > 0, the function f� is the solution of the
linear ordinary differential equation

@tf� = ��f� + f :

This leads to the following iterative scheme – also called
memoryless or Markovian scheme – the c� denoting suit-
able coefficients and � a finite partition,

I�f(t) =
X
�2�

c�f�(t) ;

f�(t+�t)� f�(t) = ��f�(t) + f(t) :

The aim of the rest of this paper is to give precise mean-
ing to each of the steps of the proposed filtering scheme.
We first recall what is the diffusive representation of the
fractional integration of a deterministic function. Then
we show how to apply this to Liouville fractional Brow-
nian motion. We then show how to deal with the case of
different Hurst indexes in the signal and in the noise.
Eventually, we show that the proposed filter is optimal
with respect to a non classical l2 criterion.



1. DIFFUSIVE REPRESENTATIONS OF FRACTIONAL

INTEGRATION

Given � 2 (0; 1) and a locally integrable function f on
R+, the fractional integral of f is

I�f(t) =

Z t

0

(t� s)��1

�(�)
f(s) ds (t > 0) :(3)

Classic properties of fractional integrals may be found
in [10].
The diffusive representation of I� is based on the identity

1

u
=

Z
1

0

�a�1

�(a)
e��u d� (u > 0; a > 0) :(4)

Injecting this relation into (3) gives

I�f(t) =

Z t

0

ds
1

�(�)�(1� �)

Z
1

0

���e��(t�s) f(s) d�

=

Z
1

0

���

�(�)�(1� �)
f�(t) d� ;

with f�(t) =
R
1

0
e��(t�s) f(s) ds solution of

@tf� = ��f�(t) + f(t) :

Remark 1. It is easy to see that Fubini's Theorem applies
if either f is locally in Lp for some p > 1, or f is contin-
uous at 0.
The term diffusive representation has its origin in the equiv-
alent realization

I�f(t) =

Z
m̂ � dx ; @t� = @2x�+ � 
 f ;

where m is the image of the measure �(d�) = cH�
�� d�

under the transformation � ! � with � = 4�2�2 (we have
used the Fourier transform in the real variable �).

2. APPLICATION TO LIOUVILLE FRACTIONAL

BROWNIAN MOTION

From the introduction we can infer that we need a dif-
fusive representation of the operator � = IH�

1

2 and a
diffusive representation for its inverse ��1. This raises
the following questions:

1. How can we apply these integrodifferential oper-
ators to stochastic processes (and in particular to
Brownian motion) ?

2. Depending on wether H < 1=2 or not, either �, ei-
ther ��1 is not a fractional integral operator. What
is the diffusive representation of fractional differen-
tiation ?

We are going to answer these two questions simultane-
ously. The basic ingredient of our proof is the commuta-
tion relation

I�I1��f(t) = I1f(t) =

Z t

0

f(s) ds (0 < � < 1) ;

(5)

which can be proved by combining Fubini's Theorem with
the identity valid for � 2 (0; 1)

Z t

0

r��1(1� r)�� dr = �(1� �)�(�) =
�

sin(��)
:

(6)

We shall

1. define the processes (�Z(t) ; t � 0 ) and (��1V (t) ; t � 0 )

wher Z is one of the processes W;B; ~X; ~Y (defined
in the introduction), and V is one of the processes
X;Y;�W;�B.

2. Establish the relation ��1�Z = Z.
3. Exhibit diffusive representaitons for the processes

�Z and ��1V .

2.1. The case 0 < H < 1
2

.

Step 1 : defining�Z. Formally�Z = IH�
1

2Z = IH+ 1

2 ( _Z).
This leads naturally to the definition

�Z(t)
def
=

Z t

0

(t � s)H�
1

2

�(H + 1
2
)
dZs :(7)

We first check that �Z is well defined for Z a brownian
motion since s ! (t � s)H�

1

2 is in L2(0; t). To define
X = � ~X and Y , we use the explicit expression

~Xt =

Z t

0

ea(t�s) dWs ;

which shows that ~Xt is a centered Gaussian random vari-
able with variance e

2at
�1

2a
. Therefore

E

�Z t

0

(t � s)H�
1

2

��� ~Xs

��� ds� < +1

Step 2 : the diffusive representation of �Z. We now in-
ject into (7) the identity (4). Fubini's Stochastic Theorem
yields then

�Z(t) =

Z t

0

��(H+ 1

2
)

�(H + 1
2
)�(1

2
�H)

Z�(t) d� ;

where Z�(t) =
R t
0
e��(t�s) dZs is the solution of the lin-

ear stochastic differential equation

dZ�(t) = ��Z�(t) dt+ dZ�(t) :

It is easy to check that Fubini's Stochastic Theorem ap-
plies since

Z
1

0

d� ��(H+ 1

2
)
E

"�Z t

0

e��(t�s) dWs

�2
# 1

2

=

Z
1

0

d� ��(H+ 1

2
)

�
1� e�2�t

2�

� 1

2

< +1 :

andZ
1

0

d� ��(H+ 1

2
)
E

�Z t

0

e��(t�s)
��� ~Xs

��� ds� =

Z
1

0

d� ��(H+ 1

2
)(const)

Z t

0

e��(t�s)
�
e2as � 1

2a

�1

2

ds < +1 :

Step 3 : defining ��1V . ��1V = I
1

2
�HV is just an

ordinary pathwise fractional integration:

��1V (t) =

Z t

0

(t � s)�(H+ 1

2
)

�(1
2
�H)

V (s) ds :

Fubini's Theorem shows that this is well defined for V =
X;Y;�W;�B, and that we have the usual diffusive rep-
resentation (see section 1).



Step 4 : checking that ��1�Z = Z. It is another appli-
cation of Fubini's Stochastic Theorem.

��1�Z(t) =
1

�(1
2
�H)�(H + 1

2
)
�

Z t

0

(t� s)�(H+ 1

2
)

�Z s

0

(s � u)H�
1

2 dZu

�
ds

=
1

�(1
2
�H)�(H + 1

2
)
�

Z t

0

�Z t

u

(t � s)�(H+ 1

2
)(s� u)H�

1

2 ds

�
dZu

=

Z t

0

dZu = Zt :

2.2. The case 1
2
< H < 1. There is a total symmetry

with the case 0 < H < 1
2

. Now � = IH�
1

2 can be
defined directly

�Z(t) =

Z t

0

(t� s)H�3=2

�(H �
1
2
)
Z(s) ds :

The inverse operator is now

��1V (t) = I
1

2
�H(V )(t) = I3=2�H( _V )(t)

=

Z t

0

(t� s)
1

2
�H

�(3=2�H)
dV (s) :

Fubini's Stochastic Theorem entails that ��1 has the dif-
fusive representation

��1V (t) =

Z
1

0

�H�3=2 d�

�(3=2�H)�(H �
1
2
)
V�(t) :

Eventually we show, using the same commmutation rela-
tion and Fubini's Stochastic Theorem, that ��1�Z = Z.

3. DIFFERENT HURST INDEXES IN THE SIGNAL AND

THE OBSERVATION

Assume that the state X of the system and the observa-
tions Y can be modelled as the solutions of the linear sto-
chastic differential system

(
dXt = aXt dt+ dWH

t

dYt = cXt dt+ dBH
0

t

(8)

withWH andBH0

Liouville fractional Brownian motions
of respective indexes H 6= H0. We just need to replace,
in our model, the classical Kalman-Bucy linear filter with
the linear filter

(
d ~Xt = a ~Xt dt+ dWt

d~Yt = cA ~X(t) dt+ dBt

(9)

with Y = IH
0
�

1

2 ~Y , X = IH�
1

2 ~X , and the operator
AZ = IH�H

0

Z defined, as seen in the preceding sec-
tions, by

I�Z(t) =

Z t

0

(t� s)��1

�(�)
Z(s) ds if 1 > � > 0(10)

I�Z(t) =

Z t

0

(t � s)�

�(�+ 1)
dZ(s) if 0 > � > �1(11)

4. COMPARISON WITH THE OPTIMAL FILTER

In the classical optimal filter, we find for every time t a
random variable X̂t which realizes the following infimum

E

h
(X̂t �Xt)

2
i
= inf

�
E
�
(Z �X)2

�
: Z 2 L2(Yt)

	
;

where Yt is the sigma-field generated by (Ys; s � t) (the
information contained in the observations up to time t.
In our non-classical filter, we find a process ( �Xt)t�0 which
is optimal in the following sense : for any t > 0,

E
�
((��1X)(t) � (��1 �X)(t))2

�
=

inf
�
E
�
(Z � (��1X)(t))2

�
: Z 2 L2(Yt)

	
;

where � denotes the operator IH�1=2.
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