This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Lecture Notes
 Introduction to Stochastic Population Processes

Philippe Carmona
March 18, 2020

Preface

These notes are based on lectures given at University of Nantes in 2018. Standard references for population dynamics are

- Stochastic models for Structured Populations Bansaye and Méléard [1]
- Markov Processes Ethier and Kurtz [2]
- Tom Britton, Etienne Pardoux, Stochastic epidemics in a homogeneous community,https://arxiv.org/abs/1808.05350
- Donald Dawson, Introductory Lectures on Stochastic Population Systems, https://arxiv.org/abs/1705.03781

The basic reference for convergence of Markov processes is the book by Ethier and Kurtz Ethier and Kurtz [2].
One can find standard courses on continous time markov chains and martingales everywhere on the net. Here are two such references by Steven Lalleyhttps:// galton.uchicago.edu/~lalley/Courses/313/ContinuousTime.pdf https: //galton.uchicago.edu/~lalley/Courses/385/ContinuousMG1.pdf

Contents

Preface

1 The Galton Watson process 1
1 Introduction and extinction probability 1
2 The fundamental martingale and the actual growth of the popu- lation 3
2 Birth and death processes 5
$1 \quad$ Definition and non explosion criteria 5
2 Extinction probabilities 7
3 Linear Birth and Death process 9
$1 \quad$ The branching property 9
2 Distribution at a fixed time 10
3 The fundamental martingale 12
4 Hitting times 12
4 Comparison of Markov Jump Processes 14
1 Motivation. 14
2 Stochastic Monotonicity 14
3 Markov jump processes 16
4 Bounded rate processes 18
5 Feller's construction of Markov jump process with unbounded rates 21
6 Unbounded rate jump Markov process 21
$7 \quad$ Application 23
8 Killed processes and Markovian jump semigroups. 25
$9 \quad$ Another comparison between SIR and BD processes 27
5 Law of Large numbers for Random Markov Epidemic Models 29
1 Another representation of Some Markov jump processes 29
$2 \quad$ A non explosion criteria 30
3 The law of large numbers 33
4 Generators and martingales 36
6 The duration of the basic stochastic epidemics 38
1 The start of the epidemic 38
$2 \quad$ The deterministic SIR epidemic model 39
3 The end of the epidemic 40
7 Multi type Galtson Watson Processes 42
1 Motivation. 42
2 The model 42
3 Extinction probabilities 44
4 Perron Frobenius Theorem 46
5 The supercritical case and geometric growth 48
8 Exercises 51

1 Exercises on Galton Watson processes. 51
2 Exercises on birth and death processes . 54
3 Exercises on stochastic comparison of Markov Processes. 55
4 Exercises on Multitype branching processes 57
5 Hints and Solutions . 58
Bibliography 59

The Galton Watson process

1 Introduction and extinction probability

It is a discrete time Markov chain on the set \mathbb{N}. The discrete time parameter n is the generation number. In this population model, each individual produces, independently from the other individuals, a random number of descendant following the same offspring distribution, the law of an integer valued random variable ξ.

Given $\left.\left(\xi^{(} k\right)_{i}, k \geq 1, i \geq 1\right)$ IID random variables distributed as ξ, the Markov chain is defined by induction : $X_{0}=1$ and

$$
\begin{equation*}
X_{n+1}=\sum_{i=1}^{X_{n}} \xi_{i}^{(n+1)} \tag{1.1}
\end{equation*}
$$

We assume that the mean offspring is finite and not null

$$
\begin{equation*}
0<m:=\mathbb{E}[\xi]<+\infty \tag{1.2}
\end{equation*}
$$

Furthermore, we assume that the process is not deterministic, that is

$$
\begin{equation*}
\forall i \in \mathbb{N}, \mathbb{P}(\xi=i)<1 \tag{1.3}
\end{equation*}
$$

We also usually assume that $\mathbb{P}(\xi=0)+\mathbb{P}(\xi=1)<1$, since otherwise the process is trivial. 0 is an absorbing state, so $q_{n}=\mathbb{P}\left(X_{n}=0\right)$ is increasing and

$$
\begin{equation*}
q:=\lim \uparrow \mathbb{P}\left(X_{n}=0\right)=\mathbb{P}\left(\exists n: X_{n}=0\right) \quad \text { is the extinction probability. } \tag{1.4}
\end{equation*}
$$

Let $f_{n}(s)=\mathbb{E}\left[s^{X_{n}}\right]$ be the generating function of X_{n}. We let $f(s)=f_{1}(s)=\mathbb{E}\left[s^{\xi}\right]$.
Lemma 1.1. $f_{n+1}(s)=f_{n}(f(s))$ and therefore $f_{n}(s)=f \circ f \circ \cdots \circ f$ is the n-th composition of f.

Proof. We have, $\xi_{i}^{(n+1)}$ independent from $\mathscr{F}_{n}:=\sigma\left(\xi_{j}^{(k)}, k \leq n, j \geq 1\right) \supset \sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)=$: \mathscr{F}_{n}^{X}. Therefore

$$
\begin{equation*}
\mathbb{E}\left[s^{X_{n+1}} \mid X_{n}=k\right]=\mathbb{E}\left[s^{\xi_{1}^{(n+1)}+\ldots, \xi_{k}^{(n+1)}}\right]=f(s)^{k} \tag{1.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
f_{n+1}(s)=\mathbb{E}\left[\mathbb{E}\left[s^{X_{n+1}} \mid X_{n}\right]\right]=\mathbb{E}\left[f(s)^{X_{n}}\right]=f_{n}(f(s)) . \tag{1.6}
\end{equation*}
$$

Lemma 1.2. The extinction probability satisfies $q \in[0,1]$ and

$$
\begin{equation*}
q=f(q) \tag{1.7}
\end{equation*}
$$

Proof. Consequently $q_{n}=\mathbb{P}\left(X_{n}=0\right)=f_{n}(0)$ satisfies

$$
\begin{equation*}
q_{n+1}=f\left(q_{n}\right) \tag{1.8}
\end{equation*}
$$

and taking limits yields the desired result.
The study of the equation $f(s)=s$ for the function f non negative, increasing convex on $[0,1]$, with $f(1)=1$, yields immediately the following dichotomy

Proposition 1.3. If $m \leq 1$, then $q=1:$ there is almost sure extinction. If $m>1$, then $q<1:$ there is a positive probability of non extinction.

We say that the process is subcritical if $m<1$, critical if $m=1$ and supercritical if $m>1$.

The Galton-Watson process is a branching stochastic process arising from Francis Galton's statistical investigation of the extinction of family names. The process models family names as patrilineal (passed from father to son), while offspring are randomly either male or female, and names become extinct if the family name line dies out (holders of the family name die without male descendants) Assume that $\xi \sim \mathscr{B}(d, p)$ with $p=1 / 2$. Then $f(s)=\left(\frac{s+1}{2}\right)^{d}$ and thus

- if $d=3,1-q=0.77$ is the probability of survival of the name
- if $d=5,1-q=0.96$.

Observe that if initially, $X_{0}=20$ then $q \rightarrow q^{20}$ and $1-q^{20} \simeq 1$ for both $d=3$ and $d=5$.

2 The fundamental martingale and the actual growth of the population

The process $W_{n}=\frac{X_{n}}{m^{n}}$ is a positive martingale. Indeed, since $\xi_{i}^{(n+1)}$ are independent from \mathscr{F}_{n}

$$
\begin{equation*}
\mathbb{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]=\mathbb{E}\left[X_{n+1} \mid X_{n}\right] \mathbb{E}\left[\xi_{1}^{(n+1)}+\cdots+\xi_{k}^{(n+1)}\right]_{\mid k=X_{n}}=m X_{n} \tag{1.9}
\end{equation*}
$$

Therefore, there exists a positive integrable finite rv W such that

$$
\begin{equation*}
W_{n} \rightarrow W \quad \text { a.s. } \tag{1.10}
\end{equation*}
$$

Hence, if $m<1, X_{n}=m^{n} W_{n}$ converges as to 0 exponentially fast.
Trivially, $q=\mathbb{P}\left(\exists n_{0}, \forall n \geq 0, X_{n}=0\right) \leq \mathbb{P}(W=0)$ but we can say more.

Lemma 1.4.

$$
\mathbb{P}(W=0) \in\{q, 1\}
$$

Proof. We only need to prove that $s:=\mathbb{P}(W=0)$ satisfies $f(s)=s$. The i-th descendent from the firts generation has a martingale limit $W^{(i)}$. More precisely, if $X_{n}^{(i)}$ is the number of descendent in generation n of this i-th person, then the process $X^{(i)}$ are independent, distributed as X, independent from X_{1} and for $n \geq 2$

$$
\begin{equation*}
X_{n}=\sum_{i=1}^{X_{1}} X_{n-1}^{(i)} \tag{1.11}
\end{equation*}
$$

This stochasic equation is usually called the basic branching equation and is better understood by introducing the Uhlam-Harris tree representation of a Galton Watson process (see for example Champagnat [3]).
Taking limits, we obtain that

$$
\begin{equation*}
W=\lim _{n \rightarrow+\infty} m^{-n} X_{n}=\frac{1}{m}\left(W^{(1)}+\cdots+W^{\left(X_{1}\right)}\right) \tag{1.12}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
s=\mathbb{P}(W=0) & =\mathbb{P}\left(\forall i \in\left\{1, \ldots, X_{1}\right\}, W^{(i)}=0\right) \\
& =\sum_{k} \mathbb{P}\left(\forall i \in\left\{1, \ldots, X_{1}\right\}, W^{(i)}=0 \mid X_{1}=k\right) \mathbb{P}\left(X_{1}=k\right) \\
& =\sum_{k} \mathbb{P}\left(W^{(i)}=0, \forall i \in\{1, \ldots, k\}\right) \mathbb{P}\left(X_{1}=k\right) \\
& =\sum_{k} s^{k} \mathbb{P}\left(X_{1}=k\right)=f(s) .
\end{aligned}
$$

In the supercritical case, with mild integrability assumptions, either the process goes extinct, either the population grows a.s. at rate m^{n}.

Theorem 1.5 (Kesten-Stigum). Assume $m>1$. If $\mathbb{E}\left[\xi \log ^{+} \xi\right]<+\infty$ then $\left(W_{n}\right)_{n}$ is $U I, \mathbb{E}[W]=1, \mathbb{P}(W=0)=q$ and $\{W>0\}=\left\{\forall n, X_{n}>0\right\}$ a.s. that is on the non extinction set the population grows exponentially fast.
If $\mathbb{E}\left[\xi \log ^{+} \xi\right]=+\infty$, then W_{n} is not UI and $W=0$ a.s.
Sketch. One can prove easily, exercise, that if $\mathbb{E}\left[\xi^{2}\right]<+\infty$ the W_{n} is UI. If W_{n} is UI, then by the optional stopping theorem at time $t=+\infty, \mathbb{E}[W]=\mathbb{E}\left[W_{0}\right]=1$. Therefore one cannot have $\mathbb{P}(W=0)=1$. Hence $\mathbb{P}(W=0)=q$.
Since $\left\{\exists n: X_{n}=0\right\} \subset\{W=0\}$ and these two sets have same probability, then these sets are equal a.s.

In the subcritical case, we can determine the expected total size. In practice if the process models an infection with at time 0 exactly one infected person, then the total number of infected person is

$$
\bar{X}=\sum_{n=0}^{+\infty} X_{n}
$$

Lemma 1.6. If $m<1$ then $\mathbb{E}[\bar{X}]=\frac{1}{1-m}$.
In the subcritical case, the asymptotics $X_{n} \sim m^{n} W$ suggests that the first hitting time of 0 has an exponential tail.

Lemma 1.7. If $m<1$ and $\mathbb{E}\left[\xi \log ^{+} \xi\right]<+\infty$, then there exists $K>0$ such that

$$
\mathbb{P}\left(T_{0}>n\right)=\mathbb{P}\left(X_{n}>0\right)=K m^{n}(1+o(1)) \quad(n \rightarrow+\infty)
$$

We may be interested to study the mean time to extinction with an initial population of size N, with N large : it is of order $\ln (N)$.

Lemma 1.8. If $m<1$ and $\mathbb{E}\left[\xi \log ^{+} \xi\right]<+\infty$, then

$$
\begin{equation*}
\mathbb{E}\left[T_{0} \mid X_{0}=N\right] \sim \frac{\ln N}{|\ln m|} . \tag{1.13}
\end{equation*}
$$

\{eq:17\}

Proof. https://www.math.uni-frankfurt.de/~ismi/vatutin/Lectures. pdf

Birth and death processes

1 Definition and non explosion criteria

Definition 2.1. A brth and death process is a pure jump Markov process, with values in \mathbb{N}, with jumps steps ± 1 and transition rates

$$
\begin{array}{lr}
i \rightarrow i+1 \text { with rate } & \lambda_{i} \\
i \rightarrow i-1 \text { with rate } & \mu_{i}
\end{array}
$$

with $\lambda_{i} \geq 0, \mu_{i} \geq 0, \lambda_{0}=\mu_{0}=0$.
The Q matrix, or infinitesimal generator, is given by

$$
\begin{equation*}
Q_{i, i+1}=\lambda_{i}, \quad Q_{i, i-1}=\mu_{i}, \quad Q_{i, i}=-\left(\lambda_{i}+\mu_{i}\right)=:-q_{i}, \quad Q_{i, j}=0 \text { otherwise } \tag{2.1}
\end{equation*}
$$

When in state i the chain waits an $\mathscr{E}\left(q_{i}\right)$ time, then jumps to $i+1$ with probability $\frac{\lambda_{i}}{q_{i}}$, and to $i-1$ with probability $\frac{\mu_{i}}{q_{i}}$

Three important examples

1. The linear birth death process. It is a branching process with $\lambda_{i}=\lambda i$ and $\mu_{i}=\mu i(\lambda, \mu>0$ given $)$.
2. The logistic birth death process: $\lambda_{i}=\lambda i, \mu_{i}=\mu i+c i(i-1)(c>0)$.
3. The birth death process with immigration : $\lambda_{i}=\lambda i+\rho, \mu_{i}=\mu i(\rho>0$ given).

Le $\left(Z_{n}\right)_{n \geq 0}$ be the embedded Markov chain. It has transition matrix

$$
\begin{equation*}
p_{i, i+1}=1-p_{i, i-1}=\frac{\lambda_{i}}{q_{i}} . \tag{2.2}
\end{equation*}
$$

Recall that

Proposition 2.1. There is non explosion iff

$$
\begin{equation*}
\sum_{n \geq 0} \frac{1}{q_{Z_{n}}}=+\infty \quad \text { a.s. } \tag{2.3}
\end{equation*}
$$

Corollary 2.2. Sufficient contions for non explosion are that

- either $\sup _{i} q_{i}<+\infty$
- either $\left(Z_{n}\right)_{n \in \mathbb{N}}$ is recurrent.

Proposition 2.3. The linear birth death process does not explode.
Proof. Here we have for $i \geq 1, p_{i, i+1}=1-p_{i, i-1}=\frac{\lambda}{\lambda+\mu}$, and $p_{0,0}=1$. So $Z_{n}=S_{n \wedge T_{0}}$ is a random walk $S_{n}=X_{1}+\cdots+X_{n}$ with mean step $\mathbb{E}\left[X_{1}\right]=\frac{\lambda-\mu}{\lambda+\mu}$. If $\lambda>\mu$, then $S_{n} / n \rightarrow \mathbb{E}\left[X_{1}\right]>0$, so $S_{n} \rightarrow+\infty$ and either $T_{0}<+\infty$ and $\sum_{n \geq 0} \frac{1}{q_{Z_{n}}}=+\infty$, or

$$
q_{Z_{n}}=\frac{1}{(\lambda+\mu) S_{n}} \sim \frac{C}{n}
$$

and again $\sum_{n \geq 0} \frac{1}{q_{Z_{n}}}=+\infty$.
If $\lambda \leq \mu$ then $T_{o}<+\infty$ a.s, the chain is absorbed at 0 , since $\liminf S_{n}=-\infty$ a.s.

Theorem 2.4. Let $\left(X_{t}\right)_{t \geq 0}$ be an integer valeud pure jump markov process with generator Q. Then X does not explodes a.s. iff the only non negative bounded solution of $Q \phi(x)=\phi(x)$ for $x \geq 1$ is $\phi \equiv 0$.

Proof. We begin by showing that if $T_{0}=0<T_{1}<\cdots<T_{n}<\ldots$ are the jump times, with limit $T_{\infty}:=\lim T_{n}$, then the function

$$
\begin{equation*}
\phi(x):=\mathbb{E}_{x}\left[e^{-T_{\infty}}\right] \tag{2.4}
\end{equation*}
$$

\{eq:3\}
is non negative bounded and satisfies $Q \phi=\phi$. Indeed, $\phi(0)=0$ and conditioning by T_{1}, thanks to the strong Markov property, if $x \geq 1$,

$$
\mathbb{E}_{x}\left[e^{-T_{\infty}} \mid \mathscr{F}_{T_{1}}\right]=\mathbb{E}_{x}\left[e^{-T_{1}} e^{-\left(T_{\infty}-T_{1}\right)} \mid \mathscr{F}_{T_{1}}\right]=e^{-T_{1}} \mathbb{E}_{X_{T_{1}}}\left[e^{-T_{\infty}}\right]=e^{-T_{1}} \phi\left(Z_{1}\right)
$$

Since T_{1} and $Z_{1}=X_{T_{1}}$ are independent,

$$
\begin{aligned}
\phi(x) & =\mathbb{E}_{x}\left[e^{-T_{1}}\right] \mathbb{E}_{x}\left[\phi\left(Z_{1}\right)\right] \\
& =\frac{q_{x}}{1+q_{x}} \sum_{y \neq x} \frac{q_{x y}}{q_{x}} \phi(y) \\
& =\frac{1}{1+q_{x}} \sum_{y \neq x} q_{x y} \phi(y) .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
Q \phi(x)=\sum_{y} q_{x y} \phi(y)=-q_{x} \phi(x)+\sum_{y \neq x} q_{x y} \phi(y)=\phi(x) . \tag{2.5}
\end{equation*}
$$

Assume that the only non negative bounded solution of $Q \phi(x)=\phi(x)$ for $x \geq 1$ is $\phi \equiv 0$, then $\phi(x)=\mathbb{E}_{x}\left[e^{-T_{\infty}}\right]=0$ so that $T_{\infty}=+\infty, \mathbb{P}_{x}$ a.s.
Reciprocaly if the process does not explodes a.s. there exists x such that $\phi(x)>$ 0 .

Proposition 2.5. Assume that $\lambda_{i}>0$ for $i \geq 1$. Then, the birth death process does not explode a.s. iff

$$
\begin{equation*}
\sum_{i \geq 1}\left(\frac{1}{\lambda_{i}}+\frac{\mu_{i}}{\lambda_{i} \lambda_{i-1}}+\cdots+\frac{\mu_{i} \cdots \mu_{2}}{\lambda_{i} \cdots \lambda_{1}}\right)=+\infty \tag{2.6}
\end{equation*}
$$

Corollary 2.6. If there exists $\bar{\lambda}$ such that $\lambda_{i} \leq \bar{\lambda} i$, then the birth death process does not explode a.s.

2 Extinction probabilities

Proposition 2.7. The extinction probabilities $\left(u_{i}:=\mathbb{P}_{i}\left(T_{0}<+\infty\right), i \geq 1\right)$ satisfy the equation $Q u(i)=0$ that is

$$
\begin{equation*}
\lambda_{i} u_{i+1}-\left(\lambda_{i}+\mu_{i}\right) u_{i}+\mu_{i} u_{i-1}=0 \tag{2.7}
\end{equation*}
$$

Proof. We condition by the value of the first jump $X_{T_{1}}=Z_{1}$. By the strong Markov property

$$
\begin{equation*}
\mathbb{P}_{i}\left(T_{0}<+\infty \mid \mathscr{F}_{T_{1}}\right)=\mathbb{E}_{X_{T_{1}}}\left[T_{0}<+\infty\right] \tag{2.8}
\end{equation*}
$$

Therefore, taking expectations

$$
\begin{equation*}
u_{i}=\mathbb{E}_{i}\left[u\left(Z_{1}\right)\right]=\frac{\lambda_{i}}{\lambda_{i}+\mu_{i}} u_{i+1}+\frac{\mu_{i}}{\lambda_{i}+\mu_{i}} u_{i-1} \tag{2.9}
\end{equation*}
$$

This is exactly the desired equation.

Proposition 2.8. Given $N \geq 2$, let $u_{i}^{(N)}=\mathbb{P}_{i}\left(T_{0}<T_{N}\right)$, for $0 \leq i \leq n$. Then $u_{0}^{(N)}=1$, $u_{N}^{(N)}=0$ and

$$
\begin{equation*}
u_{i}^{(N)}=\frac{W_{N-1}-W_{i-1}}{W_{N-1}}, \quad \text { with } W_{n}=1+\sum_{k=1}^{n} \frac{\mu_{1} \cdots \mu_{k}}{\lambda_{1} \cdots \lambda_{k}} \tag{2.10}
\end{equation*}
$$

In particular

$$
\begin{equation*}
u_{1}^{(N)}=1-\frac{1}{W_{N-1}} . \tag{2.11}
\end{equation*}
$$

Proof. On can do the same proof as in the preceding proposition, or else apply the preceding proposition with rates $\lambda_{i}^{(N)}=\mu_{i}^{(N)}=0$ for $i \geq N$, and get that $x_{i}^{(N)}:=$ $u_{i+1}^{(N)}-u_{i}^{(N)}$ satisfy $\lambda_{i} x_{i}^{(N)}=\mu_{i} x_{i-1}^{(N)}$, for $1 \leq i \leq N-1$. With $g_{i}=\frac{\mu_{i}}{\lambda_{i}}$ and $r_{i}=g_{1} \cdots g_{i}$ we get $x_{i}^{(N)}=r_{i} x_{0}^{(N)}$,

$$
u_{i}^{(N)}=1+x_{0}^{(N)}+\cdots x_{i-1}^{(N)}=1+x_{0}^{(N)} w_{i-1} .
$$

The boundary condition $0=u_{N}^{(N)}$ implies the value of $x_{0}^{(N)}$ and the formulas.
By letting $N \rightarrow+\infty$, we have, when there is no explosion, $u_{i}^{(N)} \rightarrow u_{i}$
Theorem 2.9. Let

$$
\alpha:=1+\sum_{k=1}^{+\infty} \frac{\mu_{1} \cdots \mu_{k}}{\lambda_{1} \cdots \lambda_{k}}
$$

If $\alpha=+\infty$ then the extinction probabilities are all equal to 1 . Otherwise, they are

$$
u_{i}=\frac{1}{\alpha} \sum_{k=i}^{+\infty} \frac{\mu_{1} \cdots \mu_{k}}{\lambda_{1} \cdots \lambda_{k}} .
$$

Example : the linear birth death process. $g_{i}=\frac{\mu}{\lambda}, r_{i}=\left(\frac{\mu}{\lambda}\right)^{i}$. There is a.s. extinction if $\frac{\mu}{\lambda}$. And if $\lambda>\mu$, the probability of extinction is

$$
u_{i}=\left(\frac{\mu}{\lambda}\right)^{i}<1
$$

Example : the logistic birth death process $g_{i}=\frac{\mu+c(i-1)}{\lambda}$,

$$
r_{i}=\prod_{k=1}^{i} \frac{\mu+c(k-1)}{\lambda} \geq C k^{i}
$$

so $\sum_{i} r_{i}=+\infty$ and there is extinction a.s. In the mean the population stabilizes but the competition, stochastic, makes extinction inevitable.
Indeed if $f(x)=x$ and $x(t)=\mathbb{E}_{1}\left[X_{t}\right]$ then $L f(x)=(\lambda-\mu+c) x-c x^{2}$. Therefore, by Kolmogorov forward equation, and Cauchy Schwarz inequality

$$
\begin{equation*}
x^{\prime}(t)=\frac{d}{d t} P_{t} f(x)=P_{t} L f(x)=(\lambda-\mu+c) x(t)-c \mathbb{E}_{1}\left[X_{t}^{2}\right] \leq(\lambda-\mu+c) x(t)-c x(t)^{2} \tag{2.12}
\end{equation*}
$$

We write it

$$
\begin{equation*}
x^{\prime}(t)=-C x(t)\left(x(t)-x_{\infty}\right), \quad \text { with } \quad x_{\infty}=\frac{c+\lambda-\mu}{c} . \tag{2.13}
\end{equation*}
$$

Therefore if $x_{\infty}<0$, then x is decreasing and if $x_{\infty} \geq 1$, then by comparison x stays below x_{∞}.

Linear Birth and Death process

1 The branching property

We say that the markov process $X=\left(X(t), t \geq 0 ; \mathscr{F}_{t}, t \geq 0 ; \mathbb{P}_{x}, x \in E\right)$ has the branching property if whenever X_{1}, X_{2} are two independent copies of X starting from x_{1}, x_{2} respectively, the process $X_{1}(t)+X_{2}(t)$ has the law of X starting from $x_{1}+x_{2}$. Formally, this may be written as

$$
\begin{equation*}
\mathbb{P}_{x_{1}} * \mathbb{P}_{x_{2}}=\mathbb{P}_{x_{1}+x_{2}} \tag{3.1}
\end{equation*}
$$

To establish 3.1 it suffices to prove equality of finite dimensional distributions. We let $\mathbb{P}_{x_{1}, x_{2}}=\mathbb{P}_{x_{1}} \otimes \mathbb{P}_{x_{2}}$ be the distribution of the couple of independent copies and $\mathbb{E}_{x_{1}, x_{2}}$ [.] be the corresponding expectation. We need to prove that for any $t_{1}<t_{2}<\ldots<t_{n}$, we have

$$
\begin{equation*}
\mathbb{E}_{x_{1}, x_{2}}\left[\prod_{i=1} f_{i}\left(X_{1}\left(t_{i}\right)+X_{2}\left(t_{i}\right)\right)\right]=\mathbb{E}_{x_{1}+x_{2}}\left[\prod_{i} f_{i}\left(X\left(t_{i}\right)\right)\right] . \tag{3.2}
\end{equation*}
$$

It is easy to prove, by a monotone class theorem, that the process $\left(X_{1}, X_{2}\right)$ is Markovian with respect to the filtration $\mathscr{G}_{t}:=\sigma\left(X_{1}(s), X_{2}(s), s \leq t\right)$ with semi group

$$
\begin{equation*}
\mathbb{E}\left[f\left(X_{1}(t+s), X_{2}(t+s)\right) \mid \mathscr{G}_{s}\right]=\mathbb{E}_{X_{1}(s), X_{2}(s)}\left[f\left(X_{1}(t), X_{2}(t)\right)\right] \tag{3.3}
\end{equation*}
$$

Therefore, by an easy induction, X is a branching process iff

$$
\begin{equation*}
\mathbb{E}_{x_{1}, x_{2}}\left[f\left(X_{1}(t)+X_{2}(t)\right)\right]=\mathbb{E}_{x}[f(X(t))] \quad\left(\forall x_{1}, x_{2}, t\right) . \tag{3.4}
\end{equation*}
$$

Let us consider from now on, processes with values in \mathbb{R}_{+}or \mathbb{N}. Then, since the Laplace tranform of positive rv's characterize their distributions, we let for $\theta \geq 0$, $f_{\theta}(x):=e^{-\theta x}$. By independence

$$
\begin{equation*}
\mathbb{E}_{x_{1}, x_{2}}\left[f_{\theta}\left(X_{1}(t)+X_{2}(t)\right)\right]=\mathbb{E}_{x_{1}}\left[e^{-\theta X(t)}\right] \mathbb{E}_{x_{2}}\left[e^{-\theta X(t)}\right] \tag{3.5}
\end{equation*}
$$

Hence, X has the branching property, iff for any $\theta \geq 0, t \geq 0$ the function $h(x)=$ $\mathbb{E}_{x}\left[e^{-\theta X(t)}\right]$ satisfies $h\left(x_{1}+x_{2}\right)=h\left(x_{1}\right) h\left(x_{2}\right)$. This happens iff there exists $u(\theta, t)$ such that

$$
\begin{equation*}
P_{t} f_{\theta}(x)=\mathbb{E}_{x}\left[e^{-\theta X(t)}\right]=e^{-x u(\theta, t)} \tag{3.6}
\end{equation*}
$$

Let us specialize now to bd processes.
Proposition 3.1. A birth and death process is a branching process iff it is a linear birth and death process.

Proof. Recall that the generator is

$$
L f(x)=\lambda(x)(f(x+1)-f(x))+\mu(x)(f(x-1)-f(x))
$$

and therefore the generator is

$$
\begin{equation*}
L f_{\theta}(x)=\lim _{t \downarrow 0} \frac{1}{t}\left(P_{t} f_{\theta}(x)-f_{\theta}(x)\right)=-x \partial_{t} u(\theta, t)_{\mid t=0} e^{-x u(\theta, 0)}=-x \partial_{t} u(\theta, t)_{\mid t=0} f_{\theta}(x) \tag{3.7}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
L f_{\theta}(x)=f_{\theta}(x)\left(\lambda(x)\left(e^{-\theta}-1\right)+\mu(x)\left(e^{\theta}-1\right)\right) \tag{3.8}
\end{equation*}
$$

The only way for these two expressions to be equal for all x, θ is that $\lambda(x)=\lambda x$ and $\mu(x)=\mu x$.

2 Distribution at a fixed time

With a little bit extra work we can obtain the distribution of $X(t)$ at a fixed time, and deduc from it the extinction probability at a fixed time.

Proposition 3.2. For a linear birth and death process starting from $x_{0}=1$, we have if $\lambda \neq \mu$,

$$
\begin{equation*}
\mathbb{E}\left[e^{-\theta X_{t}}\right]=\frac{\mu\left(e^{-\theta}-1\right) e^{(\lambda-\mu) t}-\left(\lambda e^{-\theta}-\mu\right)}{\lambda\left(e^{-\theta}-1\right) e^{(\lambda-\mu) t}-\left(\lambda e^{-\theta}-\mu\right)}, \tag{3.9}
\end{equation*}
$$

and if $\lambda=\mu$,

$$
\begin{equation*}
\mathbb{E}\left[e^{-\theta X_{t}}\right]=\frac{(\lambda t-1)\left(e^{-\theta}-1\right)-1}{\lambda t\left(e^{-\theta}-1\right)-1} \tag{3.10}
\end{equation*}
$$

Of course, the branching property implies that

$$
\begin{equation*}
\mathbb{E}_{x}\left[e^{-\theta X_{t}}\right]=\left(\mathbb{E}_{1}\left[e^{-\theta X_{t}}\right]\right)^{x} \tag{3.11}
\end{equation*}
$$

Proof. We know from the branching property that $P_{t} f_{\theta}(x)=e^{-x u(\theta, t)}$. Therefore,

$$
\begin{equation*}
\mathbb{E}\left[X_{t} e^{-\theta X_{t}}\right]=-\partial_{\theta} P_{t} f_{\theta}(x) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{align*}
\partial_{t} P_{t} f_{\theta}(x) & =L P_{t} f_{\theta}(x)=\left(e^{-\theta}-1\right) \lambda \mathbb{E}\left[X_{t} e^{-\theta X_{t}}\right]+\left(e^{\theta}-1\right) \mu \mathbb{E}\left[X_{t} e^{-\theta X_{t}}\right] \tag{3.13}\\
& =-\left(\lambda\left(e^{-\theta}-1\right)+\mu\left(e^{\theta}-1\right)\right) \partial_{\theta} P_{t} f_{\theta}(x) \tag{3.14}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\partial_{t} u(\theta, t)+\left(\lambda\left(e^{-\theta}-1\right)+\mu\left(e^{\theta}-1\right)\right) \partial_{\theta} u(\theta, t)=0 \tag{3.15}
\end{equation*}
$$

We shall use the method of characteristics to solve this PDE. Let $\left(x_{1}(s), x_{2}(s)\right)$ be a solution of

$$
\begin{equation*}
\frac{d x_{2}}{d s}=1, \quad \frac{d x_{1}}{d s}=\lambda\left(e^{-x_{1}}-1\right)+\mu\left(e^{x_{1}}-1\right) \tag{3.16}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\frac{d}{d s} u\left(x_{1}(s), x_{2}(s)\right)=0 \tag{3.17}
\end{equation*}
$$

and $u($ the ta, $t)=x_{1}(0)$ if we have the boundary conditions $x_{2}(0)=0, x_{2}(t)=t$, $x_{1}(t)=\theta$.
For $\lambda \neq \mu$, we solve the ode for x_{1}

$$
\begin{align*}
s+c & =\int \frac{d x_{1}}{\lambda\left(e^{-x_{1}}-1\right)+\mu\left(e^{x_{1}}-1\right)} \tag{3.18}\\
& =\int \frac{-d y}{\lambda\left(e^{y}-1\right)+\mu\left(e^{-y}-1\right)} \quad\left(y=-x_{1}\right) \tag{3.19}\\
& =-\frac{1}{\lambda-\mu} \ln \left(\frac{e^{y}-1}{\lambda e^{y}-\mu}\right) \tag{3.20}
\end{align*}
$$

That is

$$
\begin{equation*}
\frac{e^{(\lambda-\mu) s}\left(e^{-x_{1}(s)}-1\right)}{\lambda e^{-x_{1}(s)}-1}=\text { constant } \text {. } \tag{3.21}
\end{equation*}
$$

Injecting the boundary conditions $x_{1}(t)=\theta, x_{1}(0)=u(\theta, t)$ yields the desired formula.

Letting $\theta \rightarrow+\infty$ in the preceding yileds the extinction probabilities
Corollary 3.3. For a linear birth and death process starting from $x_{0}=1$, we have if $\lambda \neq \mu$,

$$
\begin{equation*}
\mathbb{P}\left(X_{t}=0\right)=\frac{\mu\left(1-e^{-(\lambda-\mu) t}\right)}{\lambda-\mu e^{-(\lambda-\mu) t}} \tag{3.22}
\end{equation*}
$$

and if $\lambda=\mu$

$$
\begin{equation*}
\mathbb{P}\left(X_{t}=0\right)=\frac{\lambda t}{1+\lambda t} \tag{3.23}
\end{equation*}
$$

We can check that the (final) extinction probability is

$$
\begin{equation*}
q=\lim _{t \rightarrow+\infty} \mathbb{P}\left(X_{t}=0\right)=1 \wedge \frac{\mu}{\lambda} \tag{3.24}
\end{equation*}
$$

3 The fundamental martingale

This linear BD process is the continuous analogue of the GW process. On non extinction, it grows exponentially fast.

Proposition 3.4. Assume $\lambda>\mu$. The process $W_{t}=e^{-(\lambda-\mu) t} X_{t}$ is a positive martingale, Uniformly Integrable, converging a.s to a positive integrable random variable W_{∞} and almost surely

$$
\begin{equation*}
\left\{W_{\infty}>0\right\}=\left\{\forall t, X_{t}>0\right\} \tag{3.25}
\end{equation*}
$$

Proof. Applying Kolmogorov forward equation to $f(x)=x$ yields

$$
\partial_{t} P_{t} f(x)=P_{t} L f(x)=(\lambda-\mu) f(x)
$$

and therefore $P_{t} f(x)=e^{(\lambda-\mu) t} f(x)$. Hence, if $s l e t$,

$$
\begin{equation*}
\mathbb{E}\left[W_{t} \mid \mathscr{F}_{s}\right]=e^{-(\lambda-\mu) t} P_{t-s} f\left(X_{s}\right)=W_{s} . \tag{3.26}
\end{equation*}
$$

We have obviously

$$
\begin{equation*}
\left\{W_{\infty}>0\right\} \subset\left\{\forall t, X_{t}>0\right\} \tag{3.27}
\end{equation*}
$$

and all we have to prove is that thes two sets have the same probability.
Similarly we can compute exactly $\mathbb{E}\left[X_{t}^{2}\right]$ and deduce that the martingale W_{t} is UI and thus $\mathbb{E}\left[W_{\infty}\right]=\mathbb{E}\left[W_{0}\right]=1$.
On the other hand, conditionning by the first jump time, the strong Markov property yields that $s=\mathbb{P}\left(W_{\infty}=0\right)$ satisfies

$$
\begin{equation*}
s=\frac{\lambda}{\lambda+\mu} s^{2}+\frac{\mu}{\lambda+\mu} \tag{3.28}
\end{equation*}
$$

Therefore $s \in\left\{1, \frac{\mu}{\lambda}\right\}$. and $\mathbb{E}\left[W_{\infty}\right]=1$ imposes $s \neq 1$ therefore $s=\mu / \lambda$.

4 Hitting times

Intuitively, the preceding results show that in the supercirtical case, it takes appproximatively $\log K$ unit of times to go from a population of 1 individual to a population of K individual. And in the subcritical case, it takes also $\log K$ unit of time to go extinct starting from a polulation of order K.
Let $T_{a}=\inf \left\{t \geq 0: X_{t}=a\right\}$ for $a \in \mathbb{N}$. Let $\left(t_{K}\right)_{K \geq 1}$ be a sequence of positive times such that $t_{k} \gg \log K$.

Proposition 3.5. 1. Assume $\lambda<\mu$, subcritical case. Then for any $\epsilon>0$

$$
\begin{equation*}
\mathbb{P}_{1}\left(T_{0} \leq t_{K} \wedge T_{[\epsilon K]}\right) \rightarrow 1 \tag{3.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}_{\lfloor\epsilon K]}\left(T_{0} \leq t_{K}\right) \rightarrow 1 \tag{3.30}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\mathbb{P}_{n}\left(T_{k n} \leq T_{0}\right) \leq \frac{1}{k} . \quad(\forall n \geq 1, k \geq 1) \tag{3.31}
\end{equation*}
$$

2. Assume $\lambda>\mu$ (supercritical case). Then

$$
\begin{equation*}
\mathbb{P}_{1}\left(T_{0} \leq t_{K} \wedge T_{\lceil\epsilon K]}\right) \rightarrow \frac{\mu}{\lambda} \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}_{1}\left(T_{\lceil\epsilon K]} \leq t_{K}\right) \rightarrow 1-\frac{\mu}{\lambda} \tag{3.33}
\end{equation*}
$$

Proof. Since $T_{a} \geq a-1$, and $t_{K} \rightarrow+\infty$, we have

$$
\mathbb{P}\left(T_{0} \leq t_{K} \wedge T_{[\epsilon K]}\right) \rightarrow \mathbb{P}\left(T_{0}<+\infty\right)
$$

and this yields (3.29) and 3.32)
The limit (3.30) follows from the exact computation of the extinction probability at time t_{k}

$$
\begin{equation*}
\mathbb{P}_{\lfloor\epsilon K\rfloor}\left(T_{0} \leq t_{K}\right)=\mathbb{P}\left(X_{t_{K}}=0\right)^{[\epsilon K]} \tag{3.34}
\end{equation*}
$$

The inequality (3.31) follows from Doob's stopping theorem applied to the UI martingale W_{t} and time $S=T_{0} \wedge T_{k n}$

$$
\begin{equation*}
\mathbb{E}_{n}\left[W_{S}\right]=\mathbb{E}_{n}\left[W_{T_{k n}} \mathbf{1}_{\left(T_{k n}<T_{0}\right)}\right]=\mathbb{E}_{n}\left[W_{0}\right]=n \tag{3.35}
\end{equation*}
$$

and $\operatorname{sinc} \lambda<\mu, W_{T_{k n}} \geq k n$.
Eventually, 3.33 comes from the fact that on the extinction set, $\left\{W_{\infty}=0\right\}$ of probability μ / λ, we have a finite progeny, to as $T_{[\epsilon K]}=+\infty$ for K large enough. On the survival set, $\left\{W_{\infty}>0\right\}=\left\{T_{0}=+\infty\right\}$ we have $X_{t} \sim W_{\infty} e^{(\lambda-\mu) t}$ and since $t_{K} \gg \log K$, we have both $T_{0}=+\infty$ and $T_{[\epsilon K]} \leq t_{K}$.

Comparison of Markov Jump Processes

1 Motivation

Assume that X^{1}, X^{2} are linear birth death processes with birth rates λ^{i} and death rates μ^{i} that satisfy

$$
\lambda_{1} \leq \lambda_{2}, \quad \mu_{1} \leq \mu_{2}
$$

Our intuition tells us that if $X^{1}(0) \leq X^{2}(0)$, then X^{1} has more chances to be extinct at time t than X^{2}, that is

$$
\text { if } x_{1} \leq x_{2} \quad \text { then } \quad \mathbb{P}_{x_{1}}\left(X_{t}^{1}=0\right) \geq \mathbb{P}_{x_{2}}\left(X_{t}^{2}=0\right)
$$

A first idea is to use exact computations that give

$$
\begin{equation*}
\mathbb{P}_{x_{i}}\left(X_{t}^{i}=0\right)=\left(\frac{\mu_{i}\left(1-e^{-\left(\lambda_{i}-\mu_{i}\right) t}\right)}{\lambda_{i}-\mu_{i} e^{-\left(\lambda_{i}-\mu_{i}\right) t}}\right)^{x_{i}} \tag{4.1}
\end{equation*}
$$

But even for $x_{1}=x_{2}$, fixed t, checking that this function is decreasing in λ is not an easy task.

2 Stochastic Monotonicity

The state space (E, \mathscr{E}) is endowed with a measurable partial ordering \prec such that

$$
\begin{equation*}
F:=\left\{\left(x_{1}, x_{2}\right): x_{1} \prec x_{2}\right\} \in \mathscr{E}^{2} \tag{4.2}
\end{equation*}
$$

A measurable function $f: E \rightarrow \mathbb{R}$ is monotone if $x_{1} \prec x_{2} \Longrightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$. A measurable set A is monotone if 1_{A} is monotone that is $x \in A$ and $x \prec y$ implies $y \in A$. We let \mathscr{M} be the set of monotone functions (and the set of monotone sets). For two probability measures on E we say that $\mu_{1} \prec \mu_{2}$ if for every non negative $f \in \mathscr{M}, \mu_{1}(f) \leq \mu_{2}(f)$. For two random variables on (E, \mathscr{E}) we say that $X \prec Y$ if $P_{X} \prec P_{Y}$.

If F is closed and E polish theorem, then Strassen's theorem (see Lindvall [4]) states that it twho probabilities μ_{1}, μ_{2} on (E, \mathscr{E}) satify $\mu_{1} \prec \mu_{2}$ then there exists a probability measure P on $\left(E^{2}, \mathscr{E} \otimes \mathscr{E}\right)$ with marginals μ_{1}, μ_{2} such that $P(F)=1$. In other words there exist random variables Y_{1}, Y_{2} on (E, \mathscr{E}) such that $Y_{1} \prec Y_{2}$ a.s. and $Y_{i} \sim \mu_{i}$.
Given two semigroups on $b \mathscr{E}$, we say that $P_{1}(t) \prec P_{2}(t)$ if

$$
\begin{equation*}
x_{1} \prec x_{2} \Longrightarrow P_{1}(t) f\left(x_{1}\right) \leq P_{2}(t) f\left(x_{2}\right)(t \geq 0, f \in b \mathscr{M}) \tag{4.3}
\end{equation*}
$$

Lemma 4.1. Let μ_{1}, μ_{2} be two finite measures on (E, \mathscr{E}). The following are equivalent

1. $\mu_{1}(A) \leq \mu_{2}(A)$ forall $A \in \mathscr{M}$
2. $\mu_{1}(f) \leq \mu_{2}(f)$ forall $f \in b \mathscr{M}+$.
3. $\mu_{1}(f) \leq \mu_{2}(f)$ forall $f \in \mathscr{M}+$.

If furthermore $\mu_{1}(E)=\mu_{2}(E)$ then each of the above statement is also equivalent to

$$
\begin{equation*}
\mu_{1}(f) \leq \mu_{2}(f) \tag{4.4}
\end{equation*}
$$

for all $f \in \mathscr{M}$ such that the integrals exist.
We would like to compare generators and say that $L_{1} \prec L_{2}$ implies $P_{1}(t) \prec P_{2}(t)$ forall t.
We say that the operators L_{1}, L_{2} defined on $b \mathscr{E}$ satisfy $L_{1} \prec L_{2}$ if $x_{1} \prec x_{2}$ and A monotone, and either both $x_{1}, x_{2} \in A$ or both $x_{1}, x_{2} \in A^{C}$ imply $L_{1} f\left(x_{1}\right) \leq L_{2} f\left(x_{2}\right)$.

Lemma 4.2. If forall $t P_{1}(t) \prec P_{2}(t)$ then the corresponding generators satisfy $L_{1} \prec$ L_{2}.

Proof. Assum $A \in \mathscr{M}, x_{1} \prec x_{2}$. If $x_{1} \in A, x_{2} \in A$ then

$$
L_{i} 1 A\left(x_{i}\right)=\lim _{t \downarrow 0} \frac{1}{t}\left(P_{i}(t) 1_{A}\left(x_{i}\right)-1_{A}\left(x_{i}\right)\right)=\lim _{t \downarrow 0} \frac{1}{t}\left(P_{i}(t) 1_{A}\left(x_{i}\right)-1\right)
$$

and since $P_{1}(t) 1_{A}\left(x_{1}\right) \leq P_{2}(t) 1_{A}\left(x_{2}\right)$ we obtain $L 1_{A}\left(x_{1}\right) \leq L 1_{A}\left(x_{2}\right)$. If $x_{1} / i n A$ and $x_{2} \nexists n A$ the proof is similar.

We are going to prove that for processes with bounded rates, the condition $L_{1} \prec$ L_{2} is also sufficient.
We have the following extension of Strassen's theorem.
Theorem 4.3. Let X_{1}, X_{2} be two Markov processes on the polish space (E, \mathscr{E}) with cadlag paths whose semigroups satisfy forall $t P_{1}(t) \prec P_{2}(t)$ and let μ, v be two probabilities on E such that $\mu \prec v$. Then there exists a coupling that is two processes defined on the same probability space $\left(\hat{X}_{1}(t), \hat{X}_{2}(t), t \geq 0\right)$ such that $\hat{X}_{1}(0) \sim$ $\mu, \hat{X}_{2}(0) \sim v, \hat{X}_{1}, \hat{X}_{2}$ have respective semigroups P_{1}, P_{2} and

$$
\begin{equation*}
\text { a.s. } \forall t \geq 0 \quad X_{1}(t) \leq X_{2}(t) \tag{4.5}
\end{equation*}
$$

Proof. This can be found in Kamae et al. [5, Theorem 5]. We say then that $X_{1}(t) \prec$ $X_{2}(t)$ if we consider such a coupling.

3 Markov jump processes

Kernels and semigroups

Definition 4.1. $\operatorname{Let}(S, \mathscr{S})$ and (T, \mathscr{T}) be two measurable spaces. A function

$$
\begin{equation*}
\kappa: S \times \mathscr{T} \rightarrow[0,+\infty] \tag{4.6}
\end{equation*}
$$

is called a (transition) kernel if

1. for any fixed $B \in \mathscr{T}$, the function $s \rightarrow \kappa_{s}(B) \kappa(s, B)$ is measurable.
2. for any fixed, $s \in S$, the function $B \rightarrow \kappa(s, B)$ is a measure on (T, \mathscr{T}).

The kernel is said to be finite if all the measure κ_{s} are finite. It s a Markov kernel, or a probability kernel, if all the κ_{s} are probabilities.
To every finite kernel κ we associate the operator $A_{\kappa}: b \mathscr{T} \rightarrow b \mathscr{S}$ by:

$$
\begin{equation*}
A_{\kappa} f(s)=\int_{T} f(t) \kappa_{s}(d t)=\kappa_{s}(f) \tag{4.7}
\end{equation*}
$$

If an operator $A: b \mathscr{T} \rightarrow b \mathscr{S}$ is positive in the sense that $f \geq 0$ implies $A f \geq 0$, then $\kappa(s, B):=A 1_{B}(s)$ defines a finite kernel s.t. $A=A_{\kappa}$.
Let $(X(t), t \geq 0)$ be a stochastic process defined on a probability space with values in (E, \mathscr{E}), that is $(t, \omega) \rightarrow X(t, \omega)$ is a $\mathscr{B}([0,+\infty[) \otimes \mathscr{F} \rightarrow \mathbb{R}$ measurable function and let $\mathscr{F}_{t}^{X}:=\sigma(X(s), s \leq t)$. Then X is a Markov process if

$$
\begin{equation*}
\mathbb{P}\left(X(t+s) \in A \mid \mathscr{F}_{t}^{X}\right)=\mathbb{P}(X(t+s) \in A \mid X(t)) \tag{4.8}
\end{equation*}
$$

for all $s, t \geq 0$ and $A \in \mathscr{E}$.
If $\left(\mathscr{G}_{t}\right)_{t}$ is a filtration such that $\mathscr{F}_{t}^{X} \subset \mathscr{G}_{t}$ we say that X is a $\left(\mathscr{G}_{t}\right)$ Markov process if

$$
\begin{equation*}
\mathbb{P}\left(X(t+s) \in A \mid \mathscr{G}_{t}\right)=\mathbb{P}(X(t+s) \in A \mid X(t)) \tag{4.9}
\end{equation*}
$$

for all $s, t \geq 0$ and $A \in \mathscr{E}$.
Proposition 4.4. Assume that $\left(\mathbb{P}_{x}, x \in E\right)$ is a family of probability measure on (Ω, \mathscr{F}) such that

1. X is a Markov process under each \mathbb{P}_{x} such that

$$
\begin{equation*}
\mathbb{P}_{x}\left(X(t+s) \in A \mid \mathscr{G}_{t}\right)=\mathbb{P}_{X(t)}(X(s) \in A) \tag{4.10}
\end{equation*}
$$

for all $s, t \geq 0, x \in E$ and $A \in \mathscr{E}$.
2.

$$
\begin{equation*}
\mathbb{P}_{x}(X(0)=x)=1 \quad(\forall x) \tag{4.11}
\end{equation*}
$$

3. The operator $P_{t} f(x)=\mathbb{E}_{x}[f(X(t))]$ is a Markov kernel on E.

Then $\left(P_{t}, t \geq 0\right)$ is a Markov semigroup : $P_{0}=i d$ and $P_{t} P_{s}=P_{t+s}$.
Proof. If $f \in b \mathscr{E}$, then $P_{0} f(x)=\mathbb{E}[f(X(0))]=f(x)$ so $P_{0}=i d$ and
$P_{t+s} f(x)=\mathbb{E}_{x}[f(X(t+s))]=\mathbb{E}_{x}\left[\mathbb{E}_{x}\left[f(X(t+s)) \mid \mathscr{G}_{t}\right]\right]=\mathbb{E}_{x}\left[P_{s} f\left(X_{t}\right)\right]=P_{t} P_{s} f(x)$.

To this semi-group we can associated transition kernels $P_{t}(x, d y)$ which are called transition functions associated to the markov process X, and the semi group equation is then called Chapman-Kolmogorov equations.

$$
\begin{equation*}
P_{t+s}(x, A)=\int P_{t}(x, d y) P_{s}(y, A) \tag{4.13}
\end{equation*}
$$

It is worth observing that given such a Markovian semi-group, on a polish space (E, \mathscr{E}), then there exists a Markov process satisfying the assumptions of the proposition. It's distribution is uniquely determined (see e.g. [2, Theorem 1.1]). Therefore we shall identify Markov semi-groups with such Markov processes.

Definition and first properties

A pure jump Markov process defined on (E, \mathscr{E}) is a Markov process whose semigroup satisfies

$$
\begin{equation*}
\lim _{t \rightarrow 0} P_{t} 1_{A}(x)=1_{A}(x) \quad(\forall x \in E, \forall A \in \mathscr{E}) . \tag{4.14}
\end{equation*}
$$

This is called the continuity assumption since it means that as $t \rightarrow 0, P_{t} 1_{A}(x) \rightarrow$ $P_{0} 1_{A}(x)=1_{A}(x)$.
This is also called the jump assumption since this implies that the Markov process stays constant until the first jump.
For example a Brownian motion is not a pure jump process : it satisfies, for continuous bound $f, P_{t} f(x) \rightarrow f(x)$ but if $t>0$, since $p_{t}(x, d y)=\phi_{t}(y-x) d y$, the gaussian density, for $f=1_{\{x\}}$ we have $P_{t} f(x)=0$ and therefore $P_{t} f(x) \rightarrow 0 \neq$ $f(x)=1$.

Lemma 4.5. Let X be a pure jump process and let $T:=\inf \left\{t>0 X_{t} \neq X_{0}\right\}$. Then, under \mathbb{P}_{x} there exists $\alpha(x) \in[0,+\infty]$ such that $\mathbb{P}_{x}(T>t)=e^{-t \alpha(x)}$.

Proof. By Markov property since $\{T>t\} \in \mathscr{F}_{t}$ and $\mathbf{1}_{(T>t+s)}=\mathbf{1}_{(T>t)} \mathbf{1}_{\left(T>\operatorname{so} \theta_{t}\right)}=$ $\mathbf{1}_{(T>t)} \mathbf{1}_{(\tilde{T}>s)}$ with $\tilde{X}(s)=X(t+s)$ and $\tilde{T}=T(\tilde{X})$

$$
\begin{equation*}
\mathbb{P}_{x}\left(T>t+s \mid \mathscr{F}_{t}\right)=\mathbf{1}_{(T>t)} \mathbb{E}_{X_{t}}\left[\mathbf{1}_{(T>s)}\right]=\mathbf{1}_{(T>t)} \mathbb{P}_{x}(T>s) \tag{4.15}
\end{equation*}
$$

If $\alpha(x)=0$ (resp. $+\infty, \in(0,+\infty)$) we say that the state x is absorbing, instantaneous, stable.

Theorem 4.6. (Chen [6, Theorem 1.4]) Let X be a Markov pure jump process with semigroup $\left(P_{t}\right)_{t \geq 0}$. Then there exists a measurable function $q: E \rightarrow[0,+\infty]$ such that

$$
\begin{equation*}
\forall x, \lim _{t \rightarrow 0} \frac{1}{t}\left(1-P_{t} 1_{\{x\}}(x)\right)=q(x) \tag{4.16}
\end{equation*}
$$

We have $q(x)=\alpha(x)$, but this is not so simple to prove. The following applies in particular to processes with bounded rates,

Theorem 4.7. (Chen [6, Theorem 1.11]) Let Let X be a markov pure jump process with semigroup $\left(P_{t}\right)_{t \geq 0}$ on E Polish, such that the set

$$
\begin{equation*}
\{x: q(x)=+\infty\} \tag{4.17}
\end{equation*}
$$

is at most countable. Then there exists a finite kernel q on E such that $q(x,\{x\})=0$ and for any $f \in b \mathscr{E}$

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{1}{t} P_{t} f(x)-x=\int(f(y)-f(x)) q(x, d y)=: L f(x) \tag{4.18}
\end{equation*}
$$

L is the infinitesimal generator, and $q(x, E)=q(x)$ so we have, for x outside a countable set,

$$
\begin{equation*}
L f(x)=\int f(y) q(x, d y)-q(x) f(x) \tag{4.19}
\end{equation*}
$$

We shall assume from now on, except if otherwise stated, that forall $x, q(x)<$ $+\infty$. The states for which $q(x)=0$ are called absorbing. We have of course the Kolmogorov equations:

$$
\begin{equation*}
\frac{d}{d t} P_{t} f=P_{t} L f=L P_{t} f \tag{4.20}
\end{equation*}
$$

This of course applies to process on discrete state spaces whose Q matrix satisfy $q_{i}:=\sum_{j \neq i} q_{i j}<+\infty$.

4 Bounded rate processes

We consider a jump process on (E, \mathscr{E}) with generator

$$
\begin{equation*}
L f(x)=\int(f(y)-f(x)) q(x, d y) \tag{4.21}
\end{equation*}
$$

with q a finite transition kernel that is a function $q: E \times \mathscr{E} \rightarrow \mathbb{R}_{+}$such that

1. for each $x \in E, q(x,$.$) is a finite measure$
2. for each $A \in \mathscr{E}, x \rightarrow q(x, A)$ is measurable. The total jump rate at state x is $q(x):=q(x, E)$.

Without loss in generality we shall assume that $q(x,\{x\})=0$. We say that the jup process has bounded rates if $\sup _{x \in E} q(x)<+\infty$.

Proposition 4.8. Consider a Jump Markov process with bounded rates as above and let $b \geq \sup _{x} q(x)$. Then

$$
\begin{equation*}
P_{b}=I+\frac{1}{b} L \tag{4.22}
\end{equation*}
$$

is a Markov kernel that is $P_{b} f$ is positive bouded measurable iff is, and $P_{b} 1=1$. Let $Y=\left(Y_{n}\right)_{n \in \mathbb{N}}$ be a discrete time Markov chain with transition kernel P_{b}. Let $N=\left(N_{t}\right)_{t \geq 0}$ be a standard Poisson process on the line with rate b, independent from Y. Then

$$
\begin{equation*}
X_{t}=Y_{N_{t}} \tag{4.23}
\end{equation*}
$$

is a Mrakov process with generator L.
Proof. Consider the filtration $\mathscr{F}_{t}=\sigma\left(Y_{n \wedge N_{t}}, n \in \mathbb{N} ; N_{s}, s \leq t\right)$. The X_{t} is \mathscr{F}_{t} measurable.
First we are going to prove that $\left(\tilde{N}_{u}=N_{t+u}-N_{t}, u \geq 0\right)$ is independent from \mathscr{F}_{t}. By the monotone class theorem it suffices to prove that

$$
\begin{equation*}
\mathbb{E}[U V]=\mathbb{E}[U] \mathbb{E}[V] \tag{4.24}
\end{equation*}
$$

with $U=\prod_{j=1}^{K} h_{j}\left(\tilde{N}_{u_{j}}\right), V=\prod_{1 \leq i \leq L} f_{i}\left(Y_{n_{i} \wedge t}\right) \prod_{1 \leq l \leq M} g_{l}\left(N_{s_{l}}\right), u_{1}<u_{2}<u_{M}, n_{1}<$ $n_{2}<\cdots<n_{L}, s_{1}<\cdots<s_{M} \leq t$ and the functions f_{i}, g_{l}, h_{j} positive measurable bounded.
This is indeed true since

$$
\begin{aligned}
\mathbb{E}[U V] & =\sum_{m_{l}, p_{j}} \mathbb{P}\left(N_{s_{l}}=m_{l}, \tilde{N}_{u_{j}}=p_{j}\right) \prod h_{j}\left(p_{j}\right) \prod g_{l}\left(m_{l}\right) \mathbb{E}\left[\prod f_{i}\left(Y_{n_{i} \wedge t}\right)\right] \\
& =\sum_{m_{l}, p_{j}} \mathbb{P}\left(N_{s_{l}}=m_{l}\right) \mathbb{P}\left(\tilde{N}_{u_{j}}=p_{j}\right) \prod h_{j}\left(p_{j}\right) \prod g_{l}\left(m_{l}\right) \mathbb{E}\left[\prod f_{i}\left(Y_{n_{i} \wedge t}\right)\right] \\
& =\mathbb{E}[U] \mathbb{E}[V]
\end{aligned}
$$

Now we are going to prove that if we define

$$
P_{t} f(x):=e^{t L} f(x)=\sum_{n \geq 0} \frac{t^{n}}{n!} L^{n} f(x)
$$

which is well defined on $b \mathscr{E}$ since L is bounded, we have

$$
\begin{equation*}
\mathbb{E}\left[f\left(X_{t+s}\right) \mid \mathscr{F}_{t}\right]=P_{s} f\left(X_{t}\right) \tag{4.25}
\end{equation*}
$$

for all positive bounded measurable f.

We decompose with respect to the values of $\tilde{N}_{s}=N_{t+s}-N_{t}$, which is independent of \mathscr{F}_{t}

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t+s}\right) \mid \mathscr{F}_{t}\right] & =\mathbb{E}\left[f\left(Y_{N_{t}+\tilde{N}_{s}}\right) \mid \mathscr{F}_{t}\right] \\
& =\sum_{k} \mathbb{E}\left[f\left(Y_{N_{t}+k}\right) \mathbf{1}_{\left(\tilde{N}_{s}=k\right)} \mid \mathscr{F}_{t}\right] \\
& =\sum_{k} \mathbb{P}\left(\tilde{N}_{s}=k\right) \mathbb{E}\left[f\left(Y_{N_{t}+k}\right) \mid \mathscr{F}_{t}\right] \\
& =\sum_{k} \mathbb{P}\left(\tilde{N}_{s}=k\right) p_{b}^{k} f\left(Y_{N_{t}}\right) \\
& =\sum_{k} e^{-b s} \frac{(b s)^{k}}{k!} p_{b}^{k} f\left(Y_{N_{t}}\right) \\
& =e^{-b s} e^{b s P_{b}} f\left(X_{t}\right)=e^{s L} f\left(X_{t}\right),
\end{aligned}
$$

since $e^{-b s} e^{b s P_{b}}=e^{-b s I+b s\left(I+\frac{1}{b} L\right)}=e^{s L}$.

The preceding construction dates back at least to Çinlar[7]
Theorem 4.9. Assume that q_{1}, q_{2} are finite transition kernels on (E, \mathscr{E}) a Polish space, with bounded rates, such that the associated generators satisfy $L_{1} \prec L_{2}$. Then the associated semigroups satisfy forall $t, P_{1}(t) \prec P_{2}(t)$.

Proof. Let $b>\sup _{x} q_{1}(x)+\sup _{x} q_{2}(x)$. Let Y_{1}, Y_{2} be discrete time Markov chains associated to

$$
\begin{equation*}
P_{b, i}:=I+\frac{1}{b} L_{i} \tag{4.26}
\end{equation*}
$$

Then $L_{1} \prec L_{2}$ implies immediately that $P_{b, 1} \prec P_{b, 2}$. Indeed let $A \in \mathscr{M}$ and $x_{1} \prec x_{2}$. If both x_{1}, x_{2} are in A or A^{C}, since $L_{1} 1_{A}\left(x_{1}\right) \leq L_{2} 1_{A}\left(x_{2}\right)$ we have $P_{b, 1} 1_{A}\left(x_{1}\right) \leq P_{b, 2} 1_{A}\left(x_{2}\right)$. Since A is monotone the only case left to examine is $x_{1} \notin A$ and $x_{2} \in A$. We have

$$
\begin{equation*}
L_{1} 1 A\left(x_{1}\right)=q_{1}\left(x_{1}, A\right) \leq q_{1}\left(x_{1}\right), \quad \text { and } \quad L_{2} 1_{A}\left(x_{2}\right)=q_{2}\left(x_{2}, A\right)-q_{2}\left(x_{2}\right) \geq-q_{2}\left(x_{2}\right) \tag{4.27}
\end{equation*}
$$

Therefore

$$
P_{b, 1} 1_{A}\left(x_{1}\right)-P_{2} 1_{A}\left(x_{2}\right)=\frac{1}{b}\left(L_{1} 1_{A}\left(x_{1}\right)-L_{2} 1_{A}\left(x_{2}\right)\right)-1 \leq \frac{1}{b}\left(q_{1}\left(x_{1}\right)+q_{2}\left(x_{2}\right)\right)-1 \leq 0 .
$$

Let now $N=\left(N_{t}, t \geq 0\right)$ be a Poisson process with rate b, independent from Y_{1} and Y_{2}. Let $X_{i}(t)=Y_{i} N_{t}$. Then, for any positive measurable f

$$
\begin{array}{rlrl}
P_{1}(t) f\left(x_{1}\right) & =\mathbb{E}_{x_{1}}\left[f\left(Y_{1}\left(N_{t}\right)\right)\right]=\sum_{n} \mathbb{P}\left(N_{t}=n\right) \mathbb{E}_{x_{1}}\left[f\left(Y_{n}\right)\right] & & \text { by independence } \\
& =\sum_{n} \mathbb{P}\left(N_{t}=n\right) P_{b, 1}^{n} f\left(x_{1}\right) & & \text { since } P_{b, 1} \prec P_{b, 2} \\
& \leq \sum_{n} \mathbb{P}\left(N_{t}=n\right) P_{b, 2}^{n} f\left(x_{2}\right) &
\end{array}
$$

5 Feller's construction of Markov jump process with unbounded rates

Assume that there exist borel subsets E_{n} of E such that $B_{n} \uparrow E$ and $\sup _{n_{n}} q(x) \leq n$. This is the case if q is locally bounded and E is locally compact separable. Then there exists on $E_{\Delta}=E \cup\{\Delta\}$ a Markov jump process \bar{X} with generator \bar{L} such that

- $\bar{q}(x, B)=q(x, B)$ if $B \in \mathscr{E}$
- if $\zeta=\{\inf t \geq 0: X \overline{(} t)=\Delta\}$, then Δ is an absorbing point a.e. $\forall t \geq \zeta, X(t)=$ Δ.

We say that $X_{t}=\bar{X}_{t} \mathbf{1}_{(t<\zeta)}$ is a sub Markov jump process defined up its explosion time ζ. For bounded $f \in b \mathscr{E}$,

$$
\begin{equation*}
M_{t}^{f}:=f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} L f\left(X_{s}\right) d s \quad(t<\zeta) \tag{4.28}
\end{equation*}
$$

is a local martingale with $L f(x)=\int q(x, d y)(f(y)-f(x))$. Indeed, we know that $N_{t}=f\left(\bar{X}_{t}\right)-f\left(\bar{X}_{0}\right)-\int_{0}^{t} \bar{L}\left(X_{s}\right) d s$ is a martingale, hence $N_{t \wedge T_{E_{n}^{C}}}$ is, with f extended by $f(\Delta)=0$, so $\bar{L} f(x)=L f(x)$.

6 Unbounded rate jump Markov process

Assume that (E, \mathscr{E}) is Polish and that there exists G_{δ} 's $E_{n} \uparrow E$ such that $\sup _{E_{n}} q(x)<$ $+\infty$ and

$$
\begin{equation*}
H_{n}=\left\{y \in E \backslash E_{n}: \exists x \in E_{n}, x \prec y\right\} \text { is monotone, } \tag{4.29}
\end{equation*}
$$

and if $H_{n} \neq \emptyset$, then there exist $b_{n} \in H_{n}$ such that

$$
\begin{equation*}
\forall x \in E_{n}, x \prec b_{n} . \tag{4.30}
\end{equation*}
$$

\{eq: comp28\}
For example, if $E=\mathbb{R}^{d}, \mathbb{Z}^{d}, \ldots$ and q is locally bounded one could set

$$
\begin{equation*}
E_{n}=\{x \in E:-n \leq x \leq n\}, \quad b_{n}=(n+1, \ldots, n+1) \tag{4.31}
\end{equation*}
$$

with \leq the classical lexical order.
Theorem 4.10. Assume that q_{1}, q_{2} are finite transition kernels on (E, \mathscr{E}) such that the associated generators satisfy $L_{1} \prec L_{2}$ and such that $\sup _{x \in E_{n}} q_{i}(x)<+\infty$. Then the associated semigroups satisfy forall $t, P_{1}(t) \prec P_{2}(t)$.

Proof. This is Chen [6, Theorem 5.47]. The idea is to build jump processes on $E_{n}+\left\{b_{n}\right\}$, apply the preceding results and taking limits.

Definition 4.2. We say that the semi group $P(t)$ is monotone if $P(t) \prec P(t)$ that is iffor any $f \in b \mathscr{M}$

$$
\begin{equation*}
x_{1} \prec x_{2} \Longrightarrow \forall t, P(t) f\left(x_{1}\right) \leq P(t) f\left(x_{2}\right) \tag{4.32}
\end{equation*}
$$

The comparison theorem is simpler when one of the processes is itself monotone.

Proposition 4.11. Assume that q_{1}, q_{2} are finite transition kernels on (E, \mathscr{E}), one of them monotone, such that the associated generators satisfy

$$
\begin{equation*}
L_{1} 1_{A}(x) \leq L_{2} 1_{A}(x) \quad(\forall A \in \mathscr{M}, x \in E) \tag{4.33}
\end{equation*}
$$

and $\sup _{x \in E_{n}} q_{i}(x)<+\infty$. Then the associated semigroups satisfy forall $t, P_{1}(t) \prec$ $P_{2}(t)$.

Proof. Say that $P_{1}(t)$ is monotone. Then the assumption enables to prove as in Theorem 4.9 that for $f \in b \mathscr{M}$,

$$
\begin{equation*}
P_{1}(t) f(x) \leq P_{2}(t) f(x) \tag{4.34}
\end{equation*}
$$

Therefore, if $x_{1} \prec x_{2}$,

$$
\begin{equation*}
P_{1}(t) f\left(x_{1}\right) \leq P_{1}(t) f\left(x_{2}\right) \leq P_{2}(t) f\left(x_{2}\right) \tag{4.35}
\end{equation*}
$$

Let us give a direct proof due to Rüschendorf [8]. Let us assume that for every $f \in b \mathscr{M}^{+}, L_{1} f \leq L_{2} f$ and that $P_{2}(t)$ is monotone. Fix $f \in b \mathscr{M}^{+}$and consider

$$
\begin{equation*}
F(t, x)=P_{2}(t) f(x)-P_{1}(t) f(x) \tag{4.36}
\end{equation*}
$$

Then

$$
\begin{equation*}
\partial_{t} F(t, x)=L_{2} P_{2}(t) f(x)-L_{1} P_{1}(t) f(x)=L_{1} F(t, .)(x)+H(t, x) \tag{4.37}
\end{equation*}
$$

with

$$
\begin{equation*}
H(t, x)=L_{2} P_{2}(t) f(x)-L_{1} P_{2}(t) f(x)=\left(L_{2}-L_{1}\right) g(x) \tag{4.38}
\end{equation*}
$$

with $g(x)=P_{2}(t) f(x)$ which by assumption is in $b \mathscr{M}^{+}$. Therefore, $H(t, x) \geq 0$ which is a crucial ingredient in the proof.
Observe now that

$$
\begin{equation*}
\frac{d}{d s} P_{1}(t-s) F(s, x)=P_{1}(t-s) \partial_{s} F(s, x)-P_{1}(t-s) L_{1} F(s, x)=P_{1}(t-s) H(s, x) \geq 0 \tag{4.39}
\end{equation*}
$$

Integrating this inequality between 0 and t yields then

$$
\begin{equation*}
F(t, x)-P_{1}(t) F(0, x)=\int_{0}^{t} P_{1}(t-s) H(s, x) \geq 0 \tag{4.40}
\end{equation*}
$$

and since $F(0, x)=0$ this yields $F(t, x) \geq 0$.

7 Application

Comparison of Birth Death processes

As a warm up example we shall solve the problem of the introduction. $q_{i}, i=1,2$ are BD processes with brth and death rates λ_{i}, μ_{i} such that $\lambda_{1} \leq \lambda_{2}$ and $\mu_{1} \geq \mu_{2}$. The generators are thus

$$
\begin{equation*}
L_{i} f(x)=x\left(\lambda_{i}(f(x+1)-f(x))+\mu_{i}(f(x-1)-f(x))\right) . \tag{4.41}
\end{equation*}
$$

We use the classical order on \mathbb{N} : $x \prec y$ if $x \leq y$. Hence, a monotone set A is of the type $A=[n,+\infty)$ and we have

$$
\begin{equation*}
L_{i} \mathbf{1}_{A}(x)=x \lambda_{i} \mathbf{1}_{(x=n-1)}-x \mu_{i} \mathbf{1}_{(x=n)} . \tag{4.42}
\end{equation*}
$$

Assume $x_{1} \leq x_{2}$. If $x_{1} \in A$, is $n \leq x_{1}$, then

$$
\begin{equation*}
L_{1} 1_{A}\left(x_{1}\right)=-x \mu_{1} \mathbf{1}_{\left(x_{1}=n\right)} \leq L_{2} 1_{A}\left(x_{2}\right)=-x \mu_{2} \mathbf{1}_{\left(x_{2}=n\right)} . \tag{4.43}
\end{equation*}
$$

If $x_{2} \notin A$, i.e $x_{2}<n$, then

$$
L_{1} 1_{A}\left(x_{1}\right)=\lambda_{1} \mathbf{1}_{\left(x_{1}=n-1\right)} \leq \lambda_{2} \mathbf{1}_{\left(x_{2}=n-1\right)}=L_{2} 1_{A}\left(x_{2}\right) .
$$

Therefore by the preceding theorem $P_{1}(t) \leq P_{2}(t)$ and since $f(x)=-\mathbf{1}_{(x=0)}$ is monotone whenever $x_{1} \leq x_{2}, P_{1}(t) f\left(x_{1}\right) \leq P_{2}(t) f\left(x_{2}\right)$ that is

$$
\begin{equation*}
\mathbb{P}_{x_{1}}\left(X_{t}^{1}=0\right) \geq \mathbb{P}_{x_{2}}\left(X_{t}^{2}=0\right) . \tag{4.44}
\end{equation*}
$$

Remark. Observe that , taking $P_{2}=P_{1}$ we have proved that birth death processes are monotone.

Comparison of More General Jump Processes

We are now going to compare Markov jump processes that we consider in our law of large numbers. They have been introduced by Kurtz [9] as density dependent Markov processes. They have generators

$$
\begin{equation*}
L_{i} f(x)=\sum_{j=1}^{k} \beta_{j}^{i}(x)\left(f\left(x+h_{j}\right)-f(x)\right) . \tag{4.45}
\end{equation*}
$$

with locally bounded non negative rate functions β_{j}^{i} and $h_{j} \in \mathbb{Z}^{d}$.
We say that the vector h is quasi monotone if for any monotone set A and $x_{1} \prec x_{2}$ if both x_{1}, x_{2} are in A or in A^{C} then $1_{A}\left(x_{1}+h\right)-1_{A}\left(x_{1}\right) \leq 1_{A}\left(x_{2}+h\right)-1_{A}\left(x_{2}\right)$.

Proposition 4.12. If, for each j,

1. either h_{j} is quasi monotone and $x_{1} \prec x_{2}$ implies $\beta^{1}\left(x_{1}\right) \leq \beta^{2}\left(x_{2}\right)$
2. either $-h_{j}$ is quasi monotone and $x_{1} \prec x_{2}$ implies $-\beta^{1}\left(x_{1}\right) \leq-\beta^{2}\left(x_{2}\right)$

Then $L_{1} \prec L_{2}$ and thus forall $t \geq 0, P_{1}(t) \prec P_{2}(t)$.

The comparison of BD process is a simple application of this proposition with $h_{1}=+1, \beta_{1}^{1}\left(x_{1}\right)=\lambda_{1} x_{1} \leq \lambda_{2} x_{2}=\beta_{1}^{2}\left(x_{2}\right)$ and $h_{1}=+1$ is quasi monotone since if A is monotone, that is $A=[n,+\infty)$ then $1_{A}(x+1)-1_{A}(x)=\mathbf{1}_{(x=n-1)}-\mathbf{1}_{(x=n)}$.
As before, everything is simpler when one of the processes is itself monotone.
Proposition 4.13. Assume that either X_{1} or X_{2} is monotone. If for $A \in \mathscr{M}$ and forall $x, L_{1} 1_{A}(x) \leq L_{2} 1_{A}(x)$ then $P_{1}(t) \prec P_{2}(t)$.

Comparison of SIR and BD processes

The SIR process has generator on Z^{3} :

$$
\begin{equation*}
L f(x)=\beta_{1}(x)\left(f\left(x+h_{1}\right)-f(x)\right)+\beta_{2}(x)\left(f\left(x+h_{2}\right)-f(x)\right) \tag{4.46}
\end{equation*}
$$

with, if $x=(s, i, r) \in \mathbb{Z}_{+}^{3}, h_{1}=(-1,1,0), \beta_{1}(x)=\beta$ si, $h_{2}=(0,-1,1), \beta_{2}(x)=\gamma i$.
Proposition 4.14. Let $X_{t}=\left(S_{t}, I_{t}, R_{t}\right)$ be a SIR process with $N=\left\langle X_{0}, 1\right\rangle=S_{0}+I_{0}+R_{0}$ with parameters β, γ and let Z_{t} be a linear BD process with birth rate $\lambda=\beta N$ and $\mu=\gamma$ starting from $Z_{0} \geq I_{0}$. Then

$$
\begin{equation*}
I_{t} \prec Z_{t} \tag{4.47}
\end{equation*}
$$

Proof. We introduce Y a Markov jump process on \mathbb{Z}^{3} with generator

$$
\begin{equation*}
L^{Y} f(x)=\bar{\beta}_{1}(x)\left(f\left(x+h_{1}\right)-f(x)\right)+\beta_{2}(x)\left(f\left(x+h_{2}\right)-f(x)\right) \tag{4.48}
\end{equation*}
$$

with $\bar{\beta}_{1}(x)=\beta N i$.
Our state space is $E=[0, N]^{3} \cap \mathbb{Z}^{3}$ and $Y_{0} \stackrel{d}{=} X_{0}$. The partial ordering we consider is $x=(s, i, r) \prec x^{\prime}=\left(s^{\prime}, i^{\prime}, r^{\prime}\right)$ if and $i^{\prime} \geq i$.
We check immediately that if $x \prec x^{\prime}$ then $\bar{\beta}_{1}\left(x^{\prime}\right)=\beta N i^{\prime} \geq \beta_{1}(x)=\beta$ si. A set A is monotone if for some $n A=\{(s, i, r): i \geq n\}$. We check immediately that $h_{1}=(-1,1,0)$ is quasi monotone since if $x \prec x^{\prime}$ and both x, x^{\prime} are in A or in A^{C} then

$$
g(x)=1_{A}\left(x+h_{1}\right)-1_{A}(x)=\mathbf{1}_{(i+1 \leq n)}-\mathbf{1}_{(i \leq n)} \leq g\left(x^{\prime}\right)
$$

Similarly $-h_{2}$ is quasi monotone. And thus if we let $Y_{t}=\left(S_{t}^{\prime}, I_{t}^{\prime}, R_{t}^{\prime}\right)$ with $Y_{0} \sim$ $\left(S_{0}, Z_{0}, R_{0}\right)$ we have $X_{0} \prec Y_{0}$ and thus $X_{t} \prec Y_{t}$. We now conclude since the I_{t}^{\prime} is a BD process starting from Z_{0}.

Corollary 4.15. Let X be SIR process with parameters $\beta / N, \gamma$. Assume that the basic reproduction number $R_{0}=\beta / \gamma \leq 1$, initial population $X_{0}=\left(S_{0}, I_{0}, R_{0}\right)$ with $\langle X, 1\rangle=N$. Then the number of infected persons I_{t} goes to 0 in a time of order $\log I_{0}$ with a maximum of order $O\left(I_{0}\right)$.

Proof. We have $I_{t} \prec Z_{t}$ and $W_{t}=Z_{t} e^{-(\beta-\gamma) t}$ is a UI martingale converging to W_{∞} of expectation $\mathbb{E}\left[Z_{0}\right]=\mathbb{E}\left[I_{0}\right]$. Therefore $\max _{t} I_{t} \prec \max W_{t}$ is of order I_{0}.

8 Killed processes and Markovian jump semigroups

Let $X=\left(X_{t}, t \geq 0\right)$ be a Markov jump process dénied on the polish space (E, \mathscr{E}) with generator

$$
\begin{equation*}
L f(x)=\int_{E}(f(y)-f(x)) q(x, d y) \quad(f \in b \mathscr{E}) \tag{4.49}
\end{equation*}
$$

Define for $A \in \mathscr{E}$

$$
\begin{equation*}
T=T_{A c}:=\inf t>0: X_{t} \in A^{C} . \tag{4.50}
\end{equation*}
$$

Let $A \in \mathscr{E}$ be such that $\forall x \in A, q(x)>0$.
We let $\mathscr{A}=A \cap \mathscr{E}$ be the trace sigma field, and $b \mathscr{A}$ be the set of functions $f: A \rightarrow$ \mathbb{R}, bounded, \mathscr{E} measurable. For $f \in b \mathscr{A}$, and $t \geq 0$ we let

$$
\begin{equation*}
S_{t} f(x):=\mathbb{E}_{x}\left[f\left(X_{t}\right) \mathbf{1}_{(t<T)}\right] \quad(x \in A) \tag{4.51}
\end{equation*}
$$

Proposition 4.16. $\left(S_{t}, t \geq 0\right)$ is a sub Markovian jump semigroup on $b \mathscr{A}$, that is

1. If $f \geq 0$, then $S_{t} f \geq 0$ and $S_{t} 1 \leq 1$.
2. $S_{t+s}=S_{t} \circ S_{s}$
3. $S_{0} f(x)=\lim _{t \downarrow 0} S_{t} f(x)=f(x)$.

Proof. 1. The first assertion is obvious.
2. For the second, we observe that

$$
\begin{equation*}
\mathbf{1}_{(t+s<T)}=\mathbf{1}_{(s<T)} \mathbf{1}_{(t<T)} \circ \theta_{s} \tag{4.52}
\end{equation*}
$$

Therefore, by Markov Property applied at time s

$$
\begin{aligned}
S_{t+s} f(x) & =\mathbb{E}_{x}\left[\mathbf{1}_{(s<T)} \mathbb{E}_{x}\left[\left(f\left(X_{t}\right) \mathbf{1}_{(t<T)}\right) \circ \theta_{s} \mid \mathscr{F}_{s}\right]\right] \\
& =\mathbb{E}_{x}\left[\mathbf{1}_{(s<T)} \mathbb{E}_{X_{s}}\left[f\left(X_{t}\right) \mathbf{1}_{(t<T)}\right]\right]=\mathbb{E}_{x}\left[\mathbf{1}_{(s<T)} S_{t} f\left(X_{s}\right)\right] \\
& =S_{s}\left(S_{t} f\right)(x)
\end{aligned}
$$

3. We have obviously for $x \in A, S_{0} f(x)=f(x)$ since $T \geq T_{1}$ the first jump time of X. For $t>0$, we decompose the expectation with respect to the value of $T_{1} \sim \mathscr{E}(q(x))$ to obtain

$$
\begin{aligned}
S_{t} f(x) & =\mathbb{E}\left[f\left(X_{t}\right) \mathbf{1}_{\left(t \leq T_{1}\right)}\right]+\mathbb{E}\left[f\left(X_{t}\right) \mathbf{1}_{\left(T_{1}<t\right)} \mathbf{1}_{(t<T)}\right] \\
& =f(x) e^{-t q(x)}+\int_{0}^{t} q(x) e^{-s q(x)} \mathbb{E}\left[f\left(X_{t}\right) \mathbf{1}_{(t<T)} \mid T_{1}=s\right] d s \\
& =f(x) e^{-t q(x)}+\int_{0}^{t} e^{-s q(x)}\left(\int q(x, d y) f(y) \mathbf{1}_{(y \in A)} S_{t-s} f(y)\right) d s
\end{aligned}
$$

Indeed we know that $X_{T_{1}}$ and T_{1} are independent, with $X_{T_{1}}$ with law $\frac{1}{q(x)} q(x, d y)$ so by the strons Markov property at time T_{1}

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t}\right) \mathbf{1}_{(t<T)} \mid T_{1}=s\right] & =\int \mathbb{P}\left(X_{T_{1}} \in d y\right) \mathbb{E}\left[f\left(X_{t}\right) \mathbf{1}_{(t<T)} \mid T_{1}=s, X_{T_{1}}=y\right] \\
& =\int \frac{1}{q(x)} q(x, d y) \mathbf{1}_{(y \in A)} \mathbb{E}\left[f\left(X_{t}\right) \mathbf{1}_{(t<T)} \mid T_{1}=s, X_{T_{1}}=y\right] \\
& =\int \frac{1}{q(x)} q(x, d y) \mathbf{1}_{(y \in A)} \mathbb{E}\left[\left(f\left(X_{t-s}\right) \mathbf{1}_{(t-s<T)}\right) \circ \theta_{T_{1}} \mid T_{1}=s, X_{T_{1}}=y\right] \\
& =\frac{1}{q(x)} \int q(x, d y) \mathbf{1}_{(y \in A)} S_{t-s} f(y) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
S_{t} f(x)=f(x) e^{-t q(x)}+\int_{0}^{t} e^{-(t-s) q(x)}\left(\int q(x, d y) f(y) \mathbf{1}_{(y \in A)} S_{s} f(y)\right) d s \tag{4.53}
\end{equation*}
$$

\{eq:comp:27\}
and we have $S_{t} f(x) \rightarrow f(x)$ as $t \rightarrow 0$ by dominated convergence.

It is easy to determine the generator of this Markovian semigroup by using the last formula 4.53).

Lemma 4.17. For every $f \in b \mathscr{A}$ and $x \in A$, the following limit exists

$$
\begin{equation*}
G f(x)=\lim _{t \downarrow 0} \frac{1}{t}\left(S_{t} f(x)-f(x)\right) \tag{4.54}
\end{equation*}
$$

and we have

$$
\begin{equation*}
G f(x)=q(x) f(x)-\int_{A} q_{A}(x, d y) f(y) \tag{4.55}
\end{equation*}
$$

with $q_{A}(x, d y)=q(x, d y) \mathbf{1}_{(y \in A)}$. Furthermore, the semigroup property implies that for $t>0$

$$
\begin{equation*}
\frac{d}{d t} S_{t} f(x)=G S_{t} f(x)=S_{t} G f(x) \tag{4.56}
\end{equation*}
$$

We can always extend a submarkovian semigroup to a Markovian one by adding a cemetary point Δ. On $A_{\Delta}=A \cup\{\Delta\}$ we set $P_{t} f(\Delta)=f(\Delta)$ and for $x \in A$,

$$
\begin{equation*}
P_{t} f(x)=S_{t} f(x)+f(\Delta)\left(1-\mathbb{P}_{x}(t<T)\right) \tag{4.57}
\end{equation*}
$$

We have of course, $P_{t} f(x)=\mathbb{E}_{x}\left[f\left(Y_{t}\right)\right]$ with $Y_{t}=X_{t} \mathbf{1}_{(t<T)}+\Delta \mathbf{1}_{(t \geq T)}$. The generator is

$$
\begin{equation*}
\bar{L} f(x)=\int \bar{q}(x, d y)(f(y)-f(x)) \tag{4.58}
\end{equation*}
$$

with $\bar{q}(x, B)=q(x, B)$ if $B \subset A$ and $\bar{q}(x,\{\delta\})=q\left(x, A^{C}\right)$. Therefore if $f(\Delta)=0$, $G f(x)=\bar{L} f(x)$.
We now suppose that E is endowed with a measurable partial ordering. We extend the partial order to A_{Δ} by setting $\Delta \prec x$ forall x.
If $B \subset A_{\Delta}$ is monotone then either $\Delta \in B$ and then $B=A_{\Delta}$, either $\Delta \notin B$ and B is monotone in A.
Therefore we have $\bar{L}_{1} \prec \bar{L}_{2}$ iff for any monotone B in A, and $x_{1} \prec x_{2}$:

- either $x_{1}, x_{2} \in B$ and $q_{1}(x, B)-q_{1}(x) \leq q_{2}(x, B)-q_{2}(x)$
- either $x_{1}, x_{2} \notin B$ and $q_{1}(x, B) \leq q_{2}(x, B)$

In ohter words we only have to check that the conditions of $L_{1} \prec L_{2}$ for $x_{1}, x_{2} \in A$ and monotones $B \subset A$.

Proposition 4.18. Assume $\bar{L}_{1} \prec \bar{L}_{2}$. Then there exists a coupling $\left(X_{1}, X_{2}\right)$ such that

$$
\begin{equation*}
T_{A C}\left(X_{1}\right) \leq T_{A C}\left(X_{2}\right) \tag{4.59}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{1}(t) \prec X_{2}(t) \quad \text { on }\left[0, T_{A C}\left(X_{1}\right)\right), . \tag{4.60}
\end{equation*}
$$

Proof. We have $\bar{L}_{1} \prec \bar{L}_{2}$, so we can construct the coupling for the killed processes $Y_{1}(t) \prec Y_{2}(t)$. If we have $T_{A C}\left(X_{1}\right)>T_{A C}\left(X_{2}\right)$, this implies that for some $t, Y_{2}(t)=\Delta$ and $Y_{1}(t) \neq \Delta$ which is contradictory.

9 Another comparison between SIR and BD processes

Let $X_{t}=\left(S_{t}, I_{t}, R_{t}\right)$ be a SIR process with $N=\left\langle X_{0}, 1\right\rangle=S_{0}+I_{0}+R_{0}$ with parameters β, γ. Let $0<\epsilon<1$ and let Z_{t} be a linear BD process with birth rate $\lambda=\beta N(1-\epsilon)$ and $\mu=\gamma$ starting from $Z_{0}=I_{0}$. Let B_{t} be the number of births in Z until time t and $T=\inf \left\{t>0: B_{t}<S_{0}-N(1-\epsilon)\right\}$.
Proposition 4.19. There exists a coupling such that

$$
\begin{equation*}
Z_{t} \leq I_{t} \quad \text { on }[0, T) \tag{4.61}
\end{equation*}
$$

Proof. We consider $\bar{X}_{t}=\left(\bar{S}_{t}, \bar{I}, \bar{R}_{t}\right)$ a jump Markov process with generator

$$
\begin{equation*}
\bar{L} f(x)=\bar{\beta}_{1}(x)\left(f\left(x+h_{1}\right)-f(x)\right)+\beta_{2}(x)\left(f\left(x+h_{2}\right)-f(x)\right) \tag{4.62}
\end{equation*}
$$

with $\beta_{1}(x)=\beta N(1-\epsilon) i$. We consider the same order on $E=\left\{x=(s, i, r) \in(\mathbb{Z} \cap[0, N])^{3}\right\}$ as in Proposition 4.14
With $A=\{x \in E: s \geq N(1-\epsilon)\}$ we have $\bar{\beta}_{1}(x) \leq \beta_{1}(x)$ in A. We want to prove that we have $\bar{X} \prec X$ on $\left[0, T_{A^{C}}(\bar{X})\right.$. Since \bar{X} is monotone, we only need to prove that if $x \in A$ and B is monotone in A, then

$$
\bar{L} 1_{B}(x) \leq L 1_{B}(x)
$$

Since B is of the type $B=\{x \in A: i \geq n\}$ then the proof goes as in Proposition 4.14.

In the process \bar{X} the process $\overline{(} I)$ is a linear BD process with birth rate $\beta N(1-\epsilon)$ and death rate γ, and $\bar{S}_{t}=S_{0}-B_{t}$ since \bar{S}_{t} decreases by 1 exactly when I_{t} increases by 1. Therefore $T_{A C}=T$ defined above and we are done.

Remark. Observe that by the representation (5.1)

$$
Z_{t}=Z_{0}+P_{1}\left(\lambda \int_{0}^{t} Z_{s} d s\right)-P_{2}\left(\int_{0}^{t} \mu Z_{s} d s\right)
$$

and $B_{t}=P_{1}\left(\lambda \int_{0}^{t} Z_{s} d s\right)$ We know that in the critical case, on the non explosion set of Z, Z grows exponentially fast, therefore with very high probability, if S_{0} is of order N, then T is of order $\log (N)($ since $P(t) / t \sim 1)$.

Law of Large numbers for Random Markov Epidemic Models

1 Another representation of Some Markov jump processes

Proposition 5.1. Let $\left(h_{i}\right)_{1 \leq i \leq k}$ be jump vectors in \mathbb{Z}^{d} and $\left(P_{i}\right)_{1 \leq i \leq k}$ be independent rate 1 Poisson processes independent from a random variable $X_{0} \in \mathbb{Z}^{d}$. Let β_{j} : $\mathbb{Z}^{d} \rightarrow \mathbb{R}_{+}$for $1 \leq j \leq k$.
Then the equation

$$
\begin{equation*}
X_{t}=X_{0}+\sum_{j=1}^{k} h_{j} P_{j}\left(\int_{0}^{t} \beta_{j}\left(X_{s}\right) d s\right) \tag{5.1}
\end{equation*}
$$

admits a.s. a unique solution which is a Markov jump process on \mathbb{Z}^{d} with generator

$$
\begin{equation*}
L f(x)=\sum_{j=1}^{k} \beta_{j}(x)\left(f\left(x+h_{j}\right)-f(x)\right) \quad(f \text { bounded. }) \tag{5.2}
\end{equation*}
$$

Remark. Let us observe that this process may have a finite explosion time ζ.
Furthermore, by the construction procedure if $X_{0} \geq 0$ the forall $t, X_{t} \geq 0$.
Example 5.1. 1. The birth death process. $d=1, h_{1}=1, \beta_{1}(x)=\lambda(x), h_{2}=$ $-1, \beta_{2}(x)=\mu(x)$.
2. The SIR process $d=3$, for $x=(s, i, r) \in \mathbb{Z}_{+}^{d}$,

$$
\begin{array}{ll}
h_{1}=(-1,1,0), & \beta_{1}(x)=\lambda s i \\
h_{2}=(0,-1,1) & \beta_{2}(x)=\gamma i
\end{array}
$$

λ is the percapita infectious contact rate and γ the percapita recovery rate. If $X_{t}=\left(S_{t}, I_{t}, R_{t}\right)$ then X is the solution of the $S D E$

$$
\begin{align*}
S_{t} & =S_{0}-P_{1}\left(\int_{0}^{t} \lambda S_{s} I_{s} d s\right) \tag{5.3}\\
I_{t} & =I_{0}+P_{1}\left(\int_{0}^{t} \lambda S_{s} I_{s} d s\right)-P_{2}\left(\int_{0}^{t} \gamma I_{s} d s\right) . \tag{5.4}\\
R_{t} & =R_{0}+P_{2}\left(\int_{0}^{t} \gamma I_{s} d s\right) . \tag{5.5}
\end{align*}
$$

Proof. SInce independent Poisson processes do not jump at the same time a.s. we can do a pathwise construction of X_{t}, indectively along the jumps of X.
Let $Z_{0}=X_{0}, \ldots, Z_{n}$ be the n first values of the jump chain, S_{1}, \ldots, S_{n} the holding times, $T_{N}=S_{1}+\cdots+S_{n}$ the n-th jump time. Then the next jup time is $T_{n+1}=$ $T_{n}+S_{n+1}$ is the first time $t>T_{n}$ such that there exists j with

$$
\begin{equation*}
P_{j}\left(\int_{0}^{T_{n}} \beta_{j}\left(X_{s}\right) d s+\beta_{j}\left(Z_{n-1}\right)\left(t-T_{n}\right)\right)-P_{j}\left(\int_{0}^{T_{n}} \beta_{j}\left(X_{s}\right) d s\right) \neq 0 \tag{5.6}
\end{equation*}
$$

By the strong Markov property, these are independent Poisson processes of rates $\alpha_{j}=\beta_{j}\left(Z_{n-1}\right)$. Let V_{j} be their respective first jump times. Then $V_{j} \sim \mathscr{E}\left(\alpha_{j}\right), S_{n+1}=$ $\inf _{j} V_{j} \sim \mathscr{E}\left(\sum_{j} \alpha_{j}\right)$ and $Z_{n}=Z_{n-1}+h_{j}$ with probability $\frac{\alpha_{j}}{\sum_{i} \alpha_{i}}$. This is exactly the usual construction of the Markov jump process with generator L given by (5.2).

2 A non explosion criteria

We shall give a sufficient condition for non explosion for the process defined by Proposition5.1. We shall exhibit a Lyapunov function if we make the following assumption on rates. for $x \in \mathbb{Z}^{d}$ we let $\langle x, 1\rangle=\sum_{i=1}^{d} x_{i}$ (if $x \geq 0$, the $\langle x, 1\rangle=\|x\|_{1}$.

Assumption A : rate control Let $J=\left\{j:\left\langle h_{j}, 1\right\rangle>0\right\}$ Assume that for some $C_{q}<$ $+\infty$,

$$
\begin{equation*}
\sup _{j \in J} \beta_{j}(x) \leq C_{q}(1+\langle x, 1\rangle) \tag{5.7}
\end{equation*}
$$

Proposition 5.2. Assume the rate control and that for some $p \geq 1, \mathbb{E}\left[\left\langle X_{0}, 1\right\rangle^{p}\right]<$ $+\infty$ and $X_{0} \geq 0$ a.s. Then, a.s. the process does not explodes and

$$
\begin{equation*}
\forall T>0, \quad \sup _{t \leq T} \mathbb{E}\left[\left\langle X_{t}, 1\right\rangle^{p}\right]<+\infty \tag{5.8}
\end{equation*}
$$

Proof. We let $Z_{t}=\left\langle X_{t}, 1\right\rangle$. Then given $a>0$, we can consider bounded rates $\beta_{j}^{a}(x)=\beta_{j}(x) \mathbf{1}_{(\langle x, l\rangle \leq a)}$ and construct a process that has infinite life time X^{a} (for
example by Cinlar construction we see that it does not explode) and the corresponding generator. We let

$$
\begin{equation*}
\tau_{a}=\inf t>0:\left\langle X_{t}^{a}, 1\right\rangle \leq a \tag{5.9}
\end{equation*}
$$

and we define without ambiguity $X_{t}=X_{t}^{a}$ on $\left[0, \tau^{a}\left[\right.\right.$. We let $\zeta:=\lim _{a \uparrow+\infty} \tau_{a}$. This is the lifetime of X.
Given a locally bounded function $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}$, we define $f^{a}(x)=f(x) \mathbf{1}_{(\langle x, 1\rangle \leq a)}$ and

$$
\begin{equation*}
f^{a}\left(X_{T}^{a}\right)=f^{a}\left(X_{0}^{a}\right)+M_{t}^{f^{a}}+\int_{0}^{t} L^{a} f^{a}\left(X_{s}^{a}\right) d s \tag{5.10}
\end{equation*}
$$

with $M^{f^{a}}$ a martingale. Since $L^{a} f^{a}(x)=L f(x)$ for $\langle x, 1\rangle \leq a$ we have, if we set $M_{t}^{f}=M_{t}^{f^{a}}$ on $\left[0, \tau_{a}[\right.$,

$$
f\left(X_{t}\right)=f\left(X_{0}\right)+M_{t}^{f}+\int_{0}^{t} L f\left(X_{s}\right) d s \quad(t<\zeta)
$$

From now on, we shall drop the superscript a, but keep in mind that on $\left[0, \tau_{a}[\right.$ we are dealing with $X^{a}, M^{f^{a}}, \ldots$
Observe that

$$
\begin{aligned}
L f(x) & =\sum_{j} \beta_{j}(x)\left(\left(\langle x, 1\rangle+\left\langle h_{j}, 1\right\rangle\right)^{p}-\langle x, 1\rangle^{p}\right) \\
& \leq \sum_{j \in J} \beta_{j}(x)\left(\left(\langle x, 1\rangle+\left\langle h_{j}, 1\right\rangle\right)^{p}-\langle x, 1\rangle^{p}\right) \\
& \leq \sum_{j \in J} \beta_{j}(x) C_{p}\langle x, 1\rangle^{p-1} \\
& \leq C_{p} C_{q} k(1+\langle x, 1\rangle)\langle x, 1\rangle^{p-1} \\
& \leq C\left(1+\langle x, 1\rangle^{p}\right)=C f(x)
\end{aligned}
$$

Since $M_{t \wedge \tau_{a}}^{f}$ is a true martingale we get

$$
\begin{aligned}
\mathbb{E}\left[f\left(X_{t \wedge \tau_{a}}\right)\right] & =\mathbb{E}\left[f\left(X_{0}\right)\right]+\mathbb{E}\left[\int_{0}^{t \wedge \tau_{a}} L f\left(X_{s}\right) d s\right] \\
& =\mathbb{E}\left[\left\langle X_{0}, 1\right\rangle^{p}\right]+C \int_{0}^{t} \mathbb{E}\left[1+\left\langle X_{s \wedge \tau_{a}}, 1\right\rangle^{p}\right] d s
\end{aligned}
$$

By Gronwall's Lemma, there exists a constant C^{\prime} that does not depend on a, but only on $\mathbb{E}\left[\left\langle X_{0}, 1\right\rangle^{p}\right]$ such that

$$
\begin{equation*}
1+\mathbb{E}\left[\left\langle X_{t \wedge \tau_{a}}, 1\right\rangle^{p}\right] \leq C^{\prime}(1+t) e^{t C^{\prime}} \tag{5.11}
\end{equation*}
$$

In particular $s u p_{t \leq T} \mathbb{E}\left[\left\langle X_{t \wedge \tau_{a}}, 1\right\rangle^{p}\right]<+\infty$.

CHAPTER 5. LAW OF LARGE NUMBERS FOR RANDOM MARKOV EPIDEMIC

 MODELSConsequently, $\zeta:=\lim _{a \uparrow+\infty} \tau_{a}=+\infty$ a.s. Indeed, otherwise thaere exists $T>0$ such that $\mathbb{P}(\zeta \leq T)>0$. Then

$$
\begin{aligned}
C^{\prime}(1+T) e^{T C^{\prime}} \geq \mathbb{E}\left[\left\langle X_{T \wedge \tau_{a}}, 1\right\rangle^{p}\right] & \geq \mathbb{E}\left[\left\langle X_{T \wedge \tau_{a}}, 1\right\rangle^{p} \mathbf{1}_{\left(\tau_{a} \leq T\right)}\right] \\
& \geq a^{p} \mathbb{P}\left(\tau_{a} \leq T\right) \geq a^{p} \mathbb{P}(\zeta \leq T) \quad \rightarrow+\infty(\text { as } a \rightarrow+\infty)
\end{aligned}
$$

which is absurd. Hence $\zeta=+\infty$ a.s. and by Fatou's Lemma letting $a \uparrow+\infty$ in (5.11) we get

$$
\begin{equation*}
1+\mathbb{E}\left[\left\langle X_{t}, 1\right\rangle^{p}\right] \leq C^{\prime}(1+t) e^{C^{\prime} t} \tag{5.12}
\end{equation*}
$$

With a little extra work we can get a maximal inequality.
Proposition 5.3. Under the same assumptions, for any $q \in\left[1, \frac{p+1}{2}\right]$ and any $T>0$, we have

$$
\begin{equation*}
\mathbb{E}\left[\sup _{t \leq T}\left\langle X_{t}, 1\right\rangle^{q}\right]<+\infty \tag{5.13}
\end{equation*}
$$

Proof. With $f(x)=\langle x, 1\rangle^{q}$ we have $L f(x) \leq C(1+f(x))$ and thus

$$
\begin{equation*}
f\left(X_{t}\right) \leq f\left(X_{0}\right)+M_{t}^{f}+C \int_{0}^{t}\left(1+f\left(X_{s}\right)\right) d s \tag{5.14}
\end{equation*}
$$

Therefore, if $Y_{t}:=\sup _{s \leq t} f\left(X_{s}\right)$ we have for $t \in[0, T]$

$$
\begin{equation*}
Y_{t} \leq Y_{0}+\sup _{t \leq T} M_{t}^{f}+C t+C \int_{0}^{t} Y_{s} d s \tag{5.15}
\end{equation*}
$$

Hence, by Gronwall's Lemma

$$
\begin{equation*}
Y_{T} \leq\left(Y_{0}+\sup _{t \leq T} M_{T}^{f}+C T\right) e^{C T} \tag{5.16}
\end{equation*}
$$

It remains to prove that $\mathbb{E}\left[\sup _{t \leq T} M_{t}^{f}\right]<+\infty$. Remember that the predictable quadratic variation of the martingale M^{f} is given by the carré du champ operator

$$
\begin{equation*}
\left\langle M^{f}, M^{f}\right\rangle_{t}=\int_{0}^{t}\left(L f^{2}-2 f L f\right)\left(X_{s}\right) d s \tag{5.17}
\end{equation*}
$$

We have

$$
\begin{aligned}
L f^{2}(x)-2 f(x) L f(x) & =\sum_{j} \beta_{j}(x)\left(f^{2}\left(x+h_{j}\right)-f^{2}(x)-2 f(x)\left(f\left(x+h_{j}\right)-f(x)\right)\right) \\
& =\sum_{j} \beta_{j}(x)\left(f\left(x+h_{j}\right)-f(x)\right)^{2} \\
& =\sum_{j \in J} \beta_{j}(x)\left(f\left(x+h_{j}\right)-f(x)\right)^{2} \quad\left(f\left(x+h_{j}\right)=f(x) \text { if } j \notin J\right) \\
& \leq C(1+\langle x, 1\rangle)\left(1+\langle x, 1\rangle^{q-1}\right)^{2} \\
& \leq C\left(1+\langle x, 1\rangle^{p}\right) .
\end{aligned}
$$

Hence, by Doob's maximal inequality

$$
\begin{aligned}
\mathbb{E}\left[\left(\sup _{t \leq T} M_{t}^{f}\right)^{2}\right] & \leq C \mathbb{E}\left[\left(M_{T}^{f}\right)^{2}\right]=C \mathbb{E}\left[\left\langle M^{f}, M^{f}\right\rangle_{T}\right] \\
& \leq C \int_{0}^{T}\left(1+\mathbb{E}\left[\left\langle X_{t}, 1\right\rangle^{p}\right]\right) d t \\
& \leq C \sup _{t \leq T} \mathbb{E}\left[\left\langle X_{t}, 1\right\rangle^{p}\right]<+\infty
\end{aligned}
$$

Corollary 5.4. Assume thaht f locallly bounded satisfies for a constant C,

$$
\begin{equation*}
|f(x)|+|L f(x)| \leq C\left(1+\langle x, 1\rangle^{q}\right) \tag{5.18}
\end{equation*}
$$

with $q \in\left[1, \frac{1}{2}(p+1)\right]$.. Then the process

$$
\begin{equation*}
M_{t}^{f}:=f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} L f\left(X_{s}\right) d s \tag{5.19}
\end{equation*}
$$

is a true martingale.
Proof. $M=M^{f}$ is a local martingale, and thus $M_{t \wedge \tau_{a}}$ is a bounded local martingale, thus a true martingale. Observe that $Z_{T}:=\sup _{t \leq T}\left|M_{s}^{f}\right| \in L^{1}(\mathbb{P})$ so if $0 \leq s \leq t \leq T$ and $A \in \mathscr{F}_{s}$ we can apply dominated convergence to the equality

$$
\begin{equation*}
\mathbb{E}\left[M_{t \wedge \tau_{a}} 1_{A}\right]=\mathbb{E}\left[M_{s \wedge \tau_{a}} 1_{A}\right] \tag{5.20}
\end{equation*}
$$

3 The law of large numbers

In a SIR model with an initial population N large, we are interested in the proportions of susceptibles, infected and recovered.
More generally, we consider Markov epidemic models $X^{(N)}$ with rates $\beta_{j}^{(N)}$ depending on a scale factor N that will goe to infinity. We are going to study the behaviour of

$$
\begin{equation*}
Z_{t}^{N}:=\frac{X_{t}^{(N)}}{N} \tag{5.21}
\end{equation*}
$$

It's generator is

$$
\begin{equation*}
L^{Z^{N}} f(z)=L^{X^{(N)}} f\left(\frac{\cdot}{N}\right)(N z)=\sum_{j} \beta_{j}^{(N)}(z)\left(f\left(z+\frac{h_{j}}{N}\right)-f(z)\right) \tag{5.22}
\end{equation*}
$$

CHAPTER 5. LAW OF LARGE NUMBERS FOR RANDOM MARKOV EPIDEMIC MODELS

We have the representation in terms of independent poisson processes p_{J} and thier compensated martingales $\tilde{P}_{j}(t):=P_{j}(t)-t$:

$$
\begin{align*}
Z_{t}^{N} & =Z_{0}+\sum_{j} \frac{h_{j}}{N} P_{j}\left(\int_{0}^{t} \beta_{j}^{(N)}\left(N Z_{s}^{N}\right) d s\right) \tag{5.23}\\
& =Z_{0}^{N}+\sum_{j} \frac{H_{j}}{N} \int_{0}^{t} \beta_{j}^{(N)}\left(N Z_{s}^{N}\right) d s+\sum_{j} \frac{h_{j}}{N} \tilde{P}_{j}\left(\int_{0}^{t} \beta_{j}^{(N)}\left(N Z_{s}^{N}\right) d s\right)
\end{align*}
$$

If we neglect the martingale terms, and we impose that for functions $\beta_{j}: \mathbb{R}^{d} t o \mathbb{R}_{+}$ smooth enough, we have

$$
\begin{equation*}
\beta_{j}^{(N)}(N z):=N \beta_{j}(z) \tag{5.24}
\end{equation*}
$$

and we have $Z_{0}^{N} \rightarrow z_{0} \in \mathbb{R}_{+}^{d}$, then Z^{N} will be close to the solution of the ODE

$$
\begin{equation*}
z(t)=z_{0}+\sum_{j} h_{j} \int_{0}^{t} \beta_{j}(z(s)) d s \tag{5.25}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
z^{\prime}(t)=b(z(t)) \quad \text { with } b(z):=\sum_{j} h_{j} \beta_{j}(z), z(0)=z_{0} \tag{5.26}
\end{equation*}
$$

\{eq:zt-=-bzt\}

We also see that for smooth f, by a Taylor approximation,

$$
\begin{equation*}
L^{Z^{N}} f(x) \rightarrow \sum_{j} \beta_{j}(x) \nabla f(z) \cdot h_{j}=\nabla f . b(z) \tag{5.27}
\end{equation*}
$$

Theorem 5.5. Assume that the rate functions β_{j} are positive measurable and locally bounded. Assume that $b(z)=\sum_{j} h_{j} \beta_{j}(z)$ is locally Lipschitz. Assume that the sequence of positive rv's Z_{0}^{N} satisfy $\sup _{N} \mathbb{E}\left[<Z_{0}^{N}, 1>^{3}\right]<+\infty$ and $Z_{0}^{N} \rightarrow z_{0}$ in distribution. Then the sequence of processes $\left(Z^{N}(t), 0 \leq t \leq T\right)$ defined by (5.23) converges in probability for the $L^{\infty}([0, T])$ norm to the continuous deterministic function z solution of (5.26).

Proof. Assume first that the β_{j} are uniformly bounded and b globally Lipschitz

$$
\begin{equation*}
\sup _{j} \sup _{z} \beta_{j}(z) \leq M<+\infty \quad \text { and } \quad \sup _{y \neq z}|b(z)-b(y)| \leq M|y-z| . \tag{5.28}
\end{equation*}
$$

Since we have

$$
\begin{aligned}
& Z_{t}^{N}=Z_{0}^{N}+\int_{0}^{t} b\left(Z_{s}^{N}\right) d s+\sum_{k} h_{j} \frac{1}{N} \tilde{P}_{j}\left(N \int_{0}^{t} \beta_{j}\left(Z_{s}^{N}\right) d s\right) \\
& z(t)=z_{0}+\int_{0}^{t} b(z(s)) d s
\end{aligned}
$$

CHAPTER 5. LAW OF LARGE NUMBERS FOR RANDOM MARKOV EPIDEMIC

 MODELSwe get for $t \in[0, T]$

$$
\left|Z_{t}^{N}-z(t)\right| \leq\left|Z_{0}^{N}-z_{0}\right|+M \int_{0}^{t}\left|Z_{s}^{N}-z(s)\right| d s+\frac{1}{N} C \sup _{j} \sup _{0 \leq s \leq N M T}\left|\tilde{P}_{j}(s)\right|
$$

By Gronwall's Lemma, this implies for $t \in[0, T]$

$$
\sup _{t \leq T}\left|Z_{t}^{N}-z(t)\right| \leq\left(\left|Z_{0}^{N}-z_{0}\right|+\frac{1}{N} C \sup _{j} \sup _{0 \leq s \leq N M T}\left|\tilde{P}_{j}(s)\right|\right) e^{M t}
$$

We conclude that this quantity converges in probability to 0 thanks to the following Lemma

Lemma 5.6. If $P(t)$ is a standard Poisson process and $\tilde{P}(t)=P(t)-t$ then for all $\alpha>\frac{1}{2}$,

$$
\begin{equation*}
\frac{1}{n^{\alpha}} \sup _{t \in[0, n]}|\tilde{P}(t)| \rightarrow 0 \quad \text { a.s. } \tag{5.29}
\end{equation*}
$$

Indeed first we have by assumption $\left|Z_{0}^{N}-z_{0}\right| \operatorname{Fix} \frac{1}{2}<\alpha<1$. There exists $C_{j}(\omega)<$ $+\infty$ such that a.s.

$$
\begin{equation*}
\forall n, \quad \sup _{t \leq n}\left|\tilde{P}_{j}(t)\right| \leq n^{\alpha} C_{j} \tag{5.30}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\frac{1}{N} \sup _{j} \sup _{0 \leq s \leq N M T}\left|\tilde{P}_{j}(s)\right| \leq \frac{(N M T)^{\alpha}}{N} \sup _{j} C_{j}(\omega) \rightarrow 0 \tag{5.31}
\end{equation*}
$$

Let us consider now the general case. Looking closely at the proofs of Propositions (5.2) and (5.3), given $T>0$ let $U_{N}:=\sup _{t \leq T}\left\langle Z_{t}^{N}, 1\right\rangle$. Since $\sup _{N} \mathbb{E}\left[\left\langle Z_{0}^{N}, 1\right\rangle^{3}\right]<$ $+\infty$ we have

$$
\begin{equation*}
\sup _{N} \mathbb{E}\left[U_{N}^{2}\right]<+\infty \tag{5.32}
\end{equation*}
$$

The function b is locally Lipschitz and β_{j} is locally bounded. Therefore, for any $A>0$ there exists $M_{A}<+\infty$ such that

$$
\begin{equation*}
\sup _{j}\left|\beta_{j}(x)\right| \leq M_{A}, \quad|b(x)-b(y)| \leq M_{A} \quad(\text { if }\langle x, 1\rangle \leq A,\langle y, 1\rangle \leq A) \tag{5.33}
\end{equation*}
$$

We choose $A>\sup _{t \leq T} z(t)$. By the preceding arguments,on the event $\left\{U_{A} \leq A\right\}$

$$
\begin{aligned}
\left|Z_{t}^{N}-z(t)\right| & \leq C\left(\left|Z_{0}^{N}-z_{0}\right|+\frac{1}{N} \sup _{j, 0 \leq n \leq N T M_{A}}\left|\tilde{P}_{j}(s)\right|\right) e^{T M_{A}} \\
& \leq C_{A, T}\left(\left|Z_{0}^{N}-z_{0}\right|+N^{\alpha-1} C(\omega)\right)
\end{aligned}
$$

with $C(\omega)$ a finite random variable. On the other hand we have

$$
\begin{equation*}
\mathbb{P}\left(U_{N} \geq A\right) \leq \frac{1}{A^{2}} \mathbb{E}\left[U_{N}^{2}\right] \leq \frac{C}{A^{2}} \tag{5.34}
\end{equation*}
$$

Combining twe two, we show easily that for any $\epsilon>0$,

$$
\begin{equation*}
\lim _{N \rightarrow+\infty} \mathbb{P}\left(\sum_{t \leq T}\left|Z_{t}^{N}-z(t)\right| \geq \epsilon\right)=0 \tag{5.35}
\end{equation*}
$$

Proof of Lemma5.6. By Markov's inequality, for all $\gamma>0, \epsilon>0$

$$
\begin{equation*}
\mathbb{P}(P(t)-t>\epsilon) \leq e^{-\gamma \epsilon} \mathbb{E}\left[e^{\gamma(P(t)-t)}\right]=\exp \left(t\left(e^{\gamma}-1-\gamma\right)-\gamma \epsilon\right) \tag{5.36}
\end{equation*}
$$

Taking the infimum, with respect to $\gamma>0$, we get

$$
\begin{equation*}
\mathbb{P}(P(t)-t>\epsilon) \leq \frac{e^{\epsilon}}{(1+\epsilon / t)^{t+\epsilon}} \tag{5.37}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mathbb{P}(P(t)-t<-\epsilon) \leq \frac{e^{-\epsilon}}{(1-\epsilon / t)^{t-\epsilon}} \tag{5.38}
\end{equation*}
$$

Therefore, for $1 / 2<\alpha<1$ and $\epsilon=t^{\alpha}$ we get

$$
\begin{equation*}
\mathbb{P}\left(|P(t)-t| \geq t^{\alpha}\right) \leq 2 e^{-t^{2 \alpha-1}+o\left(t^{3 \alpha-2}\right)} \tag{5.39}
\end{equation*}
$$

By Borel Cantelli $\sup _{n} n^{-\alpha}|P(n)-n|<+\infty$ a.e. Since $t \rightarrow P(t)$ is increasing,

$$
\begin{equation*}
P(\lfloor t\rfloor)-\lfloor t\rfloor-1 \leq P(t)-t \leq P(\lfloor t\rfloor+1)-t \tag{5.40}
\end{equation*}
$$

And thus

$$
\begin{equation*}
\sup _{t \geq 1} \frac{|P(t)-t|}{t^{\alpha}}<+\infty \quad \text { a.e. } \tag{5.41}
\end{equation*}
$$

Hence,for $\eta>0$,

$$
\begin{equation*}
n^{-(\alpha+\eta)} \sup _{t \leq n}|P(t)-t| \leq n^{-(\alpha+\eta)} \sup _{t \leq 1}|P(t)-t|+n^{-\eta} \sup _{t \geq 1} \frac{|P(t)-t|}{t^{\alpha}} \rightarrow 0 \tag{5.42}
\end{equation*}
$$

4 Generators and martingales

Assume that the generator is defined as $L: b \mathscr{E} \rightarrow b \mathscr{E}$ a linear operator on bounded measurable functions

Proposition 5.7. For any $f \in b \mathscr{E}$ we have the decomposition

$$
\begin{equation*}
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} L f\left(X_{s}\right) d s+M_{t}^{f} \tag{5.43}
\end{equation*}
$$

with M^{f} a martingale.

CHAPTER 5. LAW OF LARGE NUMBERS FOR RANDOM MARKOV EPIDEMIC

 MODELSProposition 5.8. The martingale M^{f} has predictable quadratic variation

$$
\begin{equation*}
\left\langle M^{f}, M^{f}\right\rangle_{t}=\int_{0}^{t} \Gamma f\left(X_{s}\right) d s \tag{5.44}
\end{equation*}
$$

with $\Gamma f=L\left(f^{2}\right)-2 f L f$ the carré du champ operator. In particular

$$
\begin{equation*}
\mathbb{E}\left[\left(M_{t}^{f}\right)^{2}\right]=\mathbb{E}\left[\left\langle M^{f}, M^{f}\right\rangle_{t}\right] \tag{5.45}
\end{equation*}
$$

Proof. Assume wlog that $f\left(X_{0}\right)=0$, then

$$
\begin{equation*}
M_{t}^{2}=\left(f\left(X_{t}\right)-\int_{0}^{t} L f\left(x_{s}\right) d s\right)^{2}=f^{2}\left(X_{t}\right)-2 f\left(X_{t}\right) \int_{0}^{t} L f\left(X_{s}\right) d s+\left(\int_{0}^{t} L f\left(X_{s}\right) d s\right)^{2} \tag{5.46}
\end{equation*}
$$

But we know that

$$
\begin{equation*}
d f^{2}\left(X_{t}\right)=L f^{2}\left(X_{t}\right), d t+d M_{t}^{f^{2}} \tag{5.47}
\end{equation*}
$$

If for example $f\left(X_{t}\right)$ has finite variations, which is the case if X is piecewise continuous, we can apply the integration by parts formula to the second and third terms to obtain, with $I_{t}=\int_{0}^{t} L f\left(X_{s}\right) d s$

$$
\begin{aligned}
d M_{t}^{2} & =L f^{2}\left(X_{t}\right), d t+d M_{t}^{f^{2}}-2\left(d M_{t}+L f\left(X_{t}\right) d t\right) I_{t}-2 f\left(X_{t}\right) L f\left(X_{t}\right) d t+2 L f\left(X_{t}\right) I_{t} d t \\
& =d\left\langle M^{f}, M^{f}\right\rangle_{t}+d M_{t}^{f^{2}}-2 I_{t} d M_{t}^{f}
\end{aligned}
$$

The duration of the basic stochastic epidemics

The stochastic SIR process is a pure jump Markov process X on $E=\mathbb{Z}^{3}$ (and a density dependent Markov process) with generator, for $x=(s, i, r)$ and bounded f
$L f(x)=\sum_{j} \beta_{j}(x)\left(f\left(x+h_{j}\right)-f(x)\right)=\frac{\beta}{N} s i(f(s-1, i+1, r)-f(s, i, r))+\gamma i(f(s, i-1, r+1)-f(s, i, r))$,
We have seen that since when $x=(s, i, r) \in \mathbb{N}^{3}$ and $x+h_{j} \notin \mathbb{N}^{3}$, then $\beta_{j}(x)=0$. This ensures that starting from $X_{0} \in \mathbb{N}^{3}$ the process stays in \mathbb{N}^{3} : this we shall assume from now on. Letting $N_{t}=\left\|X_{t}\right\|_{1}=\langle X, 1\rangle=S_{t}+I_{t}+R_{t}$ we see that for every function g, if $f(x)=g\left(\langle x, 1\rangle=\right.$ we have $L f(x)=0$ so $t \rightarrow P_{t} f(x)$ is constant and this implies that N_{t} stays constant a.e. (since it is cadlag).

1 The start of the epidemic

By proposition 4.14, let us assume that we start wuth $X_{0}=(N-1,1,0)$ that is $N-1$ susceptibles and one infected person. Then there exists a coupling with Z a linear branching process with rates (β, γ) starting from $Z_{0}=I_{0}=1$: a.e. forall t , $I_{t} \leq Z_{t}$.
We define the probability of a major outbreak to be the supremum of the $\delta>0$ such that there exists $\epsilon>0$ and a N_{0} such that for any $N \geq N_{0}$

$$
\begin{equation*}
\mathbb{P}\left(T_{\lfloor\epsilon N\rfloor}(I)<+\infty \mid X_{0}=(N-1,1,0)\right) \geq \delta, \tag{6.2}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{a}(I)=\inf \left\{t>0: I_{t} \geq a\right\} . \tag{6.3}
\end{equation*}
$$

In words, the probability of a major outbreak is the probability that for large initial population N, starting with one infected individual, the population of infected reaches a macroscopic level, that is a positive fraction of the initial population.

Assume thus that $\beta<\gamma$. Then the linear BD process Z_{t} becomes a.s. extinct and $\sup _{t \geq 0} Z_{t}<+\infty$. Therefore, as $N \rightarrow+\infty$,

$$
\begin{equation*}
\mathbb{P}\left(T_{[\epsilon N]}(I)<+\infty \mid X_{0}=(N-1,1,0)\right) \leq \mathbb{P}\left(\sup _{t \geq 0} Z_{t} \geq \epsilon N\right) \rightarrow 0 \tag{6.4}
\end{equation*}
$$

An important ingredient of the preceding limit is that the random variable $\sup _{t \geq 0} Z_{t}$ does not depend on N. Therefore the probability of a major outbreak is 0 .
Similarly, if $\beta>\gamma$, then Z becomes extinct with probability β / γ and therefore the probability of a major outbreak is less than $1-\beta / \gamma$.
On the other hand, thanks to Proposition 4.19, given $0<\epsilon<1$ small enough so that $\beta(1-\epsilon)>\gamma$, we can construct a coupling with a linear birth and death process \bar{Z} with rates $(\beta(1-\epsilon), \gamma)$:

$$
\begin{equation*}
I_{t} \geq \bar{Z}_{t} \quad \text { on } \quad[0, T) \tag{6.5}
\end{equation*}
$$

with $T=\inf \left\{t>0: B_{t}<N-1-N(1-\epsilon)\right\}$ and B_{t} the process of number of births of \bar{Z}.
Consider the martingale $\bar{W}_{t}=e^{-r t} Z_{t}$ with $r=\beta(1-\epsilon)-\gamma>0$. On the set $\{\bar{W}>0\}$, of probability $\frac{\gamma}{\beta(1-\epsilon)}$, the process \bar{Z}_{t} grows exponentially fast, so T is of order $\log N$ and there is a $\eta>0$ such that $Z_{T} \geq \eta N$ since we have $B_{t} \approx e^{r t}$ (Use again the comparison theorem to get a precise statement). Therefore, we have, for all N large enough,

$$
\begin{equation*}
\mathbb{P}\left(T_{[\eta N]}(I)<+\infty \mid X_{0}=(N-1,1,0)\right) \geq \mathbb{P}(\bar{Z} \text { does not become extinct }) \geq \frac{\gamma}{\beta(1-\epsilon)} \tag{6.6}
\end{equation*}
$$

In conclusion, if $\beta>\gamma$, the probability of a major outbreak is $1-\gamma / \beta$, and the time for the infected population to reach a positive fraction of the initial population N is approximately $\log N$.

2 The deterministic SIR epidemic model

Assume now that we have a SIR process with initial population $X_{0}^{(N)}=(N(1-$ $\epsilon), \epsilon N, 0)$. From the law of large numbers we now that $Z_{t}^{N}=\frac{1}{N} X_{t}^{(N)}$ is uniformly close to $z(t)=(s(t), i(t), r(t))$ the solution of the SIR ODE

$$
\begin{align*}
s^{\prime} & =b e t a s i \tag{6.7}\\
i^{\prime} & =\beta s i-\gamma i \tag{6.8}\\
r^{\prime} & =\gamma i \tag{6.9}
\end{align*}
$$

with initial condition $z(0)=(1-\epsilon, \epsilon, 0)$. Let us do a brief study of this ODE of the type $z^{\prime}=b(z)$ with b locally Lipschitz. Observe that $b(z)=0$ for $z \in \partial K$ with K the positive orthant : the cone $K=\{z: s \geq 0, i \geq 0, r \geq 0\}$. Therefore since $z(0) \in$ K, z stays in K for all times (this is a classical result on monotone dynamical systems : see e.g. Proposition 3.3 of [10])

Observe now that $n(t)=s(t)+r(t)+i(t)$ is constant : $n^{\prime}(t)=0$. thus, for all $t, n(t)=n(0)=1$. We have $s^{\prime}(t)=$ be tasi ≤ 0, so it is a decreasing function, and $s(t) \in[0,1]$. Therefore it converges to $s(\infty)$. SImilarly, $r(t)$ is increasing and bound so converges to $r(\infty)$. Therefore $i(t)=1-r(t)-s(t)$ converges to $i(\infty)$. Since

$$
\begin{equation*}
r(t)=r(0)+\int_{0}^{t} r^{\prime}(s) d s=0+\gamma \int_{0}^{t} i(s) d s \tag{6.10}
\end{equation*}
$$

and $r(t)$ stays bounded and $i(t) \rightarrow i(\infty)$, we have $i(\infty)=0$, and therefore $r(\infty)+$ $s(\infty)=1$.
Moreover, $\frac{s^{\prime}}{s}=-\beta i$, thus

$$
\begin{equation*}
s(\infty)=s(0) \exp \left(-\beta \int_{0}^{\infty} i(s) d s\right)=\exp (-(\beta / \gamma) r(\infty)) \tag{6.11}
\end{equation*}
$$

Combining all this yields that $z_{\epsilon}=1-s(\infty)=r(\infty)$ is a solution of

$$
\begin{equation*}
1-z_{\epsilon}=(1-\epsilon) e^{-(\beta / \gamma) z_{\epsilon}} \tag{6.12}
\end{equation*}
$$

and therefore $z=\lim _{\epsilon \rightarrow 0} z_{\epsilon}$ is the unique solution of

$$
\begin{equation*}
1-z=e^{-R_{0} z} \tag{6.13}
\end{equation*}
$$

with $R_{0}=\beta / \gamma>1$ the basic reproduction number. Let us rewrite down this equation, with $\sigma=1-s=\lim _{\epsilon \rightarrow 0} s(\infty)$

$$
\begin{equation*}
R_{0} \sigma e^{-R_{0} \sigma}=R_{0} e^{-R_{0}} \tag{6.14}
\end{equation*}
$$

Therefore $\sigma=R_{0} \sigma \in(0,1)$ is the unique solution in $(0,1)$ of $x e^{-x}=R_{0} e^{-R_{0}}$.

3 The end of the epidemic

Combining the law of large numbers, which we shall assume is an a.e. convergence, and the preceding results, let us choose ϵ small enough so that $R_{0} s(\infty)<1$ Let us choose $T>0$ large enough so that $R_{0} s(T) \leq 1-2 \eta<1$ and consider $X^{(N)}$ a SIR process starting from $X_{0}^{(N)}=(N(1-\epsilon), \epsilon N, 0)$.If N_{0} is large enough, then for $N \geq N_{0}$, almost surely, $R_{0} \frac{1}{N} S_{T}^{(N)} \leq 1-\eta<1$ and thus we shall use strong markov property at the finite time $T=\inf t>0, R_{0} S_{T}^{(N)} \leq N(1-\eta)$.
Using the comparison theorem, the extinction time of $X^{(N)}$ from this time on, is stochastically dominated by the extinction time of a linear birth and death process Z with rates $\left(\beta \frac{1-\eta}{R_{0}}=\gamma(1-\eta), \gamma\right)$ which is subcritical, and thus goes extinct in at most finite time that does not depends on N. Alas, the initial number Z_{0} is less than N and we are left to prove that $T_{0}(Z)=\max \left(T_{1}, \ldots, T_{n}\right)$ the maximum of the hitting time of zero for N independent branching processes starting from 1 , is of order $\log (N)$. This is an easy exercice because T_{0} has an exponential tail.

$$
\begin{equation*}
\mathbb{P}\left(T_{0}>t\right)=\mathbb{P}_{1}\left(Z_{t} \neq 0\right) \sim(1-\lambda / \mu) e^{-(\mu-\lambda) t} \tag{6.15}
\end{equation*}
$$

x	0	σ	1		R_{0}	
$f^{\prime}(x)$		+		+	0	-
$f(x)$						

Multi type Galtson Watson Processes

1 Motivation

Modelling the reproduction of bacteria in which a gene has two types of allele A and B. We assume $p_{1}, p_{2}, \alpha_{1} \in(0,1)$ and consider two cases $\alpha_{2} \in(0,1)$ and $\alpha_{2}=1$ (B alleles only yield B Alleles).
The questions we want to answer are the following :

- Do we have extinction, survival ? starting from all A's or all B's or a mixture ?
- When there is non extinction what is the growth rate of the total population ?
- Do we have relative asymptotic frequencies of A and B ?

2 The model

The population at generation n is a line vector $Z_{n}=\left(Z_{n 1}, \ldots, Z_{n d}\right)$ of integer valued random variables, with d the number of different types. The type of an individual is an attribute that remains fixed throughout its lifetime. Individuals of the same type have the same offspring distribution. Different individuals reproduce independently.
The offspring of an individual of type i is distributed as $\xi_{i}=\left(\xi_{i 1}, \ldots, \xi_{i d}\right)$ and assumed to be integrable. The process Z_{n} satisfies the induction

$$
\begin{equation*}
Z_{n+1}=\sum_{j=1}^{d} \sum_{i=1}^{Z_{n j}} \xi_{i}^{(n+1), j} \tag{7.1}
\end{equation*}
$$

with $\left(\xi_{i}^{(n+1), j}, n \geq 0, i \geq 1,1 \leq j \leq d\right)$ independent and $\xi_{i}^{(n+1), j}$ distributed as ξ_{j}.

Figure 7.1: Reproduction of Bacteria

Example 7.1 (bacteria reproduction). . $i=1$ for type $A, i=2$ for type B. Then

$$
\begin{array}{llll}
\mathbb{P}\left(\xi_{1}=(0,0)\right)=1-p_{1}, & \mathbb{P}\left(\xi_{1}=(2,0)\right) & =p_{1} \alpha_{1}, & \mathbb{P}\left(\xi_{1}=(1,1)\right)=p_{1}\left(1-\alpha_{1}\right) \\
\mathbb{P}\left(\xi_{2}=(0,0)\right)=1-p_{2}, & \mathbb{P}\left(\xi_{2}=(0,2)\right) & =p_{2} \alpha_{2}, & \mathbb{P}\left(\xi_{2}=(1,1)\right)=p_{2}\left(1-\alpha_{2}\right) .
\end{array}
$$

The mean matrix is $M=\left(m_{i, j}\right)_{1 \leq i, j \leq d}$ with

$$
\begin{equation*}
m_{i, j}=\mathbb{E}\left[\xi_{i j}\right]=\mathbb{E}\left[Z_{1 j} \mid Z_{0}=e_{i}\right] \tag{7.2}
\end{equation*}
$$

The sigma-field is $\mathscr{F}_{n}=\sigma\left(\xi_{i}^{(k), j}, k \leq n, j, i\right)$ and Z_{n} is a \mathscr{F}_{n} Markov chain.
Lemma 7.1. If we take the conditional expectation of a vector to be the vector of its conditinal expectations we have

$$
\begin{equation*}
\mathbb{E}\left[Z_{n+1} \mid \mathscr{F}_{n}\right]=Z_{n} M \tag{7.3}
\end{equation*}
$$

Proof.

$$
\begin{equation*}
\mathbb{E}\left[Z_{(n+1), k} \mid \mathscr{F}_{n}\right]=\sum_{j=1}^{d} \sum_{i=1}^{Z_{n j}} \mathbb{E}\left[\xi_{i, k}^{(n+1), j} \mid \mathscr{F}_{n}\right]=\sum_{j=1}^{d} \sum_{i=1}^{Z_{n j}} m_{j k}=\sum_{j=1}^{d} Z_{n, j} m_{j k}=\left(Z_{n} M\right)_{k} \tag{7.4}
\end{equation*}
$$

Corollary 7.2. Let γ be a right eigenvector of M with eigenvalue $\lambda \in \mathbb{C}$. Then $Y_{n}=$ $\lambda^{-n} Z_{n} \gamma$ is a martingale (possibly complex valued).

Therefore it should not be surprising that the growth rate of Z_{n} is given, when there is no extinction, by the largest modulus eigenvalue, the spectral radius

$$
\begin{equation*}
\rho(M):=\sup \{|\lambda|: \lambda \in \operatorname{sp}(M)\} \tag{7.5}
\end{equation*}
$$

Gelfand's formula yields that for any matrix norm

$$
\begin{equation*}
\rho(M)=\lim _{n \rightarrow+\infty}\left\|M^{n}\right\|^{1 / n} \tag{7.6}
\end{equation*}
$$

and we know that $\rho(M)<1$ iff $M^{n} \rightarrow 0$.
In the baceria example,

$$
\begin{equation*}
m_{11}=\mathbb{E}\left[\xi_{11}\right]=2 p_{1} \alpha_{1}+P_{1}\left(1-\alpha_{1}\right)=p_{1}\left(1+\alpha_{1}\right), m_{12}=p_{1}\left(1-\alpha_{1}\right), \ldots \tag{7.7}
\end{equation*}
$$

If $\alpha_{2} \in(0,1)$ we have $M \gg 0$ that is $m_{i j}>0$ for all entries i, j. On the other hand if $\alpha_{2}=1$ then M is triangular with spectrum $\operatorname{sp}(M)=\left\{p_{1}\left(1+\alpha_{2}\right), 2 p_{2}\right\}$.

Definition 7.1. A matrix M with non negative entries, $M \geq 0$ is said to be indecomposable or irreducible if $\forall i, j \exists r\left(M^{r}\right)_{i j}>0$. We say that the multitype branching process is indecomposable.

This means that every type of individual may have eventually a progeny of any other type. We shall prove that then, when there is no extinction, for every starting mixture of types the growth rate is the same and given by ρ.
We see on the bacteria example that this is not the case for decomposable case $\alpha_{2}=1$ since we have two different rates.

3 Extinction probabilities

Proposition 7.3. Let $f_{i}(s)=\mathbb{E}\left[s_{1}^{\xi_{i 1}} \cdots s_{d}^{\xi_{i d}}\right]$ and $f(s)=\left(f^{i}(s), 1 \leq i \leq d\right)$. Then the extinction probabilities

$$
\begin{equation*}
q_{i}=\mathbb{P}\left(Z_{n} \rightarrow 0 \mid Z_{0}=e_{i}\right) \tag{7.8}
\end{equation*}
$$

satisfy $f(q)=q$.
Proof. As in dimension 1, condition on the first generation. There is extinction iff there is extinction for all the GW processes of the descendants of the ancestor, $\xi_{i k}$ of type k, that have a probability q_{k} of extinction therefore.
Assume that there exists a vector $u \in \mathbb{R}^{d}$ with $u_{i}>0$ for all i, such that $M u=\rho u$ with $\rho=\rho(M)$.

Proposition 7.4. The process $W_{n}=\rho^{-n} Z_{n} u$ is a positive martingale such that $s_{i}=\mathbb{P}\left(W=0 \mid Z_{0}=e_{i}\right)$ satisfies $f(s)=s$. Therefore if $\rho<1$, then there is almost sure extinction. Assume $\rho>1$, if forall $i, k, \mathbb{E}\left[\xi_{i k} \log ^{+} \xi_{i k}\right]<+\infty$ then W_{n} is an UI martingale. If, moreover, 0 is the only absorbing point of the chain Z, then $s=q$: on non extinction the process grows exponentially.

Proof. Condition on the first generation: if $w^{l, j}$ is the variable corresponding to the multitype GW process $Z_{n}^{l, j}$ of the l-th child of type j of \emptyset, then

$$
\begin{equation*}
Z_{n}=\sum_{j=1}^{d} \sum_{l=1}^{\xi_{i j}} Z_{n-1}^{l, j} \tag{7.9}
\end{equation*}
$$

So taking limits in $\frac{1}{\rho^{n}} Z_{n} u$ yields

$$
\begin{equation*}
W=\frac{1}{\rho} \sum_{j=1}^{d} \sum_{l=1}^{\xi_{i j}} W^{l, j} \tag{7.10}
\end{equation*}
$$

And thus, by independence,

$$
\begin{equation*}
\mathbb{P}\left(W=0 \mid Z_{0}=e_{i}\right)=\mathbb{E}\left[\mathbb{P}\left(\sum_{j=1}^{d} \sum_{l=1}^{\xi_{i j}} W^{l, j}=0 \mid \xi_{i j}, 1 \leq i \leq d\right)\right]=\mathbb{E}\left[\prod s_{j}^{\xi_{i j}}\right]=f^{i}(s) \tag{7.11}
\end{equation*}
$$

SInce $u \gg 0$, we have $\{W>0\} \subset\left\{\forall n, Z_{n}>0\right\}$. By monotonicity

$$
\begin{equation*}
q_{i}=\mathbb{P}\left(\exists n: Z_{n}=0 \mid Z_{0}=e_{i}\right) \tag{7.12}
\end{equation*}
$$

is the smallest root of $f(q)=q$ since $q_{i}=\lim \uparrow q_{i, n}=\mathbb{P}\left(Z_{n}=0 \mid Z_{0}=e_{i}\right)$ and $q_{i, 0}=$ 0 . So if s is another solution $s_{i} \geq 0=q_{i, 0}$ implies $s_{i}=f^{i}(s) \geq f^{i}(0)=q_{i, 1}$ and by induction $s_{i} \geq q_{i, n} \rightarrow q_{i}$.
Since W_{n} i a UI martingale, we have $\mathbb{E}\left[W \mid Z_{0}=e_{i}\right]=\mathbb{E}\left[W_{0} \mid Z_{0}=e_{i}\right]=u_{i}>0$ and thus for all $i, s_{i}<1$.
Observe that $M_{n}=s^{Z_{n}}=\prod s_{i}^{Z_{n, i}}$ is a martingale since

$$
\begin{equation*}
\mathbb{E}\left[M_{n+1} \mid \mathscr{F}_{n}\right]=\mathbb{E}_{Z_{n}}\left[s^{Z_{1}}\right]=\prod f_{i}(s)^{Z_{n, i}}=M_{n} \tag{7.13}
\end{equation*}
$$

Since $M_{n} \in[0,1]$ it is a UI martingale, and thus converges to M_{∞}. The range of M_{n} is discrete : $E=\left\{\prod_{1 \leq i \leq d} s_{i}^{n_{i}}, n_{i} \in \mathbb{N}\right\}$ and therefore $M_{\infty} \in\{0\} \cup E$. When $M_{\infty} \in E$, then M_{n} is a stationary sequence that is ther exist $n_{0}(\omega)$ such that for all i,fora all $n \geq n_{0}, Z_{n, i}=Z_{\infty, i}$ Since the only absorbing point of Z is 0 , this implies that $Z_{\infty}=0$ is that the process goes extinct, and therefore $M_{\infty}=1$. Therefore

$$
\begin{align*}
s_{i} & =\mathbb{E}\left[M_{0} \mid Z_{0}=e_{i}\right]=\mathbb{E}\left[M_{\infty} \mid Z_{0}=e_{i}\right]=\mathbb{E}\left[M_{\infty} \mathbf{1}_{\left(M_{\infty} \in E\right)} \mid Z_{0}=e_{i}\right] \tag{7.14}\\
& \leq \mathbb{P}\left(Z_{n} \rightarrow 0 \mid Z_{0}=e_{i}\right)=q_{i} \tag{7.15}
\end{align*}
$$

Combining everything we do get $s=q$.

4 Perron Frobenius Theorem

This theorem gives sufficient conditions for matrices with positive entries to have their spectral radius as the only eignevalue for a vecteur with strictly positive entries.
For $x \in \mathbb{R}^{d}$ we say that $x \geq 0$ if forall $i, x_{i} \geq 0$. We say $x>0$ if $x \geq 0$ and $x \neq 0$, and $x \gg 0$ if forall $i, x_{i}>0$. We have the same notations for a real matrix $A \in \mathscr{M}_{d \times d}$. Observe that if $x>0$ and $A \gg 0$ then $A x \gg 0$.
Lemma 7.5. If $x \gg 0$ and $y>0$ then $a=\sup \{c>0: x \geq c y\}>0$ (with the convention $\sup \emptyset=-\infty)$ and $\exists i$ s.t. $x_{i}=a y_{i}$.
Proof. Let $c=\frac{\inf x_{i}}{\sup y_{j}}>0$. Then, $x \geq c y$, so $a>0$. We have $z=x-a y \geq 0$. If $z \gg 0$, then there exists $\delta>0$ s.t. $z \geq \delta y$ and so $x \geq(a+\delta) y$ and this contradicts the definition of a. So there exists i such that $z_{i}=0$.

Lemma 7.6. If $A \gg 0, x>0$ and $A x \geq c x$ then $c \leq \rho(A)$ the spectral radius.
Proof. Assume $c>0$. We have by induction $A^{n} x \geq c^{n} x$, therefore

$$
\begin{equation*}
\left\|A^{n}\right\|=\sup \left\{\frac{\left\|A^{n} y\right\|_{\infty}}{\|y\|_{\infty}}, y \neq 0\right\} \geq \frac{\left\|A^{n} x\right\|_{\infty}}{\|x\|_{\infty}} \geq c^{n} \tag{7.16}
\end{equation*}
$$

and by Gelfand's formula, $\rho(A)=\lim _{n \rightarrow+\infty}\left\|A^{n}\right\|^{1 / n} \geq c$.
Theorem 7.7. Assume $A \gg 0$ and let $\rho=\rho(A)>0$ be its spectral radius. Then

1. There exists $u \gg 0$ such that $A u=\rho u$.
2. If $\lambda \in s p(A)$ and $\lambda \neq \rho$ then, $|\lambda|<\rho$.
3. The dimension of the eigenspace associated to ρ is 1 . More precisely, if $A x=$ λx with $x>0$ and $\lambda>0$, then $\lambda=\rho$ and $x=\alpha u$ for some $\alpha>0$.

Proof. Let $x \neq 0$ be an eigenvector of A with eigenvalue λ. Then $y=|x|$ defined by $y_{i}=\left|x_{i}\right|$ satisfies

$$
\begin{equation*}
|\lambda| y_{i}=\left|\sum_{j} a_{i j} x_{j}\right| \leq \sum_{j} a_{i j} y_{j} \tag{7.17}
\end{equation*}
$$

that is $A y \geq|\lambda| y$. By Lemma 7.6, $|\lambda| \leq \rho$.
Assume that $|\lambda|=\rho$. Then by the two preceding lemmas, $\rho=\sup \{c>0: A y \geq c y\}$ and there exits i such that $\rho y_{i}=(A y)_{i}$ that is there is equality in (??)

$$
\begin{equation*}
\rho y_{i}=\left|\sum_{j} a_{i j} x_{j}\right|=\sum_{j} a_{i j} y_{j}=\sum_{j} a_{i j}\left|x_{j}\right| \tag{7.18}
\end{equation*}
$$

Recall that if w_{1}, \ldots, w_{n} are complex numbers such that $\left|w_{1}+\cdots+w_{n}\right|=\sum\left|w_{i}\right|$ then they have the same argument : there exists $\theta \in \mathbb{R}$ and $\lambda_{i} \geq 0$ such that $w_{k}=$ $\lambda_{k} e^{i \theta}$.
Applying this to the preceding equation 7.18 yields that the x_{j} have the same argument, and therefore $x_{j}=e^{i \theta} y_{j}$ so $x=e^{i \theta} y$ and thus $A y=\lambda y$. We also get that $y_{i}>0$ since otherwise forall $j y_{j}=0$. Since $\rho y_{i}=(A y)_{i}$ we get that $\lambda=\rho$. Since $y>0$ and $A \gg 0$ we have $y=\frac{1}{\lambda} A y \gg 0$ and this proves statements 1 and 2 of the theorem.
Let us prove now that if $A x=\lambda x$ with $x>0$ and $\lambda>0$, then $\lambda=\rho$ and $x=a u$ for some $a>0$. First $x>0, A \gg 0$ so $x=\frac{1}{\lambda} A x \gg 0$.
Let $a=\sup \{c>0: x \geq c u\}$. By Lemma 7.5, $a>0$ and for some $i, x_{i}=a u_{i}$. Therefore

$$
\lambda a u_{i}=\lambda x_{i}=(A x)_{i}=\sum_{j} a_{i j} x_{j} \geq_{(x \geq a u)} a \sum_{j} a_{i j} u_{j}=a \rho u_{i}
$$

SInce $|\lambda| \leq \rho$, we obtain $\lambda=\rho$ and that there is equality in the preceding inequality, and therefore since $a_{i j}>0, x=\alpha u$.

Theorem 7.8. If $A \geq 0$ and there exists $m \in \mathbb{N}^{*}$ such that $A^{m} \gg 0$ then the conclusions of the preceding theorem hold.

Proof. We have $\rho\left(A^{m}\right)=\rho(A)^{m}$. Let $n \neq 0$ and λ such that $A x=\lambda x$. Then $A^{m} x=$ $\lambda^{m} x$ If $|\lambda|=\rho$ then $\left|\lambda^{m}\right|=\rho\left(A^{m}\right)$ so by the preceding theorem $\lambda^{m}=\rho$.
Observe that since $A^{m} \gg 0,0 \notin s p(A)$ so every line and every column of A is >0. Therefore $A^{m+1}=A^{m} A \gg 0$ and we have also $\lambda^{m+1}=\rho$. This yields $\lambda=\rho$ so $A^{m} x=\rho^{m} x$ and by the preceding theorem $x=\eta y$ with $y \gg 0, \eta \in \mathbb{C}$. Therefore $A y=y$ and we are done.

Assume $A \geq 0$ and $A^{m} \gg 0$ for some integer m. We saw that A has a right eigenvector $u \gg 0$ such that $A u=\rho u$. We normalize u so that $\sum_{i} u_{i}=1$.
Then A has a left eigenvector with eigenvalue ρ (consider the transpose): $v A=$ ρv. And we can normalize v so that $v u=u \cdot v^{T}=\sum_{i} v_{i} u_{=}$.
Prove as an exercice that the operator $P x=\left(x . v^{T}\right) u=v x u$ is a projector $P^{2}=P$ that commutes with $A: A P=P A=\rho P$. (It is a projector on the eigenspace with eigenvalue ρ).

Lemma 7.9. Let $B=A-\rho P$. Then $\rho(B)<\rho$ and $\frac{A^{n}}{\rho^{n}} \rightarrow P$.
Proof. Assume $B x=\lambda x$ with $\lambda \neq 0, x \neq 0$. Then

$$
\begin{equation*}
\lambda P x=P B x=P A x-\rho P^{2} x=0 \tag{7.19}
\end{equation*}
$$

o $P x=0$ and $A x=\lambda x$. If $|\lambda|=\rho$ then $\lambda=\rho$ and $P x=x$ so $x=0$, absurd. Therefore $|\lambda|<\rho$ and we have proved that $\rho(B)<\rho$. By induction

$$
\begin{equation*}
A^{n}=B^{n}+\rho^{n} P \tag{7.20}
\end{equation*}
$$

and therefore $\rho^{-n} A^{n}=P+\rho^{-n} B^{n}$. But if $\delta>0$, then there exists by Gelfand formula a n_{0} such that for $n \geq n_{0}$

$$
\begin{equation*}
\left\|\rho^{-n} B^{n}\right\| \leq \rho-n(\rho B+\delta)^{n} \rightarrow 0 \tag{7.21}
\end{equation*}
$$

if we have chosen δ small enough. And thus $\rho^{-n} B^{n} \rightarrow 0$.

Prove as an exercice that if $x>0$ and $A x \geq \lambda x$ for some $\lambda \geq 0$ then $\lambda=\rho$ and so x is a multiple of u.
Fortunately, we know exactly when to apply Theorem 7.8. A matrix $A \geq 0$ is irreducible if

$$
\begin{equation*}
\forall x, y \quad \exists m \quad\left(A^{m}\right)_{x y}>0 \tag{7.22}
\end{equation*}
$$

The period of an element x is $d(x)=\operatorname{gcd}\left\{n \geq 1:\left(A^{n}\right)_{x x}>0\right\}$. If A is irreducible then all states have the same period, forall $\mathrm{x} d(x)=d(A)$. We say then that A is aperiodic if $d(A)=1$.

Proposition 7.10. Let A be a matrix such that $A \geq 0$. Then there exists $m \in \mathbb{N}^{*}$ such that $A^{m} \gg 0$ iff A is irreducible and aperiodic.

5 The supercritical case and geometric growth

We assume that the mean matrix $M=\left(m_{i j}\right)$ is irreducible and aperiodic. Thanks to Perron Frobenius theory, if ρ is the spectral radius of M then there exists $u \gg$ $0, v \gg 0$ with $1=\sum_{i} u_{i} v_{i}$ such that $M u=\rho u$ and $v M=\rho M$.
We know then that $W_{n}=\rho^{-n} Z_{n} u$ is a positive martingale converging to a finite rv W.

Theorem 7.11. Assume $\rho>1$ and $\sup _{i, k} \mathbb{E}\left[\xi_{i k} \log ^{+} \xi_{i k}\right]<+\infty$. Then

$$
\begin{equation*}
\rho^{-n} Z_{n} \rightarrow W v \quad \text { a.e. } \tag{7.23}
\end{equation*}
$$

Corollary 7.12. Under the preceding assumptions, on the non extinction set the assymptotic proportions of each type converge a.e. to a deterministic number. If $\left|Z_{n}\right|=\sum_{j} Z_{n j}$ then, a.e. on $\{W>0\}$

$$
\begin{equation*}
\frac{Z_{n i}}{\left|Z_{n}\right|} \rightarrow \frac{v_{i}}{|v|} \tag{7.24}
\end{equation*}
$$

Proof of Theorem 7.11. To simplify the proofs we shall assume that sup ${ }_{i, k} \mathbb{E}\left[\xi_{i k}^{2}\right]<$ $+\infty$ and follow the arguments of Kesten and Stigum [11].
Lemma 7.13. There exists a constant $C>0$ such that for all $a \in \mathbb{R}^{d}, z \in \mathbb{R}_{+}^{d}$

$$
\begin{equation*}
\mathbb{E}_{z}\left[\left(\left(Z_{1}-z M\right) a\right)^{2}\right] \leq C\|a\|_{2}^{2}|z| \tag{7.25}
\end{equation*}
$$

Proof. Remember that $\mathbb{E}\left[Z_{n+1} \mid \mathscr{F}_{n}\right]=Z_{n} M$, hence if $X=Z_{1} a=\sum_{i} Z_{1 i} a_{i}$, we have

$$
\begin{equation*}
\mathbb{E}_{z}[X]=\mathbb{E}_{x}\left[\mathbb{E}\left[Z_{1} a \mid \mathscr{F}_{0}\right]\right]=z M a \tag{7.26}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}_{z}\left[\left(\left(Z_{1}-z M\right) a\right)^{2}\right] & =\operatorname{Var}_{z}(X)=\operatorname{Var}\left(\left(\sum_{j} \sum_{i=1}^{z_{j}} \xi_{i}^{(1), j}\right) a\right) \\
& =\sum_{j} \sum_{i=1}^{z_{j}} \operatorname{Var}\left(\xi_{j} a\right) \quad \quad \text { by independence, } \\
& =\sum_{j} z_{j} \operatorname{Var}\left(\xi_{j} a\right) \leq C\|a\|_{2}^{2}|z| .
\end{aligned}
$$

Lemma 7.14. The series $\sum_{n}\left(Z_{n+1}-Z_{n} M\right) \rho^{-n}$ converges as in \mathbb{R}^{d}.
Proof. We shall prove that for every $a \in \mathbb{R}^{d}$ the series $\sum_{n} U_{n}$ converges a.e. with $U_{n}:=\rho^{-n}\left(Z_{n+1}-Z_{n} M\right) a$. First observe that by induction $Z_{n} \in L^{2}$ so $U_{n} \in L^{2}$. Then $\mathbb{E}\left[U_{n} \mid \mathscr{F}_{n}\right]=0$ hence $M_{n}=U_{1}+\cdots+U_{n}$ is an L^{2} martingale and it converges a.e. as soon as $\sum_{n} \mathbb{E}\left[U_{n}^{2}\right]<+\infty$. Indeed,

$$
\begin{equation*}
\mathbb{E}\left[U_{n} \mid \mathscr{F}_{n}\right]=\rho^{-n}\left(\mathbb{E}\left[Z_{n+1} a \mid \mathscr{F}_{n}\right]-Z_{n} M a\right)=0 . \tag{7.27}
\end{equation*}
$$

Moreover, by Markov property,

$$
\begin{equation*}
\mathbb{E}\left[U_{n}^{2} \mid \mathscr{F}_{n}\right]=\rho^{-2 n} \mathbb{E}_{Z_{n}}\left[\left(\left(Z_{1}-Z_{0} M\right) a\right)^{2}\right] \leq C \rho^{-2 n}\|a\|_{2}^{2}\left|Z_{n}\right| \tag{7.28}
\end{equation*}
$$

Remember that since $u \gg 0, W_{n}=\rho^{-n} Z_{n}=\rho^{-n} \sum_{i} u_{i} Z_{n i} \geq C \rho^{-n}\left|Z_{n}\right|$, and thus

$$
\begin{equation*}
\mathbb{E}\left[\left|Z_{n}\right|\right] \leq C \rho^{n} \mathbb{E}\left[W_{n}\right] \leq C \rho^{n} \mathbb{E}\left[W_{0}\right] \tag{7.29}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\mathbb{E}\left[U_{n}^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[U_{n}^{2} \mid \mathscr{F}_{n}\right]\right] \leq C \rho^{-2 n} \mathbb{E}\left[\left|Z_{n}\right|\right] \leq C^{\prime} \rho^{-n} \tag{7.30}
\end{equation*}
$$

and thus $\sum_{n} \mathbb{E}\left[U_{n}^{2}\right]<+\infty$.
Lemma 7.15. Let $u, v, x_{n} \in \mathbb{R}^{d}$ be such that $u . v=1$ and $\lim _{n, p \rightarrow+\infty} x_{n+p}-\left(x_{n} . u\right) v=$ 0 . Then there exists $\lambda \in \mathbb{R}$ such that $x_{n} \rightarrow \lambda \nu$.
The proof is left as an exercise.
Lemma 7.16.

$$
\begin{equation*}
\text { a.e. } \lim _{r_{0} \rightarrow+\infty, r_{1}-r_{0} \rightarrow+\infty} Z_{r_{1}+1} \rho^{-\left(r_{1}+1\right)}-\left(\rho^{-r_{0}} Z_{r_{0}} u\right) v=0 \tag{7.31}
\end{equation*}
$$

Proof. From Perron Frobenius theory we know that if $z P=z u v$ is the projection then $B=M-\rho P$ has spetral radius $\operatorname{spr}(B)<\rho$ and thus $\left\|B^{n}\right\| \leq \rho_{1}^{n}$ for some $0<\rho_{1}<\rho$. SInce $\rho^{-n} M^{n}=P+\rho^{-n} B$, we have

$$
\begin{aligned}
I\left(r_{0}, r_{1}\right) & :=\sum_{r=r_{0}}^{r_{1}}\left(Z_{r+1} M^{r_{1}-r}-Z_{r} M^{r_{1}-r+1}\right) \rho^{-1-r_{1}} \\
& =\sum_{r=r_{0}}^{r_{1}}\left(Z_{r+1}-Z_{r} M\right) \rho^{-(r+1)}\left(\rho^{r-r_{1}} M^{r_{1}-r}\right) \\
& =\sum_{r=r_{0}}^{r_{1}}\left(Z_{r+1}-Z_{r} M\right) \rho^{-(r+1)} P+\sum_{r=r_{0}}^{r_{1}}\left(Z_{r+1}-Z_{r} M\right) \rho^{-(r+1)} \rho^{r-r_{1}} B^{r_{1}-r}
\end{aligned}
$$

Therefore, with $U_{r}=\left(Z_{r+1}-Z_{r} M\right) \rho^{-(r+1)} P$,

$$
\begin{equation*}
\left\|I\left(r_{0}, r_{1}\right)\right\| \leq\left\|\sum_{r=r_{0}}^{r_{1}} U_{r}\right\|+\sup _{r \geq r_{0}}\left\|U_{r}\right\| \sum_{r=r_{0}}^{r_{1}} \rho^{r-r_{1}}\left\|B^{r_{1}-r}\right\| \tag{7.32}
\end{equation*}
$$

and $\lim _{r_{0} \rightarrow+\infty, r_{1}-r_{0} \rightarrow+\infty} I\left(r_{0}, r_{1}\right)=0$ since the first term is a remainder for a convergent series $\sum_{r} U_{r}$, and the second term is bounded by

$$
\begin{equation*}
C \sup _{r \geq r_{0}}\|U\|_{r} \tag{7.33}
\end{equation*}
$$

Now observe that $I\left(r_{0}, r_{1}\right)$ is a telescopic sum:

$$
\begin{equation*}
I\left(r_{0}, r_{1}\right)=\rho^{-\left(r_{1}+1\right)} Z_{r_{1}+1}-\rho^{-r_{0}} Z_{r_{0}} \rho^{-\left(r_{1}-r_{0}+1\right)} M^{r_{1}-r_{0}+1} \tag{7.34}
\end{equation*}
$$

Since $\rho^{-n} M^{n} \rightarrow P$ this yields

$$
\begin{equation*}
0=\lim _{r_{0} \rightarrow+\infty, r_{1}-r_{0} \rightarrow+\infty} I\left(r_{0}, r_{1}\right)=\lim _{r_{0} \rightarrow+\infty, r_{1}-r_{0} \rightarrow+\infty} \rho^{-\left(r_{1}+1\right)} Z_{r_{1}+1}-\rho^{-r_{0}} Z_{r_{0}} P \tag{7.35}
\end{equation*}
$$

and this ends our proof of the Lemma.
We now resume the proof of the Theorem. Combining Lemmas 7.15 and 7.16 we obtain the existence of a random variable T such that a.e. $\rho^{-n} Z_{n} \rightarrow T \nu$. Since $W_{n}=\rho^{-n} Z_{n} u \rightarrow W$, we have a.e. $W=T v u=T$.

Exercises

1 Exercises on Galton Watson processes

Exercice 1.1

Describe precisely, extinction probability, mean time to extinction, of the Galton Watson process when the reproduction law is non deterministic and satisfies $\mathbb{P}(\xi=0)+\mathbb{P}(\xi=1)=1$.

Exercice 1.2

Prove that for a subcritical GW process $(m<1)$ the mean total progeny is

$$
\mathbb{E}[\bar{X}]=\frac{1}{1-m}
$$

Exercice 1.3

Assume that $\sigma^{2}:=\operatorname{Var}(\xi)<+\infty$. Show that

$$
\begin{equation*}
\operatorname{Var}\left(X_{n+1}\right)=m^{n} \sigma^{2}+m^{2} \operatorname{Var}\left(X_{n}\right) \tag{8.1}
\end{equation*}
$$

and then that

$$
\operatorname{Var}\left(X_{n}\right)= \begin{cases}\frac{\sigma^{2} m^{n}\left(m^{n}-1\right)}{m^{2}-m} & \text { if } m \neq 1 \tag{8.2}\\ n \sigma^{2} & \text { if } m=1\end{cases}
$$

Show that if $m>1$ then the martingale $W_{n}=\frac{X_{n}}{m^{n}}$ is UI.

Solution de l'Exercice 1.1
We have $\mathbb{P}(\xi=1)=1-\mathbb{P}(\xi=0)=p \in(0,1)$. Therefore $T_{0}=\inf \left\{n \geq 1: Z_{n}=0\right\}$ is geometric with parameter $1-p, \mathbb{E}\left[T_{0}\right]=\frac{1}{1-p}, T_{0}<+\infty$ so there is almost sure extinction.

Solution de l'Exercice 1.3

By the conditional variance formula

$$
\begin{aligned}
\operatorname{Var}\left(X_{n+1}\right) & =\operatorname{Var}\left(\mathbb{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]\right)+\mathbb{E}\left[\left(X_{n+1}-\mathbb{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]\right)^{2}\right] \\
& =m^{2} \operatorname{Var}\left(X_{n}\right)+\mathbb{E}\left[\mathbb{E}\left[\left(X_{n+1}-m X_{n}\right)^{2} \mid X_{n}\right]\right] \\
& =m^{2} \operatorname{Var}\left(X_{n}\right)+\mathbb{E}\left[X_{n} \sigma^{2}\right] .
\end{aligned}
$$

Exercice 1.4

The Galton Watson process with immigration is defined by the recurrence

$$
X_{n+1}=\sum_{i=1}^{X_{n}} \xi_{i}^{(n+1)}+Y_{n+1}
$$

where the $\left(\xi_{i}^{(k)}, k \geq 1, i \geq 1\right)$ are IID distributed as ξ and are independent from ($Y_{k}, k \geq 1$) IID distributed as Y. In this model $\xi_{i}^{(n+1)}$ is the number of children of the i-th individual of the n-th generation, and Y_{n} is the number of immigrants in the n-th generation. We assume that $0<m=\mathbb{E}[\xi]<+\infty, \forall j \mathbb{P}(\xi=j)<1$ and $0<\lambda=\mathbb{E}[Y]<+\infty$.

1. Prove that one has

$$
\begin{equation*}
X_{n}=Z_{n}+U_{n}^{(1)}+\cdots+U_{n}^{(n)} \tag{8.3}
\end{equation*}
$$

with Z_{n} the number of descendants at generation n of the initial individual, $U_{n}^{(i)}$ is the number of descendants at generation n of immigrants that arrived at generation i, and all these processes are independent.
2. Let $V_{n}=m^{-n} X_{n}$. Show that

$$
\begin{equation*}
\mathbb{E}\left[X_{n+1} \mid \mathscr{F}_{n}\right]=m X_{n}+\lambda, \tag{8.4}
\end{equation*}
$$

\{eq:22\}
after defining precisely \mathscr{F}_{n}.
3. Show that V_{n} is a positive submartingale.
4. Assume from now on that $m>1$. Show that

$$
\begin{equation*}
\mathbb{E}\left[X_{n}\right]=\frac{m^{n}(m+\lambda-1)-\lambda}{m-1}, \tag{8.5}
\end{equation*}
$$

and infer that $C:=\sup \mathbb{E}\left[V_{n}\right]<+\infty$.
5. Show that there exists a rv $V, 0 \leq V<+\infty$ a.e. and $V_{n} \rightarrow V$ a.e.
6. Recall that $W_{n}=m^{-n} Z_{n} \rightarrow W$ a.e. for a positive finite $\operatorname{rv} W$. Let $\beta=\frac{m+\lambda-1}{m-1}$ and let

$$
\begin{equation*}
T=\sum_{k=1}^{Y} W_{k}, \tag{8.6}
\end{equation*}
$$

with ($W_{k}, k \geq 1$) IID distributed as W. Show that

$$
\begin{equation*}
m^{-n} U_{n}^{(i)} \rightarrow m^{-i} T^{(i)} \text { a.e. with } \quad T^{(i)} \stackrel{d}{=} T . \tag{8.7}
\end{equation*}
$$

\{eq:25\}
Deduce that

$$
\begin{equation*}
V \geq U:=W+\sum_{i=1}^{+\infty} m^{-i} T^{(i)} \quad \text { a.e. } \tag{8.8}
\end{equation*}
$$

7. Using independence in (8.3), compute for $\lambda>0, \mathbb{E}\left[e^{-\lambda V_{n}}\right]$ Combining the inequality for a positive random variable

$$
-\log \mathbb{E}\left[e^{-X}\right] \leq \mathbb{E}[X]
$$

with the fact that

$$
\begin{equation*}
\mathbb{E}\left[m^{-n} U_{n}^{(i)}\right]=m^{-n} \mathbb{E}\left[\mathbb{E}\left[Z_{n-i} \mid Z_{0}=Y\right]\right]=m^{-n} m^{n-i} \mathbb{E}[Y]=\lambda m^{-i} \tag{8.9}
\end{equation*}
$$

and show that

$$
\begin{equation*}
\mathbb{E}\left[e^{-\lambda V}\right]=\lim _{n \rightarrow+\infty} \mathbb{E}\left[e^{-\lambda V_{n}}\right]=\mathbb{E}\left[e^{-\lambda U}\right] \tag{8.10}
\end{equation*}
$$

and deduce from it that $V=U$ a.e.
8. Show that if $\mathbb{E}\left[\xi \log ^{+} \xi\right]<+\infty$ the $V>0$ a.e. and that if $\mathbb{E}\left[\xi \log ^{+} \xi\right]=+\infty$ then $V=0$ a.e.

Exercice 1.5

Assume that $\left(X_{i}\right)_{i \geq 1}$ are IID positive random variables such that for constants $C>0, a>0$

$$
\begin{equation*}
\mathbb{P}(X>x) \sim C e^{-a x} \quad(x \rightarrow+\infty) \tag{8.11}
\end{equation*}
$$

Let $M_{n}=\sup _{1 \leq k \leq n} X_{k}$. Show that $M_{n}-\frac{1}{a} \log n$ converges in distribution. Why is it a first step in the proof of (1.13) ?

2 Exercises on birth and death processes

Exercice 2.1

Let ϕ be a non identically null non negative solution of $Q \phi=\phi$, with $\phi(0)=0$. Let $\Delta_{n}=\phi_{n}-\phi_{n-1}, f_{n}=\frac{1}{\lambda_{n}}, g_{n}=\frac{\mu_{n}}{\lambda_{n}}$.

1. Show that $\Delta_{1}=\phi_{1}, \Delta_{n+1}=\Delta_{n} g_{n}+f_{n} \phi_{n}$.
2. Show that ϕ_{n} is increasing
3. Let $r_{n}=f_{n}+\sum_{k=1}^{n-1} f_{k} g_{k+1} \ldots g_{n}+g_{1} \ldots g_{n}$. Show that

$$
r_{n} \phi_{1} \leq \Delta_{n+1} \leq r_{n} \phi_{n}
$$

and deduce that

$$
\phi_{1}\left(1+r_{1}+\cdots+r_{n}\right) \leq \phi_{n+1} \leq \phi_{1} \prod_{k=1}^{n}\left(1+r_{k}\right)
$$

4. Show that $\sum_{k} r_{k}$ converges iff ϕ is bounded (and relate this to the non explosion criterion).

Exercice 2.2

Consider a linear birth and death process with $\lambda=\mu$. Let $q(t):=\mathbb{P}_{1}\left(X_{t}=0\right)$ be the extinction probability at time t, when starting with one individual. Explain why $\mathbb{P}_{x}\left(X_{t}=0\right)=q(t)^{x}$. Condition by the first jump time and show that

$$
\begin{equation*}
q(t)=\int_{0}^{t} e^{-2 \lambda s}\left(\lambda q(t-s)^{2}+\lambda\right) . \tag{8.12}
\end{equation*}
$$

Deduce that $q(t)$ satisfies the ode (Ricatti)

$$
\begin{equation*}
\frac{d}{d t} q=\lambda(q-1)^{2} \tag{8.13}
\end{equation*}
$$

and establish the formula $q(t)=\frac{\lambda t}{1+\lambda t}$.

Exercice 2.3

Consider a linear birth and death process. Apply Kolmogorov forward equation to $f(x)=x^{2}$ to show that $u(t)=P_{t} f(x)$ satisfies the ode

$$
\begin{equation*}
u^{\prime}=2(\lambda-\mu) u+v, \tag{8.14}
\end{equation*}
$$

with $v(t)=\mathbb{E}_{x}\left[X_{t}\right]=x e^{(\lambda-\mu) t}$. Deduce from it that with $W_{t}=e^{-(\lambda-\mu) t} X_{t}$ we have if $\lambda>\mu, \sup _{t} \mathbb{E}\left[W_{t}^{2}\right]<+\infty$, and thus the martingale W is UI.

Solution de l'Exercice 2.3
if $f(x)=x^{2}$ then

$$
\begin{equation*}
L f(x)=\lambda x\left((x+1)^{2}-x^{2}\right)+\mu x\left((x-1)^{2}-x^{2}\right)=2(\lambda-\mu) x^{2}+(\lambda+\mu) x \tag{8.15}
\end{equation*}
$$

so if $u(t)=P_{t} f(x)$, taking into accoutn $\mathbb{E}_{x}\left[X_{t}\right]=x e^{(\lambda-\mu) t}$

$$
\begin{equation*}
u^{\prime}(t)=P_{t} L f(x)=2(\lambda-\mu) u(t)+(\lambda+\mu) x e^{(\lambda-\mu) t} \tag{8.16}
\end{equation*}
$$

and since $u(0)=x^{2}$, if $\lambda \neq \mu$

$$
\begin{equation*}
u(t)=e^{2(\lambda-\mu) t}\left(x^{2}+(\lambda+\mu) x \frac{1-e^{-(\lambda-\mu) t}}{\lambda-\mu}\right) \tag{8.17}
\end{equation*}
$$

Therefore, if $\lambda>\mu, \sup _{t} \mathbb{E}\left[W_{t}^{2}\right]<+\infty$.

3 Exercises on stochastic comparison of Markov Processes

Exercice 3.1

Show that if X is a branching process on \mathbb{N}^{2}, then it is monotone.

Solution de l'Exercice 3.1

It is the same proof as in dimension 1 with the partial order $x \leq y$ if $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$. Then if $x \leq y$, there exists $z \in \mathbb{N} \times \mathbb{N}$ such that $y=x+z$ and we have, for a monotone f :

$$
\begin{align*}
P_{t} f(y)=\mathbb{E}_{y}[f(X(t))] & =\mathbb{E}_{x, z}\left[f\left(X^{x}(t)+X^{z}(t)\right)\right] \tag{8.18}\\
& \geq \mathbb{E}_{x, z}\left[f\left(X^{x}(t)\right)\right]=\mathbb{E}_{x}[f(X(t))]=P_{t} f(x) \tag{8.19}
\end{align*}
$$

Exercice 3.2

Let X be a pure jump process on \mathbb{N}^{2} with semigroup $\left(P_{t}\right)_{t \geq 0}$ and generator L. For every $\theta=\left(\theta_{1}, \theta_{2}\right) \in(0,+\infty)^{2}$ we define the function $f_{\theta}(x)=e^{-\theta \cdot x}=e^{-\left(\theta_{1} x_{1}+\theta_{2} x_{2}\right)}$. Then the following assertions are equivalent

1. X has the branching property
2. for every θ and every $x, P_{t} f_{\theta}(x+y)=P_{t} f_{\theta}(x) P_{t} f_{\theta}(y)$.
3. for every θ and every x,

$$
\begin{equation*}
L f_{\theta}(x+y)=f_{\theta}(x) L f_{\theta}(y)+f_{\theta}(y) L f_{\theta}(x) \tag{8.20}
\end{equation*}
$$

4. for every θ, there exists a constant vector C_{θ} such that

$$
\begin{equation*}
L f_{\theta}(x)=C_{\theta} \cdot x f_{\theta}(x) \tag{8.21}
\end{equation*}
$$

Solution de l'Exercice 3.2

In the lecture notes we saw $1 \Longleftrightarrow 2$.
For $2 \Longrightarrow 3$ we only have to take derivatives at time $t=0$
For $3 \Longrightarrow 4$ it is trivial : let $\gamma(x)=L f(x) / f(x)$ it satisfies $\gamma(x+y)=\gamma(x)+\gamma(y)$.
Eventually, $4 \Longrightarrow 1$ comes from the method of characteristics. Let $C_{1}(\theta), C_{2}(\theta)$ denote the components of C_{θ}. Let ϕ_{t} be the flow of the ODE

$$
\begin{align*}
& \theta_{1}^{\prime}=+C_{1}\left(\theta_{1}, \theta_{2}\right) \tag{8.22}\\
& \theta_{2}^{\prime}=+C_{2}\left(\theta_{1}, \theta_{2}\right) \tag{8.23}
\end{align*}
$$

Then, by Kolmogorov's equation the function $u: t \rightarrow P_{t} f_{\phi_{t}(\theta)}(x)$ is constant: indeed let $v\left(t, \theta_{1}, \theta_{2}\right)=P_{t} f_{\theta}(x)$

$$
\begin{array}{rlr}
u^{\prime}(t) & =\partial_{t} v\left(t, \phi_{t}(\theta)\right)+\theta_{1}^{\prime} \partial_{\theta_{1}} v\left(t, \phi_{t}(\theta)\right)+\theta_{2}^{\prime} \partial_{\theta_{2}} v\left(t, \phi_{t}(\theta)\right) & \\
& =\partial_{t} P_{t} f_{\eta}(x)-P_{t} L f_{\eta}(x) & \text { for } \eta=\phi_{t}(\theta) \\
& =0 &
\end{array}
$$

so $P_{t} f_{\phi_{t}(\theta)}(x)=u(0)=f_{\theta}(x)$ and thus

$$
\begin{equation*}
P_{t} f_{\theta}(x)=f_{\phi_{-t}(\theta)}(x)=e^{\phi_{-t}(\theta) \cdot x} \tag{8.24}
\end{equation*}
$$

This is true at least for t in $(0, \delta)$, since on $(-\delta, \delta)$ the flow exists by Cauchy Lipschitz theory. Therefore, by semi group property, this is true for all t.

Exercice 3.3

(see [12]) Let $\left\{N(t)=\left(N_{1}(t), N_{2}(t)\right)\right\}$ be a $\mathbb{N} \times \mathbb{N}$-valued pure jump Markov process with the following transition rates.

$$
\begin{array}{cl}
m b_{1} & \text { from }(m, n) \text { to }(m+1, n) \\
n b_{2} & \text { from }(m, n) \text { to }(m, n+1) \\
m d_{1}(m, n) & \text { from }(m, n) \text { to }(m-1, n) \\
n d_{2}(m, n) & \text { from }(m, n) \text { to }(m, n-1) .
\end{array}
$$

Here b_{1}, b_{2} are positive constants and d_{1}, d_{2} are functions from $\mathbb{N} \times \mathbb{N}$ to \mathbb{R}_{+}. Suppose that there is a set $\mathscr{S} \subset \mathbb{R}_{+} \times \mathbb{R}_{+}$and constants $d_{1}^{+}, d_{1}^{-}, d_{2}^{+}, d_{2}^{-} \in[0, \infty]$ such that

$$
\begin{aligned}
& d_{1}^{-} \leq \inf d_{1}(\mathscr{S}) \leq \sup d_{1}(\mathscr{S}) \leq d_{1}^{+} \text {and } \\
& d_{2}^{-} \leq \inf d_{2}(\mathscr{S}) \leq \sup d_{2}(\mathscr{S}) \leq d_{2}^{+}
\end{aligned}
$$

Assume that $\left(N_{1}(0), N_{2}(0)\right) \in \mathscr{S}$ and let $T_{\mathscr{S}}$ be the random time defined by

$$
T_{\mathscr{S}}=\inf \{t \geq 0: N(t) \notin \mathscr{S}\}
$$

Let $z_{1}^{+}, z_{1}^{-}, z_{2}^{+}, z_{1}^{-}$be positive integers satisfying $z_{1}^{-} \leq N_{1}(0) \leq z_{1}^{+}$and $z_{2}^{-} \leq N_{2}(0) \leq$ z_{2}^{+}. Then on the same probability space as N, we can construct four \mathbb{N}-valued processes $B_{1}^{+}, B_{1}^{-}, B_{2}^{+}$and B_{2}^{-}with laws $\mathbf{P}\left(b_{1}, d_{1}^{-}, z_{1}^{+}\right), \mathbf{P}\left(b_{1}, d_{1}^{+}, z_{1}^{-}\right), \mathbf{P}\left(b_{2}, d_{2}^{-}, z_{2}^{+}\right)$, $\mathbf{P}\left(b_{2}, d_{2}^{+}, z_{1}^{-}\right)$such for all $t \leq T_{\mathscr{S}}$ the following relations are satisfied almost surely,

$$
B_{1}^{-}(t) \leq N_{1}(t) \leq B_{1}^{+}(t) \quad \text { and } \quad B_{2}^{-}(t) \leq N_{2}(t) \leq B_{2}^{+}(t)
$$

(Hint : prove that when the function $\mathrm{s} d_{1}, d_{2}$ are constant we have a branching process, which is therefore monotone, and use the comparison theorems)

Solution de l'Exercice 3.3

The generator is

$$
\begin{equation*}
L f(x)=\sum_{i} x_{i}\left(b_{i}\left(f\left(x+e_{i}\right)-f(x)\right)+d_{i}(x)\left(f\left(x-e_{i}\right)-f(x)\right)\right) \tag{8.25}
\end{equation*}
$$

Therefore $L f_{\theta}(x)=f_{\theta}(x) \sum_{i} x_{i}\left(b_{i}\left(e^{\theta_{i}}-1\right)+d_{i}(x)\left(e^{-\theta_{i}}-1\right)\right)$ and the process is branching when the death rates are constant.
Therefore, to prove that we can produce the coupling on $\left[0, T_{\mathscr{S}}\left(B^{-}\right)\right.$) we only have to prove that for every monotone set $A \subset \mathscr{S}$

$$
\begin{equation*}
L^{-} 1_{A}(x) \leq L 1_{A}(x) \leq L^{+} 1_{A}(x) \quad(x \in \mathscr{S}) \tag{8.26}
\end{equation*}
$$

SInce the monotone sets are of the type $A=[a,+\infty) \times[b,+\infty)$ this is fairly easy to prove.

4 Exercises on Multitype branching processes

Exercice 4.1

Let $u, v, x_{n} \in \mathbb{R}^{d}$ be such that $u . v=1$ and $\lim _{n, p \rightarrow+\infty} x_{n+p}-\left(x_{n} \cdot u\right) v=0$. Then there exists $\lambda \in \mathbb{R}$ such that $x_{n} \rightarrow \lambda \nu$.

Solution de l'Exercice 4.1

Let $\lambda_{n}:=x_{n}$.u. Given $\epsilon>0$, there exists n_{0}, p_{0} such that forall $n \geq n_{0}, p \geq p_{0}$, $\left\|x_{n+p}-\lambda_{n} \nu\right\| \leq \epsilon$.
Therefore, since $u . v=1$, for $n \geq n_{0}, p \geq p_{0}$

$$
\begin{equation*}
\left|\lambda_{n+p}-\lambda_{n}\right|=\left|x_{n+p} . u-\lambda_{n} v . u\right| \leq\|u\|_{\infty}\left\|x_{n+p}-\lambda_{n} v\right\| \leq C \epsilon . \tag{8.27}
\end{equation*}
$$

Hence, for $n \geq n_{0}, p \geq p_{0}$

$$
\begin{equation*}
\lambda_{n}-C \epsilon \leq \lambda_{n+p} \leq \lambda_{n}+C \epsilon . \tag{8.28}
\end{equation*}
$$

Letting $p \rightarrow+\infty$, we obtain with $a=\liminf \lambda_{k}$ and $b=\limsup { }_{k} \lambda_{k}$,

$$
\begin{equation*}
\lambda_{n}-C \epsilon \leq a \leq b \leq \lambda_{n}+C \epsilon . \tag{8.29}
\end{equation*}
$$

Taking $n \rightarrow+\infty$ in $\lambda_{n} \leq a+C \epsilon$ yields $b \leq a+C \epsilon$. Letting $\epsilon \rightarrow 0$ yileds $b=a$ so there exists $\lambda \in \mathbb{R}$ such that $\lambda_{n} \rightarrow \lambda$. Let ϵ, n_{0}, p_{0} be as above. Then, for $n \geq n_{0}$ and $p \geq p_{0}$

$$
\begin{equation*}
\left\|x_{n+p}-\lambda \nu\right\| \leq\left\|x_{n+p}-\lambda_{n} \nu\right\|+\left|\lambda-\lambda_{n}\|\nu v\| \leq \epsilon+\right| \lambda-\lambda_{n}\| \| v \| . \tag{8.30}
\end{equation*}
$$

Letting $n \rightarrow+\infty$ yields

$$
\begin{equation*}
\limsup \left\|x_{k}-\lambda \nu\right\| \leq \epsilon \tag{8.31}
\end{equation*}
$$

Then, letting $\epsilon \rightarrow 0$ yields $x_{k} \rightarrow \lambda v$.

Exercice 4.2

Consider the bacteria example of the lecture notes. Determine the growth rate of the population when there is no extinction, and show that there is an asymptotic proportion of type A cells. Take $\alpha_{1}=0.9998, p_{1}=0.8, \alpha_{2}=0.999, p_{2}=0.9$.

Solution de l'Exercice 4.2

The mean matrix is $M \gg 0$

$$
M=\left(\begin{array}{ll}
p_{1}\left(1+\alpha_{1}\right) & p_{1}\left(1-\alpha_{1}\right) \tag{8.32}\\
p_{2}\left(1-\alpha_{2}\right) & p_{2}\left(1+\alpha_{2}\right)
\end{array}\right)
$$

with $\operatorname{det}(M)=2 p_{1} p_{2} \alpha_{1} \alpha_{2}>0$ and $\operatorname{tr}(M)>0$. We can apply Perron Frobenius theorem, and the important thing is to find a left eigenvector. Numerically, we get $\rho=1.79910717$ and a left eigenvector, normalized, with $\nu M=\rho M$ is $v=$ [$0.00446413,0.99553587$]. Therefore the asymptotic proportion of type A cells is $v[0]=4.410^{-3}$ very small.

5 Hints and Solutions

Bibliography

[1] Vincent Bansaye and Sylvie Méléard. Stochastic models for structured populations, volume 1 of Mathematical Biosciences Institute Lecture Series. Stochastics in Biological Systems. Springer, Cham; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2015. ISBN 978-3-319-21710-9; 978-3-319-21711-6. doi: 10.1007/978-3-319-21711-6. URL https://doi.org/10.1007/978-3-319-21711-6. Scaling limits and long time behavior.
[2] Stewart N. Ethier and Thomas G. Kurtz. Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley \& Sons, Inc., New York, 1986. ISBN 0-471-08186-8. doi: 10.1002/9780470316658. URLhttps://doi.org/10.1002/ 9780470316658 . Characterization and convergence.
[3] Nicolas Champagnat. Processus de galton-watson et applications en dynamique des populations. Cours donné à l'École supérieure des sciences et technologies d'Hammam Sousse (Tunisie), 2015. URL http://www.iecl.univ-lorraine.fr/~Nicolas.Champagnat/ Galton-Watson-court.pdf
[4] Torgny Lindvall. On Strassen's theorem on stochastic domination. Electron. Comm. Probab., 4:51-59, 1999. ISSN 1083-589X. doi: 10.1214/ECP.v4-1005. URLhttps://doi.org/10.1214/ECP.v4-1005.
[5] T. Kamae, U. Krengel, and G. L. O'Brien. Stochastic inequalities on partially ordered spaces. Ann. Probability, 5(6):899-912, 1977.
[6] Mu-Fa Chen. From Markov chains to non-equilibrium particle systems. World Scientific Publishing Co., Inc., River Edge, NJ, second edition, 2004.

ISBN 981-238-811-7. doi: 10.1142/9789812562456. URL https://doi. org/10.1142/9789812562456
[7] Erhan Çinlar. Introduction to stochastic processes. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
[8] Ludger Rüschendorf. On a comparison result for Markov processes. J. Appl. Probab., 45(1):279-286, 2008. ISSN 0021-9002. doi: 10.1239/jap/ 1208358968. URLhttps://doi.org/10.1239/jap/1208358968.
[9] Thomas G. Kurtz. Strong approximation theorems for density dependent Markov chains. Stochastic Processes Appl., 6(3):223-240, 1977/78. ISSN 0304-4149. doi: 10.1016/0304-4149(78)90020-0. URLhttps://doi.org/ 10.1016/0304-4149(78)90020-0.
[10] M. W. Hirsch and Hal Smith. Monotone dynamical systems. In Handbook of differential equations: ordinary differential equations. Vol. II, pages 239357. Elsevier B. V., Amsterdam, 2005.
[11] H. Kesten and B. P. Stigum. A limit theorem for multidimensional GaltonWatson processes. Ann. Math. Statist., 37:1211-1223, 1966. ISSN 00034851. doi: 10.1214/aoms/1177699266. URLhttps://doi.org/10.1214/ aoms/1177699266.
[12] Ankit Gupta, J. A. J. Metz, and Viet Chi Tran. A new proof for the convergence of an individual based model to the trait substitution sequence. Acta Appl. Math., 131:1-27, 2014. ISSN 0167-8019. doi: 10.1007/s10440-013-9847-y. URLhttps://doi.org/10.1007/s10440-013-9847-y.

