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Introduction

S ′ = − β
N
SI

I ′ =
β

N
SI − γI

R ′ = γI

The probability of a major outbreak of a SIR stochastic model with

S0 = N, I0 = 1 equals the probability of emergence of a linear Birth

Death process with rates λ = β, µ = γ. If λ > γ,

pe = 1− 1

R0
= 1− µ

λ
. (1)

birth rate λ depends on transmission rate and number of susceptibles

death rate µ depends on recovery and mortality rates

This is a simple one dimensional model. We shall see more complex

model : A ZIKA model in dimension 4.
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Seasonality

Birth and death rates are not constant through time. They depend on

environmental variables : temperature, humidity, ... λ = λ(t), µ = µ(t).

No general formula for R0. A complex formula for pe(t0) the emergence

probability when an infected is introduced at time t0.

For periodic rates (Kendall 1948)

R0 =
λ̄

µ̄
, with λ̄ =

1

T

∫ T

0

λT (s) ds , µ̄ =
1

T

∫ T

0

µT (s) ds .

pe(t0,T ) = 1−
∫ T

0
µT (s + t0)e−ϕT (s+t0) ds∫ T

0
λT (s + t0)e−ϕT (s+t0) ds

ϕT (t) =

∫ t

0

(λT (s)− µT (s)) ds .
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Seasonality conclusions

R0 = λ̄
µ̄ is fixed : it does not depend on time (Bacaer and Gernaoui 2006,

Diekmann, Heesterbeek and Britton 2013).

The formula R0(t) = λ(t)
µ(t) has no meaning.

Still,

• If R0 > 1 then pe(t0) > 0 for all t0, even if it nearly vanishes on

some intervals

• If R0 < 1, then pe(t0) = 0 for all t0.
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Seasonality Conclusions

The formula pe(t) ≈ guess(t) = 1− µ(t)

λ(t) is false but sometimes gives

a good approximation for large periods, relative to 1
µ = mean infectious

period, if

λT (t) = λ(t/T ) , µT (t) = µ(t/T ) (t ∈ [0, 1]).

For example

λT (t) = λ0(1 + sin(2πt/T )) .

The formula pe(t) ≈ 1− µ̄

λ̄
is a good approximation for small periods
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Control Strategies

Replace λ(t) by λρ(t) = λ(t)(1− ρ(t)) with ρ(t) = ρM1(t1<t<t2).

Minimize < pe,ρ >=
∫ 1

0
pe,ρ(t0) dt0, with fixed cost

C =

∫ 1

0

ρ(s) ds = ρM(t2 − t1) .
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Control Strategy Example
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Optimal control strategies
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Step Case : naive vs optimal control strategy
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Minimizing R0 vs minimizing < pe >
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The ZIKA Virus Example

Common model of (Lourenço & al 2017, Suparit & al 2018, Zhang & al

2017).

Humans follow stochastic SEIR, Vectors follow stochastic SEI

dSH

dt
= ΘH − δHSH − βVH IVSH dSV

dt
= ΘV − δVSV − βHV IHSV

dEH

dt
= βVH IVSH − (γH + δH)EH dEV

dt
= βHV IHSV − (γV + δV )EV

dIH

dt
= γHEH − (κH + δH)IH

dIV

dt
= γVEV − δV IV

dRH

dt
= κH IH − δHRH

12
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The Associated Branching Process

dEH

dt
= λIV ,EH IV − µEHEH ,

dEV

dt
= λIH ,EV IH − µEV EV

dIH

dt
= λEH ,IHE

H − µIH I
H ,

dIV

dt
= λEV ,IV E

V − µIV I
V

Common parameters : 1
µH = 75 years, µEH = γH + µH , 1

γH ≈ 7 days

(human mean incubation period), NH = constant.

13
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The constant rate case (Circular)

EH=1

IH = 2IV = 4

EV = 3

1

R4
0 =

∏
i λi,i+1∏

i µi
=
λEH ,IHλIH ,EV λEV ,IV λIV ,EH

µEHµIHµEV µIV

pe,1 =

∏d
i=1 λi,i+1 −

∏d
i=1 µi∑d−1

k=0

∏k
i=1 µi

∏d
i=k+1 λi,i+1

guess1(t0) =

∏d
i=1 λi,i+1(t0)−

∏d
i=1 µi (t0)∑d−1

k=0

∏k
i=1 µi (t0)

∏d
i=k+1 λi,i+1(t0)

For d = 2, without exposed classes,

pe,1 =
λ1,2λ2,1 − µ1µ2

λ2,1(λ1,2 + µ1)
, pe,2 =

λ1,2λ2,1 − µ1µ2

λ1,2(λ2,1 + µ2)
.

14
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Seasonality in ZIKA Model

Seasonality comes through temperature

T (t) = Tmoy +
DT

2
(1 + sin(2πt/365))

The transmission rate from infected vectors to humans is proportional to

the number of vectors (see Zhang 2017)

λIH ,EV ∝ NH ∝ exp
{
−(T − Topt)

2/δT
}

15
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Computation of R0 and pe,i(t0) in dimension d ≥ 2

(Bacaer & al 2014) give an algorithm to compute pe,i (t0) from an ODE.

We compare pe,i (t0) to guessi (t0)

(Bacaer & al 2014) proved that

• if R0 > 1, then r0 > 0 and for all t0,for all i , pe,i (t0) > 0 (even if it

nearly vanishes).

• If R0 < 1 then, r0 < 0 and for all t0,for all i , pe,i (t0) = 0

(Bacaer & al 2006) gives a numerical algorithm to compute R0 that we

did not use.

16
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Global map of the predicted distribution of Ae. aegypti. :

Kramer & al, eLife 2015;4:e08347

17



Influence of Geography through mean temperature
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Conclusions and Perspectives

• There is no time varying R0 : R0 is constant.

• We know how to compute efficiently the emergence probabilities pe,i .

• The formulas for constant rate may give a good guess for pe,i , for

large periods.

• We can compute optimal control strategies.

• With the right models for seasonal transmission and death rates, we

can build risk maps yielding for each fixed month, a map of

emergence probabilities, thus replacing the existing prediction maps

19
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Citation from Diekmann, Heesteerbek and Britton

p.429 When there is temporal variation that affects epidemiological

ingredients, it will matter for the potential number of secondary cases

produced by a given infected individual when exactly that individual

became infected. This means that the epidemiological life of the

individual will depend on the moment of epidemiological birth. In other

words : individual are not born (epidemiologically speaking) in the same

way, and the concept of a generation of infected individuals becomes

questionable. Because the definition of R0 is directly dependent on the

generation view, and in particular the biological interpretation is

intimately linked to the generation concept, we see that, under temporal

variation, a threshold quantity is unlikely to have the same biological

meaning as R0.
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