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The probability of a major outbreak of a SIR stochastic model with
So = N, Iy = 1 equals the probability of emergence of a linear Birth
Death process with rates A =3, p=~. If A > =,
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birth rate A depends on transmission rate and number of susceptibles

death rate ;. depends on recovery and mortality rates
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The probability of a major outbreak of a SIR stochastic model with
So = N, Iy = 1 equals the probability of emergence of a linear Birth
Death process with rates A =3, p=~. If A > =,
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birth rate A depends on transmission rate and number of susceptibles

death rate ;. depends on recovery and mortality rates

This is a simple one dimensional model. We shall see more complex
model : A ZIKA model in dimension 4. C
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Birth and death rates are not constant through time. They depend on
environmental variables : temperature, humidity, ... A = A(t), p = p(t).

No general formula for Ry. A complex formula for pe(to) the emergence
probability when an infected is introduced at time tp.

For periodic rates (Kendall 1948)

R A ith A 1/T>\()d‘ 1/T (s)d
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pr(t) = / (Ar(s) — pr(s)) ds.
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Ro = 2 is fixed : it does not depend on time (Bacaer and Gernaoui 2006,
Diekmann, Heesterbeek and Britton 2013).

The formula Ro(t) = % has no meaning.
Still,
e If Ry > 1 then pe(ty) > O for all ty, even if it nearly vanishes on
some intervals

e If Ry < 1, then pe(ty) = 0 for all t,.
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p(t)

The formula pe(t) =~ guess(t) =1— W is false but sometimes gives

a good approximation for large periods, relative to /% = mean infectious
period, if

Ar(t) = Mt/ T), pr(t) = u(t/T) (t€0,1]).

For example
A1(t) = Ao(1 +sin(27t/ T)).



Seasonality Conclusions

p(t)

The formula pe(t) =~ guess(t) =1— W is false but sometimes gives

a good approximation for large periods, relative to /% = mean infectious
period, if

Ar(t) = At/ T), ur(t) = u(t/T) (te][0,1]).
For example

Ar(t) = Xo(1 + sin(27t/ T)).

B, N :
The formula pe(t) ~|1— Y isa good approximation for small periods



Extinction probability pe(toT, T)

Birth and Death rates
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Control Strategies

Replace A(t) by Ay(t) = A(t)(1 — p(t)) with p(t) = pml(y<e<sy)-
Minimize < pe, >= _]'01 Pe.p(to) dto, with fixed cost

-1
C:/o p(s)ds = pm(t — t1) |



Control Strategy Example
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Optimal control strategies

=70

PeltoT, T), T:

»
26 — At 6

o Aolt)
=) —= u

T4 4
[=]
o

52 2
£
£, [ [ 0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Q
@ | — e
=2 e 4
E

g3 3

o
<2 === 2 ===
2

© PR S —— .

g1 ~ 1 P S
2 1
g0 L 0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.8 P 0.8 -
Pe,opt / \ \

0.6 0.6 “ \‘

0.4 0.4 “ ‘

0.2 0.2 | \

0.0 0.0 ( \

'0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Introduction time of the infected

Introduction time of the infected

9



Step Case : naive vs optimal co
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Minimizing R, vs minimizing < p. >
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The ZIKA Virus Example

Common model of (Lourengo & al 2017, Suparit & al 2018, Zhang & al
2017).
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The ZIKA Virus Example

Common model of (Lourengo & al 2017, Suparit & al 2018, Zhang & al

2017).

Humans follow stochastic SEIR, Vectors follow stochastic SEI
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The Associated Branching Process
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The Associated Branching Process

deH dEV
W:/\/\/;EH/V—/,LEHEH7 T:AIH’E\//H—‘LLEVEV
dit dlv
dt = )\EH /HE — /,L/HIH dt )\EV /VE — ,LLIV/V
Common parameters : -1, = 75 years, pgn =~y + put, LH 7 days

m
(human mean incubation period), N* = constant.
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The constant rate case (Circular)
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The constant rate case (Circular)
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The constant rate case (Circular)
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For d = 2, without exposed classes,
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Seasonality in ZIKA Model

Seasonality comes through temperature

T(t) = Tomoy + %(1 +sin(2rt/365))
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Seasonality in ZIKA Model

Seasonality comes through temperature

T(t) = Tomoy + %(1 +sin(2rt/365))

The transmission rate from infected vectors to humans is proportional to
the number of vectors (see Zhang 2017)

)\,H’Ev x Ny exp {_(T - Topt)z/(sT}
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Computation of Ry, and p. () in dimension d > 2

(Bacaer & al 2014) give an algorithm to compute pe i(t) from an ODE.
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Computation of Ry, and p. () in dimension d > 2

(Bacaer & al 2014) give an algorithm to compute pe i(t) from an ODE.
We compare pe i(tp) to guess;(to)

(Bacaer & al 2014) proved that

e if Ry > 1, then ry > 0 and for all to,for all i, pe i(to) > 0 (even if it
nearly vanishes).

e If Ry <1 then, rp <0 and for all to,for all i, pe ;(to) =0

(Bacaer & al 2006) gives a numerical algorithm to compute Ry that we
did not use.
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Global map of the predicted distribution of Ae. aegypti.
Kramer & al, elLife 2015;4:e08347
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Influence of Geography through mean temperature
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Conclusions and Perspectives

e There is no time varying Ry : Ry is constant.
e We know how to compute efficiently the emergence probabilities pe ;.

e The formulas for constant rate may give a good guess for pe ;, for
large periods.

e We can compute optimal control strategies.

e With the right models for seasonal transmission and death rates, we
can build risk maps yielding for each fixed month, a map of
emergence probabilities, thus replacing the existing prediction maps
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Citation from Diekmann, Heesteerbek and Britton

p.429 When there is temporal variation that affects epidemiological
ingredients, it will matter for the potential number of secondary cases
produced by a given infected individual when exactly that individual
became infected. This means that the epidemiological life of the
individual will depend on the moment of epidemiological birth. In other
words : individual are not born (epidemiologically speaking) in the same
way, and the concept of a generation of infected individuals becomes
questionable. Because the definition of Ry is directly dependent on the
generation view, and in particular the biological interpretation is
intimately linked to the generation concept, we see that, under temporal
variation, a threshold quantity is unlikely to have the same biological

meaning as Rp.
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