A LARGE DEVIATION PROPERTY VIA THE RENEWAL THEOREM

PHILIPPE CARMONA

ABSTRACT. In this note we prove a large deviation property for the occupation time of a point by a continuous time Markov chain. The main step is to prove that the Laplace exponent satisfy a renewal equation.

Let $(X_t, \mathcal{F}_t, t \ge 0; \mathbb{P}_x, x \in \chi)$ be a continuous time Markov process with values in a discrete state space χ , with $0 \in \chi$ a distinguished point; we let $\mathbb{P} = \mathbb{P}_0$ and \mathbb{E} [] denote expectation under \mathbb{P}_0 .. Let $r(t) = \mathbb{P}(X_t = 0)$ and ϕ be its Laplace transform

(1)
$$\alpha \in \mathbb{R} \to \phi(\alpha) = \int_0^\infty e^{\alpha t} r(t) dt \in [0, +\infty].$$

We shall make the following technical assumption : if $\phi(\alpha) < +\infty$ then the function $t \to e^{\alpha t} r(t)$ is directly Riemann integrable on $(0, +\infty)$ (see Feller[2], chap XI). Observe that this is satisfied if $t \to r(t)$ is decreasing.

Eventually let us denote by a the convergence abcissa of the Laplace transform:

$$a = \sup \left\{ \alpha : \phi(\alpha) < +\infty \right\}.$$

Since $0 \le r(t) \le 1$ the function ϕ is increasing, finite on $(-\infty, 0)$, ie $a \ge 0$ (it is furthermore C^{∞} on $(-\infty, a)$). We can now state the main result of this note

Theorem 1. For $\lambda \geq 0$, we define :

$$u(t) = \mathbb{E}\left[e^{\lambda \int_0^t \mathbf{1}_{(X_s=0)} \, ds}\right].$$

Then $\frac{1}{t}\log u(t)$ converges as $t \to \infty$ to the function

(2)
$$\Lambda(\lambda) = \begin{cases} 0 & \text{if } \lambda \leq \frac{1}{\phi(0)} \\ -\alpha(\lambda) & \text{if } \lambda > \frac{1}{\phi(0)} \end{cases}$$

where $\alpha(\lambda)$ is for $\lambda > \frac{1}{\phi(0)}$ the unique solution of $\lambda \phi(\alpha) = 1$ (and where we have the notation $\frac{1}{+\infty} = 0$.

Date: November 23, 2005.

¹⁹⁹¹ Mathematics Subject Classification.

PHILIPPE CARMONA

From the implicit function theorem we deduce that α is smooth on $(\frac{1}{\phi(a)}, +\infty)$, and thus that the legendre transform Λ^* has for set of exposed points $\mathcal{F} \supset (0, +\infty)$. Hence we can apply Gärtner–Ellis theorem (see e.g. Dembo and Zeitouni's book[1]) to get the

Corollary 2. The family $(\mu_t)_{t\geq 0}$ of distributions of $\frac{1}{t} \int_0^t \mathbb{1}_{\{X_s=0\}} ds$ under \mathbb{P}_0 satisfy a large deviations principle with good rate function:

$$\Lambda^*(x) = \sup_{\lambda} (\lambda x - \Lambda(\lambda)) \,.$$

Proof of the Theorem. Observe first that

$$u(t) = \mathbb{E}\left[e^{\lambda \int_0^t \mathbf{1}_{\{X_s=0\}} ds}\right]$$

= $\mathbb{E}\left[1 + \lambda \int_0^t \mathbf{1}_{\{X_s=0\}} e^{\int_0^s \mathbf{1}_{\{X_s=u\}} du} ds\right]$
= $1 + \lambda \int_0^t \mathbb{E}\left[\mathbf{1}_{\{X_s=0\}} e^{\int_0^s \mathbf{1}_{\{X_s=u\}} du}\right] ds$
= $1 + \int_0^t v(s) ds$.

Then, recall that $r(t) = \mathbb{P}_t \phi(0)$ which $\phi(x) = 1_{(x=0)}$, where P_t denotes the semi group of X,

$$v(t) = \mathbb{E} \left[\lambda \mathbf{1}_{(X_t=0)} (1 + \int_0^t \lambda \mathbf{1}_{(X_s=0)} e^{\int_0^s \mathbf{1}_{(X_s=u)} du}) \right]$$

= $\lambda r(t) + \lambda^2 \int_0^t \mathbb{E} \left[\mathbf{1}_{(X_t=0)} \mathbf{1}_{(X_s=0)} e^{\int_0^s \mathbf{1}_{(X_s=u)} du}) \right] ds$
= $\lambda r(t) + \lambda^2 \int_0^t \mathbb{E} \left[P_{t-s} \phi(X_s) \mathbf{1}_{(X_s=0)} e^{\int_0^s \mathbf{1}_{(X_s=u)} du}) \right] ds$
= $\lambda r(t) + \lambda \int_0^t r(t-s) v(s) ds$.

Assume first that $\lambda \phi(a) > 1$. Then, there exists $\alpha < a$ such that $\lambda \phi(\alpha) = 1$. We let $w(t) = e^{\lambda t} v(t)$ and $\rho(t) = \lambda e^{\alpha t} r(t)$. The ρ is a probability density, and w is a solution, in fact the unique solution, of the renewal equation

$$w = \rho + \rho * w \,.$$

Since w is locally bounded, and by assumption ρ is directly Riemann integrable, we obtain by the renewal theorem that

(3)
$$\lim_{t \to +\infty} w(t) = \left(\int_0^\infty s\rho(s) \, ds\right)^{-1} \int_0^\infty \rho(s) \, ds = \frac{\phi(\alpha)}{\phi'(\alpha)} \, .$$

This yields immediately that if $\alpha(\lambda) < 0$, then

$$\lim_{t \to +\infty} \frac{1}{t} \log u(t) = \lim_{t \to +\infty} \frac{1}{t} \log v(t) = -\alpha(\lambda)$$

 $\mathbf{2}$

and if $\alpha(\lambda) \ge 0$, then $\lim_{t \to +\infty} \frac{1}{t} \log u(t) = 0$.

Assume now that $0 < \lambda < \frac{1}{\phi(0)}$. Then $\phi(0) < +\infty$, and $A_{\infty} = \int_0^{\infty} \mathbf{1}_{(X_s=0)} ds$ is under \mathbb{P} distributed as an exponential random variable of expectation $\mathbb{E}[A_{\infty}] = \phi(0)$. Indeed, Markov property shows that A_{∞} has no memory: let $A_t = \int_0^t \mathbf{1}_{(X_s=0)} ds$ and $\tau_u = \inf \{t > 0 : A_t > u\}$. Then, by the strong Markov property,

$$\mathbb{P}(A_{\infty} > t + s \mid A_{\infty} > s) = \mathbb{P}(s + A_{\infty} \circ \theta_{\tau_s} > t \mid \tau_s < \infty)$$
$$= \mathbb{P}_{X_{\tau_s}}(A_{\infty} > t) = \mathbb{P}(A_{\infty} > t).$$

Therefore, $\mathbb{E}\left[e^{\lambda A_{\infty}}\right] < +\infty$ and $u(t) \to u(\infty) < +\infty$.

References

- A. DEMBO AND O. ZEITOUNI, Large deviations techniques and applications, vol. 38 of Applications of Mathematics (New York), Springer-Verlag, New York, second ed., 1998.
- [2] W. FELLER, An introduction to probability theory and its applications. Vol. I., John Wiley & Sons, 1950.

PHILIPPE CARMONA, LABORATOIRE JEAN LERAY, UMR 6629, UNIVERSITÉ DE NANTES, BP 92208, F-44322 NANTES CEDEX 03 BP *E-mail address*: philippe.carmona@math.univ-nantes.fr