Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Anaïs Crestetto¹, Nicolas Crouseilles² and Mohammed Lemou³.

Workshop Asymptotic-Preserving schemes, Porquerolles. May 23rd, 2012.

¹INRIA Nancy - Grand Est & University of Strasbourg, IRMA. ²INRIA Rennes - Bretagne Atlantique & ENS Cachan Bretagne, IRMAR. ³University of Rennes I & ENS Cachan Bretagne, IRMAR.

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

Outline

- 2 Micro-macro decomposition
- 3 Numerical results

Numerical simulation of plasmas

Different scales (Knudsen number ε) \Longrightarrow different models.

- Kinetic model:
 - particles represented by a distribution function $f(\mathbf{x}, \mathbf{v}, t)$,
 - Vlasov equation (with source term $S(\varepsilon)$)

$$\partial_t f + \mathbf{v} \cdot \partial_{\mathbf{x}} f + \frac{q}{m} (\mathbf{E} + \mathbf{v} \wedge \mathbf{B}) \cdot \partial_{\mathbf{v}} f = S(\varepsilon)$$

coupled to Maxwell equations or Poisson equation, (E electric field, B magnetic field, x position, v velocity, t time, q charge of particles, m masse of particles)

• in 3D \implies 7 variables: 3 in space, 3 in velocity and the time \implies heavy computations.

- Fluid model:
 - moment equations on physical quantities linked to f (density, mean velocity, temperature, etc.),
 - smaller cost, but less precision.
- If two scales in the same simulation: two schemes with an interface? Difficult to deal with the interface!

- 1st obj. Construct an accurate but not too costly scheme.
- 2nd obj. Construct an asymptotic-preserving 4 (AP) scheme.

⁴S. Jin, SIAM JSC 1999.

AP scheme

Prop: Stability and consistency $\forall \varepsilon$, particularly when $\varepsilon \to 0$. Aim: Standard schemes: $h = \mathcal{O}(\varepsilon) \to \text{construct}$ a scheme for which h is independent of ε .

Vlasov-BGK

• Vlasov with collisions \implies Vlasov-BGK equation:

$$\partial_t f + v \partial_x f + E \partial_v f = \frac{1}{\varepsilon} Q(f)$$

coupled to Poisson equation:

$$\partial_{x}E(x,t)=
ho(x,t)-1=\int f(x,v,t)\,dv-1.$$

(ε Knudsen number, $ho=
ho\left(x,t
ight)$ charge density.)

• Q(f) BGK (Bhatnagar-Gross-Krook) collision operator:

$$Q(f)=M(U)-f,$$

M(U) being the Maxwellian having the same first three moments than f, denoted by U.

•
$$M(U) = \frac{\rho}{\sqrt{2\pi T}} \exp\left(-\frac{|v-u|^2}{2T}\right).$$

(T = T(x, t) temperature, u = u(x, t) mean velocity.)

•
$$U = \int \begin{pmatrix} 1 \\ v \\ \frac{v^2}{2} \end{pmatrix} f dv = \int \begin{pmatrix} 1 \\ v \\ \frac{v^2}{2} \end{pmatrix} M(U) dv$$

 $\implies U = \begin{pmatrix} \rho \\ \rho u \\ \frac{1}{2}(\rho u^2 + \rho T) \end{pmatrix}.$

- Remarks:
 - M(U) ∈ N(L_Q) = Span {M, vM, |v|²M}, the null space of the linearized operator L_Q of Q,
 - $f M(U) \rightarrow 0$ when $\varepsilon \rightarrow 0$: collisions move f closer to its Maxwellian.

PIC method Projection of weights Finite volumes scheme AP property

Micro-macro model

• Decomposition⁵⁶
$$f = M(U) + g$$
:

$$\partial_t M(U) + v \partial_x M(U) + E \partial_v M(U) + \partial_t g + v \partial_x g + E \partial_v g = -\frac{1}{\varepsilon} g.$$

Transport operator $\mathcal{T} \cdot = v \partial_x \cdot + E \partial_v \cdot$:

$$\partial_{t}M(U) + \mathcal{T}M(U) + \partial_{t}g + \mathcal{T}g = -\frac{1}{\varepsilon}g.$$

• Hypothesis: first three moments of g must be zero \Longrightarrow

$$\langle mf \rangle := \int m(v) f(x, v, t) dv = U(x, t)$$

where $m(v) = (1, v, \frac{v^2}{2})^t$.

True at the numerical level? If not, we have to impose it.

⁵M. Lemou, L. Mieussens, SIAM JSC 2008.

⁶N. Crouseilles, M. Lemou, KRM 2010.

A. Crestetto, N. Crouseilles, M. Lemou

Micro-macro numerical scheme for Vlasov-Poisson-BGK

1

PIC method Projection of weights Finite volumes scheme AP property

Micro-macro equations

Let Π_M the orthogonal projection in $L^2(M^{-1}dv)$ onto $\mathcal{N}(L_Q)^7$:

$$\Pi_{M}(\varphi) = \frac{1}{\rho} \left[\langle \varphi \rangle + \frac{(v-u)\langle (v-u)\varphi \rangle}{T} + \left(\frac{|v-u|^{2}}{2T} - \frac{1}{2} \right) \left\langle \left(\frac{|v-u|^{2}}{T} - 1 \right) \varphi \right\rangle \right] M.$$

• Properties: $(I - \Pi_M)(\partial_t M) = \Pi_M(g) = \Pi_M(\partial_t g) = 0.$

• Applying $(I - \Pi_M)$ to Vlasov-BGK \implies micro equation on g

$$\partial_t g + (I - \Pi_M) \mathcal{T} (M + g) = -\frac{1}{\varepsilon} g.$$

⁷M. Bennoune, M. Lemou, L. Mieussens, JCP 2008.

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

PIC method Projection of weights Finite volumes scheme AP property

• Applying Π_M to Vlasov-BGK \implies macro equation on M(U)

$$\partial_t M + \Pi_M \mathcal{T} \left(M + g \right) = 0$$

or by taking his first three moments

 $\partial_t U + \partial_x F(U) + \partial_x \langle vm(v)g \rangle = S(U),$

$$F(U) = \begin{pmatrix} \rho u \\ \rho u^2 + \rho T \\ \rho u \left(\frac{u}{2} + \frac{3}{2}T\right) \end{pmatrix}$$
: Euler flux
$$S(U) = \begin{pmatrix} 0 \\ \rho E \\ \rho uE \end{pmatrix}$$
: source term.

PIC method Projection of weights Finite volumes scheme AP property

Algorithm

System

$$\left\{ \begin{array}{l} \partial_t g + (I - \Pi_M) \mathcal{T} \left(M + g \right) = -\frac{1}{\varepsilon} g \\ \partial_t U + \partial_x F(U) + \partial_x \langle vm(v)g \rangle = S(U) \end{array} \right.$$

equivalent to Vlasov-BGK.

- 1. Solving the micro part by a Particle-In-Cell (PIC) method.
- 2. Projection step to numerically force to zero the first three moments of g (matching procedure⁸).
- 3. Solving the macro part by a finite volume scheme (mesh on x), with a source term dependent on g.

1-3 coupling: similarities with the δf method⁹ but here: AP scheme.

⁸P. Degond, G. Dimarco, L. Pareschi, IJNMF, 2011

⁹S. Brunner, E. Valeo, J.A. Krommes, Phys. of Plasmas, 1999

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

PIC method Projection of weights Finite volumes scheme AP property

PIC method

Equation

$$\partial_t g + (I - \Pi_M) \mathcal{T} (M + g) = -\frac{1}{\varepsilon} g$$

$$\iff$$

$$\partial_t g + \mathcal{T} g = -(I - \Pi_M) \mathcal{T} M + \Pi_M \mathcal{T} g - \frac{g}{\varepsilon} =: S_g.$$

 Model: having N_p particles, with position x_k, velocity v_k and weight ω_k, g is approximated by

$$g_{N_{p}}(x,v,t) = \sum_{k=1}^{N_{p}} \omega_{k}(t) \delta(x - x_{k}(t)) \delta(v - v_{k}(t))$$

PIC method Projection of weights Finite volumes scheme AP property

PIC method Projection of weights Finite volumes scheme AP property

Shape functions

Use of shape functions such as B-spline of order ℓ

$$B_{\ell}(x) = (B_0 * B_{\ell-1})(x),$$

with

$$B_0(x) = \begin{cases} \frac{1}{\Delta x} & \text{if } |x| < \Delta x/2, \\ 0 & \text{else.} \end{cases}$$

In particular

$$B_1(x) = rac{1}{\Delta x} \left\{ egin{array}{ccc} 1 - \mid x \mid /\Delta x, & ext{if} \quad \mid x \mid < \Delta x, \\ 0 & ext{else.} \end{array}
ight.$$

- Order 0: Nearest Grid Point.
- Order 1: Cloud In Cell.

PIC method Projection of weights Finite volumes scheme AP property

Deposition and interpolation

Computation of the moment \mathcal{M} of order p on the cell i:

$$\mathcal{M}_{p,i}(t) = \int_{\mathbb{R}} \mathcal{M}_{p}(x,t) B_{\ell}(x_{i}-x) dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} v^{p} g(x,v,t) dv B_{\ell}(x_{i}-x) dx$$

$$= \sum_{k=1}^{N_{p}} \omega_{k}(t) v_{k}^{p}(t) B_{\ell}(x_{i}-x_{k}(t)).$$

Evaluation of the electric field on particle k:

$$E(x_k,t) = \sum_{i=1}^{N_x} E(x_i,t) B_\ell(x_i - x_k(t)).$$

PIC method Projection of weights Finite volumes scheme AP property

1. Initialization:

- particles randomly (or quasi) distributed in phase space (x, v),
- weights initialized to $\omega_k(0) = g(x_k, v_k, 0) \frac{L_x L_v}{N_p}$.
 - (L_x x-length of the domain, L_v v-length.)
- 2. Solving the electric field on the mesh:

$$\partial_{x}E(x,t) = \rho(x,t) - 1 = \int f(x,v,t) dv - 1$$

thanks to the knowledge of $\rho_i(t)$, and then interpolation on the particles $\rightarrow E(x_k, t)$.

PIC method Projection of weights Finite volumes scheme AP property

Solving $\partial_t g + \mathcal{T}g = 0$

3. Movement of particles thanks to motion equations:

$$rac{dx_k}{dt}(t) = v_k(t)$$
 et $rac{dv_k}{dt}(t) = E(x_k, t)$

Verlet scheme (for example):

$$\begin{cases} v_k^{n+\frac{1}{2}} = v_k^n + \frac{\Delta t}{2} E^n (x_k^n) \\ x_k^{n+1} = x_k^n + \Delta t v_k^{n+\frac{1}{2}} \\ v_k^{n+1} = v_k^{n+\frac{1}{2}} + \frac{\Delta t}{2} E^{n+1} (x_k^{n+1}) \end{cases}$$

٠

PIC method Projection of weights Finite volumes scheme AP property

Solving $\partial_t g = S_g$

 Evolution of weights ω_k (step specific to kinetic equations with source term):

$$\frac{d\omega_{k}}{dt}\left(t\right) =s_{k}\left(t\right) ,$$

where

$$s_{k}(t) = S_{g}(x_{k}, v_{k}) \frac{L_{x}L_{v}}{N_{p}}$$

is the weight associated to the source term

$$S_g = -(I - \Pi_M)\mathcal{T}M + \Pi_M\mathcal{T}g - rac{g}{arepsilon}.$$

In our case:

$$\frac{d\omega_{k}}{dt}(t) = \alpha_{k}(t) - \frac{\omega_{k}(t)}{\varepsilon},$$

where $\alpha_{k}(t)$ is associated to $-(I - \Pi_{M})\mathcal{T}M + \Pi_{M}\mathcal{T}g$.

 $-(I - \Pi_M)\mathcal{T}M + \Pi_M\mathcal{T}g$ is constituted of moments of g, their derivatives and M.

- Moments of g are computed by deposition, derived by finite differences and evaluated on (x_k, v_k) by interpolation.
- ρ , u and T are evaluated on (x_k, v_k) by interpolation.

•
$$M = \frac{\rho}{\sqrt{2\pi T}} \exp\left(-\frac{|v-u|^2}{2T}\right)$$
 is now easily evaluated on (x_k, v_k) .

• To have an AP scheme, we make the stiff term $\frac{\omega_k(t)}{\varepsilon}$ implicit:

$$\omega_k^{n+1} = \frac{\omega_k^n + \Delta t \alpha_k^n}{1 + \frac{\Delta t}{\varepsilon}}$$

PIC method Projection of weights Finite volumes scheme AP property

Projection step

We now have

$$g^{n+1}(x,v,t) \approx \sum_{k=1}^{N_p} \omega_k^{n+1} \delta\left(x-x_k^{n+1}\right) \delta\left(v-v_k^{n+1}\right).$$

We want to ensure $\langle mg^{n+1} \rangle = 0$.

• We compute $U_g:=\langle mg^{n+1}
angle
eq 0$,

$$U_{g}(x_{i}) = \langle mg^{n+1} \rangle |_{x_{i}} = \sum_{k=1}^{N_{p}} \omega_{k} m(v_{k}) B_{\ell}(x_{i} - x_{k}).$$

PIC method Projection of weights Finite volumes scheme AP property

• We seek
$$h \in \mathcal{N}(L_Q)$$
 of the form
 $h(x, v) = \lambda(x) \cdot m(v) M(x, v)$ s.t. $U_g(x_i) = \langle mh(x_i, v) \rangle$.

• We expand $\lambda(x)$ on the basis of B-splines of degree ℓ

$$\lambda(x) = \sum_{j=1}^{N_x} \lambda_j B_\ell(x-\mathsf{x}_j), \qquad \lambda_j \in \mathbb{R}^3.$$

For example $\ell = 0$ ($\ell = 1$ is also computed).

• Let p_k the weights associated to M, we compute

$$\langle mh
angle |_{X_i} ~\approx~ rac{1}{\Delta x^2} \left(\sum_{k/|x_k-X_i| \leq \Delta x/2} m(v_k) \otimes m(v_k) p_k
ight) \lambda_i.$$

PIC method Projection of weights Finite volumes scheme AP property

• We solve the 3×3 linear system

$$U_g(\mathsf{x}_i) = A_i \lambda_i,$$

with

$$A_i = rac{1}{\Delta x} \left(egin{array}{ccc} M_{0,i} & M_{1,i} & M_{2,i} \ M_{1,i} & M_{2,i} & M_{3,i} \ M_{2,i} & M_{3,i} & M_{4,i} \end{array}
ight),$$

and $M_{j,i} = \frac{1}{\Delta x} \sum_{k/|x_k - X_i| \le \Delta x/2} p_k v_k^j$. • We compute the weights γ_k of h

$$\gamma_k = \sum_{j=1}^{N_x} \lambda_j B_0(x_k - x_j) \cdot m(v_k) p_k = \frac{1}{\Delta x} \lambda_{j_k} \cdot m(v_k) p_k,$$

where j_k is such that $|x_k - x_{j_k}| < \Delta x/2$.

PIC method **Projection of weights** Finite volumes scheme AP property

• We correct the weights of g

$$\omega_k^{new} \leftarrow \omega_k - \gamma_k,$$

to obtain

$$\langle mg^{n+1,new} \rangle |_{x_i} = \frac{1}{\Delta x} \sum_{k/|x_k - x_i| \le \Delta x/2} \omega_k^{new} m(v_k)$$
$$= \frac{1}{\Delta x} \sum_{k/|x_k - x_i| \le \Delta x/2} \omega_k m(v_k) - \frac{1}{\Delta x} \sum_{k/|x_k - x_i| \le \Delta x/2} \gamma_k m(v_k) = 0.$$

• Remark: order $1 \Longrightarrow (3N_x \times 3N_x)$ system.

PIC method Projection of weights Finite volumes scheme AP property

Macro part

- Equation $\partial_t U + \partial_x F(U) = \tilde{S}(U,g) \ (= S(U) \partial_x \langle vm(v)g \rangle).$
- Finite volume method

$$U_i^{n+1} = U_i^n - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) - \Delta t \tilde{S}_i^n,$$

with Rusanov flux

$$F_{i+1/2}^{n} = \frac{1}{2} \left(F \left(U_{i+1}^{n} \right) + F \left(U_{i}^{n} \right) - a_{i+1/2} (U_{i+1} - U_{i}) \right),$$

where $a_{i+1/2} = max_{j=i,i+1} (abs R (J_F (x_j)))$, $R (J_F)$ being the eigenvalues of the Jacobian of F.

$$\tilde{S}_{i}^{n} = S\left(U_{i}^{n}\right) - \left(\frac{\langle vmg^{n+1} \rangle|_{x_{i+1/2}} - \langle vmg^{n+1} \rangle|_{x_{i-1/2}}}{\Delta x}\right)$$

where

$$\langle vmg^{n+1} \rangle |_{x_{i+1/2}} = \frac{1}{\Delta x} \sum_{k/|x_k - x_{i+1/2}| \le \Delta x/2} \omega_k^{n+1} v_k m(v_k).$$

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

PIC method Projection of weights Finite volumes scheme AP property

-

Analytical limit

$$\partial_t g + (I - \Pi_M) \mathcal{T} (M + g) = -\frac{1}{\varepsilon} g, \qquad (1)$$

$$\partial_t U + \partial_x F(U) + \partial_x \langle vm(v)g \rangle = S(U). \qquad (2)$$

• Limit
$$\varepsilon \to 0$$
 in (1): $g = \mathcal{O}(\varepsilon) \Longrightarrow$
 $g = -\varepsilon (I - \Pi_M) \mathcal{T}M + \mathcal{O}(\varepsilon^2),$
 $= -\varepsilon (I - \Pi_M) (v \partial_X M + E \partial_V M) + \mathcal{O}(\varepsilon^2),$
 $= -\varepsilon (I - \Pi_M) (v \partial_X M) + \mathcal{O}(\varepsilon^2),$

because $E\partial_{\nu}M \in \mathcal{N}(L_Q)$ and then $(I - \Pi_M)(E\partial_{\nu}M) = 0$.

• Injected into (2), we obtain the Navier-Stokes model $\partial_t U + \partial_x F(U) = S(U) + \varepsilon \partial_x \langle vm(v)(I - \Pi_M)(v\partial_x M) \rangle + O(\varepsilon^2).$

PIC method Projection of weights Finite volumes scheme AP property

Numerical limit

• (1) can be discretized as

$$\frac{\omega_k^{n+1} - \omega_k^n}{\Delta t} = -\alpha_{1,k}^n + \alpha_{2,k}^n - \frac{\omega_k^{n+1}}{\varepsilon},$$
$$\omega_k^{n+1} = \frac{1}{1 + \Delta t/\varepsilon} \left(\omega_k^n - \Delta t \alpha_{1,k}^n + \Delta t \alpha_{2,k}^n \right).$$

• But
$$\frac{1}{1+\Delta t/\varepsilon} = \frac{\varepsilon}{\Delta t} + \mathcal{O}(\varepsilon^2)$$
 when $\varepsilon \to 0$, $\omega_k^n = \mathcal{O}(\varepsilon)$ and $\alpha_{2,k}^n = \mathcal{O}(\varepsilon)$ thus

$$\omega_k^{n+1} = -\varepsilon \alpha_{1,k}^n + \mathcal{O}(\varepsilon^2).$$

• We obtain the diffusion term of the Navier-Stokes model

$$g^{n+1} = -\varepsilon(I - \Pi_M)\mathcal{T}M + \mathcal{O}(\varepsilon^2)$$

 \implies AP property.

First test case Second test case Computational cost

Landau damping

• Initial distribution function:

$$f(x, v, 0) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{v^2}{2})(1 + \alpha \cos(kx)), \qquad x \in [0, 2\pi/k]$$

• Micro-macro initializations:

$$U(x) = \left(egin{array}{c} 1+lpha\cos(kx) \ 0 \ 1+lpha\cos(kx) \end{array}
ight) \quad ext{ and } \quad g(x,v,t=0) = 0.$$

• Parameters: $\alpha = 0.01$, k = 0.5.

• Electrical energy
$$\mathcal{E}(t) = \sqrt{\int E(t,x)^2 dx}.$$

First test case Second test case Computational cost

Convergence at the $\varepsilon \to 0$ limit, $N_x = 128$, $N_p = 5 \times 10^3$:

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

First test case Second test case Computational cost

Heat flux of MiMa (blue) and Navier-Stokes (red) at t = 1 with $N_p = 10^5$ for $\varepsilon = 0.1$ (left), 0.01 (middle) and 0.001 (right):

where heat fluxes correspond to: $(3/2)\rho T \partial_x T$ for NS and $\frac{1}{\varepsilon} \langle |v - u|^3 (M + g) \rangle$ for MiMa.

First test case Second test case Computational cost

Distribution function f of PIC BGK, MiMa, g and M, at t = 20, $\varepsilon = 1$, $N_p = 5 \times 10^5$:

f - PIC BGK

f - MiMa

g - MiMa

M - MiMa

Micro-macro numerical scheme for Vlasov-Poisson-BGK

First test case Numerical results

Noise reduction on ρ , $\varepsilon = 1$, $N_x = 128$, $N_p = 5 \times 10^5$, at t = 0.2(left) and t = 0.4 (right):

First test case Second test case Computational cost

Necessary number of particles, $\varepsilon = 10$, $N_x = 128$:

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

First test case Second test case Computational cost

Convergence in particles, $\varepsilon = 10^{-4}$, $N_x = 128$:

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

First test case Second test case Computational cost

Importance of the projection step on ρ at t= 5, $\varepsilon=$ 1, $N_{p}=5\times10^{5}:$

A. Crestetto, N. Crouseilles, M. Lemou

Micro-macro numerical scheme for Vlasov-Poisson-BGK

First test case Second test case Computational cost

Test 2

• Initial distribution function:

$$f(x, v, 0) = rac{v^4}{\sqrt{2\pi}} \exp(-rac{v^2}{2})(1 + lpha \cos(kx)), \qquad x \in [0, 2\pi/k]$$

• Micro-macro initializations:

$$U(x) = \begin{pmatrix} 1 + \alpha \cos(kx) \\ 0 \\ 5(1 + \alpha \cos(kx)) \end{pmatrix}$$
$$g_0(x, v) = \frac{1 + \alpha \cos(kx)}{\sqrt{2\pi}} \left(\frac{v^4}{3} \exp(-v^2/2) - \frac{1}{\sqrt{5}} \exp(-v^2/10)\right)$$

• Parameters: $\alpha = 0.05$, k = 0.5.

First test case Second test case Computational cost

Convergence at the $\varepsilon \to 0$ limit, $N_x = 128$, $N_p = 5 \times 10^3$:

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro numerical scheme for Vlasov-Poisson-BGK

First test case Second test case Computational cost

L1-norm of g, $\varepsilon = 10^{-4}$ (left) and $\varepsilon = 10^{-7}$ (right):

First test case Second test case Computational cost

Computational cost

Landau damping,
$$\varepsilon = 0.1$$
:
MiMa $N_p = 1 \times 10^5$ 153 s.
PIC-BGK $N_p = 1 \times 10^6$ 694 s.

A. Crestetto, N. Crouseilles, M. Lemou

Micro-macro numerical scheme for Vlasov-Poisson-BGK

First test case Second test case Computational cost

Conclusions

- Fluid limit recovered when $\varepsilon \rightarrow 0$: AP scheme.
- Projection step to numerically force the moments of g to zero.
- g → 0 when ε → 0 ⇒ few particles are sufficient at the limit, whereas grid methods have a constant cost, whatever the value of ε.
- Noise due to PIC method reduced (because only on g) ⇒ at equivalent results, fewer particles are necessary ⇒ calculation time is reduced.
- Total energy preserved (about 0.1% $\forall \varepsilon$).

And perspectives:

- Other collision operators.
- 2D (4D in phase space).

First test case Second test case Computational cost

References

- M. Benoune, M. Lemou, L. Mieussens: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys. 227, pp. 3781-3803 (2008).
- S. Brunner, E. Valeo, J.A. Krommes: Collisional delta-f scheme with evolving background for transport time scale simulations, Phys. of Plasmas 12, (1999).
- N. Crouseilles, M. Lemou: An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, KRM 4, pp. 441-477 (2011).
- P. Degond, G. Dimarco, L. Pareschi: The moment guided Monte Carlo method, International Journal for Numerical Methods in Fluids 67, pp. 189-213 (2011).
- S. Jin: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, J. Sci. Comput. 21, pp. 441-454 (1999).
- M. Lemou, L. Mieussens: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, J. Sci. Comp. 31, pp. 334-368 (2008).

Thank you for your attention!