Micro-macro discretizations for collisional kinetic equations of Boltzmann-BGK type in the diffusive scaling

Anaïs Crestetto ${ }^{1}$, Nicolas Crouseilles ${ }^{2}$, Giacomo Dimarco ${ }^{3}$ and

 Mohammed Lemou ${ }^{4}$Genève, January 29th, 2020

[^0]
Outline

(1) Our problem and objectives
(2) A first micro-macro model
(3) Its Particle-In-Cell / FV discretization
(4) Some improvements / extensions

Our problem and objectives
A first micro-macro model
Its Particle-In-Cell / FV discretization Some improvements / extensions
(1) Our problem and objectives

- Introduction
- Our problem
- Objectives
(2) A first micro-macro model
(3) Its Particle-In-Cell / FV discretization

4 Some improvements / extensions

Numerical simulation of particle systems

We are interested in

- the numerical simulation of collisional kinetic Problems $_{\varepsilon}$,
- different scales: collisions parameterized by the Knudsen number ε,
- the development of schemes that are efficient in both kinetic ($\varepsilon=\mathcal{O}(1)$) and fluid ($\varepsilon \ll 1$) regimes.

There are two main strategies for multiscale problems:

- domain decomposition methods,
- asymptotic preserving (AP) schemes ${ }^{5}$.

Our first Problem $\varepsilon_{\varepsilon}$

1 radiative transport equation in the diffusive scaling

$$
\begin{equation*}
\partial_{t} f+\frac{1}{\varepsilon} v \partial_{x} f=\frac{1}{\varepsilon^{2}}(\rho M-f) \tag{1}
\end{equation*}
$$

- distribution function $f(t, x, v)$,
- $x \in\left[0, L_{x}\right] \subset \mathbb{R}, v \in V=[-1,1]$,
- charge density $\rho(t, x)=\frac{1}{2} \int_{V} f \mathrm{~d} v$,
- $M(v)=1$,
- periodic conditions in x and initial conditions.

Main difficulty:

- Knudsen number ε may be of order 1 or tend to 0 in the diffusive scaling. The asymptotic diffusion equation being

$$
\begin{equation*}
\partial_{t} \rho-\frac{1}{3} \partial_{x x} \rho=0 . \tag{2}
\end{equation*}
$$

Objectives

- Construction of an AP scheme.
- Reduction of the numerical cost at the limit $\varepsilon \rightarrow 0$.

Tools

- Micro-macro decomposition ${ }^{6,7}$ for this model. Previous work with a grid in v for the micro part ${ }^{8}$, cost was constant w.r.t. ε.

Idea

- Use particles for the micro part since few information in v is necessary at the limit.

[^1]
(1) Our problem and objectives

(2) A first micro-macro model

- Derivation of the micro-macro system
- Reformulation of the micro-macro model
(3) Its Particle-In-Cell / FV discretization

4 Some improvements / extensions

Micro-macro decomposition

- Micro-macro decomposition:

$$
f=\rho M+g
$$

with g the perturbation.

- $\mathcal{N}=\operatorname{Span}\{M\}=\{f=\rho M\}$ null space of the BGK operator $Q(f)=\rho M-f$.
- П orthogonal projection onto \mathcal{N} :

$$
\Pi h:=\langle h\rangle M, \quad\langle h\rangle:=\frac{1}{2} \int h \mathrm{~d} v .
$$

- Hypothesis: first moment of g must be zero:

$$
\langle g\rangle=0, \quad \text { since } \quad\langle f\rangle=\rho=\langle\rho M\rangle .
$$

True at the numerical level? If not, we have to work on it ${ }^{9,10}$.
${ }^{9}$ Degond, Dimarco, Pareschi, IJNMF 2011.
${ }^{10}$ C., Crouseilles, Lemou, KRM 2012.

- Applying Π to $(1) \Longrightarrow$ macro equation on ρ

$$
\begin{equation*}
\partial_{t} \rho+\frac{1}{\varepsilon} \partial_{x}\langle v g\rangle=0 . \tag{3}
\end{equation*}
$$

- Applying $(I-\Pi)$ to $(1) \Longrightarrow$ micro equation on g

$$
\begin{equation*}
\partial_{t} g+\frac{1}{\varepsilon}\left[v \partial_{x} \rho M+v \partial_{x} g-\partial_{x}\langle v g\rangle M\right]=-\frac{1}{\varepsilon^{2}} g . \tag{4}
\end{equation*}
$$

Equation (1) \Leftrightarrow micro-macro system:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\frac{1}{\varepsilon} \partial_{x}\langle v g\rangle=0, \tag{5}\\
\partial_{t} g+\frac{1}{\varepsilon} \mathcal{F}(\rho, g)=-\frac{1}{\varepsilon^{2}} g,
\end{array}\right.
$$

where $\mathcal{F}(\rho, g):=v \partial_{x} \rho M+v \partial_{x} g-\partial_{x}\langle v g\rangle M$.

Difficulties

- Stiff terms in the micro equation (4) on g.
- In previous works ${ }^{11,12}$, stiffest term (of order $1 / \varepsilon^{2}$) considered implicit in time \Longrightarrow transport term (of order $1 / \varepsilon$) stabilized.

But here:

- use of particles for the micro part
\Rightarrow splitting between the transport term and the source term,
\Rightarrow not possible to use the same strategy.
Idea?
- Suitable reformulation of the model.

[^2]- Strategy of Lemou ${ }^{13}$:

1. rewrite (4) $\partial_{t} g+\frac{1}{\varepsilon} \mathcal{F}(\rho, g)=-\frac{1}{\varepsilon^{2}} g$ as

$$
\partial_{t}\left(e^{t / \varepsilon^{2}} g\right)=-\frac{e^{t / \varepsilon^{2}}}{\varepsilon} \mathcal{F}(\rho, g)
$$

2. integrate in time between two times t^{n} and $t^{n+1}=t^{n}+\Delta t$:

$$
e^{t^{n+1} / \varepsilon^{2}} g^{n+1}=e^{t^{n} / \varepsilon^{2}} g^{n}+\int_{t^{n}}^{t^{n+1}}-\frac{e^{t / \varepsilon^{2}}}{\varepsilon} \mathcal{F}(\rho, g) \mathrm{d} t
$$

3. use left-rectangle method for $\mathcal{F}(\rho, g)$ and multiply by $e^{-t^{n+1} / \varepsilon^{2}} / \Delta t$:

$$
\frac{g^{n+1}-g^{n}}{\Delta t}=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} g^{n}-\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t} \mathcal{F}\left(\rho^{n}, g^{n}\right)+\mathcal{O}(\Delta t)
$$

4. approximate up to terms of order $\mathcal{O}(\Delta t)$ by:

$$
\partial_{t} g=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} g-\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t} \mathcal{F}(\rho, g) .
$$

- No more stiff terms and consistent with the initial micro eq. (4). ${ }^{13}$ Lemou, CRAS 2010.

New micro-macro model

The new micro-macro model writes

$$
\begin{align*}
& \partial_{t} \rho+\frac{1}{\varepsilon} \partial_{x}\langle v g\rangle=0 \tag{6}\\
& \partial_{t} g=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} g-\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t} \mathcal{F}(\rho, g) \tag{7}
\end{align*}
$$

with $\mathcal{F}(\rho, g)=v \partial_{x} \rho M+v \partial_{x} g-\partial_{x}\langle v g\rangle M$.

We propose the following hybrid discretization:

- macro equation (6): Finite Volume method,
- micro equation (7): Particle method.

Our problem and objectives

PIC method
Finite volumes scheme
Properties

(1) Our problem and objectives

(2) A first micro-macro model
(3) Its Particle-In-Cell / FV discretization

- PIC method
- Finite volumes scheme
- Properties

4 Some improvements / extensions

First algorithm

Reformulated system

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\frac{1}{\varepsilon} \partial_{x}\langle v g\rangle=0 \\
\partial_{t} g=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} g-\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t}\left[v \partial_{x} \rho M+v \partial_{x} g-\partial_{x}\langle v g\rangle M\right]
\end{array}\right.
$$

Algorithm

1. Solving the micro part by a Particle-In-Cell (PIC) method.
2. Projection step to numerically force to zero the first moment of g (matching procedure ${ }^{14}$).
3. Solving the macro part by a Finite Volume (FV) scheme (mesh on x), with a source term dependent on g.
1-3 coupling: similarities with the δf method ${ }^{15}$.
${ }^{14}$ Degond, Dimarco, Pareschi, IJNMF 2011.
${ }^{15}$ Brunner, Valeo, Krommes, Phys. of Plasmas 1999.

PIC method with evolution of weights

- Model: having N_{p} particles, with position $x_{k}(t)$, velocity $v_{k}(t)$ and weight $\omega_{k}(t), k=1, \ldots, N_{p}, g$ is approximated by

$$
g_{N_{p}}(t, x, v)=\sum_{k=1}^{N_{p}} \omega_{k}(t) \delta\left(x-x_{k}(t)\right) \delta\left(v-v_{k}(t)\right)
$$

- Initialization: positions and velocities of particles uniformly distributed in phase space (x, v), weights initialized to

$$
\omega_{k}(0)=g\left(0, x_{k}, v_{k}\right) \frac{L_{x} L_{v}}{N_{p}}
$$

($L_{x} x$-length of the domain, $L_{v} v$-length).

PIC method
Finite volumes scheme
Properties

Splitting between transport and source part

- Equation on g

$$
\partial_{t} g+\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t}\left[v \partial_{x} g\right]=S_{g}
$$

where

$$
S_{g}:=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} g-\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t}\left[v \partial_{x} \rho M-\partial_{x}\langle v g\rangle M\right]
$$

- Solve transport part $\partial_{t} g+\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t}\left[v \partial_{x} g\right]=0$ thanks to motion equation

$$
\frac{d x_{k}}{d t}(t)=\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t} v_{k}(t)
$$

For example

$$
x_{k}^{n+1}=x_{k}^{n}+\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right) v_{k}
$$

- Solve source part $\partial_{t} g=S_{g}$ by evolution of weights ω_{k} :

$$
\frac{d \omega_{k}}{d t}(t)=S_{g}\left(x_{k}, v_{k}\right) \frac{L_{x} L_{v}}{N_{p}}
$$

with

$$
S_{g}=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} g-\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t}\left[v \partial_{x} \rho M-\partial_{x}\langle v g\rangle M\right] .
$$

In practice:

$$
\begin{gathered}
\frac{\omega_{k}^{n+1}-\omega_{k}^{n}}{\Delta t}=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} \omega_{k}^{n}-\varepsilon \frac{1-e^{-\Delta t / \varepsilon^{2}}}{\Delta t}\left[\alpha_{k}^{n}+\beta_{k}^{n}\right] \\
\text { with } \quad \alpha_{k}^{n}=v_{k} \partial_{x} \rho^{n}\left(x_{k}^{n+1}\right) M\left(v_{k}\right) \frac{L_{x} L_{v}}{N_{p}} \\
\text { and } \quad \beta_{k}^{n}=-\partial_{x}\langle v g\rangle\left(x_{k}^{n+1}\right) M\left(v_{k}\right) \frac{L_{x} L_{v}}{N_{p}} .
\end{gathered}
$$

Macro part

- Equation $\partial_{t} \rho+\frac{1}{\varepsilon} \partial_{x}\langle v g\rangle=0$.
- First proposition:

$$
\rho_{i}^{n+1}=\rho_{i}^{n}-\frac{\Delta t}{\varepsilon} \partial_{x}\left\langle v g^{n+1}\right\rangle_{i},
$$

discretized by a Finite Volume method:

$$
\begin{gathered}
\rho_{i}^{n} \approx \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}} \rho\left(t^{n}, x\right) \mathrm{d} x, \\
\left\langle v g^{n}\right\rangle_{i}=\frac{1}{2 \Delta x} \sum_{x_{k} \in\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]} v_{k} \omega_{k}^{n} \approx \frac{1}{\Delta x} \int_{x_{i-1 / 2}}^{x_{i+1 / 2}}\langle v g\rangle\left(t^{n}, x\right) \mathrm{d} x .
\end{gathered}
$$

- Problem: g^{n+1} suffers from numerical noise inherent to particles method. This noise, amplified by $\frac{1}{\varepsilon}$, will damage ρ^{n+1}.

PIC method
Finite volumes scheme
Properties

Correction of the macro discretization

- Write

$$
\omega_{k}^{n+1}=e^{-\Delta t / \varepsilon^{2}} \omega_{k}^{n}-\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right)[\overbrace{\alpha_{k}^{n}}^{v \partial_{x} \rho M}+\overbrace{\beta_{k}^{n}}^{-\partial_{x}\langle v g\rangle M}]
$$

- Let $h_{i}^{n}:=e^{-\Delta t / \varepsilon^{2}}\left\langle v g^{n}\right\rangle_{i}-\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right)\left\langle-v \partial_{x}\langle v g\rangle M\right\rangle_{i}$ and approximate

$$
\left\langle v g^{n+1}\right\rangle_{i}=-\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{1}{3} \partial_{x} \rho_{i}^{n}+h_{i}^{n} .
$$

- Inject it in the macro equation

$$
\rho_{i}^{n+1}=\rho_{i}^{n}+\Delta t\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{1}{3} \partial_{x x} \rho_{i}^{n}-\frac{\Delta t}{\varepsilon} \partial_{x} h_{i}^{n} .
$$

- Remark: when $\varepsilon \rightarrow 0, h_{i}^{n}=\mathcal{O}\left(\varepsilon^{2}\right)$.

PIC method
Finite volumes scheme
Properties

Correction of the macro discretization

- Write

$$
\omega_{k}^{n+1}=e^{-\Delta t / \varepsilon^{2}} \omega_{k}^{n}-\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right)[\overbrace{\alpha_{k}^{n}}^{v \partial_{x} \rho M}+\overbrace{\beta_{k}^{n}}^{-\partial_{x}\langle v g\rangle M}]
$$

- Let $h_{i}^{n}:=e^{-\Delta t / \varepsilon^{2}}\left\langle v g^{n}\right\rangle_{i}-\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right)\left\langle-v \partial_{x}\langle v g\rangle M\right\rangle_{i}$ and approximate

$$
\left\langle v g^{n+1}\right\rangle_{i}=-\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{1}{3} \partial_{x} \rho_{i}^{n}+h_{i}^{n}
$$

- Inject it in the macro equation and take the diffusion term implicit

$$
\rho_{i}^{n+1}=\rho_{i}^{n}+\Delta t\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{1}{3} \partial_{x x} \rho_{i}^{n+1}-\frac{\Delta t}{\varepsilon} \partial_{x} h_{i}^{n} .
$$

- Remark: when $\varepsilon \rightarrow 0, h_{i}^{n}=\mathcal{O}\left(\varepsilon^{2}\right)$.

Properties

- For fixed $\varepsilon>0$, the scheme is a first-order (in time) approximation of the reformulated micro-macro system.
- For fixed $\Delta t>0$, the scheme degenerates into an implicit first-order (in time) scheme of the diffusion equation (2).

$$
\Rightarrow \text { AP property }
$$

- No parabolic CFL condition of type $\Delta t \leq C \Delta x^{2}$.
- No more stiffness, the numerical noise does not damage ρ.
- We only need a few particles at the limit to represent g : cost reduced.

Our problem and objectives
A first micro-macro model Its Particle-In-Cell / FV discretization Some improvements / extensions

PIC method
Finite volumes scheme
Properties

Asymptotic behaviour

Initial distribution function
$f(t=0, x, v)=1+\cos \left(2 \pi\left(x+\frac{1}{2}\right)\right), \quad x \in[0,1], v \in[-1,1]$.
Density $\rho(t, x)=\frac{1}{2} \int_{-1}^{1} f(t, x, v) \mathrm{d} v$, and $M(v)=1$.
Left: $T=0.1, N_{x}=64, N_{p}=10^{4}, \Delta t=10^{-3}$,
Right: $T=0.1, N_{x}=64, \varepsilon=10^{-6}, \Delta t=10^{-2}$.

(1) Our problem and objectives

(2) A first micro-macro model
(3) Its Particle-In-Cell / FV discretization

4 Some improvements / extensions

- Second-order in time
- Vlasov-BGK-Poisson model
- Multi-dimensional testcases

How to...

- How to derive a second-order in time scheme?
- How to consider a Problem $\varepsilon_{\varepsilon}$ with an electric field? Details in [C., Crouseilles, Lemou, CMS 2018].
- How to consider $d_{x}=d_{v}=2$ or $d_{x}=d_{v}=3$ testcases?
- How to automatically reduce the number of particles? Details in [C., Crouseilles, Dimarco, Lemou, JCP 2019].

Our problem and objectives
A first micro-macro model Its Particle-In-Cell / FV discretization Some improvements / extensions

How to derive a second-order in time scheme?

- Work on the micro-macro model.
- Work, of course, on the time scheme.
- Insure the order of the time scheme at the limit too.

New reformulation of the micro-macro system

- When integrating in time $\partial_{t}\left(e^{t / \varepsilon^{2}} g\right)=-\frac{e^{t / \varepsilon^{2}}}{\varepsilon} \mathcal{F}(\rho, g)$, use a midpoint method for the right-hand side

$$
g^{n+1}=e^{-\Delta t / \varepsilon^{2}} g^{n}-\frac{\Delta t e^{-\Delta t / 2 \varepsilon^{2}}}{\varepsilon} \mathcal{F}\left(\rho^{n+1 / 2}, g^{n+1 / 2}\right)+\mathcal{O}\left(\Delta t^{3}\right)
$$

- Make appear a discrete time derivative

$$
\frac{g^{n+1}-g^{n}}{\Delta t}=\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t} g^{n}-\frac{e^{-\Delta t / 2 \varepsilon^{2}}}{\varepsilon} \mathcal{F}\left(\rho^{n+1 / 2}, g^{n+1 / 2}\right)+\mathcal{O}\left(\Delta t^{2}\right)
$$

- Perform Taylor expansions at $t^{n+1 / 2}$

$$
\begin{aligned}
\partial_{t} g^{n+1 / 2} & =\frac{e^{-\Delta t / \varepsilon^{2}}-1}{\Delta t}\left(g^{n+1 / 2}-\frac{\Delta t}{2} \partial_{t} g^{n+1 / 2}\right) \\
& -\frac{e^{-\Delta t / 2 \varepsilon^{2}}}{\varepsilon} \mathcal{F}\left(\rho^{n+1 / 2}, g^{n+1 / 2}\right)+\mathcal{O}\left(\Delta t^{2}\right)
\end{aligned}
$$

Second-order in time

- New second-order micro-macro system:
$\partial_{t} \rho+\frac{1}{\varepsilon} \partial_{x}\langle v g\rangle=0$,
$\partial_{t} g=\frac{2}{\Delta t} \frac{e^{-\Delta t / \varepsilon^{2}}-1}{e^{-\Delta t / \varepsilon^{2}}+1} g-\frac{2}{\varepsilon} \frac{e^{-\Delta t / 2 \varepsilon^{2}}}{e^{-\Delta t / \varepsilon^{2}}+1}\left[v \partial_{x} \rho M+v \partial_{x} g-\partial_{x}\langle v g\rangle M\right]$.
- Time scheme of second order:
\rightarrow Prediction step on $\Delta t / 2$:
$g^{n+1 / 2}=g^{n}+\frac{e^{-\Delta t / \varepsilon^{2}}-1}{e^{-\Delta t / \varepsilon^{2}}+1} g^{n}-\frac{\Delta t}{\varepsilon} \frac{e^{-\Delta t / 2 \varepsilon^{2}}}{e^{-\Delta t / \varepsilon^{2}}+1} \mathcal{F}\left(\rho^{n}, g^{n}\right)$,
$\rho^{n+1 / 2}=\rho^{n}-\frac{\Delta t}{2 \varepsilon} \partial_{x}\left\langle v g^{n+1 / 2}\right\rangle$,
\rightarrow Correction step on Δt :

$$
\begin{aligned}
g^{n+1} & =g^{n}+2 \frac{e^{-\Delta t / \varepsilon^{2}}-1}{e^{-\Delta t / \varepsilon^{2}}+1} \widetilde{g}-\frac{2 \Delta t}{\varepsilon} \frac{e^{-\Delta t / 2 \varepsilon^{2}}}{e^{-\Delta t / \varepsilon^{2}}+1} \mathcal{F}\left(\rho^{n+1 / 2}, g^{n+1 / 2}\right) \\
\rho^{n+1} & =\rho^{n}-\frac{\Delta t}{\varepsilon} \partial_{x}\left\langle v g^{n+1 / 2}\right\rangle
\end{aligned}
$$

Second-order in time

- Choice of \widetilde{g} in order to have a second-order in time scheme and the right asymptotic limit: $\widetilde{g}=\frac{g^{n}+g^{n+1}}{2}$.
- Correct the macro equation:

$$
\rho_{i}^{n+1}=\rho_{i}^{n}-\frac{\Delta t}{\varepsilon} \partial_{x}\left\langle v g^{n+1 / 2}\right\rangle_{i}+\Delta t\left(1-e^{-\Delta t / \varepsilon^{2}}\right)^{2} \frac{1}{3} \partial_{x x}\left(\frac{\rho_{i}^{n+1}+\rho_{i}^{n}}{2}\right) .
$$

- Same PIC/FV discretization in space as for the first-order scheme.

Properties

- For fixed $\varepsilon>0$, the scheme is a second-order (in time) approximation of the reformulated micro-macro system.
- For fixed $\Delta t>0$, the scheme degenerates into an implicit second-order (in time) scheme of the diffusion equation (2).
\Rightarrow 2nd-order in time + AP property

Our problem and objectives

Second-order in time

Vlasov-BGK-Poisson model Multi-dimensional testcases

Convergence - 2nd-order in time

Initial distribution function
$f(t=0, x, v)=1+\cos \left(2 \pi\left(x+\frac{1}{2}\right)\right), \quad x \in[0,1], v \in[-1,1]$.
Parameters: $T=0.1, N_{x}=16, N_{p}=100$.

How to consider a Problem $\varepsilon_{\varepsilon}$ with an electric field?

1D Vlasov-BGK equation in the diffusive scaling

$$
\begin{equation*}
\partial_{t} f+\frac{1}{\varepsilon} v \partial_{x} f+\frac{1}{\varepsilon} E \partial_{v} f=\frac{1}{\varepsilon^{2}}(\rho M-f) \tag{8}
\end{equation*}
$$

- $x \in\left[0, L_{x}\right] \subset \mathbb{R}, v \in V=\mathbb{R}$,
- charge density $\rho(t, x)=\int_{V} f \mathrm{~d} v$,
- electric field $E(t, x)$ given by Poisson equation $\partial_{x} E=\rho-1$,
- $M(v)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{v^{2}}{2}\right)$,
- periodic conditions in x and initial conditions.

Multiscale framework:

- Knudsen number ε may be of order 1 or tend to 0 at the drift-diffusion limit

$$
\begin{equation*}
\partial_{t} \rho-\partial_{x}\left(\partial_{x} \rho-E \rho\right)=0 \tag{9}
\end{equation*}
$$

Not any more difficult

- Change the definition of $\mathcal{F}(\rho, g)$:

$$
\mathcal{F}(\rho, g)=v \partial_{x} \rho M+v \partial_{x} g-\partial_{x}\langle v g\rangle M-v M E \rho+E \partial_{v} g
$$

- Same reformulation of the micro-macro system with this \mathcal{F}.
- Evolve positions and velocity of particles by considering

$$
v_{k}^{n+1}=v_{k}^{n}+\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right) E^{n}\left(x_{k}^{n}\right)
$$

- Solve Poisson equation $\partial_{x} E=\rho-1$ thanks to FFT or finite differences.

Landau damping

- Initial distribution function:

$$
f(t=0, x, v)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{v^{2}}{2}\right)(1+\alpha \cos (k x)), \quad x \in\left[0, \frac{2 \pi}{k}\right], v \in \mathbb{R}
$$

- Micro-macro initializations:

$$
\rho(t=0, x)=1+\alpha \cos (k x) \quad \text { and } \quad g(t=0, x, v)=0
$$

- Parameters: $\alpha=0.05, k=0.5$.
- Electrical energy $\mathcal{E}(t)=\sqrt{\int E(t, x)^{2} d x}$.

Our problem and objectives
A first micro-macro model
Its Particle-In-Cell / FV discretization Some improvements / extensions

Second-order in time

Evolution in time of the electrical energy

Kinetic and intermediate regimes
Left: $\varepsilon=1, N_{x}=128, N_{p}=10^{5}, \Delta t=0.1$.
Right: $\varepsilon=0.5, N_{x}=256, N_{p}=10^{5}, \Delta t=0.01$.

Our problem and objectives
A first micro-macro model
Its Particle-In-Cell / FV discretization Some improvements / extensions

Second-order in time

Evolution in time of the electrical energy

Limit regime

Left: $\varepsilon=0.1, N_{x}=128, N_{p}=10^{4}, \Delta t=0.001$, Right: $\varepsilon=10^{-4}, N_{x}=128, N_{p}=100, \Delta t=0.01$.

Multiscale 20 Micro-macro AP scheme for Boltzmann-BGK

Our problem and objectives
A first micro-macro model Its Particle-In-Cell / FV discretization Some improvements / extensions

Two stream instability

- Initial distribution function:

$$
f(t=0, x, v)=\frac{v^{2}}{\sqrt{2 \pi}} \exp \left(-\frac{v^{2}}{2}\right)(1+\alpha \cos (k x)), \quad x \in\left[0, \frac{2 \pi}{k}\right], v \in \mathbb{R}
$$

- Micro-macro initializations:

$$
\begin{gathered}
\rho(t=0, x)=1+\alpha \cos (k x) \\
g(t=0, x, v)=\frac{1}{\sqrt{2 \pi}}\left(v^{2}-1\right) \exp \left(-\frac{v^{2}}{2}\right)(1+\alpha \cos (k x))
\end{gathered}
$$

- Parameters: $\alpha=0.05, k=0.5$.

Our problem and objectives
A first micro-macro model

Its Particle-In-Cell / FV discretization

Second-order in time Vlasov-BGK-Poisson model Multi-dimensional testcases

Evolution in time of the electrical energy

Kinetic and intermediate regimes
Left: $\varepsilon=1, N_{x}=128, N_{p}=10^{5}, \Delta t=0.1$.
Right: $\varepsilon=0.5, N_{x}=256, N_{p}=10^{5}, \Delta t=0.01$.

Our problem and objectives
A first micro-macro model
Its Particle-In-Cell / FV discretization Some improvements / extensions

Second-order in time

Evolution in time of the electrical energy

Limit regime

Left: $\varepsilon=0.1, N_{x}=128, N_{p}=10^{4}, \Delta t=0.001$.
Right: $\varepsilon=10^{-4}, N_{x}=128, N_{p}=100, \Delta t=0.01$.

Second-order in time

Convergence - 2nd-order in time

Left: Landau damping case.
Right: two stream instability case.
Parameters: $T=0.1, N_{x}=16, N_{p}=100$.

How to consider $d_{x}=d_{v}=2$ or $d_{x}=d_{v}=3$ testcases?

- In the radiative transport equation case (no electric field), use Monte Carlo techniques ${ }^{16,17}$ for the particles discretization.
- Since the cost will be smaller, we can consider multi-dimensional frameworks: $\left(d_{x}, d_{v}\right)=(2,2)$ or $(3,3)$.

$$
\begin{equation*}
\partial_{t} f+\frac{1}{\varepsilon} \mathbf{v} \cdot \nabla_{\mathbf{x}} f=\frac{1}{\varepsilon^{2}}(\rho M-f) \tag{10}
\end{equation*}
$$

- $\mathrm{x} \in \Omega \subset \mathbb{R}^{d_{x}}, \mathrm{v} \in V=\mathbb{R}^{d_{v}}$,
- charge density $\rho(t, \mathbf{x})=\int_{V} f(t, \mathbf{x}, \mathbf{v}) \mathrm{d} \mathbf{v}$,
- $M(\mathbf{v})=\frac{1}{(2 \pi)^{d_{v} / 2}} \exp \left(-\frac{|\mathbf{v}|^{2}}{2}\right)$,
- periodic conditions in \mathbf{x} and initial conditions.

The asymptotic diffusion equation being

$$
\begin{equation*}
\partial_{t} \rho-\Delta_{\mathrm{x}} \rho=0 \tag{11}
\end{equation*}
$$

${ }^{16}$ Degond, Dimarco, Pareschi, IJNMF 2011.
${ }^{17}$ Dimarco, Pareschi, Samaey, SISC 2018.

How to automatically reduce the number of particles?

- Same reformulation of the micro-macro system.
- Consider that the number of particles depends on t and that the weights are constant:

$$
g_{N^{n}}\left(t^{n}, \mathbf{x}, \mathbf{v}\right)=\sum_{k=1}^{N^{n}} \omega_{k} \delta\left(\mathbf{x}-\mathbf{x}_{\mathbf{k}}^{\mathbf{n}}\right) \delta\left(\mathbf{v}-\mathbf{v}_{\mathbf{k}}^{\mathbf{n}}\right)
$$

- Initially, sample particles corresponding to $g(t=0, \mathbf{x}, \mathbf{v})$.
- Solve transport part of the micro equation as previously (motion equations).
- Solve source part of the micro equation
$g^{n+1}=e^{-\Delta t / \varepsilon^{2}} \tilde{g}^{n}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \varepsilon\left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^{n} M+\nabla_{\mathbf{x}} \cdot\langle\mathbf{v} \tilde{g}\rangle^{n} M\right]$,
where \tilde{g}^{n} is the function after the transport part,
with Monte Carlo techniques:
- with probability $e^{-\Delta t / \varepsilon^{2}}$, the distribution g does not change from t^{n} to t^{n+1},
- with probability $\left(1-e^{-\Delta t / \varepsilon^{2}}\right)$, the distribution g is replaced from t^{n} to t^{n+1} by a new distribution given by $\varepsilon\left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^{n} M+\nabla_{\mathbf{x}} \cdot\langle\mathbf{v} \tilde{g}\rangle^{n} M\right]$.
- Solve source part of the micro equation
$g^{n+1}=e^{-\Delta t / \varepsilon^{2}} \tilde{g}^{n}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \varepsilon\left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^{n} M+\nabla_{\mathbf{x}} \cdot\langle\mathbf{v} \tilde{g}\rangle^{n} M\right]$,
where \tilde{g}^{n} is the function after the transport part,
with Monte Carlo techniques:
- keep $e^{-\Delta t / \varepsilon^{2}} N^{n}$ particles unchanged (uniformly taken in each cell) and delete the others,
- create new particles by sampling

$$
\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \varepsilon\left[-\mathbf{v} \cdot \nabla_{\mathrm{x}} \rho^{n} M+\nabla_{\mathrm{x}} \cdot\langle\mathbf{v} \tilde{g}\rangle^{n} M\right] .
$$

Our problem and objectives A first micro-macro model Its Particle-In-Cell / FV discretization Some improvements / extensions

Second-order in time Vlasov-BGK-Poisson model Multi-dimensional testcases

Time evolution of the number of particles

Time evolution of the number of particles in a $d_{x}=d_{v}=2$ case.

Slightly different model with $\varepsilon(\mathbf{x})$

Position of particles.
Left: particles at $T=0$. Middle: particles at $T=1$. Right: $\varepsilon(\mathbf{x})$.

Density profile $\rho(T=1, x, y)$.
Left: micro-macro Monte Carlo. Right: reference micro-macro grid.

Our problem and objectives
A first micro-macro model Its Particle-In-Cell / FV discretization Some improvements / extensions

Second-order in time
Vlasov-BGK-Poisson model Multi-dimensional testcases

Full $d_{x}=d_{v}=3$ case

Integral of the distribution function in space $\int_{\mathbf{x}} f(T, \mathbf{x}, \mathbf{v}) d \mathbf{x}$
Left: $\varepsilon=1$, right: $\varepsilon=0.5$, from $T=0$ to $T=1$.

user: anaikcrestefto
Sat Jun 120.38 .582019
$\rightarrow+\square$

DB: int_v_f000.xmf Time:0 combur

User: anoiscrestefto
Sat Jun 122.47462019

Conclusions

- Right asymptotic behaviour: AP schemes.
- Possible to extend to a 2nd-order in time scheme.
- Computational cost reduces as the equilibrium is approached.
- Numerical noise smaller than a standard particle method on f.
- Implicit treatment of the diffusion term.
- Suitable for multi-dimensional testcases.

Future works

- Consider more physically relevant 3D-3D testcases.
- Consider Boltzmann operator instead of BGK.
- Add an electromagnetic field in the Monte Carlo / FV strategy.

Our problem and objectives
A first micro-macro model Its Particle-In-Cell / FV discretization Some improvements / extensions

Thank you for your attention!

[^0]: ${ }^{1}$ University of Nantes, LMJL.
 ${ }^{2}$ University of Rennes 1, IRMAR \& Inria.
 ${ }^{3}$ University of Ferrara, Department of Mathematics and Computer Science.
 ${ }^{4}$ University of Rennes 1, IRMAR \& CNRS \& Inria.

[^1]: ${ }^{6}$ Liu, Yu, CMP 2004.
 ${ }^{7}$ Lemou, Mieussens, SIAM JSC 2008.
 ${ }^{8}$ Crouseilles, Lemou, KRM 2011.

[^2]: ${ }^{11}$ Lemou, Mieussens, SIAM SISC 2008.
 ${ }^{12}$ Crouseilles, Lemou, KRM 2011.

