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Numerical simulation of plasmas

Different scales in plasmas, for example collisions parameterized by
the Knudsen number ε ⇒ different models.

→ Kinetic models

Particles represented by a distribution function f (x, v, t).
Solving the Vlasov equation (with source term S (ε))

∂t f + v · ∂xf +
q
m

(E + v ∧ B) · ∂vf = S (ε)

coupled to Maxwell equations or Poisson equation.
In 3D ⇒ 7 variables: 3 in space, 3 in velocity and the time ⇒
heavy computations.
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→ Fluid models
Moment equations on physical quantities linked to f (density,
mean velocity, temperature, etc.).
Smaller cost, but lost of precision.

General difficulties
Find a well adapted model for our system, with a good
precision/cost ratio.
If two scales in the same simulation: two schemes with an
interface? Difficult to deal with the interface!
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Vlasov-Poisson-BGK system
Collisions between particles parameterized by the Knudsen number
ε.

The Vlasov-Poisson-BGK equations (on [0, Lx ]× R× R+,
Lx ∈ R+?)

∂t f + v∂x f + E∂v f =
1
ε
Q (f ) ,

∂xE = −1 +

∫
f dv .

Periodic conditions on f and E .
Zero mean condition on E and initial conditions∫ Lx

0
E (x , t) dx = 0, ∀ t ≥ 0,

f (x , v , 0) = f0 (x , v) , ∀ x ∈ [0, Lx ], v ∈ R.
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Q (f ) is the BGK collisions operator (Bhatnagar-Gross-Krook):

Q (f ) = M (U)− f ,

M (U) the Maxwellian having the same first three moments
than f , denoted by U.

We denote by N (LQ) = Span
{
M, vM, |v |2M

}
, the kernel of

the linearized operator LQ of Q.
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Objectives

Construction of a stable and consistent at the ε→ 0 limit
scheme, of constant cost with respect to ε: an asymptotic
preserving (AP) scheme4.

Reduction of the numerical cost: micro-macro decomposition
with particles.
Especially at the ε→ 0 limit since collisions bring f to its
Maxwellian : f −M (U)→ 0 when ε→ 0.

4Jin, SIAM JSC 1999.
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Micro-macro model

Micro-macro decomposition56 f = M (U) + g :

∂tM (U)+v∂xM (U)+E∂vM (U)+∂tg+v∂xg+E∂vg = −1
ε
g .

Transport operator T · = v∂x ·+E∂v ·:

∂tM (U) + TM (U) + ∂tg + T g = −1
ε
g .

Hypothesis: first 3 moments of g are zeros:

〈mg〉 :=

∫
m (v) g (x , v , t) dv = 0, with m (v) :=

(
1, v ,

|v |2

2

)T

.

Verified at the numerical level? If not, we have to impose it.
5Lemou, Mieussens, SIAM JSC 2008.
6Liu, Yu, CMP 2004.
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Micro-macro equations

Let ΠM the orthogonal projection in L2
(
M−1dv

)
on N (LQ):

ΠM (ϕ) = 1
ρ

[
〈ϕ〉+

(v − u) 〈(v − u)ϕ〉
T

+

(
|v − u|2

2T
− 1

2

)〈(
|v − u|2

T
− 1
)
ϕ

〉]
M.

Properties: (I − ΠM) (∂tM) = ΠM (g) = ΠM (∂tg) = 0.
By applying (I − ΠM) to Vlasov-BGK
⇒ micro equation on g

∂tg + (I − ΠM) T (M + g) = −1
ε
g .
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By applying ΠM to Vlasov-BGK ⇒ macro equation on M (U)

∂tM + ΠMT (M + g) = 0.

And by taking its first 3 moments

∂tU + ∂xF (U) + ∂x〈vm (v) g〉 = S (U) ,

with F (U) the Euler flux and S (U) a source term.

Micro-macro system7

{
∂tg + (I − ΠM) T (M + g) = −1

εg
∂tU + ∂xF (U) + ∂x〈vm (v) g〉 = S (U)

equivalent to Vlasov-BGK.
7Bennoune, Lemou, Mieussens, JCP 2008.
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Algorithm

1. Solving the micro part by a Particle-In-Cell (PIC) method.
2. Projection step to numerically force to zero the first three

moments of g (matching procedure8).
3. Solving the macro part by a finite volume scheme (mesh on

x), with a source term dependent on g.

1-3 coupling: similarities with the δf method9 but here: AP
scheme.

8Degond, Dimarco, Pareschi, IJNMF, 2011
9Brunner, Valeo, Krommes, Phys. of Plasmas 1999.
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1. PIC method on g

Solving by a PIC method the equation

∂tg + (I − ΠM) T (M + g) = −1
ε
g

⇐⇒
∂tg + T g = − (I − ΠM) TM + ΠMT g − g

ε
=: Sg ,

coupled to the Poisson equation for the electric field.

Model: having Np numerical particles, with position xk ,
velocity vk and weight ωk , g is approximated by

gNp (x , v , t) =

Np∑
k=1

ωk (t) δ (x − xk (t)) δ (v − vk (t)) .

12 A. Crestetto, N. Crouseilles, M. Lemou Micro-macro scheme for Vlasov-Poisson-BGK



Problem and objectives
Numerical method
Numerical results

PIC method
Projection step
Macro part

PIC algorithm

Mesh
generation

��

Electric field
computing
on the mesh

��Initialization
of positions
and velocities
of particles

//

Computation of
charge density
on the mesh
(deposition)

66

Interpolation
of electric field on

the particles

��Evolution
of the weights
(if source term)

OO

Movement
of particles

oo

13 A. Crestetto, N. Crouseilles, M. Lemou Micro-macro scheme for Vlasov-Poisson-BGK



Problem and objectives
Numerical method
Numerical results

PIC method
Projection step
Macro part

Equation with source term → splitting.

1. Solving the transport part ∂tg + T g = 0.
→ Displacement of particles thanks to the equations of motion

dxk
dt

(t) = vk (t) ,
dvk
dt

(t) = E (xk (t) , t) .

Second order Verlet scheme (for example):
v
n+ 1

2
k = vnk +

∆t
2

En (xnk )

xn+1
k = xnk + ∆tv

n+ 1
2

k

vn+1
k = v

n+ 1
2

k +
∆t
2

En+1 (xn+1
k

) .
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2. Solving the source part

∂tg = − (I − ΠM) (TM) + ΠM (T g)− 1
ε
g .

→ Equation on weights of the form

dωk
dt

(t) = αk (t)− ωk (t)

ε

where αk is the weight “associated” to

− (I − ΠM) (TM) + ΠM (T g) .

→ To have an AP scheme, we make the stiff term implicit:

ωn+1
k = ωn

k + ∆t αnk −∆t
ωn+1
k
ε

.
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2. Projection step
At time n + 1, we have

gn+1 (x , v) =

Np∑
k=1

ωn+1
k δ

(
x − xn+1

k

)
δ
(
v − vn+1

k

)
≈ g

(
x , v , tn+1) .

Micro-macro structure: 〈mg
(
x , v , tn+1)〉 = 0.

A priori not true for gn+1 (x , v) → correction10.

1. We compute Ug := 〈mgn+1〉 6= 0 on each cell xi :

Ug (xi ) = 〈mgn+1〉 |xi =
∑

k/xk∈[xi ,xi+1]

ωkm (vk) .

2. We seek h ∈ N (LQ)= Span
{
M, vM, |v |2M

}
h (x , v) = λ (x) ·m (v) M (x , v) s.t. Ug (xi ) = 〈mh (xi , v)〉.

10C., Crouseilles, Lemou, KRM 2012.
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→ Solving Nx linear systems (3× 3)

Ug (xi ) = Aiλi

with Ai a matrix containing moments of M and λi ≈ λ (xi ).
→ Computation of weights γk “associated” to h on each particle.

3. Correction of the weights in order to preserve the micro-macro
structure

ωnew
k ← ωk − γk .

→ By construction : 〈mgn+1,new 〉 |xi = Ug (xi )− 〈mh (xi , v)〉 = 0.

Remark: correction “of order 1” (by using linear shape functions) ⇒
(3Nx × 3Nx) system.
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3. Macro part

Solving the equation

∂tU + ∂xF (U) = S (U)− ∂x〈vm (v) g〉 =: S̃ (U, g) .

Finite volume method

Un+1
i = Un

i −
∆t
∆x

(
F n
i+1/2 − F n

i−1/2

)
−∆tS̃n

i ,

with Rusanov flux

F n
i+1/2 =

1
2
(
F
(
Un
i+1
)

+ F (Un
i )− ai+1/2 (Ui+1 − Ui )

)
,

where ai+1/2 = maxj=i,i+1
(
abs R

(
JF

(
xj
)))

, R (JF ) being the eigenvalues of

the Jacobian of F .

Computation of the moments of g to evaluate

S̃n
i = S (Un

i )−

(
〈vmgn+1〉|xi+1/2 − 〈vmgn+1〉|xi−1/2

∆x

)
.

18 A. Crestetto, N. Crouseilles, M. Lemou Micro-macro scheme for Vlasov-Poisson-BGK



Problem and objectives
Numerical method
Numerical results

Landau damping
Computational cost

Landau damping

Initial distribution function:

f (x , v , 0) =
1√
2π

exp
(
−v2

2

)
(1 + α cos (kx)) .

Micro-macro initializations:

U (x) =

 1 + α cos (kx)
0

1 + α cos (kx)

 and g (x , v , t = 0) = 0.

Parameters: α = 0.01, k = 0.5, Lx = 2π/k .

Observation: electrical energy E (t) =
√∫

E (t, x)2 dx .

19 A. Crestetto, N. Crouseilles, M. Lemou Micro-macro scheme for Vlasov-Poisson-BGK



Problem and objectives
Numerical method
Numerical results

Landau damping
Computational cost

AP property

Convergence to Euler-Poisson at the ε→ 0 limit?

E (t), comparison with Euler-Poisson.
Nx = 128, Np = 5× 103, different values of ε.
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→ Good convergence ⇒ AP scheme.
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Importance of the projection step

ρ (x), with and without correction.
ε = 1, Np = 5× 105 at t = 5.
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→ Correction ⇒ the instabilities disappear.
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Numerical-noise reduction
ρ (x), comparison with a PIC method on the whole f .
ε = 1, Nx = 128, Np = 5× 105, at t = 0.2.
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→ Micro-macro decomposition ⇒ noise due to the PIC method
reduced.
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Computational cost

E (t), comparison with a PIC method on the whole f .

ε = 10

Np Time
MiMa 5× 105 768 s.

PIC-BGK 5× 106 1391 s.

ε = 10−4

Np Time
MiMa 500 11 s.

PIC-BGK 106 230 s.
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Conclusion

Micro-macro decomposition for Vlasov-Poisson-BGK using a
PIC method.
Projection step to numerically force the first 3 moments of g
to zero.

→ AP scheme.
→ Reduction of the numerical noise due to the PIC method

because only on g .
→ Reduction of the cost compared to grid methods at the ε→ 0

limit because few particles are sufficient.
→ Also true when g (x , v , 0) 6= 0.
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Thank you for your attention!
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