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Problem and objectives

Numerical simulation of plasmas

Different scales in plasmas, for example collisions parameterized by
the Knudsen number ¢ = different models.

— Kinetic models

o Particles represented by a distribution function f (x, v, t).
o Solving the Vlasov equation (with source term S (g))

atf+v.axf+%(E+vAB).avf: S(e)
coupled to Maxwell equations or Poisson equation.

o In 3D = 7 variables: 3 in space, 3 in velocity and the time =
heavy computations.
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Problem and objectives

— Fluid models

e Moment equations on physical quantities linked to f (density,
mean velocity, temperature, etc.).
e Smaller cost, but lost of precision.

General difficulties

o Find a well adapted model for our system, with a good
precision/cost ratio.

o If two scales in the same simulation: two schemes with an
interface? Difficult to deal with the interface!
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Problem and objectives

Vlasov-Poisson-BGK system

Collisions between particles parameterized by the Knudsen number
€.

@ The Vlasov-Poisson-BGK equations (on [0, Ly] x R x R¥,
L, € RT*)

O f + vO f + EQ,f = gQ(f),

OxE = —1+/fdv.

@ Periodic conditions on f and E.

@ Zero mean condition on E and initial conditions

Lx
/ E(x,t)dx — 0, V>0,
0
f(x,v,0) = foy(x,v), Vxe[0,L], veR.
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Problem and objectives

e Q(f) is the BGK collisions operator (Bhatnagar-Gross-Krook):
Q(f) =M(U) —f,

M (U) the Maxwellian having the same first three moments
than f, denoted by U.

o We denote by N'(Lq) = Span{M,vM, |v|*M}, the kernel of
the linearized operator Lg of Q.
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Problem and objectives

Objectives

o Construction of a stable and consistent at the ¢ — 0 limit
scheme, of constant cost with respect to £: an asymptotic
preserving (AP) scheme®.

@ Reduction of the numerical cost: micro-macro decomposition
with particles.
Especially at the ¢ — 0 limit since collisions bring f to its
Maxwellian : f — M (U) — 0 when ¢ — 0.

4Jin, SIAM JSC 1999.
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PIC method
Numerical method Projection step
Macro part

Micro-macro model

@ Micro-macro decomposition®® f = M (U) + g:

1

0M (U)+vO M (U)+ED, M (U)+drg+vOg-+EDvE = .

Transport operator 7 - = vy - +EJ, -
1
OMU)+TM(U)+0:g+Tg = —gg.

@ Hypothesis: first 3 moments of g are zeros:

I

7N
=

<
I\)‘E
N
N——

~

(mg) ::/m(v)g(x, v,t) dv=0, with m(v):

Verified at the numerical level? If not, we have to impose it.

5Lemou, Mieussens, SIAM JSC 2008.
SLiu, Yu, CMP 2004.
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PIC method
Projection step

Numerical method
Macro part

Micro-macro equations

Let My the orthogonal projection in L? (M~1dv) on N (Lg):

()= 3 [+ o2 l=ued

()

@ Properties: (I —My) (0:M) =MNpn (g) = Num (0:g) = 0.

e By applying (/ — My) to Vlasov-BGK
=> micro equation on g

1
og+ (I =Mpm)T(M+g) = —8
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PIC method
Numerical method Projection step
Macro part

@ By applying My to Vlasov-BGK =- macro equation on M (U)
OeM+NyT (M+g)=0.

And by taking its first 3 moments

0:U + 04F (U) + 0x(vm (v) ) = S (),

with F (U) the Euler flux and S (U) a source term.

Micro-macro system’

{ Og+ (I —Ny)T(M+g)=—1g
0tU + OxF (U) + 0x(vm(v) g) = S (V)

equivalent to Vlasov-BGK.

"Bennoune, Lemou, Mieussens, JCP 2008.

A. Crestetto, N. Crouseilles, M. Lemou Micro-macro scheme for Vlasov-Poisson-BGK



PIC method
Numerical method Projection step
Macro part

Algorithm

1. Solving the micro part by a Particle-In-Cell (PIC) method.

2. Projection step to numerically force to zero the first three
moments of g (matching procedure?).

3. Solving the macro part by a finite volume scheme (mesh on
x), with a source term dependent on g.

1-3 coupling: similarities with the §f method® but here: AP
scheme.

8Degond, Dimarco, Pareschi, IJNMF, 2011
9Brunner, Valeo, Krommes, Phys. of Plasmas 1999.
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PIC method
Numerical method Projection step
Macro part

1. PIC method on g

@ Solving by a PIC method the equation

1
0 + (I —Ny)T(M+g) = —28
<
Og+Tg=—( - M) TM+NyTg — g = S,

coupled to the Poisson equation for the electric field.

e Model: having N, numerical particles, with position xj,
velocity v, and weight wy, g is approximated by

gn, (v, ) = wie (£) 6 (x — xi (1) 8 (v — vie (1))

k=1
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PIC algorithm

Numerical method

PIC method
Projection step
Macro part

Mesh
generation
Initialization Computation of
of positions charge density

and velocities

of particles

on the mesh
(deposition)
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Evolution
of the weights

Electric field
computing
on the mesh

Interpolation
of electric field on

the particles

Movement

(if source term)

of particles
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PIC method
Numerical method Projection step
Macro part

Equation with source term — splitting.

1. Solving the transport part ;g + Tg = 0.

— Displacement of particles thanks to the equations of motion

W=l DO =E(0).0).

Second order Verlet scheme (for example):

1 At
= v+ ST ()

1
n+1 _ _n n+s
X, =X, + Atv,
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PIC method
Numerical method Projection step
Macro part

2. Solving the source part
1
Ocg = — (1 = M) (TM) + My (Tg) ~ g

— Equation on weights of the form

dwk

W(t) = ag(t) —

where «y is the weight “associated” to

(I =Nm) (TM)+Nm (Tg)-

— To have an AP scheme, we make the stiff term implicit:

n+1

witt = wl + At af — At ke .
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PIC method
Numerical method Projection step
Macro part

2. Projection step

At time n+ 1, we have
n+1 an—i-lé X;(H_l) 5 (V _ LH—I) ~g (X v, thrl) ]
Micro-macro structure: (mg (x, v, t"™1)) = 0.

A priori not true for g™ (x, v) — correction®.

1. We compute Uz := (mg"*1) =£ 0 on each cell x; :

Ug (i) = (mg™™) o= Y. wim(vi).
k/xk€lxi it
2. We seek h € N'(Lq)= Span{M,vM,|v|>M}
h(x,v)=X(x)-m(v)M(x,v) st. Ug(xi)= (mh(x;,v)).

10C ., Crouseilles, Lemou, KRM 2012.
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PIC method
Numerical method Projection step
Macro part

— Solving Ny linear systems (3 x 3)
Ug (X,’) = A,'/\,'
with A; a matrix containing moments of M and \; = A (x;).

— Computation of weights 7, “associated” to h on each particle.

3. Correction of the weights in order to preserve the micro-macro
structure

’wzew — Wi — Yk ‘

— By construction : (mg"tLmew) | = U, (x;) — (mh(x;, v)) = 0.

Remark: correction “of order 1" (by using linear shape functions) =
(3Ny x 3Ny) system.
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PIC method
Numerical method Projection step
Macro part

3. Macro part

@ Solving the equation
O:U 4+ 0 F (U) =S (U) —d(vm(v)g) =:5(U,g).
@ Finite volume method

At .
Ut = U = 5 (Fliaje = Fllaga) — AL,

with Rusanov flux
n 1 n n
i+1/2 = 5 (F(UP) + F(U) = ajgay2 (Ui — U))

where a; 1,2 = maxj=; i1 (abs R (Jr (xj))). R(JF) being the eigenvalues of
the Jacobian of F.
@ Computation of the moments of g to evaluate

) _ <<Vmgn+1>’><i+1/2 B <Vmgn+1>|xi1/2>

S,' :S(U, AX
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Landau damping

N Computational cost
Numerical results

Landau damping

Initial distribution function:

f(x,v,0) =

\/lz?exp (-f) (1 + o cos (kx)) .

Micro-macro initializations:

1 + acos (kx)
U(x)= 0 and g(x,v,t=0)=0.
1+ acos (kx)

Parameters: o = 0.01, k = 0.5, L, = 27 /k.

Observation: electrical energy & (t) = \/ [ E (t,x)? dx.
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Landau damping
N Computational cost
Numerical results

AP property

Convergence to Euler-Poisson at the ¢ — 0 limit?

& (t), comparison with Euler-Poisson.
N, =128, N, =5 x 103, different values of ¢.
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— Good convergence = AP scheme.
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Landau damping
Computational cost

Numerical results

Importance of the projection step

p (x), with and without correction.
e=1 N,=5x10%at t =5.
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— Correction = the instabilities disappear.
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Landau damping
Computational cost

Numerical results

Numerical-noise reduction

p (x), comparison with a PIC method on the whole f.
e=1, Ny =128, N, =5x 10°, at t = 0.2.
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— Micro-macro decomposition = noise due to the PIC method
reduced.
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Numerical results

Computational cost

& (t), comparison with a PIC method on the whole f.

HiMa, Np=5+18°5 ——

7\7,, Time
MiMa | 5x 10° | 768 s.
PIC-BGK | 5 x 10° | 1391 s.
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log ¢ Energie electria

Landau damping
Computational cost

=~7Vp Time
MiMa | 500 | 11s.
PIC-BGK | 10° | 230 s.
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Landau damping

. Computational cost
Numerical results P

Conclusion

VNS

Micro-macro decomposition for Vlasov-Poisson-BGK using a
PIC method.

Projection step to numerically force the first 3 moments of g
to zero.

AP scheme.

Reduction of the numerical noise due to the PIC method
because only on g.

Reduction of the cost compared to grid methods at the ¢ — 0
limit because few particles are sufficient.

Also true when g (x, v,0) # 0.
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Landau damping

. Computational cost
Numerical results P
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Thank you for your attention!
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