Un schéma micro-macro pour les équations cinétiques en limite de diffusion dont le coût diminue à l'approche de l'équilibre

Anaïs Crestetto¹, Nicolas Crouseilles², Giacomo Dimarco³ et Mohammed Lemou⁴

Workshop IPL FRATRES, 23 novembre 2018

¹University of Nantes, LMJL.

²INRIA Rennes - Bretagne Atlantique & University of Rennes 1, IRMAR. ³University of Ferrara, Department of Mathematics and Computer Science. ⁴CNRS & University of Rennes 1, IRMAR & INRIA Rennes - Bretagne Atlantique.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Outline

- 2 Micro-macro model
- 3 Monte Carlo / Eulerian discretization
- 4 Numerical results

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-Macro for kinetic eq. in the diffusive scaling

Introduction Our problem Objectives

Problem and objectives

- Introduction
- Our problem
- Objectives

Micro-macro mode

3 Monte Carlo / Eulerian discretization

4 Numerical results

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-Macro for kinetic eq. in the diffusive scaling

I**ntroduction** Our problem Objectives

Numerical simulation of particle systems

We are interested in

- the numerical simulation of collisional kinetic Problems $_{\varepsilon}$,
- different scales: collisions parameterized by the Knudsen number ε(t, x),
- the development of schemes that are efficient in both kinetic and fluid regimes.

There are two main strategies for multiscale problems:

- domain decomposition methods,
- asymptotic preserving (AP) schemes.

Asymptotic Preserving approach⁵: develop a model suitable in any region.

h: space step Δx or time step Δt .

Prop.: Stability and consistency $\forall \varepsilon$, particularly when $\varepsilon \to 0$.

:-(Standard schemes: constraint $h = \mathcal{O}(\varepsilon)$.

Aim: Construct a scheme for which h is independent of ε .

⁵ Jin, SISC 1999.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Introduction Our problem Objectives

Our Problem $_{\varepsilon}$

Radiative transport equation in the diffusive scaling

$$\partial_t f + \frac{1}{\varepsilon} \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon^2} (\rho M - f)$$
 (1)

• $\mathbf{x} \in \Omega \subset \mathbb{R}^{d_x}$, $\mathbf{v} \in V = \mathbb{R}^{d_v}$,

• charge density
$$\rho(t, \mathbf{x}) = \int_V f(t, \mathbf{x}, \mathbf{v}) d\mathbf{v}$$

•
$$M(\mathbf{v}) = \frac{1}{(2\pi)^{d_v/2}} \exp\left(-\frac{|\mathbf{v}|^2}{2}\right),$$

• periodic conditions in x and initial conditions.

Main difficulty:

 Knudsen number ε may be of order 1 or tend to 0 in the diffusive scaling. The asymptotic diffusion equation being

$$\partial_t \rho - \Delta_{\mathbf{x}} \rho = 0. \tag{2}$$

Introduction Our problem Objectives

Objectives

• Construction of an AP scheme.

 ${\rm \bullet}\,$ Reduction of the numerical cost at the limit $\varepsilon \rightarrow {\rm 0}.$ Tools

- Micro-macro decomposition^{6,7} for this model. Previous work with a grid in v for the micro part⁸, cost was constant w.r.t. ε .
- Particle method for the micro part since few information in v is necessary at the limit⁹.
- Monte Carlo techniques^{10,11,12,13}.

⁶Lemou, Mieussens, SIAM SISC 2008.
⁷Liu, Yu, CMP 2004.
⁸Crouseilles, Lemou, KRM 2011.
⁹C., Crouseilles, Lemou, CMS 2018.
¹⁰Degond, Dimarco, Pareschi, IJNMF 2011.
¹¹Degond, Dimarco, JCP 2012.
¹²Crouseilles, Dimarco, Lemou, KRM 2017
¹³Dimarco, Pareschi, Samaey, SIAM SISC 2018.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Derivation of the micro-macro system Reformulation of the micro-macro model

- 2 Micro-macro model
 - Derivation of the micro-macro system
 - Reformulation of the micro-macro model

3 Monte Carlo / Eulerian discretization

4 Numerical results

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-Macro for kinetic eq. in the diffusive scaling

Derivation of the micro-macro system Reformulation of the micro-macro model

Micro-macro decomposition

- Micro-macro decomposition^{14,15}: $f = \rho M + g$ with g the rest.
- $\mathcal{N} = \text{Span} \{M\} = \{f = \rho M\}$ null space of the BGK operator $Q(f) = \rho M f$.
- Π orthogonal projection onto \mathcal{N} :

$$\Pi h := \langle h \rangle M, \quad \langle h \rangle := \int h \, \mathrm{d} \mathbf{v}.$$

¹⁴Lemou, Mieussens, SIAM JSC 2008.
 ¹⁵Crouseilles, Lemou, KRM 2011.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Derivation of the micro-macro system Reformulation of the micro-macro model

• Applying Π to (1) \Longrightarrow macro equation on ρ

$$\partial_t \rho + \frac{1}{\varepsilon} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle = 0.$$
 (3)

• Applying $(I - \Pi)$ to $(1) \Longrightarrow$ micro equation on g

$$\partial_t g + \frac{1}{\varepsilon} \left[\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M + \mathbf{v} \cdot \nabla_{\mathbf{x}} g - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M \right] = -\frac{1}{\varepsilon^2} g. \quad (4)$$

Equation (1) \Leftrightarrow micro-macro system:

$$\begin{cases} \partial_t \rho + \frac{1}{\varepsilon} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle = 0, \\ \partial_t g + \frac{1}{\varepsilon} \mathcal{F}(\rho, g) = -\frac{1}{\varepsilon^2} g, \end{cases}$$
(5)
where $\mathcal{F}(\rho, g) = \mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M + \mathbf{v} \cdot \nabla_{\mathbf{x}} g - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M.$

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Derivation of the micro-macro system Reformulation of the micro-macro model

Difficulties

- Stiff terms in the micro equation (4) on g.
- In previous works^{16,17}, stiffest term (of order $1/\varepsilon^2$) considered implicit in time \implies transport term (of order $1/\varepsilon$) stabilized.

But here:

- use of particles for the micro part
- \Rightarrow splitting between the transport term and the source term,
- \Rightarrow not possible to use the same strategy.

Idea?

• Suitable reformulation of the model.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

 ¹⁶Lemou, Mieussens, SIAM SISC 2008.
 ¹⁷Crouseilles, Lemou, KRM 2011.

Derivation of the micro-macro system Reformulation of the micro-macro model

- Strategy of Lemou¹⁸:
 - 1. rewrite (4) $\partial_t g + rac{1}{arepsilon} \mathcal{F}(
 ho,g) = -rac{1}{arepsilon^2} g$ as

$$\partial_t(e^{t/\varepsilon^2}g) = -rac{e^{t/\varepsilon^2}}{\varepsilon}\mathcal{F}(\rho,g),$$

2. integrate in time between t^n and t^{n+1} and multiply by $e^{-t^{n+1}/\varepsilon^2}$:

$$\frac{g^{n+1}-g^n}{\Delta t} = \frac{e^{-\Delta t/\varepsilon^2}-1}{\Delta t}g^n - \varepsilon \frac{1-e^{-\Delta t/\varepsilon^2}}{\Delta t}\mathcal{F}(\rho^n,g^n) + \mathcal{O}(\Delta t),$$

3. approximate up to terms of order $\mathcal{O}(\Delta t)$ by:

$$\partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathcal{F}(\rho, g).$$
(6)

No more stiff terms and consistent with the initial micro equation

 (4).

¹⁸Lemou, CRAS 2010.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Derivation of the micro-macro system Reformulation of the micro-macro model

New micro-macro model

The new micro-macro model writes

$$\partial_t \rho + \frac{1}{\varepsilon} \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} g \rangle = 0, \tag{7}$$

$$\partial_{t}g = \frac{e^{-\Delta t/\varepsilon^{2}} - 1}{\Delta t}g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^{2}}}{\Delta t}\mathcal{F}(\rho, g), \qquad (8)$$

with $\mathcal{F}(\rho, g) = \mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M + \mathbf{v} \cdot \nabla_{\mathbf{x}} g - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M$.

We propose the following hybrid discretization:

- macro equation (7): Eulerian method,
- micro equation (8): Monte Carlo technique.

Monte Carlo approach Discretization of the macro part

Micro-macro model

3 Monte Carlo / Eulerian discretization

- Monte Carlo approach
- Discretization of the macro part

4 Numerical results

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-Macro for kinetic eq. in the diffusive scaling

Monte Carlo approach Discretization of the macro part

Discretization of the micro equation

• Model: considering at each time step N^n particles, with position \mathbf{x}_k^n , velocity \mathbf{v}_k^n and constant weight ω_k , $k = 1, \ldots, N^n$, g is approximated by¹⁹

$$g_{N^n}(t^n,\mathbf{x},\mathbf{v}) = \sum_{k=1}^{N^n} \omega_k \delta(\mathbf{x}-\mathbf{x}_k^n) \,\delta(\mathbf{v}-\mathbf{v}_k^n) \,.$$

• For the coupling with the macro equation, we need a grid in x. For $d_x = 1$, we define $x_i = x_{\min} + i\Delta x$, $i = 0, \dots, N_x - 1$.

• How to define
$$\omega_k$$
, N^n , $\mathbf{x_k^n}$, $\mathbf{v_k^n}$?

¹⁹Crouseilles, Dimarco, Lemou, KRM 2017.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-Macro

Monte Carlo approach Discretization of the macro part

Initialization

 Choose the characteristic weight m_p or the characteristic number of particles N_p necessary to sample the full distribution function f, and link them with

$$m_{p}=rac{1}{N_{p}}\int_{\mathbb{R}^{d_{x}}}\int_{\mathbb{R}^{d_{v}}}f(t=0,\mathbf{x},\mathbf{v})d\mathbf{v}d\mathbf{x}.$$

- Now, we want to sample $g(t = 0, \mathbf{x}, \mathbf{v})$, that has no sign.
- We impose $\omega_k \in \{m_p, -m_p\}$.
- For velocities, we impose $\mathbf{v}_{\mathbf{k}}^{\mathbf{n}}$ on a cartesian grid in $\mathbb{R}^{d_{\mathbf{v}}}$. For $d_{\mathbf{v}} = 1$, it writes $v_{k}^{n} \in \{v_{\ell}, \ \ell = 0, \dots, N_{\mathbf{v}} - 1\}$ $\forall k = 1, \dots, N^{n}$, where $v_{\ell} = v_{\min} + \ell \Delta v, \ \ell = 0, \dots, N_{\mathbf{v}} - 1$.

Monte Carlo approach Discretization of the macro part

Let us introduce the notations in 1D...

Let us introduce the notations in 1D...

 The number of initial positive (resp. negative) particles having the velocity v_k = v_ℓ in the cell C_i = [x_i, x_{i+1}] × ℝ is given by

$$N_{i,\ell}^{0,\pm} = \lfloor \pm \frac{\Delta x \Delta v}{m_p} g^{\pm}(t=0, \mathbf{x}_i, \mathbf{v}_\ell) \rfloor,$$

that is an approximation of

$$N_{i,\ell}^{0,\pm} = \pm \frac{1}{m_p} \int_{x_i}^{x_{i+1}} \int_{v_\ell}^{v_{\ell+1}} g^{\pm}(t=0,x,v) dv dx,$$

with $g^{\pm} = \frac{g \pm |g|}{2}$ the positive (resp. negative) part of g.

• Positions of these $N_{i,\ell}^{0,\pm}$ particles are taken uniformly in $[x_i, x_{i+1}]$.

• At time
$$t=0$$
, we have $N^0=\sum_i \left(\sum_\ell N^{0,+}_{i,\ell}+\sum_\ell N^{0,-}_{i,\ell}\right)$.

Monte Carlo approach Discretization of the macro part

Monte Carlo approach Discretization of the macro part

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-Macro for kinetic eq. in the diffusive scaling

Monte Carlo approach Discretization of the macro part

From t^n to t^{n+1}

Solve the micro equation (8) by Monte Carlo technique.

Splitting between the transport part

$$\partial_t g + \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathbf{v} \cdot \nabla_{\mathbf{x}} g = 0,$$

and the interaction part

$$\partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \left(\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M \right).$$

• Solve the transport part by shifting particles:

$$\frac{d\mathbf{x}_k}{dt}(t) = \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathbf{v}_k, \qquad \mathbf{x}_k^{n+1} = \mathbf{x}_k^n + \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \mathbf{v}_k^n.$$

Remark that $\mathbf{v}_k^{n+1} = \mathbf{v}_k^n$.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Monte Carlo approach Discretization of the macro part

Solve interaction part by writing

$$g^{n+1} = e^{-\Delta t/\varepsilon^2} \tilde{g}^n + (1 - e^{-\Delta t/\varepsilon^2}) \varepsilon \left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \right]$$

where \tilde{g}^n is the function after the transport part.

Apply a Monte Carlo technique:

- with probability $e^{-\Delta t/\varepsilon^2}$, the distribution g^{n+1} does not change,
- with probability $(1 e^{-\Delta t/\varepsilon^2})$, the distribution g^{n+1} is replaced by a new distribution given by $\varepsilon \left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \right]$.

• Solve interaction part by writing

$$g^{n+1} = e^{-\Delta t/\varepsilon^2} \tilde{g}^n + (1 - e^{-\Delta t/\varepsilon^2}) \varepsilon \left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \right]$$

where \tilde{g}^n is the function after the transport part.

In practice:

- In each cell C_i , we keep $e^{-\Delta t/\varepsilon^2} \tilde{N}_i^n$ particles unchanged (with \tilde{N}_i^n the number of particles in C_i after the transport part) and discard the others.
- Create new particles to sample

$$(1 - e^{-\Delta t/\varepsilon^2})\varepsilon [-\mathbf{v}\cdot\nabla_{\mathbf{x}}\rho^n M + \nabla_{\mathbf{x}}\cdot\langle\mathbf{v}\tilde{g}\rangle^n M]^{\pm},$$

as in the initialization stage. Let us denote by M_i^n the number of created particles in C_i .

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Monte Carlo approach Discretization of the macro part

Time-Diminishing Property

• At the end of the time step, we have in each cell C_i

$$N_i^{n+1} = e^{-\Delta t/\varepsilon^2} \tilde{N}_i^n + M_i^n$$

particles.

- The number of particles automatically diminishes with ε .
- Reduction of the computational complexity when approaching equilibrium: Time-Diminishing Property.

Monte Carlo approach Discretization of the macro part

Macro equation

• Equation
$$\partial_t \rho + \frac{1}{\varepsilon} \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} g \rangle = 0.$$

• First proposition:

$$\frac{\rho^{n+1}-\rho^n}{\Delta t}+\frac{1}{\varepsilon}\nabla_{\mathbf{x}}\cdot\langle\mathbf{v}g^{n+1}\rangle=0.$$

• Problem: g^{n+1} suffers from numerical noise inherent to particles method. This noise, amplified by $\frac{1}{\varepsilon}$, will damage ρ^{n+1} .

Monte Carlo approach Discretization of the macro part

Correction of the macro discretization

• Use the expression of g^{n+1} and write

$$\begin{split} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g^{n+1} \rangle &= e^{-\Delta t/\varepsilon^2} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g}^n \rangle \\ &-\varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \left(\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M \right) \rangle \\ &+\varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \left(\langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g} \rangle^n M \right) \rangle, \end{split}$$

or after simplifications

$$\langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g^{n+1} \rangle = e^{-\Delta t/\varepsilon^2} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g}^n \rangle - \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \Delta_{\mathbf{x}} \rho^n.$$

Plug it into the macro equation

$$\frac{\rho^{n+1}-\rho^n}{\Delta t}+\frac{1}{\varepsilon}e^{-\Delta t/\varepsilon^2}\langle \mathbf{v}\cdot\nabla_{\mathbf{x}}\tilde{g}^n\rangle-(1-e^{-\Delta t/\varepsilon^2})\Delta_{\mathbf{x}}\rho^n=0.$$

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

• To avoid the parabolic CFL condition of type $\Delta t \leq C\Delta x^2$, take the diffusion implicit:

$$\frac{\rho^{n+1}-\rho^n}{\Delta t}+\frac{1}{\varepsilon}e^{-\Delta t/\varepsilon^2}\nabla_{\mathbf{x}}\cdot\langle\mathbf{v}\tilde{g}^n\rangle-(1-e^{-\Delta t/\varepsilon^2})\Delta_{\mathbf{x}}\rho^{n+1}=0.$$

• No more stiffness, the numerical noise does not damage ρ .

• As $\varepsilon \to 0$, implicit discretization of the diffusion equation $\partial_t \rho - \Delta_{\mathbf{x}} \rho = 0$.

Monte Carlo approach Discretization of the macro part

Space discretization in 2D

In 2D, we use an Alternating Direction Implicit (ADI) method²⁰: 1) Starting from ρ^n , solve over a time step Δt

$$\partial_t \rho + \frac{1}{2\varepsilon} e^{-\Delta t/\varepsilon^2} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g}^n \rangle - (1 - e^{-\Delta t/\varepsilon^2}) \partial_{\mathbf{xx}} \rho = 0,$$

using a Crank-Nicolson time discretization to get ρ^* . 2) Starting from ρ^* , solve over a time step Δt

$$\partial_t \rho + \frac{1}{2\varepsilon} e^{-\Delta t/\varepsilon^2} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g}^n \rangle - (1 - e^{-\Delta t/\varepsilon^2}) \partial_{yy} \rho = 0,$$

using a Crank-Nicolson time discretization to get ρ^{n+1} .

²⁰Peaceman, Rachford, J. Soc. Indust. Appl. Math. 1955.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-Macro for kinetic eq. in the diffusive scaling

Monte Carlo approach Discretization of the macro part

Nice properties

- Only 1D systems of size N_x and N_y .
- ADI method unconditionally stable in 2D.
- Straightforward extension in 3D: a priori conditionally stable, but better extensions have been derived²¹.
- Right asymptotic behaviour.

²¹Sharma, Hammett, JCP 2011.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Problem and objectives	Test 1 - 2Dx2D, constant ε , $g(t = 0, x, v) = 0$
Micro-macro model	Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$
Monte Carlo / Eulerian discretization	Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$
Numerical results	Test 4 - 2D×2D, $\varepsilon(\mathbf{x})$, $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Problem and objectives

Micro-macro model

3 Monte Carlo / Eulerian discretization

4 Numerical results

- Test 1 2Dx2D, constant ε , $g(t = 0, \mathbf{x}, \mathbf{v}) = 0$
- Test 2 2Dx2D, constant arepsilon, $m{g}(t=0, \mathbf{x}, \mathbf{v})
 eq 0$
- Test 3 3Dx3D, constant arepsilon, $g(t=0,\mathbf{x},\mathbf{v})
 eq 0$
- Test 4 2Dx2D, $\varepsilon(\mathbf{x})$, $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Test 1 - 2Dx2D, constant ε , $g(t = 0, \mathbf{x}, \mathbf{v}) = 0$

Initialization:

$$f(t=0,\mathbf{x},\mathbf{v})=
ho(t=0,\mathbf{x})M(\mathbf{v}),\,\,\mathbf{x}\in[0,4\pi]^2,\,\,\mathbf{v}\in\mathbb{R}^2$$

with

$$\begin{split} \rho(t=0,\mathbf{x}) &= 1 + \frac{1}{2}\cos\left(\frac{x}{2}\right)\cos\left(\frac{y}{2}\right),\\ M(\mathbf{v}) &= \frac{1}{2\pi}\exp\left(-\frac{|\mathbf{v}|^2}{2}\right), \end{split}$$

so that

$$g(t=0,\mathbf{x},\mathbf{v})=0.$$

Periodic boundary conditions in space.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Problem and objectives
Micro-macro modelTest 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0
Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Monte Carlo / Eulerian discretization
Numerical resultsTest 4 - 2Dx2D, c(x), $g(t = 0, x, v) \neq 0$

Asymptotic behaviour, $\varepsilon = 10^{-4}$

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Micro-Macro for kinetic eq. in the diffusive scaling

Problem and objectives	Test 1 - 2Dx2D, constant ε , $g(t = 0, x, v) = 0$
Micro-macro model	Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$
Monte Carlo / Eulerian discretization	Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$
Numerical results	Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Slices of the density
$$\rho(T = 2, x, y = 0)$$
 and of the momentum $\langle v_x g \rangle (T = 2, x, y = 0)$.

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Kinetic regime, $\varepsilon = 1$

Full PIC: standard particle method on f.

Problem and objectives	Test 1 - 2Dx2D, constant ε , $g(t = 0, x, v) = 0$
Micro-macro model	Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$
Monte Carlo / Eulerian discretization	Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$
Numerical results	Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Slices of the density
$$\rho(T = 2, x, y = 0)$$
 and of the momentum $\langle v_x g \rangle (T = 2, x, y = 0)$.

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Time evolution of the number of particles

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Test 2 - 2Dx2D, constant ε , $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Initialization:

$$f(t=0,\mathbf{x},\mathbf{v}) = \frac{1}{4\pi} \left(\exp\left(-\frac{|\mathbf{v}-2|^2}{2}\right) + \exp\left(-\frac{|\mathbf{v}+2|^2}{2}\right) \right) \rho(t=0,\mathbf{x}),$$

with

$$\mathbf{x} \in [0, 4\pi]^2, \quad \mathbf{v} \in \mathbb{R}^2,$$

$$\rho(t=0,\mathbf{x})=1+\frac{1}{2}\cos\left(\frac{x}{2}\right)\cos\left(\frac{y}{2}\right),$$

so that

$$g(t=0,\mathbf{x},\mathbf{v})=
ho(t=0,\mathbf{x})M(\mathbf{v})-f(t=0,\mathbf{x},\mathbf{v})
eq 0.$$

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Integral of the distribution function in space $\int f(T, \mathbf{x}, \mathbf{v}) d\mathbf{x}$.

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(\mathbf{x})$, $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Integral of the perturbation in space $\int g(T = 0.2, \mathbf{x}, \mathbf{v}) d\mathbf{x}$ for different ε .

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Time evolution of the number of particles

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ **Test 3 - 3Dx3D**, constant ε , $g(t = 0, x, v) \neq 0$ Test 4 - 2Dx2D, $\varepsilon(x)$, $g(t = 0, x, v) \neq 0$

Test 3 - 3Dx3D, constant ε , $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Initialization:

$$\begin{split} f_0(\mathbf{x}, \mathbf{v}) &= \frac{1}{2 \left(2\pi\right)^{3/2}} \left[\exp\left(-\frac{|\mathbf{v}-u|^2}{2}\right) + \exp\left(-\frac{|\mathbf{v}+u|^2}{2}\right) \right] \rho(0, \mathbf{x}), \\ \text{with } u &= (2, 2, 2), \\ \rho(0, \mathbf{x}) &= 1 + \frac{1}{2} \cos(\frac{x}{2}) \cos(\frac{y}{2}) \cos(\frac{z}{2}), \end{split}$$

 $\mathbf{x}=(x,y,z)\in [0,4\pi]^3$, $\mathbf{v}=(v_x,v_y,v_z)\in \mathbb{R}^3.$

Problem and objectives	Test 1 - 2Dx2D, constant ε , $g(t = 0, x, v) = 0$
Micro-macro model	Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$
Monte Carlo / Eulerian discretization	Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$
Numerical results	Test 4 - 2Dx2D, $\varepsilon(\mathbf{x})$, $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Integral of the distribution function in space $\int_{\mathbf{x}} f(T, \mathbf{x}, \mathbf{v}) d\mathbf{x}$ for $\varepsilon = 1$ and different times (T=0, 0.2, 0.4, 0.6, 0.8, 1).

Problem and objectives Micro-macro model Monte Carlo / Eulerian discretization Numerical results Numeri

Top: integral of the distribution function in space $\int_{\mathbf{x}} f(T, \mathbf{x}, \mathbf{v}) d\mathbf{x}$ for T = 0.2 and different ε (1, 0.5, 0.1).

Bottom: time evolution of the number of particles.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ **Test 4 - 2Dx2D**, $\varepsilon(\mathbf{x})$, $g(t = 0, x, v) \neq 0$

Test 4 - 2Dx2D,
$$\varepsilon(\mathbf{x})$$
, $g(t=0,\mathbf{x},\mathbf{v})
eq 0$

Modified model:

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon^2(\mathbf{x})} (\rho M - f),$$

where $(\mathbf{x},\mathbf{v})\in [0,4\pi]^2 imes \mathbb{R}^2$,

Problem and objectives	Test 1 - 2Dx2D, constant ε , $g(t = 0, x, v) = 0$
Micro-macro model	Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$
Monte Carlo / Eulerian discretization	Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$
Numerical results	Test 4 - 2D×2D $\varepsilon(\mathbf{x})$ $\varphi(t = 0, \mathbf{x}, \mathbf{y}) \neq 0$

Initialization:

$$f(t=0,\mathbf{x},\mathbf{v}) = \frac{1}{4\pi} \left(\exp\left(-\frac{|\mathbf{v}-2|^2}{2}\right) + \exp\left(-\frac{|\mathbf{v}+2|^2}{2}\right) \right) \rho(t=0,\mathbf{x}),$$

with

$$\mathbf{x} \in [0, 4\pi]^2, \quad \mathbf{v} \in \mathbb{R}^2,$$

$$ho(t=0,\mathbf{x})=1+rac{1}{2}\cos\left(rac{x}{2}
ight)\cos\left(rac{y}{2}
ight).$$

Density profile $\rho(T = 1, x, y)$. Left: MM-MC, right: MM-G.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Test 1 - 2Dx2D, constant ε , g(t = 0, x, v) = 0Test 2 - 2Dx2D, constant ε , $g(t = 0, x, v) \neq 0$ Test 3 - 3Dx3D, constant ε , $g(t = 0, x, v) \neq 0$ **Test 4 - 2Dx2D**, $\varepsilon(\mathbf{x})$, $g(t = 0, x, v) \neq 0$

Time-Diminishing Property

Top: position of the particles in x. Left: at T = 0; right: at T = 1.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Conclusions

- Right asymptotic behaviour.
- Computational cost diminishes as the equilibrium is approached.
- Numerical noise smaller than a standard particle method on f.
- Implicit treatment of the diffusion term.
- Suitable for multi-dimensional testcases.

Possible extensions

- More 3D-3D testcases, more physical relevance.
- Boltzmann operator.
- Second-order in time scheme.
- Add an electromagnetic field $\Rightarrow v_k$ no constant anymore.

Merci pour votre attention !

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou