Micro-Macro Monte Carlo approach for collisional kinetic equations of Boltzmann type

Anaïs Crestetto¹, Nicolas Crouseilles², Giacomo Dimarco³ and Mohammed Lemou⁴

> Workshop NumKin2021 - Jean-Morlet Chair 14 June 2021

¹University of Nantes, LMJL.

²Inria & University of Rennes 1, IRMAR.

³University of Ferrara, Dept of Mathematics and Computer Science. ⁴University of Rennes 1, IRMAR & CNRS & Inria.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-mac

Outline

- 1 Our first multiscale BGK problem
- 2 Monte Carlo / FV discretization
- 3 Numerical results
- **4** Towards the Boltzmann operator

Our first multi-scale BGK Problem

Radiative transport equation in the diffusive scaling

$$\partial_t f + \frac{1}{\varepsilon} \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon^2} Q(f, f), \quad Q(f, f) = (\rho M - f)$$
(1)

•
$$\mathbf{x} \in \Omega \subset \mathbb{R}^{d_x}, \, \mathbf{v} \in V = \mathbb{R}^{d_v},$$

• charge density
$$\rho(t, \mathbf{x}) = \int_V f(t, \mathbf{x}, \mathbf{v}) d\mathbf{v}$$
,

•
$$M(\mathbf{v}) = \frac{1}{(2\pi)^{d_v/2}} \exp\left(-\frac{|\mathbf{v}|^2}{2}\right),$$

• periodic conditions in **x** and initial conditions.

Main difficulty:

• Knudsen number ε may be of order 1 or tend to 0 in the diffusive scaling. The asymptotic diffusion equation being

$$\partial_t \rho - \Delta_{\mathbf{x}} \rho = 0. \tag{2}$$

Objectives

- Construction of an Asymptotic Preserving (AP) scheme ^[5].
- Reduction of the numerical cost at the limit $\varepsilon \to 0$.

Tools

- Micro-macro decomposition [6,7] for this model. Previous work with a grid in v for the micro part [8], cost was constant w.r.t. ε .
- Particle method for the micro part since few information in v is necessary at the limit ^[9].
- Monte Carlo techniques ^[10].

- ⁶Lemou, Mieussens, SIAM SISC 2008.
- ⁷Liu, Yu, CMP 2004.
- ⁸Crouseilles, Lemou, KRM 2011.
- ⁹C., Crouseilles, Lemou, CMS 2018.
- ¹⁰Degond, Dimarco, Pareschi, IJNMF 2011.

⁵Jin, SISC 1999.

Micro-macro decomposition

• Micro-macro decomposition:

$$f = \rho M + g$$

with g the perturbation.

- $\mathcal{N} = \text{Span} \{M\} = \{f = \rho M\}$ null space of the BGK operator $Q(f) = \rho M f$.
- Π orthogonal projection onto \mathcal{N} :

$$\Pi h := \langle h \rangle M, \quad \langle h \rangle := \int_V h \, \mathrm{d} \mathbf{v}.$$

• Applying Π to $(1) \Longrightarrow$ macro equation on ρ

$$\partial_t \rho + \frac{1}{\varepsilon} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle = 0.$$
 (3)

• Applying $(I - \Pi)$ to $(1) \Longrightarrow$ micro equation on g

$$\partial_t g + \frac{1}{\varepsilon} \left[\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M + \mathbf{v} \cdot \nabla_{\mathbf{x}} g - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M \right] = -\frac{1}{\varepsilon^2} g. \quad (4)$$

Equation (1) \Leftrightarrow micro-macro system:

$$\begin{cases} \partial_t \rho + \frac{1}{\varepsilon} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle = 0, \\ \partial_t g + \frac{1}{\varepsilon} \mathcal{F}(\rho, g) = -\frac{1}{\varepsilon^2} g, \end{cases}$$
(5)
where $\mathcal{F}(\rho, g) = \mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M + \mathbf{v} \cdot \nabla_{\mathbf{x}} g - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M.$

Difficulties

- Stiff terms in the micro equation (4) on g.
- In previous works ^[11,12], stiffest term (of order 1/ε²) considered implicit in time ⇒ transport term (of order 1/ε) stabilized.

But here:

- use of particles for the micro part
- \Rightarrow splitting between the transport term and the source term,
- \Rightarrow not possible to use the same strategy.

Idea?

• Suitable reformulation of the model.

¹¹Lemou, Mieussens, SIAM SISC 2008.

¹²Crouseilles, Lemou, KRM 2011.

- Strategy ^[13]: 1. rewrite (4) $\partial_t g + \frac{1}{\varepsilon} \mathcal{F}(\rho, g) = -\frac{1}{\varepsilon^2} g$ as $\partial_t (e^{t/\varepsilon^2} g) = -\frac{e^{t/\varepsilon^2}}{\varepsilon} \mathcal{F}(\rho, g),$
 - 2. integrate in time between two times t^n and $t^{n+1} = t^n + \Delta t$:

$$e^{t^{n+1}/\varepsilon^2}g^{n+1} = e^{t^n/\varepsilon^2}g^n + \int_{t^n}^{t^{n+1}} -\frac{e^{t/\varepsilon^2}}{\varepsilon}\mathcal{F}(\rho,g)\mathrm{d}t,$$

3. use rectangle method for $\mathcal{F}(\rho, g)$ and multiply by $e^{-t^{n+1}/\varepsilon^2}/\Delta t$:

$$\frac{g^{n+1}-g^n}{\Delta t} = \frac{e^{-\Delta t/\varepsilon^2}-1}{\Delta t}g^n - \varepsilon \frac{1-e^{-\Delta t/\varepsilon^2}}{\Delta t}\mathcal{F}(\rho^n, g^n) + \mathcal{O}(\Delta t),$$

4. approximate up to terms of order $\mathcal{O}(\Delta t)$ by:

$$\partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathcal{F}(\rho, g).$$

• No more stiff terms and consistent with initial micro equation (4). ¹³Lemou, CRAS 2010.

New micro-macro model

The new micro-macro model writes

$$\partial_t \rho + \frac{1}{\varepsilon} \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} g \rangle = 0, \tag{6}$$

$$\partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathcal{F}\left(\rho, g\right),\tag{7}$$

with $\mathcal{F}(\rho, g) = \mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M + \mathbf{v} \cdot \nabla_{\mathbf{x}} g - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M$.

We propose the following hybrid discretization:

- macro equation (6): Finite Volume method,
- micro equation (7): Monte Carlo technique.

Discretization of the micro equation

• Model: considering at each time step N^n particles, with position \mathbf{x}_k^n , velocity \mathbf{v}_k^n and constant weight ω_k , $k = 1, \ldots, N^n, g$ is approximated by ^[14]

$$g_{N^n}(t^n, \mathbf{x}, \mathbf{v}) = \sum_{k=1}^{N^n} \omega_k \delta(\mathbf{x} - \mathbf{x}_k^n) \,\delta(\mathbf{v} - \mathbf{v}_k^n) \,.$$

• For the coupling with the macro equation, we need a grid in **x**. For $d_x = 1$, we define for $i = 0, ..., N_x - 1$

$$\mathbf{x}_i = x_{\min} + i\Delta x, \quad \mathbf{x}_{i\pm 1/2} = \mathbf{x}_i \pm \frac{\Delta x}{2}.$$

• How to define/compute ω_k , N^n , \mathbf{x}_k^n , \mathbf{v}_k^n ?

¹⁴Crouseilles, Dimarco, Lemou, KRM 2017.

Initialization

• Choose the characteristic weight m_p or the characteristic number of particles N_p necessary to sample the full distribution function f, and link them with

$$m_p = \frac{1}{N_p} \int_{\mathbb{R}^{d_x}} \int_{\mathbb{R}^{d_v}} f(t=0, \mathbf{x}, \mathbf{v}) d\mathbf{v} d\mathbf{x}.$$

- Now, we want to sample $g(t = 0, \mathbf{x}, \mathbf{v})$, that has no sign.
- We impose $\omega_k \in \{m_p, -m_p\}.$
- For velocities, we impose \mathbf{v}_k^n on a cartesian grid in \mathbb{R}^{d_v} . For $d_v = 1$, we have $\mathbf{v}_k^n \in \{v_\ell, \ \ell = 0, \dots, N_v - 1\}$ $\forall k = 1, \dots, N^n$, where $v_\ell = v_{\min} + \ell \Delta v, \ \ell = 0, \dots, N_v - 1$ and $v_{\ell \pm 1/2} = v_\ell \pm \frac{\Delta x}{2}$.

Let us introduce the notations in 1D...

Let us introduce the notations in 1D...

• The number of initial positive (resp. negative) particles having the velocity $\mathbf{v}_k = v_\ell$ in the strip $C_i = \left[\mathbf{x}_{i-1/2}, \mathbf{x}_{i+1/2}\right] \times \mathbb{R}$ is given by $N_{i,\ell}^{0,\pm} = \lfloor \pm \frac{\Delta x \Delta v}{m_n} g^{\pm}(t=0, \mathbf{x}_i, v_\ell) \rfloor,$

that is an approximation of

$$N_{i,\ell}^{0,\pm} = \pm \frac{1}{m_p} \int_{\mathbf{x}_{i-1/2}}^{\mathbf{x}_{i+1/2}} \int_{v_{\ell-1/2}}^{v_{\ell+1/2}} g^{\pm}(t=0,x,v) dv dx,$$

with $g^{\pm} = \frac{g \pm |g|}{2}$ the positive and negative parts of g.

- Positions of these $N_{i,\ell}^{0,\pm}$ particles are taken uniformly in $[\mathbf{x}_{i-1/2}, \mathbf{x}_{i+1/2}]$.
- At time t = 0, we have $N^0 = \sum_i \left(\sum_{\ell} N_{i,\ell}^{0,+} + \sum_{\ell} N_{i,\ell}^{0,-} \right).$

From t^n to t^{n+1}

Solve the micro equation (7) by Monte Carlo technique.

• Splitting between the transport part

$$\partial_t g + \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathbf{v} \cdot \nabla_{\mathbf{x}} g = 0,$$

and the interaction part

$$\partial_t g = \frac{e^{-\Delta t/\varepsilon^2} - 1}{\Delta t} g - \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \left(\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho M - \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} g \rangle M \right).$$

• Solve the transport part thanks to motion equation:

$$\frac{d\mathbf{x}_k}{dt}(t) = \varepsilon \frac{1 - e^{-\Delta t/\varepsilon^2}}{\Delta t} \mathbf{v}_k, \quad \mathbf{x}_k^{n+1} = \mathbf{x}_k^n + \varepsilon (1 - e^{-\Delta t/\varepsilon^2}) \mathbf{v}_k^n.$$

Remark that $\mathbf{v}_k^{n+1} = \mathbf{v}_k^n$.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

• Solve interaction part by writing

$$g^{n+1} = e^{-\Delta t/\varepsilon^2} \tilde{g}^n + (1 - e^{-\Delta t/\varepsilon^2}) \varepsilon \left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \right]$$

where \tilde{g}^n is the function after the transport part.

Apply a Monte Carlo technique:

- with probability $e^{-\Delta t/\varepsilon^2}$, the distribution g does not change,
- with probability $(1 e^{-\Delta t/\varepsilon^2})$, the distribution g is replaced by a new distribution given by

$$\varepsilon \big[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \big].$$

In practice (1)

- "With probability $e^{-\Delta t/\varepsilon^2}$, the distribution g does not change."
 - \rightarrow In each strip C_i
 - we choose randomly $e^{-\Delta t/\varepsilon^2} \tilde{N}_i^n$ particles and keep them unchanged (with \tilde{N}_i^n the number of particles in C_i after the transport part),
 - we discard the others.

In practice (2)

"With probability $(1 - e^{-\Delta t/\varepsilon^2})$, the distribution g is replaced by a new distribution given by $\varepsilon \left[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \right]$."

 \rightarrow We define the function

$$\mathcal{P}^{n,\pm}(\mathbf{x},\mathbf{v}) = \varepsilon \big[-\mathbf{v} \cdot \nabla_{\mathbf{x}} \rho^n M + \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} \tilde{g} \rangle^n M \big]^{\pm}.$$

- \rightarrow In each strip C_i
 - we sample a corresponding number $M_i^{n,\pm}$ of new particles with weights $\pm m_p$ from $(1 - e^{-\Delta t/\varepsilon^2})\mathcal{P}^{n,\pm}(\mathbf{x}_i, \mathbf{v})$,
 - in 1D, we have

$$M_{i,\ell}^{n,\pm} = \frac{1}{m_p} \int_{\mathbf{x}_{i-1/2}}^{\mathbf{x}_{i+1/2}} \int_{v_{\ell-1/2}}^{v_{\ell+1/2}} \pm (1 - e^{-\Delta t/\varepsilon^2}) \mathcal{P}^{n,\pm}(x,v) dv dx,$$

• these $M_{i,\ell}^{n,\pm}$ created particles are such that $\mathbf{v}_k^n = v_\ell$ and \mathbf{x}_k^n are uniformly distributed in $[\mathbf{x}_{i-1/2}, \mathbf{x}_{i+1/2}]$.

Asymptotically Complexity Diminishing Property

• At the end of the time step, we have in each strip C_i

$$N_i^{n+1} = e^{-\Delta t/\varepsilon^2} \tilde{N}_i^n + \sum_{\ell} \left(M_{i,\ell}^{n,+} + M_{i,\ell}^{n,-} \right)$$

particles.

- The number of particles automatically diminishes with ε .
- Reduction of the computational complexity when approaching equilibrium: Asymptotically Complexity Diminishing Property.

Macro equation

- Equation $\partial_t \rho + \frac{1}{\varepsilon} \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} g \rangle = 0.$
- First proposition:

$$\frac{\rho^{n+1} - \rho^n}{\Delta t} + \frac{1}{\varepsilon} \nabla_{\mathbf{x}} \cdot \langle \mathbf{v} g^{n+1} \rangle = 0,$$

discretized in space by a Finite Volume method.

- Problem: g^{n+1} suffers from numerical noise inherent to particles method. This noise, amplified by $\frac{1}{\varepsilon}$, will damage ρ^{n+1} .
- Use the expression of g^{n+1} and plug it into the macro equation

$$\frac{\rho^{n+1}-\rho^n}{\Delta t} + \frac{1}{\varepsilon}e^{-\Delta t/\varepsilon^2} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g}^n \rangle - (1 - e^{-\Delta t/\varepsilon^2}) \Delta_{\mathbf{x}} \rho^n = 0.$$

• To avoid the parabolic CFL condition of type $\Delta t \leq C \Delta x^2$, take the diffusion term implicit:

$$\frac{\rho^{n+1}-\rho^n}{\Delta t} + \frac{1}{\varepsilon}e^{-\Delta t/\varepsilon^2}\nabla_{\mathbf{x}} \cdot \langle \mathbf{v}\tilde{g}^n \rangle - (1-e^{-\Delta t/\varepsilon^2})\Delta_{\mathbf{x}}\rho^{n+1} = 0.$$

- No more stiffness, the numerical noise does not damage ρ .
- AP property: for fixed $\Delta t > 0$, the scheme degenerates when $\varepsilon \to 0$ to an implicit discretization of the diffusion equation $\partial_t \rho - \Delta_{\mathbf{x}} \rho = 0$.

Space discretization in 2D

In 2D, we use an Alternating Direction Implicit (ADI) method ^[15]:

1) Starting from ρ^n , solve over a time step Δt

$$\partial_t \rho + \frac{1}{2\varepsilon} e^{-\Delta t/\varepsilon^2} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g}^n \rangle - (1 - e^{-\Delta t/\varepsilon^2}) \partial_{xx} \rho = 0,$$

using a Crank-Nicolson time discretization to get ρ^* . 2) Starting from ρ^* , solve over a time step Δt

$$\partial_t \rho + \frac{1}{2\varepsilon} e^{-\Delta t/\varepsilon^2} \langle \mathbf{v} \cdot \nabla_{\mathbf{x}} \tilde{g}^n \rangle - (1 - e^{-\Delta t/\varepsilon^2}) \partial_{yy} \rho = 0,$$

using a Crank-Nicolson time discretization to get ρ^{n+1} .

¹⁵Peaceman, Rachford, J. Soc. Indust. Appl. Math. 1955.

Nice properties

- Only 1D systems of size N_x or N_y .
- ADI method unconditionally stable in 2D.
- Straightforward extension in 3D: a priori conditionally stable, but better extensions have been derived ^[16].
- Right asymptotic behaviour.

¹⁶Sharma, Hammett, JCP 2011.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Test 1 - 2Dx2D, constant ε , $g(t = 0, \mathbf{x}, \mathbf{v}) = 0$

Initialization:

$$f(t = 0, \mathbf{x}, \mathbf{v}) = \rho_0(\mathbf{x}) M(\mathbf{v}), \ \mathbf{x} \in [0, 4\pi]^2, \ \mathbf{v} \in \mathbb{R}^2$$

with

$$\rho_0(\mathbf{x}) = 1 + \frac{1}{2} \cos\left(\frac{\mathbf{x}}{2}\right) \cos\left(\frac{\mathbf{y}}{2}\right),$$
$$M(\mathbf{v}) = \frac{1}{2\pi} \exp\left(-\frac{|\mathbf{v}|^2}{2}\right),$$

so that

$$g(t=0,\mathbf{x},\mathbf{v})=0.$$

Periodic boundary conditions in space.

Asymptotic behaviour, $\varepsilon = 10^{-4}$

MM-MC: the presented Micro-Macro Monte Carlo scheme. MM-G: a Micro-Macro Grid code, considered as reference.

Limit, T=2

MM-G, e=0.0001, T=2

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Micro-macro Monte Carlo

Slices of the density $\rho(T = 2, \mathbf{x}, \mathbf{y} = 0)$ and of the momentum $\langle \mathbf{v}_{\mathbf{x}}g \rangle(T = 2, \mathbf{x}, \mathbf{y} = 0)$.

Kinetic regime, $\varepsilon = 1$

Full PIC: standard particle method on f.

Slices of the density $\rho(T = 2, x, y = 0)$ and of the momentum $\langle v_x f \rangle(T = 2, x, y = 0)$.

Time evolution of the number of particles

Test 3 - 3Dx3D, constant ε , $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Initialization:

$$f(0, \mathbf{x}, \mathbf{v}) = \frac{1}{2(2\pi)^{3/2}} \left[\exp\left(-\frac{|\mathbf{v} - \mathbf{u}|^2}{2}\right) + \exp\left(-\frac{|\mathbf{v} + \mathbf{u}|^2}{2}\right) \right] \rho_0(\mathbf{x}),$$

with $\mathbf{u} = (2, 2, 2),$

$$\begin{split} \rho_0(\mathbf{x}) &= 1 + \frac{1}{2} \cos\left(\frac{\mathbf{x}}{2}\right) \cos\left(\frac{\mathbf{y}}{2}\right) \cos\left(\frac{\mathbf{z}}{2}\right),\\ \mathbf{x} &= (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in [0, 4\pi]^3, \, \mathbf{v} = (\mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}}, \mathbf{v}_{\mathbf{z}}) \in \mathbb{R}^3. \end{split}$$

Integral of the distribution function in space $\int_{\mathbf{x}} f(T, \mathbf{x}, \mathbf{v}) d\mathbf{x}$ for $\varepsilon = 1$ and different times (T=0, 0.2, 0.4, 0.6, 0.8, 1).

Time evolution of the number of particles

Test 4 - 2Dx2D, $\varepsilon(\mathbf{x})$, $g(t = 0, \mathbf{x}, \mathbf{v}) \neq 0$

Modified model:

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = \frac{1}{\varepsilon^2(\mathbf{x})} (\rho M - f),$$

where $(\mathbf{x}, \mathbf{v}) \in [0, 4\pi]^2 \times \mathbb{R}^2$,

Initialization:

$$f(t=0,\mathbf{x},\mathbf{v}) = \frac{1}{4\pi} \left(\exp\left(-\frac{|\mathbf{v}-\mathbf{u}|^2}{2}\right) + \exp\left(-\frac{|\mathbf{v}+\mathbf{u}|^2}{2}\right) \right) \rho_0(\mathbf{x}),$$

with

$$\mathbf{x} \in [0, 4\pi]^2, \quad \mathbf{v} \in \mathbb{R}^2, \quad \mathbf{u} = (2, 2)$$

$$\rho_0(\mathbf{x}) = 1 + \frac{1}{2}\cos\left(\frac{\mathbf{x}}{2}\right)\cos\left(\frac{\mathbf{y}}{2}\right).$$

Density profile $\rho(T = 1, x, y)$. Left: MM-MC, right: MM-G.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Micro-macro Monte Carlo

Asymptotically Complexity Diminishing Property

Bottom: time evolution of the number of particles.

Our space homogeneous Boltzmann Problem

Space homogeneous Boltzmann equation in the Maxwell molecules case

$$\partial_t f = \frac{1}{\varepsilon} Q(f, f), \tag{8}$$

We can write
$$Q(f, f) = P(f, f) - \mu f$$

with

•
$$P(f, f)(\mathbf{v}) = \int_{\mathbb{R}^{d_v}} \int_{\mathbb{S}^{d_v-1}} b(\omega) f(\mathbf{v}') f(\mathbf{v}'_{\star}) d\omega d\mathbf{v}_{\star}$$

the (bilinear) gain term,

•
$$\mu f(\mathbf{v}) = f(\mathbf{v}) \int_{\mathbb{R}^{d_v}} f(\mathbf{v}_{\star}) d\mathbf{v}_{\star} \int_{\mathbb{S}^{d_v-1}} b(\omega) d\omega$$

the loss term (mass preservation $\Rightarrow \mu$ constant).

We use the micro-macro decomposition $f(t, \mathbf{v}) = M(\mathbf{v}) + g(t, \mathbf{v})$, where M is the gaussian function such that $\int_{\mathbb{R}^{d_v}} \phi(\mathbf{v}) f(t, \mathbf{v}) d\mathbf{v} = \int_{\mathbb{R}^{d_v}} \phi(\mathbf{v}) M(\mathbf{v}) d\mathbf{v}$, $\phi(\mathbf{v}) = (1, \mathbf{v}, \mathbf{v}^2/2)^T$, and write

$$\partial_t g = \frac{1}{\varepsilon} \left(P(M+g, M+g) - \mu M \right) - \frac{\mu}{\varepsilon} g$$

or

$$\partial_t \left(g e^{\mu t/\varepsilon} \right) = \frac{1}{\varepsilon} \left(P(g,g) + P(M,g) + P(g,M) \right) e^{\mu t/\varepsilon}.$$

Our micro-macro Monte Carlo method

We use a first-order exponential scheme:

$$g^{n+1} = e^{-\frac{\mu\Delta t}{\varepsilon}}g^n + \frac{\mu\Delta t}{\varepsilon}e^{-\frac{\mu\Delta t}{\varepsilon}}\left(\frac{P(g^n, g^n) + P(M, g^n) + P(g^n, M)}{\mu}\right)$$

Monte Carlo interpretation: g represented by particles and

- with probability $e^{-\frac{\mu\Delta t}{\varepsilon}}$ particles are not modified,
- with probability $\frac{\mu\Delta t}{\varepsilon}e^{-\frac{\mu\Delta t}{\varepsilon}}$ particles collide,
- with probability $1 e^{-\frac{\mu\Delta t}{\varepsilon}} \frac{\mu\Delta t}{\varepsilon}e^{-\frac{\mu\Delta t}{\varepsilon}}$ particles are discarded.

How to perform collisions?

At time t^n , you have a set of N^n_+ positive particles and a set of N^n_- negative particles.

Sample $P(g^n, g^n)/\mu$:

- Select $\frac{\mu\Delta t}{\varepsilon}e^{-\frac{\mu\Delta t}{\varepsilon}}(N^n_++N^n_-)$ particles.
- For each one (k), select randomly a second one (j). Compute the new v_k^{n+1} thanks to collision rules.
- If particles k and j were both positives or both negatives, the new particle k belongs to the positive category. Else it belongs to the negative category.

Sample $P(g^n, M)/\mu$ or $P(M, g^n)/\mu$:

• Same idea but instead of colliding two particles representing g, use one of g and one representing M.

Test - 2D, f initialized as an indicator function

Left: distribution function f, right: error on g. Top: T=0.4, bottom: T=3.6.

A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou

Time evolution of error and particles number

Thank you for your attention!