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From PDE to ODE

Application to a scalar problem

Application to a p-system problem

Objective

Approximate the Riemann solutions of systems of
conservation laws in the form:

∂tu+ ∂xf(u) = 0, x ∈ R, t > 0, (1)

completed with an initial data given by

u(x, 0) =

{

uL if x < 0,

uR if x > 0,
(2)

where
uL and uR are two given constant states in Ω ⊂ R

d,
u(x, t) ∈ Ω is the unknown state vector,
f : Ω → R

d is a given smooth flux function.

Contrary to the usual approach, we do not enforce entropy
criterion, so that we will be able to see non classical
solutions.
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Remarks

In general, non uniqueness of weak solution of (1)-(2).

Usual approach: entropy conditions are enforced to select
one solution.

Scalar classical case:

if f is convex (or concave): a shock, or a rarefaction wave,
if f is neither convex nor concave: composite wave (two
appended waves).

Here, we are interested in solutions that violate entropy
conditions: non classical solutions (two separated waves).
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Diffusive-dispersive system of conservation laws

Solution u ∈ Ω assumed to be the limit solution [see 4],
when ε → 0, of

∂tu
ε + ∂xf(u

ε) = εβ∂xxD(uε) + ε2γ∂xxxD(uε), (3)

with D : Ω → R
d a given smooth function.

Competition between diffusion that makes the solution
smoother and dispersion that creates oscillations.

Solutions u
ε of (3) may depend on the ratio β/γ [see 5].

If f is neither convex nor concave: waves may be separated,
solutions may be non classical.

4LeFloch, Rohde 2001 (IUMJ)
5LeFloch 2002 (Book)

Anaïs Crestetto, Nantes Université Non classical Riemann problems 6



From PDE to ODE

Application to a scalar problem

Application to a p-system problem

Dafermos viscosity approach

Riemann solutions u of (1)-(2) are self-similar: only depend
on the variable ξ = x/t.

Solutions u
ε of diffusive-dispersive problem (3) are not

self-similar.

Reformulation of the diffusive-dispersive system according
to the Dafermos viscosity approach [see 6]:

∂tu
ε + ∂xf(u

ε) = εtβ∂xxD(uε) + ε2t2γ∂xxxD(uε).

6Dafermos 2010 (Book)
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ODE problem

Change of variables given by

u
ε(x, t) = u(ξ) with ξ =

x

t
.

ODE system

−ξu′ + f(u)′ = εβD(u)′′ + ε2γD(u)′′′.

Limit boundary conditions

lim
ξ→−∞

u(ξ) = uL and lim
ξ→+∞

u(ξ) = uR

replaced by

u(−ℓ) = uL and u(ℓ) = uR,

with ℓ > 0 large enough [see 7].
7Joseph, LeFloch 2007 (P ROY SOC EDINB A)
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Numerical method

4th order Finite Difference scheme (N mesh points).

For fixed ε > 0: existence of the discrete solution is proven.

For fixed ε > 0: solving the nonlinear system in R
N with a

Newton method.

Decrease ε to approach the limit solution and use the
solution given by a higher ε as initial guess to make the
convergence of the Newton method easier.
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From scalar conservation law to ODE

Diffusive-dispersive scalar equation

∂tw
ε+∂xf(w

ε) = εtβ∂xxw
ε+ε2t2γ∂xxxw

ε, x ∈ R, t > 0,

where f : R → R is a given smooth function.

Change of variables

wε(x, t) = w(ξ) with ξ =
x

t
.

w solution of

− ξw′ + f(w)′ = εβw′′ + ε2γw′′′, (4)

with boundary conditions given by

w(−ℓ) = wL and w(ℓ) = wR, (5)

with ℓ > 0 large enough.
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Numerical scheme - Mesh

Interval [−ℓ, ℓ] discretized with N + 1 cells of length
∆ξ = 2ℓ

N+1 : |ξi, ξi+1), ξi = −ℓ+ i∆ξ.

Notation wi ≈ w(ξi).

Need of ghost cells for the boundary conditions:
i = −2, . . . , N + 3.
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Numerical scheme - 4th order Finite Differences

For a given vector (Xi)i=−2,...,N+3 and a smooth function g(X),
we consider the following discrete operators, for i = 1, . . . , N :

g(X)
′
i =

g(Xi−2)− 8g(Xi−1) + 8g(Xi+1)− g(Xi+2)

12∆ξ
,

X̄ ′′
i =

−Xi−2 + 16Xi−1 − 30Xi + 16Xi+1 −Xi+2

12∆ξ2
,

X̄ ′′′
i =

Xi−3 − 8Xi−2 + 13Xi−1 − 13Xi+1 + 8Xi+2 −Xi+3

8∆ξ3
.

As soon as Ui = U(ξi), where U(ξ) denotes a smooth function,
we get

g(U)
′
i = g(U)′(ξi) +O(∆ξ4),

Ū ′′
i = U ′′(ξi) +O(∆ξ4),

Ū ′′′
i = U ′′′(ξi) +O(∆ξ4).
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Numerical scheme - 4th order scheme

The finite difference scheme applied to our problem (4) and (5)
writes:

− ξiw
′
i + f(w)

′
i = εβw′′

i + ε2γw′′′
i , i = 1, . . . , N, (6)

supplemented by the following boundary conditions [see 8]:

w−2 = w−1 = w0 = wL, wN+1 = wN+2 = wN+3 = wR. (7)

8Schecter, Plohr, Marchesin 2004 (DCDS)
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Existence result

We are able to state the following result [see 9].

Theorem

Let ε > 0 be given and assume the existence of

Mf ′ := sup
w∈R

|f ′(w)|.

Then there exists ∆ξ0 ≤
√
εβ depending on β, ε, ℓ and Mf ′ such

that for ∆ξ ≤ ∆ξ0, there exists a solution w∆ = (wi)i=1,...,N to
the scheme (6)–(7).

9Berthon, Bessemoulin-Chatard, AC, Foucher 2019 (Calcolo)
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Idea of the proof

We rewrite the problem as

E(w∆) = 0,

where

E(w∆)i = εβw′′
i + ε2γw′′′

i + ξiw
′
i − f(w)

′
i, i = 1, . . . , N,

with

w−2 = w−1 = w0 = wL, wN+1 = wN+2 = wN+3 = wR.

A change of variable let us rewrite this problem as

Ẽ(w̃∆) = 0,

with

w̃−2 = w̃−1 = w̃0 = w̃N+1 = w̃N+2 = w̃N+3 = 0.
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Key lemma: Zeros of a vector field

We will use the following lemma [see 10], which is a consequence
of Brouwer’s fixed point theorem.

Lemma

Let F : RN → R
N be a continuous function satisfying

F (x) · x ≤ 0 if ‖x‖ = k,

for some k > 0. Then there exists a point x ∈ B(0, k) such that
F (x) = 0.

A technical study of the scalar product Ẽ(w̃∆).w̃∆ and Poincaré
inequality give us the proof of our existence theorem.

10Evans 1998 (Book)
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Continuation-type Newton method

For ε = O(1), the nonlinear system

E(w∆
ε ) = 0,

where

E(w∆
ε )i = εβw′′

i + ε2γw′′′
i + ξiw

′
i − f(w)

′
i, i = 1, . . . , N,

with

w−2 = w−1 = w0 = wL, wN+1 = wN+2 = wN+3 = wR,

is easily solvable with a (damping [see 11]) Newton method.

When ε → 0, it is essential to have a good initial guess to
make the Newton method converge.

The idea is to decrease ε step by step: w∆
ε is the initial

guess of the Newton method when solving E(w∆
ε−∆ε) = 0.

11Ralph 1994 (MOR)
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Numerical tests with f(w) = w3

Classical case: wL = 4, wR = 2.

Exact solution: shock at ξ = 28 = f(wL)−f(wR)
wL−wR

.

Domain D = [10, 40], N = 1000 β = 1 and ε = 10−3.

Two values of γ (1 and 10) are considered to verify that γ
has no influence on the solution.
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Non classical case: wL = 4, wR = −2, β = 1 and γ = 1.

Exact solution [see 12]: intermediate state given by

w⋆ = −wL +
√
2
3 ≈ −3.5286 and two shocks, one at

ξ = f(wL)−f(w⋆)
wL−w⋆ ≈ 14.3366, the other at

ξ = f(wR)−f(w⋆)
wR−w⋆ ≈ 23.5082.

Domain D = [0, 60] or [−20, 80], N = 2000. Different values
of ε.
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12Ernest, LeFloch, Mishra 2013 (SAM)
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Non classical case: wL = 2, wR = −2, β = 1.
Exact solution [see 11]: intermediate state given by

w⋆ = −wL +
√
2

3
√
γ
. A shock and a rarefaction wave given by







w⋆, ξ ≤ f ′(w⋆),
f ′−1(ξ), f ′(w⋆) ≤ ξ ≤ f ′(wR),
wR, f ′(wR) ≤ ξ.

Domain D = [0, 60], N = 2000, ε = 10−3.
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Numerical tests with f(w) = w3 − w

Classical solutions [see 13]: wL = 1, wR = −5 (Left) or
wL = 0, wR = 2 (Right), β = 5 and γ = 37.5.

Our approach: D = [−60, 120] (Left), D = [−60, 60]
(Right), N = 2000, ε = 10−2.

FV Lax-Friedrichs scheme: N = 5× 104, ∆t = 2× 10−5.
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13Chalons, LeFloch 2001 (Numer. Math.)
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From classical to non classical solutions [see 12].

Left: wR = −5, wL varying from 1 to 4, β = 5, γ = 37.5,
D = [−60, 120], N = 2000, ε = 10−2.

Right: wR = −5, wL = 4, β varying from 5 to 30, γ = 37.5,
D = [−60, 120], N = 2000, ε = 10−2.
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Numerical tests with f(w) = w2

2 (Burgers)

This problem only admits classical solutions.

Case of a rarefaction wave: wL = −2, wR = 2, β = 1, γ = 1
or 10.

Our approach: D = [−10, 10], N = 2000, ε = 10−3.

FV Lax-Friedrichs scheme: N = 104 , ∆t = 10−4.
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Case of a stationary shock (Left): wL = 2, wR = −2.

Case of a non stationary shock (Right): wL = 5, wR = 1.

Other parameters are unchanged.
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From p-system to ODE

Considering the 2× 2 diffusive-dispersive system,
introduced by Joseph and LeFloch [see 14]

{

∂tw
ε − ∂xv

ε = 0, x ∈ R, t > 0,

∂tv
ε − ∂xp(w

ε) = εtβ∂xxv
ε + ε2t2γ∂xxxw

ε,

where p : R → R is a given smooth function.

Focus on Riemann problems and so on self-similar solutions.

Change of variables

wε(x, t) = w(ξ) and vε(x, t) = v(ξ) with ξ =
x

t
.

14Joseph, LeFloch 2007 (P ROY SOC EDINB A)
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We obtain
{

− ξw′ − v′ = 0,

− ξv′ − p(w)′ = εβv′′ + ε2γw′′′,

supplemented by boundary conditions

(v, w)(−ℓ) = (vL, wL) and (v, w)(ℓ) = (vR, wR),

with ℓ > 0 large enough.

Using v′ = −ξw′, w is governed by a nonlinear equation
independent of v

(

ξ2 + εβ
)

w′ − p(w)′ = −εβξw′′ + ε2γw′′′, (8)

supplemented by the boundary conditions

w(−ℓ) = wL and w(ℓ) = wR. (9)

Problem (8)-(9) contains the full structure of the expected
Riemann solution.
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Analysis of (8) [see 15] shows some degeneracy for ξ = 0.

Must be studied into the two regions [−ℓ, 0) and (0, ℓ]
separately.

The viscous term governed by εβξ is of prime importance,
but the viscosity vanishes as soon as ξ = 0. From a
numerical point of view, we have to avoid ξ = 0.

We consider two intervals [−ℓ,−ξ⋆] and [ξ⋆, ℓ] separately
where ξ⋆ > 0 is a given constant small enough.

We impose boundary conditions

w(−ξ⋆) = w⋆ and w(ξ⋆) = w⋆,

where ξ⋆ has to be fixed and w⋆ has to be determined.

15Joseph, LeFloch 2007 (P ROY SOC EDINB A)
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Numerical scheme - Finite differences

Assume that the state w⋆ ∈ R is given. We use 4th order Finite
Differences on the right interval [ξ⋆, ℓ] (resp. on the left interval
[−ℓ,−ξ⋆]).

Interval [ξ⋆, ℓ] is discretized with N +1 cells [ξi, ξi+1) of size
∆ξ = (ℓ− ξ⋆)/(N + 1): ξi = ξ⋆ + i∆ξ.

For boundary conditions, we define ξi for i = −2, . . . , N +3.

We denote wi an approximation of w(ξi) for i = 1, · · · , N
and define the scheme

(ξ2i + εβ)w′
i − p(w)

′
i = −εβξiw

′′
i + ε2γw′′′

i , i = 1, · · · , N,
(10)

completed with the following boundary conditions

w−2 = w−1 = w0 = w⋆, wN+1 = wN+2 = wN+3 = wR.
(11)
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Determination of w⋆ - Mass conservation

Conservation law: total mass of w must be preserved.

Initial mass of w given by

M0 = ℓ(wL + wR).

Total mass of the approximated solution w∆ depends on w⋆

and reads

M(w⋆) = ∆ξwL +
N
∑

i=1

∆ξwi(wL, w
⋆) + 2ξ⋆w⋆

+

N
∑

i=1

∆ξwi(w
⋆, wR) + ∆ξwR.

w⋆ must be solution of the following nonlinear equation:

M(w⋆) = M0.
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Determination of w⋆ - Dichotomy technique

We initialize the dichotomy algorithm as follows:

(winf , wsup) =

{

(wL, wR) if M(wL) < M(wR),

(wR, wL) elsewhere,

w⋆
0 =

1

2
(wL + wR).

For iterations k ≥ 1, we compute the left and right
solutions w∆(wL, w

⋆
k−1) and w∆(w⋆

k−1, wR) and we deduce
Mk = M(w⋆

k−1).

If Mk < M0 then winf = w⋆
k−1, else wsup = w⋆

k−1, and we

compute the new iterate value w⋆
k = 1

2(winf + wsup).

In practice, we accept a small mass error of 10−6.
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Existence result

We are able to state the following result [see 16].

Theorem

Let ε > 0 be given and ξ⋆ > 2∆ξ. Assume the existence of

Mp′ := sup
w∈R

|p′(w)|.

Then there exists ∆ξ0 ≤
√
εβ depending on β, ε, ℓ, ξ⋆ and Mp′

such that for ∆ξ ≤ ∆ξ0, there exists a solution w∆ = (wi)i=1,...,N

to the scheme (10) with the boundary conditions (11).

16Berthon, Bessemoulin-Chatard, AC, Foucher 2019 (Calcolo)
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Numerical tests with p(w) = w3

3 + w

Classical case: wL = 1, wR = 5, β = 1, γ = 1.

Our approach: ℓ = 8, ξ⋆: 0.8 or 1.6, N = 1000,
ε = 4× 10−2.

FV Lax-Friedrichs scheme: N = 104, ∆t = 10−4.
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Non classical case: wL = −3, wR = 10, β = 1, γ = 20.

Our approach: ℓ = 20, N = 1000, ε = 2.5× 10−2.

FV Lax-Friedrichs scheme: N = 104, ∆t = 10−4.
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Conclusions

A new numerical approach to approximate (non classical)
Riemann solutions of system of conservation laws.

Solutions seen as limit solutions of diffusive-dispersive
problem.

Use self-similarity and Dafermos technique to obtain an
ODE problem.

Gives quite good numerical results on classical and non
classical tests.

Future works: Shallow-Water, two-layer problems (without
dispersive term, only diffusion)...
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Thank you for your attention!
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